
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2022

Proxy Re-Encryption in Blockchain-based Application Proxy Re-Encryption in Blockchain-based Application

Wangcheng Yuan

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Information Security Commons, and the Other Computer Sciences Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1192&utm_medium=PDF&utm_campaign=PDFCoverPages

Proxy Re-Encryption in Blockchain-based Application

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Wangcheng Yuan

Nov 2022

© 2022

Wangcheng Yuan

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Proxy Re-Encryption in Blockchain-based Application

by

Wangcheng Yuan

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

Nov 2022

Prof. Thomas Austin Department of Computer Science

Prof. Mike Wu Department of Computer Science

Prof. Fabio Di Troia Department of Computer Science

ABSTRACT

Proxy Re-Encryption in Blockchain-based Application

by Wangcheng Yuan

Nowadays, blockchain-based technology has risen to a new dimension. With the

advantage of the decentralized identity, data are transferred through decentralized

and public ledgers. Those new contracts provide great visibility. However, there is

still a need to keep some data private in many cases. Those private data should be

encrypted while still benefiting from the decentralized on-chain protocol. Securing

those private data in such a decentralized blockchain-based system is thus a critical

problem. Our solution provides a decentralized protocol that lets users grant access

to their private data with proxy re-encryption in SpartanGold (a blockchain-based

cryptocurrency). We implement a third-party storage provider called a proxy to store

clients’ private data in an encrypted form. Whenever someone wants to access a

client’s private data, the client uses their private key along with the buyer’s public

key to generate a re-encryption key. The third-party proxy uses the re-encryption key

to re-encrypt the client’s encrypted data for the recipient and send the result to the

buyer. As a result, only the buyer can decrypt the re-encrypted data by using their

private key, without revealing the data owner’s private key or the private data to the

third-party proxy. Our protocol has secured the private data on the decentralized

blockchain-based application without relying on trusted parties. We use medical data

as a use case to validate our protocol. In our medical use case, the patient’s medical

records are stored on the third-party proxy, and when specialists request medical

data from the patient, the patient generates the re-encryption key and sends it to the

proxy. The proxy re-encrypted the data and sends back to the specialists.

ACKNOWLEDGMENTS

I would like to express my special thanks of gratitude to my advisor Prof. Thomas

Austin for his assistance and guidance throughout the journey of my thesis project.

I also express my appreciation to my committee members Prof. Mike Wu and Prof.

Fabio Di Troia, for their participation and feedback on this thesis project.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Problem Statement - Managing Private Date on the Blockchain . 2

1.2 Previous Solution - Public-key Encryption 2

1.2.1 Our Solution - Proxy Re-encryption 3

1.3 Results . 4

2 Background . 5

2.1 Blockchain . 5

2.1.1 Peer-to-Peer (P2P) . 5

2.1.2 Proof-of-Work . 6

2.1.3 Drawback on Blockchain 6

2.2 Filecoin (FIL) . 7

2.3 StorJ . 7

2.4 Fine-grained Access Control Approach 8

2.5 Lightweight Message Sharing Approach 9

2.6 Proxy re-encryption (PRE) . 9

2.7 Spartan-Gold . 10

3 Technologies Used . 11

3.1 SpartanGold (SG) . 11

3.2 Recrypt-js . 15

4 Implementation - Oathkeeper . 17

vi

vii

5 Use Case - Medical Information 27

5.1 Inference Attack Against Anonymity 29

6 Experiemnts . 31

6.1 Announcing Data to Blockchain 31

6.2 Sharing Data with Proxy . 32

6.3 Requesting Medical Data . 32

6.3.1 Multiple Specialists . 33

6.4 Re-encrypting Data . 34

6.4.1 Re-encryption By Proxy 35

6.4.2 Decrypting Re-encrypted Data 36

7 Conclusion and Future Work . 37

LIST OF REFERENCES . 39

APPENDIX

CHAPTER 1

Introduction

Blockchain technology was popularized by Satoshi Nakamoto in 2008. In

Satoshi’s paper [1], he introduced the first well-known Blockchain cryptocurrency,

Bitcoin. Bitcoin is a decentralized digital currency that allows transfers of "bitcoins"

without the need for a trusted third party. Bitcoin has received substantial attention

because of its simplicity, transparency, and increasing popularity [2]. One of the

most significant advantages of Bitcoin is the decentralized identity along with the

opportunity to have privacy. There is no central authority for any transactions

[3]. Instead, all clients in the same network share the same public ledger. The

public ledger contains shared data and transactions in an encrypted format, and

clients do not need to provide their real names or personal information. From Bit-

coin, people saw that decentralized identities could bring great flexibility and visibility.

Non-fungible tokens (NFTs) were created in 2010, and the first projects us-

ing them were released in 2017 on the platform Ethereum [4]. NFTs are unique

cryptographic tokens that exist on a blockchain and cannot be replicated [5]. Both

Bitcoin and NFTs reply on blockchain transactions to validate the authenticity and

record ownership. However, unlike Bitcoin, NFTs can represent real-world items such

as digital art, audio information, or medical records.

NFTs have become popular in the marketplace in 2020 [6] because they pro-

vide unique, verifiable, and immutable proof of ownership of digital goods. Each

token stored in the blockchain doesn’t have the same value. Kus Khalilov and Levi

[7] state that more and more companies utilize NFT blockchain technology as their

management system to store data and interact with customers.

1

1.1 Problem Statement - Managing Private Date on the Blockchain

In most of the existing NFT blockchain-based technology, data is in a publicly

visible format. Once the information is sent to the network and registered in the ledger,

everyone in the blockchain network can see it. This is not ideal because, in many

situations, data should be kept in a private format that only authorized identities can

access [8]. For example, a client could disclose their medical records from the hospital

or personal documents to trusted identities, such as insurance companies or personal

doctors; other identities should not see those records [7]. Those private data should

be encrypted while still benefiting from the decentralized on-chain protocol. Since

all identities in the blockchain are distributed and decentralized, there is no physical

machine or comprehensive information for each identity. Thus, securing private data

in NFT blockchain-based application becomes a significant problem.

1.2 Previous Solution - Public-key Encryption

Chen et al. [9] propose an approach that uses a combination of cloud storage and

public-key encryption (PKE). PKE is the most widely used algorithm to share private

data in a 1-to1 manner. Cloud storage is presented as a third party to eliminate the

data owner’s local storage hardware and management overhead. The data owner

encrypts the data using their public key before uploading it to a third party. The

encrypted data and other information is shown in the blockchain. The data owner

could send the private key to a third party whenever a consumer wants to access the

data. The third party would use the private key to decrypt the data and send it to the

consumer. However, the third party would then access the data itself in this scenario.

What’s more, the third party could send the private key to other identities in the

blockchain. Since the encrypted information is broadcast in the network, other clients

could also use the private key to decrypt the content. Even though enterprise cloud

2

providers such as Amazon Web Services (AWS) and Google Cloud Platform(GCP)

are considered “trusted” third parties overall for the blockchain application, there are

still potential security and privacy limitations.

