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Abstract

Little is known about the environmental factors that impact eukaryotic microbial populations in
the Western Antarctic Peninsula. Metagenomic and environmental data have been collected
over the course of three consecutive austral summers in the Western Antarctic Peninsula off
Palmer Station. More than 13 million 18S rRNA eukaryotic sequences have been taxonomically
identified and categorized from the Antarctic water samples collected. Here we will investigate
the environmental factors that affect eukaryotic organism populations, as well as possible
indicator species that could provide insight as to the status of other eukaryotic species. Due to
climate change, understanding these factors and identifying status indicating species is
becoming increasingly important in understanding microbial systems, and to inform future
research of Antarctic ecosystems and environmental conditions. We identified several
groupings of correlated taxonomic operational units. Additionally, we found that
Stramenopiles.Diatomea.ME-Euk-FW10, an uncultured diatom with a large population
presence, had a particularly strong correlation to temperature.
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Introduction

Microbial eukaryotes exhibit broad lifecycle diversity. Competition, environmental stresses,
predation, and viruses are all factors that affect eukaryotic diversity and lifespan (Jungblut et
al., 2012). Amoeboid heterotrophic protists have been shown to feed on, and significantly
decrease, diatom populations (Thomsen et al., 1991). Algae and Phytoplankton have developed
population survival and reproduction strategies. Most notably they have been observed to have
two distinct life strategies: boom-and-bust and a persistent presence (Assmy et al., 2013).
Species that have a persistent life strategy are generally more resilient to environmental
changes and stressors. Boom-and-bust organisms require a narrower range of environmental
parameters but tend to have a large increase in population when those parameters are met, as
well as a large decrease in population under stress (Mock et al., 2017). Environmental factors,
such as seasonal upwelling in surface waters off the coast of Spain, have been shown to cause a
shift in microbial eukaryotic populations, and temperature showed a significant correlation with

changes of community composition (Hernandez-Ruiz et al., 2018).

Palmer Station is located off of the Western Antarctic Peninsula (WAP) on Anvers Island.
The Palmer Station Long Term Ecological Research (PAL-LTER) program has been actively
studying the WAP marine ecosystem since 1990 (Smith et al., 1995). The WAP undergoes
extreme seasonal climate variation. During the austral winters, a layer of sea ice covers the
surface and water salinity levels increase as temperature and light levels decrease. The austral

summers give way to open waters and warmer weather, causing glacial and sea ice melt. In turn
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this creates density shifts and induces ocean upwelling (Ducklow et al., 2006;
Seyitmuhammedov et al., 2022). The Antarctic peninsula has experienced an average rise of 6C°
since 1950, causing it to be amongst the most rapidly warming regions on Earth (Ducklow et al.,
2006). This rise in temperatures has altered the ecosystem on both the macro and micro scale,
as penguin, krill, and zooplankton populations change to reflect the newly developing
environment (Ducklow et al., 2006). Historically, increased winter ice extent, ice duration, and
reduced summer winds have been favorable conditions for phytoplankton in WAP. This results
in an increased krill biomass which subsequently affects the diets of local fish and penguins.
Specifically, colder temperatures and higher ice caps result in narrower depths of water
stratification and a decrease in the mixing of water columns. This increases diatom

concentrations driving the krill reproduction and feeding habits (Saba et al., 2014).

In addition to the importance of commercial fishing, the Southern Ocean is an important
atmospheric CO; sink. An estimated third of all atmospheric carbon is captured by the world’s
oceans, of which the Southern Ocean is responsible for approximately 40% (Kock et al., 2007;
Sabine et al., 2004; Frolicher et al., 2015). Due to climate change, understanding what
environmental factors affect microbial eukaryotes such as diatoms, and to what extent these
factors affect the ecosystem, is critical in our anticipation and ability to combat downstream
effects. Additionally, identifying status indicating species is becoming increasingly important in
understanding microbial systems, helping to inform future research of Antarctic ecosystems

and environmental conditions. The ability to estimate the population of a difficult to identify
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species by the population of an easily identifiable, correlated species could free up resources

for researchers in the field.

The majority of marine microbial organisms have yet to be successfully cultured (Suzuki et
al., 1997). Therefore, metagenomic bioinformatics techniques for analyzing environmental
samples are necessary for identifying microorganisms and capturing an accurate representation
of the ecosystem. 18s ribosomal RNA has become the most frequently used biomarker in the
determination of environmental microbial eukaryotes. This is in large part due to the highly
conserved 18s rRNA regions which allows for the use of universal primers (Meyer et al., 2010).
This allows for relatively accessible, cost effective, and quantitative sequencing of

environmental microbial eukaryotes.

Taxonomic background

Archaeplastida

Archaeplastida is a broad supergroup of eukaryotes composed of Chloroplastida green algae,
Rhodophyceae red algae, and land plants. Archaeplastida are typically capable of
photosynthesis, however some have lost that ability (Ball et al., 2011). The Archaeplastida
species that are capable of photosynthesis have chloroplasts surrounded by two membrane
layers; this suggests an endosymbiosis event with a cyanobacterium. Note that, other

eukaryotic organisms with chloroplasts have three membrane layers or more (Tikhonenkov,
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2020). Taxonomic classification of Archaeplastida is still contested; however molecular analysis

supports that Picozoa are a part of the Archaeplastida group (Blaby-Haas & Merchant, 2019).

