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Event-based dynamic vision sensors provide very sparse output in the form of

spikes, which makes them suitable for low-power applications. Convolutional

spiking neural networks model such event-based data and develop their

full energy-saving potential when deployed on asynchronous neuromorphic

hardware. Event-based vision being a nascent field, the sensitivity of spiking

neural networks to potentially malicious adversarial attacks has received little

attention so far. We show how white-box adversarial attack algorithms can

be adapted to the discrete and sparse nature of event-based visual data,

and demonstrate smaller perturbation magnitudes at higher success rates

than the current state-of-the-art algorithms. For the first time, we also verify

the e�ectiveness of these perturbations directly on neuromorphic hardware.

Finally, we discuss the properties of the resulting perturbations, the e�ect of

adversarial training as a defense strategy, and future directions.

KEYWORDS

spiking convolutional neural networks, adversarial examples, neuromorphic
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1. Introduction

Compared to the neural networks commonly used in deep learning, Spiking Neural

Network resemble the animal brain more closely in at least two main aspects: the

way their neurons communicate through spikes, and their dynamics, which evolve in

continuous time. Aside from offering more biologically plausible neuron models for

computational neuroscience, research in the applications of Spiking Neural Network

is currently blooming because of the rise of neuromorphic technology. Neuromorphic

hardware is directly compatible with Spiking Neural Network and enables the design of

low-power models for use in battery-operated, always-on devices.

Adversarial examples are an “intriguing property of neural networks” (Szegedy et al.,

2013) by which the network is easily fooled into misclassifying an input which has

been altered in an almost imperceptible way by the attacker. This property is usually

undesirable in applications: it was proven, for example, that an adversarial attack may

pose a threat to self-driving cars (Eykholt et al., 2018). Because of their relevance to real-

world applications, a large amount of work has been published on this subject, typically

following a pattern where new attacks are discovered, followed by new defense strategies,

in turn followed by proof of other strategies that can still break through them (see Akhtar

and Mian, 2018 for a review).
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With the advent of real-world applications of spiking

networks in neuromorphic devices, it is essential to make

sure they work securely and reliably in a variety of contexts.

In particular, there is a significant need for research on the

possibility of adversarial attacks on neuromorphic hardware

used for computer vision tasks. In this paper, we make an

attempt at modifying event-based data, by adding and removing

events, to generate adversarial examples that fool a spiking

network deployed on a convolutional neuromorphic chip. This

offers important insight into the reliability and security of

neuromorphic vision devices, with important implications for

commercial applications.

1.1. What is event-based sensing?

Event-based Dynamic Vision Sensor share characteristics

with the mammalian retina and have several advantages over

conventional, frame-based cameras:

• Camera output in the form of events and thus power

consumption are directly driven by changes in the visual

scene, omitting output completely in the case of a static

scene.

• Pixels fire independently of each other which results in

a stream of events at microsecond resolution instead of

frames at fixed intervals. This enables very low latency and

high dynamic range.

The sparse, asynchronous Dynamic Vision Sensor output

does not suit current high-throughput, synchronous accelerators

such as GPUs. To process event-based data efficiently,

neuromorphic hardware is being developed, where neurons

are only updated whenever they receive an event. Spiking

neuromorphic systems include large-scale simulation of

neuronal networks for neuroscience research (Furber et al.,

2012) and low-power real-world deployments of machine

learning algorithms. Spiking Convolutional Neural Network

as well as conventional Convolutional Neural Network have

been run on neuromorphic chips such as IBM’s TrueNorth

and HERMES (Esser et al., 2016; Khaddam-Aljameh et al.,

2021), Intel’s Loihi (Davies et al., 2018) and SynSense’s Speck

and Dynap-CNN (Liu et al., 2019) for low-power inference.

The full pipeline of event-based sensors, stateful spiking neural

networks, and asynchronous hardware—which is present in

SynSense’s Speck—allows for large gains in power efficiency

compared to conventional systems.

1.2. Adversarial attacks on discrete data

The history of attack strategies against various kinds of

machine learning algorithms pre-dates the advent of deep

FIGURE 1

Schematic of the attack procedure on Dynamic Vision Sensor

data.

learning (Biggio and Roli, 2018), but the phenomenon received

widespread interest when adversarial examples were first found

for deep convolutional networks (Szegedy et al., 2013). In

general, given a neural network classifier C and an input x which

is correctly classified, finding an adversarial perturbation means

finding the smallest δ such thatC(x+δ) 6= C(x). Here, “smallest”

refers to minimizing ‖δ‖, where the norm is chosen arbitrarily

depending on the requirements of the experiment. For example,

using the L∞ norm (maximum norm) will generally make the

perturbation less noticeable to a human eye, while the use of

the L1 norm will encourage sparsity, i.e., a smaller number of

perturbed pixels.

There are two main challenges in transferring existing

adversarial algorithms to event-based vision:

• The presence of a continuous time dimension, as opposed

to frames taken at fixed intervals;

• The binary discretization of input data and SNN

activations, as opposed to traditional image data (at least 8

bit) and floating point network activations.

