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Abstract: Clinical data analysis could lead to breakthroughs. However, clinical data contain sensitive
information about participants that could be utilized for unethical activities, such as blackmailing,
identity theft, mass surveillance, or social engineering. Data anonymization is a standard step
during data collection, before sharing, to overcome the risk of disclosure. However, conventional
data anonymization techniques are not foolproof and also hinder the opportunity for personalized
evaluations. Much research has been done for synthetic data generation using generative adversarial
networks and many other machine learning methods; however, these methods are either not free
to use or are limited in capacity. This study evaluates the performance of an emerging tool named
synthpop, an R package producing synthetic data as an alternative approach for data anonymization.
This paper establishes data standards derived from the original data set based on the utilities and
quality of information and measures variations in the synthetic data set to evaluate the performance
of the data synthesis process. The methods to assess the utility of the synthetic data set can be broadly
divided into two approaches: general utility and specific utility. General utility assesses whether
synthetic data have overall similarities in the statistical properties and multivariate relationships with
the original data set. Simultaneously, the specific utility assesses the similarity of a fitted model’s
performance on the synthetic data to its performance on the original data. The quality of information
is assessed by comparing variations in entropy bits and mutual information to response variables
within the original and synthetic data sets. The study reveals that synthetic data succeeded at all
utility tests with a statistically non-significant difference and not only preserved the utilities but also
preserved the complexity of the original data set according to the data standard established in this
study. Therefore, synthpop fulfills all the necessities and unfolds a wide range of opportunities for
the research community, including easy data sharing and information protection.

Keywords: synthpop; data sharing; data anonymization; machine learning; mutual information;
data quality

1. Introduction

Clinical data either collected as a part of research or recorded during clinical practice
are reckoned confidential and required to be pseudonymized or anonymized before leav-
ing the hospital. Pseudonymization and anonymization techniques include altering and
removing explicit identifiers, such as names, addresses, and national identity numbers,
from a data set. However, in pseudonymization, a person can still be re-identified by data
linking, leading to a reduction in k-anonymity [1,2], and anonymization techniques have
failed multiple times in the past [3]. To further reduce the risk of re-identification, data
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scientists use data aggregation techniques or induce random noise in the data; however,
such methods often do not maintain the integrity of the records and therefore impose a
challenge for a person-specific data analysis [1].

Sharing data has many advantages, from consolidating different data sets to find
new knowledge to verifying previously made verdicts [4]. Not having data available
also restricts scholars from sharing an in-depth understanding of the topic and imposes
a limitation on communication. Transparency in the research community will help ad-
vance technology, facilitate better innovation opportunities, and solve current worldwide
problems [5]. Undoubtedly, sharing clinical data sets containing sensitive information
imposes a greater risk of disclosure and increases participants’ chances of becoming tar-
gets of blackmailing, mass surveillance, social engineering, or identity theft—for example,
by employing background knowledge attacks. Disclosure risks, obtruding data collectors
and researchers from sharing data or making them publicly available and driving them to
opt for minimal or no sharing of data [6].

Since the enforcement of data protection rules, data collection and processing have
become more secure; however, data acquisition for collaboration or further analysis re-
mains challenging [6]. The process of data sharing for secondary data analysis is hindered
and affected by determining whether a subject’s consent is required for secondary data
analysis in research. The before-mentioned circumstances affect researchers and students;
for example, in many countries, teaching data analysis with clinical data such as electronic
healthcare records (EHR) is significantly prohibited by laws protecting the patient’s pri-
vacy [7]. Notwithstanding the benefits, due to the lack of trusted or easy-to-access tools for
data anonymization, innovation and educational possibilities are also affected [7].

This study is a part of HTx, a Horizon 2020 project supported by the European Union
lasting five years from January 2019. The main aim of HTx is to create a framework for
next-generation health technology assessment (HTA) to support patient-centered, societally
oriented, real-time decision-making on access to and reimbursement for health technologies
throughout Europe. To achieve said goals, access to clinical data is a must; hence, generat-
ing a synthetic data set for data sharing, which preserves the original data set’s statistical
properties, is functional for machine learning (ML) analysis, boosts collaboration, and si-
multaneously ensures the patient’s privacy. It is the most suitable solution for opening up
more opportunities for real-world data (RWD) or EHR to be available more freely. This
study explores whether synthesized RWD or EHR can be used for education, collaboration,
and innovation. Many generative adversarial networks (GANs)-based data synthesis tools
have been published in previous years; however, most come with limitations, such as
unsupported data types or limited access to the tools for free usage. Therefore, a data
synthesis tool, an R package termed synthpop, is explored and examined while underlining
the statistical properties, ML applicability, and quality of the information in the data set.

The primary objective is to question the performance of the synthesis tool by evaluating
the impacts of the data synthesis procedure over two different clinical microdata sets for
comprehensive evaluation. The first data set is the Finnish Type 1 Diabetes Prediction
and Prevention (DIPP) study database [8], and the second is the Wisconsin Diagnostic
Breast Cancer (WDBC) data set from the University of California Irvine, Machine Learning
Repository [9]. It is important to note that synthpop can handle any microdata, apart
from the clinical data sets used in this study. The WDBC data set has 569 samples with
32 attributes, including ID, diagnosis, and 30 real-valued input features. The diagnosis is
binary; either M = malignant or B = benign. Ten real-valued features were computed for
each cell nucleus. The features of the WDBC data set was computed from a digitized image
of a breast mass’s fine needle aspirate. They describe the characteristics of the cell nuclei
present in the image. The DIPP data have been collected since 1994 only at Oulu University
Hospital and contain information from over 6500 subjects in the form of longitudinal data
recorded since birth. The database includes information about the subject and siblings and
parents’ monitoring information for the prediction of the positivity of the autoantibodies
later in life. Both data sets used in this study are explained in detail in Appendix A.
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Data synthesis’s impacts were measured based on the general and specific utility and
quality of the information in the synthetic data set compared to the original data set. We
used general utility measures to evaluate the differences in the statistical properties of
data sets by comparing relative frequency distributions, uniform manifold approximation,
and projections (UMAP), and bivariate Pearson product-moment correlation coefficients
(PPMCC). In addition, specific utility measures focused on comparing the performances
of fitted ML models over different data sets (synthetic and original). One null and one
alternative hypothesis were defined to evaluate the difference in utility measures’ results.
The synthpop tool shows success in a test if results fail to reject the null hypothesis, stating
that the two data sets (synthetic and original) have at most a statistically non-significant
difference. Moreover, the study is finalized via an information-theoretic perspective by
analyzing entropy and mutual information within the data sets or measuring the quality of
the information in the data sets.