Stramenopile

Stramenopiles, also referred to as Heterokonts, are a major eukaryotic clade and are part of the
supergroup SAR (Stramenopila, Alveolate, Rhizaria) (Keeling & Burki, 2019). The clade consists
of photoautotrophic, zoosporic, and phagotrophic organisms causing the clade to have a large
degree of diversity (Cho et al., 2022). The Stramenopiles clade includes of the subgroups MAST
(Marine Stramenopiles), diatoms, Dictyochophyceae, and others (Keeling & Burki, 2019; Han et
al., 2019). Stramenopiles.Diatomea.ME-Euk-FW10, Stramenopiles.MAST-2, and

Stramenopiles.MAST-3 are Stramenopiles that have not yet been successfully cultured.

Diatomea

Diatoms are an abundant class of Stramenopile algae which are commonly photoautotrophic
and are exhibit silica cell walls. These silica cell walls form arrays of hierarchical pores that are
used for gas and nutrient exchange (Lengyel et al., 2020; Zhou et al., 2022). The silica cell walls
are thought to protect the diatoms from predation, as well as harmful ultraviolet radiation. It is
estimated that diatoms are responsible for 25% of the world’s primary production and 40% of
marine primary production (Sethi et al., 2020; Lakshmi et al., 2022). As such, diatoms play an

important role in carbon fixation and oxygen production. It has been shown that
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photosynthesizing organisms, in particular diatoms, are sensitive to environmental temperature
and conductivity. Higher temperatures, and higher environmental conductivity, increases the
efficiency of ion exchange, and consequently increases the efficiency of photosynthesis

(Lengyel et al., 2019; Lengyel et al., 2020).

Dictyochophyceae

Dictyochophyceae are marine Stramenopiles phytoflagellates that have a wide range of cellular
morphology (Eckford-Soper & Daugbjerg, 2016). Dictyochophyceae blooms have been
correlated with fish killing events and phycotoxin secretion (Eckford-Soper & Daugbjerg, 2016;
Skjelbred et al., 2011; Mardones et al., 2022). Phycotoxins have been linked to amnesic shellfish
poisoning, paralytic shellfish poisoning, and diarrhetic shellfish poisoning in humans, through
human consumption of seafood exposed to harmful algae blooms (Mardones et al., 2022). Like
most Stramenopiles, Dictyochophyceae generally contain chloroplasts and perform

photosynthesis (Cassar et al., 2015).

Jakobida

Jakobida belong to the supergroup Excavata and are heterotrophic, flagellar-driven eukaryotes
consisting of only twenty identified species (O'Kelly, 1993). Some Jakobida have been observed
in anoxic marine environments, as well as hypersaline environments (Strassert et al., 2016).

Jakobids are not photosynthesis capable and instead feed on bacteria (Christaki et al., 2005).
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Picozoa

Picozoa were once thought to be photosynthesizing algae but have since been determined to
be heterotrophic and feed on small organic particles (Moreira & Lopez-Garcia, 2014).
Environmental seawater sampling has revealed that Picozoa are widely distributed (Seenivasan

et al., 2013).

Haptophyte

Haptophytes are a broadly distributed and relatively abundant clade of algae that are closely
related to the SAR clade of eukaryotes (Cuvelier et al., 2010; Parfrey et al., 2011). Haptophytes
contain large quantities of fatty acids and are a common food source for oysters and shrimps
(Renaud et al., 1995). Haptophytes produce large amounts of alkenones which are believed to
be used as a form of energy storage. Haptophytes alkenones production varies as a function of

salinity and temperature (Randlett et al., 2014).

Cryptophyte

Cryptophytes are mostly photosynthetic, unicellular eukaryotes that are found in fresh,
brackish, and marine environments. Their cell walls contain ejectosomes and two flagella,
which results in asymmetrical spiral swimming (Magalhdes et al., 2021). The Cryptophyte
plasmid is surrounded by four membranes as a result of endosymbiosis with red algae (Douglas

& Penny, 1999).

10
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Alveolata

The Alveolata clade is part of the SAR supergroup. The clade consists of predatory flagellates,
photosynthetic organisms, and parasitic organisms. Alveolata often have tubular cristae and
pitted, pore-like intrusions on the cell wall (Queiroz et al., 2020). In a study conducted off the
coast of Japan, Alveolata was strongly correlated with depth, nitrate and nitrite, temperature,
and time of year (Sogawa et al., 2022). Dinoflagellates are a common Alveolata superclass that
have been observed to feed on diatoms. A study conducted in the Southern Ocean near
Australia found a negative correlation between Dinoflagellates and diatoms (Cassar et al.,

2015).