Event-based sensors encode information in the form of

events that have a timestamp, location (x, y) and polarity

(lighting increased or decreased). Because at any point in time an
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event can either be triggered or not, one can simply view event-

based inputs as binary data by discretizing time (Figure 1). In

this view, the network’s input is a three-dimensional array whose

entries describe the number of events at a location (x, y) and in

time bin t; an additional dimension, of size 2, is added due to the

polarity of events. If the time discretization is sufficiently precise,

and no more than one event appears in each voxel, the data can

be treated as binary.

In this work, we present new algorithms that adapt

the adversarial attacks SparseFool (Modas et al., 2018), and

adversarial patches (Brown et al., 2017), to work with the

time dynamics of spiking neural networks, and with the

discrete nature of event-based data. We focus on the case

of white box attacks, where the attacker has full access to

the network and can backpropagate gradients through it.

We test our attacks on the Neuromorphic MNIST (Orchard

et al., 2015) and IBM Gestures (Amir et al., 2017) datasets,

which are the most common benchmark datasets within the

neuromorphic community. Importantly, for the first time, we

also test the validity of our methods by deploying the attacks on

neuromorphic hardware.

Our contributions can be summarized as follows:

• We contribute algorithms that adapt several adversarial

attacks strategies to event-based data and Spiking

Neural Network, with detailed results to quantify their

effectiveness and scalability.

• We show that these adapted algorithms outperform current

state-of-the-art algorithms in the domain of Spiking

Convolutional Neural Network.

• We show targeted universal attacks on event-based data in

the form of adversarial patches, which do not require prior

knowledge of the input.

• We validate the resulting adversarial examples on an

Spiking Neural Network deployed on a convolutional

neuromorphic chip. To the best of our knowledge, this is

the first time the effectiveness of adversarial examples is

demonstrated directly on neuromorphic hardware.

2. Related work

Despite the growing number of Spiking Neural Network

deployed on digital (Davies et al., 2018) and analog (Moradi

et al., 2018) neuromorphic hardware, robustness to adversarial

perturbations has received comparatively little attention by the

research community. Some methods proposed for attacking

binary inputs have focused on brute-force searches with

heuristics to reduce the search space (Bagheri et al., 2018;

Balkanski et al., 2020). Algorithms of this family do not scale

well to large input sizes, as the number of queries made to

the network grows exponentially. In particular, this becomes

a serious problem when the time dimension is added, greatly

increasing the dimensionality of the input.

In Marchisio et al. (2021), the authors demonstrate various

algorithms for attacking Dynamic Vision Sensor data that

serves as input to an Spiking Neural Network. While some

attacks are brute force (“Dash Attack,” “Corner Attack”) and

therefore do not scale, “Frame Attack” simply adds events

in hard-coded locations and produces perturbations that are

orders of magnitudes larger than all of the perturbations of

the algorithms presented here. The only algorithm that exploits

gradient information is “Sparse Attack,” against which we

compare1. Unfortunately, the authors do not report quantitative

results on the magnitudes of their perturbations (i.e., how many

spikes are added or removed), which is an important metric for

demonstrating efficiency of the attack.

Sharmin et al. (2020) demonstrate interesting properties

of the inherent robustness of Spiking Neural Network to

adversarial attacks, with variations depending on the training

method. Their work, however, only uses static image data

with continuous pixel values converted to Poisson spike input

frequencies, which is rather different from working with actual

event-based camera input.

As Liang et al. (2020) note, white-box attacks can exploit

“surrogate” gradients in order to calculate gradients of a loss

function with respect to the input in Spiking Neural Network.

Not only do these gradients reflect the true dependency of

the output to the input, but they also capture temporal

information via Backpropagation Through Time. In their work,

the authors use a Dirac function for their surrogate gradient,

which causes, as they report, considerable “vanishing gradient”

problems. While they show good results, they were forced to use

additional tricks such as probabilistic sampling and an artificial

construction of gradients termed “Restricted Spike Flipper”

in their manuscript. In our work we solved the vanishing

gradient issue by resorting to a more effective surrogate function

(Section 3.3).

Outside of the domain of Spiking Neural Network, various

studies explore the adversarial robustness of conventional neural

networks deployed on digital accelerators or analog in-memory

computing based accelerators. For example, Stutz et al. (2020)

demonstrate that standard networks are susceptible to bit

errors in the SRAM array storing the quantized weights in

deep learning accelerators. The authors further show that one

can mitigate this susceptibility via random bit flipping during

training. While this work performs experiments using noise

models obtained from various SRAM arrays, it still lacks a full-

fledged hardware demonstration. Cherupally et al. (2021) obtain

a noise model of a RRAM-based crossbar often found in analog

in-memory computing architectures. The noise model is then

1 We followed the implementation at https://github.com/

albertomarchisio/DVS-Attacks.
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used in simulation to study the adversarial robustness of neural

networks deployed on such a crossbar.

