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Abstract. Several inequalities have been established in the context of
Hilbert spaces operators or operators algebras. Our discussion will be
limited to matrices. Important inequalities in mathematics and other
sciences, such as Golden-Thompson inequality or von Neumann trace
inequality, and extensions, are revisited. Our main goal is to emphasize
the link between majorization theory and other relevant inequalities.
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1. Notation

N set of natural numbers
N0 set of nonnegative integer numbers
R set of real numbers
R+

0 set of nonnegative real numbers
C set of complex numbers
Rn vector space of real n-tuples
Cn vector space of complex n-tuples
‖ · ‖ Euclidean norm; spectral norm or operator norm
||| · ||| unitarily invariant norm
‖ · ‖(k) Ky Fan k-norm
‖ · ‖p Schatten p-norm
‖ · ‖2 Frobenius norm, Hilbert-Schmidt norm or Schur norm
Mn(C) algebra of n× n complex matrices

Mm×n(C) vector space of m× n complex matrices
Ωn set of n× n doubly stochastic matrices

A = (aij) matrix A with entries aij
A∗ adjoint of a matrix A
AT transpose of a matrix A
A entrywise conjugate of A
|A| unique positive semidefinite square root of A∗A
A∧k kth compound or kth antisymmetric tensor power of A
ρ(A) spectral radius of A
f(A) functional calculus applied to a function f
A ≥ 0 a positive semidefinite matrix A
A > 0 a positive definite matrix A
A ≥ B A−B ≥ 0

ReA (ImA) real (imaginary) part of A
tr(A) trace of a matrix A

det(A) determinant of a matrix A
λi(A) eigenvalue of A
λ1(A) largest eigenvalue of A if A is Hermitian
si(A) singular value of A
s1(A) largest singular value of A
In identity matrix of order n

A ◦B Hadamard product of matrices A and B
|x| absolute value vector (|x1|, . . . , |xn|)

x ≺ y x is majorized by y
x ≺w y x is weakly majorized by y
x ≺log y x is log-majorized by y
x ≺wlog y x is weakly log-majorized by y

]α α-weighted geometric mean for α ∈ [0, 1]
] geometric mean
σ operator connection
σ⊥ dual of an operator connection σ
fσ representing function of an operator connection σ
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Sn symmetric group of degree n
S(A,B) Umegaki relative entropy
X∼ X or XT

Hn set of n× n Hermitian matrices
HT
n set of n× n symmetric matrices

perA permanent of a matrix A
J Hermitian involutive matrix

σ±J (A) set of eigenvalues with eigenvectors x, such that x∗Jx = ±1
A ≥J B J(A−B) ≥ 0

2. Introduction

The concept of majorization was introduced by Hardy, Littlewood and Pólya
[43]. Since then various majorizations were obtained for the eigenvalues and
singular values of matrices and compact operators [72]. These majorizations
are powerful devices for the derivation of several norm inequalities, as well
as trace or determinant inequalities for matrices or operators. In this section,
we review in a concise way the majorization theory used throughout this
chapter.

Any vector x = (x1, . . . , xn) ∈ Rn is assumed to have its components
sorted in non-increasing order, that is, x1 ≥ · · · ≥ xn.

Let x, y ∈ Rn. We say that x is majorized by y and write x ≺ y if

k∑
i=1

xi ≤
k∑
i=1

yi, k = 1, . . . , n, (2.1)

and equality occurs in (2.1) for k = n. Further, if (2.1) holds, then x is said
to be weakly majorized or submajorized by y and the notation x ≺w y is used.
We remark that x ≺ y is equivalent to

n∑
i=k

xi ≥
n∑
i=k

yn, k = 1, . . . , n, (2.2)

with equality in (2.2) for k = 1. If (2.2) holds, then x is said to be superma-
jorized by y and we write x ≺w y.

Naively, vector majorization means that one vector is more disordered
than the other. For instance, a physics interpretation may be that x describes
a more chaotic state than y, thinking of xi as the probability of the system
described by x being in state i.

Two important resources on the topic of majorization are [21, 72].
A square matrix with non-negative entries is called doubly stochastic

if all its row and column sums are one. The class Ωn of doubly stochastic
matrices of order n is a convex set, whose extreme points are the permutation
matrices as stated by the famous Birkhoff’s Theorem [24]. In fact, there is a
close relation between majorization and doubly stochastic matrices [72].

Proposition 2.1. A matrix A ∈ Ωn if and only if Ax ≺ x for all x ∈ Rn.
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Proposition 2.2. For x, y ∈ Rn, the following statements are equivalent:

i. x ≺ y;
ii. x is in the convex hull of all the vectors obtained by permutating the

coordinates of y;
iii. x = Ay for some A ∈ Ωn.

For any real valued function f defined on an interval, containing all the
components of the real n-tuple x, we adopt the notation

f(x) =
(
f(x1), . . . , f(xn)

)
.

Proposition 2.3. Let x, y ∈ Rn and f be a convex function on an interval
containing all the components of x and y. Then

i. If x ≺ y , then f(x) ≺w f(y).

ii. If x ≺w y and f is also non-decreasing, then f(x) ≺w f(y).

Log-majorization can be defined as a multiplicative version of majoriza-
tion. If x, y ∈ Rn have nonnegative components, x ≺log y means that

k∏
i=1

xi ≤
k∏
i=1

yi, k = 1, . . . , n, (2.3)

and equality occurs in (2.3) for k = n. If x, y > 0, i.e., all the components of
x, y are positive, this is clearly equivalent to

n∏
i=k

xi ≥
n∏
i=k

yn, k = 1, . . . , n, (2.4)

with equality in (2.4) for k = 1. If x, y > 0, then

x ≺log y ⇔ log x ≺ log y,

this justifying the log-majorization terminology. When equality between the
products of all the componentes of x and y is not required, the following
parallel notations are used:

x ≺wlog y for (2.3) and x ≺wlog y for (2.4).

Proposition 2.4. Let x, y ∈ Rn have all the components positive and f be a
non-decreasing continuous function on an interval containing all the compo-
nents of x, y, such that f(et) is convex. Then

x ≺wlog y ⇒ f(x) ≺w f(y).

In particular, f(t) = t in the previous proposition shows that the weak
log-majorization ≺wlog is stronger than the weak majorization ≺w.
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3. Matrix majorization

If A = (aij), B = (bij) are m × n complex matrices, let A ◦ B = (aijbij) be
the Hadamard product of A and B. Let Mn(C) be the algebra of n-square
complex matrices and In be the identity matrix of order n. If A ∈ Mn(C),
then its eigenvalues are denoted by λ1(A), . . . , λn(A) and

ρ(A) = max
i=1,...,n

|λi(A)|

is the spectral radius of A. Further, considering the Euclidean norm ‖x‖ of a
vector x ∈ Cn, let

‖A‖ = max
‖x‖=1

‖Ax‖

be the spectral norm or operator norm of A. It is clear that

ρ(A) ≤ ‖A‖. (3.1)

If A ∈Mn(C) has real eigenvalues, denote by λ(A) the n-tuple of eigenvalues
of A arranged in non-increasing order:

λ1(A) ≥ · · · ≥ λn(A).

For A ∈ Mn(C), the unique positive semidefinite square root of A∗A is de-
noted by |A|. The eigenvalues of |A| are the singular values of A, which are
arranged in the vector s(A) as follows:

s1(A) ≥ · · · ≥ sn(A).

A norm ||| · ||| in Mn(C) is said to be unitarily invariant if |||UAV ||| = |||A|||
for any A,U, V ∈ Mn(C) with U, V unitary. Examples of unitarily invariant
norms are the Schatten p-norms given by

‖A‖p =

(
n∑
i=1

spi (A)

)1
p

=
(
tr |A|p

) 1
p , p ≥ 1,

and the Ky Fan k-norms defined by

‖A‖(k) =

k∑
i=1

si(A), k = 1, . . . , n,

including ‖A‖ = s1(A). The Schatten 2-norm

‖A‖2 =
√

tr(A∗A),

also called Frobenius norm, Hilbert-Schmidt norm or Schur norm, is the norm
induced by to the Frobenius or Hilbert-Schmidt inner product in Mn(C):

〈A,B〉 = tr(B∗A).

The notion of majorization gives a mean for comparing two probability
distributions or two density matrices, that is positive semidefinte matrices
of trace one, using the eigenvalues, in an elegant way. It arises in fields like
computer science, economics or quantum mechanics.

