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Abstract
The common cockle Cerastoderma edule is a widespread bivalve species inhabiting estuarine systems across the North 
East Atlantic, where it provides several ecosystem services, and represents a valuable fishery resource for local economies. 
However, anthropogenic pressure and more frequent extreme weather events threaten the resilience of the species. Spatially 
explicit information on species distribution is critical for the implementation of management and conservation practices. 
This study assessed the potential distribution of C. edule in the Ria de Aveiro by estimating the habitat suitability using an 
ensemble approach based on ecological niche modeling and recently developed hydrodynamic and water quality models to 
forecast both average and projected estuarine conditions. The models were developed for the summer of 2013 and spring of 
2019 and potential range shifts in the species distribution were forecasted under projected environmental conditions: high 
and low estimates of freshwater discharge, a 2 °C increase in water temperature, and the combined effect of low freshwater 
discharge and increased water temperature. The results suggest that salinity, time of submersion, and current velocity play 
an important role in the distribution of cockles, and large areas were consistently classified with high habitat suitability. 
Increased freshwater discharge (both seasons) and low discharge coupled to increased temperature (spring) resulted in 
large decreases in suitable habitat. Conversely, low freshwater discharges and average (unchanged) temperatures increased 
the suitable habitat in the outermost regions of the Ria. The spatially explicit information provided contributes to a better 
understanding of the vulnerability of C. edule in the Ria de Aveiro to extreme weather events (e.g., droughts, river floods) 
and may support adaptive management strategies of the cockle fishery during these conditions. Moreover, this approach 
can be transferred to other estuarine ecosystems for which data describing the environmental conditions (e.g., derived from 
numerical models), and information about species presence are available (including data-poor species).
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Introduction

The common cockle Cerastoderma edule is a suspension-
feeding bivalve that inhabits transitional soft-sediment 
areas of the eastern Atlantic from Norway to Senegal 

(Hayward and Ryland 1995; Tebble 1966). Cockles pro-
vide multiple ecosystem services, including supporting 
and provisional services (Carss et al. 2020). For instance, 
through bioturbation, C. edule incorporates fine suspended 
particles into the sediment matrix, affecting its properties  
(Cozzoli et al. 2020; Dairain et al. 2020; Soissons et al. 2019) 

Communicated by Mark J. Brush

 * Fábio L. Matos 
 fmatos@ua.pt

1 Department of Biology & CESAM, University of Aveiro, 
Campus Universitário de Santiago, 3810-193 Aveiro, 
Portugal

2 Department of Physics & CESAM, University of Aveiro, 
Campus Universitário de Santiago, 3810-193 Aveiro, 
Portugal

3 Portuguese Institute for the Sea and Atmosphere (IPMA), 
Avenida Doutor David Cristo s/n, 3800-366 Aveiro, Portugal

4 Centro de Olhão, Portuguese Institute for the Sea 
and Atmosphere (IPMA), Av. 5 de Outubro s/n, 
8700-335 Olhão, Portugal

5 Centre of Marine Sciences (CCMAR), University of Algarve, 
Campus Universitário de Gambelas, 8005-139 Faro, Portugal

http://orcid.org/0000-0002-5447-4055
http://crossmark.crossref.org/dialog/?doi=10.1007/s12237-022-01136-z&domain=pdf


 Estuaries and Coasts

1 3

and influencing biogeochemical cycles (Rakotomalala  
et al. 2015). Moreover, cockles are able to improve water 
quality through filtration, by decreasing water turbidity 
and removing excess nutrients (e.g., nitrate, phospho-
rus) (Van der Schatte Olivier et  al. 2018). In addition 
to the inherent ecological value of C. edule as an eco-
system engineer and major prey for several organisms 
(Carss et  al. 2020), the common cockle is among the 
most targeted bivalve species in coastal systems across  
Europe (Mahony et al. 2020).

Increasing the current knowledge on the distribution of 
marine living resources and their behavioral responses to 
the environment is of utmost importance for the develop-
ment of effective management plans and future conserva-
tion actions. The distribution of bivalves in intertidal areas 
is influenced by several environmental factors including 
salinity (Peteiro et al. 2018; Verdelhos et al. 2015a), water 
temperature (Callaway et al. 2013; Singer et al. 2017), cur-
rent velocity (Kater et al. 2006; Rullens et al. 2021), and 
emersion time (Ramón 2003). Variations in these param-
eters subject individuals to physiological stress and may 
affect the food supply and larval recruitment (Kater et al. 
2006; De Montaudouin and Bachelet 1996). Pronounced 
seasonal cycles in the physiology of C. edule, related to 
endogenous and environmental factors (e.g., tempera-
ture) are also recognized, including respiration rate and 
feeding activity (Iglesias and Navarro 1991; Newell and 
Bayne 1980). Biotic interactions (e.g., predation, parasit-
ism) and anthropogenic activities (e.g., fisheries) may also 
determine the distribution of cockles (Mahony et al. 2022). 
The interplay of these variables may lead to yearly fluctua-
tions in bivalve productivity that combined with increas-
ing anthropogenic pressure and climate change (e.g., sea 
level rise, higher frequencies of extreme weather events 
such as heat waves, droughts, and heavy precipitation 
(IPCC 2014)) subject species to increasing physiological 
stress and raise concerns about the sustainable exploitation 
of this resource in the mid-term.