Besides attacking neural networks via input perturbation,

a large body of work on directly attacking the physical

hardware exists. Hardware fault injection attacks (see Giraud

and Thiebeauld, 2004 for a survey) are mostly based on voltage

glitching, electromagnetic pulses, or rapid row activation in

DRAM (Kim et al., 2014).

In this work, we focus on input-based attacks, which

we verify in simulations and on commercially available

spiking neuromorphic hardware. This step is important to

determine real-world effectiveness, as the exact simulation

of asynchronous, event-based processing with microsecond

resolution is prohibitively expensive on conventional hardware.

3. Methods

3.1. Attack strategies

3.1.1. SparseFool on discrete data

To operate on event-based data efficiently, the ideal

adversarial algorithm requires two main properties: sparsity

and scalability. Scalability is needed because of the increased

dimensionality given by the additional time dimension. Sparsity

ensures that the number of events added or removed is kept

to a minimum. One approach that combines the above is

SparseFool (Modas et al., 2018), which iteratively finds the

closest point in L2 on the decision boundary of the network

using the DeepFool algorithm (Moosavi-Dezfooli et al., 2015) as

a subroutine, followed by a linear solver that enforces sparsity

and boundary constraints on the perturbation. DeepFool finds

the smallest perturbation in L2 by iteratively moving the input

in the direction orthogonal to the linearized decision boundary

around the current input. Since decision boundaries of neural

networks are non-linear, this process has to be repeated until a

misclassification is triggered. Because Spiking Neural Network

have discrete outputs (the number of spikes over time for each

output neuron), it is easier to suffer from vanishing gradients as

the perturbation approaches the decision boundary. This occurs

because DeepFool calculates the perturbation that just reaches

the decision boundary, which is very small when the input

is already close to the decision boundary. Therefore, adding

this small perturbation to the input might not reflect in the

number of emitted spikes as the membrane potential must

cross the spiking threshold. We made the following changes

to overcome these issues. Firstly, we clamped the perturbation

at every iteration of DeepFool so that it was no smaller than

a value η, in order to protect against vanishing gradients. η

was treated as a hyperparameter that should be kept as small

as possible without incurring vanishing gradients. Without η,

SparseFool yields a success rate of 12.9% on 100 samples of the

Neuromorphic MNIST dataset, where the success rate is the

percentage of attacked samples that led to a misclassification

out of the samples that were originally classified correctly by

the network. Secondly, to account for the discreteness of event-

based data, we rounded the output of SparseFool to the nearest

integer at each iteration. Finally, SparseFool normally involves

upper and lower bounds l and u on pixel values (normally set,

for images, to l = 0; u = 255). We exploit these to enforce

the binary constraint on the data (l = 0; u = 1), or, in

the on-chip experiments, to fix a maximum firing rate in each

time bin, which is the same as that of the original input [l =

0; u = max(input)]. From now on, we will refer to this variant

as SpikeFool.

3.1.2. Adversarial patches

As the name suggests, adversarial patches are perturbations

that are accumulated in a certain region (patch) of the image.

The idea is that these patches are generated in a way that enables

the adversary to place them anywhere in the image. This attack

is targeted to a desired label, and universal, i.e., not input-

specific. To test a more realistic scenario where an adversary

could potentially perform an attack without previous knowledge

of the input, we apply these patches to the IBM hand gesture

dataset. We note that the prediction of the Convolutional Neural

Network trained on this dataset is mostly determined by spatial

location of the input. For example, the original input of “Right

Hand Wave” is not recognized as such if it is shifted or rotated

by a substantial amount. In order to simulate effective realistic

attacks, we choose to limit both computed and random attack

patches to the area of where the actual gesture is performed. As

in Brown et al. (2017), we generate the patches using Projected

Gradient Descent on the log softmax value of the target output

neuron. Projected Gradient Descent is performed iteratively on

different images of the training set and the position of the patch

is randomized after each sample. For each item in the training

data, the algorithm updates the patch until the target label

confidence has reached a pre-defined threshold. The algorithm

skips the point if the original label equals the target label. This

process is repeated for every training sample and for multiple

epochs. To measure the effectiveness of our computed patches,

we also generate random patches of the same size, and measure

the target success rates. In a random patch, every pixel has a 50%

chance of emitting a spike at each time step.

3.2. Datasets

Neuromorphic MNIST consists of 300 ms-long recordings

of MNIST digits that are captured using a three-fold saccadic

motion of a Dynamic Vision Sensor sensor (Orchard et al.,

2015). We bin the events of each recording into 60 time steps,

capping the maximum number of events to 1 per pixel.
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TABLE 1 Result comparison between SpikeFool and related works.

