
Master’s thesis

Master’s Programme in Computer Science

Documenting software architecture design
decisions in continuous software

development – a multivocal literature review

Säde Harhio

December 6, 2022

Faculty of Science
University of Helsinki

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Säde Harhio

Documenting software architecture design decisions in continuous software development – a multivocal
literature review

Dr. M. Raatikainen

Master’s thesis December 6, 2022 53 pages

documentation, software architecture

Helsinki University Library

Software study track

The importance of software architecture design decisions has been known for almost 20 years.
Knowledge vaporisation is a problem in many projects, especially in the current fast-paced cul-
ture, where developers often switch from project to another. Documenting software architecture
design decisions helps developers understand the software better and make informed decisions
in the future. However, documenting architecture design decisions is highly undervalued. It
does not create any revenue in itself, and it is often the disliked and therefore neglected part of
the job. This literature review explores what methods, tools and practices are being suggested
in the scientific literature, as well as, what practitioners are recommending within the grey
literature. What makes these methods good or bad is also investigated. The review covers the
past five years and 36 analysed papers. The evidence gathered shows that most of the scientific
literature concentrates on developing tools to aid the documentation process. Twelve out of
nineteen grey literature papers concentrate on Architecture Decision Records (ADR). ADRs
are small template files, which as a collection describe the architecture of the entire system.
The ADRs appear to be what practitioners have become used to using over the past decade, as
they were first introduced in 2011. What is seen as beneficial in a method or tool is low-cost
and low-effort, while producing concise, good quality content. What is seen as a drawback is
high-cost, high-effort and producing too much or badly organised content. The suitability of a
method or tool depends on the project itself and its requirements.

ACM Computing Classification System (CCS)
Software and its engineering → Software creation and management → Software post-
development issues → Documentation
Software and its engineering → Software organization and properties → Software system
structures → Software architectures

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Research Method 4
2.1 Research questions . 4
2.2 Search strategy . 5
2.3 Scope and sources . 5
2.4 Search process . 6
2.5 Search terms for formal search . 7
2.6 Search terms for grey literature search . 9
2.7 Inclusion and exclusion criteria . 10
2.8 Quality assessment . 11
2.9 Data collection and analysis . 12

3 Results 14
3.1 Overview of included studies . 14
3.2 RQ1. How are decisions documented in the literature? 15
3.3 RQ2. What are the benefits of the methods? 25

3.3.1 RQ2.1. What are the benefits to writers? 26
3.3.2 RQ2.2. What are the benefits to readers? 28
3.3.3 RQ2.3. What are the benefits to those who maintain the documen-

tation? . 28
3.4 RQ3. What are the drawbacks of the methods? 30

3.4.1 RQ3.1. What are the drawbacks to writers? 30
3.4.2 RQ3.2. What are the drawbacks to readers? 31
3.4.3 RQ3.3. What are the drawbacks to those who maintain the docu-

mentation? . 32

4 Discussion 34
4.1 Findings related to RQ1 . 34

4.2 Findings related to RQ2: benefits . 38
4.3 Findings related to RQ3: drawbacks . 39
4.4 Limitations and threats to validity . 40

5 Conclusions 43

Bibliography 45

1 Introduction

Software architecture knowledge has been discussed for over 20 years (Perry and Wolf,
1992). Over the years, there have been two different ways of looking at software archi-
tecture (Capilla et al., 2016). Initially, software architecture was seen as a very technical
task. The end result was most important and it was achieved through components, pat-
terns, and formal architecture description languages. Afterwards, the approach became
socio-technical and the focus shifted from the end result to how the end result was reached.
Reasoning and decision-making became an important part of architecture. The importance
of decisions as a part of architectural knowledge was acknowledged already in 2004 (Bosch,
2004).

Software architecture documentation is important to avoid knowledge vaporization and to
enable knowledge transfer to people who have not worked on the project before (Kazman
et al., 2016). In modern software development teams do not always have a designated
architect and sharing information between team members is especially important (Capilla
et al., 2016). Ensuring compliance to requirements as well as traceability is also supported
by documentation. While software architecture documentation may have been tradition-
ally overdone, it is sometimes almost completely forgotten when it comes to agile software
development practices (Maric et al., 2016). The benefits and costs of software architecture
documentation are not always understood, causing it to be highly undervalued (Capilla
et al., 2016).

There is already a significant amount of research related to software architecture docu-
mentation despite the practice itself being undervalued. Capilla et al. (2016) studied
the software architecture knowledge management tools between 2006 and 2016. They
presented tools according to generation. The first generation supported representation,
capturing and documentation. The second generation added sharing and personalization
as well as evolution aspects and assessment features. The third generation improved as-
sessment, advising and reasoning features. Despite all of the tools and their improvements,
the practitioners still were not systematically capturing architecture knowledge in 2016.

The main goal of this thesis is to shed light on the current situation of software architecture
decision documentation methods, tools and practices in research as well as non-scientific
sources. To further analyse the methods their benefits and drawbacks are also gathered.

2 CHAPTER 1. INTRODUCTION

This literature review gathers tools, methods and practices presented on or after the year
2016. This thesis also analyses grey literature sources to gain an insight into what methods,
tools and practices are readily available to most practitioners.

Searching for material for this thesis was challenging due to the keywords being excep-
tionally common. The scope of the thesis is also quite narrow – there is only one scientific
database (Web of Science) used and one non-scientific search engine (Google). All papers
containing information about methods, practices or tools for documenting architecture de-
sign decisions were analysed if they were also published on or after 2016 by an organization
or a person with expertise in software engineering.

Many different approaches to software architecture design decision documentation were
found. These approaches were grouped and categorised in the following way: Tools, Guide-
lines, Templates, and Processes. Tools refers to software or algorithms that aid the work
by structuring and/or automation. Guidelines are only suggestions for what might be
beneficial – for exactly following a certain structure. Templates suggest a certain set of
headlines and what information to fill in to create a collection of individual documents.
Processes suggest a certain set of actions that are necessary to successfully perform the
action of knowledge capturing. Tools are further divided into Creation, Extraction, Gam-
ification, and Search. Creation refers to tools that help practitioners input information
into a system. Extraction means tools that take a set of existing information as an input
and give documentation as an output. Gamification covers software which aims to re-
ward the practitioner for performing documentation activities. Search tools minimize the
need for good documentation organization. Analysis was done for categories in general
and individual methods, practices, and tools where they differed from the majority of the
group.

Most analysed scientific papers focus on tools, especially Extraction tools. The grey liter-
ature heavily concentrates on ADR templates, which are not mentioned in the scientific
literature. The Extraction tools aim to solve the problem of cost and motivation to create
documentation. The ADRs seem to be what practitioners are used to using for docu-
mentation. While the ADRs are simple and aim to reduce the amount of work, they still
require someone to make and maintain them, and there are certain drawbacks to using
them incorrectly. The benefits of the methods and tools are mainly using minimal effort
to produce the right amount of good quality content, while the drawbacks do the opposite.
The benefits and drawbacks are often tradeoffs or depend on the level of experience of the
professional writing the documentation.

3

The thesis is organized in the following way. Chapter 2 discusses the research method
including the research questions. Chapter 3 presents the results for each research question.
Chapter 4 discusses the results as well as the limitations and validity of the review. Chapter
5 concludes the findings.

2 Research Method

The literature review method was chosen for this study because the aim was to evaluate the
methods and practices of modern architecture design decision documentation in a credible
and repeatable way. Multivocality was chosen because the latest practices and methods
published in “grey” literature offer valuable insight into this topic to both practitioners
and researchers and may still be missing from formal studies. The guidelines suggested
by Garousi et al. (2019) were followed.

First, the research questions were defined (section 2.1). Based on the questions, prelim-
inary search terms were decided and a search process was designed. The inclusion and
exclusion criteria were established in the search phase. Then, paper quality assessment
strategy was decided. Based on the research questions, it was decided which data would
be extracted from the papers, so that the questions would be answered as methodically
as possible. The data extraction form also includes quality assessment data. Finally, data
analysis strategy was decided.

The validity of the protocol was checked by applying the process to a small subset of the
papers and testing the data extraction form on a single paper. Issues discovered when
applying the process were identified and fixed. When testing the data extraction form,
special attention was paid to being able to collect data based on it, and that the resulting
data helps answer the research questions.

2.1 Research questions

This work answers the following research questions:

RQ1. How are architecture design decisions documented in the literature?

RQ2. What are the benefits of the suggested documentation methods or practices?

RQ2.1. What are the benefits to writers?

RQ2.2. What are the benefits to readers?

RQ2.3. What are the benefits to those who maintain the documentation?

