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 ABSTRACT 

 Jparsec -  a parser combinator for Javascript 

 by Sida Zhong 

 Parser combinators have been a popular parsing approach in recent years. 

 Compared with traditional parsers, a parser combinator has both readability and 

 maintenance advantages. 

 This project aims to construct a lightweight parser construct library for Javascript 

 called Jparsec. Based on the modular nature of a parser combinator, the 

 implementation uses higher-order functions. JavaScript provides a friendly and simple 

 way to use higher-order functions, so the main construction method of this project will 

 use JavaScript's lambda functions. In practical applications, a parser combinator is 

 mainly used as a tool, such as parsing JSON files. 

 In order to verify the utility of parser combinators, this project uses a parser 

 combinator to parse a partial Lua grammar. Lua is a widely used programming 

 language, serving as a good test case for my parser combinator. 
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 SECTION 1 

 Introduction 

 1.1 Parser Problem 

 A handwritten parser today is like an editor or calculator 50 years ago. It is 

 designed only for specialized tasks. A Java parser cannot be used to parse Javascript. 

 To handle different languages, the parser must be redesigned from scratch. In contrast, 

 Von Neumann designed as early as 1945 process programs like data, so that programs 

 are only different in ordering CPU instructions [1]. A parser combinator is similar to the 

 Von Neumann architecture in hardware. The same parser combinator can be used to 

 parse different languages. The benefits of doing so are obvious. First, languages have 

 many similarities, such as loops and conditional expressions. People use different 

 syntaxes to describe the same logic. These commonalities can be abstracted as a 

 parse pattern, which can then be inherited in other languages. Secondly, the grammar 

 of some languages contains smaller grammatical structures. For example, Lua's 

 expression contains three assignment expressions, and the assignment expression also 

 contains the variable expression. These sub-expressions can be collocated or 

 integrated into other grammatical structures as small modules to achieve encapsulation. 

 The inheritance and encapsulation mentioned above are object-oriented programming 

 concepts in software. The code in the software can be split into module tests and easily 

 replaced and refactored. However, these are out of reach for the traditional parser due 

 to the high coupling and immutable structure. 



 1.2 A Javascript library 

 Currently, most parsers for mainstream languages  have not yet used the concept 

 of the parser combinator. The first parser combinator is Parsec, designed by Frost, 

 Hafiz, and Callaghan in 2008 [2][3]. Parsec is a parser combinator written in Haskell that 

 supports left-recursive grammars. Although the Parser was very successful, it was 

 mainly used as a tool, not an industrial parser. Haskell is a functional programming 

 language with a very different style of programming than object-oriented programming, 

 and has a high learning curve. Advanced concepts such as monads in Haskell push 

 away a lot of people. In short, Haskell parsec is a parser combinator that is difficult to 

 use. After the introduction of Parsec, Scala has also successfully introduced some 

 parser combinators. But Scala’s design is similar to Haskell and has the same 

 problems. Odersky in 2015 [4] states "Scala is a gateway drug to Haskell, ". The reason 

 parser combinator are more popular in a functional programming languages is because 

 of its unique mechanism. Functional programming is taking a function as an argument 

 to another function so that a function can produce another function. Based on this 

 feature, the parser combinator can pass an independent parser as a parameter to 

 another parser, so a parser can also generate another parser. In the parser combinator, 

 not only is the token parsed, but the parser itself. 

 In addition to the functional programming language, the high-order functions of 

 other languages also meet the requirements, such as Javascript. 



 Figure 1: Convert general function to lambda function 

 The arrow in Figure 1 is a Javascript lambda higher-order function, also known 

 as the arrow function. The higher-order functions of javascript are elegant and concise. 

 In addition to the excellent design of high-level functions, the Javascript community has 

 also been very active, consistently ranked among the top three most popular languages. 

 The reason to use Javascript is not only to avoid complicated functional programming 

 but also because of the overall advantages of Javascript, such as simplicity,  popularity, 

 and versatility  . In addition, this project will explore  the feasibility of a parser combinator 

 in scripting languages. 

 1.3 Key features of Jparsec 

 The Jparsec library of this project can record the current parsing status and 

 detect syntax errors. It also has the same Parsec-way interface of the operators, such 

 as selection and sequence. Apart from these same features, this project has four 

 differences: 

 ●  The Backus–Naur form (BNF).  A BNF is a language for  describing a context-free 

 grammar proposed by John Backus, which is used on a standard parser or parser 

 generator. The Lua parser application of this project is written as a Backus–Naur 

 form (BNF) expression. Usually, parser combinators are written according to 



 specific needs, but this is only used as a tool. Once the grammar scales up to the 

 level of a whole programming language, there must be a standard specification 

 such as BNF. 

 ●  Lookahead.  The lookahead approach uses a terminal  to decide the next correct 

 production, a common approach to the LL(k) Recursive-Descent Parsing algorithm. 

 The difference in this project is that lookahead is determined by the terminal and 

 the nonterminal symbol. This parser combinator does not distinguish between 

 nonterminals, terminals, production, and start(NTPS) in context-free grammar like 

 a traditional parser. Both terminals and nonterminals belong to the same parser 

 and can be treated in the same way. Lookahead is looking at the next parser, not 

 the next token. 

 ●  Lazy evaluation.  Lazy evaluation strategies will not  evaluate all the expressions at 

 once, but evaluate the expressions when needed, so it is also called “call by need” 

 evaluation. Since Javascript does not have the lazy evaluation feature of Haskell, 

 this project has done lazy evaluation for all parsers. The reason for this is not only 

 to improve performance but for compatibility with BNF expressions. 

 Figure 2: BNF expression conflict. 



 As shown in Figure 2, BNF expressions with eager evaluation have logical 

 conflicts. The Statement contains FunctionDeclaration, and FunctionDeclaration 

 also contains Statement. In this case, the order of functions cannot be defined, and 

 eager evaluation will report an error that the function cannot be found. 

 ●  Generator function.  Generator functions do not return  a value, but use a special 

 keyword “yield” to return multiple currently running results. At the same time, the 

 value of the previous yield can be re-passed as a parameter to the subsequent 

 yield. The generator function can maintain the current parser state. Its principle is 

 like an assembly line, each parser is processed one after another in the generator 

 function, and the parsers are passed to each other with higher-order functions. In 

 the generator function, non-functional programming syntax, such as iteration or if 

 statement, can be used to control the parser stream of higher-order functions, 

 which makes it possible to use it to write powerful parser combinators with complex 

 logic. 

 To sum up, this project adopts some traditional parser approaches 

 such as lookahead and BNF expressions. It also includes the features of functional 

 language parser combinators, such as lazy evaluation. Finally, it combines them using 

 Javacript-specific generator functions. 

 1.4 Contributions 

 ●  JParsec combines functional programming features of parser combinators with 

 features taken from more traditional parsers, such as BNF expressions and 

 lookahead.  To the best of my knowledge, this combination of features has not 

 been used in previous parsing libraries. 



 ●  I implemented Soshnikov D’s algorithm for transforming left-recursive grammars 

 [18], which was not previously implemented for a parser combinator library to the 

 best of my knowledge. 