The design of management plans frequently depends 
on spatially explicit data, including information on the 
species distribution. Ecological niche modeling (ENM) 
frameworks have been widely used as indirect methods to 
estimate the species potential distribution and habitat suit-
ability by using presence data coupled with spatial envi-
ronmental information (Peterson et al. 2015), including 
for marine species (Kater et al. 2006; Melo-Merino et al. 
2020). The outputs of ENM include the projection of the 
species-environment-relationship on the geographic space 
producing maps which can assist managers and decision-
makers in the development of management and conserva-
tion plans (Guisan et al. 2013). The applications of ENM 
go beyond determining climate–range relationships to 

characterize species’ tolerance limits to present envi-
ronmental conditions and have been also used to project 
species response to different climatic scenarios (Araújo 
et al. 2005). The transferability of correlative ENM pre-
dictions to different spatiotemporal conditions is not 
straightforward and faces challenges derived from data 
limitations of projecting models to distinct conditions 
from the ones used for fitting, and from the complexity 
and plasticity inherent to biological systems (Sequeira 
et al. 2018; Urban et al. 2016; Yates et al. 2018). Nev-
ertheless, transferability of ENM predictions may have 
particular relevance for the development of conservation 
and management measures for marine ecosystems (e.g., 
Lauria et al. 2015).

The use of ENM in the marine environment has ben-
efited from advances in remote sensing and numerical 
modeling approaches, capable of efficiently describing 
the physical conditions of a highly dynamic environment 
(e.g., Vargas et al. 2017; Vaz et al. 2019). These advances 
have proven critical for the development of more realis-
tic ENM’s with a greater chance of having a significant 
impact on the development of effective living resources 
management measures (Cozzoli et al. 2014; Reiss et al. 
2014; Tommasi et al. 2017).

Common cockles are widespread and generally abun-
dant in the Ria de Aveiro, a shallow coastal lagoon located 
on the North coast of Portugal (Maia et al. 2021). In Por-
tugal, this species represented 60% of the total reported 
bivalve catch in 2020 (INE 2020) and in Ria de Aveiro, 
the exploitation of C. edule provides a major source of 
income for many households, contributing significantly to 
the regional economy (Braga et al. 2022; Maia et al. 2021). 
The lack of a specific and effective management plan for 
cockle fisheries in Portugal (Maia et al. 2021) hampers 
both sustainable fisheries and conservation efforts, par-
ticularly under climate change. The information on the 
species distribution is still fragmented and the manage-
ment of the cockle fishery frequently relies on population 
criteria (e.g., minimum capture sizes) (Maia et al. 2021). 
In the context presented above, this study was designed 
to gain insights into the current distribution of C. edule 
in the Ria de Aveiro by estimating the habitat suitability 
and predicting range shifts expected under several sce-
narios of weather conditions including both increases and 
decreases in rainfall and increased seawater temperature. 
These results provide scientific-based evidence to assist 
resource managers to regulate and better plan the species 
harvest in the study area by: (i) supporting the design of 
special areas of conservation and management interest, (ii) 
enabling the development of adaptive management strate-
gies, and (iii) providing information about the degree of 
uncertainty of model predictions.
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Material and Methods

Study Area

The Ria de Aveiro was chosen as a case study due to the 
widespread distribution and abundance of C. edule in this 
coastal lagoon, and to the ecological importance and socio-
economic relevance of the species in Portugal. This decision 
was also supported by the availability of a robust dataset on 
the species presence within the study area and on environ-
mental dynamics in this coastal lagoon.