Important sources on majorization for eigenvalues and singular values
of matrices are [21, 46, 47, 55, 72] and two survey articles of T. Ando [2, 3].
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For simplicity, if A,B ∈Mn(C) have real eigenvalues, then λ(A) ≺ λ(B)
and λ(A) ≺w λ(B) are abreviated to A ≺ B and A ≺w B, respectively.

The main diagonal entries and the eigenvalues of a Hermitian matrix
are related through majorization. This classical result due to I. Schur [84]
can be briefly stated as follows.

Theorem 3.1. (Schur Majorization Theorem, 1923) If A ∈Mn(C) is Hermi-
tian, then In ◦A ≺ A.

In 1954, A. Horn [51] proved the converse, giving rise to the next funda-
mental result, which received considerable attention and led to generalizations
in several directions.

Theorem 3.2. (Schur-Horn Theorem) Let x, y ∈ Rn. There exists a Hermitian
matrix with prescribed diagonal entries and prescribed eigenvalues arranged,
respectively, in x and y if and only if x ≺ y.

After this, Horn’s subsequent work on the eigenvalues of sums of Hermi-
tian matrices culminated in the inequalities conjectured in [53]. The solution
to Horn’s conjecture appeared in two papers, one by A. Klyachko [60] (1998)
and the other one by A. Knutson and T. Tao [61] (1999).

Another relevant result in matrix majorization is due to Ky Fan [28].

Theorem 3.3. (Ky Fan Dominance Theorem, 1951) Let A,B ∈Mn(C). Then
the following are equivalent statements:

i. |A| ≺w |B|;
ii. |||A||| ≤ |||B||| for any unitarily invariant norm ||| · ||| in Mn(C).

If A,B ∈Mn(C) have nonnegative eigenvalues, A ≺log B stands for

λ(A) ≺log λ(B).

Abreviated notations for the weaker versions, involving either ≺wlog or ≺wlog,
are analogously used. Clearly, if A,B have positive eigenvalues, then

A ≺wlog B ⇔ B−1 ≺wlog A−1.

Matrix log-majorization is a powerful tool for establishing trace, determinan-
tal and matrix norm inequalities. For instance,

A ≺log B ⇒ det(In +A) ≤ det(In +B).

On the other hand, some classical determinantal inequalities can find their
majorization counterparts.

As usual, A > 0 means that A is a positive definite matrix and A ≥ B
means that A − B is a positive semidefinite matrix. Real-valued continuous
functions f defined on a real interval Γ, such that

A ≥ B ⇒ f(A) ≥ f(B)

for all Hermitian A,B ∈Mn(C) with spectra in Γ and all n ∈ N, are said to be
operator monotone on Γ. A useful and fundamental tool for treating operator
inequalities is Löwner-Heinz inequality. Löwner’s original proof [69] used an
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integral representation for operator monotone functions and an alternative
proof was given by Heinz [44]. It states that

A ≥ B ≥ 0 ⇒ Aα ≥ Bα, (3.2)

that is, f(t) = tα is operator monotone on R+
0 , for α ∈ [0, 1]. In general, (3.2)

is not true for α > 1.

For k = 1, . . . , n and nk =
(
n
k

)
, the kth compound or kth antisymmetric

tensor power of A ∈Mn(C) is the matrix A∧k ∈Mnk(C) with entries given by
the minors detA(i, j), where the index sets i, j ⊂ {1, . . . , n} have cardinality k
and are lexicographically ordered. As usual, A(i, j) denotes the submatrix of
A that lies in rows and columns indexed, respectively, by i, j. Some essential
properties of these matrices [21] are listed below:

P1. (AB)∧k = A∧kB∧k (Binet-Cauchy formula);

P2.
(
A∧k

)∗
= (A∗)∧k;

P3.
(
A∧k

)r
= (Ar)∧k, r > 0;

P4.
(
A∧k

)−1
= (A−1)∧k if A is invertible;

P5. λi
(
A∧k

)
=

k∏
j=1

λij (A), where i = (i1, . . . , ik) and 1 ≤ i1 < · · · < ik ≤ n;

P6. ‖A∧k‖ = s1
(
A∧k

)
=

k∏
j=1

sj (A), k = 1, . . . , n.

Thus, a useful tool in log-majorization is provided by the next lemma.

Lemma 3.4. Let A,B ∈ Mn(C) have nonnegative eigenvalues. The following
are equivalent:

i. A ≺log B;

ii. λ1
(
A∧k

)
≤ λ1

(
B∧k

)
, k = 1, . . . , n, and det(A) = det(B).

A basic log-majorization in matrix theory is Weyl’s relation between
eigenvalues and singular values [98]. Let |λ(A)| be the vector of the absolute
values of the eigenvalues of A ∈ Mn(C) arranged in non-increasing order of
magnitude:

|λ1(A)| ≥ · · · ≥ |λn(A)|.

Theorem 3.5. (Weyl’s Majorant Theorem, 1949) If A ∈Mn(C), then

|λ(A)| ≺log s(A). (3.3)

Proof. Use properties P5 and P6, after applying (3.1), that is,

ρ(A) = |λ1(A)| ≤ s1(A).



8 Bebiano, Lemos and Soares

to the kth antisymmetric tensor power of A, k = 1, . . . , n, and observe that∣∣∣∣∣
n∏
i=1

λi(A)

∣∣∣∣∣ = |det(A)| =
(
det(A) det(A)

)1
2 =

(
det(A∗A)

) 1
2 = det |A|

is the product of all the singular values of A. �

In 1954, A. Horn proved the converse [52], that is, there exists a square
matrix with prescribed eigenvalues and singular values arranged in vectors x
and y if the log-majorization |x| ≺log y is satisfied.

In the sequel, we illustrate the potential of using the previous antisym-
metric tensor power technique, also called Weyl trick, by using Lemma 3.4
to derive some other log-majorization for expressions involving products and
fractional matrix powers, having in mind that these “commute” with the kth
antisymmetric tensor power. As a consequence, some known results will be
revisited. Some classical inequalities for the trace and the determinant are
meanwhile surveyed in the next section.

4. Trace and determinantal inequalities

The von Neumann’s trace inequality was first published in 1937 by von Neu-
mann [96] with a complicated proof. Other proofs were given in 1959 and sub-
sequently in 1975, based on doubly stochastic matrices, by Mirsky [76, 77].
However, these proofs only work in the finite dimensional case. A simple proof,
which also extends to the infinite dimensional setting, was finally obtained
in 1991 by R. D. Grigorieff [41].

Theorem 4.1. (von Neumann’s inequality, 1937) Let A,B ∈Mn(C). Then

|tr(AB)| ≤
n∑
i=1

si(A)si(B)

and equality occurs if A,B share a joint set of singular vectors.

This result is an important tool with various applications in pure and
applied mathematics. For instance, just to mention a few, it is useful in
Schatten’s theory of cross spaces and in Ball’s approach of the equations of
nonlinear elasticity. Inspired by this famous inequality, further singular value
inequalities have been meanwhile derived, among them Horn’s multiplicative
inequalities (see, e.g. [72]).

Theorem 4.2. (Horn, 1950) If A,B ∈Mn(C), then

s(AB) ≺log s(A) ◦ s(B).

Proof. By the submultiplicativity of the operator norm, we have

s1(AB) = ‖AB‖ ≤ ‖A‖‖B‖ = s1(A)s1(B).
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Apply the antisymmetric tensor power technique to the previous inequality,
that is, replace A,B by their kth compounds, k = 1, . . . , n, and use P6.
Equality for k = n is immediate by properties of the determinants. �

Remark 4.3. For A,B ∈ Mn(C), Horn and Weyl’s log-majorizations stated
before, the second applied to the product AB, imply the corresponding weak
majorizations, so we easily find for k = 1, . . . , n that∣∣∣∣∣

k∑
i=1

λi(AB)

∣∣∣∣∣ ≤
k∑
i=1

|λi(AB)| ≤
k∑
i=1

si(AB) ≤
k∑
i=1

si(A)si(B). (4.1)

In particular, von Neumann trace inequality is obtained when k = n in (4.1).

In 1958, Richter [81] proved a related trace inequality for the product of
two Hermitian matrices. Other contributions in this vein are due to Marcus
[70], Mirsky [76] and Theobald [88]. Ruhe [82] reobtained it under the more
restrictive assumption of positive semidefiniteness of both matrices.

Theorem 4.4. If A,B ∈Mn(C) are Hermitian, then

n∑
i=1

λi(A)λn−i+1(B) ≤ tr(AB) ≤
n∑
i=1

λi(A)λi(B). (4.2)

We remark that the lower bound is an immediate consequence of the
upper bound in (4.2) with the Hermitian matrix B replaced by −B, since
λi(−B) = −λn−i+1(B), i = 1, . . . , n. Note that the previous inequality is a
matrix version of the following classical rearrangement inequality [43]. Let
Sn be the symmetric group of degree n of all permutations of {1, . . . , n}.

