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ABSTRACT 

Background 

Visceral artery aneurysms (VAAs) can be fatal if ruptured. Although a relatively rare incident, 

it holds a contemporary mortality rate of approximately 12%. VAAs have multiple possible 

causes, one of which is genetic predisposition. Here, we present a striking family with seven 

individuals affected by VAAs, and one individual affected by a visceral artery 

pseudoaneurysm. 

Methods 

We exome sequenced the affected family members and the parents of the proband to find a 

possible underlying genetic defect. As exome sequencing did not reveal any feasible protein-

coding variants, we combined whole-genome sequencing of two individuals with linkage 

analysis to find a plausible non-coding culprit variant. Variants were ranked by the deep-

learning framework DeepSEA. 

Results 

Two of seven top-ranking variants, NC_000013.11:g.108154659C>T and 

NC_000013.11:g.110409638C>T, were found in all VAA-affected individuals, but not in the 

individual affected by the pseudoaneurysm. The second variant is in a candidate cis-

regulatory element in the fourth intron of COL4A2, proximal to COL4A1. 

Conclusions 



   

As type IV collagens are essential for the stability and integrity of the vascular basement 

membrane and involved in vascular disease, we conclude that COL4A1 and COL4A2 are 

strong candidates for VAA susceptibility genes. 

INTRODUCTION 

Aneurysms are caused by a local weakening of the arterial wall (medial degeneration). True 

aneurysms involve all three layers (intima, media, and adventitia) of the wall, and are defined 

as a 50% increase in the normal diameter of the vessel. They can be saccular or fusiform. 

Saccular aneurysms involve only a portion of the vessel wall and are spherical in shape with 

a narrow stem. A fusiform aneurysm is spindle shaped as it bulges out on all sides, forming 

a dilated artery. In contrast to true aneurysms, pseudoaneurysms lack arterial wall 

components: they are contained ruptures lined by surrounding tissue.  

Visceral artery aneurysms (VAAs) include aneurysms of the splenic, hepatic, superior 

mesenteric, gastric, celiac, pancreaticoduodenal, gastroduodenal, inferior mesenteric, and 

renal arteries.1 Renal artery aneurysms are sometimes considered separately due to a 

modest difference in etiology.2 The incidence of VAAs in the general population has been 

reported to be 0.01-2%.3 Among the most common sites are the splenic, renal, and hepatic 

arteries.  

VAAs may have multiple causes, and these vary slightly depending on the affected artery. 

The main etiology is often cited as atherosclerosis—a disease caused by the formation of 

plaque inside the arteries, causing them to narrow and harden—although there is reason to 

believe it only has a secondary role.3 Hypertension and connective tissue disorders are also 

https://paperpile.com/c/8s9QSV/Xgyjp
https://paperpile.com/c/8s9QSV/s9tz3
https://paperpile.com/c/8s9QSV/vmD7N
https://paperpile.com/c/8s9QSV/vmD7N


   

often associated with VAAs.4 Of the connective tissue disorders, Marfan syndrome, Ehlers-

Danlos syndrome (EDS), and fibromuscular dysplasia (FMD) are most commonly cited to 

predispose to aneurysm formation. Marfan syndrome is an autosomal dominant genetic 

disorder of connective tissue caused mainly by mutations in FBN1.5–7 The protein product of 

the gene, fibrillin-1, provides force-bearing structural support to connective tissue 

throughout the body.8 EDS is a heterogeneous entity consisting of heritable connective tissue 

disorders. The vascular type of EDS results from mutations in COL3A1.9 Of all EDS types 

described, it is most prone to vascular complications including aneurysm formation and 

rupture. FMD is defined as an idiopathic, non-inflammatory and non-atherosclerotic disease 

of arterial wall musculature that leads to stenosis of small and medium-sized arteries. It most 

commonly affects the renal and carotid arteries.10 Up to 90% of FMD patients are female, and 

10% have an affected first-degree relative.11  

The etiology of pseudoaneurysms differs from that of true aneurysms, as they are most often 

caused by trauma (also iatrogenic) and inflammation, in particular chronic pancreatitis.  