2. Related Work

Initially, healthcare professionals generated and maintained clinical data in several
EHR. Nowadays, most countries possess a centralized EHR system to accommodate the
availability and completeness of the data [10,11]. These centralized EHR can later be
combined with other data sets to help medical professionals administer the best possible
treatment with knowledge gained from data by using next-generation technologies, includ-
ing artificially intelligent systems, potentially transforming healthcare. Despite the benefits,
a few considerable obstacles prevail in exploring and achieving this goal [10]. Some are
associated with the modern clinical database’s content and structure, and others regard the
complications and expenses of producing and sustaining comprehensive databases [12].
Most often, data collectors do not get recognized for their investment in data collection [10];
hence, the desire to be the first to explore and utilize the data before they sell or distribute
it to others is high. However, this study focuses on the importance of the subject’s privacy
in clinical microdata sets.

After coming across the benefits of open clinical data, governments have mainly
spearheaded the concept of open databases over the last decade [4]. With an open database
comes the risk of disclosure, which can lead to many harmful consequences. The disclosure
risk gets higher with a better privacy attack. A privacy attack identifies a subject’s identity
within the data set or by combining multiple databases [13]. Medical history, which
includes information about sexually transmitted diseases, substance abuse, psychiatric
treatment, or elective abortion, is sensitive information about a person. The person may
not want to reveal this information to anyone except specialists. People can also wish not
to disclose private information for no particular reason because they feel invaded and find
the entire system distasteful [14]. As per the law in most countries, data sharing is possible
with consent given by the data owner, providing that the person’s identity will remain
anonymous. Hence, many different data anonymization techniques are used to continue
exercising data sharing and collection.

Data anonymization approaches have evolved, developed, and adapted to our needs
multiple times. Around 1850, when the US Federal Bureau of Statistics (Census Bureau)
started receiving questions about privacy, the Census Bureau began to remove personal
information from publicly available census data as a protection measure. The Census Bu-
reau became one of the first to adopt the data anonymization concept by removing explicit
identifiers, such as names, addresses, and national identity numbers. In 1972, a paper
proposing introducing noise to data was published [15]. Later, in 1980, researcher Dorothy
E. Denning published a paper showing concern about whether data can be anonymized
with certainty as her analysis showed that "noise" can often be removed by averaging
responses for carefully selected query sets [16].

For almost 15 years until the Health Insurance Portability and Accountability Act
was enacted, the entire computer science community seemed to have lost interest in data
anonymization, as not many papers introducing discovery in the field of data anonymiza-
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tion were published. In 1997, Latanya Sweeney successfully re-identified the then Mas-
sachusetts Governor from supposedly anonymized health data and presented the concept of
k-anonymity [17]. Later, in 2002, L. Sweeney also provided the k-anonymity model to over-
come the shortcomings (analyze data in a privacy-preserving way) of earlier anonymization
techniques [1]. Anonymized data can be of different types, such as k-anonymous [1], and k-
anonymity can be used as one of the analyses for the level of anonymity, and the data
remain practically useful. Soon after, the k-anonymity model was enhanced by introducing
`-diversity and t-closeness to the model [18,19].

In 2006, a paper about differential privacy was published stating that privacy can be
preserved by calibrating the standard deviation of the noise according to the sensitivity
of function f [20]. Differential privacy uses the parameter ε to determine the degree of
privacy in a given data set, which is inversely proportional to the value of ε. In other words,
for better protection, the value for ε must remain low; however, with a low ε value, data
can only be queried a few times. After eight years, in 2014, the theory was put into practice
by Google, as they began to collect differential private user statistics in Chrome [21]. Two
years later, Apple started using differential privacy on user data for iPhones [22]. Since a
higher ε value means there is a lot of noise in the data, questions of utility (the ability to
use data for analysis) versus privacy (risk of disclosure) started to emerge [23]. Despite
the efforts, there is a growing consensus that traditional anonymization techniques are
insufficient, as they have failed multiple times in the past [1,3,23,24].

In 2018, The General Data Protection Regulation (GDPR) came into force, allowing
the data subjects to decide on their usage and disclosure [25]. Furthermore, GDPR holds
data collectors responsible for evaluating the proposed research before sharing the data.
This ensures adequate provisions to protect the subject’s privacy and maintain the con-
fidentiality of the subjects in the data set after understanding the complexity of today’s
digital databases and how privacy attacks can be personalized and can benefit by linking
other databases to identify individuals. Many researchers, scientists, and mathematicians
are collaboratively building and advancing data-anonymization procedures to provide
opportunities to analyze data, especially clinical data while preserving the subject’s privacy.

Current data-sharing systems, including SQLShare and DataHub, promote collabora-
tive data analyses but fail to consolidate privacy-preserving prospects or means to manage
sensitive data. Many other tools using AI methods, mainly GANs, have been developed
which synthesize the data. Most AI-based data synthesis methods are designed to work
on imaging data and do not work for microdata. Some do; however, either they are not
free to use or come with limited access to the tool’s capacity, such as Tonic [26], Hazy [27],
Datomize [28], and Mostly AI [29]. The synthpop package is an alternative to the previously
mentioned methods for data synthesis. It is free to use and is capable of handling any
microdata; there is no access limitation to the tool. It [30] was utilized in 2018; a synthesized
version of highly sensitive data probing the role of ovulatory changes on sexual desire and
behavior was publicly released [31]. The data set consists of 26 thousand of diary entries
from women. Since sexual diaries are extremely sensitive and hard to anonymize com-
pletely, the data collector did not request consent from participants to make data publicly
available but instead synthesized the data and made them publicly available for secondary
data analysis. Figure 1 illustrates the data synthesis process for data sharing with data
users and how synthetic data models can be verified and tested using original data by
the data owner while maintaining the subject’s privacy. In this study, the performance of
synthpop [30], which produced a synthetic version of data that is meant to be anonymous,
was explored and examined by measuring the impacts of the data synthesis process.
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Figure 1. Data synthesis, sharing, and testing use case.

3. Methodologies
3.1. Synthpop

The synthpop package was written as a part of the Synthetic Data Estimation for UK
Longitudinal Studies (SYLLS) project to share the sensitive population-level data outside
the setting where researchers held the original data set. Later, the synthpop package was
altered to make it applicable to other data sets.

