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Leaf nitrogen concentration (LNC) is a critical indicator of crop nutrient status.

In this study, the feasibility of using visible and near-infrared spectroscopy

combined with deep learning to estimate LNC in cotton leaves was explored.

The samples were collected from cotton’s whole growth cycle, and the spectra

were from different measurement environments. The random frog (RF),

weighted partial least squares regression (WPLS), and saliency map were

used for characteristic wavelength selection. Qualitative models (partial least

squares discriminant analysis (PLS-DA), support vector machine for

classification (SVC), convolutional neural network classification (CNNC) and

quantitative models (partial least squares regression (PLSR), support vector

machine for regression (SVR), convolutional neural network regression (CNNR))

were established based on the full spectra and characteristic wavelengths.

Satisfactory results were obtained by models based on CNN. The classification

accuracy of leaves in three different LNC ranges was up to 83.34%, and the root

mean square error of prediction (RMSEP) of quantitative prediction models of

cotton leaves was as low as 3.36. In addition, the identification of cotton leaves

based on the predicted LNC also achieved good results. These results indicated

that the nitrogen content of cotton leaves could be effectively detected by

deep learning and visible and near-infrared spectroscopy, which has great

potential for real-world application.

KEYWORDS

cotton, leaf nitrogen content, spectra, deep learning, visible and near-infrared

spectroscopy (Vis-NIR)
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1 Introduction

Cotton (Gossypium spp), as one of the important economic

crops in the world, is widely used in the textile industry because

of its excellent natural properties. Nitrogen is an essential plant

macronutrient, taking an important part in crop photosynthesis,

which provides necessary nutritional support for the growth and

development of crops (Ma et al., 2022). Observations have

shown that nitrogen fertilization has an important effect on

cotton yield. Rational nitrogen fertilization is beneficial to

increase cotton yield, while both deficit and excessive nitrogen

fertilization have a negative impact on cotton growth and

development (Liu et al., 2010; Gospodinova and Panayotova,

2019). Gospodinova and Panayotova (2019) summarized the

research on the effects of mineral fertilization on cotton yield

and concluded that nitrogen should be applied at different

development stages as needed. Optimizing the nitrogen

fertilizer application scheme is conducive to improving

nitrogen utilization efficiency and cotton yield. Knowing the

nutritional status of cotton is the prerequisite to realizing on-

demand nitrogen application. Therefore, rapid and accurate

evaluation and detection of cotton nitrogen is of great

significance for monitoring plant nutrition status, as well as

making fertilization decisions.

Leaf nitrogen concentration (LNC), a critical indicator of

nitrogen nutrient status, is widely used in crop nutrient status

evaluation (Wan et al., 2022). A study conducted by Kergoat et

al. (2008) has shown that LNC is an essential factor affecting

canopy light utilization efficiency and photosynthetic rate.

Generally, LNC is determined by destructive analysis methods,

such as the Kjeldahl-digestion method. Although the destructive

approaches are objective, they have disadvantages such as being

time-consuming, labor-intensive, high cost and strong

destructiveness. It is also difficult to meet the actual needs of

rapid and real-time detection and diagnosis of LNC in a wide

range. In recent years, non-destructive techniques, such as

visible and near-infrared (VNIR) spectroscopy (Mishra et al.,

2021) and multi-spectral and hyperspectral imaging

(Tahmasbian et al., 2021; Guo et al., 2022), have been

developed to detect crop nutrition status. Multi-spectral and

hyperspectral images usually carry more information than

spectra data. However, the acquisition of spectral images

generally requires expensive and bulky sensors, the amount of

data is enormous, and there is more information redundancy,

which requires more storage space and tedious data processing.

Multi-spectral and hyperspectral imaging are not economically

feasible when many samples need to be examined and evaluated.

VNIR allows rapid acquisition of spectral information related to

samples’ physiological state and internal components at a

relatively low cost. In the past few years, VNIR has attracted

extensive attention and has been used in qualitative and

quantitative research in plants (Zhang et al., 2020a; Xia et al.,

2021; Luo et al., 2022).
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For the studies aiming at employing VNIR for nitrogen

detection, Mishra (Mishra et al., 2021) et al. demonstrated the

feasibility of using VNIR to quantitatively predict the nitrogen

and potassium concentration in bell pepper leaves. The results

showed that VNIR allowed accurate prediction of nitrogen with

an RMSEP of 0.44%. Sun et al. (2013) used VNIR to identify the

fertilized nitrogen level of lettuce leaves and achieved a high

classification accuracy of 100%. Zhang et al. (2022a) explored the

performance of using spectra of different ranges to estimate

nitrogen content in cotton leaves and obtained a R2
c = 0.794~

0.909 and R2
P = 0.774 ~ 0.899. Relationships between cotton leaf

spectra curves (380-700 nm, 700-1300 nm, and 1300-2500 nm)