Rhizaria

Rhizaria are amoeboid heterotrophs known to feed on diatoms. In the Western Antarctic
peninsula, Rhizaria were negatively correlated with net community primary production. This
suggests that Rhizaria are preying on diatoms and other photosynthesizing microbial organisms
(Magalhdes et al., 2021). Rhizaria communities have been observed to be drastically affected by

time of year and depth (Sogawa et al., 2022).

11
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Methods

Water Collection

Water samples were collected over the course of 3 years from Palmer Station LTER
Sampling Site B at a depth of 10 meters by Dr. Shellie Bench. Samples of interest were collected
on dates: 27-11-12, 08-02-13, 27-12-13, 23-01-14, 03-02-14, 10-02-14, 28-02-14, 04-03-14, 01-
12-14,11-12-14, 12-01-15, 19-01-15, 09-02-15, 23-02-15, 09-03-15. Temperature, conductivity,
pressure, fluorescence, salinity, density, chlorophyll, phaeopigment, phosphate, silicate, nitrite
and nitrate, and primary production were all measured from the water samples collected by

the Palmer LTER team (Ducklow et al., 2019).

Taxonomic Identification

Water samples were passed through a 3 um filter in order to collect eukaryotic microbes
and remove any prokaryotic microbial organisms. Retained samples were PCR amplified using
18s rRNA primers and sequenced. Using bbmerge, paired end fastq library files were merged
then trimmed using bbduk. The quality threshold was set to 38 (ASCII ‘F’) with a minimum
length of 160. The trimmed files were converted to the fasta format from fastq and adapter
sequences were removed. 18s reads were identified through the use of mothur, with the Silva
and LTP taxonomy database (Schloss et al., 2009; Quast et al., 2012; Yilmaz et al., 2013). In
order to reduce the time cost of balstx, nucleotide reads were translated into all 6 reading

frames. If a single translation was substantially longer than the rest, it was accepted as correct.

12
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The translated sequences were then submitted as blast (Venables et al., 2013) queries on
March 20, 2019. Reads were retained if the best E-value hit was <= 0.01. Taxonomies for the
retained reads were obtained from the GenBank’s Taxonomy Database. Taxonomically
identified reads of the 18s library were mapped to 22 clades. Over 13 million 18S eukaryotic

sequences were identified this way.

Operational taxonomic unit

Operational taxonomic unit (OTU)s were derived from identified sequencing data. OTUs
were then further consolidated into compounded groupings with biological similarities. Three
degrees of consolidation were established: “minimum”, “medium”, and “maximum” (Table 1.
A/B) (Supplementary Table 1. A/B). Time course data of diatom and Dictyochophyceae
groupings were produced at no consolidation, minimum, medium and maximum consolidation.

Medium consolidation was then chosen for further consolidation. All OTUs counted were

normalized to the population percentage of the day sampled.

Stacked Bar plots

Stacked Bar plots of all the taxa were created. All stacked bar plots consisted of the
percent count of observed taxa across all the dates that the samples were collected. Five
stacked bar plots from the medium consolidation OTUs were created in total. The plots consist

of: all classified OTUs, only Stramenopiles, only diatoms, the sum total of the Diatomea percent

13
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counts with the other OTU groupings, and the sum total of the Stramenopiles percent counts

with the other OTU groupings.

Donut Plot

Donut plots were created using the cumulative observed population percentage counts
of early, mid, and late austral summers in Antarctica. Early summer consists of November,
midsummer consists of December and January, and late summer consists of February and
March. Donut plots of each year’s summer were cumulatively created and denoted as Trip 1, 2,
and 3. Finally, a cumulative Donut Plot of all the sample dates, spanning across three austral

summers, was created.

Correlation Plot

A correlation plot was produced using the medium consolidation OTU data. Correlations
of the taxa and environmental factors were calculated using the Pearson correlation coefficient.
OTUs with a correlation coefficient of over an absolute value of 0.65 were grouped together
resulting in four groupings. These four groups were established, along with a fifth containing all
the OTUs with no correlations to either other taxa or the environment factors. Group 1 consists
of: Archaeplastida.Chlorophyta.and.otherArchaeplastida,
Stramenopiles.Diatomea.ME_Euk_FW10, and Stramenopiles.Dictyochophyceae.Pedinellales.

Group 2 consists of: Excavata.Discoba.Jakobida, Haptophyta.non_Phaeocystis,

14
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Eukaryota_other. Group 3 consists of: Picozoa.Picomonadida. Group 4 consists of:
Stramenopiles.Dictyochophyceae.Dictyochales.and.Florenciellales.and.otherDictyochophycea

e, Stramenopiles.MAST_2.and.MAST_3, Stramenopiles.Ochrophyta.other.

Principal Component Analysis and Non-metric Multidimensional Scaling

A Principal Component Analysis (PCA) was performed on the environmental data and
the classified OTUs. This was done to reduce dimensionality and confirm any Pearson
correlation hits of correlated OTUs and environmental factors. Non-metric Multidimensional
Scaling (NMDS) was also performed. The NMDS used the Bray—Curtis dissimilarity with a

number of dimensions set at 2.