Attack strategy Hardware Success rate (%) Median elapsed
time (s/sample)

Median no.
queries

Median L0

N
-M

N
IS
T

SpikeFool

(η = 0.2, λ = 2)

GPU 99.53 24.87± 0.0815 45 256

SpikeFool

(η = 0.5, λ = 2)

GPU 99.88 12.00± 0.072 27 272

Liang et al. (2020) GPU 100.00± 0.00 0.69± 1 · 10−4
2 865.3± 6.37

Marchisio et al. (2021) GPU 74.41± 0.33 0.64± 0.001 3 3.23 · 104 ± 360.32

IB
M

SpikeFool

(η = 0.1, λ = 3)

GPU 100.00 2.56± 0.003 11 311

SpikeFool

(η = 0.1, λ = 2)

GPU 99.87 2.4± 0.002 11 200

SpikeFool

(η = 0.1, λ = 1)

GPU 97.61 2.85± 0.02 17 116

SpikeFool Speck2b 88.05

Liang et al. (2020) GPU 99.77± 0.126 0.53± 0.004 9 1345.5± 11.48

Marchisio et al. (2021) GPU 92.44± 0.05 0.14± 2 · 10−4
2 227343± 54.56

η indicates the minimum step size for updates to the perturbation: higher values of η find less precise perturbations (larger L0 values), but are sometimes needed in order to prevent

zero-gradient issues within the algorithm. λ is the sparsity parameter: lower λ (with a minimum of 1) yields sparser results, but gives a slightly lower success rate. The success rate is defined

as the fraction of samples that were initially correctly classified, for which the attack algorithm converged to an adversarial example that the network classifies incorrectly. Attacks were

repeated 5 times on 1000 samples. We report the mean and standard deviation for non-deterministic metrics. The median number of queries did not show any variation over 5 repetitions.

Bold font indicates the best result for that column.

IBM Gestures dataset consists of recordings of 11 classes

of human gestures, captured under three different lighting

conditions (Amir et al., 2017). For this dataset, the model must

have the ability to process temporal features to distinguish

between clockwise and counterclockwise versions of the same

gesture. We bin 200ms slices of recordings into 20 frames each,

again capping the frames to 1 per pixel. For experiments on the

chip we choose a higher temporal resolution and bin the same

200ms slices into 100 frames each.

3.3. Network models

The spiking networks used for the Neuromorphic MNIST

and IBM Gestures tasks are trained using the publicly

available PyTorch-based SpikingNeural Network library Sinabs2

which supports the same non-leaky integrate-and-fire neurons

available on the neuromorphic chip.

Models used for Neuromorphic MNIST were trained using

weight transfer, whereby an equivalent Convolutional Neural

Network is trained on accumulated frames (i.e., summing

the data over the time dimension), and the Convolutional

Neural Network weights are transferred to the spiking

network (Rueckauer et al., 2017; Sorbaro et al., 2020). The

model we used is a LeNet-5 architecture with 20, 32, 128, 500,

and 10 channels, respectively. The network achieves 85.05%

2 http://sinabs.ai

classification test accuracy with full precision weights and 85.2%

with 8-bit quantized weights.

For the IBM Gestures task, training is done using

Backpropagation Through Time since for this dataset we have

to learn temporal features as well. We make use of a surrogate

gradient in the backwards pass to enable learning despite the

discontinuous nature of spikes (Neftci et al., 2019). The model

has a LeNet-5 architecture plus batchnorm layers with 8, 8,

8, 64, and 11 channels, respectively. This network achieves a

classification test accuracy of 84.2%. The accuracy is retained if

the network weights are quantized to 8 bits. The network used

for the on-chip experiments does not have batch-normalization

layers as they introduce biases which are not supported on

the hardware.

3.4. Experiments on the neuromorphic
chip

We used a multi-core spiking neural network processing

chip prototype from SynSense, called “Speck2b.” It uses

asynchronous logic design to keep dynamic power that is

consumed whenever spikes are routed to a minimum. That

means that neurons update and spike only when an input is

received, but are not limited to time bins of clock cycles, which

is very different than conventional von Neumann hardware. The

chip and its 327,000 neurons are fully configurable, supporting

convolutional, linear, as well as pooling connectivity. Event input
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FIGURE 2

Our method (B, D) significantly reduces the magnitude of the perturbations introduced by the adversary. The runner-up method proposed in

Liang et al. (2020) (A, C) adds visibly more events and is thus less stealthy.

(from datasets such as NeuromorphicMNIST and IBMgestures)

is sent to the FPGA as a block of events in (t, p, x, y) format.

The FPGA then handles the feeding to the chip at the correct

timestamps. This is important as the chip itself, using fully

asynchronous logic, does not understand the notion of time

steps. Every neuron will compute its input on demand and fire as

soon as it is ready. Since events have to be handled in a sequential

manner, this can sometimes lead to slight changes in the order of

input events, which then has consequences for neuron activation

further downstream (in later layers). If many events arrive in a

short time span, they are buffered depending on the throughput

limitations of each core. Those limitations together with weight

quantization on the neuromorphic hardware lead to slight

differences in output when compared to simulation.