Theorem 4.5. (Hardy-Littlewood-Pólya rearrangement inequality, 1929) If
x, y ∈ Rn, then

n∑
i=1

xiyn−i+1 ≤
n∑
i=1

xiyσ(i) ≤
n∑
i=1

xiyi

for any permutation σ ∈ Sn.

Having in mind that the trace of a matrix is the sum of the eigenvalues
while the determinant is the product, we can think in “dual inequalities” in
the sense of replacing sums by products and products by sums. In fact, the
determinant of the sum of matrices has no simple relation with the determi-
nants of the summands. We recall some inequalities in this avenue. We start
with a remarkable result due to Fiedler [29], after the following remark.

Remark 4.6. A continuity argument will be repeatedly used, when possible,
along the proof of some of the results, involving eigenvalues of Hermitian
matrices. In such cases, we only need to prove the results for nonsingular ma-
trices. Otherwise, we may replace in the inequalities each nonsingular matrix
A by A+ εIn for ε > 0 and then take the limit as ε converges to 0.
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Theorem 4.7. If A,B ∈Mn(C) are Hermitian with eigenvalues α1 ≥ · · · ≥ αn
and β1 ≥ · · · ≥ βn, respectively, then

min
σ∈Sn

n∏
j=1

(
αj + βσ(j)

)
≤ det(A+B) ≤ max

σ∈Sn

n∏
j=1

(
αj + βσ(j)

)
.

If αn + βn ≥ 0, then the minimum is attained when σ is the identity permu-
tation and the maximum is attained when σ(j) = n− j + 1, j = 1, . . . , n.

Proof. If A and B commute, they are simultaneously unitarily diagonalizable
and the result easily follows. Otherwise, there exists U ∈Mn(C) unitary, such
that

det(A+B) = det(A0 + U∗B0U),

where A0, B0 are the diagonal forms of A,B. Since the unitary group is
compact and the determinant is continuous, det(A0 + V ∗B0V ) attains its
maximum and minimum values for some unitary matrix V ∈Mn(C). Take

Uε = eiεS = In + iεS +O(ε2),

where ε is a small quantity and S ∈ Mn(C) is Hermitian. Assuming that
A0 + V ∗B0V is nonsingular and calculating

det(A0 + U∗ε V
∗B0V Uε)

to the first order in ε, it can be easily shown that V ∗B0V commutes with the
inverse of A0 + V ∗B0V . Thus V ∗B0V commutes with A0 and the theorem
follows. If A0 + V ∗B0V is singular, then the result follows by a limiting
argument. �

Remark 4.8. A natural generalization of Fiedler’s Theorem would be the
following. If A,B ∈Mn(C) are normal matrices with eigenvalues α1, . . . , αn,
β1, . . . , βn, respectively, then det(A+B) lies in the convex hull of the products

n∏
j=1

(
αj + βσ(j)

)
, σ ∈ Sn.

This is Marcus-de Oliveira conjecture [71, 79], a longstanding open problem.

Concerning more general multiplicative inequalities, involving singular
values of matrices, we state Gel'fand-Naimark Theorem (see, e.g. [47, 72]).

Theorem 4.9. (Gel'fand-Naimark, 1950) For A,B ∈Mn(C),

k∏
j=1

sij (A) sn−ij+1(B) ≤
k∏
j=1

sj(AB), k = 1, . . . , n,

equivalently,

k∏
j=1

sij (AB) ≤
k∏
j=1

sj(A) sij (B), k = 1, . . . , n,

for 1 ≤ i1 < i2 < · · · < ik ≤ n, with equality for k = n.
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The next result [9, 21] has a simple proof, using majorization theory.

Theorem 4.10. If A,B ≥ 0 have eigenvalues a1 ≥ · · ·≥ an and b1 ≥ · · ·≥ bn,
respectively, then

n∏
j=1

(
a2j + b2j

)
≤ |det(A+ iB)|2 ≤

n∏
j=1

(
a2j + b2n−j+1

)
.

Proof. We may assume A,B > 0. We easily find that

|det(A+ iB)|2 = det(A)2 det
(
In + (A−1B)2

)
=

n∏
j=1

a2j

n∏
j=1

(
1 + λ2j (A

−1B)
)

and

λj(A
−1B) = s2j

(
A−

1
2B

1
2

)
, j = 1, . . . , n.

By Gel'fand-Naimark Theorem with A,B replaced by B
1
2 , A−

1
2 , respectively,

k∏
j=1

sn−j+1(A−
1
2 )sj(B

1
2 ) ≤

k∏
j=1

sj(A
− 1

2B
1
2 ) ≤

k∏
j=1

sj(A
− 1

2 )sj(B
1
2 )

hold for k = 1, . . . , n, with equality for k = n. Clearly,

s2n−j+1(A−
1
2 )s2j (B

1
2 ) =

bj
aj
, s2j (A

− 1
2 )s2j (B

1
2 ) =

bj
an−j+1

, j = 1, . . . , n.

Thus, the previous singular values inequalities are equivalent to(
b1
a1
, . . . ,

bn
an

)
≺log λ(A−1B) ≺log

(
b1
an
, . . . ,

bn
a1

)
.

Since the function f(x) = log(1 + x2) is a continuous increasing function
on (0,∞), such that f(et) is convex in t, by Proposition 2.4 applied to the
previous log-majorization, we obtain

n∑
j=1

log

(
1 +

b2j
a2j

)
≤

n∑
j=1

log
(
1 + λ2j (A

−1B)
)
≤

n∑
j=1

log

(
1 +

b2n−j+1

a2j

)
.

Thus,

n∏
j=1

(
1 +

b2j
a2j

)
≤

n∏
j=1

(
1 + λ2j (A

−1B)
)
≤

n∏
j=1

(
1 +

b2n−j+1

a2j

)
and the result easily follows. �

Remark 4.11. If one of the two matrices in Theorem 4.10 is not positive semi-
definite, the lower bound is not necessarily true. Indeed, let A,B be Hermitian
matrices with eigenvalues a1 = 1, a2 = −1 and b1 = 2, b2 = 1, respectively.
As Marcus-de Oliveira conjecture holds for n = 2, then det(A+ iB) is in the
line segment with endpoints −3− i and −3 + i, consequently, we have

3 ≤ |det(A+ iB)| ≤
√

10.
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If Theorem 4.10 was true, the lower bound of |det(A + iB)| would be
√

10,
but in the previous case the lower bound 3 is attained.

Now, considering the Cartesian decomposition A = ReA + i ImA of
A ∈Mn(C), where

ReA =
A+A∗

2
and ImA =

A−A∗

2i

are Hermitian matrices, the next corollary is easy to derive.

Corollary 4.12. If A ∈Mn(C) is such that ReA > 0 then

det |ReA| ≤ |detA| .

We remark that related inequalities are surveyed in [101, Section 3.4].

5. Golden-Thompson inequality and Araki’s log-majorization

For matrices A,B that commute, the following identity holds:

eA+B = eAeB .

In the noncommutative case, the situation is not so simple.
Let H,K be Hermitian matrices of the same order. It is obvious that

det
(
eH+K

)
= det

(
eH
)

det
(
eK
)
.

Furthermore, the following remarkable trace inequality, motivated by conside-
rations in statistical mechanics, states a relation between eH+K and eHeK ,
even when these matrices do not commute.

Theorem 5.1. (Golden-Thompson inequality, 1965) If H,K∈Mn(C) are Her-
mitian, then

tr
(
eH+K

)
≤ tr

(
eHeK

)
. (5.1)

Nowadays, (5.1) is a basic tool in quantum statistical mechanics. Some
historical aspects and its applications in random matrix theory are collected
in [30], including a not previously published proof due to Dyson. Golden [40]
proved (5.1) for positive semidefinite matrices and observed that it may be
used to get lower bounds for the Helmholtz free energy by partitioning the
Hamiltonian. C. J. Thompson [89] showed (5.1) for Hermitian matrices, in-
dependently of the semidefiniteness condition, and applied it to obtain an
upper bound for the partition function of an antiferromagnetic chain, that
is, for z = tr

(
e−βH

)
, where H is the Hamiltonian of the physical system and

β = 1/(kBT ), with kB the Boltzmann constant and T the absolute tempe-
rature. Symanzik [86] obtained (5.1) for particular selfadjoint Hilbert space
operators, in that context showing that the classical partition function is an
upper bound for the corresponding quantum partition function. Some dis-
cussion on Golden-Thompson inequality can also be found in the expository
blog post by Terence Tao [87].
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The direct extension of the Golden-Thompson inequality to three or
more matrices fails. Then if any two of the Hermitian matrices H,K,L com-
mute,

tr
(
eH+K+L

)
≤
∣∣tr (eHeKeL

)∣∣
obviously holds, but this is not true in general as the next counter-example,
due to C. J. Thompson [90], shows.