2.2. SEARCH STRATEGY 5

RQ3. What are the drawbacks of the suggested documentation methods or practices?

RQ3.1. What are the drawbacks to writers?

RQ3.2. What are the drawbacks to readers?

RQ3.3. What are the drawbacks to those who maintain the documentation?

The goal of RQ1 is to bring together information on current methods and practices. Know-
ing what methods are available and deemed effective aids the creation of good quality
documentation suited for modern fast-paced development. High-quality documentation
can significantly aid the work of designers and developers in the long run and prolong
the lifespan of a system. The knowledge of current method suggestions, especially those
unique to the grey literature, also increases the overall understanding of the researchers.
This may help highlight gaps in research.

RQ2 and RQ3 focus on finding the benefits and drawbacks of the identified methods. They
are further divided into categories according to whom the benefit or drawback applies to.
The goal of this is to make trade-offs between different methods more obvious. This
aids the selection of a suitable method and gives direction for the development of these
methods.

2.2 Search strategy

The main search method uses the search engines of electronic data sources. It is not simple
to optimise the search terms, so the optimisation suggestions made by Huynh Khanh Vi
et al. (2022) were followed. Because search engines for finding grey literature often find
numerous results with varying quality, and the relevance of the results declines the further
down they are in the list, saturation was used as a stopping criterion for the search. This
means that the search was stopped when no new and relevant results were found anymore.

2.3 Scope and sources

The scope of this review is limited to the documentation of design decisions in the fast-
paced web software development. The publishing year of the results is limited to a mini-
mum of 2016 as a previous study researching methods and tools has been conducted before

6 CHAPTER 2. RESEARCH METHOD

Automatic search

Inclusion/exclusion criteria applied
on title and abstract/preview

Inclusion/exclusion criteria applied
on source content

Initial papers

Remaining papers

Final papers

Records per source
1. Search string

2. Search settings
3. Number of results

Record inclusion criteria not met
/ exclusion criteria met per paper.

Record the number of papers
remaining.

Record inclusion criteria not met
/ exclusion criteria met per paper.

Record the number of papers
remaining.Results in

Scientific: 17

Google
search
engine

Web of
Science

Scientific
literature

Grey
literature

Results in
Scientific: 33

Results in
Scientific: 24

Grey literature:
search for cut-off point,

inclusion/exclusion criteria applied
on title and skimming.

Results in
GL: 31

Results in
GL: 83 600 000

Results in
GL: 19

Figure 2.1: Search process resulting in 36 papers.

2016 (Capilla et al., 2016). The Web of Science database was used for finding scientific
papers and Google was used for finding grey literature.

2.4 Search process

First, the automatic search was performed on the selected database and search engine
listed in Section 2.3. Duplicate results were ignored. Next, the titles were read and, if
the title was not off-topic, the abstract was also read. For grey literature, the content was
skimmed. Some papers were excluded at this point. The reasons for the exclusions were
recorded. If there was doubt about whether a paper should be included or not, it was

2.5. SEARCH TERMS FOR FORMAL SEARCH 7

included at this point. Because of the number of grey literature results, only the promising
results were recorded at first. The results included many broken links, outdated pages,
advertisements, and results that were not related to the topic or only vaguely related, such
as Wikipedia and other general information pages. The highly irrelevant results were not
recorded.

The full texts for papers that fulfilled the inclusion criteria were retrieved and added
to the Atlas.ti data-analysis tool for preliminary analysis. The inclusion and exclusion
criteria were applied to the content of the papers. The reasons for excluding papers were
documented. For a summary of the search process, see Figure 2.1.

2.5 Search terms for formal search

The research questions were used to identify the major keywords for search terms. The
initial keywords identified were “documentation”, “architecture” and “design decisions”.
“Records”, “recording” and “capturing” (knowledge) were identified as synonyms for “doc-
umentation” and “Design rationale” and “design reasoning” for “design decisions”.

“Software” was also recognised as a potentially important defining keyword, but it can
unnecessarily exclude relevant papers when combined with the ‘AND’ operator (Huynh
Khanh Vi et al., 2022). This was also observed in the preliminary searches here, so
“Software” as a keyword was excluded. However, leaving the keyword out caused the need
to filter out completely unrelated results in some other way. Unrelated results were limited
by filtering certain other keywords out (see Table 2.1) and defining the relevant research
areas. Although, defining research areas can limit the results unnecessarily as sometimes
research areas are not correctly filled in (Huynh Khanh Vi et al., 2022). Here, a large
number of irrelevant results were filtered out and no significant loss of relevant results was
noted.

The Web of Science search engine has a convenient field tag called “Topic”, which covers
title, abstract, author keywords and Keywords Plus. Unfortunately, using the field also
caused an influx of irrelevant results. It appears that the field often contains keywords
that only distantly relate to the topic of the paper. Thus, the main terms were searched in
titles and abstracts only. From the smaller pool resulting from the more limited search, it
was easier to find a set of the most relevant results, which were then observed to find more
relevant keywords (see Table 2.1, section “Keywords”). The abstracts of the papers were
also skimmed to find synonyms and alternative ways of communicating the same idea.

8 CHAPTER 2. RESEARCH METHOD

Table 2.1: Search string structure for the scientific search. Each section was connected to the others
with an “AND” operator to form a single query.

Purpose Keywords Target field(s)

Topic document* AND architecture Topic
Synonyms for “documenting” captur*

OR document*
OR record*

Title or Abstract

Synonyms for method/tool/process method*
OR process*
OR tool*
OR guideline*
OR “documentation approach”
OR recommend*
OR improv*

Title or Abstract

Synonyms for “architecture decision” “architecture document*”
OR “architecture knowledge”
OR “architectural knowledge”
OR “design decision”
OR “design rationale”
OR “design reasoning”

Title or Abstract

Keywords “documentation”
OR “System document*”
OR “architectural design decision*”
OR “architecture document*”
OR “architecture documentation model”
OR “AKM”
OR “Knowledge acquisition”
OR “requirements communication”
OR “Architectur* knowledge”
OR “Software architecture*”
OR “Software evolution”
OR “architecture erosion”

Author Keywords

Research area “Computer Science”
OR Engineering
OR “Information Science & Library Science”

Research Area

Filtering irrelevant results NOT “Virtual reality”
NOT “VR”
NOT “robotics”
NOT “security”

Author Keywords

Filter for document types NOT “Review Articles” Document Types

2.6. SEARCH TERMS FOR GREY LITERATURE SEARCH 9

Without using these synonyms and alternatives, many relevant papers did not appear
in the result set because they never actually mentioned the word “documentation”, for
example. The opposite was also done to the most irrelevant papers by checking their
keywords. This was fairly simple as the sorting by result relevancy works well enough.
The keywords found were “Virtual reality”, “VR”, “robotics” and “security”.

The set of relevant papers was also used as a standard to compare the new result sets. It
was assured that at least the most relevant papers would still be present. This was done
to ensure that the quality of the search results would not deteriorate due to ill-informed
search terms or filtering choices.

It was quite challenging to obtain papers focusing on documentation without also getting
papers that discuss decision making. Choosing to use multi-word keywords appears to
make the results better, but it also makes it more likely that the term will cause some
papers to be excluded because they do not use any such combination. Review papers were
filtered out of the results, but papers are not always correctly labelled, so at least one
review still made it to the result set.

Finally, the search term has the following structure:

topic AND synonyms for “documenting” AND synonyms for “method” AND synonyms
for “architecture decisions” AND “keywords” AND “research areas” AND “filters”

See Table 2.1 for the entire list of terms and fields used in the search term. Many terms
also have an asterisk to ensure that using a different form of a word will not cause a paper
to be excluded from the results.

2.6 Search terms for grey literature search

First, it is very challenging to evaluate the quality of the search results gained from
Google.com. Google does not always appear to give the same results in the same order
when using the same phrase. Several preliminary searches were conducted only to conclude
that Google appears to do the best when it is given “intuitive” search terms. “Intuitive”
referring to a simplistic term written without much consideration, but covering the topic
enough. Complicated queries with “AND” and “OR” operators only appeared to obtain
either the same results as an “intuitive” query or actually worse results. The search term
that was used was “documenting architecture design decisions”.

10 CHAPTER 2. RESEARCH METHOD

As simple as the query is, it does offer an interesting insight into a search that could be
conducted by someone who was simply looking to discover more about the topic. This
is of interest, as architecture design decision documentation appears to suffer from not
enough of it being done. Also, Google is often just the thing that people turn to when
seeking practical information.