and nitrogen content contributed to satisfactory predictions for

nitrogen content detection. There are indeed many researches

on the detection of LNC (Sun et al., 2013; Wang et al., 2018; Gao

et al., 2022; Pourdarbani et al., 2022; Tang et al., 2022; Zhang

et al., 2022b). Although the studies focusing on the LNC

classification achieved good results (Sun et al., 2013; Wang

et al., 2018; Pourdarbani et al., 2022), the samples in these

studies were classified according to different nitrogen

fertilization levels or different nitrogen fertilization days. It

should be noted that there is a large difference between the

fertilization of nitrogen and its actual uptake for the plant.

Therefore, the adaptability of the classification models

according to the nitrogen fertilization division is greatly

limited by the uncertainty of the actual LNC. What’s more, in

practice, it is always hard to get accurate fertilization data and

estimate the fertilization condition. In addition, the studies

focusing on LNC prediction are mainly for a specific cultivar

or a specific spectral data collection environment (Rotbart et al.,

2013), which may limit the scope of the applicability of the

established models.

Deep learning is a method that simulates the human

brain for analysis and learning. It forms abstract features

to represent the data distribution. Deep learning has the

advantages of strong self-learning and feature-extraction

ability and great capability of processing spectra data (Xiao

et al., 2020). In recent years, deep learning has been applied to

conduct various tasks in spectral and image data processing

(Steinbrener et al., 2019; Zhou et al., 2019). Convolutional neural

network (CNN) is one of the typical deep learning models. CNN

has been proven effective in processing spectra data and

establishing classification and regression models for various

agricultural tasks (Zhang et al., 2020b; Zhang et al., 2020c;

Gai et al., 2022).

The objective of the present study was to explore the

feasibility of qualitative diagnosis and quantitative detection of

LNC based on VNIR combined with deep learning. The goals

include (1) exploring the laws of the spectra of leaves with

different LNC; (2) classifying nitrogen levels according to the

measured LNC; (3) detecting LNC for two cotton cultivars under

the condition that the spectra were collected in different

measurement environments. The specific content includes (1)
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extracting characteristic wavelengths by random frog (RF),

weighted partial least squares regression (WPLS), and saliency

map for qualitative discrimination and quantitative detection

tasks, respectively; (2) building partial least squares discriminant

analysis (PLS-DA), support vector machine for classification

(SVC), and convolutional neural network classification (CNNC)

models based on full spectra and characteristic wavelengths to

identify cotton leaves with different LNC qualitatively; (3)

developing partial least squares regression (PLSR), support

vector machine for regression (SVR), convolutional neural

network regression (CNNR) models to quantitatively detect

LNC in cotton leaves.
2 Materials and methods

2.1 Sample preparation

Cotton was planted in an experimental field at the Hangzhou

Raw Seed Growing Farm (30°22’58.85” N, 119°56’7.80” E),

Hangzhou, Zhejiang province, China. Cotton cultivars

Lumianyan 24 (LMY24) and Xinluzao 53 (XLZ53) were

sampled in this experiment. Thirty-six experimental plots of

4×2 m were used with six nitrogen rates (0, 120, 240, 360, 480,

278 kg/hm2). Each nitrogen level was set with three replicates.

Leaf sampling was conducted during the whole growth stage.

Leaves at different leaf positions were selected from the

experimental plots. Finally, a total of 1400 leaves were

acquired. It is worth mentioning that the spectra of 648 leaves

were collected in the laboratory, and the spectra of the remaining

leaves were collected in the field. For the samples measured in

the laboratory, the leaves were cut, placed in the black bags and

stored in a cooler with a temperature of about 4°C. These

samples were transported to the laboratory immediately. The

time of transit was within one hour.
2.2 Spectra acquisition

Leaf spectra acquisition was conducted by a spectroradiometer

(Fieldspec4, Analytical Spectral Devices - ASD, Boulder, CO, USA)

system. This spectroradiometer consists of a leaf clip, which

provides a light source. During the measurement, the leaves were

clamped up for spectra acquisition. Three different positions of

each leaf were measured, and five scans were conducted for each

measurement. The spectra of five scans were averaged as the

spectra of the leaf region, and the average spectra of three leaf

regions were taken as the spectra of each leaf. The regions of

spectra acquisition for each leaf is shown in Figure 1. The collected

spectra cover the visible and near-infrared region (400 ~ 1000 nm)