Example. Consider the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
,

the real vector a = (a1, a2, a3) and the matrix A = a1σ1 + a2σ2 + a3σ3. Then

eA = cosh ‖a‖ I2 +
sinh ‖a‖
‖a‖

I2.

Here ‖a‖ is the Euclidean norm of a. For ε ∈ R \ {0}, let

H = εσ1, K = εσ2, L = ε(σ3 − σ2 − σ1).

In this case,
tr
(
eH+K+L

)
= 2 cosh ε

and, after some calculations, we find∣∣tr (eHeKeL
)∣∣ = 2 cosh ε

(
1− ε4

12
+O(ε6)

)
.

Therefore, for ε small enough, we have∣∣tr (eHeKeL
)∣∣ < tr

(
eH+K+L

)
.

Nevertheless, there is a nontrivial generalization of Golden-Thompson
inequality to a triple of Hermitian matrices by Lieb [67], as well as recent
multivariate versions [42, 85].

We notice in passing the interesting related result due to R. C. Thomp-
son [91]: if H,K are Hermitian matrices, then

eiHeiK = ei(UHU
∗+V KV ∗),

for some unitary matrices U, V . This result has application in quantum com-
puting. We observe that Thompson’s result was obtained before the long-
standing Horn’s conjecture on eigenvalues of sums of Hermitian matrices has
been solved (see [20] for more details).

Several trace inequalities may be strengthened in the set up of ma-
jorization. This is the case of the Golden-Thompson inequality. In fact, it
was proved by Lenard [66] and Thompson [90] that

eH+K ≺w e
H
2 eKe

H
2

holds for Hermitian matrices H,K.
Closely related, Araki [7] obtained a log-majorization presented in the

next theorem that extends the Lieb-Thirring trace inequality:

tr (AB)r ≤ tr
(
ArBr

)
, r ∈ N,
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for A,B ≥ 0, firstly used to derive inequalities for the moments of the eigen-
values of the Schrödinger Hamiltonian [68].

Theorem 5.2. (Araki’s log-majorization, 1990) Let A,B ≥ 0. Then

(A
1
2BA

1
2 )r ≺log A

r
2BrA

r
2 , r ≥ 1, (5.2)

or equivalently

(A
q
2BqA

q
2 )

1
q ≺log

(
A
p
2BpA

p
2

) 1
p

, 0 < q ≤ p. (5.3)

Proof. It is clear that (A
1
2BA

1
2 )r and A

r
2BrA

r
2 have the same determinant.

Assuming A invertible, let us prove that

λ1((A
1
2BA

1
2 )r) ≤ λ1(A

r
2BrA

r
2 ). (5.4)

To do so we may prove that A
r
2BrA

r
2 ≤ In implies that A

1
2BA

1
2 ≤ In,

because both sides of (5.4) have the same order of homogeneity for A and
B, so that we can multiply A,B by a positive constant. Since Br ≤ A−r, for
r ≥ 1, then Löwner-Heinz inequality implies B ≤ A−1. If A is not invertible,
by a continuity argument, we obtain (5.4). By properties P1 and P3, then

(A∧k)
r
2 (B∧k)r(A∧k)

r
2 = (A

r
2BrA

r
2 )∧k,(

(A∧k)
1
2 (B∧k)(A∧k

) 1
2 )r =

(
(A

1
2BA

1
2 )r
)∧k

.

Hence, (5.2) follows from (5.4) applied to the matrices A∧k,B∧k, k = 1, . . . , n,
using Lemma 3.4.

For 0 < p ≤ q, we may replace A and B by Aq, Bq and take r = p/q in
(5.2) so that (5.3) follows. �

Araki’s log-majorization readily implies the next trace inequality.

Corollary 5.3. (Araki-Lieb-Thirring inequality) If A,B ≥ 0, r ≥ 1 and s > 0,
then

tr
(
A

1
2BA

1
2

)rs ≤ tr
(
A
r
2BrA

r
2

)s
.

The next extension of Golden-Thompson inequality is now easy to de-
rive, as observed by Ando and Hiai [5].

Corollary 5.4. If H,K∈Mn(C) are Hermitian and p > 0, then

eH+K ≺log

(
e
pH
2 epKe

pH
2

) 1
p . (5.5)

Proof. Consider A = eH and B = eK in (5.3). Further, have in mind the
continuous parameter version of Lie-Trotter formula [5, Lemma 1.6]:

lim
q→0

(
e
qH
2 eqKe

qH
2

) 1
q = eH+K

and the result follows. �
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Let H,K be Hermitian matrices. If p = 1, then (5.5) can be written as

eH+K ≺log eHeK , (5.6)

since e
H
2 eKe

H
2 and eHeK have the same eigenvalues. From the previous re-

sults, we can see that Golden-Thompson inequality is strengthened to∣∣∣∣∣∣eH+K
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(e pH2 epKe

pH
2

) 1
p
∣∣∣∣∣∣, p > 0,

for any unitarily invariant norm, and the right hand side decreases to the left
hand side as p converges to 0.

6. Ando-Hiai Inequality

The axiomatic theory of operator connections was developed by F. Kubo
and T. Ando [62]. A matrix connection of order n is a binary operation σ
on the cone of positive semidefinite matrices in Mn(C), satisfying for any
A,B,C,D,Ak, Bk ≥ 0:

C1. (joint monotonicity) A ≤ C and B ≤ D ⇒ AσB ≤ C σD;

C2. (transformer inequality) X∗(AσB)X ≤ (X∗AX)σ (X∗BX) for any
X ∈Mn(C);

C3. (joint continuity from above) Ak ↓ A and Bk ↓ B ⇒ Ak σ Bk ↓ AσB,

where Ak ↓ A means that A1 ≥ A2 ≥ · · ·Ak ≥ · · · and Ak converges strongly
to A as k → ∞. An operator connection is a matrix connection of every
order n ∈ N. An operator mean is an operator connection σ, satisfying the
normalization property In σ In = In. For instance, for α ∈ [0, 1],

A∇αB = (1− α)A+ αB and A!αB =
(
(1− α)A−1 + αB−1

)−1
are the weighted arithmetic and harmonic means, respectively; AwlB = A
and AwrB = B are the left and right trivial operator means, respectively.

Kubo and Ando proved that there is a one-to-one correspondence be-
tween operator connections and operator monotone functions on R+

0 .

Theorem 6.1. [62] For each operator connection σ, there exists a unique ope-
rator monotone function f : R+

0 → R+
0 , satisfying

f(t) In = In σ (tIn), t > 0,

and for A,B > 0 the formula

AσB = A
1
2 f
(
A−

1
2BA−

1
2

)
A

1
2

holds, with the right hand side defined via functional calculus, and extended
to A,B ≥ 0 as follows

AσB = lim
ε→0+

(A+ εIn)σ (B + εIn).
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Let α ∈ [0, 1]. In particular, associated with the operator monotone
function f(t) = tα, the α-weighted geometric mean is

A]αB = A
1
2

(
A−

1
2BA−

1
2

)α
A

1
2 .

It is easy to see that A]αB = B]1−αA and when A commutes with B, then
A]αB = A1−αBα. The geometric mean, simply denoted by ], is the mean
corresponding to f(t) = t

1
2 . It is the unique positive semidefinite solution of

the Riccati equation XA−1X = B, also characterized [80] as

A]B = max

{
X ∈ Hn :

[
A X
X B

]
≥ 0

}
. (6.1)

Further, there is a unitary matrix U such that A]B = A
1
2UB

1
2 .

Ando and Hiai [5] proved the following interesting result, concerning the
weighted geometric mean.

Theorem 6.2. (Ando-Hiai inequality, 1994) For A,B ≥ 0 and α ∈ [0, 1],

Ar]αB
r ≺log (A]αB)r, r ≥ 1, (6.2)

or, equivalently, (
Ap]αB

p
)1
p ≺log

(
Aq]αB

q
)1
q , 0 < q ≤ p. (6.3)

Proof. If 1 ≤ r ≤ 2, then r = 1 + ε with ε ∈ [0, 1]. Suppose

A]αB ≤ In. (6.4)

Let C = A−
1
2BA−

1
2 . By continuity, we may assume that A,B are invertible.