 1.5 Guide to the rest of the paper 

 This paper is divided into five main sections. Section 2 briefly describes the 

 parser and parser combinator. Section 3 introduces the top-down and bottom-up 

 parsing strategies, as well as the various parsing algorithms. Section 4 is an in-depth 

 walk-through of parser combinator implementation and principles. Section 5 describes 

 how to use parser combinators. This section constructs a complete Lua parser step by 

 step from BNF expressions. 



 SECTION 2 

 Background 

 2.1 Parsers 

 A parser plays an essential role as a bridge connecting  human and machine 

 communication. The development of the parser directly determines the grammar 

 development of programming languages. The programming language is a way for 

 human beings to express the existing world to a machine. The grammar contains only a 

 few logical symbols, such as  loop  ,  if  ,  class  , and  function  . These few symbols can 

 express any known human logic or even create artificial intelligence. Programming 

 languages are Turing-Complete. Programming code is not a simple string combination, 

 but contains a complex logical structure behind it, like a circuit board. Early computers 

 did not have programming languages. Machines were operated by obscure instructions. 

 Therefore, people created programming languages, a language closer to natural 

 language, to replace these instructions. The purpose of a parser is to convert a 

 programming language into a data structure containing instructions. The generated data 

 structure is called an abstract syntax tree, a top-down tree describing operations and 

 logic. The compiler will use the AST to generate executable programs. The final AST 

 generated by different programming languages is the same, because the AST 

 transcends the syntax limitation and is a structure that describes the world logically. 



 Figure 3: A parser life cycle 

 As shown in Figure 3, the life cycle of parsing can be subdivided into three parts: 

 lexer, tokenizer, and parser. The first step is the lexer, which is to convert the raw text 

 into a steam of meaningful tokens, such as stripping spaces, newlines, and comments. 

 The second step is tokenizer, in which regular expression is used to grab matching 

 tokens, and assign these tokens to meanings such as numbers, letters, or special 

 symbols. The last step is parsing, written in the Backus–Naur form (BNF) in an 

 industrial-grade parser. BNF is a notation to describe a context-free grammar consisting 

 of nonterminals, terminals, production, and start(NTPS).  The tokens generated in the 

 second step belong to terminals and to start symbol. The parsing process will combine 

 nonterminals from production to recursively descend to terminals step by step. This type 

 of parsing algorithm is called recursive-descent, and is currently the most popular and 

 powerful parsing approach. 

 2.2 Parser combinators 

 In computer science, a combinator means a lambda function without free 

 variables. Combinators make the parser process always modify the same variable, thus 

 reducing the coupling between parsers. The purpose of the parser combinator is the 



 same as the parser. It will generate the same AST in the end, but the difference is that it 

 uses the divide-and-conquer strategy. The parser combinator will first divide the raw text 

 into several sub-texts according to patterns. A sub-text may also contain multiple 

 sub-subtexts, and each divide represents a new sub-parser. There is no essential 

 difference between each sub-parser. Even the smallest sub-parser has all the functions 

 of parsing and the final generated AST. Finally, these sub-parsers are combined into a 

 new parser with “glue”. The so-called "glue" is a technique of using higher-order 

 functions. For example, “sequence-of” defines a sequence of several consecutive 

 parsers, and “choice-of” selects from different parsers. 

 Figure 4.1: A sequence-of parser combinator 



 Figure 4.2: A choice-of parser combinator 

 As shown in Figure 4, a parser combinator is like the hardware circuit diagram. 

 The "combinator" is the motherboard, which provides the consistency of the overall 

 template, and the "parsers" are the various electronic components. Sequence-of 

 represents the parser in parallel, and choice-of is the parser in series. A language can 

 be parsed by assembling all the electronic components according to the rules. If the 

 combination is changed, another language can be parsed. Briefly, a parser combinator 

 is a parser for multiple languages, a technique for manipulating language syntax. Its 

 core idea is to focus on syntax in different languages rather than to develop new 

 grammar. 



 SECTION 3 

 Related work 

 3.1 Context-free grammar 

 Giving an alphabet  ∑={a,b}  that only contains two  characters, "a" and "b." The 

 language is an infinite combination of any possible strings or permutations of any length 

 from the alphabet  L(  ∑)={ab,ba,aa,bb,ababa….}  . However,  If we limit the 

 combination length to only two. The set of strings becomes finite 

 L(  ∑)={ab,ba,aa,bb}  . Therefore, the characters can  be arranged and terminated. 

 So, grammar is a set of restrictions on a language. Chomsky [5] divided grammar into 

 four levels. 

 ●  Unrestricted, natural language. 

 ●  Context-sensitive, programing language description 

 ●  Context-free, programing language parsing 

 ●  Regular, regular expression 

 Context-free grammars (CFG) are mainly used for the parsing process. Its grammars 

 are described as a tuple with four elements  G=(N,T,P,S)  .  “N” stands for the 

 nonterminal, “T” stands for the terminal, “P” stands for production, and “S” stands for 

 starting symbol. For example, consider  S->aX, X->b  .  The nonterminal are  {S,X}  , 

 which is described as a variable to represent rules. The terminals are  {a,b}  , specific 

 characters or tokens in a language. The production is the grammar itself. It contains all 

 rules  {S->aX, X->b}  . The start symbol is the first  produced symbol {S}, the first 

 symbol to start parsing. A grammar has to follow three rules to become a context-free 



 grammar. First, there may only be one nonterminal on the left side. Second, the right 

 side can have terminals, nonterminals, or a mix. Third, the left side cannot have context. 

 The third rule means if a nonterminal “X” appeared on the right side of a production 

 {S->aX}  . The left-hand side of the production  (X->b)  must have precisely one 

 nonterminal “X”, not multiple “X” with ambiguous definitions. 

 3.2 Backus-Naur form 

 Inspired by formal grammar, Backus [6] created another grammar to describe 

 CFG called the Backus-Naur form (BNF). As a powerful metasyntax, BNF is a notation 

 to describe another programming grammar. It is the core of parser design. The syntax of 

 BNF is very similar to CFG. For example, consider a math BNF 

 E::=E+E|E*E|number  . The separator for the left and  right is  :==  to indicate the 

 derivation process.  E  is a nonterminal symbol that  can recurse deeply in the grammar. 

 number  is a terminal symbol that stands for a type  of token.  |  means or, which a new 

 left-handed production replaces. Using the example BNF to parse a mathematical 

 formula  1+2*3  . The first process is to use the production  E::==E+E  to substitute rules 

 that match the mathematical example  1+2*3  . The production  derives from the left side 

 to  E:==1+E, E:==1+E*E  , then  E:==1+2*3  . If the production  starts the right side 

 derivation first, the production becomes  E:==E+E*E,  E:==E+2*3  , then  E:==1+2*3  . 

 The result is the same, but the process is different. These two derivation strategies 

 correspond to left-to-right leftmost derivation(LL) and left-to-right rightmost 

 derivation(LR). However, in this BNF example, neither LL nor LR algorithms can be 

 used as a parser, because they both face the problem of ambiguous semantics. The 



 BNF generated by CFG usually has ambiguity in a grammar. It is necessary to remove 

 the unambiguity in a grammar before parsing. 