1.2.1 Our Solution - Proxy Re-encryption

Our solution provides a decentralized protocol with Proxy Re-Encryption (PRE)

in NFT blockchain applications. A client could upload their private data encrypted

by its public key to the third-party, called proxies. In practice, proxies often relate

to cloud providers. When a client (Bob) wants to access another Client’s (Alice)

private data stored in proxies, he could ask Alice for permission and send money to

her. Once Alice receives the money and approves Bob’s request, she will use her own

private key and Bob’s public key to generate a re-encryption key and send it to the

proxy. A re-encryption key is a special key for the proxy to transfer from one secret

key to another without ever accessing or exposing the plaintext or data [10]. The

proxy would use the re-encryption key to re-encrypt Alice’s data for Bob’s public key.

Finally, the proxy sends the final encrypted data to Bob, and Bob’s private key can

decrypt the final encrypted data. In our proposed protocol, the client could upload

private and public data into the blockchain without letting third parties, including

the cloud provider, view the private data content.

For example, Figure 1 shows how PRE is used in a blockchain-based medical

record application. When the patient sees the general doctor, the doctor will send

the patient’s health record to the storage provider in encrypted form, which is the

proxy in this case. Later on, when the patient is referred to see the specialty doctor,

the doctor could ask the patient for permission to access their own previous health

record. Once the patient agrees, they could use the specialty doctor’s public key

along with their private key to generate the re-encryption key and send it to the

3

Figure 1: Recording and sharing medical data using PRE

storage provider. The provider storage would encrypt the patient’s health record so

that only the specialty doctor could decrypt and see the data. The patient’s health

record is stored distributively, and no party can access the data without the patient’s

authorization.

1.3 Results

We implement our PRE protocol in Spartan-Gold [11], which is a JavaScript

blockchain-based framework. By using our implemented protocol, the user can upload

encrypted data to the proxy while broadcasting the encrypted data along with messages,

such as listed price and description. The consumer can look at the description and

list price to determine whether they want to access that encrypted private data. The

proxy stores the data and can re-encrypt it for any user authorized by the data owner.

Critically, the proxy has no way to reveal private data to unauthorized clients. All

transactions made during the PRE process will be announced in the blockchain.

4

CHAPTER 2

Background
2.1 Blockchain

Blockchain is a decentralized technology that shares the public ledger in the

blockchain network [12]. Each block inside the blockchain contains the data and the

previous block’s hash value. The data field contains the actual data and both the

sender’s and receiver’s addresses. The hash value of the previous block makes the

blockchain achieve strong transparency. It is difficult for attackers to tamper with

the data since one single change on the block will modify all data histories stored in

the blockchain network. The block also includes a timestamp field to indicate the

transaction’s date.

2.1.1 Peer-to-Peer (P2P)

Blockchain is a peer-to-peer (P2P) network, which means every single individual

identity acts as a peer, and they share the same public ledger [13]. When any identity

initiates the transaction, the miner finds the block and broadcasts it to the blockchain

network. All the other identities will update their ledger at the same time. This

feature of blockchain brings security and transparency because even the attacker can

tamper with the data on one identity’s side; they have to tamper with the data on all

other identity’s sides. Since the blockchain stores data in a decentralized way, each

individual identity keeps a copy of the transaction history. P2P makes it difficult for

attackers to tamper with the data within the blockchain network. The P2P system

really limits the central control from the centralized storage system. It also brings the

blockchain to achieve high availability since if one identity breaks or loses the data,

there are other replicas inside the blockchain network.

5

2.1.2 Proof-of-Work

In the blockchain network, there are miners to find the block for making trans-

actions. Miners are also considered clients that act as identities in the blockchain.

Miner uses proof-of-work (PoW) to verify the transaction and create the block to put

into the blockchain. A PoW is a form of a cryptographic algorithm in that the miner

has to prove to others that they solve the hashing algorithm, which means a certain

amount of computational effort has been made [14]. After the miner finds the PoW,

they will broadcast the PoW to the blockchain network and waits for other identities

to review. After all identities in the blockchain network agree and verify the PoW,

the miners will put the transaction into the block and broadcast it to the blockchain.

The miners who found the PoW will be rewarded with a transaction fee.

2.1.3 Drawback on Blockchain

Blockchain achieves high availability and transparency by using the public ledge.

This feature of blockchain makes the blockchain-based application more secure than

the centralized data storage system. However, transparency sometimes is a two-sided

sword. The public shared ledger works great when the transaction is public to the

network, but when the transaction is only intended to be visible to an only specific

identity in the blockchain network, the confidentiality of the blockchain does not

perform that well. For example, if the blockchain-based application is used for sharing

medical records, some of the medical records should keep in private, which is only

available to the patient and their doctors. Blockchain often inevitably leads to the

problem of exposing sensitive information such as critical medical data or personally

identifiable user-specific data [15].

6

2.2 Filecoin (FIL)

Filecoin (FIL) is a decentralized blockchain-based storage that can store users’

information other than digital currency. Like other blockchain-based storage appli-

cations, FIL also relies on a P2P network, and it uses InterPlanetary File System

(IPFS) to store the files and data on unused hard drives in the network. Miners in

the FIL get rewards when they store the data and files. The public shared ledger

records the transactions and provides proof that miners store the files correctly [16].

FIL provides the ability to store sensitive data by encrypting the data using PKE

before sending it to the blockchain. This feature of FIL helps solve the confidentiality

problem in blockchain-based applications. However, only the data owner can view

and access the FIL in this case, which means the private data can not delegate to

other identities even with the data owner’s authorization. For example, the miner

stores the patient’s medical record, and later on, a specialist is referred to the patient

and needs to access the data. In this case, the patient has to get their data back from

the miner who stored the data and then decrypt and send it to the specialist. Another

solution would be for the patient gives their private key to the specialist. This can

solve the problem, but it is not a good practice in the long run to expose the private

key to other identities.

2.3 StorJ

StorJ is another decentralized blockchain-based cloud storage that can store

users’ information and data. The StorJ has three major components: Storage nodes,

Uplinks, and Satellites [17]. Storage nodes are responsible for storing and retrieving

data. Uplinks are applications installed on the storage node to upload and retrieve

data. Satellites act as a bridge between the storage nodes and the uplinks. They are

responsible for directing the traffic, such as what data is stored on which storage nodes.

7

Unlike FIL, which is optimized for publicly visible data, StorJ automatically encrypts

the data when the client uploads the data. The encrypted is split into 80 pieces, and

each piece is stored on 80 different storage nodes using the satellite [17]. When the

client wants to access the data, they only need 29 out of 80 pieces to reconstruct the

encrypted file. StorJ seems to provide more capability in terms of storing private

data, but they had the same problem as the FIL. The private data is only accessible

to the data owner. If the data owner wants to share the data with other identities,

they have to retrieve it by themselves and then send it to their consumer. In this

case, the StorJ can only store the data, not distribute the data.