The Ria de Aveiro is the most extensive coastal lagoon 
in Portugal. It is located on the NW coast of Portugal and is 
connected to the Atlantic Ocean by an artificial inlet con-
structed in 1808 (Dias and Mariano 2011). The lagoon has 
a maximum width of 8.5 km, a length of 45 km, and an 
average depth (over the local datum) of ~ 1 m, and has four 
main channels: the Mira, São Jacinto, Ílhavo, and Espin-
heiro channels. The hydrodynamics of the Ria de Aveiro are 
dominated by mixed semidiurnal tides, with a mean tidal 
range of ~ 2.0 m at the inlet (Dias et al. 1999). The tidal range 
at the inlet varies from 0.6 m (neap tide) to about 3.2 m 
(spring tides) (Dias et al. 2000). The strongest currents are 
observed at the inlet channel, with values higher than 2  ms−1 
(Vaz et al. 2009). The Ria de Aveiro has five main freshwa-
ter tributaries that control the transport of water properties 
in the lagoon (Dias et al. 1999; Moreira et al. 1993; Vaz 
et al. 2016). The total mean estimated freshwater input is 
approximately 1.8 ×  106  m3 during a tidal cycle (Moreira 
et al. 1993), which is considerably lower than the total tidal 
prism volume for neap and spring tide conditions, estimated 
to be 65.8 ×  106  m3 and 139.7 ×  106  m3, respectively (Lopes 
et al. 2013; Picado et al. 2010). This shallow estuarine sys-
tem displays intense tidal currents, providing a well-mixed 
lagoon system regarding water properties (Dias et al. 1999). 
In fact, the salinity and water temperature gradients are weak 
across the water column and depend mostly on the input of 
freshwater. In contrast, the longitudinal gradient of water 
temperature and salinity varies widely along the main chan-
nels of the lagoon (Dias 2001; Vaz et al. 2005).

Due to morphologic changes induced mostly by human 
action (i.e., dredging operations to facilitate navigation), 
important changes in lagoon hydrodynamics have taken 
place over the last few decades, reflecting increased tidal 
amplitudes and currents, as well as increased salt intru-
sion, with these changes being amplified towards the head 
of the main channels (Dias et al. 2021).

Species Presence Data

The presence data (Fig.  1) used in the present study 
were obtained from biological surveys conducted by the 

Portuguese Institute of Sea and Atmosphere (IPMA) in the 
summer of 2013 and spring of 2019 under the scope of two 
European Interreg projects (GEPETO and COCKLES). A 
total of 828 stations, spaced 200–400 m apart, were sampled 
along 290 transects using a hand dredge with a 10 mm mesh 
net. Each transect typically included three stations, one on 
each side of the channel in the intertidal zone and one station 
in the middle of the channel (subtidal zone).

No data treatment aiming to reduce spatial autocor-
relation in the presence data was applied. This decision 
was made considering that (1) the presence records were 
produced from a systematic and comprehensive sampling 
approach across the study area, and (2) the resolution of the 
environmental data (see the “Environmental Data” section) 
was smaller than the minimum distance between sampling 
stations. Information on species absence was not considered 
since the study area is subjected to an intense fishing activity 
directed towards C. edule (e.g., Braga et al. 2022), and there-
fore, absence data is heavily biased by human influence.

Environmental Data

In this study, a combination of estuarine variables were com-
puted by the numerical model DELFT3D (Deltares 2014) 
which was implemented and validated for the Ria de Aveiro 
by Dias et al. (2021). The model provides information for 
the hydrodynamical setting and water biogeochemical vari-
ables in an irregular horizontal grid with a spatial resolution 
ranging from 50 to 100 m (Table 1). The values of each 
environmental variable were estimated for the months with 
biological sampling (i.e., June, July and August of 2013,  
and April, May and June of 2019) and then averaged to pro-
duce a single data layer for each variable and year. These 
new layers represent the average condition of the summer 
of 2013 and spring of 2019 and were then used to fit two 
independent ENM. In addition to the estuarine conditions 
coincident with the timeframe of the presence data (i.e., 
summer of 2013 and spring of 2019; hereafter referred as 
average conditions), the environmental conditions at the Ria 
de Aveiro for spring and summer were estimated according 
to four different environmental and hydrological scenarios. 
Three independent scenarios were built considering low and 
high freshwater discharge from the main tributaries, and a 
2 °C increase in water temperature. Finally, a fourth sce-
nario was built estimating the combined effect of a 2 °C 
increase in water temperature and low freshwater discharge. 
The low freshwater discharge scenario is a proxy for low 
rainfall conditions, and the high river discharge scenario is 
a proxy for a maximum rainfall scenario. Freshwater dis-
charge of the main tributary river tributaries to the lagoon 
imposed on the fluvial boundaries of the DELFT3D-
FLOW was obtained from the results of the SWIM model  
(Stefanova et al. 2015), using a period from 1981 to 2010 
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where maximum and minimum values were extracted. To 
simulate low freshwater discharge conditions, values from 
0.4 up to 5  m3  s−1 were imposed at the mouth of the rivers; 
to simulate high discharge conditions, freshwater discharges 
varied between 11 and 370  m3  s−1 at the discharge points. 
The value of 2 °C was selected according to the long-term 

ensemble projections for the Portuguese coast of the Sixth 
Coupled Model Intercomparison Project (CMIP6), consid-
ering the pessimistic scenario (SSP5-8.5) (Gutiérrez et al. 
2021). In the Supplementary Material, a brief description 
of the estuarine hydrodynamic and water quality models is 
presented, as well as the implementations used in this study.