 3.3 ambiguity in a grammar 

 An ambiguity in a grammar means the presence of the same grammar 

 in a BNF but produces different results, which can lead to different parsing trees and 

 unintended effects during compilation. Ross [7] criticized this problem in an article 

 discussing context ambiguity, and stated that some attempts to resolve ambiguity 

 problems have not yet been satisfactorily resolved. Ross pointed out that in addition to 

 matching tokens, parsing is more essential to identify the sequencing of interpretation, 

 the direction of the scan, and the determination of scopes. 

 In the example of section 3.2  E::= E+E|E*E|number  ,  the parsing process 

 chooses the first production  E::==E+E  to start derivate.  However, if the process 

 chooses another production  E::==E*E  to start, it will  get completely different results. 

 Figure 5: different precedence results in two parse trees 



 According to the parsing tree generated on the left, multiplication has a higher priority. 

 But in the tree generated on the right, the addition will be done first, and then the 

 multiplication, which is wrong. The problem is that the parser doesn't know which 

 production to start with is correct, because productions have different precedence. 

 Different precedence is a common cause of ambiguity in a grammar. The solution to the 

 precedence problem is to introduce a new layer of nonterminals to enforce the correct 

 productions, i.e.  E:==E+E  , starting first. 

 //ambiguity in a grammar 

 E:==E+E 

 |E*E 

 |number 

 //unambiguity in a grammar 

 E:==E+T|T 

 T:==T*F|F 

 F:==number 

 The production  E:==E+E  transforms to  E:==E+T|T  . The  production  E:==E*E 

 transforms to  T:==T+F|F  , and adds a new production  F:==number  . Since the start 

 symbol is E, the parser must first choose  E:==E+T  ,  then  T:==T*F  , to get an 

 unambiguity in a grammar by eliminating the same left factor. 

 The second major cause of ambiguity in a grammar is the association of parsing. 

 The associated direction is not derived (LL or LR) as described in section 3.2. 



 Figure 5: different association results in two parse trees 

 For example, consider parsing a mathematical expression  3-2-1  , with the BNF being 

 E:==E-E|number  . The correct way is to do the operation  of  3-2  first, then do the 

 operation of  -1  to get the result of  0  . However, if  the operation does  2-1  first, then 

 subtracts by  3  , the result is  2  , which is not correct.  These two operations correspond to 

 left-associative and right-associative operations, and subtraction can only do 

 left-associative operations in mathematics. The grammar  E:==E-E|number  is an 

 ambiguity in a grammar that fails associated rules. The parser cannot choose whether 

 to start the first E or the second E. 

 //ambiguity in a grammar 

 E:==E-E 

 |number 

 //unambiguity in a grammar 

 E:==E-number 

 |number 

 The solution is to force the parser to be left-associative with left-recursive grammar. The 

 production  E:==E-E|number  transforms to  E:==E-number|number  .  This way, the 

 parser will always deduce the  E  on the left, avoiding  ambiguous semantics. The 



 left-recursive grammar is elegant and straightforward. However, not all parsing 

 algorithms are compatible with left-recursive grammars, such as LL. All industrial-level 

 parsing combinators use the LL. This is why the parser combinator has not been able to 

 become the parser of mainstream languages. 

 3.4 LL parser 

 LL and LR algorithm, mentioned in Chapter 3, are  the two main strategies of 

 parsing. These two parsing algorithms have been at war with each other. The LR 

 algorithm has dominated the parsing algorithms for modern languages like Java.  The 

 main reason why LL algorithm is not popular is that it cannot solve left recursion 

 problems efficiently. The LL-constructed parsers are also known as top-down parsers, 

 which was proposed by Edwin and Lewis [8]. Shortly after the LL algorithm was 

 published, Rosenkrantz and Stearns [9] applied the LL algorithm in CFG to verify its 

 correctness. The top-down parser’s process starts at the top of the parse tree and goes 

 to the bottom until it reaches a terminal. The root is the grammar's start symbol, making 

 the logic very natural to understand. The prototype of the LL parser uses a backtracking 

 algorithm. The backtracking algorithm traverse every node of the parsing tree. 

 Whenever the parsing attempt fails, it returns to the previous token and creates a new 

 attempt. Many articles (Watson[10], Birman [11]) criticize the performance issues of this 

 algorithm. The worst-case time complexity is o(n)  3  .  Another upgraded version of the LL 

 parser is called the LL(k) parser, where k represents the following lookahead token. The 

 look-ahead mechanism was first introduced in LR parsers by Deremer and Pennello 

 [12]. It was later introduced into the LL parser by Edwin and Lewis [5]. The lookahead 

 predicts the next production based on the following K tokens, so this kind of parser is 



 also called a predict parser or a recursive decent parser. This project uses the algorithm 

 of the recursive decent parser. 

 3.5 Left Factoring 

 However, the LL(K) recursive descent parsers do not entirely avoid backtracking 

 algorithms. For example, a BNF is  E::=T+E|T  . The two  productions  T+E  and  T  have 

 the same prefix  T  . The same nonterminal prefix represents  two productions, causing the 

 lookahead to fail to predict the correct one unless one fails, leading back to the 

 backtracking algorithm again. To improve the performance of the LL(K) parser, the 

 backtracking algorithm must be avoided. The solution is to convert the BNF grammar to 

 left-factored. 

 E::=T+E 

 |T 

 E::=T+E′ 
 E′::=+E 

 |ε 

 Left factoring means extracting grammar that follows the same prefix into separate 

 rules. The new production is  E′::=+E|ε  , where ε means  nothing. In this case, the 

 lookahead token split from the same  E  into  E  and  +  ,  thus avoiding backtracking issues 

 while keeping the grammar the same. Another practical example is the dangling Else 

 problem. 

 Statement ::= if Expression then Statement 

 | if Expression then Statement else Statement 



 The above BNF is a non-left-factored grammar, which has the same prefix production 

 if Expression then Statement  . Using the left factoring  technique, it will transfer 

 to a left-factored grammar. 

 Statement ::= if Expression then Statement Statement′ 
 Statement′ ::= else Statement 

 | ε 

 After left factoring, the production can be predicted by lookahead token  if  or  else  . 

 3.6 Left recursion 

 Sections 3.4 and 3.5 mentioned two approaches of lookahead and left-factoring 

 to improve the performance of the top-down parsers. However, there is still one problem 

 left. The top-down type of parser cannot solve the left-recursion problem. For example, 

 consider BNF  E::=Ex|y  . To parse grammar  x  , the parser  first parses nonterminal  E  , 

 then it will try to parse  x  again, resulting in an  infinite recursive loop. The parser jump 

 between  x  and  E  , having no opportunity to consume  any tokens. The grammar  Ex  uses 

 the nonterminal  E  itself as a substitute for deriving  infinite productions. A grammar with 

 such properties is called a Left recursion grammar. The solution is to convert the BNF 

 grammar to the right recursion. 