The multi-core, single-chip neuromorphic processor we

used for the experiments features an integrated DVS sensor

for real-time, fully integrated vision and is commercially

available for programming as part of a development kit, which

includes USB connectivity, powermanagement and an FPGA for

communication. Since the chip features an on-chip DVS sensor,

its main application is in the vision domain, making it evenmore

relevant for our study.

On the chip, weight precision, number of computations

per second and throughput are reduced, as the hardware is

optimized for very low power consumption. The networks

detailed in the previous sections have to be modified in order

to make them suitable for on-chip inference: their weights are

rescaled and discretized as required by the chip’s 8-bit weight

precision. This is one factor that can lead to a degradation in

prediction accuracy when compared to simulations. A second

and more important factor why simulations do not mimic our

chip’s behavior exactly is the need for time discretization when

training our networks off-chip (see Figure 1).

As this work focuses on white-box attacks, we first compute

the adversarial examples using the network simulation on the

computer, and then test both original and attacked spiketrains

in simulation and on the chip. However, the simulation and the

attack work in discrete time, while the chip receives events in

continuous time. In order to convert the discrete-time attacked

raster back to a list of events for the chip, we compare the

original and attacked rasters, identifying new events added by

the attack and adding them to the original list (Figure 1). We

empirically found very few events were removed by SparseFool;

for example, in the Neuromorphic MNIST experiment, there
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FIGURE 3

Examples of adversarial inputs on the, Neuromorphic MNIST (top) and IBM Gestures (bottom) datasets, as obtained by the SpikeFool method.

The captions show the original (true) label, correctly identified, and the class later identified by the model. The data was re-framed in time for

convenience of visualization. Red indicates added spikes. See the Supplementary Video for more examples and motion visualization.

were 28 additions per each removal (see Supplementary material

for more information). For simplicity, we therefore chose to

ignore removals for on-chip experiments.

4. Results

4.1. Adversarial attack performance

Table 1 shows the comparison of SpikeFool with current

state-of-the-art attack algorithms in the spiking domain

on two widely used benchmarks. We compare various

metrics such as success rate, median elapsed time per

sample, and, most importantly, the median perturbation

size. Results from Marchisio et al. (2021) and Liang

et al. (2020) are drawn from our own implementations,

closely following published code (if available) from

the authors.

We find that the attack presented in Marchisio et al. (2021)

largely fails to achieve reasonable perturbation magnitudes on

both benchmarks. This is likely because of the lack of bounds

and rounding in their method, which result in large deviations.

In contrast, the attack presented in Liang et al. (2020) achieves

near perfect success rates in very short time at relatively low

perturbation sizes. However, this speed comes at the cost of

perturbation size: our method yields perturbations that are up

to 11× smaller than the ones generated by Liang et al. (2020).

To put these numbers into perspective, Figure 2 compares

the adversarial samples generated by both methods. One can

observe the clear difference between the two methods and could

argue that attacks generated by Liang et al. (2020) are more

visible. Interestingly, we observe that SpikeFool often resorts to

inserting small patches limited to key areas. We believe this is

due to the fact that the network is inherently robust to salt-

and-pepper noise and that introducing localized patches is by

far more effective. Figure 3 and the Supplementary Video show
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additional examples of successful attacks. Further information

about how many spikes are added and removed during training

can be found in the Supplementary material.

We also run a random subset of 777 DVS Gesture samples

that were attacked using SpikeFool (λ = 2.0, η = 0.3) on our

neuromorphic hardware and observe a success rate of 88.05%

misclassified samples, in comparison to 93.28% in simulation.

This performance is lower compared to the one reported in

Table 1 due to the much higher time resolution needed on chip,

which makes it harder to find an attack. A possible reason for

this discrepancy lies in how the chip is limited in computing

capacity by weight precision and restricted throughput per time

unit, which causes some of the input events to be dropped.

Furthermore, the conversion of binned data back into lists of

spikes is necessarily lossy. In terms of attack efficiency, we

observe a median difference in number of spikes of 903 among

the attacks that were successful on chip, corresponding to a

median 9.3% increase in the number of spikes per sample.

4.2. Adversarial patches

Although we have demonstrated that one can achieve high

success rates on custom spiking hardware that operates with

microsecond precision, the applicability of this method is still

limited, as the adversary needs to suppress and add events at high

spatial and temporal resolution, thus making the assumption

that the adversary can modify the event-stream coming from

the Dynamic Vision Sensor camera. Furthermore, SpikeFool

assumes knowledge of the model and requires computing the

perturbation offline, which is not feasible in a timely manner.

In a more realistic setting, the adversary is assumed to generate

perturbations by changing the input the Dynamic Vision Sensor

camera receives on the fly, by e.g., adding a light-emitting device

to the visual input of the Dynamic Vision Sensor camera.

