
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2022

Enabling Use of Signal in a Disconnected Village Environment Enabling Use of Signal in a Disconnected Village Environment

Evan Chopra

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the OS and Networks Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages

Enabling Use of Signal in a Disconnected Village Environment

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Evan Chopra

December 2022

© 2022

Evan Chopra

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Enabling Use of Signal in a Disconnected Village Environment

by

Evan Chopra

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2022

Dr. Ben Reed Department of Computer Science

Dr. Robert Chun Department of Computer Science

Sid Anand Masters of Computer Science, Distributed Systems

ABSTRACT

Enabling Use of Signal in a Disconnected Village Environment

by Evan Chopra

A significant portion of the world still does not have a stable internet connection.

Those people should have the ability to communicate with their loved ones who may

not live near by or to share ideas with friends. To power this achievable reality, our

lab has set out on making infrastructure for enabling delay tolerant applications. This

network will communicate using existing smartphones that will relay the information

to a connected environment. The proof of concept application our lab is using is

Signal as it offers end to end encryption messaging and an open source platform our

lab can develop.

ACKNOWLEDGMENTS

I would like to express my thanks to Dr. Ben Reed for his support and knowledge

of this topic throughout this project. I would also like to thank him for coming up

with this powerful idea for our lab. He has showed me that software has a strong

reach and can accomplish things that are innovative and seemingly impossible! I

would also like to thank Dr. Robert Chun for supporting my ideas and giving my

topic the chance to blossom into something greater. He has been a lot of help writing

and perfecting this paper. Lastly, I would like to thank Sid Anand for always being

there to support my learning process and always being available for questions!

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Our Labs introduction . 2

1.2 Significance of Signal . 3

2 Background . 5

2.1 Signal Application . 5

2.2 The Signal Protocol . 5

2.2.1 KDF Chains . 6

2.2.2 The Double Ratchet Protocol 8

3 Related Works . 11

3.1 Mobile Delay Tolerant Networks 11

3.2 Remote DTNs with bundling abilities 12

3.3 DTNs over the Metropolitan Public Transportation 12

3.4 WaterChat: A Group Chat Application Based on Opportunistic
Mobile Social Networks . 14

3.5 Signals Handshake X3DH . 15

3.6 PKI in a DTN environment . 15

4 System Design . 17

4.1 Overarching Design . 17

4.2 Scalability . 18

5 Design of Signal Plugin . 19

vi

vii

5.1 Formalized Design Flow . 20

5.2 Challenges of libsignal-java . 21

5.3 Registration . 22

5.4 Sending the First Message . 25

5.5 Sending Messages . 26

5.5.1 Exploring Alternate Methods to Sending and Receiving
Messages . 28

5.5.2 Signal Envelopes . 29

5.5.3 Spoofing Prevention . 30

5.5.4 Abuse Protection . 31

5.5.5 Encrypting & Sealing the Envelope 31

5.6 Client Requirements for Double Ratchet Protocol 31

6 Experiment . 33

6.1 Registration . 33

6.2 Message Sending and Receiving 34

7 Future Works . 36

7.1 Enabling Group Chats . 36

7.2 Working Directly with Signal . 37

7.3 Expanding Application Compatibility 37

8 Conclusion . 39

CHAPTER 1

Introduction

As the world seemingly becomes more and more connected, a large portion of the

world’s population still lacks a stable internet connection. A report by the United

Nations International Children’s Emergency Fund concluded that two-thirds of the

world’s children do not have access to the internet[1]. This lack of available connections

can restrict a child’s ability to learn about various topics that are not readily known

in their community. This lack of internet can also inhibit economic viability with

everything moving to e-commerce. The ability to have some internet connection is

extremely important in the modern day.

In an area where the internet is not reliable or available, there are solutions that

can enable users to have the ability to use the internet in a delayed fashion. This

ability is built off the backbone of a delay-tolerant network paradigm. Delay tolerant

networks(DTNs) typically follow an opportunistic network paradigm. This paradigm

means that forwarding messages usually take advantage of devices proximity to one

another and the devices willingness to accept a message from another. The end goal of

these networks is that eventually a packet will make its way to its destination through

device jumping. In this case, an opportunistic network paradigm requires that each

user’s device uses a store and forward model. As users request more information from

various websites or attempt to send messages on different platforms, their requests

are bundled up and sent as a client becomes available to take it. In general, these

requests can consist of packets from any application such as Whatsapp or YouTube.

An opportunistic network does not care what packets are being sent, just its ability

to forward them in close proximity to other devices. To enable a remote village or

an internet-less area to connect to the outside world, an efficient DTN needs to be

created that can utilize reliable transportation of packets to connected areas. Doing

1

Figure 1

this successfully and making it accessible to the masses allows those who are normally

disconnected to be plugged into the rest of the world.

1.1 Our Labs introduction

Typically DTN remote village research usually focuses on implementing custom

hardware that acts as the infrastructure that carries information from the disconnected

village to the connected world. In our study, we are simplifying that typical custom

infrastructure by moving everything to personal smartphone devices. Normally, this

custom hardware needs to be purchased or maintained with software updates in

order to remain functional. By using the operating system built into an individuals

phones, our lab can create infrastructure out of everyday devices that need minimal

development maintenance and no upfront additional cost. Our lab can leverage the

flexibility and built in technology in Android to reduce the development needed to

2

create such infrastructure. Individuals who frequent the village and a connected

environment will be downloading a transporter app that will take all of the bundled

information and transfer it to a bundler server that is running and ready to send out

individual’s requests and accept responses for them. Those in the villages will have

a simple client app that will intercept requests going to the various apps that use

this store and forward model and zip their requests into a file that can be read by

our server that is connected to the internet. The DTN should operate on a zero trust

schema, meaning that no one in the network should be able to read zip bundles that

are not their own.

1.2 Significance of Signal

In the present digital world many companies seek to increase their revenue through

new models of selling consumer data to third party services[2]. This spreading of

information puts users privacy at stake. Signal empowers users to stay private and

message people they care about without fear of company or government overreach.

Signal is an independent nonprofit operated company that purely operates off of

donations made by users and larger organizations that believe in their mission[3].

They do not track user information or sell user data, and they prefer to let you

handle your own data. They are proudly an open source and have a very active

community of developers and Signal protocol driven projects[4]. As of September

2022, they have 100 million downloads[5] and 40 million monthly active users[6]. The

cofounder of Whatsapp now runs the operation of Signal after leaving Whatsapp and

he stated that he shared, "differences surrounding the user of customer data and

targeted advertising"[6]. Signal is a company that stands for privacy and empowers

the average user to take back their privacy and data. This is a rare occurrence in a

world driven by profit. This privacy comes free of cost allowing this app to also be

3

extremely accessible for those in underdeveloped areas. Those underdeveloped areas

are our target, so that we can enable them to be connected to the rest of the global

community.