2.7 Inclusion and exclusion criteria

The inclusion and exclusion criteria were based on the research questions and scope as well
as the quality criteria for grey literature suggested by Garousi et al. (2019). Each paper
was evaluated against these criteria. First, only the title and abstract were evaluated and,
if the paper was not excluded, also the content of the paper. To be included, the papers
needed to meet all of the inclusion criteria. Simultaneously, the papers were excluded if
they did not meet any inclusion criteria or they met any exclusion criteria.

The inclusion criteria the source must meet:

I1. Paper discussing, describing, suggesting or evaluating documentation methods, prac-
tices, or tools for software architecture design decisions.

I2. The discussed methods, practices, or tools are meant for software development con-
text.

I3. The author(s) has expertise in software engineering or the publishing organisation
is reputable in the field of software engineering.

I4. Published on or after 2016.

For I3 the operator “or” is used instead of “and” to not unnecessarily exclude results where
one makes up for the other. Some sources might not disclose the author because the source
strictly represents an organization instead of an individual. Also, some professionals write
blogs, which are generally not considered reputable, but the reputation of the author can
make up for this to some extent.

The exclusion criteria the paper must not meet:

E1. Architecture design decision documentation is discussed in general, but no methods,
practices, or tools are mentioned.

2.8. QUALITY ASSESSMENT 11

E2. Architecture design decision documentation methods, practices, or tools are men-
tioned, but not described in detail and no benefits or drawbacks are presented.

E3. The date of publishing is unclear.

E4. Not available in English.

E5. Editorial, introduction, or similar paper that only summarises or refers to a separate
original work.

The purpose of E4 is to directly exclude any papers that partially duplicate an original
work. In these cases, the original work is chosen instead.

2.8 Quality assessment

As the main interest is in practical methods of documentation, it is important to know
how relevant the papers actually are. The more realistic the setting of the study is, the
more relevant the paper is (Ivarsson and Gorschek, 2010). The practical, six level classifi-
cation approach presented by Alves et al. (2010) was used for the evaluation of each paper:

1. No evidence.

2. Evidence obtained from demonstration or working out toy examples.

3. Evidence obtained from expert opinions or observations.

4. Evidence obtained from academic studies, e.g., controlled lab experiments.

5. Evidence obtained from industrial studies, e.g., causal case studies.

6. Evidence obtained from industrial practice.

The quality assessment of the grey literature was performed according to a simplified ver-
sion of the quality assessment checklist proposed by Garousi et al. (2019). See Table 2.2 for
the quality assessment criteria of the grey literature. Unlike in the original quality assess-
ment checklist, the criterion for dates was excluded because it is already included in the
selection criteria. Even though the criteria for author expertise and publisher reputation
are also included in the selection criteria, they were left in here because the selection cri-
teria demand one or the other and not both. Novelty was also excluded because exclusion
criteria E5 already leaves out sources that only repeat another piece of work. Methodology

12 CHAPTER 2. RESEARCH METHOD

Table 2.2: Quality assessment checklist of grey literature based on the original table by Garousi, Felderer
and Mäntylä (Garousi et al., 2019).

Criteria Questions

Q1 Authority of - Is the publishing organization reputable?
the publisher Score 1: Independent websites/ reputable organizations (for example, govern-

ment wesites / non-profit communities / university websites)
Score 0.5: Company websites
Score 0: Personal websites / open platforms

Q2 Authority of - Does the author have expertise in the area?
the author(s) Score 1: Author has more than 20 years of experience.

Score 0.5: Author has 10 years or more, but less than 20 years of experience.
Score 0: Author has less than 10 years of experience or experience years are
unknown.

Q3 Methodology - Is the information supported by references?
Q4 Objectivity - Is there vested interest?
Q5 Impact - Impact metrics based on the backlinking scores of the individual webpage and

the domain it is under.
Q6 Outlet type Score 1: High outlet control/ high credibility (for example: books, magazines,

theses, government reports, white papers)
Score 0.5: Moderate outlet control/ moderate credibility (for example: annual
reports, news articles, presentations, videos, Q/A sites [such as StackOverflow],
Wiki articles)
Score 0: Low outlet control/ low credibility (for example: blogs)

was narrowed down to references as the sources are generally not methodological, their
quality being on the lower end. Objectivity was narrowed down to only cover vested inter-
est. However, higher value was given to those sources that did use references. The impact
metrics were simplified to only contain backlinking information collected from the Free
Backlinks Checker tool by SEO Review Tools (https://www.seoreviewtools.com/valuable-
backlinks-checker/). The page authority value together with the domain authority value
were normalised to 0-1 range.

2.9 Data collection and analysis

Data extraction was performed on each paper using a data extraction form (see Table 2.3).
Items F1-F4 record the basic information of the papers, including the source for reliability.
Items F5-F11 were extracted from the papers to answer the research questions. Results
for F5 were also given a more detailed label to categorise the methods, practises and tools

2.9. DATA COLLECTION AND ANALYSIS 13

Table 2.3: Data extraction form.

Field Concern/research
question

F1 Author(s) Documentation,
GL Quality assessment

F2 Year Documentation
F3 Title Documentation
F4 Source Reliability of review
F5 Method/practice/tool (label, brief description) RQ1
F6 Benefits of the method or practise from writers point of view RQ2
F7 Benefits of the method or practise from readers point of view RQ2
F8 Benefits of the method or practise from maintenance point of view RQ2
F9 Drawbacks of the method or practise from writers point of view RQ3
F10 Drawbacks of the method or practise from readers point of view RQ3
F11 Drawbacks of the method or practise from maintenance point of view RQ3
F12 Context of evidence (6 level classification) Quality assessment
F13 Publishing organization Q1
F14 Author(s) Q2
F15 Methodology Q3
F16 Objectivity Q4
F17 Impact Q5
F18 Outlet type Q6

appropriately. Item F12 records the context of the evidence in the paper for the quality
assessment of the scientific literature. Items F13-F18 record the quality attributes of the
grey literature.

The Atlas.ti data analysis tool was used to record the results. Initial codes for the results
were generated based on the data extraction form. More refined codes were added during
and after the initial data extraction to categorise the findings further.

3 Results

Data was systematically extracted from selected papers to answer the research questions.
See Figure 2.1 for the steps to determine the included papers. In this chapter, first there
is an overview of the included papers. Then, the results are presented for each research
question.

3.1 Overview of included studies

A total of 36 papers were included in the analysis. The search in the scientific database
found 17 of the selected papers. The grey literature search found 19 papers. Four pa-
pers found with the grey literature search are conference papers, which potentially could
have also been found with the scientific database search (see the validity section 4.4 for
more information). The included papers were divided into categories depending on their
approach to documentation and organised by publication year to analyse changes in the
methods, processes, and tools over the years. The papers found in the scientific database
are referred to using the style Sn, while the style for the papers found by the Google search
engine is Gn.

The scientific papers have much more variety in the types of methods, processes and
tools as opposed to the grey literature. The majority of the grey literature bases their
approach on the idea of ADRs (Architecture Decision Records) first introduced in 2011
by Michael Nygard (2011). The analysed grey literature papers discussing ADRs offer
guidelines, templates and tools for using ADRs. Two grey literature papers give more
generic guidelines for documentation [G24] [G6].

Table 3.1: Scientific literature quality assessment of analysed papers.

Evidence levels Number of papers Paper identifiers

1. No evidence 1 [S27]
2. Demonstration or toy examples 5 [S16], [S30], [S31], [G12], [G14]
3. Expert opinions or observations 4 [S15], [S20], [S24], [G5]
4. Academic studies 7 [S3], [S5], [S8], [S21], [S2], [S25], [G28]
5. Industrial studies 3 [S17], [S12], [S26]
6. Industrial practice 1 [S6]

3.2. RQ1. HOW ARE DECISIONS DOCUMENTED IN THE LITERATURE? 15

The quality of the scientific papers was assessed and each paper was put into a category
based on the evidence level (see Table 3.1 for the quality assessment of the scientific
papers). The papers are almost equally divided into the lower and upper half of the
evidence level categories. One paper has no evidence [S27] and one paper has industrial
practise level evidence [S6]. The biggest evidence level group is “academic studies” with
seven papers.

All the analysed grey literature source types and the papers that belong to each source
type group are shown in Table 3.2. Overall, the types of sources were mostly blogs (8
of 15 grey literature papers). Three sources [G2][G1][G10] were documentation pages in
addition to a book [G6], an experience report [G18], a presentation [G17] and instructional
archives [G13].

Table 3.2: Grey literature source types.