In this study, synthpop was the primary data anonymization and synthesis tool. It
created a synthetic version of the original data while retaining its statistical properties
and relationships between the variables. The achievement of anonymity relies on the
assumption that there are no matching samples in the original and synthetic data sets;
also, there are no samples with extreme values which could serve as unique identifiers.
The method works by replacing some or all observed values by sampling from an appro-
priate probability distribution, conditional on the variable to be synthesized, the values
from all previously synthesized columns of the original data set, and the fitted parameters
of the conditional distribution (simple synthesis) or posterior predictive distribution of
parameters (proper synthesis) while retaining the statistical properties of the original data
set and relationships between the variables. By default, the syn() function produces one
synthetic data set, but multiple data sets can be generated by setting the parameter m to
a coveted number. An additional parameter, seed, can be used to fix the pseudo-random
number generator to reproduce the same results. By default, syn() uses simple synthesis,
but proper synthesis can be done by setting the proper argument to TRUE.

3.1.1. Methods for Synthesis

The synthpop tool consists of parametric and non-parametric methods [30]. Table 1
lists the methods currently implemented in synthpop. Each method generates synthetic
values for each variable sequentially. Synthetic values are generated using the distribution
of variables to be synthesized conditional on the distribution of previously observed
synthetic and original variables called predictors. The default synthesis method is "cart"
for all variables with predictors. It is a non-parametric method based on the classification
and regression tree (CART) that is capable of handling any data. However, the first variable
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to be synthesized in the data set does not have a predictor, and it is a particular case where
its values are by default generated by random sampling with replacement from original
values ("sample" method). However, the user does not need to use the same synthesis
method for all variables with predictors; a user can assign different methods from the list
of methods to each variable in the data set, befitting the data type. On the other hand,
setting the parameter method to "parametric" assigns default parametric methods to each
variable based on its data type. Furthermore, if a user does not want to change or synthesize
a variable, an empty method (" ") should be used for that variable. Finally, a new synthesis
method can be defined by writing a function named syn.newmethod().

Table 1. Built-in synthesizing methods. * Indicates default parametric methods [30].

Method Description Data Type

Non-parametric
ctree, cart Classification and regression trees Any
surv.ctree Classification and regression trees Duration
Parametric
norm Normal linear regression Numeric
normrank * Normal linear regression preserving Numeric

the marginal distribution
logreg * Logistic regression Binary
polyreg * Polytomous logistic regression Factor, >2 levels
polr * Ordered polygamous logistic regression Ordered factor, >2 levels
pmm Predictive mean matching Numeric
Other
sample Random sample from the observed data Any
passive Function of the other synthesized data Any

Implementation of methods: Let y denote an original data vector of length n, xp
denote a matrix (k× p) of synthesized covariates, and x denote a matrix (n× p) of origi-
nal covariate.

(1) Classification tree (syn.ctree) or classification and regression tree (syn.cart): It
fits a classification or regression tree by binary recursive partitioning, followed by finding a
terminal node for each xp. Finally, a donor from the node members is randomly drawn and
takes that draw’s observed value as the synthetic value. The difference between syn.ctree
and syn.cart is that they use functions from different packages. syn.ctree uses the ctree
function from the party package, whereas syn.cart uses the rpart function from the rpart
package. The selection of splitting variables and a stopping rule for the splitting process
make them different from others.

(2) Random forest (syn.rf): It uses Breiman’s random forest algorithm for classifi-
cation and regression [32]. Furthermore, It utilizes the randomForest function from the
randomForest package.

(3) Bagging (syn.bag): It generates synthetic data using bagging by utilizing random-
Forest function from the randomForest package with the number of sampled predictors
equal to the number of all predictors.

(4) Logistic regression (syn.logreg): It is used for the synthesis of binary variables by
the non-Bayesian or approximate Bayesian logistic regression model. The non-Bayesian
method first fits a logistic regression to the original data, then calculates the predicted
inverse logits for synthesized covariates. Finally, compare the inverse logits to a random
(0,1) deviation and obtain synthetic values. The approximate Bayesian method (for proper
synthesis) repeats the same process as the non-Bayesian method with one additional step
before computing inverse logits, drawing coefficients from a normal distribution with mean
and variance estimated in the first step.

(5) Normal Linear regression preserving the marginal distribution (syn.normrank):
First, synthetic values of normal deviates of the rank of the values in y are generated using



Data 2022, 7, 178 7 of 26

the spread around the fitted linear regression line of normal deviates of rank given x. Then
synthetic normal deviates of ranks are transformed to get synthetic ranks used to assign
values from y. For proper synthesis, the regression coefficients are drawn from a normal
distribution with mean and variance from the fitted model.

(6) Unordered polytomous regression (syn.polyreg): The synthetic categorical vari-
ables are generated by the polytomous regression model. First, it fits categorical responses
as a multinomial model. Later, it computes predicted categories and finally adds appropri-
ate noise to predictions. The algorithm uses the multinom function from the nnet package.
Numerical variables are scaled before fitting to cover the range (0, 1).

3.1.2. Controlling the Sequence and Prediction

Synthetic values of each variable are generated from a joint distribution. The joint
distribution is defined in terms of a series of conditional distributions. The values are
imputed sequentially from the variable’s distribution to be synthesized conditionally on
two distributions: (1) the distribution of all previously observed variables in the original
data set, and (2) the distribution of all previously synthesized variables. This sequential
process is, by default, automated, following the order of how variables appear in the data
set (left to right). However, the order can be changed or specified for each variable by
listing the indices of columns in the desired order to set parameter visit.sequence. If a
user wishes not to synthesize a variable and not use it as a predictor, it should be removed
from the visit.sequence.

Furthermore, if a user wishes not to synthesize a variable yet wishes to use the variable
as one of the predictors for the synthesizing model, then an empty (" ") method should
be used while keeping the variable in visit.sequence. Note that the variable(s) to be
synthesized later in visit.sequence cannot be used as predictor(s) for variable(s) which
appear before it. Though, variable(s) can explicitly be removed as predictor(s) for any
specific variable(s) by updating the predictor.matrix.

3.1.3. Handling Data with Restricted and Missing Values

Relationships between variables can diversify significantly within a data set. Some
variables can depend on each other or be tightly linked. As the goal of synthetic data is to
mimic all original data characteristics, these restrictions should be preserved during the
data synthesis process. For example, in a clinical data set, the variable containing infor-
mation about the patient’s sibling’s clinical history is restricted to the variable containing
information about whether the patient has siblings; this restriction needs to be addressed
to get the best results from the synthesis process. When other variables determine the
value for some case, the rule and corresponding values should be specified using rule and
rvalues parameters.