4

CHAPTER 2

Background
2.1 Signal Application

The Signal application is the proof of concept application we have chosen for

our study as it is widely used and is a secure open source messaging platform. Being

open source, it is able to be modified to fit into the store and forward model. When a

user has the modified Signal application on their phone, it will act as if it is sending

messages normally, however these messages will be bundled into encrypted zip files

and sent as Wi-Fi direct connections to other available clients. These encrypted

signal zip files are passed to a client that is accepting bundles. With an end to end

encryption model, it does not matter who gets these zip bundles. The zip bundles

are designed and encrypted in such a way that we are not worried about malicious

actors acquiring them. The hope is that one of these clients will eventually get to a

connected environment and pass these bundles off to our bundler server.

2.2 The Signal Protocol

The Signal Protocol is what powers the open source encryption that the Signal

app executes in order to keep messages unreadable. It is important to have a high level

of understanding of how this algorithm works so that certain steps of our bundling

and message transmission can be tweaked to keep messages private. The Signal

Protocol is an end to end encryption protocol that uses a variation of a public-private

cryptography to keep things private between two clients.

The Signal Protocols main algorithms that are used to do the encryption are the

Extended Triple Diffie-Hellman (X3DH)[8] and the Double Ratchet algorithm[9].

The X3DH algorithm is designed for asynchronous settings where a user is offline

but has published information to a server. A different user who is online can use this

published information on the server to send encrypted data to the offline user. In

5

order to make a client available to receive messages, a client must generate a pair of

long term identity key pairs which do not change, a signed pre-key pair, and multiple

expendable pre-key pairs[8]. The signed pre-key pair is used in the Diffie-Hellman

calculations for verification and decryption. It is also used to verify the opposing

client’s signature. The pre-key pairs are one time use keys that are used to initiate

and encrypt the handshake that is X3DH. Batches of pre-keys are sent up to the

Signal servers since these are deleted after one use[8]. Next, the client app bundles all

of these keys and a registration ID into a key bundle and sends it up to Signals servers

to be added to a key distribution center. This distribution center contains receipts

public keys, so that the requesting client can obtain the appropriate information to

start a conversation. This key bundle contains not only the long term public key

but the rest of the generated keys. The local client then generates their own keys

and creates a shared master key. The new master key is sent back to the original

client and is validated. Messages can now be sent as they will be encrypted using this

master key to start[8].

2.2.1 KDF Chains

The Double Ratchet algorithm allows two parties to send encrypted messages

based on a shared secret key. X3DH is used to come to agreement on what secret key

will be used. Following this initial secret key, the clients will use the Double Ratchet

protocol to send more encrypted messages. The clients use this algorithm so that

earlier messages cannot be calculated from later ones.

Inside the protocol, a key derivation function (KDF) chain is a core mechanism

that allows for encryption. A KDF is a cryptographic function that takes in a secret

and random KDF key and some data and then outputs some data. If the key is not

known, the output look random to an outside viewer. If the key is still known, KDF

6

Figure 2: X3DH handshake shown with Elliptic Curve Diffie Hellman[1]

should still provide a secure cryptographic hash of its input data. The reason this

concept is described as a chain is because KDF blocks are chained together, using

their output as another KDF blocks input. The benefit of using output as input

is it guarantees forward security. This mean that output from earlier KDF blocks

looks random even if they have obtained the current key and input[9]. This concept

also improved resilience as an adversary will see the outputs as random without any

knowledge of the KDF keys. Lastly, the KDF chain has the break-in recovery attribute

that makes future output keys appear random even if a KDF key was learned at some

point in time. This trait relies on the fact that there has been some sort of randomness

injected into the chains. Now the double ratchet protocol involves three separate

KDF chains all working in unison[3]. The three chains working are named the root

chain, sending chain and receiving chain. Lets say Alice and Bob send messages to

each other, their Diffe-Hellman public keys and outputs become inputs to the root

7

Figure 3: A KDF chain feeding output into the input of the next KDF block [9]

chain. The output keys from this root chain feed into the sending and receiving chains

as new input. This is what is called a Diffe-Hellman ratchet.

2.2.2 The Double Ratchet Protocol

To send or receive messages a unique message key must be used. These message

keys are generated from the sending and receiving KDF chains that we defined above.

Since the external inputs for these chains is constant, they do not benefit from break-in

recovery. To generate new message keys, the KDF chains use the output from the

previous message key. This is what is called a single ratchet step in a symmetric-key

ratchet. The problem with this simpler way of encrypting messages is that if an

attacker steals one of the users sending and receiving chain keys, the attacker can

8

Figure 4: Ratcheting Step [8]

compute all future message keys and decrypt all future messages.[9]

To prevent this very doable attack, the Signal protocol has a counter play to this.

In order to make future messages uniquely encrypted, the Double Ratchet protocol

implements another step that integrates with the symmetric-key ratchet. This step is

known as the Diffie-Hellman ratchet. In this combined algorithm, each party creates

a DH (Diffie-Hellman) key pair which consists of a private and public key. For every

message that is exchanged the public key is attached in the header. When the recipient

receives the senders public key, a DH ratchet step is executed which then replaces

the local key with a new key pair. If an adversary gets and compromises the private

9

key, we can say that this is okay because it will eventually be replaced. There can

exist a situation when messages using the double ratchet program can be delivered

out of order. To counter this potential problem, each message includes metadata that

has the message number and the length of the previous message keys. While waiting

for the messages it’s missing to be delivered, it can skip to the current message key

based on what was given. When a message is delivered, a ratchet step is started and

the protocol can figure out how many messages it’s missing. To figure this out the

protocol can calculate the previous chain’s length minus the current receiving chain’s

length. If the receiving message does not trigger a ratchet step, then the received

message number minus the length of the receiving chain is the number of skipped

messages[9]. If Alice sends three messages to Bob and only the third message arrives,

Bob’s ratchet step will trigger on message three instead of message two. Message

three will have the length of the previous messages keys as two and a message number

three. Bob knows that this is the third message and that the sending chain of Alice

has two previous entries to the chain. This will let Bob know that he needs to store

message keys for messages one and two; they can be read and decrypyted when they

arrive[9].