 E::=Ex 

 |y 

 E::=xE′ 
 E′::=yE′ 

 |ε 

 The process is to put all terminals on the left to ensure that each recursion has 

 terminals consumed. Then duplicate the nonterminal symbol  E  into  E  and  E′  with two 

 productions separately. Processing could be more complicated in indirect left-recursion 



 syntax  , like  E:==ET, T:==TF, F:==FE  .  Suonio [13] gave a more specific and 

 complete solution to eliminate left recursion in his paper, but the overhead cost is high. 

 The most significant advantage of the top-down parsers are that it parser language 

 similarly to how humans comprehend language. But this advantage is compromised by 

 the left recursion problem. The transformed right-recursive grammar is no longer 

 elegant and is prone to errors. This makes the top-down parsers not powerful for 

 modern programming languages. 

 3.6 Parser combinator 

 Here, I brief review the history of parsing leading  to parser combinators. A CFG 

 defines a programming language. Then a CFG is further abstracted into BNF. BNF 

 extends EBNF to solve the problem of grammar ambiguity. EBNF leads to the 

 performance problem of backtracking. To solve backtracking, lookahead and 

 left-factoring methods are designed. Finally, an alternative solution is to use a 

 right-recursive transformation to solve the left-recursive problem. Top-down parsing 

 evolution has been stagnant for a long time, during which many algorithms were trying 

 to solve the left recursion problem. The memoization algorithm proposed by Johnson 

 greatly enhances the performance of top-down parsers [14]. This algorithm introduced 

 the idea of dynamic programming (DP). The purpose of the DP is to optimize 

 performance. The core idea is to maximize the reuse of the calculated results and avoid 

 repeated processing. However, Johnson pointed out that his method does not solve the 

 left-recursion problem. It only improves the time complexity of the top-down parser. The 

 real breakthrough in top-down parsing was the idea of a parser combinator proposed by 

 Frost et al. [2] in 2008. The parser combinator is not an algorithm, but a novel and 



 sophisticated parsing implementation. The core idea is to disassemble a parser and 

 then reassemble it according to different situations. In 2010, Danielsson [15] verified 

 that the parser combinator could solve the problem of left recursion based on the 

 research of Frost et al.; furthermore Danielsson  praised the elegant syntax and flexible 

 structure of parser combinators. The earliest application of the parser combinator was 

 Haskell’s Parsec library. Moors et al. [16] used a similar approach to invent a parser 

 combinator for Scala. Scala is a hybrid of object-oriented and functional languages. 

 More and more modern languages have embraced parser combinators, and have their 

 own parser combinator tools. 



 SECTION 4 

 Implementation 

 This chapter shows how to construct a parser combinator  from scratch in 

 Javascript. This process will start with the most basic parser, and then gradually expand 

 to a library of parser combinators. 

 4.1 Terminal parser 

 The parser combinator is composed of different parsers, so the first step is to 

 build a simple parser. 

 const  str = s = targetString =>{ 
 if  (targetString.startsWith(s)){ 
 return  s 

 } 
 } 

 const  parser = str(  "hello world"  ) 

 Str()  is a parser that can parse strings. When the  target string is "hello world," 

 the method in  str()  will match each string and return  the result. Otherwise, it will throw 

 an error message. This is a simple parser, but there are a few problems. First, the 

 method for matching strings is  .startswith()  , which  can only match fixed string 

 formats, not patterns, such as letters or numbers. So this parser is missing a tokenizer. 

 The tokenizer is an important part of parsing. The purpose is to allow the parser to 

 recognize different types of strings. This parser’s tokenizer can be implemented using 

 the regular expression method. Regular expressions are a method of normalizing 

 languages proposed by Stephen Cole Kleene in 1950. It is used to match and retrieve 

 documents that conform to specific rules. 



 if(targetString.match(/^  [A-Za-z]  +$/)){ 

 return s 

 } 

 The regular expression  /^[A-Za-z]+$/  is a tokenizer  that matches strings like 

 “hello world”. This parser is used as a terminal or start symbol in applications. Another 

 problem is that the parser lacks a mechanism to maintain the state. Returning a parsing 

 result is not enough. Additional information may be required during the interaction of 

 multiple parsers. 

 const initialState = { 

 target, 

 index:  0  , 

 result: null, 

 isError: false, 

 error: null 

 }; 

 The initial state consists of 4 parts. A target field will display the following string to 

 be parsed, an index field will record the current parsing position,  an error field will 

 indicate an error occurred, and an isError field will interrupt the parser process. This 

 information is used as a parser state, allowing the parser to read/write information. The 

 next parser can take the parser state and transform it into another new one. This way, a 

 fixed pattern can be formed for each parser, that is,  Parser => ParserState in 

 => ParserState out  . 

 4.2 Nonterminal parser 

 The above methods can construct multiple different types of parsers. However, 

 these parsers cannot be combined, because the methods in these parsers can only 

 recognize different strings. This requires a special parser to recognize different parsers 



 instead of strings. This particular parser acts as a nonterminal in BNF. For example, the 

 BNF expression of a while loop in Lua is  <while> ::=  "while" <Condition> 

 <BlockStatement>  . This while iteration logic comprises  a  “while”  parser, a 

 Condition  parser, and a  BlockStatement  parser. A parser  representing sequence 

 can connect these three parsers, which act like glue. The difference between the 

 nonterminal and the terminal parser is that the terminal parser takes the target text and 

 parses it into a specific string type. In contrast, the nonterminal parser takes parses and 

 converts them into a specific logical type. 

 const parser = sequenceOf([ 

 str(  "hello"  ), 

 str(  "world"  ), 

 ]) 

 The  sequcenOf  parser takes multiple parsers, and passes  each parser state to 

 the next parser in turn, and finally returns the last parser state. Nonterminal parsers like 

 sequenceOf obey the rule  parser => ParserState in  => ParserState out  . 

 Similar to  sequenceOf  ,  choiceOf  can express  expr::=<term>|<factor>  in BNF, 

 many()  expresses right recursion in BNF like  <term>::=<term>{","<term>}  .  This 

 nonterminal parser can be seen as a grammar encapsulation in traditional parsers, such 

 as  while  and  if  in the form of higher-order functions. 

 4.2 High-order function 

 Terminal parser and Nonterminal parser have two things in common. First, they 

 are both parsers with the same purpose: to recognize different data types and parse 

 them into specific formats. Second, they have the same function; the essence is to take 



 one parser state and transform it into another. Based on these two factors, their 

 concepts can be expressed by a parser object. This parser object will execute the 

 function of parsing the parser state as a parameter inside it. In other words, the entire 

 parsing process is achieved by passing parser objects one by one, and the specific 

 parsing method will be passed as a parameter of the object. 

 class  Parser  { 

 constructor(parserStateTransformerFn) { 

 this  .parserStateTransformerFn = parserStateTransformerFn; 

 } 

 run(target) { 

 return  this  .  parserStateTransformerFn  (target); 

 } 

 } 

 The  parserStateTransformerFn  as a higher-order function  in the 

 constructor will be passed as an argument to the parser class and execute the parsing 

 process. 

 const  str = parsers =>  new  Parser(parserState => { 

 //... 