2.4 Fine-grained Access Control Approach

Sun et al. [18] proposed a blockchain-based data-sharing approach that provides

the ability to encrypt the data. Their approach is to first perform a hash calculation

on the data and then store the corresponding value on the blockchain to ensure

integrity and authenticity. Then, they use PKE to encrypt the data and store the

encrypted data in a distributed storage protocol. The distributed storage is isolated

from the blockchain, which you can think about the actual data is stored on the cloud

provider, and the blockchain only stores the corresponding hash value [18]. When the

client tries to retrieve the data, the encrypted keyword index information from the

blockchain will help the client to retrieve the data from the corresponding data store

from the distributed storage protocol [18]. To delegate the data to another identity,

the keyword index can be shared with the identity without retrieving the data first.

This approach can not only solve the problem of confidentiality on the blockchain but

also solves the problem of delegating the data to other identities without exposing the

data to a third party.

8

2.5 Lightweight Message Sharing Approach

Fu et al. [19] propose an approach to solve both the privacy and data sharing

problem in the blockchain-based storage system. First of all, they apply an interleaving

encoder to encrypt the original data. Then, they implemented a (t,n) - threshold data

sharing scheme [19]. Like StorJ, the encrypted data is mapped to n different short

shares. It only needs t pieces to retrieve the data instead of n total shares. The index

of those data shares is stored in different blocks, which all blocks chain together to

make the complete blockchain. When the data owner or authorized identity wants to

access or retrieve the data, they just need to request at least t shares of the encrypted

data shares from the blockchain.

2.6 Proxy re-encryption (PRE)

Proxy re-encryption (PRE) is a type of public-key encryption (PKE). In traditional

PKE operations, only two parties are involved in encryption and decryption. PRE

has an additional semi-trusted third-party proxy [20]. PRE allows a proxy entity to

transform or re-encrypt the data from one public key to another without accessing

the underlying plaintext or private keys [21]. When Bob wants to access Alice’s

data, Alice could use Bob’s public key along with her private key to generate the

re-encryption key. Alice sends the re-encryption, and the proxy uses the re-encryption

to encrypt Alice’s cipher, which could only be decrypted using Bob’s private key.

PRE was first formalized by Blaze et al. [22], and after that, PRE was modified and

improved in many different schemes such as unidirectional PRE [23], which is another

PRE that the re-encryption key only enables delegation in one direction but not the

opposite [23]. PRE was utilized in several applications, including e-mail forwarding,

law enforcement, cryptographic operations on storage-limited devices, distributed

secure file systems, and outsourced filtering of encrypted spam [24].

9

2.7 Spartan-Gold

SpartanGold (SG) [11] is a simplified blockchain-based cryptocurrency created

by Austin [11]. SG is written in JavaScript and runs on the Node.js platform. SG

is flexible and available to implement and experiment with different features for

educational purposes. SpartanGold’s design is loosely based on Bitcoin. SpartanGold

uses a proof-of-work (PoW) blockchain. In the initial design of SG, it can only make

transactions that are based on currency (spartan gold). The client needs to give the

output field, which includes the amount of the gold and the receiver’s address, in

order to make transactions. Then the transaction is signed with the user’s private key

and broadcast to the blockchain network. SG comes with two different approaches to

running the program: the single-threaded mode and the multi-process mode. We use

single-threaded mode for our protocol and focus on how PRE integrates with SG.

10

CHAPTER 3

Technologies Used

In this chapter, we provide an overview of the technologies used to facilitate

better understanding of our implementation.

3.1 SpartanGold (SG)

SpartanGold [11] is a simplified blockchain-based cryptocurrency for education

and experimentation. It was created and designed by Professor Thomas Austin.

SpartanGold’s design is loosely based on Bitcoin. SpartanGold uses a proof-of-work

(PoW) blockchain. In the initial design of SG, it can only make transactions that are

based on currency (spartan gold).

The below UML sequence diagram shows how Alice sends money to Bob from

the initial SG.

Figure 2: Alice sends money to Bob

11

1. postTransaction()

The first step is that Alice calls the postTransaction method to initiate

the transaction. The postTransaction is implemented inside the Client.js.

It passes an output array, the amount of gold, and the receiver’s address,

and then returns a post transaction using postGenericTransaction. In-

side the postTransaction method, it will check if the client has sufficient

gold to make the transaction and then pass the output array and fee to the

postGenericTransaction.

a l i c e . postTransact ion ([{ amount : 32 , address : bob . address }]) ;

postTransact ion (outputs , f e e=Blockchain .DEFAULT_TX_FEE) {

i f (totalPayments > th i s . ava i l ab l eGo ld) {

throw new Error (‘ Requested ${ totalPayments } ,

but account only has ${ t h i s . ava i l ab l eGo ld } . ‘) ;

}

re turn t h i s . postGener i cTransact ion ({

outputs : outputs ,

f e e : f ee ,

}) ;

}

2. postGenericTransaction()

The second step is to invoke the postGenericTransaction method inside the

postTransaction. The postGenericTransaction handles the transaction from

the client and broadcasts it to the network. There is a txData to handle

special parameters rather than the gold. In this case, since we only make

12

gold transactions and no other data is passed into the transaction. Inside the

postGenericTransaction, it first creates a transaction object by using the

client’s address and SG public key, and then it uses SG private key to sign the

transaction. Finally, postGenericTransaction will broadcast the transaction

to the blockchain network and also adds to the pending transactions, which is

ready for miners to mine the block for it.

postGener i cTransact ion (txData) {

l e t tx = Blockchain . makeTransaction (

Object . a s s i gn ({

from : t h i s . address ,

nonce : t h i s . nonce ,

pubKey : t h i s . keyPair . publ ic ,

} ,

txData)) ;

tx . s i gn (t h i s . keyPair . p r i va t e) ;

r e turn tx ;

}

3. Broadcast

The third step is to broadcast the transaction from the

postGenericTransaction to the blockchain. After broadcasting the

transaction, every client who registered in the blockchain network can view this

transaction.

t h i s . net . broadcast (Blockchain .POST_TRANSACTION, tx) ;

4. Miners start to find the block

13

The last step inside the postGenericTransaction is to add the transaction

to the pending transaction map, in which the key is the id of the transaction,

and the value is the transaction itself. After miners find a valid block, the

transaction is finally processed.

t h i s . pendingOutgoingTransact ions . s e t (tx . id , tx) ;

5. Add transactions to the block When miner’s find the valid block, they will add

the left transactions in the network to the block by using a queue.

t h i s . t r an s a c t i on s . forEach ((tx) => {

th i s . currentBlock . addTransaction (tx , t h i s) ;

}) ;

6. Bob’s gold balance is updated

After the transaction is completed, it will automatically update Bob’s gold

balance and everyone who registered in the network can view this change from

the blockchain.

Before Alice sends Bob 32 dollar:

Initial balances:
Alice has 233 gold.
Bob has 99 gold.
Charlie has 67 gold.
Minnie has 400 gold.
Mickey has 300 gold.
Donald has 0 gold.

After the transaction is completed:

Final balances (Donald’s perspective):
Alice has 265 gold.
Bob has 67 gold.

14

Charlie has 67 gold.
Minnie has 850 gold.
Mickey has 679 gold.
Donald has 125 gold.
Proxy has 49 gold.