It follows from (6.4) that A ≤ C−α. By Löwner-Heinz inequality, we have
Aε ≤ C−αε. In this case,

Ar]αB
r = A

1
2

(
Aε ]α

(
(CAC) ]1−ε C

))
A

1
2

≤ A 1
2

(
C−αε ]α

(
(C2−α ]1−ε C

))
A

1
2

= A
1
2CαA

1
2 = A]αB,

by the joint monotonicity of the weighted geometric means ]α and ]1−ε.
Therefore, Ar]αB

r ≤ In. We have just proved that λ1(A]αB) ≤ 1 implies
λ1(Ar]αB

r) ≤ 1. Thus,

λ1(Ar]αB
r) ≤ λ1(A]αB)r

and applying the antisymmetric tensor power trick, having also in mind that

det
(
Ar]αB

r
)

= det(A]αB)r,

then (6.2) holds for 1 ≤ r ≤ 2. If r > 2, then r = 2ms for m ∈ N and
1 ≤ s ≤ 2. By repeated use of the above case, we find that

A2ms]αB
2ms≺log

(
A2m−1s]αB

2m−1s
)2
≺log · · · ≺log

(
As]αB

s
)2m≺log (A]αB)2

ms.

This proves that (6.2) also holds for r > 2. Now, for 0 < q ≤ p, the result
easily follows. �
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The following corollary complements the previous log-majorizations of
Golden-Thompson type [5].

Corollary 6.3. If H,K are Hermitian matrices and α ∈ [0, 1], then(
epH]αepK

)1
p ≺log e(1−α)H+αK , p > 0.

Proof. Consider (6.3) applied to A = eH and B = eK , then use

lim
q→0

(
eqH]αeqK

)1
q = e(1−α)H+αK ,

that is, the Lie-Trotter like formula for the weighted geometric mean obtained
in [45, Lemma 3.3]. �

The corresponding inequality for unitarily invariant norms holds, with
the left hand side norm decreasing to the right hand side as p converges to 0.

A celebrated development of Löwner-Heinz inequality established by
T. Furuta [35] is the next order preserving operator inequality, which was
motivated by a previous conjecture by Chan and Kwong [25].

Theorem 6.4. (Furuta inequality, 1987) Let A ≥ B ≥ 0. Then

A
p+r
q ≥

(
A
r
2BpA

r
2

) 1
q and

(
B
r
2ApB

r
2

) 1
q ≥ B

p+r
q (6.5)

hold for r ≥ 0, p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r.

The case of p, q, r all equal to 2 in (6.5) affirmatively answers Chan and
Kwong’s conjecture:

A ≥ B ≥ 0 ⇒ A2 ≥
(
AB2A

) 1
2 .

Furuta and many other researchers refined and generalized (6.5) and applied
these results to produce new inequalities [36].

The essential part of Furuta inequality is the case q = p+r
1+r , which can be

formulated for invertible A, using the weighted geometric mean, as follows:

A ≥ B ≥ 0 ⇒ A−r] 1+r
p+r

Bp ≤ A, p ≥ 1, r ≥ 0. (6.6)

Fujii and Kamei [33] showed that Ando-Hiai inequality is equivalent to Furuta
inequality. Next, we show this direct implication. Indeed, let A ≥ B > 0 and
p ≥ 1. Firstly, if 0 ≤ r ≤ 1, then Ar ≥ Br by Löwner-Heinz inequality.
Consequently,

A−r] r
p+r

Bp ≤ B−r] r
p+r

Bp = In.

On the other hand, for r > 1, observe that A−1 ≤ B−1 yields

A−1] r
p+r

B
p
r ≤ B−1] r

p+r
B
p
r = In

and so Ando-Hiai inequality implies that

A−r] r
p+r

Bp ≤ In.

Therefore, for any r ≥ 0 we find that

A−r] 1+r
p+r

Bp =
(
A−r] r

p+r
Bp
)
] 1
p
Bp ≤ In ] 1

p
Bp = B ≤ A,
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that is, the essential part of Furuta inequality (6.6) holds. The remaining
part follows readily from Löwner-Heinz inequality.

Extensions of Furuta inequality and Ando-Hiai log-majorization were
given by Furuta [37] and afterwards by other authors. Nowadays, the multi-
variate geometric mean as settled in [22, 78], following a Riemannian geo-
metric approach, is often called the Karcher mean [63]. It is also called
Cartan mean and Riemannian mean. Extensions of Ando-Hiai inequality
to the Karcher mean and generalized Karcher mean are due to Yamazaki
[99, 100]. Other Ando-Hiai type inequalities have meanwhile been obtained.
See the recent works by Hiai, Seo and Wada [49, 50], Kian, Moslehian and
Seo [57, 58, 59] and references therein.

7. BLP and Matharu-Aujla inequalities

Using the previous techniques of Ando and Hiai, Bebiano, Lemos and Provi-
dência [12, Theorem 2.1] obtained the next log-majorization of Araki’s type.

Theorem 7.1. (BLP inequality, 2005) For A,B ≥ 0,

A
1+q
2 BqA

1+q
2 ≺log A

1
2

(
A
r
2BrA

r
2

) q
rA

1
2 , 0 < q ≤ r. (7.1)

Proof. The equality of the determinants is clear. It is enough to prove that

λ1

(
A

1+q
2 BqA

1+q
2

)
≤ λ1

(
A

1
2

(
A
r
2BrA

r
2

) q
rA

1
2

)
(7.2)

when A is invertible, otherwise a continuity argument is used. Assume that

A
1
2

(
A
r
2BrA

r
2

) q
rA

1
2 ≤ In,

that is,

A−1 ≥
(
A
r
2BrA

r
2

) q
r ≥ 0.

By Furuta inequality, since r > 0, r
q ≥ 1 and (1 + r) rq ≥

r
q + r, we find

A−(1+q) = A−
r/q+r
r/q ≥

(
A−

r
2

(
A
r
2BrA

r
2

) q
r
r
qA−

r
2

) q
r = Bq,

that is,

A
1+q
2 BqA

1+q
2 ≤ In

and then (7.2) holds. Using Lemma 3.4, the result follows from (7.2) replacing
A,B byA∧k,B∧k, respectively, for k = 1, . . . , n, by properties P1, P3, P5. �

For convenience of notation, for α ∈ R, let

A\αB = A
1
2 (A−

1
2BA−

1
2 )αA

1
2

which is just the α-weighted geometric mean of A,B ≥ 0 when α ∈ [0, 1].

Corollary 7.2. If A,B > 0 and 1 ≤ α ≤ 2, then

A1−αBα ≺log A\αB.
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Proof. The case α = 1 is trivial. For α > 1, let q = α− 1, r = 1, replace A,B
by B,A−1, respectively, in Theorem 7.1 and note that B \1−αA = A\αB. �

A. Matsumoto, R. Nakamoto and M. Fujii [75, Theorem 1] proved that∥∥A s+q
2 BqA

s+q
2

∥∥ ≤ ∥∥A s
2 (A

p
2BpA

p
2 )

q
pA

s
2

∥∥, 0 < q ≤ p, s ≥ 0, (7.3)

for A,B ≥ 0, which reduces to Araki-Cordes inequality [31] if s = 0. They
also proved (7.3) with the reverse inequality sign if 0 ≤ s ≤ p ≤ q and p > 0
[75, Theorem 2]. Furuta [39, Corollary 3.1 iii.] obtained a norm inequality,
that yields the reverse of (7.3) for 0 ≤ q ≤ p and −s ≥ q (see [64, p.28]).
These norm inequalities can be restated as follows.

Theorem 7.3. Let A,B ≥ 0. If 0 < q ≤ p and s ≥ 0, then

A
s+q
2 BqA

s+q
2 ≺log A

s
2

(
A
p
2BpA

p
2

) q
pA

s
2 . (7.4)

If either 0 ≤ s ≤ p ≤ q and p > 0 or 0 ≤ q ≤ p and −s ≥ q, then (7.4) holds
with reversed log-majorization.

Araki’s log-majorization is obtained if s = 0 and BLP inequality if s = 1.

Corollary 7.4. If A > 0, B ≥ 0 and α ≥ 2, then

A\αB ≺log A
1−αBα.

Proof. Let q = α− 1, p = s = 1 and replace A,B by B,A−1, respectively, in
Theorem 7.3. �

Clearly, if α = 2, the matrices in both hand sides of the log-majorizations
given in Corollary 7.2 and Corollary 7.4 have the same eigenvalues.