Furthermore, if the data set has missing values and the values are defined with
something other than the R missing data code NA, it should be specified in the cont.na
parameter of the syn() function. Missing values in categorical variables are handled as
additional categories. However, missing values in continuous variables are modeled in two
steps. First, an auxiliary binary variable is synthesized to model whether a value is missing.
If multiple types of missing values exist, an auxiliary categorical variable is created to record
this. Second, a synthetic model is fitted to non-missing values, and synthetic values are
generated for non-missing categories in the auxiliary variable. Finally, the auxiliary variable
with non-missing values and zeros for remaining records is used to predict other variables.

3.2. Utility Measures of Data

The purpose of a synthetic data set is to resemble all the properties of the original
data set. Thus, analyses made on synthetic data sets should lead to the same conclusions
as those on the original data set. In theory, the model used for the synthesis process
should resemble the original data-generation process to achieve its purpose. The methods
to assess the utility of the synthetic data set can be broadly divided into general utility
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and specific utility [33]. The general utility estimates whether synthetic data have overall
similarities in the statistical properties and multivariate relationships with the original
data set. Simultaneously, the specific utility assesses the similitude of a fitted model’s
performance on the synthetic data to its performance on the original data. The synthpop
package provides two types of analyses for the synthetic data set based on the general
and specific utility of the data set utilizing the compare() function in the package. First
is the relative frequency distribution, and second is the linear machine learning model’s
confidence interval overlap. However, due to the complexity of real-world microdata,
especially for clinical microdata, more sophisticated tools to measure the impact of data
anonymization are needed. As many real-world data, including clinical data, have non-
linear relationships within their features; using a linear machine learning model to evaluate
the machine learning capabilities of the synthetic data does not seem to be sufficient.
Therefore, besides relative frequency distribution from the package and more rigorous
analyses were performed in this study.

The overall utility of synthetic data is assessed on how adequately synthetic data
succeed at all conducted utility tests, as detailed in Section 3.2.1. To succeed at a utility test,
synthetic data need to resemble all the properties of original data, leaving no statistically
significant difference. For formal assessments, the hypotheses are as follows: Let D denote
an original data set, and Si represents a synthetic data set, where i indicates the index for
synthetic data produced with the different synthesizing methods. Let t denote a vector of
tests that returns a statistic and C∗ be a comparison function that returns a p-value. Finally,
compare the output of C∗ with α, a threshold value for the significance level.

Ho : C∗{t(D), t(Si)} < α, for any t ∈ [0, τ]

Ha : C∗{t(D), t(Si)} > α, for all t ∈ [0, τ]

The synthetic data quality was estimated based on whether utility tests led to rejecting
the null hypothesis. To reject the null hypothesis, the comparative results using the compar-
ison function (C∗) between original and synthetic data must have a p-value larger or equal
to α for all utility tests. The null hypothesis was not to be rejected if the comparative result
using comparison function (C∗) between original and synthetic data possessed a p-value
smaller than α for any utility test. Note that the α was set to 0.05 for all tests.

3.2.1. General and Specific Utility Measures

The relative frequency distribution provides the fraction or proportion of times a
value occurs in a data set. A side-by-side univariate distribution of each variable in the
synthetic and original data set will be plotted to compare the probability distribution
changes, which can be used to determine the likelihood of specific results occurring within
a given population [30]. Two data sets can possess nearly identical statistical properties
yet have very different distributions; therefore, the two-sample Kolmogorov–Smirnov test
must be used to evaluate whether two underlying one-dimensional probability distribution
differs in two different data sets (original and synthetic data set) for each variable.

Apart from visualizing frequency distributions, visualization of data points can help
analysts look at data from a different perspective. Visualization of data directly, which has
more than three dimensions, is currently out of scope. Still, dimension-reduction techniques
that preserve the relationship between variables can be used as pre-steps. Uniform manifold
approximation and projection (UMAP) is a dimension reduction technique that can be used
for visualization similarly to T-distributed stochastic neighbor embedding (t-SNE) [34],
but also for general non-linear dimension reduction [35]. UMAP is constructed from
Riemannian geometry and an algebraic topology-based theoretical framework. The result
is a scalable algorithm that applies to real-world data. Despite being similar to t-SNE, it is
competitive for visualization quality and arguably preserves more of the global structure.
Following the dimension reduction of the data while preserving global and local structures,
data can be visualized in two or three dimensions.
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The bivariate Pearson product-moment correlation coefficient (PPMCC) is a parametric
measure of the linear correlation between pairs of continuous variables. PPMCC produces
a sample correlation coefficient, R, which measures the linear relationship’s strength and
direction. The PPMCC also evaluates whether there is significant statistical evidence
for a linear relationship among the same pairs of variables, represented by a population
correlation coefficient, ρ (rho).

The specific utility of the data can be assessed by comparing the fitted synthetic and
original models’ performances. This study used multiple machine learning models as
classifiers, such as gradient boosting machine and random forest. Both of these methods
can also be used for regression. Different types of machine learning models were used
to evaluate the generality of the primary method of synthesis "synthpop". Moreover,
the performance of the fitted model was examined based on multiple parameters for
overall performance estimation.

Boosting algorithms were initially introduced by the machine learning
community [36–38] for classification problems. The boosting algorithm’s principle ap-
proach combines several simple models iteratively, termed weak learners, to obtain a strong
learner with improved predictive accuracy. A new statistical point of view for boosting was
introduced to connect the boosting algorithm to the concept of loss functions [39]. Later,
an extended boosting algorithm for regression termed the gradient boosting machine (GBM)
was introduced [40]. The GBM is similar to a numerical optimization algorithm that aims
to find an additive model that minimizes the loss function. Thus, GBM is a classification
and regression forward-learning ensemble technique that generates a prediction model
in the form of an ensemble of weak prediction models, typically decision trees that best
reduce the loss function. This study follows the GBM algorithm implemented in the H2O
package in R [41], which follows the algorithm specified by Hastie et al. [42].

Random forest classifier (RF) is a meta-estimator that fits several decision tree classi-
fiers on various data sets sub-samples and uses the averaging approach to improve the
predictive accuracy and control over the over-fitting [43]. In this study, Breiman’s random
forest algorithm for classification implemented in scikit-learn 0.24.2 was used [32,43]. The per-
formance of the fitted model was examined by multiple parameters, such as F1-score, receiver
operating characteristic (ROC) curve, and accuracy, for overall performance estimation.