Grey literature type Number of papers Paper identifiers

Blog 8 [G7][G24][G15][G19][G23][G29][G32][G4]
Documentation 3 [G2][G1][G10]
Book 1 [G6]
Experience report 1 [G18]
Presentation 1 [G17]
Instructional archives 1 [G13]

Each grey literature paper received a quality score between 0 and 6 (see Table 3.3 for the
scores). The highest score is 5.7 and the lowest score is 1.7. Most of the papers received
a score greater then 3 and five papers received a score greater than 5. The low scoring
papers (score less than 3) are private blogs [G15][G4][G23]. The high scoring papers are
documentation papers [G2][G1], a presentation [G17], an experience report [G17] and a
book [G6].

3.2 RQ1. How are architecture design decisions doc-
umented in the literature?

To analyse the results, the documentation approaches and tools were divided into cate-
gories. In this section, the categories will be explained first. After, the results for each
category are presented.

The analysis resulted in identifying and differentiating four different categories of ap-

16 CHAPTER 3. RESULTS

Table 3.3: Grey literature quality assessment of analysed papers.

Paper Quality score
Q1 Q2 Q3 Q4 Q5 Q6 Total

[G7] 1 0.5 1 1 0.6 0 4.1
[G2] 1 1 1 1 0.7 0.5 5.2
[G1] 1 1 1 1 0.2 0.5 4.7
[G24] 0 1 1 1 0.2 0 3.2
[G10] 1 1 0 1 0.1 0.5 3.6
[G13] 0.5 0 0 1 0.7 0.5 2.7
[G15] 0.5 0 0 1 0.2 0 1.7
[G4] 0.5 0.5 0 1 0.4 0 2.4
[G17] 1 1 1 1 0.7 0.5 5.2
[G18] 1 1 1 1 0.4 1 5.4
[G19] 0 0.5 1 1 0.3 0 2.8
[G23] 0 0.5 1 1 0.2 0 2.7
[G29] 0 1 1 1 0.4 0 3.4
[G32] 0 1 1 1 0.3 0 3.3
[G6] 1 1 1 1 0.3 1 5.3

proaches in the included papers. The categories emerged during analysis by grouping the
papers. These categories are Tools, Guidelines, Templates and Processes, as summarised
in Table 3.4. Some papers appear in more than one category as they may, for example,
argue for guidelines and also present a tool (for instance [S2]). Tools covers software or
algorithms, which help with creating, maintaining, or using documentation. Tools for
using documentation were included because this implies that documentation should be
made in certain ways or that the way documentation is made is not as important because
the tool will compensate for the drawbacks of the documentation itself. Papers discussing
Templates present a certain structure and content, which documentation should follow
for certain reasons. Guidelines refers to general information, which aims to help with
creating, maintaining, or improving documentation. Guidelines can be general or refer to
a specific method of creating documentation. Guidelines are simple, stand-alone pieces of
information instead of a set of rules. An example of a guideline is that “decision documen-
tation should be made at the same time as design decisions are made”. The details of how
this guideline is put to use is up to the practitioner. Processes covers a set of actions re-
quired to successfully perform documentation tasks. These are techniques or frameworks,
which determine how documentation should be recorded. For example, a process demands
that one follows a specific set of design steps and at each step records certain pieces of
information.

3.2. RQ1. HOW ARE DECISIONS DOCUMENTED IN THE LITERATURE? 17

Table 3.4: The distribution of analysed papers into categories.

Category Number of papers Paper identifiers

Tools 15 [S2][S27][G14][G5][S8][S30][S3][S5][S6][S31][G28]
[S25][S16][G12][G23]

Creation 4 [S2][G14][G5][S8]
Extraction 8 [S3][S5][S6][S31][G28][S16][G12][S27]
Gamification 1 [S25]
Search 1 [S30]

Processes 2 [S21][S26]
Guidelines 6 [S17][S15][S2][S20][G24][G6]
Templates 15 [S12][S24][G10][G17][G18][G29][G32][G13][G15][G2]

[G1][G7][G4][G19][G23]
ADR Templates 12 [G17][G18][G29][G32][G13][G15][G2][G1][G7][G4]

[G19][G23]
Other Templates 3 [S12][S24][G10]

Tools were further divided into Creation, Extraction, Gamification, and Search. A sum-
mary of this categorisation is in Table 3.4 as subcategories of Tools. Creation tools cover
anything that the architect interacts with to write documentation or which helps with de-
ciding the content or structure of documentation. Extraction refers to a tool, which takes
in as input a set of existing materials, such as general documentation or chat logs, and
outputs the architecture decision details found in the material. Gamification covers tools,
which add a game element to the process of documentation to make it more attractive to
architects and encourage beneficial practices. Search tools take a backwards approach to
ensuring the usefulness of documentation by making it easy to find information even if
the documentation itself is not very clear.

The scientific and grey literature sources differed in their approaches significantly (see
Table 3.5 for the categories of the scientific papers and Table 3.6 for the categories of the
grey literature papers). The scientific papers mostly focused on presenting different kinds
of tools as well as some processes, guidelines and templates. The grey literature was much
more homogeneous in the approaches than the scientific literature. Twelve of fifteen grey
literature papers discussed ADRs, which could technically be categorised as a template
approach. However, there was another template type approach, so for clarity the papers
discussing ADRs were placed into a separate category. One paper was discussing ADRs
generally, but also introduced a tool, so it appears in two different categories: “ADR”
and “tools”. The categories used for grey literature are “ADR”, “templates”, “tools” and
“guidelines”.

18 CHAPTER 3. RESULTS

Table 3.5: The distribution of analysed scientific papers into categories.

Category Number of papers Paper identifiers

Tools 14 [S2][S27][G14][G5][S8][S30][S3][S5][S6][S31][G28][S25]
[S16][G12]

Creation 4 [S2][G14][G5][S8]
Extraction 8 [S3][S5][S6][S31][G28][S16][G12][S27]
Gamification 1 [S25]
Search 1 [S30]

Processes 2 [S21][S26]
Guidelines 4 [S17][S15][S2][S20]
Templates 2 [S12][S24]

Table 3.6: The distribution of analysed grey literature papers into categories.

Category Number of papers Paper identifiers

Tools 1 [G23]
Guidelines 2 [G24][G6]
Templates 13 [G17][G18][G29][G32][G13][G15][G2][G1][G7][G4][G19]

[G23][G10]
ADR Templates 12 [G17][G18][G29][G32][G13][G15][G2][G1][G7][G4][G19]

[G23]
Other Templates 1 [G10]

Tools were discussed in fourteen (14) scientific papers and one (1) grey literature paper.
Because there are different goals for tools, they were further divided into finer categories.
Each category was analysed separately and the results are presented in the following
sections.

Creation tools [S2][G14][G5][S8][G23]. A summary of creation tools is in Table 3.7.
ProSAD [S2] is a documentation strategy recommender. The creators of the tool find it
especially important that it is considered what information the project stakeholders wish
to gain from the documentation. This means that the preferences of the stakeholders are
always reflected in the contents of the documentation. For example, a stakeholder could
be interested in the performance of the software; so in this case, it would be important to
record any performance-related decisions. They also strongly believe in an incremental ap-
proach to the documentation process. DecDoc [G14] is designed to help decision-making
by supporting the relations between decision documentation and requirements, design
diagrams and code. It specifically supports working collaboratively and incrementally.
Another tool attempts to leverage voice commands to make the process of documentation
easier [G5]. Software Architecture Knowledge Base (AKB) [S8] is a web application for

3.2. RQ1. HOW ARE DECISIONS DOCUMENTED IN THE LITERATURE? 19

Table 3.7: Summary of the Creation tools organised by year.

Name Short description Source Year

ProSAD Documentation strategy recommender. Supports stake-
holder preferences.

[S2] 2016

DecDoc Captures decision-related information and supports collab-
oration and incremental work and highlights relationships
between documentation and other materials.

[G14] 2016

Software
Architecture
Knowledge
Base (AKB)

Web application for documenting and sharing.
Based on the Architecture Profile (contains
architecture knowledge items, relationships
modeling).

[S8] 2019

- Captures design decisions during design conversations.
Links the captured decisions to UML artifacts.

[G5] 2020

LoqBook Combines creation, extraction and search functions. [G23] 2021

documenting and sharing. The approach AKB takes regarding the content and organisa-
tion of documentation is called an Architecture Profile, which contains design rationale
among other architecture knowledge items. The profiles are also hierarchically structured
and they explicitly model relationships between the architecture knowledge elements they
contain. Loqbook [G23] reported in the grey literature combines creation, extraction and
searching. The extraction feature uses Slack chat logs to find decisions and record them.