The Umegaki relative entropy [92] of the density matrices A,B is

S(A,B) = tr (A (logA− logB)).

Fujii and Kamei [32] introduced the variant

Ŝ(A|B) = A
1
2 log (A−

1
2BA−

1
2 )A

1
2 .

A logarithmic trace inequality [64] is now presented.

Theorem 7.5. Let A,B > 0. If q, s ≥ 0, then

tr (As (logAq + logBq)) ≤ tr
(
As log (A

p
2BpA

p
2 )

q
p
)
, p > 0, (7.5)

and the left hand side converges to the right hand side as p converges to 0.

Proof. The log-majorization (7.4) implies the trace inequality

tr (AsAqBq) ≤ tr
(
As(A

p
2BpA

p
2 )

q
p
)
, 0 ≤ q ≤ p, s ≥ 0,

occuring trace equality when q = 0. Taking the derivatives of the right and
left hand sides of the previous inequality at q = 0, observing that

d

dq

(
AqBq

)∣∣
q=0

= logA+ logB, (7.6)
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d

dq

(
(A

p
2BpA

p
2 )

q
p
)∣∣
q=0

= log
(
A
p
2BpA

p
2

) 1
p

, p > 0, (7.7)

yields a trace inequality. Multiplying both hand sides of the obtained trace
inequality by q provides (7.5). By the parametric Lie-Trotter formula, we
may see that (7.7) converges to (7.6) as p converges to 0. �

The case q = s = 1 in Theorem 7.5 is due to Hiai and Petz [45]. It was
later complemented in [5]. Using relative entropy terminology, Theorem 7.5
for q = s, replacing B by B−1, may be written in the condensed form

S(As, Bs) ≤ −s
p

tr
(
Ŝ(Ap|Bp)As−p

)
, s ≥ 0, p > 0,

this providing an upper bound for the relative entropy S(A,B) when s = 1.

Fujii, Nakamoto and Tominaga [34] improved BLP inequality as follows.

Theorem 7.6. If A,B ≥ 0, p ≥ 1, q ≥ 0, then∥∥A 1+q
2 B1+qA

1+q
2

∥∥ p+q
p(1+q) ≤

∥∥A 1
2

(
A
q
2Bq+pA

q
2

) 1
pA

1
2

∥∥.
The next log-majorization [73] is obtained from Furuta inequality too.

Theorem 7.7. (Matharu-Aujla inequality, 2012) Let A,B ≥ 0 and 0 ≤ α ≤ 1,
then

A]αB ≺log A
1−αBα.

Proof. If α = 0 or α = 1, the result is trivial. Let 0 < α < 1. Clearly, A]αB
and A1−αBα have the same determinant. Let us prove that

λ1(A]αB) ≤ λ1(A1−αBα). (7.8)

If A is invertible and λ1(A1−αBα) ≤ 1, then

A−(1−α) ≥ Bα.

By Furuta inequality with p = q = 1
α ≥ 1 and r ≥ 0, we find(

A−(1−α)
)1+αr ≥ ((A−(1−α)) r2B (A−(1−α)) r2)α .

Taking r = 1
1−α yields

A−1 ≥
(
A−

1
2BA−

1
2

)α
,

so that λ1(A]αB) ≤ 1 holds. If A is not invertible, by a continuity argument,
(7.8) is obtained. Using Lemma 3.4, the result follows from (7.8) replacing
A,B byA∧k,B∧k, respectively, for k = 1, . . . , n, by properties P1, P3, P5. �

Furuta considered other operator inequalities implying the generalized
BLP inequality [38] as well as Matharu-Aujla inequality [39].
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8. Inequalities for operator connections

In this section, some inequalities involving operators conections are presented.
For that purpose, we recall that the dual of a nonzero operator connection σ
is the operator connection σ⊥ defined by

Aσ⊥B =
(
B−1σ A−1

)−1
for A,B > 0 and extended by continuity to A,B ≥ 0 as usual. Its representing
function satisfies

fσ⊥(t) = t/fσ(t), t > 0.

In the sequel, for C,X ∈Mn(C) the condensed notation X∼ stands for
X or XT , whereas C ∈ H∼n means that if the symbol ∼ is omitted along the
stated result, then C is assumed Hermitian, and if ∼ acts as the transpose
along the result, then C is assumed symmetric.

Theorem 8.1. Let A,B ≥ 0 and C ∈ H∼n . If the representing functions of the
nonzero operator connections σ, τ, ρ satisfy f2σ ≤ fτfρ, then

s1
(
(Aτ⊥B)

1
2C∗(AσB)∼C (Aρ⊥B)

1
2

)
≤ λ1(AC∗B∼C). (8.1)

Proof. For C Hermitian, there exists U unitary, such that U∗CU = D is real
diagonal and it is enough to prove that

s1
(
(Aτ⊥B)

1
2D(AσB)D (Aρ⊥B)

1
2

)
≤ λ1(ADBD),

since we may replace A,B by U∗AU,U∗BU , respectively, and apply the trans-
former inequality. If C is symmetric, by Takagi’s factorization [54, Corollary
4.4.4], there exist V unitary and D diagonal with the singular values of C in
its main diagonal, such that C = V D V T . In this case, we need to show that

s1
(
(Aτ⊥B)

1
2D(AσB)TD (Aρ⊥B)

1
2

)
≤ λ1(ADBTD)

from which the result follows, replacing A,B by V TAV , V TBV , respectively.
Thus, assuming D to be a real diagonal matrix, we will check that

λ1(ADB∼D) ≤ 1 ⇒ s1
(
(Aτ⊥B)

1
2D (AσB)∼D (Aρ⊥B)

1
2

)
≤ 1. (8.2)

Firstly, let A,B > 0. If λ1(ADB∼D) ≤ 1, equivalently, λ1(DA∼DB) ≤ 1,
then DA∼D ≤ B−1 and DB∼D ≤ A−1. By the transformer inequality C2
and the joint monotonicity C1, we find

D (Aρ⊥B)∼D = D
(
A∼ρ⊥B∼

)
D ≤ (DA∼D) ρ⊥(DB∼D)

≤ B−1ρ⊥A−1

= (AρB)−1

Analogously, D (Aτ⊥B
)∼
D ≤ (Aτ B)−1. Under the hypothesis, we see that

A
1
2 fσ(M)

(
fρ(M)

)−1
fσ(M)A

1
2 ≤ A

1
2 fτ (M)A

1
2 = Aτ B, (8.3)

where M = A−
1
2BA−

1
2 . Therefore

λ1
(
(AσB)(AρB)−1(AσB)(Aτ B)−1

)
≤ 1. (8.4)
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Moreover,

s1
(
(Aτ⊥B)

1
2D (AσB)∼D (Aρ⊥B)

1
2

)
is equal to the square root of

λ1
(
(AσB)D (Aρ⊥B)∼D (AσB)D (Aτ⊥B)∼D

)
. (8.5)

Now, it is clear that (8.5) is not greater than (8.4) and the implication (8.2)
holds. If A,B ≥ 0, by a continuity argument, the result is obtained. �

If the nonzero operator connections σ, τ, ρ satisfy f2σ ≥ fτfρ, then (8.1)
holds with each connection replaced by its dual [65].

Applying Theorem 8.1 for A,B ≥ 0, C ∈ H∼n and σ ≤ τ = ρ yields

λ1
(
(Aτ⊥B)C∗(AσB)∼C

)
≤ λ1(AC∗B∼C). (8.6)

If τ = σ and ∼ is absent, this was observed in [64, Theorem 2.1] for C ≥ 0.

Corollary 8.2. If A,B ≥ 0, C ∈ H∼n and σ is a nonzero operator connection,
then

(A]B)C∗(A]B)∼ C ≺log

∣∣(Aσ⊥B)
1
2 C∗(A]B)∼ C (AσB)

1
2

∣∣
≺log (Aσ⊥B)C∗(AσB)∼ C.

Proof. We can see that

λ1
(
(A]B)C∗(A]B)∼C

)
≤ s1

(
A

1
2 C∗(A]B)∼C B

1
2

)
≤ λ1(AC∗B∼C).