Aneurysms are often asymptomatic but carry a risk of rupture. A ruptured VAA can be fatal 

due to uncontrolled bleeding. At present the mortality rate is approximately 12%, however, 

this varies depending on the location of the lesion.12 Splenic artery aneurysms are up to four 

times more common in women and linked to multiparity.13 A probable cause is the increase 

in blood flow in combination with hormone-induced changes in arterial composition during 

pregnancy. Importantly, pregnant women have an increased risk of aneurysm rupture, and 

the mortality rate of a ruptured splenic artery aneurysm during pregnancy is approximately 

75% for the mother and 95% for the fetus, compared to 25% in the general population.14 

https://paperpile.com/c/8s9QSV/g2Z0L
https://paperpile.com/c/8s9QSV/cKLB3+X521c+cJJc4
https://paperpile.com/c/8s9QSV/egQvI
https://paperpile.com/c/8s9QSV/lEyQb
https://paperpile.com/c/8s9QSV/XbqBI
https://paperpile.com/c/8s9QSV/t66Cc
https://paperpile.com/c/8s9QSV/hGgPP
https://paperpile.com/c/8s9QSV/kXxQP
https://paperpile.com/c/8s9QSV/jXM36


   

Collagen type IV alpha 1 and collagen type IV alpha 2 molecules (encoded by COL4A1 and 

COL4A2, respectively) make up type IV collagen. Heteromers consisting of two alpha-1 

chains and one alpha-2 chain attach to each other to form complex protein networks that are 

the main component of basement membranes. Mutations in these genes cause rare multi-

system disorders, characterized by abnormal blood vessels, ocular dysgenesis, myopathy 

and renal pathology.15–22 The effects of mutations in the mouse orthologs Col4a1 and Col4a2 

have been studied extensively.16, 23–25 Complete deficiency of both proteins is embryonic 

lethal and associated with neuronal ectopias, disorganization of the capillary network during 

angiogenesis and impaired placental development, whereas double heterozygosity of the 

null alleles lacks an obvious phenotype.23 However, mice heterozygous for certain missense 

and splice-site mutations exhibit diverse effects, such as ocular, renal, pulmonary, muscular, 

vascular, reproductive, and central nervous system disorders, consistent with the pleiotropic 

effects linked to heterozygous human COL4A1/COL4A2 mutations.  

Here, we present a large family with seven individuals affected by visceral artery aneurysms. 

Multiparity is associated with this type of aneurysms, splenic in particular, and all affected 

individuals were multiparous. As the number of affected individuals is nevertheless striking, 

we DNA sequenced the family members in an attempt to find a possible underlying genetic 

defect. 

https://paperpile.com/c/8s9QSV/NCwuc+Xjp3u+qK4OR+5hhmv+lcmAJ+41kPS+7vdGI+Mwj42
https://paperpile.com/c/8s9QSV/jmGTj+WBGZq+Xjp3u+LwaJh
https://paperpile.com/c/8s9QSV/jmGTj


   

MATERIALS AND METHODS 

Ethics statement 

This research was approved by the National Institute for Health and Welfare and the ethics 

committees of the hospital districts of Helsinki and Uusimaa and North Ostrobothnia. All 

sequenced individuals gave informed written consent. Use of archival tissue was approved 

by the National Supervisory Authority for Welfare and Health (Valvira).  

 

Patients 

The proband (II:1) had several renal artery aneurysms and her splenic artery was dilated. 

She had altogether six siblings, three of whom were female and affected by aneurysms 

(Figure 1). II:2 and II:4 had multiple splenic and renal artery aneurysms, whereas II:3 had a 

splenic artery aneurysm and a small internal carotid artery aneurysm. All sisters were 

multiparous with six to 15 children each. Three women in the next generation also had 

aneurysms; III:1 had two splenic artery aneurysms, III:2 had an internal carotid artery 

aneurysm, and III:3 had several splenic artery aneurysms and a celiac artery lesion. Again, 

all were multiparous, and the number of children was two to nine. Patient vascular findings 

are listed in Table 1.  

 

 



   

 

Figure 1. Affected individuals in the pedigree and type/s of aneurysm diagnosed. Individuals 

marked with an asterisk were genome sequenced. Circles represent females, squares 

represents males, and diamonds represent individuals of undisclosed sex. The full pedigree 

is not depicted and the sex of most unaffected individuals is not disclosed due to reasons of 

confidentiality. 

 

 

 

 

 

 

 

 



   

Table 1. Patient vascular imaging and findings. 