Fig. 1  Spatial distribution of 
presence records of Ceras- 
toderma edule in the Ria de  
Aveiro in the summer of 
2013 and spring of 2019. The 
major channels of the lagoon 
are delimited by the colored 
polygons: yellow — Espinheiro/
Parrachil channel, green — S. 
Jacinto channel, reddish — Mira 
channel, and pearl — Principal/
Ílhavo channel

Table 1  List of environmental 
variables describing the 
environmental condition at the 
Ria the Aveiro (average values 
and their range) for the summer 
of 2013 and spring of 2019

The variables included in the ecological niche models (ENM) are highlighted in boldface

Variables Units Average values Values range

2013 Summer 2019 Spring 2013 Summer 2019 Spring

Salinity - 29.1 25.1 3.3–34.6 0.8–33.9
Water temperature °C 21.1 17.2 16.4–24.7 14.6–19.9
Chlorophyll-a mg  L−1 0.003 0.005 0.001–0.015 0.002–0.037
Ammonium 0.011 0.038 0.002–0.227 0.011–0.334
Nitrate 0.404 1.882 0.091–3.662 0.464–7.338
Phosphate 0.030 0.072 0.006–0.065 0.038–0.156
Dissolved oxygen 7.275 7.789 2.023–8.191 7.294–8.191
pH - 8.0 7.6 4.5–8.6 6.9–8.3
Submersion time — spring tide Hours 10.6 10.8 0.8–12.5 1.8–12.5
Submersion time — neap tide 10.3 10.5 0–12.5 0–12.5
Current velocity m  s−1 0.230 0.301 0.008–1.721 0.009–1.735
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Data obtained from the environmental variables com-
puted by the numerical model of the Ria de Aveiro were 
interpolated to a regular grid (100 × 100 m) by fitting a  
universal kriging model based on the 12 nearest values of 
each focal cell using the automap package for R (Hiemstra 
et al. 2009). Spatial autocorrelation between environmental 
variables was statistically assessed using Pearson’s corre-
lation coefficient (r), and the function remove Collinear-
ity available through the R package virtual species (Leroy 
et al. 2016). A correlation coefficient between two variables 
greater than 0.8 dictated the exclusion of one of those vari-
ables from the ENM (Supplementary Figure S1).

Estimate of the Habitat Suitability Under Average 
Conditions

The ENM was developed using the R package sdm (ver-
sion 1.1–8, Naimi and Araújo 2016). An ensemble mod-
eling approach was adopted for this study (Araújo and New, 
2007), combining the output of multiple single-algorithm 
models into a unique prediction according to their individual 
performances. Hence, this approach accounts for the vari-
ability among model predictions and differences resulting 
from the use of distinct algorithms to estimate the species 
ecological niche. The consensus predictions were derived 
from single models based on three algorithms: boosted 
regression trees (BRT), random forest (RF), and flexible 
discriminate analysis (FDA). The BTR algorithm uses the 
boosting method to combine multiple models that relate the 
response variable with predictors using recursive binary 
splits (i.e., regression trees) (Elith et al. 2008). On the other 
hand, the RF algorithm uses a bootstrap aggregation proce-
dure of multiple classification trees and then averages the 
output using committee averaging (Hastie et al. 2009). The 
FDA is a nonparametric version of the discriminate analy-
sis that replaces linear regression with a nonparametric 
regression technique for multigroup nonlinear classification 
(Hastie et al. 1994). A dataset of pseudo-absences with the 
same number of presences was generated for model fitting 
and evaluation. Pseudo-absences were randomly selected 
outside of the suitable area estimated by a rectilinear surface 
envelope from the presences record (surface range envelope, 
Thuiller et al. 2009).