 }) 

 The  str()  will take another parser as an argument  and return a new Parser 

 object. The specific parsing method is assigned to the new Parser object by the 

 higher-order function  parserState => {...}  as a parameter. 

 Figure 5: Function chain vs parser object chain 



 As shown in Figure 5, in functional programming, the functions interact with 

 values. However, in this project, the functions interact with a parser object, and change 

 the parser state value inside. The parser object is like a piece of furniture made of 

 wood, which is always a piece of wood, but will continue to change into different shapes 

 until the final shape is completed. The final shape represents an AST with a complex 

 structure. 

 4.3 AST format 

 The result field in the parser state is the AST. When the nonterminal parser 

 processes multiple parser states, the results need to be combined according to a certain 

 AST format. For example, the BNF expression for Lua's addition operation  1+1  is 

 <Addition> ::= <Left> <Operator> <Right>  . The sequenceOf  parser needs 

 to process the Left, Operator, Right three parsers continuously, and generate data in 

 AST format  ['operator':+,'left':1,'right':1]  . However,  the AST in this 

 example is an object with a specific key, and the order of the keys differs from the BNF 

 expression (the AST Operator comes first, but the BNF comes second). Therefore, 

 when updating the parser state, the result field cannot generate different AST data 

 structures according to other parsers, nor can the order of parsing results be changed. 



 In this case, a  map()  function is introduced to solve this problem. Unlike Javascript's 

 internal function  map()  , this parser  map()  does not  work with arrays but with multiple 

 parsers. 

 map(  fn  ) { 

 return  new  Parser  (parserState => { 

 const nextState = this.parserStateTransformerFn(parserState); 

 return  updateParserResult(nextState,  fn  (nextState.result)); 

 }); 

 } 

 The  map()  is a function in the Parser class, which  can be called in any parser. 

 In addition, the  map()  must return a parser class  to ensure that the parser object chain 

 is not interrupted. The parameter fn in  map()  is the  function of actually constructing the 

 AST, and the result in the previous parser state is updated with  fn()  in the newly 

 generated parser object. In general, this new  map()  function uses Javascript's native 

 map()  function as a parameter to pass to a parser  object, then acts on the result in the 

 parser object. 

 const parser = sequenceOf([ 

 left  , 

 operator  , 

 right 

 ]).  map  ((  left  ,  operator  ,  right  )=>{ 

 return  { 

 '  operator  ':  operator  , 

 '  left  ':  left  , 

 '  right  ':  right 

 } 

 }) 



 The AST construction function is passed as a parameter to  .map()  , so the 

 results of  left  ,  operator  , and  right  in the previous  sequenceOf parser can be 

 regenerated according to the AST structure. 

 4.4 Lookahead 

 The lookahead is a common recursive descent parser  mechanism known as a 

 "predictive parser." It can predict specific grammar rules based on the next K tokens. In 

 the traditional LL or LR parser, every time a token is consumed, the lookahead 

 mechanism is triggered, and the next BNF expression is executed according to the type 

 of the lookahead token. Unlike the traditional lookahead method, the lookahead of this 

 project will look for a specific parser instead of a token. 

 const  ReturnStatement  = sequenceOf([ 

 Return, 

 Lookahead(Expression) 

 ]) 

 For example, in Lua's return statement,  ReturnStatement  ::= 'return' 

 {Expression}  . The Expression is optional. After parsing  the  'return'  token, the 

 parser will lookahead to the next  Expression  . The  Expression  is a complete parser 

 that may contain more parsers. If the lookahead  Expression  can be parsed, the 

 'return'  parser will chain the  Expression  parser.  Otherwise, it will be skipped. 

 4.5 Lazy evaluation 

 Javascript is an eager evaluation language, which means that the program will 

 evaluate each function or parameter before calling it. This allows eager evaluation to 

 make the code more transparent in its execution, making the program more restrictive. 



 However, eager evaluation is not suitable for a parser combinator. A parser combinator 

 is an infinite data structure that contains many recursive nonterminal functions.  It 

 cannot define a logical precedence order, and the control flow of a function is an 

 abstraction rather than a primitive one. Therefore, the parser must be converted to lazy 

 evaluation, also known as "call-by-need." All the parsers will be evaluated when 

 needed. 

 //error message: 

 //  parser_next  is  not  defined 

 const  parser = parser_next() 

 //  no  error 

 const parser = () => parser_next() 

 An error occurs when Javascript calls an undefined value. However, if the 

 undefined value is put into a function, no error will be reported as long as the function is 

 not called. This undefined value is a parser. 

 const parser = lazy(() => parser_next()) 

 lazy()  is a parser object like all parsers. Each parser  will wrap a lazy parser 

 like a shell. In this way, when the program executes to an uncalled parser, it will not 

 evaluate because the parser is in the lazy function. The Lazy parser is like a pipe 

 parser. It lets the parser pass through it and does nothing else. 

 4.6 Generator 

 const  generator =  function  *() 

 yield 1 

 yield 2 

 yield 3 

 } 

 generator().  next  ()  //1 

 generator().  next  ().  next  ()  //2 

 generator().  next  ().  next  ().  next  ()  //3 



 A generator represented by  function*()  is a special javascript function. Its 

 essence is an iterator consisting of the keyword  yield  and the function  next()  . 

 When calling  next()  ,  function*()  doesn't execute all  contents, but returns a 

 yield  object containing the value and an indicator  of whether the process is complete. 

 After every  yield  value has been executed,  function*()  will return. Furthermore, 

 calling  next()  can pass arguments, and the arguments  will be reassigned to the yield 

 value. Each yield returns a parser object, and the parsing method is performed on the 

 parser object, and then the new parser object is passed as a parameter to  next()  . In 

 this way, generators can be combined with functional programming, and provides 

 asynchronous communication between each parser, which creates a powerful parser 

 combinator. 

 const  parser = generator(  function  * () { 

 a =  yield  number(  "1"  ) 

 b =  yield  number(  "2"  ) 

 c =  yield  number(  "3"  ) 

 return  [a,b,c] 

 }); 

 The newly defined generator will pass an original generator  function*()  as a 

 parameter. All parsers will be executed in the yield in  function*()  and return a 

 defined data structure  [a,b,c]  . 

 const  generator = generatorFn => { 

 return  succeed(  null  ).chain(() => { 

 const  iterator = generatorFn(); 

 const  runStep = nextValue => { 

 const  iteratorResult = iterator.next(nextValue); 



 if  (iteratorResult.done) { 

 return  succeed(iteratorResult.value); 

 } 

 const  nextParser = iteratorResult.value; 

 return  nextParser.chain(runStep); 

 }; 

 return  runStep(); 

 })} 

 The generator is a parser. It will take the  function*()  passed in the previous step, 

 and return a parser object through  succeeded(null)  .  The  succeed(null)  function 

 call is a dummy parser object to convert the generator from a function to a parser 

 object. The  .chain(() => {...})  will be called after  success(null)  . This method 

 is similar to  .map()  . It takes the passed parser function  as a parameter and uses it to 

 convert the next parser object. In  chain()  , the  runStep()  will execute recursively 

 until all yield parsers have been executed. 