7. Other clients sees the update from their perspective Since Charlie is also registered

in the blockchain network, Charlie shares the same public ledger with Bob, and

from Charlie’s perspective, he will have the same updated information just as

Bob does above.

3.2 Recrypt-js

Recrypt-js, designed and implemented by yjjnls [25], is a JavaScript SDK for

proxy re-encryption compatible with py_sdk. For our protocol, we use recrypt-js as

the framework to work on top of the SG. Below is how this framework works:

1. Generate the public and private keys for both parties (sender and receiver). kp

is the keypair for the party, sk is the private key that is generated from kp. pk

is the public key generated from kp.

var kp_A = Proxy . generate_key_pair () ;

var sk_A = Proxy . to_hex (kp_A. get_private_key () . to_bytes ()) ;

var pk_A = Proxy . to_hex (kp_A. get_public_key () . to_bytes ()) ;

var kp_B = Proxy . generate_key_pair () ;

var sk_B = Proxy . to_hex (kp_B. get_private_key () . to_bytes ()) ;

var pk_B = Proxy . to_hex (kp_B. get_public_key () . to_bytes ()) ;

2. Encrypt the plain text data using the public key of the sender (pk_A).

l e t obj = PRE. encryptData (pk_A, " t e s t data ")

15

3. Generate the re-encryption key (rk) using the sender’s private key (sk_A) and

receiver’s public key (pk_B).

l e t rk = PRE. generateReEncrytionKey (sk_A , pk_B) ;

4. Proxy re-encrypt the initial encrypted data (obj) by using the rk

PRE. reEncrypt ion (rk , obj)

5. Decrypt the re-encrypted data by using the receiver’s private key (sk_B)

l e t decryptData = PRE. decryptData (sk_B , obj)

16

CHAPTER 4

Implementation - Oathkeeper

Our protocol, named Oathkeeper, combines the SG and recrypt-js framework

together to achieve the proxy re-encryption in a simplified blockchain-based cryp-

tocurrency. Based on the SG, we created another class named Proxy.js. To illustrate

how our protocol works, the sections below show what the proxy re-encryption process

looks like. Below UML sequence diagram shows how the proxy re-encryption works

in Oathkeeper:

Figure 3: Bob requests data from Alice in Oathkeeper

17

1. postPriceTransaction

a l i c e . pos tPr i ceTransac t i on ({dataName : "COVID−19 Vaccine " ,

d e s c r i p t i o n : "The data and d e a t i l about my COVID−19 vacc ine

in fo rmat ion " , p r i c e : 33 . 0} , " P f i z e r , took on March 2021") ;

The first step is that Alice announces her data into the blockchain. We implement

a method called postPriceTransaction() in the Client class. This method

allows the client to post their content along with its price to the blockchain.

The first parameter is the data information in an object format, such as the

data name, data description, and the price of the data. The second parameter

is the actual content of the data.

pos tPr i c eTransac t ion (obj , content) {

t h i s . uploadPrivateData . s e t (obj . dataName , content) ;

r e turn t h i s . postGener i cTransact ion ({

data : obj

}) ;

}

The postPriceTransaction() method does two things. The first thing is to

save Alice’s uploaded data into a map called uploadPrivateData. The key of

the map is the data name, and the value is the actual content. The second thing

is to return a transaction by using the postGenericTransaction(). Here the

txData field is the uploaded data.

After some time, miners found the proof and put the transaction into the block.

Now everyone in the network can view the previous transaction.

setTimeout (() => {

18

conso l e . l og () ;

c on so l e . l og ("∗∗∗ Sta r t i ng a la t e −to−the−party miner ∗∗∗") ;

c on so l e . l og () ;

c on so l e . l og (bob . l a s tB l o ck) ;

listData: Map(2) {
’7Jywq94pQJL8mk87rGZaWU/SYP7FWporblYtXP+SiGE=’ => {

dataName: ’COVID-19 Vaccine’,
description: ’The data and deatil about my COVID-19 vaccine information ’,
price: 33

},
’aDsxAo9i/ST5YxnnfH+Qd4YfqzekauWO5gfYGGHBvyY=’ => {

dataName: ’BR’,
description: ’My recent blood test result’,
price: 180

}
},

As you can see above, the client in the blockchain network can see the data

information and Alice’s address from the block. If any client is interested in the

data, they can also view the description and the data price.

2. Requesting Data

After Alice posts her data into the blockchain, Bob is interested in Alice’s data

and wants to buy Alice’s content. Bob makes a single currency transaction that

pays the right amount of money to Alice’s address.

l e t obj = bob . l a s tB l o ck . s e c r e tO f (a l i c e . address) ;

bob . postTransact ion ([{ amount : obj . p r i c e ,

address : a l i c e . address }]) ;

Once Bob pays the money, Alice and Bob now can start the re-encryption

process to deliver the data content to the buyer through the proxy. Each time

19

a data content transaction happens, a new public/private key pair is generated

for both Alice and Bob. However, the SG address of the public and private keys

remains the same.

The below code shows how the public/private key is generated for both Alice

and Bob.

a l i c e . generateReEncryptionKeyPair (obj . dataName) ;

bob . generateReEncryptionKeyPair (obj . dataName) ;

We implement a method inside the Client class called

generateReEncryptionKeyPair() to generate the proxy public/private

key pair for the Client. This method saves the proxy key pair from the mapping

of the Client. The key of the map is the data name, and the value of the map is

the key pair. The map lets the client know which proxy key pair is used for

which data content. From there, all things are ready to go, and we can start

the re-encryption transaction.

generateReEncryptionKeyPair (dataName) {

var kp_proxy = PRE. Proxy . generate_key_pair () ;

var sk_proxy = PRE. Proxy . to_hex (kp_proxy . get_private_key () .

to_bytes ()) ;

var pk_proxy = PRE. Proxy . to_hex (kp_proxy . get_public_key () .

to_bytes ()) ;

t h i s . proxyKeyPair . s e t (dataName , {pk : pk_proxy , sk : sk_proxy }) ;

}

3. postEncryptionDataTransaction

a l i c e . postEncryptDataTransaction (obj . dataName , proxy) ;

20

The first step to start the proxy re-encryption process is to encrypt the

initial data by using Alice’s public key. In Client.js, a method called

postEncryptDataTransaction is implemented for the data owner to encrypt

the data content by their public key. The first parameter of this method is

the name of the data since the data owner could find the content by using

the uploadPrivateData map. The second parameter is the proxy to which

the encrypted data is sent. After the data owner uses the recrypt-js library to

encrypt the data, the proxy triggers a method called saveEncryptedData to

save the encrypted data content.

postEncryptDataTransaction (dataName , proxy) {

l e t content = th i s . uploadPrivateData . get (dataName) ;

l e t kp = th i s . proxyKeyPair . get (dataName) ;

l e t in i t i a lEnc ryptedData = PRE. encryptData (kp . pk , content) ;

proxy . saveEncryptedData (dataName , in i t i a lEncryptedData) ;

r e turn t h i s . postGener i cTransact ion ({

encryptedData : {

f i l ename : dataName ,

encryptedContent : i n i t i a lEnc ryptedData

}

}) ;

}

saveEncryptedData (dataName , i n i t i a l C i p h e r) {

t h i s . encryptedData . s e t (dataName , i n i t i a l C i p h e r) ;

}

Inside the saveEncryptedData, the key is the name of the data, and the key

21

is the encrypted data content by using the data owner’s public key. Finally,

the data owner calls the postGenericTransaction to put the encrypted data

as the data field and broadcast the transaction to the network. Thus, the

transaction happens in the blockchain, but clients cannot view the content of

the information.