Time course and heat map

A time course of each correlated grouping was created. Percent counts were
transformed using Log base 10 across all dates to ensure the figures produced would be
interpretable. If the group had an established correlation of an environmental factor with a
Pearson correlation coefficient absolute value greater than 0.65, then a heat map of the
environmental factor was attached to the time course. While Group 2 had an absolute value
Pearson correlation of under 0.65, PCA analysis indicated correlation leading to the inclusion of
a heat map. Larger environmental values were chosen to be represented as black, while lower

environmental values were represented with white.
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Machine and R Specifications

R version 4.2.1 was used with the x86_64-w64-mingw32 compiler. The following
packages and their corresponding versions were used: corrgram 1.14, ggplot 3.40, vegan 2.6-4,
and webr 0.15. The specification of the machine used were: AMD Ryzen 7 3700X 8-Core
Processor 3.59 GHz, 32.0 GB RAM, 64-bit operating system, x64-based processor, and a Nvidia

Geforce rtx 3080 super. Code is available at: https://github.com/IdanSiman-Tov/Metagenomic-

Analysis-of-Microbial-18s-Eukaryotes-Communities-and-Environmental-factors-in-WAP

Table 1. A.

Chlorophyta & other

Archaeplastida Archaeplastida.Chlorophyta
Chlorophyta & other

Archaeplastida Archaeplastida.otherArchaeplastida
Cryptophyte Cryptophyceae.Cryptomonadales.Geminigera
Cryptophyte Cryptophyceae.otherCryptophyceae
Jakobida Excavata.Discoba.Jakobida
Haptophyte Haptophyta.Phaeocystis
Haptophyte Haptophyta.non-Phaeocystis
Picozoa Picozoa.Picomonadida
Dinoflagellate Alveolata.Dinoflagellata

Other Alveolata Alveolata.otherAlveolata

Rhizaria Rhizaria.Cercozoa

16
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MAST (Marine stramenopile)

MAST (Marine stramenopile)

Diatom

Diatom

Diatom

Diatom
Dictyochophyceae
Dictyochophyceae
Dictyochophyceae
Dictyochophyceae
Ochrophyta
Phaeophyceae
Other Stramenopiles
SAR_unclassified
Holozoa

Other Opisthokonta

other Eukaryote

Stramenopiles.MAST-2

Stramenopiles.MAST-3
Stramenopiles.Diatomea.Bacillariophytina
Stramenopiles.Diatomea.Coscinodiscophytina
Stramenopiles.Diatomea.otherDiatomea
Stramenopiles.Diatomea.ME-Euk-FW10
Stramenopiles.Dictyochophyceae.Dictyochales
Stramenopiles.Dictyochophyceae.otherDictyochophyceae
Stramenopiles.Dictyochophyceae.Florenciellales
Stramenopiles.Dictyochophyceae.Pedinellales
Stramenopiles.Ochrophyta.other
Stramenopiles.Phaeophyceae
Stramenopiles.otherStramenopiles
SAR_unclassified

Opisthokonta.Holozoa
Opisthokonta.otherOpisthokonta

Eukaryota;other

17
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Table 1. B

Chlorophyta & other

Archaeplastida
Cryptophyte
Jakobida
Haptophyte
Haptophyte
Picozoa
Dinoflagellate
Rhizaria

MAST (Marine
stramenopile)

Diatom

Diatom

Dictyochophyceae

Dictyochophyceae

Ochrophyta

Phaeophyceae

SAR_unclassified

other Eukaryote

Archaeplastida.Chlorophyta.and.otherArchaeplastida
Cryptophyceae.Geminigera.and.otherCryptophyceae
Excavata.Discoba.Jakobida

Haptophyta.Phaeocystis
Haptophyta.non_Phaeocystis

Picozoa.Picomonadida

Alveolata.Dinoflagellata

Rhizaria.Cercozoa

Stramenopiles.MAST-2.and.MAST-3

Stramenopiles.Diatomea.Bacillariophytina.and.Coscinodiscophytina
.and.otherDiatomea

Stramenopiles.Diatomea.ME-Euk-FW10

Stramenopiles.Dictyochophyceae.Dictyochales.and.Florenciellales.a
nd.otherDictyochophyceae

Stramenopiles.Dictyochophyceae.Pedinellales
Stramenopiles.Ochrophyta.other

Stramenopiles.Phaeophyceae

SAR_unclassified.and.otherStramenopiles.and.otherAlveolata

Eukaryota;other

Table 1. A. classified OTUs from the taxonomic identification methods. B. classified OTUs from
the taxonomic identification methods with a “medium” level of biological consolidation.
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Results

Microbial eukaryotic populations have a diverse population distribution (Fig. 1). While
some OTUs can be seen to be more dominant than others, most populations have a large
temporal population percentage variance. The most consistent OTU observed was
Haptophyta.Phaeocystis, while the largest variation observed was

Stramenopiles.Diatomea.ME-Euk-FW10 group.