3.3. Quality of Information

The data-anonymization procedure aims to reduce semantics, meaning minimizing
or removing personal information in a data set [44,45]. Data anonymization can cause
distortion and information loss in the data set [44]. Entropy is a fundamental quantity in
information theory associated with any random variable. Entropy can be interpreted as the
level of information, surprise, or uncertainty associated with a random variable’s value
or the result of a random process. The bit, which is the entropy unit, was adopted as a
quantitative measure of information or a measure of surprise. The entropy of a random
variable X, with possible outcomes xi, each with a probability of occurrence PX(xi), is
calculated as:

H(X) = −∑
i

PX(xi)logbPX(xi)

The entropy is maximal when all outcomes are equally likely in a system. The entropy
goes down if the system moves away from equally possible outcomes or introduces some
predictability. The information theory’s fundamental idea is that if the entropy of an
information source, system, or data set drops, fewer questions are needed to guess the
outcome. Entropy is directly proportional to uncertainty; i.e., as the value of entropy
increases due to unpredictability, uncertainty in the system’s outcome increases, and the
ability to compress decreases. Similarly, if the value for entropy decreases due to known
structure, then the ability to compress increases, which leads to entropy being indirectly
proportional to the ability to compress.
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Mutual information (MI) is a measure of mutual dependence between two random
variables. MI measures the information gain for a random variable X when information
about another variable Y is given. MI between two random variables X and Y can be
calculated as:

I(X, Y) = ∑
xi∈X,yi∈Y

p(xi, yi)log(
p(xi, yi)

p(xi)p(yi)
)

or

I(X; Y) = H(Y)− H(Y|X)

If entropy H(Y) is a measure of uncertainty about a random variable Y, then H(Y|X)
is a measure of what X does not say about Y. In other words, H(Y|X) is the uncertainty
remaining about Y after X is known. Therefore, the equation can be interpreted as the
amount of uncertainty in Y minus the amount of uncertainty in Y after X is known. Further-
more, this provides the inherent meaning of MI as the amount of information or reduction
in uncertainty that one random variable provides about the other. Kraskov’s estimator [46]
of mutual information is closely related to Shannon’s entropy, but Kraskov’s estimator
relies on the nearest neighbors’ count. Kraskov’s estimator, along with many others [47],
uses canonical distance defined in metric space for computability over Euclidean space and
uses the Euclidean distance function. The mutual information estimator I(2) between two
random variables xi and yi is defined as:

I(2)(X, Y) = Ψ(k)− 1/k− < Ψ(nx) + Ψ(ny) > +Ψ(N), (15)

with Ψ being the digamma function and k denoting the number of neighbors. < Ψ(nx) +
Ψ(ny) > denotes the averages of both vectors nx(i) and ny(i) holding counts of neighbors
overall i ∈ [1, . . . , N] and overall realizations of the random samples. In this study,
a variation of the second algorithm from Kraskov’s estimator proposed by Oliver et al. [45]
to use the method over non-Euclidean spaces using non-Euclidean distances was used.
The calculation requires the nearest neighbors of points in joint space and counting how
many lie in an absolute ball [45].

4. Experiments and Results

First, the performances of the different synthesis methods were evaluated based on
the specific utility of the DIPP synthetic data set to select the fittest synthesis method.
Specific utility compares the performances of the synthetic and original-data-fitted models.
Following the method selection, general utility and the quality of information content were
assessed for the selected synthetic data set. The general utility examines the statistical
properties of the synthetic data set compared to the original data set based on the corre-
lations among data variables, data visualization, data distributions, and data similarity.
The quality of the information content is measured from an information-theoretic point of
view, covering entropy and MI within the data sets. Similarly, all three primary analyses
were repeated for the WDBC data set with the same motivation for general utility and
quality of information contained in the data set but with additional motivations for specific
utility experiments.

4.1. Specific and General Utility

The pre-processed version of the DIPP data set is a data frame with 30 attributes,
including the binary response variable for 1329 subjects. Later, the data set was syn-
thesized numerous times via the syn() command from the synthpop package using
several methods. As mentioned earlier in Section 3.1.1, the first variable to be synthe-
sized in the data is by default generated using the "sample" method. In our case, the re-
sponse variable, "POS_antibodies", was the first to be synthesized, and then the rest of
the attributes. For the reader interested in detailed implementation, Table A1 provides
the list of all attributes in the data set and their descriptions in the order of synthesis,
i.e., "visit.sequence".
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Three different synthesis methods generated three synthetic data sets for initial experi-
mentation. The methods used were "cart", "ctree", and "parametric"; and let SynD1,
SynD2, and SynD3 denote generated synthetic data sets, respectively. One method of
synthesis which performed the best out of those three methods was selected for generating
another synthetic data set (SynD4 ) by setting the argument proper to TRUE for proper
synthesis for further analysis.

The goal was twofold: first, to investigate if synthetic data sets can be used for machine
learning problems when the original data cannot be acquired (due to patient’s privacy),
and second, to assess how well synthetic data sets perform under a machine learning
classifier as compared to the original data set. The machine learning classifier used was
the GBM model, which was fitted, validated, and tested ten times (for more stable model
performance) with all synthetic data sets and the original data set. Additionally, each data
set was divided into three splits before model fitting: 75.0% of data for training, 12.5% for
validation, and 12.5% for testing. We compared the results obtained from synthetic data
test sets to the results of the original data test set to evaluate which synthesizing method
produces the synthetic data set most resembling the performance of the original data set.
The performance measure used was the confusion matrix and the parameters derived from
it. The motivation behind using multiple performance parameters was to provide a more
robust interpretation [48], as a model can have very high accuracy yet suffer from low
precision [49] (pp. 128–129).

One sample set out of ten for the comparative performance of DIPP synthetic data sets
(SynD1 to SynD4 ) with the original data set can be seen in Table 2. Note that the process
was repeated ten times for all data sets to perform a significance test for testing accuracies.
The accuracy of each synthetic data set-fitted model and of original data set-fitted model
were compared using the C∗ comparison function. The C∗ function returns a p-value.
Table 3 provides the p-value for each data set. Every single p-value was calculated using a
t-test, comparing the accuracies of every synthetic data set to the original data set for the
GBM model (10 iterations). Furthermore, a test set of original data sets was fed into the
synthetic-data-fitted model to evaluate the local and global structure-preserving capabilities
of the synthesis method and the pertinence of one aspect of the secondary data analysis.
This comparative performance can also be seen in Table 2.

The objective was to reject the null hypothesis, i.e., the difference in the performance
of the synthetic-data-fitted model should differ from the performance of the original-data-
fitted model by, at the most, a non-significant amount. In other words, the aim is that the
synthetic data set produced using any method does not perform better or worse than the
original data. It must function as similar to the original data set as possible. From Table 3,
the data sets produced using methods "cart" (SynD1 ) and "parametric" (SynD3 ) are
the only data sets with p-values greater than α, whereas the rest have p-values smaller
than α. If the p-value is greater than α; two data sets show enough evidence to reject the
null hypothesis, meaning that the difference is statistically non-significant. Note that the
p-value for each data set was calculated only using the accuracies of the model over the test
set, which reflects the model’s generalizability. However, from Table 2, we can also say that
SynD1 performs better than SynD3 when other evaluation parameters are considered. The
overall performance difference from the original data is smaller for SynD1 than SynD3.