 SECTION 5 

 Experimentation 

 This section shows how to build a Lua parser using the parser combinators 

 written in this project. This process will start with the basic syntax and gradually cover 

 the grammar for an imperative subset of Lua. 

 Lua is a programming language similar to tables and schemes created by 

 Roberto Ierusalimschy in 1993, known for being lightweight (200K source code size) 

 and for its high performance. Jparsec is a recursive-descent parser. The recursive 

 descent parser has several advantages. A complex grammar can be implemented with 

 intuitive algorithms. Some parsing rules may be achieved by manipulating the parser 

 state. The recursive-descent parser uses a top-down parsing strategy to recursively 

 remove the nonterminals to terminals. The top-down parsing strategy introduces the left 

 recursion problem. The left-recursive solution is explained in this section using the 

 right-recursive transformation method. 

 5.1 Lexer 

 As mentioned in Section 2.1, the first process in the parser is the lexeme. 

 Without a lexer, the parser would mistake meaningless tokens like comments, spaces, 

 and newlines. These tokens meant to help humans understand code and work 

 efficiently, but have no meaning to machines. The purpose of the lexer is to filter at 

 these types of tokens before parsing. 

 const LETTER = Lexeme(  new  Parser(  parserState  => { 

 return tokenizer(  parserState  ,'LETTER') 

 }))  ; 



 const NUMBER = Lexeme(  new  Parser(  parserState  => { 

 return tokenizer(  parserState  ,'NUMBER') 

 }))  ; 

 There are multiple implementations of  Lexer  . In this  project,  Lexer  uses a 

 regular expression to filter each terminal parser result. In other words,  Lexer  is a 

 parser specially used to chain the terminal parser to remove unnecessary tokens. It 

 takes the terminal parser as an argument, and consumes the matching results without 

 updating any parser state. One question is, why not filter the entire text using regular 

 expressions? In Lua, the syntax for an  expression  end  does not have any token 

 representation, but in other languages, it usually ends with "  ;  ". Some parsers like 

 expression end  overlap with the lexer's regular expression.  In this case, the lexer 

 filters for a specific parser, not all text. The lexer reflects the flexible features of a parser 

 combinator. Any functionality can be encapsulated into a parser object. The parser state 

 inside an object can be manipulated to achieve different results. For example, updating 

 the parser index instead of the parser result skips some tokens like the lexer. On the 

 contrary, updating the parser result instead of the parser index predict specific tokens 

 like the lookahead mechanism. 

 5.2 Tokenizer 

 As mentioned in Section 4.1, tokenizers function  as terminal parsers.  The first 

 step in implementing terminal parsers is building a Lua tokens vocabulary. The tokens 

 of Lua are divided into four types. 

 ●  The variable type, such as  NUMBER, STRING, TRUE, and  FALSE  . 

 ●  The logical type, such as  +, >, =, and &&  . 



 ●  The special characters, such as  (, {, : and ;  . 

 ●  The keywords, such as  IF, ELSE, WHILE, and FUNCTION. 

 const tokenizer = (parserState,  type  )  =>  { 

 var  {target,index,isError} = parserState; 

 // consume tokens 

 const slicedTarget = target.slice(index) 

 // match tokens 

 const regexMatch = slicedTarget.  match  (  Token  [  type  ]); 

 // update parser state 

 index += regexMatch[  0  ].length; 

 return  updateParserState(parserState, index, regexMatch[  0  ]); 

 } 

 I map these four types of tokens to their corresponding regular expressions, and 

 use regular expressions to separate each token. When a BNF expression recursively 

 descends to the terminal process, the terminal parser consumes a token and 

 increments the parser index, which means that one text token has been successfully 

 parsed and is ready for parsing of the following text. Finally, the parser state information 

 is updated and passed it to the next parser. 

 5.3 Left recursion 

 At this point, this parser combinator can derive  a single token, such as the 

 keyword  IF  or the number  1  . The next step is to generate  a statement list. The 

 statement list contains either one statement or several different types of statements. 

 statementList 

 :== statementList statement 

 | statement 



 The way it defines statement lists in BNF is by using recursive grammar. In the example 

 above, the same nonterminal symbol  statementList  appears in the far left position, 

 which results in this syntax being left recursion. 

 A :== Aα|b 

 —-------------------------------- 

 statementList 

 :== statementList statement 

 | statement 

 A :== bA′ 
 A′ :== αA′|ε 
 —-------------------------------------- 

 statementList 

 :== statement statementList′ 
 statementList′ 

 :== statement statementList′ 
 | ε 

 The solution is to convert left recursion to right recursion. 

 statementList 

 :== statementList statement 

 | statement 

 statementList 

 :== (statement)* 

 The solution provided by this project is similar to the right-recursive transformation, but 

 more elegantly, it uses iteration to extend the recursive parser. 

 const StatementList_parser = generator(function* () { 

 var statementList = [] 

 while(yield lookAhead(STRING)){ 

 statementList.push(yield Statement_parser) 

 } 

 return statementList 

 }); 

 The implementation is to define an array of statementList and use a while loop to push 

 new statements into it continuously until no tokens are left. The solution is very 

 straightforward, but behind it is the essence of the parser combinator. In the parser 



 combinator, all parsers are combined with smaller parsers. This statement parser acts 

 as an independent parser that can be manipulated with any data structure. 

 Figure 6: BNF grammar expends to a parser combinator 

 As shown in Figure 6, If the statementList is the root of the AST, then the statement 

 parser is the leaf of the first level below, and the next step is to decompose the 

 statement parser. With such a direct algorithm, there is no left recursion problem. The 

 importance is to combine all the parsers based on the specific AST structure. 

 5.4 Right recursion 

 The statement parser consists of various types of parsers, such as the if 

 statement, for statement, and while statement parsers. 

 statementList :== (statement)* 

 Statement :== WhileStatement 

 WhileStatement :== 'while' Condition BlockStatement 

 BlockStatement :== 'do' StatementList 'end' 

 Take the while statement parser as an example. Its BNF expression contains a 

 BlockStatement. The BlockStatement contains a  statementList  .  The 



 statementList  contains many statements. The while statement is one of them. The 

 starting point is a while statement, and the ending point is a  whileStatement  , so this 

 is a right recursion with nested structures. However, unlike left recursion, derivation 

 occurs at the right position. Right recursion does not have the problem of infinite loops, 

 because the tokens will be consumed with each recursion. Therefore, production will 

 eventually be terminated. 

 const WhileStatement_parser = generator(function* () { 

 var key_while = yield KEY_while; 

 var condition = yield Condition_parser; 

 var blockStatement = yield BlockStatement_parser; 

 return [key_while,condition,blockStatement] 

 }); 

 const BlockStatement_parser = generator(function* () { 

 var key_do = yield KEY_do; 

 var StatementList = yield StatementList_parser 

 var key_end =yield KEY_end; 

 return [key_do,StatementList,key_end] 

 }); 

 The implementation uses a generator function, and each yield step is executed 

 according to the BNF expressions syntax without any modification. Jparsec allows 

 parsers to be defined in a similar way to grammar rules. 