and the short-wave near-infrared region (1000 ~ 2500 nm), and

the spectral resolution are 3nm and 8nm, respectively. Considering
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the noise in the beginning, spectra between 430-2500 nm were

used in this study.
2.3 Measurements of leave
nitrogen concentration

After finishing the spectra collection, the leaves were placed

in an oven, dried at 105°C for half an hour, and then cooled to

80°C until the sample weight recorded a constant weight. Then,

the dried leaves were ground into a fine powder and sieved

through a 40-mesh. A uniform dry leaf sample of fixed mass was

taken, and the nitrogen concentration was determined by the

Kjeldahl method after acid digestion (Kjeldahl, 1883). According

to the measured LNC (mg/g), cotton leaf samples were divided

into three categories: low-level LNC, medium-level LNC, and

high-level LNC. The detailed statistical information on sample

composition is presented in Table 1. Cotton leaves with different

LNC levels are shown in Figure 2. It can be seen that the leave

with high-level LNC has a deeper green color.
2.4 Data analysis methods

2.4.1 Convolutional neural network
In this study, two self-developed CNN architectures were

applied for building classification and regression models, and

their structures are shown in Figures 3A, B, respectively. For the

classification task, two convolution layers were set, both followed

by a max pooling layer and a batch normalization layer. The
FIGURE 1

The regions of spectra acquisition for cotton leaves.
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number of filters, kernel size, and strides of the two convolution

layers were both set as 16, 3, and 1, respectively. The rectified

linear unit (ReLU) was used as the activation for computing the

outputs of the convolutional layers. The max pooling layer

served as down-sampling and dimensionality reduction to

form the features of the next layer. Then, a fully connected

network with 64 neurons was added, followed by a batch

normalization layer. The dropout layer was used to avoid

overfitting. The fully connected layer at the end was used for

output. For the regression task, two batch normalization layers

followed by convolution layers were employed. The number of

filters, kernel size, and strides of the two convolution layers were

both set as 32, 3, and 1, respectively. Same as the proposed CNN

for classification, the rectified linear unit (ReLU) was used as the

activation. A batch normalization layer was added before the

features were outputting to the fully connected layer. In the end,

two fully connected layers with 64 and 16 neurons were used for

building non-linear regression models to predict the LNC of

different leaves. The fully connected layer at the end was used

for output.

For the training phase, the Softmax cross-entropy loss

function combined with stochastic gradient descent (SGD)

optimizer was applied to train the CNN developed for the

classification task. The L1 loss function and the adaptive

moment estimation (Adam) optimizer were used for the

regression task. The detailed information about SGD optimizer

and Adam optimizer could be found on the website https://

pytorch.org/docs/stable/optim.html . For both training tasks, the
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batch size was set as 64, and a scheduled learning rate was used.

In the beginning, the learning rate was set to 0.05. The learning

rate was reduced ten times after every 200 epochs. According to

this rule, the training phase was terminated when the loss

was stable.

2.4.2 Conventional models
PLS-DA and SVC models were established to classify cotton

leaves with different LNC. PLS-DA is a linear discriminant

algorithm developed from PLSR (Yuan et al., 2021). PLS-DA

algorithm can effectively extract the variables helpful for

classification and realize data recognition. PLS-DA can deal

with irreversible matrices and select the number of latent

variables so that the model achieves the best balance between

underfitting and overfitting (Li et al., 2021). SVC is a pattern

recognition algorithm based on a support vector machine (SVM)

for classification. It achieves the classification goal by exploring

the hyperplane that maximizes the distance between different

classes (Xiao et al., 2020). In this study, the radial basis function

(RBF) was used as the kernel function. The regularization

parameter c and kernel function parameter g were determined

through a grid-search procedure. The search range of c and g

were both assigned as 2-8 to 28. PLSR and SVR models were used

to establish the quantitative analysis model of LNC. Detailed

information on PLS and SVR details can be found in our

previous article (Xiao et al., 2022). For both qualitative and

quantitative analysis models, five-fold cross-validation

was adopted.
FIGURE 2

Cotton leaves with different LNC levels: (A) low-level LNC, (B) medium-level LNC, (C) high-level LNC.
TABLE 1 Statistical information of composition of the cotton leaves.