Patient Procedure Area Findings 

I:2 DSA carotid artery and vertebral artery possible middle cerebral artery aneurysm 

II:1 CTA splenic artery five splenic artery aneurysms 

 MRI and 3D TOF MRA head no aneurysms 

 CTA aorta resected spleen, left renal artery aneurysm, splenic artery aneurysm 

 CTA coronary arteries no aneurysms 

 MRI upper abdomen no aneurysms 

II:2 CT abdomen two left renal artery aneurysms, right renal artery aneurysm, localized fusiform 

dilatation of splenic artery 

 MRA cranial vasculature hypoplastic anterior communicating artery 

II:3 CTA cerebral arteries internal carotid artery aneurysm/localized fusiform dilatation 

 CT upper abdomen splenic artery aneurysm 

 CTA abdominal aorta and groin same finding as above 

II:4 CTA aorta three splenic artery aneurysms, localized fusiform dilatation of splenic artery, 

accessory renal arteries (patient has altogether five renal arteries) 

 CTA abdominal aorta same findings as above and right renal artery aneurysm  

 MRI head no aneurysms 

III:1 CTA abdominal aorta, groin, and visceral 

arteries 

two splenic artery aneurysms 

 3D TOF MRA cranial vasculature no aneurysms 

III:2 MRA cranial vasculature left internal carotid artery aneurysm/localized fusiform dilatation 

 MRA thoracic and abdominal aorta no aneurysms 

III:3 CTA abdominal aorta and groin two splenic artery aneurysms, localized fusiform dilatation of the celiac artery, 

accessory renal artery 

 CTA cranial vasculature no aneurysms 

 3D TOF MRA cerebral arteries no aneurysms 

 MRA thoracic and abdominal aorta no aneurysms 

III:4 Endovascular 

embolisation for 

bleeding with 

radiological guidance 

splenic artery splenic artery pseudoaneurysm, abnormal elongation of femoral artery 



   

In addition to their aneurysms, II:2 had structural damage to the posterior communicating 

artery, II:2 and III:3 had accessory renal arteries, and II:1, II:2, and III:3 had hepatic 

hemangiomas. 

The mother of the proband (I:2) had had a cerebral hemorrhage of unknown cause. A male 

paternal second cousin of the proband had presented with a ruptured splenic artery 

pseudoaneurysm and exhibited abnormal elongation of the femoral artery. None of the 

patients exhibited clinical features of Marfan syndrome. 

Methods 

DNA was extracted from blood with conventional methods. Exome sequencing was 

performed on affected patients and the parents of the proband with Illumina HiSeq 4000 

(Illumina, San Diego, CA). Whole genome sequencing was performed on one patient from 

generation II and one from generation III (Figure 1) with Illumina HiSeq X Ten (Illumina, 

San Diego, CA). We performed non-parametric linkage analysis of the sequenced family 

members using MERLIN and the Kong & Cox exponential model.26,27 Variant annotation and 

filtering were performed with BasePlayer, a variant analysis and data integration platform.28  

Coding variants were required to be found in all individuals affected with true aneurysms 

(seven cases) and have a MAF < 0.01 in gnomAD exomes and gnomAD exomes’ Finnish 

subpopulation. Non-coding variants were required to be found in both genome-sequenced 

individuals, and have a MAF < 0.005 in gnomAD genomes, and a MAF < 0.01 in 373 in-house 

control genomes. We also required the non-coding variants to localize to areas with a LOD > 

0.5. LOD scores had been computed previously.  

https://paperpile.com/c/8s9QSV/KlSX5+71b8Z
https://paperpile.com/c/8s9QSV/pPBXS


   

To rank variants, we used the standalone version of DeepSEA, a deep learning-based 

algorithmic framework for predicting chromatin effects of sequence alterations.29 DeepSEA 

ranks SNVs only, large structural variation such as copy number data is not used in training 

the framework. The filtered variants from the previous step, 799 in total, were used as input. 

Variants were prioritized based on their HGMD probability and functional significance 

scores. We chose to validate the five best scoring variants in both groups. In total, 7 high-

scoring variants, listed in Table 2, were validated by Sanger sequencing.  

Table 2. Top-scoring variants chosen for Sanger validation. 

 

*as estimated by DeepSEA (Zhou and Troyanskaya 2015); funsig = unsupervised functional significance score, 

HGMD = probability of being a Human Gene Mutation Database mutation, classifier trained with HGMD data 

For a more detailed description of the methods, please refer to the Supplemental Methods. 