Model accuracy was evaluated using a fivefold cross-
validation procedure, repeated 10 times, resulting in 50 rep-
lications per method. Models were fitted for each replication 
using four random cross-validation splits for training, and 
the fifth withheld data split was used for evaluation. The 
ensemble models were obtained based on the weighted aver-
age of the single-algorithm estimations retained according 
to the values of the true skill statistic (TSS) metric. The 
TSS compares the number of correct predictions minus 
those assigned by chance in a perfect forecast (Allouche 

et al. 2006). The selected threshold for TSS was the one 
that maximized both the sum of PPV (positive predictive 
value) and NPV (negative predictive value) value of models’ 
estimation.

Variable importance was assessed using a randomiza-
tion procedure that measures the Pearson’s correlation 
between the standard predictions and the predictions where 
the variable of interest has been randomly permuted (Naimi 
and Araújo 2016; Thuiller et al. 2009). A high correlation 
between the two predictions means that the variable permu-
tated is not important for the model prediction. The model’s 
response curves were estimated by the evaluation strip pro-
cedure (Elith et al. 2005) implemented in the sdm package.

The model outputs are a continuous representation of the 
habitat suitability index (HSI) ranging from 0 to 1, with 
values close to 1 indicating the most suitable areas. The 
predictions of the ensemble models for average conditions 
were evaluated using the Continuous Boyce Index (CBI) 
(Boyce et al. 2002; Hirzel et al. 2006), calculated using the 
“ecospat” package which has been described as the most 
appropriate metric to evaluate presence-only models (Di 
Cola et al. 2017). The CBI is a threshold independent met-
ric ranging from − 1 to 1: values close to 1 indicate a good 
agreement between the model predictions and the distribu-
tion of presences (i.e., areas with a high number of occur-
rences are scored with high suitability values), while values 
close to − 1 indicate that the model performed poorly (Hirzel 
et al. 2006). Values close to zero means that model estima-
tion is not different from a random prediction.

A map of uncertainty related to the ensemble model pre-
diction was generated based on the variation between esti-
mates of the single algorithm models. The uncertainty values 
range between 0 and 1, with values close to zero meaning 
low uncertainty (i.e., high agreement between single algo-
rithm models’ estimates), and values close to one referring 
to the highest level of uncertainty (Naimi and Araújo 2016).

Model Transferability Assessment and Model 
Projections for Different Environmental Conditions

To assess the potential of transferability of the ensemble 
models, the model developed for the summer of 2013 was 
projected into the environmental conditions for 2019 and 
predictions evaluated using presence data for the extrapo-
lated year (i.e., 2019) and vice versa. Transferability of 
the ensemble models was evaluated using three measures 
of accuracy: the area under the curve (AUC), sensitivity 
(i.e., the percentage of presence correctly predicted), and 
the CBI. For the AUC and sensitivity metrics (Allouche 
et al. 2006), the average score was calculated using a cross- 
validation framework with five independent spatial blocks 
randomly assigned to separate training and testing datasets 
(Assis et al. 2022). This approach was implemented using 
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the R packages blockCV (Valavi et al. 2019) and precrec 
(Saito and Rehmsmeier 2017). The spring and summer 
models were then projected onto the different scenarios 
of environmental conditions (i.e., low and high freshwater 
discharge, a 2 °C increase in water temperature, and the 
combined effect of a 2 °C increase in water temperature 
with a low freshwater discharge scenario) to estimate the 
potential impacts of these environmental conditions on the 
habitat suitability of the Ria de Aveiro for the presence of 
C. edule.

Results

A total of 150 single-algorithm models for each year were 
fitted using 286 common cockle presence records in the 
models of 2013, and 271 for 2019 (Fig. 1) combined with 
six environmental variables describing the Ria of Aveiro 
conditions in each year. The ensemble models for the 

average conditions reached high predictive performance 
according to the Boyce Index (CBI = 0.935 in 2013 and 
CBI = 0.937 in 2019).

Environmental Suitability — Average Conditions

Overall, the predictions of the models were similar in both 
years, with large areas consistently classified with high 
environmental suitability (HSI ≥ 0.8, hereafter defined 
as core habitat regions) for the presence of the common 
cockle in the Ria de Aveiro (Fig.  2). The uncertainty 
related to the models’ predictions showed that the core 
habitat regions coincide mostly with areas with low uncer-
tainty associated with the models’ predictions (Supple-
mentary Figure S2).