LNC level total number of samples Range of LNC (g/kg) Mean
(g/kg)

Standard
Deviation

number of samples incal/val/pre set

Low 230 14.99-25.00 21.73 2.37 138/46/46

Medium 601 25.02-34.96 30.09 2.84 360/120/121

High 569 35.02-52.46 40.19 3.60 341/114/114
cal/val/pre set means the calibration set, the validation set and the prediction set, respectively.
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2.4.3 Wavelengths selection
Hyperspectral data contains massive amounts of

information, which also exists information redundancy,

collinearity, and noise that are not conducive to data

processing. To make effective use of data, characteristic

wavelengths extraction is a common strategy. In this study,

RF, WPLS and saliency map were used to extract characteristic

wavelengths. For the RF algorithm, based on the idea of

inversible-jump Markov Monte Carlo, PLS-DA and PLSR are

selected as modeling methods for classification and regression,

respectively. Models are established by constantly updating the

subset of variables according to the defined criteria. The

frequency of each variable selected in the modeling subset is

calculated after reaching the number of iterations (Yun et al.,

2013; Sun et al., 2021). The top 40 wavelengths with the highest

frequency were selected as the characteristic wavelengths. When

using WPLS for wavelength selection, a PLS regression model is

first established, and each variable’s regression coefficient was

calculated. The wavelengths with the larger absolute value of the

regression coefficient at the crest and trough were selected

(Mehmood et al., 2012). Saliency map is a popular method for

computing the contribution of each variable to the model

performance. In this study, for classification tasks, CNNC

model was first established and calculated the saliency based

on the method proposed in Feng’s study (Feng et al., 2021).

Similarly, as for regression tasks, CNNR model was first

established and saliency map was applied following the way in

our previous study (Xiao et al., 2022). The first 40 critical

wavelengths with the highest frequency for both tasks were

selected as the characteristic wavelengths.
Frontiers in Plant Science 05
2.4.4 Software and model evaluation
For model establishment, PLS-DA and PLSR were performed

in R2019b (The MathWorks, Natick, MA, USA). SVC, and SVR

were conducted in the scikit-learn 0.23.1 (Anaconda, Austin, TX,

USA) using python 3.1. The CNN models were conducted in

MXNet 1.4.0 (MXNetAmazon, Seattle, WA, USA). For feature

selection, RF was performed in R2019b (The MathWorks, Natick,

MA, USA). WPLS was carried out in the Unscrambler X 10.1

(Camo AS, Oslo, Norway). Saliency map was conducted in

MXNet1.4.0 (MXNetAmazon, Seattle, WA, USA).

It is critical to evaluate the model performance with

appropriate indicators. Classification accuracy is used for

assessing the qualitative analysis models. Classification

accuracy is calculated as the ratio of correctly classified

samples to the total number of samples. The closer it is to

100%, the better the model’s performance. The coefficients of

determination (R2) and root mean square error (RMSE) of

calibration, validation, and prediction set were applied to

assess the performance of quantitative analysis models. The

closer R2 of the model is to 1, the closer RMSE is to 0,

indicating that the model performance is more satisfactory.
3 Results

3.1 Spectra features

The spectra of all the cotton leaves and leaves with different

LNC are shown in Figures 4A, B. As shown in Figure 4A,

the spectra of all the leaves present a consistent change tendency.
BA

FIGURE 3

The CNN structure for classification model (A) and regression model (B).
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Four peaks (550, 1650, 1820, and 2225 nm) and three valleys (670,

1432, and 1950 nm) were observed. The analysis of the chemical

bonds whichmay be assigned to the peaks and valleys can be found

in our previous study (Xiao et al., 2022). Figure 4B presents the

spectral curves of cotton leaves with different LNC. It can be seen

that the reflectance of leaves with high LNC in the range of 430 ~

520 nm is slightly higher than that of leaves with low LNC. There is

a slight increase in the reflectance between 520 ~ 610 nm, and the

reflectance of leaves with low LNC becomes higher. After 700 nm,

the reflectance curves increase sharply and form a high reflectivity

plateau between 775 and 1300 nm, between which the reflectance

of leaves with high LNC is larger. The variation trend of the

reflectance with LNC between the range of 1400 ~ 1900 nm and

2000 ~ 2500 nm is the opposite from that in the range of 775-1300

nm. The variation of reflectance in different spectral intervals

makes it possible to identify leaves with different LNC content.

As the results demonstrated in our previous study (Xiao et al.,

2022), the model based on the spectra processed by first derivative

(FD) and standard normal variate transformation (SNV)

demonstrated great generalization ability. Therefore, the method

of FD+SNV was used to preprocess the spectra and the processed

spectra were used for subsequent modelling. The transformed

curves are shown in Figure 4C.
3.2 Wavelengths selection

Hyperspectral data contains amounts of information such as

redundancy, collinearity, background, and other information
Frontiers in Plant Science 06
unrelated to LNC detection. The irrelevant information will

significantly increase the burden of data processing, affect the

analysis and extraction of effective data, and directly affect the

model’s performance. Therefore, in this study, RF, WPLS, and

saliency map were used to select the characteristic wavelengths.