 5.5 Left recursion chains 

 The binary expression parser is one of the statement parsers, and the most 

 complex expression in many parser. It contains a series of sub-expressions with 



 precedences. This chapter presents a solution to a binary expression by using left 

 recursive chains. 

 if (false or 1+2*5 > 10 == true) then end 

 In the above  if  condition, there is a binary expression  (FALSE or 1+2*5 > 10 == 

 TRUE)  that contains parsers with five different priorities. 

 ●  "*" represents a multiplicative parser 

 ●  "+" represents a additive parser 

 ●  ">" represents a logic parser 

 ●  "==" represents a equality parser 

 ●  "or" represents a relation parser 

 The logic flow starts with the multiplication of  2*5  ,  then the addition of  2*5+1  , then the 

 logic comparison with  2*5+1 > 10  , then the equation  of  2*5+1 > 10 == TRUE  , and 

 finally, the relation comparison  FALSE  or  2*5+1 >  10 == TRUE  .  Each of these five 

 binary parsers is a left recursion grammar. 

 AdditiveExpression 

 ::= NUMBER 

 | AdditiveExpression OPERATOR_ADDITIVE NUMBER 

 const AdditiveExpression_parser = generator(function* () { 

 var left,right,op; 

 left = yield NUMBER 

 while(yield lookAhead(OPERATOR_ADDITIVE)){ 

 op = yield OPERATOR_ADDITIVE, 

 right = yield NUMBER 

 left = [op,left,right] 

 } 



 return left 

 }); 

 Take the additive parser as an example, the solution is the same as the  statement 

 parser in section 5.3; that is, using a while loop to expend the  AdditiveExpression 

 in the second production. 

 MultiplicativeExpression 

 ::= NUMBER 

 | MultiplicativeExpression OPERATOR_MULTIPLICATIVE NUMBER 

 The BNF of the multiplicative and the  additiveExpression  is the same except for 

 the operator. However, multiplication takes precedence over addition. In other words, to 

 evaluate addition, it must first evaluate multiplication. 

 AdditiveExpression 

 ::= MultiplicativeExpression 

 | AdditiveExpression OPERATOR_ADDITIVE MultiplicativeExpression 

 MultiplicativeExpression 

 ::= NUMBER 

 | MultiplicativeExpression OPERATOR_MULTIPLICATIVE NUMBER 

 Replace nonterminal  NUMBER  in production of  AdditiveExpression  with 

 MultiplicativeExpression  . By concatenating the BNF  of addition and 

 multiplication, the  additiveExpression  is one or more 

 multiplicativeExpressions  followed by the + operator.  In this way,  the 

 additiveExpression  represents  multiplication + multiplication  .  The 



 multiplicativeExpression  is either a number or multiple multiplications. Using the 

 same concept, all binary parsers can be chained by their priority order. 



 const AdditiveExpression_parser = generator(function* () { 

 var  left  ,  right  ,op; 

 left  =  yield  MultiplicativeExpression_parser 

 while(  yield  lookAhead(OPERATOR_ADDITIVE)){ 

 op =  yield  OPERATOR_ADDITIVE, 

 right  =  yield  MultiplicativeExpression_parser 

 left  = [op,  left  ,  right  ] 

 } 

 return  left 

 }); 

 Figure 7: shows how the example  FALSE or 1+2*5 > 10  == TRUE  is parsed. 



 6.1 Lua test cases 

 This section shows different parsing cases for Lua,  including parser input and 

 output. The input is a Lua file. The output is an AST of symbolic expression 

 (s-expression) similar to a function programming structure. Jparsec covers most but not 

 all Lua syntax applications. Due to the modularity of parser combinators, each Lua 

 grammar corresponding to the parser can be combined and nested. In future work, the 

 Lua syntax of the project will gradually improve. The different test cases are as follows. 

 Listing 6.1.1: variable declaration and math expressions 

 local a,b,c=  1  +  2  *  3  /  4  ,  5  ,  6 

 { 
 "target":  "a=1+2*3/4"  , 
 "index":  9  , 
 "result": [ 

 [ 
 [ 

 "="  , 
 "a"  , 
 [ 

 "+"  , 
 "1"  , 
 [ 

 "/"  , 
 [ 

 "*"  , 
 "2"  , 
 "3" 

 ], 
 "4" 

 ] 
 ] 

 ] 
 ] 

 ], 
 "isError":  false  , 
 "error":  null 

 } 



 Listing 6.1.2: while loop statement 

 while  (  true  ) 

 do 

 a  =  1 

 end 

 { 

 "target":  "while( true )\ndo\n   a = 1\nend"  , 

 "index":  29  , 

 "result": [ 

 [ 

 "while"  , 

 "true"  , 

 [ 

 "do"  , 

 [ 

 [ 

 [ 

 "="  , 

 "a"  , 

 "1" 

 ] 

 ] 

 ], 

 "end" 

 ] 

 ] 

 ], 

 "isError":  false  , 

 "error":  null 

 } 

 Listing 6.1.3: if statement 

 if (  4  >  1  +  2  *  3  == false) 

 then 

 end 

 { 

 "target":  "if (4 > 1 + 2 * 3 == false)\nthen\nend"  , 

 "index":  36  , 

 "result": [ 

 [ 

 [ 

 "if"  , 

 [ 



 "=="  , 

 [ 

 ">"  , 

 "4"  , 

 [ 

 "+"  , 

 "1"  , 

 [ 

 "*"  , 

 "2"  , 

 "3" 

 ] 

 ] 

 ], 

 "false" 

 ], 

 "then"  , 

 [] 

 ], 

 null  , 

 null  , 

 "end" 

 ] 

 ], 

 "isError":  false  , 

 "error":  null 

 } 

 Listing 6.1.4: function declaration 

 function  f  (a,b) 

 return  a+b 

 end 

 { 

 "target":  "function f (a,b)\n  return a+b\nend"  , 

 "index":  33  , 

 "result": [ 

 [ 

 "function"  , 

 "f"  , 

 [ 

 "a"  , 

 "b" 

 ], 

 [ 

 [ 

 "return"  , 



 [ 

 "+"  , 

 "a"  , 

 "b" 

 ] 

 ] 

 ], 

 "end" 

 ] 

 ], 

 "isError":  false  , 

 "error":  null 

 } 

 Listing 6.1.4: function call 

 f  (  1  ,  2  ) 

 { 

 "target":  "f(1,2)"  , 

 "index":  6  , 

 "result": [ 

 [ 

 "func"  , 

 "f"  , 

 [ 

 "argv"  , 

 [ 

 "1"  , 

 "2" 

 ] 

 ] 

 ] 

 ], 

 "isError":  true  , 

 "error":  "ASSIGN: Got Unexpected end of input." 