(8.7)
The last inequality in (8.7) is the case τ, ρ as the trivial operator means wl, wr
and σ = ] in Theorem 8.1. The first inequality in (8.7) follows after taking
square roots of the obtained eigenvalues from the case τ = σ = ] with ∼

deleted in (8.6), then replacing C by C∗(A]B)∼C. Applying Weyl’s trick to
(8.7) and observing the equality of the determinants of the matrices involved,
a log-majorization is obtained. Next, replace A by Aσ⊥B, B by AσB in that
log-majorization and use the identity (Aσ⊥B) ] (AσB) = A]B. �

Corollary 8.3. If A,B ≥ 0, C ∈ H∼n and 0 ≤ α ≤ β ≤ 1, then∣∣(A]1−αB)
1
2 C∗(A] β

2
B)∼ C (A]1+α−βB)

1
2

∣∣ ≺log AC∗B∼ C. (8.8)

Proof. If σ = ] β
2
, τ = ]α, ρ = ]β−α in Theorem 8.1, since β −α ∈ [0, 1], then

s1
(
(A]1−αB)

1
2 C∗(A] β

2
B)∼ C (A]1+α−βB)

1
2

)
≤ λ1(AC∗B∼ C).

Replace A,B,C by their kth compounds and apply properties P1-P6. The
determinants of the matrices in both hand sides of (8.8) are equal. �

Remark 8.4. Let A,B ≥ 0, C ∈ H∼n and α ∈ [0, 1]. If σ = ]α in Corollary 8.2
and β = 1 in Corollary 8.3, then∣∣(A]1−αB)

1
2 C∗(A]B)∼ C (A]αB)

1
2

∣∣
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is log-majorized by (A]1−αB)C∗(A]αB)∼ C and AC∗B∼ C, respectively,
being these two matrices related as follows:

(A]1−αB)C∗(A]αB)∼ C ≺log AC∗B∼C (8.9)

as a consequence of applying Weyl’s trick to (8.6) when σ = τ = ]α. In
particular, this implies the next trace inequality observed by Bhatia, Lim
and Yamazaki [23]:

tr
(
(A]1−αB)(A]αB)

)
≤ tr (AB).

The question on whether it is possible to extend (8.9) to

(Aσ⊥B)C∗(AσB)∼ C ≺log AC∗B∼C

for other operator connections σ naturally arises.

Theorem 8.5. If A,B ≥ 0 and r ∈ N0, then

(A]B)r+1 ≺log |A
1
2 (A]B)rB

1
2 | ≺log (AB)

r+1
2 .

Proof. We can check that

λ1(A]B)2(r+1) ≤ λ1
(
A (A]B)rB (A]B)r

)
≤ λ1(AB)r+1. (8.10)

The first inequality in (8.10) follows from (8.7) when the symbol ∼ is absent
and C = (A]B)r. Concerning the second, if A > 0 and λ1(AB)r+1 ≤ 1, then
B ≤ A−1 implies

(A]B)B (A]B) ≤ (A]B)A−1(A]B) = B ≤ A−1.

By induction on r ∈ N0, we easily prove that (A]B)rB (A]B)r≤ A−1, so

λ1
(
A (A]B)rB (A]B)r

)
≤ 1.

Thus, the last inequality in (8.10) is true. By continuity, it remains valid for
A ≥ 0. After applying Weyl’s trick to (8.10), the obtained log-majorization
implies the log-majorization between the corresponding square roots. �

If A,B ≥ 0, the last log-majorization in Theorem 8.5 and AB ≺log |AB|
which follows readily from Weyl’s Majorant Theorem yield

k∏
i=1

si
(
A

1
2 (A]B)rB

1
2

)
≤

k∏
i=1

s
r+1
2

i (AB), k = 1, . . . , n,

for r ∈ N0. If r = 1, these inequalities were obtained by Zou [102].

Conjecture 8.6. If A,B ≥ 0 then∣∣Aα(A]αB)B1−α∣∣ ≺log |AB|

for all α ∈ [0, 1].



24 Bebiano, Lemos and Soares

9. Ando and Visick’s inequalities for the Hadamard product

In this section, Ando and Visick’s inequalities [4, 94] for the Hadamard pro-
duct of positive definite matrices, which settled affirmatively Bapat and John-
son’s conjecture [56], are revisited and weighted interpolations are presented.

We recall that a map Φ : Mm(C) → Mn(C) is called positive if A ≥ 0
implies Φ(A) ≥ 0 and it is called unital if Φ(Im) = In.

Lemma 9.1. [1] If Φ : Mm(C) → Mn(C) is a unital positive linear map and
f is operator monotone on R+

0 , then

f(Φ(A)) ≥ Φ(f(A)), A ≥ 0.

The proof presented below of Ando and Visick’s inequalities follows
Ando’s arguments [4]. We state these results in the following condensed form,
where ∼ is either omitted or acts as the transpose.

Theorem 9.2. If A,B > 0, then A ◦B ≺wlog AB∼, that is,
n∏
i=k

λi(A ◦B) ≥
n∏
i=k

λi(AB
∼), k = 1, . . . , n. (9.1)

Proof. There exits a unital positive linear map Φ such that Φ(X⊗Y ) = X◦Y
for all X,Y ∈Mn(C). For A,B > 0,

log(A⊗B) = logA⊗ In + In ⊗ logB.

Then H = logA, K = logB are Hermitian and

Φ
(

log(A⊗B)
)

= H ◦ In + In ◦K = In ◦ (H +K).

Using Lemma 9.1 with f(t) = log t, t > 0, we have

log
(
Φ(A⊗B)

)
= log(A ◦B) ≥ In ◦ (H +K).

By Schur Majorization Theorem, In ◦ (H +K) ≺ H +K holds, as H +K is
Hermitian. Therefore,

n∑
i=k

λi(log(A ◦B)) ≥
n∑
i=k

λi(In ◦ (H +K)) ≥
n∑
i=k

λi(H +K)

for k = 1, . . . , n. It follows that
n∏
i=k

λi(A ◦B) ≥
n∏
i=k

eλi(In◦(H+K)) ≥
n∏
i=k

eλi(H+K) =

n∏
i=k

λi
(
eH+K

)
≥

n∏
i=k

λi(e
HeK) =

n∏
i=k

λi(AB), k = 1, . . . , n.

The last inequality is a consequence of the Golden-Thompson type log-ma-
jorization (5.6). Then (9.1) with ∼ deleted is proved.

Since K and KT have the same diagonal entries, In ◦ (H +K) may be
replaced by In ◦ (H +KT ) in the proof above. In such case, eHeK is replaced

by eHeK
T

= ABT and (9.1) with ∼ acting as the transpose is fullfilled. �
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Remark 9.3. For A,B > 0, by the Lie-Trotter formula, we have

lim
p→0

(
ApBp

) 1
p = elogA+logB

and a Lie-Trotter type formula for the Hadamard product [97] is

lim
p→0

(
Ap ◦Bp

) 1
p = eIn◦(logA+logB)

(see also [95, Theorem 1]). According to the previous proof, we can write

A ◦B ≺wlog lim
p→0

(
Ap ◦Bp

) 1
p ≺wlog lim

p→0

(
Ap(B∼)p

) 1
p ≺log AB

∼.

Moreover, for A,B > 0 and r > 0, Visick [94] obtained

n∑
i=k

λi(A ◦B)−r ≤
n∑
i=k

λi
(
AB∼

)−r
, k = 1, . . . , n,

and deduced Theorem 9.2 from it. In fact, this is equivalent to Theorem 9.2
as shown by Bebiano and Perdigão [10]. One of the implications is a trivial
consequence of the following limit:

lim
r→0

λ−r − 1

r
= −log λ, λ > 0.

To prove the other, note that (9.1) implies

(A ◦B)−1 ≺wlog (AB∼)−1.

Considering the function f(t) = log(1+ ε ert), which is convex and increasing
for t > 0, with ε, r > 0, by Proposition 2.3 ii, we obtain

n∏
i=k

(
1 + ε λi(A ◦B)−r

)
≤

n∏
i=k

(
1 + ε λi(AB

∼)−r
)
, k = 1, . . . , n.

The implication follows, because

lim
ε→0

1

ε

(
n∏
i=k

(
1 + ε λ−ri

)
− 1

)
=

n∑
i=k

λ−ri .

Theorem 9.4. Let A,B > 0 and D ∈ Mn(C) be a diagonal matrix, assumed
real when ∼ is absent. If α ∈ [0, 1], then

n∏
i=k

λi
(
(A oB) |D|2

)
≥

n∏
i=k

λi
(
(A]B)D (A]B)∼D

)
(9.2)

≥
n∏
i=k

λi
(
(A]1−αB)D (A]αB)∼D

)
≥

n∏
i=k

λi
(
ADB∼D

)
, k = 1, . . . , n,

equality occurring for k = 1 in the last two inequalities.
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Proof. Let D ∈Mn(C) be a diagonal matrix. Then

D(A oB)D ≥ D
(
(A]B) o (A]B)

)
D =

(
D(A]B)D

)
o (A]B)

and replacing A,B in Theorem 9.2 by D(A]B)D, A]B, respectively, yields

(A oB)|D|2 ≺wlog (D(A]B)D) o (A]B) ≺wlog (A]B)D(A]B)∼D.