Figure 3 shows the model response curves for the summer 
of 2013 and spring of 2019. Generally, the common cockle 
found increasingly suitable conditions with the increase of 
salinity and nitrate concentrations, currents velocity varying 

Fig. 2  Estimates of the environmental suitability for the presence of 
the common cockle in the Ria de Aveiro in the summer of 2013 (left 
panel) and spring of 2019 (middle panel). Color scale ranging from 0 
to 1, with values close to zero representing low habitat suitability, and 

values close to one high habitat suitability. The core habitat regions 
(right panel) defined by a habitat suitability index (HSI) ≥ 0.8, are 
color coded according to the number of years that the model predic-
tion agreed: turquoise — 1 year, brownish — 2 years
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around 0.2 and 0.6 m  s−1, and when subjected to submer-
sion periods lasting between 11 and 14 h. For the other pre-
dictors, changes in the environmental background due to 
seasonal variability resulted in different model responses. 
During the spring (2019), the more suitable conditions were 
found with increasing concentrations of chlorophyll a (Chl-
a) while during the summer (2013) the highest suitability 
was estimated for concentrations of Chl-a between 0.002 
and 0.004 mg  L−1. Finally, for water temperature, the most 
suitable conditions during the spring of 2019 were found 
between 16 and 17.5 °C while for the summer of 2013, the 
temperature range offering the more suitable conditions for 
the cockles was found between 20 and 23 °C. For both sea-
sons, the variables that most contributed to the models’ pre-
dictions were salinity, time of submersion and current veloc-
ity (Fig. 4). On the other hand, the variable that contributed 

the least was nitrate concentration (summer of 2013) and 
Chl-a concentration (spring of 2019).

Environmental Suitability – Projected 
Environmental Conditions

The potential for temporal transferability of the ensemble 
models varied according to accuracy metrics (Table 2), 
reaching fair to good performances both for the spring and 
summer models. The projections of these models according 
to the four environmental scenarios proposed showed impor-
tant changes in the habitat suitability of the Ria de Aveiro 
for the presence of C. edule (Supplementary Figures S3 and 
S4). The differences in the HSI between each scenario and 
the estimates for the environmental conditions observed in 
each season were mapped in Figs. 5 and 6.

Fig. 3  Response curves for each 
environmental variable used in 
the ensemble models devel-
oped for the summer of 2013 
(turquoise lines) and spring of 
2019 (orange lines). Environ-
mental gradients are represented 
in the x-axis, and the suitability 
prediction values in the y-axis
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The most severe effects on the habitat suitability for the 
common cockle were estimated for the scenario of maxi-
mum river inflow, resulting in an overall decrease in the 
HSI, stronger in the model developed for the summer con-
ditions. The few exceptions are observed mostly in areas 
located in the outermost parts of the Ria. The decrease in 
the HSI was considerable in some areas compared to the 
average conditions (differences in HSI > 0.5) and included 
most of the core habitat regions. For the scenario of low river 
inflow, extensive areas in the four main channels are also 
negatively affected, particularly for the model fitted for the 
spring conditions. However, for the outermost parts of the 
Ria, an increase in the HSI was estimated in a scenario of 
low freshwater discharge, stronger for the model fitted for 

the summer conditions. For the scenario of a 2 °C increase 
in the average water temperature, the differences between 
average conditions and model predictions were the smallest 
compared to the previous two scenarios. For the model fitted 
for spring, the areas showing a decrease in the HSI include 
core habitat regions (Mira and S. Jacinto channels, Fig. 2) 
while an increase in habitat suitability was restricted to fewer 
and more constricted areas. For the model fitted for summer 
conditions, the estimates for the scenario of a 2 °C increase 
in the average water temperature resulted in smaller changes 
in the HSI and geographically more disperse compared to the 
model developed for spring. Finally, for the scenario of the 
combined effect of a 2 °C increased in the seawater tempera-
ture and low freshwater discharge, the results between the 
model fitted for the spring and summer were very distinct. 
For spring, the model forecasted a stronger degradation in 
the habitat suitability in the core habitat regions compared 
to the models testing each scenario independently. On the 
other hand, the improvement in habitat suitability estimated 
for the outermost areas of the Ria was lower compared to the 
prediction made for the scenario of low freshwater discharge. 
For the model fitted for summer conditions, the results of 
the combined effect of the 2 °C increase in the water tem-
perature and low freshwater discharge were spatially similar 
to the results obtained from the scenario of low freshwater 
discharge but with a lower decrease in the HSI.