Extraction tools [S3][S5][S6][S31][G28][S16][G12][S27]. The summary of the Extraction
tools is in Table 3.8. Notably, three [S3][S5][S6] of the seven papers were by the same group
of authors expanding on the same line of work and two [S16][G12] other papers were by an-
other author. These tools extract information from other types of existing documentation
and automatically turn it into architectural knowledge. Extraction tools include ADeX
(Amelie - Decision Explore) – an automatic natural language extraction tool that uses, for
example, chat logs, meeting notes, code commit messages and issues in Issue Management
Systems (IMS) as the source and produces design decisions [S3][S5][S6]. It also provides
recommendations to support the decision-making process. The tool is automatically kept
up to date when new information is added to the systems it uses. Machine learning is
used for data classification so that design decisions can be recognised. Gilson, Annand
and Steel also take a natural language processing approach to capturing design decisions
directly from written design conversations [G12]. Their approach disposes of the need
for intensive training that is necessary with machine learning approaches. REM is only
a partially automated method, which is based on systematic code inspection [S31]. This
requires some manual labour in the form of systematic code inspection using the Grounded

20 CHAPTER 3. RESULTS

Table 3.8: Summary of the Extraction tools.

Name Input Output Source Year

– Data from Enterprise Architect Task specific
documentation
(including design
decisions)

[S27] 2016

REM Results of systematic code in-
spection

Recurrent clusters
and interfaces (can
be used to identify
design decisions)

[S31] 2018

RecovAr History artifacts such as the is-
sue tracker and version control
repository

Design decisions [G28] 2018

ADeX
(Amelie -
Decision
Explore)

Chat logs, meeting notes, code
commit messages and issues
in Issue Management Systems
(IMS)

Design decisions [S3][S5][S6] 2017/2019

– Written design conversations Design decisions [S16][G12] 2019/2020
LoqBook Slack chat logs Design decisions [G23] 2021

Theory research method. The automated part of it uses model-transformation technology
in the last stage of the process to find recurrent clusters and interfaces. RecovAr [G28]
uses history artifacts such as the issue tracker and the code repository to create documen-
tation. An older proposal would create custom, task specific documentation [S27]. This
tool is only on the concept level, but it would use information from Enterprise Architect
to create documentation for a developer performing a specific development task.

Gamification tools [S25]. In this paper, gamification was studied in relation to creat-
ing architecture design documentation. This study did not find any particular benefits
from the gamification, although this could be attributed to the length and design of the
experiment itself.

Search tools [S30]. The purpose of this tool is to find relevant information within software
architecture documentation by locating “usage-based chunks” that correlate with certain
information needs. A successful tool of this type would lessen the importance of any
specific documentation style as information would be easily retrievable regardless.

Processes [S21][S26]. These papers place more emphasis on how the process of documen-
tation happens rather than the content of the documents. One of these methods is called
the Rationale Capture Cycle [S21]. This aims to be non-invasive and low effort as the doc-

3.2. RQ1. HOW ARE DECISIONS DOCUMENTED IN THE LITERATURE? 21

umentation becomes part of the design process. Another paper has a similar approach,
where architecture knowledge recovery is made a part of the design process [S26].

Guidelines for documentation [S15][S17][S20]. One paper discusses which organisation
style is better for architecture decision documentation – ontology or file-based – when
it comes to finding information [S17]. Ontology-based documentation uses concepts and
categories to organise information non-linearly according to relationships. File-based doc-
umentation relies on one or more text files to store information. The results of the study
state that the needs of the project determine which style is better. File-based documenta-
tion has many issues with finding the needed information due to the complexity of docu-
mentation, problems with the structure of the documentation and cross-referencing being
hard to maintain. The ontology-based approach solves many issues that the file-based
approach has, but may not be cost-effective enough and quality issues may significantly
reduce its usefulness. Another paper suggests that for documentation to be as concise
as possible only information important to the specific project should be recorded [S15].
They also present a method for finding out which pieces of information are important
to individual projects. Generally, the purpose of documentation should be to preserve
architectural knowledge, facilitate communication by improving comprehension, guide the
implementation and support the assessment of architecture. The process includes deter-
mining the non-functional requirements, prioritising them and developing the solutions
for these requirements. These types of decisions are important to document formally.
Decisions with less risk can have less formal documentation. Structures and relationships
between architecture knowledge elements are important [S20]. Knowledge elements can be,
for example, decision, decision components, persons (decision makers), problem, solution,
context, rationale, issue, goal, claim, alternatives, assumptions, implications, constraints,
arguments and assessments. Recognising these elements and recording them individually
allows making small, incremental changes, which increases the efficiency of documentation.
Linking these elements to requirements or design artifacts helps increase understanding.

Guidelines found in grey literature suggest that documentation is meant to support com-
munication and aid understanding and decision-making in the future [G24][G6]. It is
important to remember that documentation is supposed to create business value [G24]
and is not made just for the sake of documenting. Decision documentation should be
made when decisions are made as otherwise the rationale might be forgotten [G24][G6].
The main information to record is rationale or justification, as not all decisions are op-
timal [G6]. Minimum fields would be driver (such as a quality attribute), decision and

22 CHAPTER 3. RESULTS

location (in the codebase) as well as rationale. On top of these, it might make sense to
also record assumptions, evidence, who is involved, and why shortcuts or trade-offs were
decided on. Critical systems need more documentation than less critical systems. De-
cisions that ensure that quality attributes are satisfied should be carefully documented,
other decisions are not as important. Important decisions keep the implementation on the
right track and make maintenance easier in the future, ensuring that the architecture does
not deteriorate and quality attributes are not forgotten.

Templates [S12][S24][G10]. The papers emphasise the content and organisation of the
documentation. One of these presents High-level Design Stories, which records design de-
cisions and their context, architecture assumptions, quality-attribute analysis and system
issues [S12]. These artifacts are modular and the global architecture is a combination of
all of these artifacts. Another paper describes an artifact called “The Sofware Architec-
ture Document”, which is meant to contain a minimal amount of information informally
presented [S24]. This document contains eight sections, but we are mostly interested in
the following three of them: “Architectural Decisions on the Data Model”, “Architectural
Decisions on the Deployment Model”, and “Architectural Decisions on the Implementation
Model”. Only the most relevant architectural decisions should be recorded. Minimality
and informality are meant to better accommodate agile software development practices.
Informality especially encourages the practice of documentation. This document contains
the global architecture and it is updated when the architecture is verified and reviewed.
The decision part of this artifact is specifically described as “without many details”. The
artifact follows the guideline that documentation should be simple, short, understand-
able, revised, and used for communication. The Unified Architecture Method (UAM)
framework documentation, found in the grey literature, also mentions a template for doc-
umenting details of an architecture decision [G10]. According to it, it is important to
record priority, domain, state and type together with author, revision and the date. Only
decisions affecting the fundamental structure should be recorded. Documentation storage
should be searchable and able to provide summary reports. Decision documents that are
replaced with new decisions should be deleted.

ADR templates was what grey literature mostly focused on. ADR is a documenta-
tion format popularised by a blog post by Nygard (2011) consisting of context, decision,
status and consequences. The contents of the ADR related papers ranged from actual
documentation [G2][G1] to custom templates or tips and best practices for using ADRs.

The style in which ADRs are written is meant to be concise and to the point. It is recom-

3.2. RQ1. HOW ARE DECISIONS DOCUMENTED IN THE LITERATURE? 23

mended that the language of ADRs is kept as concise as possible, while still using complete,
understandable sentences [G32][G17]. The titles of ADRs should also be descriptive and
written in “active voice”, by using words like “use” (an example with placeholders: “use-
<technology>-for-<purpose>.md”) [G7]. The rationale of decisions should be based on
evidence and requirements should be referred to where they are relevant [G32]. Evidence
can be older ADRs.

The language used to make ADRs is generally agreed on. The original blog post rec-
ommends using markdown (or another lightweight language) and most papers echo this
[G18][G17][G29][G13][G32][G23], although one paper [G15] also recommends a plain text
markup language called AsciiDoc (AsciiDoc 2022). It is also said that it does not really
matter what file type is used as long as the ADRs are written somehow [G32].

How much information is documented is difficult to determine. It is important to ensure
that not everything ends up documented [G17][G32]. Experiences reported by Keeling and
Runde also support this [G18]. People tend to overcompensate and document too much if
they are not sure what counts as an “architectural decision”. The decisions recorded should
somehow influence quality attributes or have necessary adverse effects on the program,
which need to be managed. The content which is documented should be limited. The
decisions that should be documented are hard or costly to change [G32]. They could also
be important or risky or affect a large amount of code [G1]. They could modify externally
visible features, change public interfaces, affect dependencies, be caused by constraints,
change general structures or cause changes in current development approaches [G17].

Documentation maintenance can be performed in two ways – documents are deprecated,
or changes are made to them overtime. Two papers emphasise the point made in the
original blog post that ADRs should not be changed after they are made [G29][G7]. This
is because they are meant to represent a point in time. Changes are marked by making a
new ADR.