10

CHAPTER 3

Related Works

This section discusses previously done work that our own work has been inspired

by and what we want to build upon. We will start with an examination of Delay

Tolerant Networks or DTNs. Then we will shift our focus to similar bundling concepts

that others have been able to use in disconnected villages and public transport as a

median to push data to a internet connected server. Finally, we will look at X3DH

and public key infrastructures.

3.1 Mobile Delay Tolerant Networks

In a rural community where having an internet connection can lead to a huge

influx of development and economic prosperity, enabling connections in a cheap and

efficient way can be the difference between a rural community developing or staying

disadvantaged. This paper focuses on one use case where an ordinary person can

become a micro-entrepreneur based on this enabling of a delay tolerant network.

Disney Labs Zurich coined the idea that if people can stream movies using what

they called a “mobile cinema” it can bring economic wealth to many individuals who

would normally not have the opportunity[10]. These networks would build upon

infrastructure that this lab would stand up to. They would equip mobile information

stations on frequent public transportation vehicles such as taxis [10] while keeping the

required infrastructure at a low cost in order to make it successful and accessible[10].

This paper was important in our consideration of how to build a project on top of

already existing work with DTNs and disconnected or remote villages. Disney Labs

Zurich was able to enable this DTN environment using the custom-built infrastructure.

Our project wants to enable the same connectivity without propping up new and

expensive hardware. Using a typical mobile phone will help cut costs, increase

accessibility, and lower the overhead to maintain the application. Having app based

11

infrastructure also allows us to leverage any device running Android or iOS. Using

these OS’s empower our team to use only standard permissions that users would give

us access to on their phone. This allows us to create an app that works well with user

consent and will not overstep the boundaries of what is allowed.

3.2 Remote DTNs with bundling abilities

A huge portion of real DTN environments is examined in an urban environment

with already existing, though underpowered, infrastructure[11]. These types of net-

works can benefit hugely from DTNs as they can spread out the loads on certain

regions of a network. A study conducted by Grasid and Lindgren was able to layout

stationary and mobile infrastructure in order to provide internet and connectivity to

a remote village in Sweden [11]. In this paper a proof of concept of what our group

is going to attempt to recreate and improve on is outlined. They created a server

that makes network requests and bundles them together in order to send them out

as delayed requests[11]. The study had specific compatibility with a range of apps

including an open-source email client, a server that had pre-selected podcasts that

it would scrape and cache for users, a web caching server similar to the podcasting

service and a SMS server to send messages. This scenario laid out a trusted network

model where everything in this network is good and behaves in a correct manner[11].

Our lab wants to improve upon this model by not only bridging these servers up

to date with modern applications like Signal, but also building a network off of a

trust-less model. Our group does not care who gets what and where data goes, no one

will be trusted and thus our infrastructure won’t know what it’s transporting.

3.3 DTNs over the Metropolitan Public Transportation

Human mobility is extremely unpredictable and not constant, so the solution

that allows DTNs to be consistent in multiple scenarios is public transportation. This

12

infrastructure can be installed on multiple bus lines and allow labeled data movement

throughout each line depending on a return route. When a user gets aboard or near a

bus with a module installed on it, their request is forwarded to the buses server with

an identifier that indicates which bus line they will be taking home. This predictive

network routing allows the DTN to plan out which returned requests will be stationed

where. This planning can and will relieve strain on a network that could normally be

flooded with requests from anyone and everyone[12]. In our study we will begin with

this random request distribution as our network is labeled as untrusted. This allows

our bus driver to accept every request it finds as long as there’s space for them. When

the driver returns they can distribute the requests to everyone and only the original

sender can decrypt their zip bundle. As our project expands and needs to scale, we

will adopt the methodology in this paper. By only accepting messages in which their

response will be going in the same place as the request was sent. The bus driver’s

phone can use more space, and our bundling server can be made more aware of which

buses often contain the most data. This paper was extremely helpful when exploring

delivery options for messages since they used the same basic architecture that our lab

is considering. This allows us to take what they learned in these congested areas and

adjust our distribution model for a completely opposite scenario, servicing villages.

Figure 5: Transport Network [12]

13

3.4 WaterChat: A Group Chat Application Based on Opportunistic
Mobile Social Networks

An opportunistic mobile social network can be defined as a delay tolerant network

that plays off of social interaction between the nodes. In order for a network like this

to function, it’s important to analyze patterns of each of the nodes. This way, there

can be a predicable delivery window for packets to get to their destination. Waterchat

is a store and forward based chat application that supports chat rooms and individual

messages[13]. The user of this app can also prioritize the delivery of certain messages

based on their importance. Similar to our own, their initial approach before networking

optimizations is a spray and pray approach. The idea is that in order to lower the

delay of total message delivery time, they want to send out messages to every node

that is seen in this opportunistic network by a client[13]. By bouncing the message

around the ad hoc network, there is a high probability that a message will be delivered

to a desired node. The groundbreaking part of this strategy is the optimizations they

make when sending fragments of messages or updates regarding messages if they are

already in the network. By controlling the updates to the network in an efficient

way, Tsai, Liu and Han prove that their protocol is effective and superior to a pure

broadcast and networking flooding delay tolerant network[13]. Their protocol has

a higher delivery ratio and lower message delivery delay. This paper relates to the

work our lab is doing as these types of studies showcase the different delivery and

distribution methods that can increase the chances of delivery of Signal messages. It

also showcases store and forward and its effectiveness in a near identical use case,

validating the strategy the Signal plug-in and Signal app will be using to hold and

prepare information for transit.

14

3.5 Signals Handshake X3DH

The Signal protocol consists of 2 major security protocols, X3DH and the double

ratchet protocol. X3DH is used in order to do key exchanges for initial session

keys required in Signal. Hashimoto and Katsumata define a new type of X3DH

coined as a Signal conforming authenticated key exchange(AKE) protocol[14]. This

is done in order to define a proper security model based on other authenticated key

exchange protocols. In order to build this new version of X3DH, they used a plethora

of cryptographic primitives like key encapsulation mechanisms(KEM), a signature

schema and a pseudo-random function[14]. They believe with this design the security

in X3DH is comparable to the security achieved using the double ratchet protocol.

This X3DH improvement was put to the test using NIST post-quantum standardized

processes which compare the computation power and bandwidth needed to break

these encryptions. While our lab is not making a new version of the X3DH protocol

to use in place of Signals, this paper shows us the various ways that X3DH is being

iterated on due to it lack of deniability. This deniability is seen in Signals X3DH

key exchange because when Alice and Bob want to start a conversation, one of them

must be seen as the initiator. This initiator can deny that they played any role in

messaging a person because the information that they send leaves no trace. However,

the responder can be tied to the conversation which can create a vulnerability in who

is doing what. This modified X3DH algorithm strengthens the current durability

paradigm, making it safer.