Fig. 4  Mean environmental variable importance (bars) and confidence intervals (whisker) for the models’ prediction in the summer of 2013 
(green bars) and spring of 2019 (orange bars)

Table 2  Assessment of 
the potential for temporal 
transferability of the ensemble 
models developed for the 
summer of 2013 and spring of 
2019 according to three metrics: 
area under the curve (AUC), 
sensitivity and Continuous 
Boyce Index. The AUC and 
sensitivity average scores were 
calculated using a cross-
validation framework with five 
independent spatial blocks

Metric 2013 2019

AUC 0.838 0.810
Sensitivity 0.674 0.656
Continuous 

Boyce Index
0.847 0.886
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Discussion

The fine-scale assessment of habitat suitability within the 
Ria de Aveiro lagoon for the presence of C. edule in the 
summer of 2013 and spring of 2019 identified large areas 
of habitat concomitantly classified as highly suitable (i.e., 
core habitat regions). These regions largely match the loca-
tions where the biomass of common cockles reached the 
highest levels according to the surveys of the GEPETO and 
COCKLES project campaigns (F. Maia, personal communi-
cation). In turn, the model projections suggest that the cur-
rent distribution of C. edule might be affected in the future 
by the increase in the frequency and intensity of extreme 
events such as floods, and drought periods combined with 
heatwaves. The model projections for the scenario of high 
freshwater discharge forecasted the strongest effects in the 
HSI of the Ria for the common cockles, with a generalized 
and considerable decrease in habitat suitability (stronger 
for the model fitted with summer conditions). For the other 
scenarios, the projections varied between the models fitted 
for spring and summer conditions. The largest differences 
between seasons were estimated for the scenario that tested 
the combined effect of a 2 °C increase in water temperature 
and low freshwater discharge. The model fitted for spring 
conditions predicted more deleterious effects on the HSI, 

particularly in the core habitat regions, while the model 
fitted for summer conditions projected mostly an increase 
of the HSI in the outermost parts of the Ria. The distinct 
response of the two models (spring and summer conditions) 
on the joint effect of higher temperature and lower fresh-
water suggests that the impact of such events on the habitat 
suitability of the Ria for the presence of cockles may vary 
depending on season, and how long the projected meteor-
ological conditions last. Despite the euryhaline nature of 
common cockles and tolerance to temperature fluctuations 
(Verdelhos et al. 2015a, b), extended changes in the estua-
rine environment derived from extreme weather events may 
strongly affect the resilience of the species.

The response curves were identical for the two seasons 
modeled, except for water temperature and the concen-
tration of Chl-a, likely related to seasonality (Table 1). 
Verdelhos et al. (2015b) reported the thermal optimum for 
a population of C. edule inhabiting the Mondego estuary 
(approximately 50 km south of Ria de Aveiro) between 
20 and 23 °C, and severe consequences for the survival 
of cockles at higher temperatures (~ 28 °C). The highest 
suitability obtained according to the response curves of the 
models were all observed for temperatures below the 23 °C 
threshold. The differences observed in the response curves 
relating to Chl-a concentrations could reflect seasonal 

Fig. 5  Change in the habitat suitability index (HSI), expressed as increase/
decrease, for each environmental scenario compared with average condi-
tions observed in summer (2013): high freshwater discharge, low freshwa-
ter discharge, a 2 °C increase in water temperature and the joint effect of 

a 2 °C increase in water temperature and low freshwater discharge. Areas 
colored in different shades of red represent a decrease in HSI while those 
shaded in green represent an increase in the HSI
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patterns of primary production productivity, coinciding 
with the greater feeding activity of cockles during spring 
(Newell and Bayne 1980). Increasing levels of salinity 
(> 22) offer progressively more suitable conditions for the 
presence of C. edule, in agreement with the literature (e.g., 
Verdelhos et al. 2015a). Concerning nitrate, the increase 
in the habitat suitability with increasing concentration of 
nitrate could be related to the importance of this ion for 
microphytobenthic communities (Decleyre et al. 2015), 
which represents a substantial portion of cockles’ diet. 
Regarding current velocity and submersion time, a previ-
ous modeling study conducted by Cozzoli et al. (2014), 
suggested that C. edule seems to prefer intermediate 
submersion periods and moderate hydrodynamic stress. 
A similar result was obtained in this study with model 
estimates of higher habitat suitability under submersion 
periods ranging between 11 and 14 h and current veloci-
ties ranging from 0.2 to 0.6   ms−1. Both variables may 
affect the habitat suitability for the presence of C. edule 
determining, for instance, the amount and duration of food 
available for feeding (De Montaudouin 1996).

The most suitable areas for C. edule presence in Ria 
de Aveiro coincide with those with low uncertainty in the 
ensemble models estimates. These areas were defined as 
core habitat regions and can be particularly valuable for the 

conservation and management of this species in the study 
area. Nonetheless, the core habitat regions identified are 
also the ones where models predicted larger decreases in 
the HSI during projected weather conditions, threatening the 
species resilience in the future. We highlight however that 
these results should be considered with care since they only 
integrate information from two seasons, therefore requiring 
studies including broader time periods to confirm this trend.