The analyses of SynD1 to SynD4 showed that the performance of SynD1 resembles
that of the original the most. Therefore, the WDBC original data set was synthesized twice
using the "cart" method. The whole data set was synthesized (SynW1 ), following only
the training set being synthesized (SynW2 ), which was 30% of the data. As mentioned
earlier in Section 3.1.1, the synthesis of the first variable in the data set by default uses the
"sample" method, as it does not have a predictor. In our case, the binary response variable
(M = malignant or B = benign) was the first to be synthesized; the rest of the attributes
were synthesized in the order they would be found in the WDBC data set repository [9].
After synthesizing the original WDBC data set, SynW1 and SynW2 were preprocessed,
and 14 highly correlated features were removed from all three data sets (original, SynW1,
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and SynW2 )). The RF models were trained and tested three times in total with preprocessed
original and synthetic data sets with 5-fold cross-validation. For all models, 70% of the data
were used for training and 30% for testing.

Table 2. Original and synthetic data sets and their performances using ML models.

Test Set Training Set
Predicted Labels

F1 Score ROC Curve
Negative Positive

Original Original Negative 89 16 0.85

DIPP DIPP Positive 5 56 0.82 0.95

Negative 83 19 0.88

SynD1 SynD1 Positive 1 63 0.85 0.93

Negative 82 20 0.87

SynD2 SynD2 Positive 3 61 0.82 0.93

Negative 98 4 0.85

SynD3 SynD3 Positive 14 49 0.78 0.92

Negative 83 18 0.86

SynD4 SynD4 Positive 0 65 0.89 0.95

Original Original Negative 113 2 0.98

WDBC WDBC Positive 3 53 0.95 0.96

Negative 111 2 0.98

SynW1 SynW1 Positive 2 56 0.97 0.97

Original Negative 102 5 0.94

WDBC SynW2 Positive 7 57 0.90 0.92

Table 3. p-values using accuracy from comparison function (C∗) between synthetic and original
data sets.

Data Set p-Value

SynD1 0.0965496

SynD2 0.0485093

SynD3 0.1755973

SynD4 0.0006553

SynW1 0.0837001

In Table 2 is the performance list of original WDBC and SynW1 data-fitted models,
along with the information about which data set was used for training and testing. Fur-
thermore, a test set of original WDBC data sets was fed into the synthetic data (SynW2 )
fitted model to evaluate the local and global structure-preserving capability of the synthesis
method and pertinence of one aspect of the secondary data analysis. The comparative
performance can be seen in Table 2.

In Tables 2 and 3, the results indicate that the synthetic data set (SynW1 ) performed
similarly to the original data set. However, the performance of the SynW2 data-fitted
model declined slightly when tested with the original data test set. Indeed, from the
implementation of SynW2, we can say that the size of data affects the performance of the
synthesis process, as the values are imputed by sampling from an assumed distribution.
This experiment also shows that a model trained on synthetic data can be used to test for
new original samples with success.
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From the correlation matrix (Figures 2 and 3), the original and synthetic data sets
clearly have similar strong correlations between most variables. The relative frequency
distributions analysis for the original and synthetic data sets (Figures 4 and 5) report
similar distributions between the original and synthetic data sets’ variables. The UMAP
embedding for both original and synthetic data sets (Figures 6–9) shows that samples
belonging to each class form individual, similarly shaped clusters. However, the global
structure of the WDBC synthetic data set is mirrored compared to the original data set in
Figure 9. Furthermore, the data similarity between the original (DIPP and WDBC) and
synthetic (SynD1 and SynW1 ) data sets of all discrete and continuous variables using the
Kolmogorov–Smirnov two-sample test can be found in supplementary Tables A2 and A3.
A Kolmogorov–Smirnov two-sample test affirms that the analyses show evidence to reject
the null hypothesis. That is, the variation in the distribution of these variables is statistically
non-significant, as all attributes have a kSp-value larger than α.

Figure 2. Pearson correlation for original data set in the “lower” triangle and SynD1 data set in the
“upper” triangle.
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Figure 3. Pearson correlation for original data set in the “lower” triangle and SynW1 data set in the
“upper” triangle.

Figure 4. Relative frequency distributions of a few original (observed) and SynD1 (synthetic) data
set variables.
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Figure 5. Relative frequency distribution of a few original (observed) and SynW1 (synthetic) data
set variables.

Figure 6. Uniform Manifold Approximation and Projection for original DIPP data set.
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Figure 7. Uniform Manifold Approximation and Projection for SynD1 data set.

Figure 8. Uniform Manifold Approximation and Projection for original WDBC data set.



Data 2022, 7, 178 17 of 26

Figure 9. Uniform Manifold Approximation and Projection for SynW1 data set.

4.2. Quality of Information

After analyzing the impacts of data synthesis and usability of data from a data mining
point of view, the concepts of information theory were used further to evaluate the level of
distortion in a data set and quantify the information loss. Claude Shannon’s entropy in bits,
calculated for all variables concerning both original and synthetic data sets, reveals that a
few variables in the synthetic data sets suffered a slight drop in entropy by approximately
one bit, suggesting a probability of data compression, leading to a slight increase in the
predictability of values for each data variable. A visual result of the entropy bit can be
seen in supplementary Figures A1 and A2. Finally, MI between all feature vectors and the
response variable for both original and synthetic data sets was calculated using a variation
of Kraskov’s estimation method. The distance between samples was calculated using a
k-NN algorithm with three neighbors over a non-Euclidean space. The analysis found no
variation in MI in the synthetic data sets compared to the original data sets, as the values of
MI for both DIPP and WDBC synthetic data sets were the same positive numbers as for
their corresponding original data sets, 12.786 and 10.239, respectively.