3.6 PKI in a DTN environment

Public key infrastructure is a highly used method for accessing and verifying the

legitimacy of public keys and users certificates within a system[15]. These systems

typically do not work well in a delay tolerant network because of the nature of

15

intermittent connection and unknown delays. PKI usually consists of an online

certificate status protocol (OCSP)[15] and a certificate revocation list (CRL)[15]. A

OCSP is a framework for checking to see if there has been a change in a specific

certificate. This systems is always querying an online setting, which makes it not

runnable in an environment that is not typically connected. A CRL is a similar

mechanism but it’s a blacklist for certificates that have been revoked before they

expire. Due to this offline nature, this kind of list of revoked certificates can be

distributed among many of the nodes on the network as connections become available.

A problem that can arise is that as the network grows its difficult to maintain an

accurate record at scale and verfiy that all CRLs are signed with a real certifcate[15].

Bhutta and Cruickshank propose a solution that uses a much simpler and lighter CRL

mapping system that allows nearby nodes to also validate the certificate authority

offline[15]. This verification is done on startup by computing the hash of the original CA

certificate that it’s granted and its closest neighbor according to a defined formula[15].

If it’s a verified node it takes on its persistent storage. Dealing with Signal in this

DTN environment will create storing and verifying keys difficult. As the Signal plug-in

we are designing needs to retain the least private information as possible, our lab

will need to design a similar PKI that can verify keys in a similar manner as this

proposed solution. This PKI system will also need to store names and their keys that

are needed for sending and receiving messages in Signal.

16

CHAPTER 4

System Design
4.1 Overarching Design

When creating a design for this project, it was obvious that this was going to be

a multi-device system that needs to work in an extremely untrustworthy and delayed

environment. There needs to be a client side application that runs on a users phone,

that monitors a modified Signal app to see when messages are queued to send. Then,

there needs to be an application that the "bus driver" installs that will transport

messages between the disconnected and connected environment. In this scenario

a "bus driver" can be anyone who is frequently moving between a connected and

disconnected environment. They will be a message mule for our infrastructure. This

application needs to automatically connect to in-range devices that are requesting

to send their encrypted zip files. These zip files are formatted to contain pending

message requests from the Signal application. The way our system will be designed

allows our application to not read anything inside of these encrypted files in order to

protect the privacy of our users. Once these packages are transported to a connected

environment, they will be sent to our bundler server. This service will send messages

and receive messages for each user who has an account with our service.

The focus of this project will be on the Signal plugin inside of the bundler server.

The design of this server needs to be done in a way that it can be leveraged for other

services besides Signal. The hope for our infrastructure is that it can be deployed

cheaply and have an open API to make requests per application. Proving that the

Signal protocol and app can work in a DTN will lead other developers to create

support through this open API. This will lead to more users in these DTNs to receive

more service compatibility.

17

4.2 Scalability

When designing a server that will eventually be dealing with larger requests

for numerous amounts of apps and servers, scalability needs to be at the forefront.

Scalability is a term that can be used to describe a specific systems ability to handle

increased amounts of load as a service grows overtime. How much load and what type

of load depends on the system expectations and data that a system intends to process.

A system can be great at scaling quickly for peak load but suffer when the average

load creeps at a quick rate. This predicament happens in all developing and aspiring

scalable systems [16]. The important thing to take away from these strategies is to

build your system to be flexible as your priorities change with the growth a system

receives. Another aspect of scalability is the performance one can expect at these high

load times. Things to take into account are how a system may perform if parameters,

power of the system, are left unchanged. Will requests get dropped, or will the system

just take an immense time to respond to them? These are important design choices

that may have an impact on the stability of a system. Moreover, if the parameters

are increased in the system, how much do they need to increase for the performance

to be unchanged with the increase of requests? Oftentimes systems aim to please a

certain percentile of requests that are outliers, this can guarantee that some of the

worst requests will only take a certain allowable amount of time. All of these above

factors are important to consider when designing a system that is capable of receiving

many thousands of requests from our "bus drivers".

18

CHAPTER 5

Design of Signal Plugin

With this scalable server, our main service inside of it will be a Signal plug-in,

that will be specifically forwarding and receiving requests from Signal. When a clients

requests gets off of one of the buses and forwarded to this plug-in, a set of important

operations must happen. Firstly, the bundle needs to be "unbundled" exposing the

raw encrypted bit stream that is the Signal message. These bits are encrypted by

the phone that it came from, allowing us not to worry about privacy of a user’s

message. Next, the plug-in needs to be able to figure out who this request is coming

from and how to authenticate with the Signal service. In order for this to happen, a

few important bundles of information are needed unless the client decides to sign up

through our registration service using a Google Voice number. The bundles that are

needed include the public identity key, the signed prekey and any amount of one time

prekeys that was discussed in the X3DH section. These are needed so that once their

number is registered other clients can send them messages. This flow is seen in figure

8. As privacy is the main focus, it is important to note that our application can never

read the messages being sent through our system. We allow the client to handle the

Double Ratcheting protocol while we talk to Signal as a middleman. This allows the

plug-in to act as a middleman with none of the normal exploits that can occur.

19

Figure 6

5.1 Formalized Design Flow

For someone to use the Signal Plug-in in a complete offline and delay tolerant

manner, a user may sign up through our service. By signing up through the Signal

plug-in it allows us to capture all of the necessary information that the plug-in can

use later to open a session on there behalf. In order to open a session to listen and to

send messages using the open source libsignal-java package[17], the plug-in will need

to retrieve a set amount of keys for the X3DH protocol. Once the X3DH handshake is

complete Alice and Bob can exchange messages encrypting each one using the Double

Ratchet protocol. Now when a recipient decides to reply to the user who used our

platform to message them, their messages will come to our Signal plug-in that is

openly listening for replies. When we receive replies we will re-bundle those replies up

to forward them back to our bundler server which will then attempt to return the

message to the original person’ s client app.

20

5.2 Challenges of libsignal-java

The general appeal of using Signal messaging over other messaging apps is the fact

that signal operates as an open source client and server. Anyone can visit Github.com

and glance over source code to determine if Signal is legitimately encrypting and

delivering a message. With this open source nature, Signal has created a library in

many different languages that allows a developer to interact with any Signal server,

whether it’s the official servers or a locally run one. While this library empowers

developers to make their own applications interacting or using signal, the first hurdle

that this created was the complete lack of documentation. Researching exactly what

parameters are needed to send and receive messages led to a struggle of finding out

what parameters were required for what objects. It also seems that most of the

available documentation is completely out of date with the code. Signal was very

lackluster on the requirements of many of the KeyStores that were needed in order to

register and also create a session with the Signal server. The little information they

provided required a lot of context that was not given that the development team had.