Previous studies suggest that the common cockle may 
be severely impacted by the increase in the intensity and 
frequency of extreme climatic events (Singer et al. 2017; 
Verdelhos et al. 2015a). Model predictions suggested that 
salinity plays a major role in habitat suitability for C. edule 
in the Ria de Aveiro. Changes in water salinity promoted 
by fluctuations of river inflow, particularly an increase in 
freshwater input, may compromise the organisms’ survival 
(Verdelhos et al. 2015a) and impair individual growth per-
formance (Mahony et al. 2022). Moreover, the changes in 
habitat suitability will likely affect areas identified as core 
habitat regions.

The ensemble models used in this study reached high 
predictive performance for average conditions and model 
response curves coincided with accepted salinity tolerance 
limits for C. edule (Verdelhos et al. 2015a). Hence, this 
methodology offers an efficient way to produce continuous 

Fig. 6  Change in the habitat suitability index (HSI), expressed as increase/
decrease, for each environmental scenario compared with average condi-
tions observed in spring (2019): high freshwater discharge, low freshwater 
discharge, a 2 °C increase in water temperature and the joint effect of a 

2 °C increase in water temperature and low freshwater discharge. Areas 
colored in different shades of red represent a decrease in HSI while those 
shaded in green represent an increase in the HSI
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and spatially explicit information on the distribution of spe-
cies inhabiting estuary ecosystems from irregular presence 
data. Also, this modeling approach can be replicated in other 
coastal ecosystems with information describing the water 
body and available, for instance, from numerical models 
of hydrodynamics and water quality. The ensemble ENM 
approach is also capable of providing uncertainty estimates 
of model predictions and allows to project potential impacts 
on the species potential distribution resulting from, for 
example, climate change. This information is crucial to sup-
porting well-informed decisions on the management (e.g., 
fisheries) and conservation (e.g., habitat conservation and 
restoration) of coastal ecosystems and biodiversity, offering 
a time- and cost-efficient means to identify areas of particu-
lar relevance for the presence of the modeled species.

However, ENM predictions are not free of uncertainty 
and their ability to forecast changes in species distribution 
dependent on environmental conditions different from the 
ones used for the model training is limited (Santini et al. 
2021). In fact, the models potential transferability demon-
strated lower predictive ability on independent data com-
pared to average conditions. Nevertheless, the accuracy 
scores obtained when models were fitted with data from 
another year suggest that trends could still be reliably pre-
dicted under different environmental conditions. It is also 
important to note that our model does not consider, for 
instance, the potential effect of local scale environmental 
variation (Zhou et al. 2022) or future natural or anthropo-
genic alterations of the lagoon morphology (Cozzoli et al. 
2014) that may affect the distribution of cockles in the study 
area. According to the model projections, for the scenarios 
of low (both seasons) and combined effect of 2 °C increase 
in water temperature with low freshwater discharge into the 
Ria (spring), no areas with HSI equal to or greater than 0.8 
persist (criteria used to define habitat core regions). Under 
such conditions, additional conservation and management 
measures may be required in order to ensure the sustainable 
exploitation of this living resource in Ria de Aveiro. These 
findings are particularly relevant considering that the fre-
quency and intensity of floods, drought, and heatwave events 
are expected to increase (IPCC 2014). On the other hand, 
the importance of water temperature was a less important 
factor in model predictions. Eurythermal species like com-
mon cockles can survive within a wide temperature range 
which may partially explain this outcome. The forecast for 
the scenario of an increase of 2 °C in water temperature 
modeled independently resulted in less pronounced changes 
in the HSI compared with the other environmental scenarios. 
Nonetheless, according to the model fitted for spring condi-
tions, this scenario may also result in extensive areas where a 
general decrease in the HSI may be experienced, particularly 
in the S. Jacinto channel.

The ENM approach followed in this work predicted sub-
stantial changes in the potential distribution of C. edule in 
the Ria de Aveiro under different environmental conditions 
such as the ones resulting from floods, droughts, and heat-
waves. These findings are relevant for fisheries and con-
servation managers since they may assist the development 
of future conservation and management measures aiming 
to preserve this species in the study area. These measures 
may include limiting the cockles fishery during unfavorable 
environmental conditions, particularly in the most vulner-
able areas to changes in the habitat conditions. Also, the 
impacts of projected weather events on the occurrence and 
survival of common cockles go beyond socioeconomic 
aspects considering the key role that this species has in 
estuarine ecosystems. In addition to impacts on the species 
spatial distribution, the increasing intensity and frequency 
of extreme weather events may also change the functioning 
of ecosystems and services delivered by cockles and other 
species that depend on them.
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