The optimal wavelengths selected by different methods for

regression models and classification models are shown in Tables

2 and 3, respectively. It can be seen that the number and the

location of the selected wavelengths on spectral curves varied

from different methods. For the wavelengths selected for the

classification model, compared with full spectra, the number of

variables chosen by RF, WPLS, and saliency map was reduced by

98.07%, 98.02%, and 98.07%, respectively. For the wavelengths

selected for the regression model, the number of variables

selected by RF, WPLS, and saliency map was reduced by

98.07%, 97.73%, and 98.07%, respectively. Obviously,

wavelengths selection significantly reduces data computation

and alleviates the model dependence on high-performance

computing instruments, which will contribute to the

popularization and application of the model.

The position of the selected wavelengths in the spectral curve

is displayed in Figure 5. For specific wavelength selection

methods, the position of characteristic wavelength selected for

classification and regression is largely coincidental. It indicated

that the characteristic wavelengths related to nitrogen detection

selected by wavelength selection method were consistent even in

the tasks with different purposes. The specific number of selected

variables might be related to the calculation protocol of

wavelength selection method. Although there are differences in
B

C

A

FIGURE 4

Spectra of cotton leaves: (A) the spectra of all the cotton leaves, (B) the spectra of leaves with different LNC, (C) the spectra transformed by FD +SNV.
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the number and location of wavelengths selected by RF, WPLS,

and saliency map, some bands were chosen as the optimal

wavelengths for LNC detection by more than one method,

such as the bands around 554 nm, 595 nm, 1179nm, 1490 nm,

1671nm, 1673 nm, 1746 nm, 2046 nm, 2154 nm, 2230 nm, and

2459 nm. These bands are likely to have a strong correlation with

nitrogen detection. Among the wavelengths selected by more

than one algorithm, the bands in visible range was related with

the color of the leaves (Malacara, 2011). The spectral response

near 1490 nm was associated with N-H amide with N-R group,

which can be connected with protein content (Salzer, 2008). The

reflectance around 1673 nm and 1746 nm were associated with

C-H methyl (Salzer, 2008). The bands around 2046 nm was due

to symmetrical NH stretching and amide II (Salzer, 2008).
3.3 Classification models

3.3.1 Classification models using full spectra
In this study, PLS-DA, SVC, and CNNC models were built

using full spectra. The results are shown in Table 4. All the

models obtained decent results, with the accuracy of the

prediction set exceeding 82%. Compared with PLS-DA and

SVC models, the CNNC model achieved a more satisfactory

result. The accuracy of the prediction set was 84.70%, which

illustrates the good performance of CNNC model. The

confusion matrix for all datasets of the CNNC model is

displayed in Figure 6. In three data sets, about 19-28% of leaf

samples with low LNC were easily confused with leaves with

medium LNC. Leaves with high LNC were easily confused with

those with medium LNC, and the proportion of misclassified

leaves was 8%-11%. Overall, leaves with high LNC and leaves
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with low LNC can be accurately separated, as only one or two

leaves with low LNC were misclassified as high LNC, and none

samples with high LNC were distinguished as low LNC.

3.3.2 Classification models using optimal
wavelengths

Table 5 demonstrates the classification results of the PLS-

DA, SVC, and CNNC models based on the optimal wavelengths

selected by RF, WPLS, and saliency map. The overall

performance of the models based on wavelengths selected by

RF was superior to the performance of the models constructed

on the wavelengths selected by WPLS and saliency map, as the

accuracy for the prediction set was slightly higher. For the

models based on the optimal wavelengths selected by RF and

WPLS, the performance of the CNNC model was superior to

that of the PLS-DA and SVC model, accomplishing an accuracy

of 84.34% and 83.27% for the prediction set. Regarding the
TABLE 3 The optimal wavelengths selected by RF, WPLS, and saliency map for classification models.

Method Number Optimal wavelength (nm)

RF 40 594, 595, 776, 1139, 1195, 1232, 1233, 1275, 1471, 1472, 1490, 1533, 1534, 1568, 1597, 1600, 1604, 1615, 1616, 1619, 1620, 1621, 1648, 1663,
1671, 1738, 1741, 1745, 1746, 1798, 1953, 1958, 2021, 2044, 2047, 2103, 2106, 2134, 2135, 2211

WPLS 41 432, 437, 444, 464, 525, 556, 564, 571, 595, 607, 638, 678, 688, 698, 755, 936, 963, 997, 1074, 1176, 1355, 1370, 1387, 1672, 1690, 1711, 1720,
1746, 1785, 1810, 1822, 1876, 1897, 2155, 2273, 2324, 2335, 2355, 2479, 2487, 2490