The two most persistent and dominant Stramenopiles OTUs consist of
SAR_unclassified.and.otherStramenopiles.and.otherAlveolata and
Stramenopiles.Diatomea.Bacillariophytina.and.Coscinodiscophytina.and.otherDiatomea.
Together these OTUs comprise over half the Stramenopile population during all time points
except 11/December/2014. Interestingly, Stramenopiles.Diatomea.ME-Euk-FW10 undergo
rapid population fluctuations, frequently consisting of less than one percent of the
Stramenopiles population or around a fourth of the Stramenopiles population as seen in Fig

1.B.

Within the diatom population, the
Stramenopiles.Diatomea.Bacillariophytina.&.Coscinodiscophytina.&.otherDiatomea
dominate the diatom population with over 60% of the observed time points, comprising of
almost entirely the
Stramenopiles.Diatomea.Bacillariophytina.&.Coscinodiscophytina.&.otherDiatomea OTU (Fig.

1.C). When examining the minimum consolidation bar plot (Supplemental Fig. 3.A), it should be
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noted that Stramenopiles.Diatomea.otherDiatomea is the most dominant diatom group.
Stramenopiles.Diatomea.otherDiatomea is a grouping which consists of many different diatom
species. Stramenopiles.Diatomea.ME-Euk-FW10 is an uncultured diatom species and was
either a fraction of a percent of the diatom population or a substantial percent of the
population. During three of the five observed spikes of Stramenopiles.Diatomea.ME-Euk-

FW10, the OTU was observed to constitute over half of the diatom population.

Diatom populations tend to fluctuate to a large degree and have been observed to
consist of anywhere between 2% and 45% of the total microbial eukaryotic population (Fig.
1.D). In contrast the Stramenopiles were consistently a large portion of the population (Fig.

1.E).
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Figure 1. A.
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Medium Cosolidation Bar Plot Stramenopiles Taxa

SAR_unclassified and otherStramenopiles and otherAlveolata

Stramenopiles Diatomea. Bacillariophytina.and. Coscinodiscophytina.and.otherDiatomea
Stramenopiles.Diatomea. ME-Euk-FW10

Stramenopiles_Dictyochophyceae Dictyochales and Florenciellales. and.otherDictyochophyceae
Stramenopiles.Dictyochophyceae Pedinellales

Stramenopiles MAST-2.and MAST-3

Stramenopiles. Ochrophyta.other

%

N
B3

e

.QP Cour

&

(T A

Stramenopiles Phaeophyceae

22



Metagenomic Analysis of Microbial 18s Eukaryotes Communities and Environmental factors in the Western Antarctic Peninsula waters during

Austral Summers

C.

Medium Cosolidation Bar Plot Diatomea Taxa
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Medium Cosolidation Bar Plot Average Diatomea Taxa
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Medium Cosolidation Bar Plot Average Stramenopile Taxa
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Figure 1: Stacked bar plots of identified OTUs with medium consolidation. Observed population
percentage counts on a given date sampled. A. consists of all OTUs with no further grouping. B.
only the Stramenopile OTU populations from the overall population, each date is normalized to
the total Stramenopile population on the given sample date. C. Only the diatom OTU
populations from the overall population, each date is normalized to the total diatom population
on the given sample date. D. All OTUs with the diatom population percent counts were
summed up and created the diatom OTU. E. All OTUs with the Stramenopile population percent
counts were summed up and created the Stramenopile OTU.
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In early summer of 2012, the microbial eukaryotic population was observed to comprise
44.6% Diatomea, 28.3% non-Diatomea Stramenopiles, and 27% other Eukaryota. Out of the
total 28.3% of Stramenopiles, 22.4% were the

SAR_unclassified.&.other.Stramenopiles.&.other.Alveolata group (Fig. 6).

In late summer of 2013, the Diatomea grouping fell sharply from the observed 44.6% in
early summer of 2012, to only 2% in late summer. Stramenopiles remained largely unchanged,
losing only 0.3% of their population. The
SAR_unclassified.&.other.Stramenopiles.&.other.Alveolata OTU remained the dominant
Stramenopiles at 20% of the total population and 71.7% of the Stramenopile population. By
mid-summer of 2013-2014, the microbial eukaryotic population had largely stabilized. The
Diatomea only mildly fluctuated in population percentage from this point forward, consisting of
22.6% in mid-summer of 2013-2014, 27.4% in late summer of 2014, 23.3% in mid-summer of
2014-2015, and 26.6% in late summer of 2015. The late summer of 2013 appears to be an
outlier as, similarly to the diatoms, the Stramenopiles and the “Other” grouping stabilized after

late summer 2013.