The length of ADR documents is important. The original blog article states that ADR files
are “short” – the entire document is one to two pages long (Nygard, 2011). Keeling and
Keller agree with the shortness [G17][G19], but Keller also mentions that the sentences
still need to be complete [G19]. So rather than filling the space with as much information
as one can fit in two pages, one should aim for less information, but clearly worded. Then
again, Google Cloud Architecture Center [G13] says that they need to be just as long as
is necessary to convey all relevant information related to an individual decision.

What information should be recorded is mostly agreed on. A summary of the recom-

24 CHAPTER 3. RESULTS

Table 3.9: Summary of ADR field recommendations. Notice that these are recommended by different
sources and those sources recommend different combinations of subsets of these recommended fields. The
fields mentioned in the original introduction of ADRs [43] are underlined.

Field Source Year

Required fields
Stakeholders [G19] 2017
Status [G19] 2017
Categories [G19] 2017
Related (documents) [G19] 2017
Authors/Team/Driver/Decision maker [G19][G13] 2017/2021
Context/Problem [G19][G15][G13][G2] 2017/2019/2021/2021
Decision [G19][G15][G13] 2017/2019/2021
Consequences/Outcome/Result (of the decision) [G19][G15][G23][G2] 2017/2019/2021/2021
Title [G23] 2021
Requirements [G13][G2] 2021
Critical user journey [G13] 2021
Options/Alternatives [G19][G29][G2][G13][G23][G1]2017/2020-2022
Reasons/Reasoning [G13][G23][G1][G29][G2] 2020-2022
Date/Timestamp [G19][G19][G13][G1] 2017/2017/2021/2022

Optional fields
Status [G15] 2019
Date/Timestamp [G15][G23] 2019/2021
Names of the reviewers [G23] 2021

mended fields is in Table 3.9. The fields are divided into required and optional. The
original ADR template contains a title, context, decision, status and consequences (Ny-
gard, 2011). The papers included in the analysis of this thesis mostly follow this format,
although there are some slight differences as described as follows. Google Cloud Architec-
ture Center suggests more information: authors or team, context or problem, requirements,
critical user journey, key options, decision and reasons, and timestamp [G13]. Two more
papers [G19][G1] enforce the timestamp field and it is optionally enforced by another
two [G15][G23]. Keller suggests a different template, which contains summary (date,
driver [person], stakeholders, status, categories and outcome), context, related, alterna-
tives, decision, and consequences [G19]. Both Janssen and Peinelt recommend keeping the
information to the minimum with only three required fields. Janssen suggests the original
context, decision and consequences fields and date and status only if really wanted [G15].
Peinelt suggests title, decision result (outcome) and considerations (other options and
reasoning) and possibly date of the decision and names of the reviewers if needed [G23].
Among other template and tool resources, the GitHub ADR organisation recommends the

3.3. RQ2. WHAT ARE THE BENEFITS OF THE METHODS? 25

Y-statement format originally suggested by Zdun et al. (2013) [G2]. The Y-statement
format is a template with the following structure “In the context of <requirement>, fac-
ing <concern>, we decided for <option> and neglected <option> to achieve <quality>,
accepting downside <consequence>.”

Three papers [G32][G7][G23] mentioned that the template does not really matter as long as
one is chosen and used consistently. The point of ADRs is to answer “why” questions [G32].
ADRs should be easily accessible to everyone and be as basic and simple as possible and
lack excessive formality [G23]. The documentation needs to be tailored for the needs of
the project [G13]. Decisions always have options and those options should be recorded as
well as the reasoning for the selection [G1][G29].

The location of ADRs can be with source code, a separate version control system, or a
location accessible to most shareholders. Most analysed papers agree that the correct loca-
tion of the ADRs is with the code in the same version control [G13][G15][G17][G19][G7].
Although, keeping the documentation in a separate location would help non-technical
shareholders to also access it [G23]. It is also suggested that ADRs should be kept with
the rest of the documentation, although it should still be version controlled [G29]. How-
ever, there is also the opinion that the location does not really matter as long as it is
convenient for the team [G32].

How writing ADRs is integrated into the everyday work of practitioners affects the success
of documentation. The process of recording ADRs needs to be delegated to someone for it
to happen [G17]. It should also become a habit for the team. Peer review is an important
part of the process [G17][G7]. This ensures that the correct things are recorded and the
quality and usefulness of the ADRs. It is also suggested that ADRs should only be recorded
after the final decision has been made because there is no point in recording ideas, which
might not happen [G18]. Although, the original description of ADRs includes “proposed”
as an acceptable status of an ADR. This is probably because it allows the recording of the
reason for rejecting a certain solution, which might be important later.

3.3 RQ2. What are the benefits of the suggested doc-
umentation methods, practices and tools?

Certain methods, practices and tools are suggested or studied for a reason. They may
solve a problem or aim to improve a requirement. A requirement can be, for example,

26 CHAPTER 3. RESULTS

“low effort” or “non-intrusive”. The summaries of the benefits are in Tables 3.10, 3.11, and
3.12. The benefits are grouped by who it applies to and what type of method, practise
or tool it relates to as well as what feature enables it. The following subsections focus on
explaining the benefits of the different approaches. The benefits are grouped by the type
of approach (see Tables 3.4, 3.5, and 3.6 for the categories).

3.3.1 RQ2.1. What are the benefits to writers?

Guidelines for documentation were found to address project start-up times, support ag-
ile software development methods, effort (required to create documentation), quality of
information, and cost of writing. Reducing the size of the documents has been observed
to reduce project start-up times and support the use of agile software development meth-
ods [G24]. Recording only essential and documenting incrementally lessens the documenta-
tion effort [S15][S2]. Using file-based structure in documentation instead of ontology-based
reduces the cost of writing [S17]. The cost of writing is balanced by the cost of using the
written information. The more often the information is used, the more cost effective it is
to write ontologies.

There are two papers about processes and they both mainly aim to make documentation
faster and non-intrusive. Non-intrusiveness and speed are due to the processes being tied
to the workflow of the design process itself [S21][S26].

Template approaches are low effort when the individual documents are kept small [S12].
The small document size also encourages regular documentation and still manages to pro-
duce the so-called big picture of architecture via the combination of these small documents.
The template approach by Maric, Matkovic, Tumbas and Pavlićević [S24] is especially
suited for agile software development methods due to using informal, non-traditional, and
familiar methods that the team members are comfortable with.

ADR, being a specific type of template approach, shares the benefits of templates. They
also benefit from simplicity, easy starting (without prior knowledge), non-intrusiveness and
speed (of documenting). However, these benefits are sometimes dependent on the ADR
template in use and other practices involving the decision documentation. When ADRs
are stored with the source code, the effort of accessing is lowered and writing and reviewing
is easier [G15][G18]. This also means that it is easier to include decision documentation in
the existing workflow, which makes their use non-intrusive. The ADR templates are easy
to work with when they are simple [G15][G19]. Starting documentation is straightforward

3.3. RQ2. WHAT ARE THE BENEFITS OF THE METHODS? 27

because the ADR template is supposed to both guide the memory and it may also contain
instructions [G19]. Onboarding is easier for the same reason. Because they take very little
effort and they are quick to make, they are also cheap [G18].

Tools tend to make documentation low effort and cost due to the reuse of partial infor-
mation and automation [S6][S3]. Although, different types of tools have different levels of
automation. Different tools are also used in different situations. Some extraction tools are
only beneficial with projects that are old and a lot of material already exists from which to
derive the decision documentation [S31]. This is dependant on what the tool takes in as an
input. The creation tool by Brandner, Mayer and Weinreich [S8] specifically benefits from
reusability. The tool is used to produce architecture profiles, which are combined from
parts. A benefit of extraction tools is non-intrusiveness [S16]. The design can happen with
as little attention put into documentation as possible, while the tool records the necessary
information.

A summary of benefits by result group for writers is in Table 3.10.

Table 3.10: Benefits of different features of methods, practices and tools for writers.

Category Feature Benefit

Templates,
ADR

Small size of the documents Low effort, reduce project start up
times, support the use of agile software
development methods, regular docu-
mentation (up-to-date information)

Templates,
ADR

Recording only essential information Low effort, low cost

ADR Simplicity Easy to start documenting
ADR Stored near source code Low effort of access, easy to write and

review
ADR Integrated instructions Better chance of writing correct con-

tent, easier onboarding
ADR Memory prompts Important information not forgotten,

easier onboarding
ADR, Processes Documenting as a part of the workflow Faster (no task switching), low cost,

non-intrusive
Tools,
Creation tools

Reuse of partial information Reusability, low effort, low cost

Tools,
Extraction tools

Automation Low effort, low cost, non-intrusive

Guidelines Documenting incrementally Low effort
Guidelines File-based organization Low cost of writing

28 CHAPTER 3. RESULTS

3.3.2 RQ2.2. What are the benefits to readers?

The benefits for readers focus on minimal information, quality of information, ease of
access and finding information, startup times and supporting agile software development
practices.