It’s obvious that as an open-source project, resources for Signal documentation are

slim. Also, when trying to communicate with a real Signal server, our Signal plug-in

needs a real certificate inside of the required TrustStore object. This TrustStore object

is a child of a KeyStore object that stores this valid certificate. This certificate is

self signed and is not verified by a certificate authority. This was odd as Signal is a

major company with an open source library made to interact with their services. Since

Signal is an end to end encrypted service, Signals servers may not find it necessary

to be externally authorized by a CA as a man in the middle attack would yield no

information leakage as it’s all encrypted.

21

5.3 Registration

When a user first signs up for Signal their client device generates a few required

keys that are important when communicating with Signal. These generated keys that

our Signal Plug-in requires are properly split in a way where we do not gain access

to keys that allow us to spoof ourselves as the client. We do not take in the private

identity key, and we deem the client to keep it. This split key management allows

the client to retain total control over how they encrypt their own messages. These

keys are described as an identity key, several prekeys and a signed prekey. These

keys are important as this bundle of keys is sent to Signal in order to send to clients

who wish to communicate with you. They are used in order to generate the initial

message for the X3DH process to begin. The identity key is an elliptical curve public

and private key pair. The numerous prekeys also use the same elliptical curve public

and private key generation as the identity key. The difference between these keys is

that the prekeys are disposable and are sent to the server on a timely basis. These

prekeys are used to calculate the secret key or SK that is used for the initial messages

in the X3DH handshake shown in figure 9. If a client requests a bundle that does

not have any disposable prekeys, a calculation can still be done that will still allow

the SK to be generated for X3DH. This is possible because Signals server being out

of prekeys is a very real scenario. If a client does not reconnect to the servers for

months, there needs to be an alternate way to send them a first message. That’s

why there are alternate calculations that can take place in order to send the initial

message. These generated keys are then sent up to the Signal servers for Signal to

distribute to any potential client that wants to communicate with your registered

number. Within the implementation it is extremely important to keep these keys in a

durable storage as the identity key is used to communicate and start sessions with

other users through the Signal servers. When a user is fully registered after doing a

22

voice or SMS verification, a UUID is assigned to the client that also should be saved

in a durable fashion. This UUID is also an important user identification attribute that

the Signal servers use when verifying requests along with the identity key. Without

these two entities, a session cannot be opened to receive or send messages. This storing

of UUID and public identity key is similar to a PKI, as we are associating our users

with these two pieces of information in order to always forward their messages to the

correct person. The Signal plug-in will always use this PKI-like system to lookup the

information that is needed to open a session to send a message. Our Signal plug-in will

need to receive both of the public identity key and the UUID in order to effectively

send and receive messages in place of the client. Both of these pieces of information

have nothing that can compromise the user. The reason that the public identity key

and the UUID stay secure is because if a malicious user were to obtain these entities

they would not be able to send a message that the end user could decrypt. This is

because the Signal plug-in is not managing any of the actual message encryption. If a

malicious messages are sent to the recipient, their device would simply not be able to

decrypt and throw an error. This is because the malicious sender would not have any

idea what the stolen users private key is that is being used to encrypt messages. That

key is purposely left on the clients device, allowing the plug-in to just act as a proxy

for sending messages. This reinforces our end to end encrypted model throughout the

application. The more security we can offload of our application the less information

leakage is possible.

23

Figure 7: Registration and Sending First Message
24

5.4 Sending the First Message

Figure 8: Secret Key calculations [8]

Let’s say a potential client, Alice, wants to communicate with Bob. Alice needs

to retrieve her bundle of keys from Signal and formulate a session with Bob. This

session involves the X3DH handshake that figure 8 depicts. The set of calculations

can be seen that result in the successful secret key that allows the first message in the

chain of communication. In that diagram one can notice that a variety of different

keys are used that were mentioned above and some that were not. Not only does Alice

need to use her own keys when generating the secret key, but Alice needs to use the

keys from Bob’s bundle that they retrieve from the signal server. The necessary keys

needed for such a handshake are the identity public keys, signed prekey pairs, some

quickly generated ephemeral key pairs, and optional prekey pairs denoted in figure

8. Once these calculations are all completed, Alice deletes her ephemeral private key

and the outputs used to create the final secret key. Alice then appends an additional

piece of information that is the encoding of both Bob’s and Alice’s identity key, AD,

and uses it along with the secret key to finally encrypt the ciphertext. In figure 8,

it displays the computation that is done in order to receive the secret key. In this

equation, IK are the identity public keys, the SPK are the signed prekey pairs, EK are

the ephemeral keys that are generated and all have subscripts denoting whether they

25

are Alice’s or Bob’s respected key. When Bob receives this initial message, his task is

to retrieve Alice’s identity key and the ephemeral key from the header of that message.

Then Bob retrieves his own keys that are needed, such as his identity private key

and those private keys corresponding the his signed prekey and optional prekey. He

then does his own calculations according to figure 8 which yield him his own secret

key. Follwing that, he also generates his own AD and uses the secret key and AD to

decrpyt the ciphertext. If this operation fails, Bob aborts this session and deletes all

related information. If it is successful, Bob deletes any one time prekeys that were

used in order to keep forward secrecy enforced. This is an extremely important step

because if someone is listening as a man in the middle and manages to decode the

secret key and AD, then they will not be able to use that same key to decrypt future

or past messages. The idea of a unique key being used per message ensures that user

data is kept as secret as possible in the event of a key leakage.