Below is the initial encrypted data from the blockchain:

The initial cipher encrypted by Alice public is:

{"key":"048af708a6ec2c7aa55ac8d9250caf067eee4c2131df
247b2665ebbb10206159545efd45a5ab5ec7cea471afcd8b8f6c
81d40249fd9c538876510f19dbdb14835204e206e403c2b015ff
2ae7d78dfd02ce4c34eeabd14692c4914b05768fa4b19dd082aef
8cebf741593dca6ed35ece04b180f80bb1b118c765413ca4702db
e16420ae2ea4239d901ba135887a54890cb182c3e0f67c001265f
1a1383927cce9a6c0","cipher":"MQldn6J/xKrQ99X+IoPzlrv4
JvQI8vccdGd9PH160RI="}

4. postPublicKeyTransaction

bob . postPubl icKeyTransact ion (obj . dataName , a l i c e) ;

a l i c e . postReEncryptionKeyTransaction (obj . dataName , proxy) ;

The next thing is to send the buyer’s public key to the data owner so that the

data owner cam generate the re-encryption and sends it to the proxy. The

public/private key is different than the public/private key of the client’s address.

It is generated from the recrypt-js library, and the data owner has no information

before. Thus we implemented a method named postPublicKeyTransaction in

the Client.js.

postPubl icKeyTransact ion (dataName , dataOwner ,

f e e=Blockchain .DEFAULT_TX_FEE) {

22

l e t kp = th i s . proxyKeyPair . get (dataName) ;

dataOwner . saveReceivedPubl icKey (dataName , kp . pk) ;

r e turn t h i s . postGener i cTransact ion ({

c iphe r : kp . pk ,

f e e : f e e

}) ;

}

saveReceivedPubl icKey (dataName , receivedPubKey) {

t h i s . buyersPubKey . s e t (dataName , receivedPubKey) ;

}

The saveReceivedPublicKey method is to save the buyer’s public key into a

map. The key is the name of the data, and the value is the public key.

5. postReEncryptionKeyTransaction

a l i c e . postReEncryptionKeyTransaction (obj . dataName , proxy) ;

This is to generate the re-encryption using the data owner’s private and buyer’s

private keys. After the data owner generates the re-encryption, the data owner

sends the re-encryption key to the proxy and saves it on the proxy side. We imple-

ment a method called postReEncryptionKeyTransaction inside the Client.js.

Inside this method, we use the recrypt-js library to generate the re-encryption

key.

postReEncryptionKeyTransaction (dataName , proxy ,

f e e=Blockchain .DEFAULT_TX_FEE) {

l e t kp = th i s . proxyKeyPair . get (dataName) ;

23

l e t rekey = PRE. generateReEncrytionKey (kp . sk ,

t h i s . buyersPubKey . get (dataName)) ;

proxy . saveRencryptionKey (dataName , rekey) ;

r e turn t h i s . postGener i cTransact ion ({

rekey : rekey ,

f e e : f e e

}) ;

}

saveRencryptionKey (dataName , reEncryptionKey) {

t h i s . reEncryptionKey . s e t (dataName , reEncryptionKey) ;

}

The saveRencryptionKey method is to save the re-encryption from the data

owner for the proxy. The key is the name of the data, and the value is the

re-encryption key. Finally, the postReEncryptionKeyTransaction broadcasts

the transaction to the blockchain.

Below shows the re-encryption key we can find in the blockchain:

The re-encryption key is:

3ab6dd1cfc48655d72e0b221e29b9c0e8ea1bf6337f14
4727257ede422b3630f04e57e0c2c325efa365c2ec05b
28a7d5bd61cf443b27450033c97fa185b3c23a26907aa
b9431958bfa0467a7a267699a720c551d317441a889ea
d2e7fee71d1937

6. postReEncryptionDataTransaction

The postReEncryptedDataTransaction function is responsible for

re=encrypting the initial encrypted data by using the re-encryption key

24

and then sending the result to the buyer. We implement a method inside the

Proxy.js called postReEncryptedDataTransaction.

proxy . postReEncryptedDataTransaction (obj . dataName , bob) ;

postReEncryptedDataTransaction (dataName , buyer ,

f e e=Blockchain .DEFAULT_TX_FEE) {

PRE. reEncrypt ion (t h i s . reEncryptionKey . get (dataName) ,

t h i s . encryptedData . get (dataName)) ;

buyer . uploadPrivateData . s e t (dataName ,

t h i s . encryptedData . get (dataName)) ;

l e t tx = super . postGener i cTransact ion ({

f e e : f e e

}) ;

r e turn t h i s . addTransaction (tx) ;

}

The first parameter is the name of the data, which is helped to find the corre-

sponding re-encryption key and initial encrypted data. The second parameter is

the buyer that the proxy would send. Inside this method, we use the recrypt-js

to re-encrypt the encrypted data with the re-encryption key. Then we call

the uploadPrivateData method from the buyer’s side, which is to save the

re-encrypted data for them. Finally, the proxy would broadcast the transaction

to the blockchain network.

Below shows the re-encrypted data by using the re-encryption from the
blockchain:

The encrypted data by using re-encryption key is

{"key":"04b531b558a978bacd19ba3a89a7436788ccc4b83

25

8c2ce70498daf8f4095db0b6304dcce74b7c8682ed3dbca3c8
1bc4e14fd175aafc279772784a54512976ed743048e99d77a1
5738e1bdc1306e79982b7417268ba08e957ad080d68749c163
698ca8f323bcbc0b86f35971bad85e668a81af94fdfe86b0d0
8146b8629c643a2fa37ae2ea4239d901ba135887a54890cb18
2c3e0f67c001265f1a1383927cce9a6c004e57e0c2c325efa3
65c2ec05b28a7d5bd61cf443b27450033c97fa185b3c23a269
07aab9431958bfa0467a7a267699a720c551d317441a889ead
2e7fee71d1937","cipher":"MQldn6J/xKrQ99X+IoPzlrv4JvQI8vccdGd9PH160RI="}

7. decrypt

Finally, after Bob receives re-encrypted data on their side, he could use his

private key to decrypt the content.

decrypt (dataName) {

l e t kp = th i s . proxyKeyPair . get (dataName) ;

l e t decryptData = PRE. decryptData (kp . sk ,

t h i s . uploadPrivateData . get (dataName)) ;

r e turn decryptData ;

}

Bob’s decrypt result is: Pfizer, took on March 2021

26

CHAPTER 5

Use Case - Medical Information

Our introductory example shows that our protocol could be used for exchanging

and storing medical information. Our protocol brings a few advantages to the

medical information system compared to the traditional medical records system. Our

protocol provides strong confidentiality with PRE and relies on blockchain storage

for distributed perspective. In this way, there is less control of a single party in the

system [26]; instead, the user controls their own data. Also, it is easier to transfer

records to alternative providers.