Yearly changes were observed in population percentage distributions. In the summer of
2012, the Stramenopiles comprised 28% of the population, the Diatomea comprised 23.5% of
the population, and the “Other” microbial eukaryotes comprised 48.6% of the population. In
the summer of 2013, the population closely resembled the population distribution of the
previous summer. The Stramenopiles comprised 24.7% of the population, the Diatomea

comprised 25.8% of the population, and the “Other” microbial eukaryotes comprised 49.5% of
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the population. In the summer of 2014, the population percent distributions shifted with the
Stramenopiles observed to have increased their population percentage to 35.8%, the Diatomea
aligning with previous years at 24.7% of the population, and the “Other” microbial eukaryotes
sharply falling to of 39.4% of the population. Overall, during the austral summer months,
Stramenopiles are 30.3% of the population with the
SAR_unclassified.&.other.Stramenopiles.&.other Alveolata OTU consisting of 60.88% of the
Stramenopiles population. Diatoms were observed to be 25% of the total population, 78.64% of
the Diatomea population being
Stramenopiles.Diatomea.Bacillariophytina.&.Coscinodiscophytina.&.otherDiatomea and the
remaining 21.36% being Stramenopiles.Diatomea.ME-Euk-FW10. Finally, 44.7% of the
population were observed to be comprised of other eukaryotes such as
Cryptophyceae.Geminigera.&.otherCryptophyceae which composed 26.2% of the other

population.
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Figure 2.
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Figure 2: Donut charts of identified OTUs with medium consolidation: blue consists of non-
diatom Stramenopiles OTUs, red consists of only diatom OTUs, and green consists of non-
Stramenopile OTUs. A. Early summer of 2012 (November 2012) B. Late summer of 2012
(February, March 2013) C. Mid-summer of 2013 (December 2013, January 2014) D. Late
summer of 2013 (February, March 2014) E. Mid-summer of 2014 (December 2014, January
2015) F. Late summer of 2014 (February, March 2015)
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Figure 3.
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Figure 3. Donut charts of identified OTUs with medium consolidation, blue consists of non-
diatom Stramenopiles OTUs, red consists of only diatom OTUs, and green consists of non-
Stramenopile OTUs. A. Summer of 2012 B. Summer of 2013 C. Summer of 2014 D. Summer of
2012, 2013 and, 2014
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OTUs were consolidated into three degrees of stringency to reduce noise and generate
more comprehensible data. To determine the optimal degree of consolidation stringency, a
subset of diatoms and Dictyochophyceae were investigated through a time course as seen in
Figure 4. No consolidation contains 8 OTUs with a high degree of noise. Maximum consolidation
yielded 2 OTUs with a very low degree of OTU separation. Minimum consolidation resulted in 6
OTUs, and medium consolidation resulted in 4. While minimum consolidation had a decrease in
noise, it was determined not to be sufficient for meaningful analysis. As such, medium
consolidation was determined to have the appropriate noise reduction, while not sacrificing

important OTU delineation.

Figure 4.
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Figure 4. Time course of percentage population as a function of time in diatoms and
Dictyochophyceae across no, minimum, medium, and maximum consolidation.
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Figure 5.
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Figure 5. Correlation plot of environmental factors and medium consolidation OTUs using
Pearson correlation. Red denotes a positive correlation while blue denotes a negative
correlation.
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Using the medium consolidation OTUs, those with a Pearson correlation values above
0.65 or below -0.65 were grouped together into four separate partitions as seen in Table 2
(Supplementary Table 2.). Negative correlations were only found between the

Rhizaria.Cercozoa and Stramenopiles.Ochrophyta.other OTUs.

Table 2.

Group 1 Archaeplastida.Chlorophyta.and.otherArchaeplastida

Stramenopiles.Diatomea.ME_Euk_FW10

Stramenopiles.Dictyochophyceae.Pedinellales

Group 2 Excavata.Discoba.Jakobida

Haptophyta.non_Phaeocystis

Eukaryota_other

Group 3 Picozoa.Picomonadida

Group 4 Stramenopiles.Dictyochophyceae.Dictyochales.
and.Florenciellales.and.otherDictyochophyceae

Stramenopiles.MAST_2.and.MAST_3

Stramenopiles.Ochrophyta.other

Table 2. table of grouped OTUs with high correlation determined using Supplementary Table 2.

Principal component analysis of Group 1 confirms the correlation established using the
Pearson correlation and explains 63.19% of the data. Fig. 6.A also suggests that salinity has a
strong positive correlation with Stramenopiles.Dictyochophyceae.Pedinellales, while lightly
correlating with Stramenopiles.Diatomea.ME_Euk_FW10 and
Archaeplastida.Chlorophyta.and.otherArchaeplastida. Temperature had a strong negative
correlation with Stramenopiles.Diatomea.ME_Euk_FW10 and a slight negative correlation with
Stramenopiles.Dictyochophyceae.Pedinellales. The PCA also suggests that
Archaeplastida.Chlorophyta.and.otherArchaeplastida strongly correlates with phosphate, in

line with the Pearson correlation results.
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The PCA for Group 2 accounts for 56.09% of the data. The correlation plot did not find a
Pearson correlation between Group 2 and environmental factors. However, the PCA indicates a

correlation between all Group 2 members, conductivity, and temperature.

PCA of Group 3 accounts for 53.61% of the Group 3 data and corroborates a correlation

between Picozoa.Picomonadida and temperature.

PCA of Group 4 accounts for 51.55% of the data and corroborates a correlation between

Rhizarai.Cerozoa and primary production.