Saliency
map

40 957, 976, 977, 978, 1002, 1193, 1670, 1671, 1672, 1674, 1680, 1682, 1690, 1700, 1702, 1703, 1704, 1718, 1720, 1722, 1723, 1818, 2131, 2133,
2137, 2147, 2149, 2152, 2155, 2156, 2157, 2160, 2228, 2230, 2231, 2232, 2234, 2235, 2236, 2333
FIGURE 5

The position of the optimal wavelengths selected for
classification and regression models (-C means for classification
tasks, -R means for regression tasks).
TABLE 2 The optimal wavelengths selected by RF, WPLS, and saliency map for regression models.

Method Number Optimal wavelength (nm)

RF 40 594, 602, 776, 1104, 1109, 1139, 1144, 1196, 1232, 1242, 1274, 1472, 1473, 1490, 1516, 1534, 1568, 1597, 1600, 1604, 1615, 1619, 1620, 1663,
1671, 1741, 1742, 1797, 1897, 1953, 1958, 1963, 1989, 2012, 2047, 2103, 2106, 2134, 2135, 2211

WPLS 47 436, 464, 535, 555, 565, 573, 594, 607, 638, 655, 688, 699, 755, 760, 845, 936, 957, 973, 1179, 1357, 1387, 1409, 1490, 1673, 1690, 1711, 1720,
1746, 1773, 1785, 1810, 1822, 1876, 1894, 2046, 2066, 2154, 2188, 2236, 2254, 2273, 2317, 2335, 2355, 2459, 2478, 2488

Saliency
map

40 461, 551, 552, 553, 554, 1177, 1178, 1179, 1670, 1671, 1672, 1673, 1674, 1675, 1676, 1677, 1678, 1679, 1680, 1681, 1682, 1683, 1684, 1699, 1700,
1701, 1702, 1710, 1783, 1784, 1785, 2151, 2152, 2153, 2227, 2228, 2229, 2230, 2458, 2459
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models based on the wavelengths selected by saliency map, SVC

performed better than the PLS-DA and CNNC model, with the

accuracy of the prediction set reaching 79.36%. Although the

CNNC model based on full spectra achieved the best

classification accuracy of 84.70% for the prediction set, the

CNNC model based on the optimal wavelengths chosen by RF

obtained quite similar results. Considering the number of

variables used in modeling, the results of CNNC models

constructed on the optimal wavelengths selected by RF were

reasonably acceptable, which realized comparable performance

with the model based on full spectra with less computation.
3.4 Regression models

3.4.1 Regression models using full spectra
Figure 7 shows the results of different regression models

using full spectra for the nitrogen detection of cotton leaves.

All the models obtained satisfactory performance, with

R2
c (coefficients of determination of calibration set), R2

v

(coefficients of determination of validation set), and R2
p

(coefficients of determination of prediction set) all exceeding

0.75. Compared with PLSR and SVR models, the CNNR model

performed slightly better, achieving the smallest RMSE for the

prediction set. These results indicated that VNIR combined with

the CNNR model was conducive to effectively characterizing the

LNC of cotton leaves.
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3.4.2 Regression models using optimal
wavelengths

Different regression models were constructed based on the

optimal wavelengths for LNC estimation. The results are shown

in Table 6. It can be found that the performance of the model

established using the optimal wavelengths selected by different

methods showed a difference. The models built on the optimal

wavelengths selected byWPLS performed slightly better than the

models based on the optimal wavelengths selected by RF and

saliency map, with higher R2
P and lower RMSEP. In addition, it

can be found that the overall performance of CNNR models was

better than that of PLS and SVR models. All the CNNR model

achieved good results, with R2
c, R

2
v, and R2

p were over 0.779,

0.724, and 0.711, indicating the robustness of the CNNR model

based on optimal wavelengths. Specifically, the CNNR model

based on the wavelengths chosen by WPLS obtained the best

result. The R2
p and RMSEP were 0.766 and 3.389, respectively.

Besides, a comparison was made between the models based on

full spectra and those using the selected optimal wavelengths.

Overall, the models established on the chosen variables

performed less well than those based on full spectra. The

performance of the CNNR model based on optimal

wavelengths selected by WPLS was quite close to that based

on full spectra. To some extent, the reduced computation

compensates for the slight performance deficit, indicating that

the CNNR model equipped with optimal wavelength selection

methods is effective for cotton LNC estimation.