Figure 4: Recording and sharing medical data using PRE

Figure 2 shows the procedures for how data is stored and exchanged using our

protocol. Let’s assume that the patient goes to see the medical provider (MP):

27

1. MP writes the patient’s information (data), encrypted with the patient’s public

key, pk, and sends the result, M1 to the proxy in the blockchain

2. The MP refers the patient to the specialist

3. The specialist asks the patient for the previous medical case information

4. The patient releases the data and generates a re-encryption proxy by using their

private key, sk, and the specialist’s public key, pk2.

5. The patient sends the re-encryption key to the proxy

6. The proxy uses the re-encryption to encrypt the patient’s medical information

for the specialist’s public key

7. The proxy sends the result, M2, to the specialist.

8. The specialist uses their private key, sk2, to decrypt M2 to view the patient’s

medical information

This approach offers the following benefits:

• Patients control their own data

If the medical practice goes down or is otherwise unavailable, the medical data is

still stored on the blockchain. Compared to traditional medical record systems,

the data would not go away unless the client requested it. Our protocol can

prevent data from being deleted by accidents such as system maintenance or

centralized deletion. Our protocol also streamlines the process of exchanging

data. There is no need to involve the original medical doctor in decisions about

releasing patient data. All the system needs to do is get permission from the

patient, and the patient generates the re-encryption key and sends it to the

blockchain to release the data.

28

• Updating medical results

In addition to easily exchanging data stored on the blockchain, the specialist

can further append new results to the blockchain. The client first releases their

medical records to the specialist by sending a re-encryption key to the proxy.

Then the proxy sends the re-encrypted data to the specialist. The specialist

appends new results to the blockchain using the patient’s public key. Thus

the next specialist who needs the patient’s medical information could see the

previous history. Critically nothing ties the client to the data on the blockchain

when the specialist writes to it.

5.1 Inference Attack Against Anonymity

From our protocol and implementation, each data transaction will initiate different

public/private key pairs for the proxy re-encryption process. However, the patient’s

and doctor’s addresses remain the same in the SG network. For example, if the patient

sends their information to the PCP doctor, both of them generate the public/private

key pair for the proxy re-encryption. If the next time the patient sends information

to the same doctor, both of them will have different proxy re-encryption keys, but

their spartan gold address does not change.

Even if the encrypted information is still not visible or easy to break in the blockchain,

people can gather some information from both the sender’s and receiver’s addresses.

For instance, if people saw in the blockchain that the patient sent multiple times to a

specific address, they can know that the patient is connected to that specific address

for some reason or purpose, but they can’t figure out what exactly the information is.

However, if people can figure out the identity is the receiver’s address, then things

become much worse. For example, if people can figure out the address is an Ear

Nose Throat (ENT) doctor, and people know this particular patient has an ENT

29

problem, which breaks the confidentiality in our proposed protocol [27]. The inference

attack is a limitation in our proposed Oathkeeper implementation. The solution to

the inference attack will be an area for our future work.

30

CHAPTER 6

Experiemnts

This chapter shows how our implemented protocol, Oathkeeper, works on the

medical data. In this case, we will have the patient delegates their medical record

to the specialist after they complete their session with Medical Provider (MP). The

medical data are stored on the proxy, which in reality, it will be the cloud provider

storage.

6.1 Announcing Data to Blockchain

First, we discuss what we do after we view our MP first. Usually, when the

patient has some sickness and views the MP. It would be great if the MP could

recognize the patient’s problem and give a corresponding medical solution. If not,

the MP needs to refer the patient to some specialists for further investigation. In

order to better help the specialist to give a medical solution, most of the time, they

need the medical record data from the MP’s session. Each time the patient views the

MP, the MP will announce the session data into the blockchain. In the blockchain,

all people who are registered in the medical blockchain system can see the attribute

information, such as the date, where it is from, and some descriptions. But people

can’t see the exact medical record data. Below is what the data looks like in the

blockchain network. As you can see, people can only see the fields, but the data itself

is never exposed.

’6EVyFf7Hn5OI/CuecOtktiRH+huCiRUpuBXm8BVB1eA=’ => {
dataName: ’COVID-19 Vaccine’,
date: ’Nov 10, 2022’,
MP: ’Kaiser Permanente South San Francisco Medical Center’,
description: ’COVID-19 vaccine symptoms’,
price: 33

},

The 6EVyFf7Hn5OI/CuecOtktiRH+huCiRUpuBXm8BVB1eA= is the address of the

31

MP doctor. The price here does not stand for the gold balance. This could be some

medical credential number or the code that can confirm anyone has to use this specific

number to prove the right privilege.

6.2 Sharing Data with Proxy

The next step is to share the data with the proxy. As we discussed in Chapter

3, the data is stored on the proxy side, a cloud provider in the real world. Even

though the patient has the initial data, it is still a better practice to store the data

in a decentralized manner. Using our protocol, the patient can encrypt the data by

using their public key and send the encrypted data to the proxy. Both the patient

and the protocol are part of the blockchain. You can consider the proxy as another

client but save the data as the storage provider. Below is how the initial encrypted

data looks like in the blockchain:

{"key":"0498e45eb7c77052c660eda23072df0b236
ae61a8dd3b0e658e3355f3e5d22dfd46ec720b4901f
28199a8cffad227df8e47f62a5ccdf321230da6821d
516de3ff30468578c252e97d2446bfc1c3e374f8d62
b72de7c704b8a63be00b283046b5aacb85547da4e3e
5b0c32286587a4e8ab736890f8e31c349d99b282d18
526375c1b6f72e49ab11b39099a40eaea42e3f82c2b
a7a07fb4be94aaffa5a53670948c128","cipher":
LzP2YKHVNhKSozpxAzroZ6xRyngrTfGTO59NYDltnLI
hZsAzCautQulhM+gGZ4yF"}

6.3 Requesting Medical Data

When the patient is referred by the MP, the specialist will then start approaching

the patient. The specialist first needs to send the patient a message that can confirm

they have the right authority to take care of the patient’s case and needs the data.

Thus, they need to call the postPriceTransaction, where the price is the special

token representing their privilege. If the specialist can successfully confirm their

identity, then the patient and the specialist can start the re-encryption process. The

32

Figure 5: Sharing Data with Proxy

patient and the specialist will generate different public/private re-encryption keys for

each data transaction.

Figure 6: Specialist asks for the permission from the patient

6.3.1 Multiple Specialists

There is a scenario in which the patient is referred to multiple specialists. In

this case, multiple specialists need to contact the patient that they need the session

33

data. Our protocol can successfully achieve that by generating different re-encryption

public/private keys for both the patient and the specialist. Since the data is stored

on the proxy, the patient just needs to use each specialist’s public key to generate the

unique re-encryption keys for them in this case, and there is no conflict between all

specialists.