Further, if C = D ∈ H∼n in Corollary 8.2 with σ = ]α, α ∈ [0, 1], and in (8.9),
the result is obtained. �

If ∼ is deleted and D = In, then (9.2) was previously given by Ando [4,
Theorem 2] and, in this case, the remaining inequalities were obtained by
Hiai and Lin [48]. The complete version in Theorem 9.4 is derived in [65].
The inequalities in (9.2) hold for A,B > 0, k = 1, . . . , n and D diagonal, but

n∏
i=k

λi
(
(A oB) |D|2

)
≥

n∏
i=k

λi((A]B)D∗(A]B)∼D) (9.3)

does not remain true, in general, whenD is replaced by any Hermitian matrix.

Example. Consider

A =

[
1 0
0 1

]
, B =

[
2 1
1 1

]
, D =

[
1 1 + i

1− i −3

]
.

In this case, A]B = B
1
2 and (9.3) with ∼ absent does not hold, because

λ2((A ◦B)D2) ≈ 3.783 ≤ λ2
(
B

1
2D
)2 ≈ 4.095.

10. Indefinite inequalities

The permanent of A = (aij) ∈Mn(C) is denoted and defined as

perA =
∑
σ∈Sn

n∏
j=1

ajσ(j), σ ∈ Sn.

Although permanents and determinants have similar definitions and share
some common properties, they exibit substancial differences, such as the non-
multiplicativity of the permanent.

In 1926, van der Waerden raised a question [93] and motivated a conjec-
ture: the minimum of the permanent of a n-square doubly stochastic matrix
is n!

nn and equality occurs when every entry of the matrix equals 1
n . This

conjecture attracted the attention of mathematicians all over the world, al-
though it remained open for more than fifty years. The proof of this famous
conjecture by G. P. Egoritjev [26] in 1981, also proved by Falikman [27], is
based on an inequality for permanents, which is a special case of a result of
A. D. Alexandroff on positive definite quadratic forms. In what follows we
write perA = per(a1, . . . , an) with ai the ith column of A.
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Theorem 10.1. (Alexandroff permanental inequality) For a1, . . . , an ∈ Rn,

per(a1, . . . , an−1, b)
2 ≥ per(a1, . . . , an−1, an−1)per(a1, . . . , b, b),

with equality if and only if b = λan−1 for some constant λ.

This inequality resembles Schwartz inequality, but the direction of the
inequality sign is reversed. The reason is the following. Taking the permanent
as the inner product in Rn:

〈x, y〉 = per(a1, . . . , an−2, x, y),

the space Rn is no longer Euclidean but Lorentzian, accordingly as the length
of the vector (x1, . . . , xn) is

x21 + · · ·+ x2n or x21 − x22 · · · − x2n−1 − x2n.

That is, we are dealing now with a so called indefinite inner product space.

In this section, we present miscellaneous indefinite inequalities obtained
in this set up. First, we introduce some definitions and notations.

Let J be a Hermitian involutive matrix, that is, J∗ = J and J2 = In.
Consider Cn endowed with the indefinite inner product induced by J , given
by [x, y] = y∗Jx for all x, y ∈ Cn. Let A] = JA∗J. A matrix A ∈ Mn(C) is
said to be J-Hermitian if A = A], that is, if JA is Hermitian. These matrices
appear in several problems of relativistic quantum mechanics and quantum
physics. Let A,B ∈Mn(C) be J-Hermitian and consider A ≥J B defined by

[Ax, x] ≥J [Bx, x], x ∈ Cn,

which means that J(A−B) ≥ 0. A matrix A ∈Mn(C) is called a J-contrac-
tion if In ≥J A]A. It is well known that the eigenvalues of a J-Hermitian
matrix A ∈ Mn(C) may not be real, nevertheless its spectrum is symmetric
relative to the real axis. If A is J-Hermitian and In ≥J A, then all the
eigenvalues of A are real. In fact, in this case, In − A is the product of the
Hermitian matrix J and a positive semidefinite matrix. IfA is a J-contraction,
by a Theorem of Potapov-Ginzburg [8, Chapter 2, Section 4], then all the
eigenvalues of A]A are nonnegative. Sano [83, Theorem 2.6] obtained the
next indefinite version of Löwner-Heinz inequality.

Theorem 10.2. (Löwner inequality of indefinite type, 2007) If A,B ∈Mn(C)
are J-Hermitian matrices with nonnegative eigenvalues, In ≥J A ≥J B and
0 < α < 1, then the J-Hermitian powers Aα, Bα are well defined and

In ≥J Aα ≥J Bα.

The case α = 1
2 in Theorem 10.2 is due to Ando [6, Theorem 6], being

the cases α = 0 and α = 1 trivially satisfied. Motivated by these results, the
Furuta inequality of indefinite type in (10.1) and (10.2) was established by
Sano [83, Theorem 3.4] and Bebiano et al. [14, Theorem 2.1], respectively.
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Theorem 10.3. (Furuta inequality of indefinite type) Let A,B ∈ Mn(C) be
J-Hermitian with nonnegative spectra, µIn ≥J A ≥J B (or A ≥J B ≥J µIn)
for some µ > 0. Then for each r ≥ 0,

A
p+r
q ≥J

(
A
r
2BpA

r
2

) 1
q (10.1)

and (
B
r
2ApB

r
2

) 1
q ≥J B

p+r
q (10.2)

hold for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r.

In particular, Löwner-Heinz inequality of indefinite type is recovered by
Theorem 10.3 for r = 0.

In order to present the indefinite version of Theorem 4.4 obtained in
[13, Corollary 1.2], assume (r, n − r) to be the inertia of J and 0 < r < n.
Without loss of generality, we may consider

J = Ir ⊕−In−r, 0 < r < n.

For an arbitrary J-Hermitian matrix A ∈Mn(C), we denote by σ±J (A)
the set of eigenvalues of A with eigenvectors x, such that x∗Jx = ±1. We
say that A is J-unitarily diagonalizable if every eigenvalue of A belongs to
either σ+

J (A) or to σ−J (A). In this case, σ+
J (A) and σ−J (A) have r and n − r

eigenvalues, respectively. Consider a J-Hermitian matrix A, whose eigenva-
lues α1 ≥ · · · ≥ αr belong to σ+

J (A) and αr+1 ≥ · · · ≥ αn belong to σ−J (A).
In this case, the eigenvalues of A are said to not interlace if either αr > αr+1

or αn > α1, otherwise, they are said to interlace.

Theorem 10.4. Let J = Ir ⊕ −In−r, 0 < r < n, and A,C ∈ Mn(C) be non-
scalar J-Hermitian and J-unitarily diagonalizable matrices with eigenvalues
α1 ≥ · · · ≥ αr (c1 ≥ · · · ≥ cr) in σ+

J (A) (σ+
J (C)) and αr+1 ≥ · · · ≥ αn

(cr+1 ≥ · · · ≥ cn) in σ−J (A) (σ−J (C)). If the eigenvalues of A and C do not
interlace, then statements i. and ii. hold.

i. If (αk − αl)(ck′ − cl′) < 0 for all 1 ≤ k, k′ ≤ r, r + 1 ≤ l, l′ ≤ n, then

tr(CA) ≤
n∑
i=1

ciαi.

ii. If (αk − αl)(ck′ − cl′) > 0 for all 1 ≤ k, k′ ≤ r, r + 1 ≤ l, l′ ≤ n, then
r∑
i=1

ciαr−i+1 +

n∑
i=r+1

ciαn+r−i+1 ≤ tr(CA).

Several other inequalities of indefinite type have been studied. For ins-
tance, just to mention a few, we refer some spectral inequalities for the trace
of the exponential or the logarithmic of J-Hermitian matrices [15], opera-
tor inequalities associated with Furuta inequality of indefinite type [16], a
reversed Heinz-Kato-Furuta inequality [17] and indefinite versions of some
determinantal inequalities [19], including a Fiedler-type theorem for the de-
terminant of J-positive matrices [18].
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Recently, Matharu, Malhotra and Moslehian [74] defined a J-mean as-
sociated with a positive matrix monotone function f on (0,∞), such that
f(1) = 1, for J-Hermitian matrices with spectra in (0,∞). Fundamental
properties of this J-mean, such as the power monotonicity and an indefinite
version of Ando-Hiai inequality [74, Theorem 3.11] were obtained.
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Press, 1952.
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