5.5 Sending Messages

In order to send messages following this handshake, the client side Alice, needs

to refresh this secret key and AD information every set amount of time. Inside of our

Signal plug-in, multiple in memory keystores need to be created to start a session in

order to open a connection to the Signal servers. A key store is needed for each type

of significant key needed for X3DH and the Double Ratchet protocol. Once their key

stores have been formed, a session with the Signal servers needs to be built that passes

these key stores and the receipts phone number that the app will be sending messages

to. This creation of a session creates and object that is then used to retrieve a prekey

bundle that belongs to the desired recipient. With this prekey bundle fetched, we can

process the delivered keys in order to commence a proper X3DH handshake. Once

this handshake is completed an initial message can be sent. This process is repeated

26

for every message that wants to be sent. Now this method above is well documented

in Signals documentation but their lib-signal api lacks the proper api to do this exact

task. They refer the client to grab a prekey bundle located on the server that contains

the above needed keys that the recipient sent to the signal server on sign up. In their

testing, instead of mocking a request to their server with the correct api call that

one may use, they hard code in key bundles to use. There is no clear way on how to

get their key bundles, and I think the reason may be that Signals api is not built to

communicate perfectly with their own service. Its built to be used with any generic

server running their signal-server code. They assume that whatever server you are

talking with will have an endpoint to get a prekey bundle, but they may not want

to expose that information in this api. They may see it as some sort of information

leakage that they do not want to contribute to. Those original api calls have not

changed at the same rate as the api documentation itself when examining the git

commit history of the repository as well. Our application does not need to worry

about that cipher text being encrypted, as it was already encrypted by the sending

device. That message is end to end encrypted. We allow the sending and receiving

devices to do the encrypting before we ever get the message; thus we do not need to

worry about doing any encryption on our end.

27

Figure 9: Gap in Documentation [17]

5.5.1 Exploring Alternate Methods to Sending and Receiving Messages

As stated above the defined and documented way to send messages is not

relevant to how the current signal api actually behaves in a real message environment.

Instead many recommendations in the Signal community point to use the more

well documented and maintained components of Signal-Android[18]. Deep within

the codebase running the android app, there lies signalservice code that is similar

to an api fashion. By injecting these dependencies inside of our existing signal-

plugin program, it can utilize many of the battle tested sending methods inside

of Android. Inside of this android package, to send messages a client must create

SignalServiceMessageSender objects that then have the ability to send different types

of messages to a recipient. These messages consist of sending read receipts, typing

indicators and many other common communications that happen within the Signal

app. In order to send these messages up to the Signal server, this api triggers the

28

program to open a pipe directly linking the Signal plug-in to the server. Think of

this pipe as a web-socket. It allows the free flow of packets between the Signal

plug-in and server. This type of intercommunication between the two parties has a

great benefit to transferring information quickly in both directions once the pipe is

established. These pipes facilitate the transportation of a messaging concept derived

in Signal called envelopes. This process works in reverse with an object notably

named SignalServiceMessageReceiver. This object also allows a client to send different

types of packets as discussed above and open the same type of pipe object. When a

pipe is opened by a client, they may request to receive any messages that have been

earmarked to be delivered to them.

5.5.2 Signal Envelopes

When sending a message through a client to Signal, it would examine the incoming

message to decide which user should receive it. Upon delivery it would consult the

"from" aspect of the message to see who sent it. Signal decided that it’s better that

Signals servers do not need to know who sent the message just where it needs to

go. This protects the privacy of its users even more as they are slowly working on

covering up metadata tracks. These leakages of metadata could enable large agencies

or governments to potentially use this known data to prove that Alice and Bob were

indeed talking during a certain time period. Signal also made it a goal that this

"fromless" technology should still allow for rate limiting and abuse protection when

dealing with automated bots spamming messages. Another key aspect of this new

protocol is that a client receiving a message should be able to validate the senders

identity to prevent spoofing and provide reassurance that the message they received

is truly from the correct person[19].

29

Figure 10: Signal Envelope format

5.5.3 Spoofing Prevention

In order to stop spoofing in this new paradigm, Signal required clients to generate

a short term sender certificate from Signals servers that prove their identity. This

certificate contains their phone number, public identity key, and an expiration date.

This certificate is included in sent messages.

30

5.5.4 Abuse Protection

In order to combat abuse and spam, Signal asks that clients create a 96-bit token

derived from their profile key and send it to the Signal servers. There is no expiration

on this token, the only time this token needs to be updated is when a user’s Signal

profile is edited in a way that alters their identity. An example of an alteration that

would call for an update is if a user changed the phone number that their account

was associated with. Signal then requires clients to verify and prove that they know

information about that token for a user in order to send a "fromless" or "sealed sender"

message to that user. These profile keys are exchanged with your contacts on Signal

or other people or groups that are granted permission. Having this requirement of

needing to actually approve and know someone to get messages from them brings

down the chance of spam and abuse. This setting can be disabled by any Signal user

if they choose to receive messages from anyone that is not included in their contacts.

5.5.5 Encrypting & Sealing the Envelope

The cipher text that is traditionally in a Signal message is still encrypted with the

Signal protocol that has been discussed, but this sender certificate is also encrypted

using the sender and recipient identity keys. When the recipient receives this envelope

on the other side, they can decrypt and validate the sender certificate and process

the message. Signal sees this type of hidden metadata as the future of privacy. By

making an effort to shield this type of data they are sticking up for their users privacy

in more ways than typical consumers are aware of.

5.6 Client Requirements for Double Ratchet Protocol

In order for all of the above things to work in a disconnected fashion, our Signal

plug-in needs to be able to retrieve prekey bundles for the desired client. When a

Signal client wants to encrypt their messages they need to follow the proper X3DH

31

handshake and Double Tatchet protocol noted above. To do this, we need to pass the

client what it needs. The flow would be as follows, a client Alice wants to message

Bob a new message about her day. If Alice and Bob have never talked before, they

will need to establish their initial secret ephemeral key to pass information about their

Double Ratchet keys. So, Alice’s client would issue a getPreKeys bundle to our Signal

plug-in, and hold the message that needs to be sent. Once that request is fulfilled,

likely in a day or two depending on our "bus traffic", the client can properly attempt

to encrypt its message to send up to our Signal plug-in. As discussed previously,

Signals lib-signal api lacked any way for us to retrieve these prekey bundles. They

assumed that the client would be able to use the api to grab them, but it was obvious

that their documentation did not line up with the current capabilities. With the

introduction of this new Android api there seems to be routes built into it where

one can request a prekey bundle based on the recipients address. This enables our

application to truly remain clueless as to what messages are being sent through our

service. This will also guarantee protection to the client’s messages in their transit on

the bus network. In terms of this envelope "fromless" protection that was discussed

earlier, our program will have to know where to send the message when we open

our pipe to Signal. We can protect the actual Signal server from knowing where the

message is, and as an open source application we will not log this type of information.

32

CHAPTER 6

Experiment

The following section will detail the results of the Signal plug-in. This will walk

through how the program functions and important inner workings of some of the

interactions with Signals servers.