The simplicity of ADRs makes decision-making easier as they are quick to read and easy
to understand [G18][G17][G32]. This also translates into efficient onboarding [G17][G19].
Location near the source code also increases efficiency for readers as source control tools
usually allow the reading of documents (other than code) as long as the format is sup-
ported. Designing new features is made easier as the reasoning is located close to the
existing implementation [G18].

Creation tools aim to make decision-making and sharing information easier [S8]. Tool by
Brandner [S8] also offers concrete guidance for decision-making. Tools for creating custom
content based on user needs also benefit from not having too much information which
increases reader efficiency [S2]. This also does not rely on writer discretion when it comes
to the recording – potentially making the outcome for the reader more reliable.

Guidelines state that only essential decisions should be documented [S15]. This makes
reading the documentation more efficient and less time can be spent looking for the es-
sential information. When there is less documentation people are also more likely to read
it, while large amounts of documents can cause the documentation to not be read at all.
Dedicated search tools can help transform existing low value documentation into usable
material [S30].

A summary of benefits for readers is in Table 3.11.

3.3.3 RQ2.3. What are the benefits to those who maintain the
documentation?

The majority of the analysed literature did not touch on the subject of documentation
maintenance, except for some template and ADR papers [S12][G17][G18][G32][S15].

The template by Diaz-Pace supports maintenance by keeping information about current
system issues [S12]. This helps with documentation maintenance as it encourages actively
reviewing documentation while performing other maintenance tasks.

ADRs benefit from close proximity to the source as well as minimal content. The close

3.4. RQ3. WHAT ARE THE DRAWBACKS OF THE METHODS? 29

Table 3.11: Benefits of different features of methods, practices and tools for readers.

Category Feature Benefit

Templates,
ADR

Small size of the documents Reduce project start up times, support
the use of agile software development
methods, regular documentation (up-
to-date information)

Templates,
ADR

Recording only essential information Less to read

ADR Simplicity Easy to find information
ADR Stored near source code Effort of access, easy to review
ADR Integrated instructions Quality of content, easier onboarding
ADR Memory prompts Quality of content, easier onboarding
ADR, Processes Documenting as a part of the workflow Up-to-date-information
Tools, Extrac-
tion tools

Automation Quality of content (less human errors)

Guidelines Documenting incrementally Up-to-date information
Guidelines Ontology-based organization Low cost of use / easy to find informa-

tion

proximity of ADRs to source code makes it more efficient to make changes to documen-
tation because changes can be made at the same time as code changes [G17][G18]. This
benefit does not apply in the situations where the documents are stored elsewhere, as is
suggested in some cases. Maintainers also benefit from not having to do it too much. When
only essential information is documented, fewer changes are also required [G32][S15].

The summary of benefits to maintenance is in Table 3.12

Table 3.12: Benefits of different features of methods, practices and tools for maintainers.

Category Feature Benefit

Templates Recording current system issues Encourages reviewing decision docu-
mentation during maintenance tasks

Templates,
ADR

Recording only essential information Less changes are required

ADR Stored near source code Making changes is efficient

30 CHAPTER 3. RESULTS

3.4 RQ3. What are the drawbacks of the suggested
documentation methods or practices?

No method, practice, or tool is perfect and the benefits often come with trade-offs and
challenges. For example, recording only a minimal amount of information requires knowl-
edge of what is important. Summaries of the drawbacks are in Tables 3.13, 3.14, and 3.15.
The next subsections focus on the drawbacks of the different approaches. The drawbacks
are grouped by the type of approach (see Tables 3.4, 3.5 and 3.6 for the categories)

3.4.1 RQ3.1. What are the drawbacks to writers?

Drawbacks for writers often mean more work. It can also mean mental overhead and
low motivation due to complicated processes, multiple differing documentation styles, and
simply the method not aligning with the preferences of the individual. Other problems
are unclear instructions causing too much information being recorded and having to go
through training to use new tools.

The format of other documentation (non-decision) can affect how decision documentation
is received. Filling in templates is sometimes considered as excessive overhead because the
architecture design itself may be represented in a more visual manner [S26]. This means
that the architecture design and decision documentation may have a disconnect, which
causes the decision documentation to be less useful. This can make the entire decision
documentation process seem pointless for those doing it.

ADRs are small and very easy to write, but it is also easy to use them incorrectly. Putting
a lot of meaningless information into an ADR template results in a large amount of useless,
low-quality documentation [G18]. Training people to correctly use an ADR template can
take months.

Some tools require a lot of learning, which overloads the already cognitively challenging
task of designing and also interferes with the design process [S21]. Dedicated creation
tools in general suffer from the fact that practitioners rather use text-files than dedicated
tools [G12].

Extraction tools still require post-processing, as the extracted information needs to be
validated, which can be time consuming and tedious [S16]. The tool may also not capture
everything [G28], and manual labour is still necessary to find additional information.

3.4. RQ3. WHAT ARE THE DRAWBACKS OF THE METHODS? 31

Document organisation can also have negative consequences on the writing. The drawback
of an ontological approach is that it takes a lot of effort to make the necessary semantic
annotations [S17]. When the results of that work are not used in the end, the cost
effectiveness of the method becomes low.

When and how documentation is performed affects the effort or feeling of effort being put
into documentation activities. Sometimes the documentation process can be too isolated
from other parts of the design work, making it seem like an unnecessary extra task [S26].
This can be due to the documentation process not covering all design activities when
documentation is supposed to be undertaken as a part of the design process. A summary
of the drawbacks for writers is in Table 3.13.

Table 3.13: Drawbacks of different features of methods, practices and tools for writers.

Category Feature Drawback

Templates Differing documentation formats (for
example, decision documentation vs ar-
chitecture design graphs)

Overhead, low motivation

ADR Excessive simplicity Easy to write unnecessary information,
training required

Tools Dedicated tools Training required, low motivation
(users rather write into simple text
files)

Extraction tools Post-processing required High effort
Extraction tools Automation missing information High effort
Processes Isolated documentation process High effort, low motivation
Guidelines Ontology-based organization High effort

3.4.2 RQ3.2. What are the drawbacks to readers?

Drawbacks for readers include quality issues related to the content and the length of
the documents as well as not being able to understand the relations between different
documentation sources.

Documentation organisation has a big impact on the readers. With standard file-based
approach information tends to become very scattered making necessary information hard
to find [S17]. Readers also become dependent on the table of contents to find necessary in-
formation. The importance of the structure of information may become overly pronounced
from the perspective of the readers. On the other hand, an ontology-based approach fails
to deliver information about the relationships between different parts of knowledge.

32 CHAPTER 3. RESULTS

ADRs can suffer from quality issues, which are frustrating to readers. ADRs can be low-
quality, and contain, for example, general guidelines rather than actual analysis on why
decisions were made and what consequences there are [G18]. Despite their small size there
may also be too many of them, causing people to read them less [G18][G32]. Template ap-
proaches in general may result in a large number of documents of varying sizes. Therefore,
going through these documents can be overwhelming and unattractive [S26]. Especially
overly long documents are daunting to read [S12]. Connecting template information with
architecture design documentation can be hard when they are documented separately and
in different formats [S26]. This also makes decision-making harder, which is often the
reason for reading documentation. When updating documents is allowed it can be hard
for the readers to know what the new content is [S12]. This combined with documents
that are over one page long causes users to not actually read and review the changes.

A summary of drawbacks for readers is in Table 3.14.

Table 3.14: Drawbacks of different features of methods, practices and tools for readers.

Category Feature Drawback

Templates Differing documentation formats (for
example, decision documentation vs ar-
chitecture design graphs)

Different documents disconnected

Templates Too long documents Hard to find necessary information
Templates,
ADR

Too many small documents Hard to find necessary information

ADR Excessive simplicity Low quality documentation
ADR Existing documentation updatable Hard to find the updated parts, less mo-

tivation to read
Guidelines File-based organization Information scattered and hard to find

3.4.3 RQ3.3. What are the drawbacks to those who maintain
the documentation?

Maintenance was not discussed extensively in the analysed literature. Drawbacks assigned
to readers often apply to maintainers as well because maintaining documentation also
requires reading it. Only strictly maintenance-related drawbacks are discussed in this
section. Problems concerning maintenance cover documents being too large, updating
cross-referencing and overlapping information.