3.4.3 Identification of leaf nitrogen status
based on the predicted LNC

The predicted LNC values of all samples were calculated by

regression model and then classified according to the rules

mentioned in section 2.3. Then, the identification accuracy

was calculated by comparing the categories corresponding to

the predicted and actual values to evaluate the model’s

effectiveness. The results are shown in Table 7. It can be seen

that the identification of cotton samples based on the predicted
TABLE 4 The results of the classification models based on full
spectra.

Model Accuracy

Calibration set Validation set Prediction set

PLS-DA 88.56% 77.14% 82.56%

SVC 85.10% 79.29% 83.99%

CNN 86.17% 82.86% 84.70%
FIGURE 6

Confusion matrix of CNN model using full spectra. (Notes: Number 0, 1, 2 means leaf samples with low-level LNC, medium-level LNC and high-
level LNC, respectively.).
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TABLE 5 The results of the classification models based on optimal wavelengths.

Data type Model Accuracy

Calibration set Validation set Prediction set

RF PLS-DA 80.93% 75.71% 79.00%

SVC 88.08% 80.71% 83.99%

CNN 86.53% 79.64% 84.34%

WPLS PLS-DA 78.90% 77.86% 77.22%

SVC 84.03% 80.36% 82.92%

CNN 82.84% 79.29% 83.27%

Saliency map PLS-DA 74.37% 71.89% 74.29%

SVC 84.51% 78.21% 79.36%

CNN 83.08% 77.50% 77.58%
Frontiers in Plant Science
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FIGURE 7

The results of PLSR, SVR, CNNR models based on full spectra for LNC detection.
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value could achieve good results, similar to that of the results

based on classification models, which in turn reflects the

effectiveness of the regression model.
4 Discussion

Visible and near-infrared spectral techniques combined with

deep learning can be used for nitrogen-level estimation. Some

previous studies addressing the nitrogen-level classification of

plant leaves were discussed and compared with our results with

other spectral imaging works. It must be noted a rough

comparison is not rigorous as the papers relate to different

plants, techniques, and datasets. Pourdarbani et al. (2022)

investigated the feasibility of using hyperspectral imaging to

detect excess nitrogen content in tomato plants. Artificial neural

networks and the particle swarm optimization algorithm were

proposed and achieved a satisfactory classification accuracy of

92.6% for leaves at different nitrogen levels. The leaves in this work
Frontiers in Plant Science 10
(Pourdarbani et al., 2022) were classified according to different

days of nitrogen application. Sun et al. (2013) used VNIR to

identify the nitrogen level of lettuce leaves. Adaptive boosting was

applied with K nearest neighbor and SVM, which could achieve a

high classification accuracy of 100%. The samples in this study

were divided according to the fertilized nitrogen level. Wang et al.

(2018) employed hyperspectral imaging to discriminate nitrogen

fertilizer levels of the tea plant. The leaves from three nitrogen

fertilizer levels were sampled, and up to 100% accuracy was

achieved by the SVM model based on spectral data and textural

data. The excellent performance might benefit from the texture

information provided by the image. Although the methods

mentioned above achieved good results, the samples in these

studies were classified according to different nitrogen fertilization

levels or different nitrogen fertilization days (Sun et al., 2013;

Wang et al., 2018; Pourdarbani et al., 2022). There is a large

difference between the fertilization of nitrogen and its actual

uptake for the plant. Therefore, the adaptability of the

classification models according to the nitrogen fertilization
TABLE 6 The results of the regression models based on optimal wavelengths.

Data Type Model Calibration set Validation set Prediction set

R2
C RMSEC R2

V RMSEV R2
P RMSEP

RF PLSR 0.76 3.67 0.75 3.95 0.74 3.59

SVR 0.80 3.30 0.73 3.62 0.73 4.12

CNNR 0.82 3.19 0.74 4.02 0.75 3.53

WPLS PLSR 0.78 3.52 0.76 3.93 0.76 3.42

SVR 0.80 3.37 0.76 3.42 0.77 3.83

CNNR 0.79 3.38 0.76 3.91 0.77 3.39

Saliency map PLSR 0.66 4.36 0.60 2.02 0.67 4.03

SVR 0.81 3.27 0.71 3.77 0.72 4.17

CNNR 0.78 3.50 0.72 4.17 0.71 3.76
fron
TABLE 7 The identification results of cotton leaves based on the predicted LNC.

Data type Model Accuracy

Calibration set Validation set Prediction set

Full spectra PLSR 83.81% 80.71% 85.00%

SVR 85.71% 83.21% 79.29%

CNNR 84.17% 78.21% 83.21%

RF PLSR 81.43% 76.79% 83.21%

SVR 85.00% 81.79% 80.00%

CNNR 83.57% 77.50% 81.43%

WPLS PLSR 81.07% 78.57% 81.79%

SVR 82.50% 81.79% 78.21%

CNNR 85.12% 78.93% 81.07%

Saliency map PLSR 75.60% 64.64% 73.93%

SVR 84.40% 78.21% 78.21%

CNNR 81.90% 76.07% 77.14%
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division is greatly limited by the uncertainty of the actual LNC.