6.4 Re-encrypting Data

Figure 7: Re-Encryption Process among three identities

Now the patient needs to do two things: (1) generate the re-encryption key and

(2) re-encrypt the data and send it to the proxy. To generate the re-encryption key,

the patient needs the specialist’s public key along with their private key. Below is

what the re-encryption key looks like:

The re-encryption key is:

34

df5a10658d836c1642d29e1268e9133a3d40ae83e6
4ac93a6e86b1a21e80061e04770f9cf2408bfa1bd5
f579280a8aabb5ae8325341dc92e67ed23e148b263
2a9b44ba9a0e4bf6661a23af7ec9cda06b0ca1ca0c
6e89f73657751cea766769f8dd

After the patient generates the re-encryption key, they send it to the proxy and

the proxy can start the re-encryption process.

6.4.1 Re-encryption By Proxy

The proxy now has the re-encryption key and the initial encrypted data. All they

need to do now is to re-encrypt the data and send the final result to the specialist.

Figure 8: Proxy re-encrypt the data by using the re-encryption key

Below show the data after the re-encryption process:

The encrypted data by using re-encryption key is
{"key":"0464d8f0be30f7fe22599e9a99712b23c8db8c00
d673f37551f1cb7066a1867a7979220075313e99a60ef217
e22957f992b87b2dc11a8ef3ece37a36516d06344b04c3ef
e1cac2cd27d8a0e2de573af5f064404e80198d10bce44ff5
15e5000da8100a1e8cdc9b254e22167a1f7c84487f3605ad
17727d4d01c28966c38c0c34653bf72e49ab11b39099a40e

35

aea42e3f82c2ba7a07fb4be94aaffa5a53670948c1280477
0f9cf2408bfa1bd5f579280a8aabb5ae8325341dc92e67ed
23e148b2632a9b44ba9a0e4bf6661a23af7ec9cda06b0ca1
ca0c6e89f73657751cea766769f8dd","cipher":"LzP2YKH
VNhKSozpxAzroZ6xRyngrTfGTO59NYDltnLIhZsAzCautQulhM+gGZ4yF"}

6.4.2 Decrypting Re-encrypted Data

Figure 9: Specialist decrypts the data

The last step is to send the final encrypted result to the specialist, and only the

specialist can decrypt it by using their specialist’s private key.

Specialist’s decrypt result is: Headache along with muscle pain.

36

CHAPTER 7

Conclusion and Future Work

In conclusion, we implemented a protocol named Oathkeeper that combines PRE

with the blockchain providing confidentiality of the data stored on the blockchain. At

the same time, Oathkeeper achieved the ability to store data in a decentralized manner.

Oathkeeper can be used in many real-world cases, such as medical data exchange.

We show that Oathkeeper helps the medical system deliver patient’s data without

content exposure while the patient’s data are stored by a third party. Oathkeeper

can also help the patient delegate their data to different specialists at the same time,

using different re-encryption keys.

There are a few areas in which the Oathkeeper can be improved in the future.

First of all, in Chapter 3, we explained the inference attack against anonymity, which

is an attack to gather information from pre-known or fixed addresses on the blockchain.

The problem with the above attack is that people can figure out if the patient’s address

is connected to the doctor’s. Future work will seek out a way to hide the SG address in

our protocol, this avoiding the problem above. Since the proxy is the only party that

needs the receiver’s address, the sender can directly send the receiver’s SG address to

the proxy. Finally, the proxy will encrypt the receiver’s SG address and broadcast it

to the blockchain.

Another improvement can be integrating Oathkeeper with data storage services

on the cloud provider, such as S3 [28] for videos, images, and structural files and

DynamoDB [29] for metadata. In our current implementation of OathKeeper, the

proxy is implemented as a class object in which the data is stored within the class.

Instead of saving the data within the proxy class, we can store the data in the real

cloud provider so that the proxy is only responsible for generating the re-encryption

key and re-encryption data. We can further improve Oathkeeper by registering the

37

cloud storage provider to our SG network. In this way, we no longer need the proxy

as an object in our protocol; instead, we can build serverless services, such as Lambda

[30] on the cloud side, to handle the proxy re-encryption process, meanwhile still

storing the data.

38

LIST OF REFERENCES

[1] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ Cryptography
Mailing list at https://metzdowd.com, 03 2009.

[2] A. Urquhart, ‘‘The inefficiency of bitcoin,’’ Economics Letters, vol. 148, p. 80–82,
2016.

[3] V. Malik, ‘‘The history and the future of bitcoin,’’ 2016.

[4] L. V. Astakhova and N. V. Kalyazin, ‘‘Non-fungible tokens (nft) as a means
and object of ensuring information security,’’ Automatic Documentation and
Mathematical Linguistics, vol. 56, no. 3, p. 116–121, 2022.

[5] R. Sharma, ‘‘Non-fungible token (nft): What it means and how it
works,’’ Nov 2022, accessed on 12-10-2022. [Online]. Available: https:
//www.investopedia.com/non-fungible-tokens-nft-5115211

[6] H. Bao and D. Roubaud, ‘‘Non-fungible token: A systematic review and research
agenda,’’ Journal of Risk and Financial Management, vol. 15, no. 5, 2022.
[Online]. Available: https://www.mdpi.com/1911-8074/15/5/215

[7] M. C. Kus Khalilov and A. Levi, ‘‘A survey on anonymity and privacy in bitcoin-
like digital cash systems,’’ IEEE Communications Surveys Tutorials, vol. 20,
no. 3, pp. 2543--2585, 2018.

[8] A. Urquhart, ‘‘The inefficiency of bitcoin,’’ Economics Letters, vol. 148, pp.
80--82, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0165176516303640

[9] Z. Chen, A. Wu, Y. Li, Q. Xing, and S. Geng, ‘‘Blockchain-enabled public
key encryption with multi-keyword search in cloud computing,’’ Security and
Communication Networks, vol. 2021, pp. 1--11, 01 2021.

[10] B. Partner, ‘‘Decentralized identitynbsp;: Granting privacy with proxy
re-encryption,’’ Jun 2019, accessed on 12-10-2022. [Online]. Avail-
able: https://medium.com/@teamtech/decentralized-identity-granting-privacy-
with-proxy-re-encryption-e0bf68ad465c

[11] Taustin, ‘‘Taustin/spartan-gold: A simplified blockchain-based cryptocurrency
for experimentation,’’ accessed on 12-10-2022. [Online]. Available: https:
//github.com/taustin/spartan-gold

39

https://www.investopedia.com/non-fungible-tokens-nft-5115211
https://www.investopedia.com/non-fungible-tokens-nft-5115211
https://www.mdpi.com/1911-8074/15/5/215
https://www.sciencedirect.com/science/article/pii/S0165176516303640
https://www.sciencedirect.com/science/article/pii/S0165176516303640
https://medium.com/@teamtech/decentralized-identity-granting-privacy-with-proxy-re-encryption-e0bf68ad465c
https://medium.com/@teamtech/decentralized-identity-granting-privacy-with-proxy-re-encryption-e0bf68ad465c
https://github.com/taustin/spartan-gold
https://github.com/taustin/spartan-gold

[12] S. Meunier, ‘‘Chapter 3 - blockchain 101: What is blockchain and how does
this revolutionary technology work?’’ in Transforming Climate Finance and
Green Investment with Blockchains, A. Marke, Ed. Academic Press, 2018, pp.
23--34. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780128144473000033

[13] I. Acharjamayum, R. Patgiri, and D. Devi, ‘‘Blockchain: A tale of peer to peer
security,’’ in 2018 IEEE Symposium Series on Computational Intelligence (SSCI),
2018, pp. 609--617.