5. Conclusions and Discussion

It is natural to see clinical data suffering from imbalanced classes. This is often
expected, as the data are not gathered in an experimental setting, such as a randomized
controlled trial. It is necessary to note that such characteristics affect the performances
of machine learning algorithms [50,51]. In our case, it was not the scope of this study to
investigate this reasoning and improve the performance; however, it is essential, as it has
also affected the data synthesis process. The tool imputes the values for synthetic variables
from fitted parameters of synthesizing models, and imbalanced classes play a significant
role in most synthesizing methods. The DIPP data set was pre-processed and mostly
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aggregated from a longitudinal database. When such data are generated, it is expected
that the data set will suffer from imbalanced classes. Such characteristics play a significant
role in data analysis; in our case, the effects can be seen in model training. Most synthetic-
data-fitted models, including the original model, performed reasonably well in predicting
negative and positive cases, despite having many negative samples. However, one synthetic
data set (SynD3 ) significantly favored the negative samples more than any other data set.
The SynD3 was the only synthetic data set produced using parametric methods fitting
the data variable’s type. This analysis suggests that during data synthesis, model fitting
parameters of the synthesizing method might have suffered overfitting, and synthetic
data values were attributed to favoring negative classes. Even though the significance
test of the accuracies of the SynD3 data-fitted model showed no statistically significant
difference from that of the original-data-fitted model, when other evaluation parameters
were considered, the SynD3 revealed various shortcomings favoring the previous finding.
These interpretations underline the importance of the other evaluation parameters while
determining a model’s performance.

Despite its weaknesses, the tool exceeded expectations when the default synthesis
method "cart" (capable of handling any data type) was used. Two synthetic data sets
were generated using the "cart" method: SynD1 and SynD4. The only difference was
that SynD6 data were generated while setting the argument proper to TRUE for proper
synthesis. Repeatedly, the SynD4 data-fitted model showed signs of overfitted parameters
of the synthesizing model during data synthesis—however, the SynD1 data-fitted model
outperformed in all analyses. The synthetic data set showed no signs of variation in data
utility. The synthetic data set SynD1 succeeded in all performed tests with the statistically
non-significant difference from the original data set; this is the only synthetic data set that
led to rejecting the null hypothesis. Additionally, the quality of the information content
was well preserved for 27 out of 30 variables. For the rest of the three variables, SynD1
suffered a decrease in entropy only by 1 bit. Conclusively, these analyses suggest that the
"cart" method preserved not only the utilities but also the complexity of the DIPP data set
according to the data standard established in this study, exhibiting that the tool certainly
accomplished its intended goal.

The whole WDBC data set has undeniably strong correlations between features, since
most are generated utilizing the initial ten real-valued features. Such a data set could
be challenging to replicate fully, as similar variables are used to derive different features,
and a strong dependence between the features is expected. Despite the complexity, the
synthetic data set SynW1 succeeded in all performed tests by means of a statistically
non-significant difference from the original data set; this is the only synthetic data set that
led to rejecting the null hypothesis. Additionally, the quality of the information content
was well preserved for all variables, except that SynW1 suffered a decrease in entropy
only by 1 bit. Conclusively, these analyses suggest that the "cart" method preserved
not only the utilities but also the complexity of the WDBC data set according to the data
standard established in this study, exhibiting that the tool accomplished its intended goal.
The overall performance of the data synthesis tool was remarkable. The tool performed
adequately on all performed tests.

Overall, synthpop fulfills all the necessities and unfolds many opportunities for the
research community, including easy data sharing, more significant collaborations, and in-
formation protection [52]. The impediments in clinical data mining and sharing most often
relate to a research participant’s or patient’s privacy and security, and the circumstance
that researchers face of having to consider the trade-off between the risk of disclosure
and the benefits of open data sets [52–55]. Sharing clinical data could extend scientific
collaboration for innovative discoveries and validate previously defined hypotheses. In nu-
merous situations, the survival of data itself depends on the data holder’s capability to
share data when needed, since not releasing data at all may eventually diminish the need
for it [1]. Considering the workflow of the study, we can also state that data collectors and
authors will always be indulged, since the findings from the synthetic data need verification
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from the original data set. This dependency on the original data set for result verification
limited our study because the synthetic data can only be used for secondary data analysis.
If the original author cannot be reached for result verification, the analyses may cease and
result in an abandoned study. However, using synthetic data for secondary data analysis
will enhance the collaboration between data owners and external data scientists while
maintaining the subject’s privacy.

However, as demonstrated in this study, a user could utilize different tools to measure
the utility of the data or consolidate further questioning if desired. By subsequently
studying and assessing synthpop by measuring the impacts of the data synthesis process,
we concluded that the tool performs competently in the current setting. Future researchers
could consider testing the performance of synthpop by synthesizing the WDBC data set
using different synthesis methods. Furthermore, implementing a more sophisticated way
to read entropy bits and investigating the mutual information between pairs of variables
in both original and synthetic data sets could highlight more in-depth impacts of the data
synthesis process.
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Appendix A

This Appendix section outlines the structure and objective of each data set used in this
study along with miscellaneous results.

Appendix A.1. Wisconsin Diagnostic Breast Cancer Data Set

Breast cancer is the second most common cause of death in American women who are
40 to 55 years of age [58]. Since the 1930s, the beginning of formal tracking of cases through
the registry, breast cancer rates have been regularly increasing in the United States [58].
Many researchers worldwide have been studying and trying to detect breast cancer early
in life to decrease the mortality rate.

The WDBC data set used in this study is an open data set, which implies that the data
is free and available at the University of California Irvine Machine Learning Repository [9].
The motivation for using the WDBC data set in this study is to utilize a different and more
complex data set consisting of a relatively high correlation between variables. The data
set features were derived from ten real-value features, which caused a high correlation
within the data set. Furthermore, the data set is openly available, so the findings from this
study can be replicated or further questioned, supporting the study’s primary objective.
Therefore, this study examined the performance of the data synthesis tool over the WDBC
data set toward the possibility of data sharing for similar data sets.

The data set has 569 samples with 32 attributes, including ID, diagnosis, and 30 real-
valued input features. The diagnosis is binary, either M = malignant or B = benign. Ten
real-valued features were computed for each cell nucleus:

1. radius (mean of distances from the center to points on the perimeter)
2. texture (standard deviation of grey-scale values)
3. perimeter
4. area
5. smoothness (local variation in radius lengths)
6. compactness (perimeter2̂/area − 1.0)
7. concavity (severity of concave portions of the contour)
8. concave points (number of concave portions of the contour)
9. symmetry
10. fractal dimension ("coastline approximation" − 1)

Furthermore, for each of these features, mean, standard error, "worst," or largest (mean
of the three largest values) were computed for each image, resulting in 30 features. Finally,
the class distribution is 357 for benign and 212 for malignant.