Using the training data from the IBM Gestures dataset, we

generate an adversarial patch for each target class with high

temporal precision (event samples of 200 ms are binned using

0.5 ms-wide bins) and evaluate the effectiveness in triggering

a targeted misclassification both in simulation and on-chip

using the test data. To simulate spatial imprecision during

deployment, each test sample is perturbed by a patch that was

randomly placed within the area of the original gesture. Table 2

summarizes our findings on target success rates for generated

and random patches. Simulated results show high success rates,

and on-chip performance shows a slight degradation, which

can be expected due to weight quantization on the tested

specialized hardware. We also find that the chip has trouble

processing inputs because most of the added patch events occur

concentrated in the beginning of recordings in a large transient

peak. In one case, the targeted attack for label “Arm Roll”

mostly fails on chip as not all events are processed, which makes

it harder to differentiate from “Hand Clap,” a similar gesture T
A
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that occurs in the same central spatial location. This could be

mitigated by limiting the number of events in a patch to ensure

that they could all be correctly processed on the chip.

We compare this result with a baseline of randomly

generated patches, and we observe that two labels, namely “Left”

and “Right Hand Wave” subsume all other attacked labels in

this case. This hints that randomly injecting events in various

locations is not enough to perturb network prediction to a

desired label and that our algorithm succeeds in finding a

meaningful patch. We find that generating patches with lower

temporal resolution heavily degrades performance on-chip, as

the chip operates using microsecond precision. We also perform

ablation studies where we move the patch far from the position

where the gesture is expected and observe that the patch mostly

triggers a different misclassification, mostly the gesture that is

expected at the new position. We find that this observation

originates from the fact that the network heavily relies on the

spatial location of the gesture and one should, if the hardware

allows, consider larger networks that are invariant to the position

of the gesture. To summarize, adversarial patches are effective

in triggering a targeted misclassification both on– and off–

chip compared to randomly generated ones. Figure 4 and the

Supplementary Video show examples of successful patch attacks.

Importantly, these attacks are universal, meaning that they can

be applied to any input and do not need to be generated for

each sample.

4.3. Defense via adversarial training

Once it is known that a model or system is sensitive to

a certain type of adversarial attack, it is natural to investigate

whether there is a way to build a network that is more resistant

to these attacks. We therefore experimented with adversarial

training using the TRadeoff-inspired Adversarial Defense via

Surrogate-loss minimization (TRADES) method (Zhang et al.,

2019). The method adds a new term to the loss function, which

minimizes the Kullback-Leibler divergence between the output

of the network on the original input and the output when the

adversarial example is presented:

Lrob = L+
βrob

B
DKL(f (xadv); f (x0)).

Here, B is the batch size, βrob is the parameter that defines

the trade-off between robustness and accuracy, f is the network

and xadv is the adversarial input. To find xadv at training time,

we use a Projected Gradient Descent-based attack, since it can be

batched—but we attack the resulting networks using SpikeFool

at test time.

More specifically, we use Projected Gradient Descent

in the L∞ domain and choose ǫ = 0.5 as the maximum

perturbation, with Npgd = 5 attack steps. We use Projected

Gradient Descent in the spiking domain by accumulating

TABLE 3 Training with a small robustness term (βrob = 0.01) increases

generalization and therefore improves the test accuracy of the

network.

Network Test
accuracy

(%)

Success
rate (%)

Median L0

IB
M

βrob = 0.0 (normal) 79.23 98.19 438.0

βrob = 0.01 81.36 98.78 511.0

βrob = 0.05 75.27 97.65 1434.0

βrob = 0.1 73.16 95.46 1316.0

For increasing values of βrob , the amount of changed events needed to trigger a

misclassification increases dramatically (more than 3×), while the performance of the

network decreases (hence the name “tradeoff-inspired”). Bold font indicates the best

result for that column.

the gradients in full-precision using a straight-through

estimator (Bengio et al., 2013). The details of our spiking-

adapted implementation of Projected Gradient Descent are

described in the Supplementary material, including extensions,

and a full comparison with SpikeFool.

Although we use a much simpler attack strategy at training

time, we found that it produced perturbations of reasonable sizes

while being extremely efficient and sufficiently effective: for the

choices of βrob we considered, we see that the adversarially-

trained network requires stronger and less stealthy attacks before

it is fooled (Figure 5). As expected, SparseFool’s success rate

is still high, since it aims to find a solution no matter the

costs; but there is an increase in the number of added spikes

required, which is indeed a sign of robustness (Table 3). Further

work is required for a comprehensive investigation of other

defense strategies.

5. Discussion

We studied the possibility of fooling Spiking Neural

Network through adversarial perturbations to Dynamic Vision

Sensor data, and verified these perturbations on a spiking

convolutional neuromorphic chip. There were two main

challenges to this endeavor: the discrete nature of event-

based data, and their dependence on time. Dynamic Vision

Sensor attacks also have different sparsity requirements, because

the magnitude of the perturbation is measured in terms of

number of events added or removed. For this purpose, we

adopted a surrogate-gradient method and backpropagation-

through-time to performwhite-box attacks on spiking networks.