[14] C. Schinckus, ‘‘Proof-of-work based blockchain technology and anthropocene:
An undermined situation?’’ Renewable and Sustainable Energy Reviews, vol. 152,
p. 111682, 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1364032121009564

[15] J. Sedlmeir, J. Lautenschlager, G. Fridgen, and N. Urbach, ‘‘The transparency
challenge of blockchain in organizations,’’ Electronic Markets, vol. 32, 03 2022.

[16] A. Ismail, M. Toohey, Y. C. Lee, Z. Dong, and A. Y. Zomaya, ‘‘Cost and perfor-
mance analysis on decentralized file systems for blockchain-based applications:
State-of-the-art report,’’ in 2022 IEEE International Conference on Blockchain
(Blockchain), 2022, pp. 230--237.

[17] X. Zhang, J. Grannis, I. Baggili, and N. L. Beebe, ‘‘Frameup: An incriminatory
attack on storj: A peer to peer blockchain enabled distributed storage
system,’’ Digital Investigation, vol. 29, pp. 28--42, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1742287618303438

[18] J. Sun, L. Ren, S. Wang, and X. Yao, ‘‘A blockchain-based framework for
electronic medical records sharing with fine-grained access control,’’ PloS one,
vol. 15, p. e0239946, 10 2020.

[19] J. Fu, N. Wang, and Y. Cai, ‘‘Privacy-preserving in healthcare blockchain
systems based on lightweight message sharing,’’ Sensors, vol. 20, no. 7, 2020.
[Online]. Available: https://www.mdpi.com/1424-8220/20/7/1898

[20] YouTube, Jul 2018. [Online]. Available: https://www.youtube.com/watch?v=
1RuP2HZ6zRc&t=212s&ab_channel=TaariqLewis

[21] B. Partner, ‘‘Decentralized identitynbsp;: Granting privacy with proxy
re-encryption,’’ Jun 2019, accessed on 12-10-2022. [Online]. Avail-
able: https://medium.com/@teamtech/decentralized-identity-granting-privacy-
with-proxy-re-encryption-e0bf68ad465c

[22] B. Rawal and Y. Wang, ‘‘Splitting a pre-scheme on private blockchain,’’ 05 2019.

40

https://www.sciencedirect.com/science/article/pii/B9780128144473000033
https://www.sciencedirect.com/science/article/pii/B9780128144473000033
https://www.sciencedirect.com/science/article/pii/S1364032121009564
https://www.sciencedirect.com/science/article/pii/S1364032121009564
https://www.sciencedirect.com/science/article/pii/S1742287618303438
https://www.mdpi.com/1424-8220/20/7/1898
https://www.youtube.com/watch?v=1RuP2HZ6zRc&t=212s&ab_channel=TaariqLewis
https://www.youtube.com/watch?v=1RuP2HZ6zRc&t=212s&ab_channel=TaariqLewis
https://medium.com/@teamtech/decentralized-identity-granting-privacy-with-proxy-re-encryption-e0bf68ad465c
https://medium.com/@teamtech/decentralized-identity-granting-privacy-with-proxy-re-encryption-e0bf68ad465c

[23] P. Miao, S. Patranabis, and G. Watson, ‘‘Unidirectional updatable encryption
and proxy re-encryption from ddh or lwe,’’ Cryptology ePrint Archive,
Paper 2022/311, 2022, https://eprint.iacr.org/2022/311. [Online]. Available:
https://eprint.iacr.org/2022/311

[24] Y. Shi, J. Liu, Z. Han, Q. Zheng, R. Zhang, and S. Qiu, ‘‘Attribute-based proxy
re-encryption with keyword search,’’ PLOS ONE, vol. 9, no. 12, p. e116325,
2014. [Online]. Available: https://app.dimensions.ai/details/publication/pub.
1041299693

[25] Yjjnls, ‘‘Yjjnls/recrypt-js: Js sdk for proxy reencryption functionality,
support spec256k1,’’ accessed on 12-10-2022. [Online]. Available: https:
//github.com/yjjnls/recrypt-js

[26] K. Singh, C. Rangan, R. Agrawal, and S. Sheshank, ‘‘Provably secure lattice based
identity based unidirectional pre and pre + schemes,’’ Journal of Information
Security and Applications, vol. 54, p. 102569, 10 2020.

[27] X. Chen, J. Zhang, D. Wu, and R. Han, ‘‘Hippa’s compliant auditing system for
medical imaging system,’’ in 2005 IEEE Engineering in Medicine and Biology
27th Annual Conference, 2005, pp. 562--563.

[28] ‘‘S3,’’ 2002, accessed on 12-10-2022. [Online]. Available: https://aws.amazon.
com/s3/

[29] D. Rangel, ‘‘Dynamodb: Everything you need to know about amazon web
service’s nosql database,’’ 2015, accessed on 12-10-2022. [Online]. Available:
https://aws.amazon.com/dynamodb/

[30] R. W. Hendrix, ‘‘Lambda,’’ 1983, accessed on 12-10-2022. [Online]. Available:
https://aws.amazon.com/lambda/

41

https://eprint.iacr.org/2022/311
https://eprint.iacr.org/2022/311
https://app.dimensions.ai/details/publication/pub.1041299693
https://app.dimensions.ai/details/publication/pub.1041299693
https://github.com/yjjnls/recrypt-js
https://github.com/yjjnls/recrypt-js
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/lambda/

	Proxy Re-Encryption in Blockchain-based Application
	Introduction
	Problem Statement - Managing Private Date on the Blockchain
	Previous Solution - Public-key Encryption
	Our Solution - Proxy Re-encryption

	Results

	Background
	Blockchain
	Peer-to-Peer (P2P)
	Proof-of-Work
	Drawback on Blockchain

	Filecoin (FIL)
	StorJ
	Fine-grained Access Control Approach
	Lightweight Message Sharing Approach
	Proxy re-encryption (PRE)
	Spartan-Gold

	Technologies Used
	SpartanGold (SG)
	Recrypt-js

	Implementation - Oathkeeper
	Use Case - Medical Information
	Inference Attack Against Anonymity

	Experiemnts
	Announcing Data to Blockchain
	Sharing Data with Proxy
	Requesting Medical Data
	Multiple Specialists

	Re-encrypting Data
	Re-encryption By Proxy
	Decrypting Re-encrypted Data

	Conclusion and Future Work
	LIST OF REFERENCES