6.1 Registration

In order to successfully register for an account on Signal, our program needed

to keep track of the many keys that were discussed in the above sections. To do

this, the program had implemented KeyStore object that upon initialization would

create the required keys that Signal needs in order to allow the client to register. In a

full stack build of this application, our Signal plug-in will not have to generate any

of these keys. The client side application on the users phone will generate and save

the keys on their side, and then pass up the key information to our client in order

to register. Once these keys are generated and saved, the next step is to configure

the URLs that our request is going to query. This was a challenge as Signal does not

advertise its own routes publicly. To find these routes I needed to "inspect element"

on the Signals web app to see where requests were actually going. These routes are

needed in order to create SignalServiceConfiguration that is needed to instatiate the

registration object. The SignalServiceConfiguration Object has many URLs that it

needs to successfully query the Signal servers. It holds the content delivery URL,

the contact discovery url and the actual Signal server address. Once this object is

built and configured, we then can pass it along with a few other parameters into the

SignalServiceAccountManager object. This object is the main line of communication

to make requests to get a verification code that is needed in order to verify a user.

33

Figure 11: SignalServiceAccountManager Constructor[17]

When we make those requests to Signal we need to accompany them with a

one-time captcha code that can be manually found on Signals captcha verification

webpage, https://signalcaptchas.org/registration/generate.html. This is needed in

order to prevent bots from signing up. This is noted because once the verification code

is sent from Signal, no other request requires a captcha to perform requests. When

we verify with Signal that this code is correct and this user may sign up, there are

quite a few parameters that they require. The request requires a Signaling Key which

is a 52 byte random integer, a registration id that is made up of a 14 byte number

that is unique to the client, an access key that is also a random 52 byte array that

is used to identify the request. Once these parameters are defined and in place, the

code along with this information can be sent up to Signals servers who will return

a 201 upon account creation. Some noted behavior that Signal can display is a 403

authorization failure. It seems to be an inconsistent yet frequent error when signing

up for an initial account. When examining the Signal Server code, not much could be

made as to why it returns that error code in the registration flow.

6.2 Message Sending and Receiving

To send and receive a message in Signal our Signal plug-in needs to use the

registration id that was generated previously and use the identity public key to

34

create a SignalProtocolStore. This SignalProtocolStore is used to verify the request

to allow the request to go to the Signals server and be authenticated and allowed.

When sending a message our plug-in needs to make a request to build an object

known as SignalServiceMessageSender. This object needs the earlier referenced

SignalServiceConfiguration object with the appropriate URLs to point requests in

the right place. It also needs the earlier UUID, associated phone number, and

a SignalServiceMessagePipe that is ultimately a webs socket. In order to receive

messages that are earmarked for delivery, the above process needs to be accomplished

but with the SignalServiceMessageReceiver object. This object takes the same basic

parameters as the similar sending object. Once these objects are successfully built

they can be used to open a pipes to the Signal servers. These pipe will facilitate the

sending and receiving of a message using the appropriate object. The function call

that is being used to send individual messages allows a singular envelope to travel to

Signal, but if there are multiple messages queued it can be called multiple times. For

the receiver object this pipe can be read continuously every set amount of time to

query for messages. Another strategy would be to grab all of the available messages

once per day, or before a "bus driver" is leaving. This would allow us to optimize the

retrieval of messages based on time and plan for bandwidth constraints that Signals

servers may have. There is also a Signal mailbox that is present on the Signal official

server[22] that our plug-in may be able to stay synced with in order to get messages

for our users as they are received by the Signals servers. This approach requires much

more cooperation from Signal because our server will be constantly trying to stay in

sync with the mailbox, which may get the plug-in blocked mistakenly. When the

bundling service is complete. Instead of sending raw text through with the encryption

happening on the Signal plug-in, our Signal plug-in will be able to accept the already

encrypted bytes and through it down the pipe in order to have Signal receive it.

35

CHAPTER 7

Future Works
7.1 Enabling Group Chats

To build in the functionality of group chats, our plug-in needs to support a

new type of protocol that enables sending messages to large groups privately. Signal

messaging involves some important aspects,

• Forward Secrecy and Deniability

• Transcript Consistency

Replicating these in a group setting is difficult using the traditional logic as the setup

phase for a conversation is much more involved. To set up a session with multiple

people one needs to

1. Talk to each member and create a session id.

2. Begin an exchange of pairwise keys to each member using long term identity

keys

3. Enact a key exchange that will prove that each member has signed ephemeral

keys

4. Take all authenticated keys and create a group key agreement.

5. Make sure everyone is agreeing and see the same thing

Now this process is much more involved but the part that makes this specifi-

cally hard for our DTN application is the number of network hops needed for such

exchanges[20]. According to Matthew Van Gundy, the creator of this protocol, the

amount of hops needed to just establish the session can be anywhere from 4 * N to 12

* N where N is the number of group members[21]. Also factor in that our server may

not have access to some of the keys needed to sign and authenticate different keys

36

throughout the process. As this session plays out it can become too many hops for

this to be a practical and seamless experience for the end user. That is, unless Signal

works directly with our lab to create a better solution for a DTN environment.

7.2 Working Directly with Signal

As this project develops our lab hopes that Signal as a platform will make it easier

for a delay tolerant version of the app to be functional. As of right now, when a user

signs up they must have internet to receive the verification code through Google voice

or must have cellular signal and internet to receive the code on their native phone

number. When sending and receiving messages we also must store there long term

identity public key as well as there UUID that is bound to the device they signed up

on. Storing as little information about users is the best strategy moving forward for

our labs application and with these requirements that Signal currently has for their

compatible libraries it leaves us no other choice. Signal should drop the verification

using a phone number or automate the process in partnership with Google voice when

signing up from a delay tolerant network environment. If they could figure out a

alternative verification method they would be opening their application to those who

have never had an internet connection in there life. This could bring many more users

and enable people to be more connected globally. Moreover, if they could integrate

into this DTN paradigm, they may be able to adapt their current libraries to use our

Signal plug-in and keep more information encrypted and private per user. That is the

goal with this proof of work our lab is conducting using Signal.

7.3 Expanding Application Compatibility

Signal made the perfect application to demonstrate that harnessing the power

of DTNs and distributed anonymous transport is possible in a encrypted messaging

instance. This demonstration is meant to serve as a working example of how any

37

company can integrate their application to work in this same environment. By

working with our future open api that will be application agnostic, companies can

take advantage of a completely untapped market. Streaming services can charge

small monthly fees by allowing users to request content to watch offline the next day.

Social media companies can integrate themselves into a completely new demographic

and allow them to share their experiences with others across the world. By simply

creating a future api that is compatible with not just signal but forwarding any type of

packet to a specified service, we can ensure compatibility with many different models.

Alternately, companies can take the first step and attempt to design their own api’s

specifically designed to handle DTN requests.

38

CHAPTER 8

Conclusion

As more and more individuals remain disconnected and lack internet access there

still remains a disparity of information and communication throughout the world.