We presented SpikeFool, and adapted version of SparseFool,

which we compared to current state-of-the-art methods on

well-known benchmarks. We find that SpikeFool achieves near

perfect success rates at lowest perturbation magnitudes on

time-discretized samples of the Neuromorphic MNIST and

IBM Gestures datasets. In the best cases, the attack requires

the addition of less than a hundred events over 200 ms. To
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FIGURE 4

Examples of adversarial patches successfully applied to a single “right hand clockwise” data sample, with di�erent target classes. See also the

Supplementary Video for motion visualization and more examples.

FIGURE 5

Adversarial training visibly increases the number of events that need to be added/removed in order to trigger a misclassification.

the best of our knowledge, we were also the first to show

that the perturbation is effective on a network deployed on

a neuromorphic chip, implying that the method is resilient

to the small but non-trivial mismatch between simulated and

deployed networks.

Additionally, since SpikeFool computes perturbations

offline and not on a live stream of Dynamic Vision Sensor

events, we also investigated a more realistic setting, where an

adversary can inject spurious events in the form of a patch

inserted into the visual field of the Dynamic Vision Sensor
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camera. We demonstrated that we can generate patches for

different target labels. Although these patches require a much

higher amount of added events, they do not require prior

knowledge of the input sample and therefore offer a realistic

way of fooling deployed neuromorphic systems. A natural next

step would be to understand whether it is possible to build

real-world patches that can fool the system from a variety

of distances and orientations, as Eykholt et al. (2018) did

for photographs. Moreover, it will be interesting to see how

important knowledge about the architecture is and if one can

generate patches by having access to a network that differs from

the one deployed.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found at: https://research.ibm.com/interactive/

dvsgesture/ and https://www.garrickorchard.com/datasets/n-

mnist/.

Author contributions

JB and MS conceived and designed the research. JB, MS, GL,

and YH performed experiments, collected data, analyzed, and

interpreted the data. JB, MS, and GL drafted the manuscript. All

authors developed software and simulations, performed critical

revision of the manuscript, and approved the final version for

publication.

Funding

MS was supported by an ETH AI Center postdoctoral

fellowship during part of this work. The Open access funding

was provided by ETH Zurich.

Acknowledgments

The authors would like to thank Seyed Moosavi-Dezfooli

for valuable help in understanding and applying the SparseFool

and DeepFool algorithms, and the Algorithms team at

SynSense for their support, suggestions, and assistance in

using the Speck chip. We also thank the reviewers for many

helpful comments.

Conflict of interest

Author JB is employed by IBM. Authors GL, YH, and SS are

employed by SynSense.

The remaining author declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fnins.2022.1068193/full#supplementary-material

References

Akhtar, N., and Mian, A. (2018). Threat of adversarial attacks on
deep learning in computer vision: a survey. IEEE Access 6, 14410–14430.
doi: 10.1109/ACCESS.2018.2807385

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al.
(2017). “A low power, fully event-based gesture recognition system,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI:
IEEE), 7388–7397.

Bagheri, A., Simeone, O., and Rajendran, B. (2018). “Adversarial training for
probabilistic spiking neural networks,” in 2018 IEEE 19th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC) (Kalamata:
IEEE).

Balkanski, E., Chase, H., Oshiba, K., Rilee, A., Singer, Y., and Wang, R. (2020).
Adversarial attacks on binary image recognition systems. CoRR, abs/2010.11782.
doi: 10.48550/arXiv.2010.11782

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating
or propagating gradients through stochastic neurons for conditional
computation. arXiv:1308.3432 [cs.LG]. doi: 10.48550/arXiv.130
8.3432

Biggio, B., and Roli, F. (2018).Wild patterns: ten years after the rise of adversarial
machine learning. Pattern Recognit. 84, 317–331. doi: 10.1016/j.patcog.2018.07.023

Brown, T. B., Mané, D., Roy, A., Abadi, M., and Gilmer, J. (2017).
Adversarial patch. CoRR, abs/1712.09665. doi: 10.48550/arXiv.1712.
09665

Cherupally, S. K., Meng, J., Rakin, A. S., Yin, S., Yeo, I., Yu, S.,
et al. (2021). Improving the accuracy and robustness of rram-based
in-memory computing against rram hardware noise and adversarial
attacks. Semiconduct. Sci. Technol. 37, ac461f. doi: 10.1088/1361-6641/
ac461f

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.1068193
https://research.ibm.com/interactive/dvsgesture/
https://research.ibm.com/interactive/dvsgesture/
https://www.garrickorchard.com/datasets/n-mnist/
https://www.garrickorchard.com/datasets/n-mnist/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1068193/full#supplementary-material
https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.48550/arXiv.2010.11782
https://doi.org/10.48550/arXiv.1308.3432
https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/10.48550/arXiv.1712.09665
https://doi.org/10.1088/1361-6641/ac461f
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Büchel et al. 10.3389/fnins.2022.1068193

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S.,
Appuswamy, R., Andreopoulos, A., et al. (2016). Convolutional
networks for fast, energy-efficient neuromorphic computing. Proc. Natl.
Acad. Sci. U.S.A. 113, 11441–11446. doi: 10.1073/pnas.1604850113

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., et al.
(2018). “Robust physical-world attacks on deep learning visual classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(Salt Lake City, UT: IEEE), 1625–1634.