 } 

 Listing 6.1.4: for statement 

 for  i  =10,1,-1  do 

 a  =1 

 end 



 { 

 "target":  "for i=10,1,-1 do\n  a=1\nend"  , 

 "index":  26  , 

 "result": [ 

 [ 

 "for"  , 

 [ 

 "="  , 

 "i"  , 

 "10" 

 ], 

 "1"  , 

 [ 

 "-"  , 

 "1" 

 ], 

 [ 

 "do"  , 

 [ 

 [ 

 [ 

 "="  , 

 "a"  , 

 "1" 

 ] 

 ] 

 ], 

 "end" 

 ] 

 ] 

 ], 

 "isError":  false  , 

 "error":  null 

 } 

 Listing 6.1.4: table 
 a={b,c,  3  ,{  4  ,  5  ,  6  ,{  7  ,  8  },{  9  }}} 

 a[b]=  1 

 { 

 "target":  "a={b,c,3,{4,5,6,{7,8},{9}}}\na[b]=1\n"  , 

 "index":  34  , 

 "result": [ 

 [ 

 [ 

 "="  , 

 "a"  , 

 [ 



 "b"  , 

 "c"  , 

 "3"  , 

 [ 

 "4"  , 

 "5"  , 

 "6"  , 

 [ 

 "7"  , 

 "8" 

 ], 

 [ 

 "9" 

 ] 

 ] 

 ] 

 ] 

 ], 

 [ 

 [ 

 "="  , 

 [ 

 "a"  , 

 [ 

 "b" 

 ] 

 ], 

 "1" 

 ] 

 ] 

 ], 

 "isError":  false  , 

 "error":  null 

 } 

 6.2 Comparison with ANTLR 

 This section compares Jparsec with ANTLR, especially the usage of binary 

 expression. ANTLR was the first parser generator to use a top-down parsing strategy. A 

 parser generator using a BNF grammar automatically generates source code for a 

 parser. The Lua grammar for binary expressions in ANTLR is as follows. 

 Listing 6.2.1: ANTLR input grammar 
 exp 

 :  'nil'  |  'false'  |  'true' 



 |  number 

 |  string 

 | prefixexp 

 |  exp  operatorMulDivMod  exp 

 |  exp  operatorAddSub  exp 

 |  exp  operatorComparison  exp 

 ; 

 Listing 6.2.1: ANTLR output parsing tree 



 The result shows that ANTLR gives exactly the same parse tree as Jparsec, with 

 the correct precedence. The BNF  exp: exp operatorMulDivMod exp  indicates 

 that ANTLR supports left-recursive grammar. Parr, Harwell, and Fisher also clearly 

 pointed out that ANTLR supports left-recursive grammars, but does not support indirect 

 left-recursive grammars because it is uncommon [19]. 

 Their paper provide a detailed left recursion elimination method in ANTLR [19]. The 

 elimination method converts left recursion into right recursion, which is exactly the same 

 as Jparsec. However, the method of expressing precedence with the converted right 

 recursion is different. 

 ANTLR further converts right recursion into an iteration grammar [19]. The principle of 

 Jparsec implementation is the same as that of ANTLR. The corresponding syntax is 

 slightly different. However, ANTLR's implementation of the precedence grammar is 

 completely different from Jparsec. 

 According to Parr's description of ANTLR [19]. Precedence is the use of prefix numbers 

 to mark the correct order of evaluation in the parse tree. 



 In the above parsing tree, the larger prefix number of nonterminal is always evaluated 

 first. in the examples in this section, The BNF of  exp operatorMulDivMod exp  is 

 set to prefix1,  exp operatorAddSub exp  is set to prefix2,  and  exp 

 operatorComparison exp  is set to prefix3 in order.  Evaluation starts from prefix 3 to 

 prefix 1. 

 in conclusion, the ANTLR grammar is more consis than my Parsec solution, 

 because ANTLR has an internal mechanism to transform the grammar. Jparsec 

 implementations follow the grammar strictly. ANTLR precedence calculations show the 

 heavy design of the parser generator. It shows a highly coupled internal system. If 

 languages have different rules, it is difficult for ANTLR to modify the internal code. In 

 fact, ANTLR has several libraries for different languages. Instead, Jparsec has only one 

 library that supports different languages as long as the BNF grammar is correct. That 

 clearly shows the advantage of a parser combinator. 



 SECTION 6 

 Conclusion 

 In the section 3 of this paper, the history of parser  combinator is presented. From 

 the initial CFG language classification to the BNF expression, to the processing of 

 ambiguity in a grammar, to the lookahead(k) performance improvement, to the solution 

 of left factor and left recursion. All these milestones led to the birth of  parser 

 combinators, and demonstrated their utility. 

 The parser combinator plays a very important role in parsing. However, unlike 

 traditional parser combinators such as Parsec, Jparsec abandons functional 

 programming and uses Javascript's objects and lambdas to create a new strategy for 

 parser combinators. Moreover, some generic parser mechanisms are also used in 

 Jparsec, such as look-ahead and BNF. Jparsec can effectively use the modularity of the 

 parser combinator to support left-recursive or right-recursive grammars. This makes the 

 parser construction code clear and concise, much like BNF. The lazy evaluation 

 significantly reduces the coupling between each parser module, allowing Jparsec to 

 retain human-friendly comprehension features, which is the biggest advantage of 

 top-down type parsing algorithms. In the experiment of Lua parsing, Jparsec can 

 support basic Lua syntax, including while loops, for loops, if conditions, etc. In some 

 complex cases, such as binary arithmetic, Jparsec can combine look-ahead and 

 left-recursion to handle grammar ambiguity caused by different precedences. This 

 shows that the framework built by Jparsec can parse industrial-grade languages. 



 There are still further improvements that can be made to Jparsec. Parser 

 combinators constructed with Jparsec are very close to the syntax of BNF, but it is also 

 possible to embed a Javascript macro system in Jparsec to further improve brevity. The 

 macro-formed syntax makes code look shorter, cleaner, and more readable. In addition, 

 macros allow designers to avoid obscure and repetitive code and abstract complex logic 

 into a short statement [17]. A parser combinator with a macro is expected to be driven 

 precisely by BNF expressions. Designers can focus on grammar, and write BNF to 

 generate parser combinators. Besides macro, Jparsec can also abstract more 

 nonterminal parsers to represent the same type of grammar. A typical example is left 

 recursion in Section 5.3. A left recursion can be further split into left-recursive factors 

 and right-hand expressions. A further encapsulated left-recursive nonterminal takes two 

 array parameters, expected as  leftRecursion([parser1],[parser2,parser 

 3])  . 

 Parser combinators have parsing methods similar to human reading. The 

 process of human language learning is to understand words first, then combine words 

 into sentences, and finally connect sentences into articles by conjunction. However, the 

 cost of human comprehension algorithms is performance. The performance of the 

 parser combiner generally loses to the parser generator with the bottom-up algorithm. 

 The bottom-up algorithm is difficult for humans to understand, but it is friendly to 

 machines, and has no left recursion problems. This leads to the question, whose time is 

 more important, human or machine? Whether human thinking should be closer to 

 machines, or machine thinking should be closer to humans, the future parser should 

 find a balance between performance and readability. 
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