Figure 6.
A.
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Figure 6. Principal Component Analysis of environmental factors and medium consolidated
OTUs and groupings from table 2. A. Group 1 OTUs B. Group 2 OTUs C. Group 3 OTU D. Group 4
OTUs

As seen in Fig. 6.A and Fig. 5, Group 1 has a negative correlation with temperature. In
particular, Stramenopiles.Diatomea.ME_Euk_FW10 has a strong negative correlation with
temperature. There also exists a strong positive correlation between phosphate and
Archaeplastida.Chlorophyta.and.otherArchaeplastida. PCA of Group 1 suggests a strong
correlation between Stramenopiles.Dictyochophyceae.Pedinellales and salinity, while the

Pearson correlation suggests a weak correlation between the two.
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While the Pearson correlation concluded that the correlation of Group 2 to an

environmental factor was between -0.65 and 0.65 (Fig. 5), the PCA of Fig. 6.B suggested Group

2 has a correlation with both conductivity and temperature.

Picazoa.Picomonadida had a strong Pearson correlation with temperature, although

displayed a weaker correlation via PCA (Fig. 5 and Fig. 6.C).

Figure 7.
A.
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Figure 7. Time course of medium consolidation OTUs group percentages as a function
of time. A. Group 1 OTUs with a heat map of Temperature, salinity, and phosphate. B.
Group 2 OTUs with a heat map of Temperature and Conductivity. C. Group 3 OTUs with
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a heat map of Temperature D. Group 4 OTUs with a heat map of Primary Production. E.
Time course of Group 5, all non-correlated OTUs

Discussion

Our results suggest that there is not just one life cycle strategy across microbial
eukaryotes during austral summers in the WAP; rather both persistence presence and boom-
and-bust were observed in different eukaryotic OTUs. Haptophyta_Phaeocystis,
Eukaryota;other, SAR_unclassified.and.otherStramenopiles.and.otherAlveolata, and
Archaeplastida.Chlorophyta.and.otherArchaeplastida have been observed to be persistent in
the population through the summer months. This suggests that these OTUs are more resistant
to environmental stresses. However, this comes with the drawback of reduced capitalization of
favorable environmental conditions. Alternatively, Stramenopiles.Diatomea.ME-Euk-FW10,
Stramenopiles.Diatomea.Bacillariophytina.and.Coscinodiscophytina.and.otherDiatomea,
Cryptophyceae.Geminigera.and.otherCryptophyceae, Stramenopiles.Phaeophyceae, and
Stramenopiles.Dictyochophyceae.Dictyochales.and.Florenciellales.and.otherDictyochophycea
e were observed to have larger variations in their population percentages, suggesting that

these OTUs are boom-and-bust.

Both OTUs of the diatom community were observed to be boom-and-bust, suggesting
that diatoms in WAP are more susceptible to environmental changes and may be sensitive to
climate change. Additionally, it was observed that the diatom population percentage was lower

in midsummer during January but increased by 300-400% in the late summer months (Fig. 1.A).
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The exception to this trend is the summer of 2012, which experienced an abnormally cold early
summer followed by a warm mid-summer and late summer. The diatom population comprised
44.6% of the population in early summer of 2012 and drastically fell to only 2% by later
summer. In combination with the Pearson correlation of Fig. 5 and the PCA Fig 6.A, this drastic
shift suggests that temperature is a major factor of the diatom population. If temperature is the
primary factor at play, then the observed trend favoring the mid-summer over late summer
could be caused by a biological affinity for colder weather. Alternatively, it could be caused
indirectly by an environmental factor that was not measured, which itself could be a

consequence of a lower temperature.

Despite the boom-and-bust nature of the diatoms, they maintained a consistent
presence year over year, suggesting that their populations are stable in the long run. The
summer of 2014 saw a large shift in populations with Stramenopiles increasing to 35.8% of the
population from 24.7% in the previous year. The yearly consistency of the diatoms suggests
that the observed shift was due to both an increase in Stramenopiles and a decrease in other

eukaryotes.

Salinity, temperature, and light have been shown to positively affect photosynthesis
efficiency. It was expected that photosynthesis producing microbial eukaryotes, such as
diatoms, would have an increase in population percentages during warmer temperatures and
higher salinity. In contrast to those expectations, Stramenopiles.Diatomea.ME-Euk-FW10,
Archaeplastida.Chlorophyta.and.otherArchaeplastida, and