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S.,
et al. (2012). Overview of the spinnaker system architecture. IEEE Trans. Comput.
62, 2454–2467. doi: 10.1109/TC.2012.142

Giraud, C., and Thiebeauld, H. (2004). “A survey on fault attacks,” in Smart
Card Research and Advanced Applications VI, eds J.-J. Quisquater, P. Paradinas, Y.
Deswarte, and A. A. El Kalam (Boston, MA: Springer U.S.), 159–176.

Khaddam-Aljameh, R., Stanisavljevic, M., Mas, J. F., Karunaratne, G., Braendli,
M., Liu, F., et al. (2021). “Hermes core-a 14nm cmos and pcm-based in-memory
compute core using an array of 300ps/lsb linearized cco-based adcs and local digital
processing,” in 2021 Symposium on VLSI Technology, 1–2.

Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D., et al. (2014).
Flipping bits in memory without accessing them: an experimental study
of dram disturbance errors. SIGARCH Comput. Archit. News 42, 361–372.
doi: 10.1145/2678373.2665726

Liang, L., Hu, X., Deng, L., Wu, Y., Li, G., Ding, Y., et al. (2020). Exploring
adversarial attack in spiking neural networks with spike-compatible gradient.
CoRR, abs/2001.01587. doi: 10.1109/TNNLS.2021.3106961

Liu, Q., Richter, O., Nielsen, C., Sheik, S., Indiveri, G., and Qiao, N. (2019). “Live
demonstration: face recognition on an ultra-low power event-driven convolutional
neural network asic,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (Long Beach, CA: IEEE).

Marchisio, A., Pira, G., Martina, M., Masera, G., and Shafique, M. (2021). “DVS-
attacks: adversarial attacks on dynamic vision sensors for spiking neural networks,”
in 2021 International Joint Conference on Neural Networks (IJCNN) (Shenzhen:
IEEE), 1–9.

Modas, A., Moosavi-Dezfooli, S., and Frossard, P. (2018). Sparsefool: a few pixels
make a big difference. CoRR, abs/1811.02248. doi: 10.1109/CVPR.2019.00930

Moosavi-Dezfooli, S., Fawzi, A., and Frossard, P. (2015). Deepfool: a simple
and accurate method to fool deep neural networks. CoRR, abs/1511.04599.
doi: 10.1109/CVPR.2016.282

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable multicore
architecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (dynaps). IEEE Trans. Biomed. Circ. Syst. 12, 106–122.
doi: 10.1109/TBCAS.2017.2759700

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient
learning in spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Mag. 36, 51–63.
doi: 10.1109/MSP.2019.2931595

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting
static image datasets to spiking neuromorphic datasets using saccades. Front.
Neurosci. 9, 437. doi: 10.3389/fnins.2015.00437

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017).
Conversion of continuous-valued deep networks to efficient event-driven networks
for image classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.00682

Sharmin, S., Rathi, N., Panda, P., and Roy, K. (2020). “Inherent adversarial
robustness of deep spiking neural networks: effects of discrete input encoding and
non-linear activations,” in European Conference on Computer Vision (Springer),
399–414.

Sorbaro, M., Liu, Q., Bortone, M., and Sheik, S. (2020). Optimizing the energy
consumption of spiking neural networks for neuromorphic applications. Front.
Neurosci. 14, 662. doi: 10.3389/fnins.2020.00662

Stutz, D., Chandramoorthy, N., Hein, M., and Schiele, B. (2020). Bit
error robustness for energy-efficient DNN accelerators. arXiv:2006.13977 [cs.LG].
doi: 10.48550/arXiv.2006.13977

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., et al. (2013). Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199. doi: 10.48550/arXiv.131
2.6199

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jordan, M.
(2019). “Theoretically principled trade-off between robustness and accuracy,” in
International Conference on Machine Learning (PMLR), 7472–7482.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.1068193
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1109/TNNLS.2021.3106961
https://doi.org/10.1109/CVPR.2019.00930
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2020.00662
https://doi.org/10.48550/arXiv.2006.13977
https://doi.org/10.48550/arXiv.1312.6199
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Adversarial attacks on spiking convolutional neural networks for event-based vision
	1. Introduction
	1.1. What is event-based sensing?
	1.2. Adversarial attacks on discrete data

	2. Related work
	3. Methods
	3.1. Attack strategies
	3.1.1. SparseFool on discrete data
	3.1.2. Adversarial patches

	3.2. Datasets
	3.3. Network models
	3.4. Experiments on the neuromorphic chip

	4. Results
	4.1. Adversarial attack performance
	4.2. Adversarial patches
	4.3. Defense via adversarial training

	5. Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