Our lab took this problem and attempted to transform this disconnected reality for

many people and empower them to communicate with loved ones and friends. Many

related studies proved the efficacy of such a solution in many different applications

which validated the need and prospect of creating something like this. We wanted it

to be usable and accessible to users and a low cost to maintain to developers. These

characteristics were at the forefront when tackling the challenging design and details.

The Signal application creates a safe space for anyone to message each other free of

government or company oversight. It brings back privacy that many consumers have

lost in other areas of technology. They have managed to package such a complicated

protocol into such an easily used application. The steps that are done to encrypt a

message have been vetted and utilized by many other encryption driven messaging apps.

This gives out lab confidence that this was the correct proof of concept application to

trial for our delay tolerant network delivery system and infrastructure.

Creating this plug-in for Signal was no easy task and brought lots of roadblocks

with it in its development cycle. This created many unique challenges that could

only be solved with immense knowledge of how the Signal protocol functions and

the necessary information needed for each step without compromising our users

privacy. Signals protocol is highly documented on a surface level but lacks a lot of

documentation in the code implementation. This makes working with it a challenging

and experimental environment.

Our labs system ensures the fair and end to end encrypted delivery of messages

from anyone who wants to utilize our system. The entirety of the stack and the

39

scalability of our Signal plug-in promises that a users messages will eventually be

delivered in a secure fashion. Enabling this broad level of connection among the

worlds can help foster new ideas and spread creativity to those who may not have

access to it currently makes this a truly fulfilling project.

40

LIST OF REFERENCES

[1] Two Thirds of the World’s School-Age Children Have No Internet Access at Home,
New UNICEF-ITU Report Says. UNICEF,

[2] Fainmesser, Itay P. “Digital Privacy.” Management Science, 15 Aug. 2022,
https://pubsonline.informs.org/doi/10.1287/mnsc.2022.4513.

[3] “Developing Open Source Privacy Technology That Protects Free Ex-
pression and Enables Secure Global Communication.” Signal Foundation,
https://signalfoundation.org/en/.

[4] “Signal.” GitHub, https://github.com/signalapp.

[5] “Signal Private Messenger - Apps on Google Play.” Google, Google,
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesmsamp;gl=us.

[6] “Moxie Marlinspike Leaves Encrypted-Messaging App Signal.” BBC News, BBC,
11 Jan. 2022, https://www.bbc.com/news/technology-59937614.

[7] Buchanan, William J (2022). X3DH (Extended Triple Diffie-Hellman) in Go.
Asecuritysite.com

[8] Specifications the X3DH Key Agreement Protocol.” Signal Messenger,
https://signal.org/docs/specifications/x3dh/.

[9] Specifications; the Double Ratchet Algorithm.” Signal Messenger,
https://signal.org/docs/specifications/doubleratchet/.

[10] A. Galati, T. Bourchas, S. Siby, S. Frey, M. Olivares, and S. Mangold, “Mobile-
enabled delay tolerant networking in rural developing regions,” IEEE Global
Humanitarian Technology Conference (GHTC 2014), 2014.

[11] S. Grasic and A. Lindgren, “Revisiting a remote village scenario and its DTN
routing objective,” Computer Communications, vol. 48, pp. 133–140, 2014.

[12] A. Bujari, S. Gaito, D. Maggiorini, C. E. Palazzi, and C. Quadri, “Delay tolerant
networking over the Metropolitan Public Transportation,” Mobile Information
Systems, vol. 2016, pp. 1–14, 2016.

[13] “WaterChat: A group chat application based on op-
portunistic mobile ...,” 07-Jul-2017. [Online]. Available:
http://www.jocm.us/uploadfile/2017/0809/20170809102915600.pdf. [Accessed:
01-Nov-2022].

41

[14] Hashimoto, Katsumata, S., Kwiatkowski, K., Prest, T. (2022). An Ef-
ficient and Generic Construction for Signal’s Handshake (X3DH): Post-
quantum, State Leakage Secure, and Deniable. Journal of Cryptology, 35(3).
https://doi.org/10.1007/s00145-022-09427-1

[15] Bhutta, Muhammad Nasir Mumtaz, et al. “Public-Key Infrastructure Validation
and Revocation Mechanism Suitable for Delay/disruption Tolerant Networks.” IET
Information Security, vol. 11, no. 1, 2017, pp. 16–22, https://doi.org/10.1049/iet-
ifs.2015.0438.

[16] Kleppmann, Martin. Designing Data-Intensive Applications: The Big Ideas
behind Reliable, Scalable, and Maintainable Systems. O’Reilly, 2021.

[17] Signalapp. “Signalapp/Libsignal-Protocol-Java.” GitHub,
https://github.com/signalapp/libsignal-protocol-java.

[18] Signalapp. Signalapp/signal-Android. GitHub,
https://github.com/signalapp/Signal-Android

[19] Technology Preview: Sealed Sender for Signal. Signal Messenger,
https://signal.org/blog/sealed-sender/.

[20] “Private Group Messaging.” Signal Messenger, https://signal.org/blog/private-
groups/.

[21] Improved Deniable Signature Key Exchange for Mpotr.
https://matt.singlethink.net/projects/mpotr/improved-dske.pdf.

[22] Signalapp. “Signalapp/Signal-Server: Server Supporting the Signal Pri-
vate Messenger Applications on Android, Desktop, and IOS.” GitHub,
https://github.com/signalapp/Signal-Server.

42

	Enabling Use of Signal in a Disconnected Village Environment
	Introduction
	Our Labs introduction
	Significance of Signal

	Background
	Signal Application
	The Signal Protocol
	KDF Chains
	The Double Ratchet Protocol

	Related Works
	Mobile Delay Tolerant Networks
	Remote DTNs with bundling abilities
	DTNs over the Metropolitan Public Transportation
	WaterChat: A Group Chat Application Based on Opportunistic Mobile Social Networks
	Signals Handshake X3DH
	PKI in a DTN environment

	System Design
	Overarching Design
	Scalability

	Design of Signal Plugin
	Formalized Design Flow
	Challenges of libsignal-java
	Registration
	Sending the First Message
	Sending Messages
	Exploring Alternate Methods to Sending and Receiving Messages
	Signal Envelopes
	Spoofing Prevention
	Abuse Protection
	Encrypting & Sealing the Envelope

	Client Requirements for Double Ratchet Protocol

	Experiment
	Registration
	Message Sending and Receiving

	Future Works
	Enabling Group Chats
	Working Directly with Signal
	Expanding Application Compatibility

	Conclusion