Thus, in this study, the chemical analysis for nitrogen

measurement was conducted, and the leaves were divided into

three categories according to the true LNC value of three ranges.

Among similar studies which also measured actual LNC, Nativ

et al. (Rotbart et al., 2013) used VNIR to estimate the nitrogen

concentration in olive leaves. The leaves were divided into three

groups according to the measured nitrogen content, and an

overall accuracy of 83% was obtained. Du et al. (2016) explored

the feasibility of using hyperspectral LiDAR to detect nitrogen

content in rice leaves. The accuracy of 83% was obtained when 32

wavelengths were considered. The results in above studies

(Rotbart et al., 2013) (Du et al., 2016) are slightly lower than the

accuracy of 84.342% achieved by RF-CNN model in this study. It

can be observed that although a perfect classification is not

achieved, the method used in this study has a relatively higher

accuracy of 84.342% in the best case. The performance is quite

close to and even higher than the result obtained by other existing

methods, which demonstrates that it is feasible to classify cotton

leaves with different LNC by VNIR and deep learning algorithm.

Regarding the regression task, in a similar study on the LNC

prediction of cotton leaves, Zhang et al. (2022a) explored the

potential of using spectra of different ranges to estimate nitrogen

content in cotton leaves, and obtained a R2
c = 0.794~ 0.909 and

R2
P = 0.774 ~ 0.899. The prediction results of the best model are

better than those in this research. The possible reason was that the

samples used in this study (Zhang et al., 2022) were acquired at

the flower and boll stage of cotton, which only covered two

growing stages. The leaves used in our study cover the whole

growing stage. Different thicknesses and textures of leaf samples

would also cause spectral differences, which may affect the

accuracy of nitrogen detection. Besides, the spectra in this paper

were collected under two environmental conditions, covering the

laboratory environment and the field environment. The difference

in the measurement environment would also lead to the difference

in the spectra. When the measurement was conducted in the field,

there were more interference factors, which was also the reason for

the relatively less satisfactory results. However, in practice, due to

the diversity of application scenarios and the need for nutrient

monitoring over the whole growth cycle of plants, it is critical to

develop the models presented in this paper to enhance

their applicability.

Besides, deep learning with VNIR performed well in estimating

LNC in plant leaves. Table 6 and Figure 7 show that CNNR

outperformed PLSR and SVR models, achieving a relatively lower

RMSE for the prediction set. The study demonstrated that the

CNN model established for regression tasks could achieve good

results, which previous studies have confirmed. Weng et al. (2022)

combined CNNR and visible and near-infrared reflectance

spectroscopy to determine the behenic acid in edible vegetable

oils, with R2
P = 0.8843 and RMSEP = 0.1182, outperforming PLSR

and SVR model. Wu et al. (2022) applied CNNR and Raman

spectroscopy to identify the amount of olive oil in a corn-olive oil
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blend, with R2
P = 0.9908 and RMSEP = 0.7183. In addition, one-

dimension deep learning regression models based on spectral data

are performed well in soluble solid content estimation in cherry

tomato (Xiang et al., 2022) and oil content prediction of single

maize kernel (Zhang et al., 2022c). Hence, the spectral analysis

model developed by CNN can be expected to provide a simple,

rapid, and accurate analysis of LNC in cotton leaves.
5 Conclusion

In this study, visible and near-infrared spectroscopy

combined with deep learning was used to detect LNC in

cotton leaves qualitatively and quantitatively. RF, WPLS, and

saliency map were used to extract characteristic wavelengths,

classification models (PLS-DA, SVC, CNNC) and regression

models (PLSR, SVR, CNNR) were established based on full

spectra and characteristic wavelengths, respectively. Overall, the

models based on CNN architecture performed better than other

models for both classification and regression tasks. For the

classification task, CNNC model based on full spectra

performed best, with the classification accuracy reaching

84.70%. For the regression task, the performance of CNNR

model developed on full spectra was superior, achieving an

R2
P of 0.77 and an RMSEP of 3.36. The good performance of

visible and near-infrared spectroscopy assisted by deep learning

demonstrated its effectiveness for nitrogen content prediction of

cotton leaves. This approach is helpful for farmers to accurately

identify the nutritional status of cotton plants in the field and

make reasonable fertilization decisions in time.
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