RESULTS AND DISCUSSION 

In order to find the possible genetic cause of VAAs in the family, patients were, apart from 

the individual affected by a pseudoaneurysm, initially exome sequenced. We first searched 

for rare (MAF < 0.01) variants shared by the affected family members and either parent, with 

negative results. We next whole-genome sequenced two patients, and searched for candidate 

hg38 HGVS funsig* HGMD*
1:58713768 NC_000001.11:g.58713798_58713907del 0.008 6.47E-07
4:6762013 NC_000004.12:g.6762027_6762028insCGAGGAGGCGGGCAG 0.01 0.69
4:25919954 NC_000004.12:g.25919954C>T 0.044 0.78
7:156992634 NC_000007.14:g.156992634G>A 0.015 0.51
10:117684640 NC_000010.11:g.117684643del 0.025 0.77
13:108154659 NC_000013.11:g.108154659C>T 0.066 0.79
13:110409638 NC_000013.11:g.110409638C>T 0.016 0.7

https://paperpile.com/c/8s9QSV/1m6KJ


   

variants segregating between them. Since we had the exomes of seven patients available, we 

used these data to determine genomic regions likely shared by the affected individuals by 

linkage analysis. Altogether 799 non-coding variants shared by the two genome-sequenced 

individuals resided in the regions and passed filtering. The variants were subsequently 

ranked by the deep-learning model DeepSEA. The presence of the top-ranking variants 

(Table 1) in the exome-sequenced individuals was determined by Sanger sequencing. 

None of the variants were found in all patients with true aneurysms and the patient with the 

pseudoaneurysm. However, two variants—the substitutions 

NC_000013.11:g.108154659C>T and NC_000013.11:g.110409638C>T—were shared by all 

patients with true aneurysms. The first variant is located in the second intron of the 

diverticulitis associated gene FAM155A, and the second variant in the fourth intron of COL42, 

a gene linked to cerebrovascular disease (intracerebral hemorrhage, porencephaly, and 

brain small-vessel disease).17, 30–32 

FAM155A encodes a relatively poorly described membrane protein. COL4A2, on the other 

hand, encodes collagen type IV alpha 2 extracellular matrix protein, a subunit of type IV 

collagen, the major structural component of basement membranes. COL4A1 and COL4A2 

share a common promoter, form heterotrimers (2:1), and make up the majority of type IV 

collagen.16 Both contain activating elements which are indispensable for efficient 

transcription, and the third intron of COL4A2 also contains a silencing element.23,33 In 

addition to being linked to cerebrovascular disease (porencephaly and brain small-vessel 

disease with hemorrhage), COL4A1 has also been shown to cause nonsyndromic congenital 

https://paperpile.com/c/8s9QSV/WEh8K+qK4OR+T07Tb+NQjlO
https://paperpile.com/c/8s9QSV/Xjp3u
https://paperpile.com/c/8s9QSV/NPLC4+jmGTj


   

cataract, tortuosity of retinal arteries, and hereditary angiopathy with nephropathy, 

aneurysms, and muscle cramps (HANAC) syndrome.34–38  

According to ENCODE data, both variants are located in candidate cis-regulatory elements 

(cCREs; accessions EH38E1696504 and EH38E1697888) with a distal enhancer-like 

signature.39 It is thus plausible that they could alter the expression of nearby genes. Due to 

its proximity to COL4A1 and COL4A2, the variant NC_000013.11:g.110409638C>T is 

particularly interesting. Besides having already been linked to vascular disease, type IV 

collagens form complex, covalently linked structural scaffolds that are fundamental for the 

integrity and function of the basement membrane.40 The basement membrane provides the 

vasculature with mechanical support, serves as a diffusion barrier, and also plays a crucial 

role in signaling events that regulate endothelial cell migration, proliferation, and survival.41 

Altered expression of either COL4A1 or COL4A2 could cause this structure to weaken or 

malfunction. This in combination with additional pregnancy induced changes in arterial wall 

composition could plausibly have caused the striking incidence of aneurysms seen here, 

especially as 5/7 affected women were grand multiparous. In conclusion, mutations in the 

regulatory regions of COL4A1 and COL4A2 may alter VAA susceptibility. However, additional 

studies involving functional and model data are warranted to validate the findings. 

Deciphering the genetics behind familial VAAs enables genetic testing, informed decision 

making, and medical surveillance of at-risk individuals. Considering the generally high 

mortality rate of aneurysm rupture, not to mention the catastrophic event of rupture during 

pregnancy, this is of utmost importance. 

https://paperpile.com/c/8s9QSV/3bliW+oBxK9+jgvkX+US63b+IwDDe
https://paperpile.com/c/8s9QSV/P0XX9
https://paperpile.com/c/8s9QSV/7ECeA
https://paperpile.com/c/8s9QSV/TL10b
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