Stramenopiles.Dictyochophyceae.Pedinellales instead had a negative correlation with
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temperature. While salinity did have a positive correlation, the strong negative correlation
between temperature and population percentage suggests that the effects observed are not
necessarily due to environmental impacts on photosynthesis or a strong underlying biological
factor. It is likely that ocean stratification plays a greater role in microbial eukaryotic
populations than previously thought. As outlined by Seyitmuhammedov et al., WAP ocean
upwelling is primarily caused by glacial water melt, which induces density shifts and results in
water turbulence (Seyitmuhammedov et al., 2022). Ducklow et al. have noted that algae
blooms were more frequent and more intense following colder winters and colder austral
summers (Ducklow et al., 2006). Additionally, Saba et al. and Higgins Alvarez et al. outlined how
higher glaciers, longer periods of ice covers, and reduced wind speeds at sea level decrease
ocean wave intensity. In turn, this decreases water column mixing and decreases the water
stratified columns to about 20m (Saba et al., 2014; Higgins Alvarez et al., 2022). Venables et al.
also suggested that diatom density and count increase as a result of shallower water columns
(Venables et al., 2013). This may explain why we observed a decrease in Group 1 population
percentage when temperatures rose, particularly when above freezing, and an increase when
temperatures fell below freezing. Additionally, this would explain the positive correlation
between Group 1 population percentage and salinity. As glacial and sea ice melt increases, the
salinity decreases. This causes oceanic upwelling and a decrease in Group 1 population

percentages.

To our knowledge, this is the first report that links the population percentage of

Stramenopiles.Diatomea.ME-Euk-FW10 to temperature and potentially water column
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stratification. The Stramenopiles.Diatomea.ME-Euk-FW10 OTU, as observed in the results, is a
large portion of the diatom population and is likely a key species in the marine WAP ecosystem.
Better identification, and further research of this Stramenopiles.Diatomea.ME-Euk-FW10,

could prove to be critical in understanding the marine WAP ecosystem.

Picozoa.Picomondida is a microbial eukaryote that was once thought to be
photosynthetic but has since been discovered to feed off small organic particles. Its strong
correlation to temperature is also unexpected. This potentially adds support to the model of
ocean stratification having a greater effect on microbial eukaryotic populations than previously
expected. Oceanic upwelling brings with it small organic particles that have drifted down the
water columns. Increased oceanic turbidity and upwelling could increase the availability of food

that Picozoa requires.

More research still needs to be done in the field in order to solidify these conclusions
more confidently. For example, clustering using NMDS and PCA were not able to be
established. In order to achieve clustering, more water samples must be collected across a
wider range of dates. Additionally, in order to confirm stratification as a model for microbial
population distribution, future research should collect, sequence, and identify additional
microbial eukaryotic populations in relation to water at varying depths and water column
depths. Doing this will complicate the analysis but allow for a deeper understanding of the
effects of ocean stratification. Further empirical data on glacial size, temperatures, water melt,

and sea ice cover would also help in understanding these interactions. Lastly, our work did not
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touch upon predation for the populations observed. This is another complex level of

interactions as viruses, bacteria, krill, fish, and penguins all play a role.
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Supplementary Tables and Figures

Table 1.A Minimum consolidation

Chlorophyta & other Archaeplastida. Chlorophyta & otherArchaeplastida
Archaeplastida

Cryptophyte Cryptophyceae.Cryptomonadales.Geminigera

Cryptophyte Cryptophyceae.otherCryptophyceae

Jakobida Excavata.Discoba.Jakobida

Haptophyte Haptophyta.Phaeocystis

Haptophyte Haptophyta.non-Phaeocystis

Picozoa Picozoa.Picomonadida

Dinoflagellate Alveolata.Dinoflagellata

Other Alveolata Alveolata.otherAlveolata

Rhizaria Rhizaria.Cercozoa

MAST (Marine Stramenopiles. MAST-2 & MAST-3
stramenopile)

Diatom Stramenopiles.Diatomea.Bacillariophytina

Diatom Stramenopiles.Diatomea.Coscinodiscophytina

Diatom Stramenopiles.Diatomea.otherDiatomea

Diatom Stramenopiles.Diatomea. ME-Euk-FW10

Dictyochophyceae Stramenopiles.Dictyochophyceae.Dictyochales & Florenciellales &

otherDictyochophyceae

Dictyochophyceae Stramenopiles.Dictyochophyceae.Pedinellales

Ochrophyta Stramenopiles.Ochrophyta.other

Phaeophyceae Stramenopiles.Phacophyceae

Other Stramenopiles Stramenopiles.otherStramenopiles

SAR unclassified SAR unclassified

other Eukaryote Eukaryota;other

Table 1.B Maximum Consolidation

Chlorophyta & other Archaeplastida. Chlorophyta & otherArchaeplastida
Archaeplastida

Cryptophyte Cryptophyceae..Geminigera & otherCryptophyceae

Jakobida Excavata.Discoba.Jakobida

Haptophyte Haptophyta.Phaeocystis & non-Phaeocystis

Picozoa Picozoa.Picomonadida

Dinoflagellate Alveolata.Dinoflagellata

Rhizaria Rhizaria.Cercozoa
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MAST (Marine

Stramenopiles. MAST-2 & MAST-3

stramenopile)
Diatom Stramenopiles.Diatomea (all)
Dictyochophyceae Stramenopiles.Dictyochophyceae (all)
SAR unclassified SAR unclassified & other Stramenopiles & other Alveolata &
Ochrophyta & Phaeophyceae
other Eukaryote Eukaryota;other

Minimum Consolidation

Figure 1.
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