Type 1 Diabetes Prediction and Prevention Data Set

Finland has the highest incidence of Type 1 Diabetes (T1D) in the world amongst
young children, currently standing at approximately 72 in every 100,000 children under the
age of 15 years [59]. The DIPP Study was established in 1994 in three university hospitals in
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Finland to understand/learn the pathogenesis of T1D [8]. This ongoing study aims to find
new treatments and preventative methods by assessing risk factors in the development of
T1D. The DIPP study is a population-based long-term clinical follow-up study that involves
screening newborns for increased genetic risk for diabetes.

The DIPP database used in this study has been collected since 1994 only at the Oulu
University Hospital. It contains information from over 6500 subjects in the form of lon-
gitudinal data recorded since birth. The database includes information about the subject,
siblings, and parents’ monitoring information. The database also suffers from missing val-
ues due to non-standardized input methods, such as information entered by hand during
collection. The database comprises blood samples, infections, medications, vaccines, nutri-
tion, and environmental factors. Blood sample data includes three autoantibody values of
glutamic acid decarboxylase (GADA), protein tyrosine phosphate autoantibody (IA2A),
and antibodies of insulin (IAA).

The data set used in this study was built and pre-processed from the original DIPP
database. Until 12 months, the data were aggregated to utilize information gained from
that data to predict the positivity of the autoantibodies later in life. First, variables such
as infections were aggregated to value 0 if the number of infections is zero or to value 1 if
more than one or two infections in the first 12 months of age. Infections leading to hospital
care and other similar variable were cumulated similarly. Furthermore, for variables such
as autoantibodies, the maximum autoantibody value was taken into account before the first
positive value of 12 months of age occurred. Later, seven subjects whose autoantibodies
were in the positive range before 12 months of age due to autoantibodies transmitted from
the mother were excluded. Finally, a response variable "POS_antibodies" was defined
based on autoantibodies’ positivity. The class negative is if the subject never had an
occurrence of positive value in any autoantibodies up until 170 months of age, and class
positive is if the subject had two or more consecutive positive value occurrences in any
autoantibodies up until 170 months of age. An autoantibody’s value is positive if they
were higher than a specific threshold for the respective autoantibodies. The threshold
values for GADA, IA2A, and IAA are 5.34, 0.42, and 3.47, respectively. Overall, there are 30
attributes using a small subset of data of 1329 subjects. Of these, 839 subjects belong to the
positive and 490 to the negative classes. Table A1 provides a list of all the data set attributes
and their description. The data set’s goal is to predict the probability of the positivity of
autoantibodies before the age of 15 by utilizing information gained from the first 12 months
of data.

Table A1. Names and descriptions of attributes for the DIPP data set.

Attributes Description

POS_antibodies Response variable— 1 the child had two or more consecutive positive
samples in any of the auto-antibodies, 0 otherwise

length Length at birth (cm)

weight Weight at birth (g)

circle_of_head Head circumference measured at birth (cm)

ratio_head_length Ratio between head circumference and length measured at birth (cm)

Mom_birth_age Age of mother at the time of birth (years)

height_growth Growth rate calculated by: (height measured in the last visit—length
at birth)/Age in months

weight_growth Growth rate calculated by: (weight measured in the last visit—birth
weight/1000)/Age in months

GADA.UUSI Maximum value of GADA antibody that occurred before 12 months
old (negative value)

mIAA.3.470 Maximum value of IAA antibody that occurred before 12 months old
(negative value)
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Table A1. Cont.

Attributes Description

IAA.0.42 Maximum value of IA2A antibody that occurred before 12 months
old (negative value)

s.gender Gender 1—male, 2—female

duration Pregnancy duration: 0—pre term 0 to 37 weeks, 1—normal 37 to 42
weeks, 2—post-term > 42 weeks

month Month of birth—from 1 to 12

mother_antib 1—if the child’s mother had positive autoantibodies, 0 otherwise

sibling_antib 1—if the child’s sibling had positive autoantibodies, 0 otherwise

has_sibling 1—if the child has siblings, 0 otherwise

is_mom_t1d Does mom have t1d 1—yes, 0—no

is_dad_t1d Does dad have t1d 1—yes, 0—no

v.breastfeeding_only Age when exclusive breastfeeding has ended (months)

v.breastfeeding_ended Age when any breastfeeding has ended (months)—maximum is 12,
which means currently still breastfeeding.

i.infections_ear 0—no ear infections, 1—1 infection, 2—more than 2 infections

i.infections_eye 0—no eye infections, 1—more than 1 infections

i.infections_hospital_care 0—no infections requiring a hospital stay, 1—more than 1 infections

i.infections_airway 0—no airway infections, 1—1 infection, 2—more than 2 infections

i.infections_gastric 0—no infections, 1—1 or more infections

i.infections_other

i.infections_fever

i.infections_roseola

i.infections_chickenpox

Appendix A.2. Miscellaneous Results

Table A2. kSp-value and Cucconi p-value for matching continuous and discrete attributes between
original and SynD1 data sets.

Attribute KSp-Value Cucconi
p-Value

length 0.7170990 0.603

weight 0.7924978 0.403

circle_of_head 1.0000000 0.914

ratio_head_length 0.9937073 0.495

Mom_birth_age 0.8930451 0.437

height_growth 0.9438003 0.629

weight_growth 0.7464065 0.472

GADA.UUSI 0.8380866 0.784

mIAA.3.470 0.5239224 0.965

IA2A.0.42 0.8097315 0.383

month 0.4346488 0.167

v.breastfeeding_only 0.9999954 0.946

v.breastfeeding_ended 0.9916316 0.981
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Table A3. kSp-value for matching continuous and discrete attributes between original and synthetic
data sets.

Attribute KSp-Value

radius_mean 0.9613699

texture_mean 0.9089228

perimeter_mean 0.9613699

area_mean 0.9383389

smoothness_mean 0.5924107

compactness_mean 0.9999932

concavity_mean 0.9780573

concave.point_mean 0.9613699

symmetry_mean 0.8735816

fractal_dimension_mean 0.9890057

radius_se 0.8735816

texture_se 0.9890057

perimeter_se 0.9613699

area_se 0.8735816

smoothness_se 0.2048226

compactness_se 0.9983954

concavity_se 0.9780573

concave.point_se 0.4076697

symmetry_se 0.6921113

fractal_dimension_se 0.9613699

radius_worst 0.9089228

texture_worst 0.9995891

perimeter_worst 0.6421872

area_worst 0.8735816

smoothness_worst 0.4507638

compactness_worst 0.9383389

concavity_worst 0.9953208

concave.point_worst 0.9983954

symmetry_worst 0.7412813

fractal_dimension_worst 0.9953208
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Figure A1. Entropy per bit for original and SynD1 data variables.

Figure A2. Entropy per bit for original and synthetic data variables.
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