Documentation organisation affects documentation maintenance. File-based approach re-

3.4. RQ3. WHAT ARE THE DRAWBACKS OF THE METHODS? 33

quires cross-referencing related parts of the documentation to keep the information coher-
ent. Keeping these references up to date is not a small task [S17].

Using templates causes a mass of separate documents by default. The separate nature of
the documents can cause overlapping information to be recorded [S12]. It can take a lot
of effort to keep the documents from having, for example, conflicting assumptions. ADR
is a type of template and when the collection of ADRs becomes large the maintenance
becomes hard [G32]. A summary of the drawbacks for maintainers is in Table 3.15.

Table 3.15: Drawbacks of different features of methods, practices and tools for maintainers.

Category Feature Drawback

Templates,
ADR

Too many small documents Overlapping information, conflicting in-
formation

Guidelines File-based organization Hard to maintain cross-references

4 Discussion

The results of this thesis cover the tools, methods and practices discussed over the last
five years. A total of 36 papers were analysed. In this chapter, the findings are first
discussed separately for each research question. The last section discusses the limitations
and threats to the validity of the review.

4.1 Findings related to RQ1: how architecture design
decisions are documented

Four different approaches were found in the analyzed literature. The approaches were
categorized as Tools, Templates, Processes and Guidelines. Tools were further categorized
as Creation, Extraction, Gamification and Search.

The approaches discussed in the grey literature and scientific literature differ significantly.
Comparing Tables 3.5 and 3.6, scientific papers mostly concentrate on tools and the anal-
ysed grey literature mostly focus on templates, especially ADRs. All mentions of ADR
templates were found within the analysed grey literature, which is not surprising as the ap-
proach was originally made popular by a blog post. Only two scientific papers mentioned
templates, and one of those was similar to ADRs. In this approach a single decision
is recorded per document and the big picture is formed by the collection of individual
documents. It appears that grey literature sources deem ADR as the expected way of
documenting architecture design decisions. One tool was mentioned within the analysed
grey literature and it was in the context of ADRs.

The term ‘ADR’ seems somewhat vague in definition when looking at the different template
content suggestions (see Table 3.9 for the recommended fields). In this review, all sources
using the term ADR were counted as ADR approaches. The recommended fields for ADRs
differ a lot. The suggested storage location and the length and type of file are not always
the same. Because the recommendations for ADRs are extremely varied it could be argued
that any ‘short’, template type approach could be counted as an ADR. It is surprising
how often the field ‘Decision’ itself is not included in the recommended fields. Instead, the
decision information is included in another field like ‘Title’ or ‘Decision Result’. In some

4.1. FINDINGS RELATED TO RQ1 35

cases, the analysed papers might not mention all the fields, possibly assuming that they
are obvious, such as the field ‘Title’. The quality of the papers discussing ADRs varies
from very high to very low and all of them are grey literature. The highest quality sources
with a score above 5 (out of 6) include documentation [G2], an experience report [G18], a
presentation [G17] and a book [G6].

In the category of other template approaches, there is a high-quality scientific paper dis-
cussing a very similar approach to ADRs, called High-level Design Stories (HLD) [S12].
The evidence level of the paper is 5 (industrial studies). A company in the insurance
domain was modernizing their software systems and they did not have an effective doc-
umentation strategy. The modernizing also required many architecture decisions to be
made. Existing documentation strategies were investigated, but they did not fulfil the
needs of the project. For example, reviews were very important for this project to avoid
creating more issues along the way. This is why a new strategy was developed. The pa-
per describes modular artifacts recording design decisions and their context, architecture
assumptions, quality-attribute analysis and system issues. The HLD approach appears
more refined than the ADR approach, for example, the workflow has been described. This
was expected as the ADR was introduced in a blog post and the HLD was introduced in
a scientific paper. The HLD differs from the ADR, especially in the way it covers parts
of the system instead of individual desicions, which can make the documents large. HLDs
also record system issues, which is not typical for ADRs, although considering the large
number of variations in the recommended fields for ADRs, it could be done. HLDs are
especially good for validating decisions, but suffer from the documents easily becoming
too large as their coverage is not defined strictly.

Using tools to aid documentation is the most common approach within the analysed sci-
entific literature. The majority of the papers discussing tools (8 out of 14) are about
Extraction tools, which automate at least a part of the process. This is expected as artifi-
cial intelligence is increasingly popular and rapidly developing in itself. The development
of AI is seen in these tools as well. The earlier tools are simpler and require some manual
labour. The later tools produce finished documentation and one even attempts to reduce
the training requirements of AI.

One of the main concerns that the analysed scientific studies focus on is the cost-effectiveness
of documentation. The benefits of documentation are recognised by scientists, but the up-
take of the practices has been lacking in the industry. This is at least partially due to
the perceived cost and unclear benefits, which is why automation is an attractive option.

36 CHAPTER 4. DISCUSSION

Unfortunately, some of the Extraction tools require some manual labour in addition to
the automated process. However, these tools are developing rapidly and they are becom-
ing more consumer friendly. The older approaches require more manual labour than the
more recent ones. See Table 3.8 for the summary of information, including the publica-
tion years. The quality of these studies varies a lot. The only paper having an evidence
level 5 (industrial practice) is the one introducing Adex [S6] and published in 2019 – an
extraction tool using natural language processing to extract information from chat logs
and other sources. It appears that the requirement for more efficient documentation and
tooling has been taken into account in the scientific research. The most recent tool, Lo-
qBook, was found within the analysed grey literature and is a final product available for
consumers [G23]. However, the quality score for the paper introducing LoqBook is only
2.7 out of 6 due to it being mentioned only in a blog post on the website of the LoqBook
company.

The next biggest group within the analysed scientific papers is the Creation tools. The
quality of the papers in the Creation tools category is not of the industrial level as they
all belong to the evidence level categories 2–4. The papers in the highest level evidence
group include ProSAD [S2] (a documentation strategy recommender) and AKB [S8] (a web
application for documenting and sharing). The Creation tools remove the need to put a lot
of effort into how the documentation is organised and stored, but they suffer from having
to learn another system just for documentation and possibly having to pay for the use of
the tool. What really sets these tools apart from others, is the support for collaboration as
well as re-using and highlighting information. However, cost-effectiveness being a strong
driver in the industry this approach alone is unlikely to be the first choice. The tool
presented in the most recent paper combines creation with extraction and search [G23]
(see Table 3.7 for all of the creation tools). Combining the features of different types of
tools is likely to make them more attractive. However, according to the analysed grey
literature, it looks like using simple text files for documentation is still prevalent as this
tends to be the easiest, cheapest and fastest way of getting started with documentation.

The issue with most of the discovered tools is that they tend to be pure academic studies or
just demonstrations. Out of the six academic papers discussing tools two are also preceding
papers to one in the industrial practice category. The paper discusses the extraction
tool called Adex [S6], which is being developed together with an industrial partner. So,
even though it is used in practice it is still in development. The extraction tool called
Recovar [G28] and two of the creation tools are also still in development. One creation

4.2. FINDINGS RELATED TO RQ2: BENEFITS 37

tool is in the process of being tested in an industrial setting [S8] and another has only
initial evidence of its feasibility [S2]. The academic studies also include the gamification
tool which was not demonstrated to be viable due to the setup of the study [S25]. A tool
that is available for use was found in the grey literature and is tied to the ADR approach
– LoqBook [G23]. This further supports the ADRs as the method of choice.

The process of documentation affects all methods except those that are automated. The
main idea is to promote good habits and make documenting as small and painless a task
as possible. Only two papers support paying attention to the steps of documentation,
but their evidence levels are relatively high – an academic study [S21] and an industrial
study [S26].

The vagueness of some guidelines and suggestions may be their downfall. A statement like
“record only minimal information” is good in theory, but it is very hard to gauge what
really is minimal, but still enough information, unless one is already quite experienced.
This may explain the popularity of the ADR approach as it tends to come with concrete
rules like length of 1–2 pages. This does not, however, automatically translate into good
quality content. Low-quality content can be combatted by adding instructions to the
templates themselves, but it is not a cure-all as it still requires some understanding.
Guidelines to help determine what is important to individual projects could be helpful here
as suggested by Gerdes et al. [S15] for finding essential information. The documentation
method must reliably produce a positive outcome for the project. Producing incorrect
documentation ends up being frustrating to practitioners and a waste of resources. The
team should be comfortable with the documentation method to successfully perform the
task of documenting.

Choosing the best method, practise or tool for architecture design decision documenta-
tion requires analysing the project itself and the needs of the project. Sometimes the
approaches are aimed at systems at a certain lifecycle stage or systems that are a certain
size. This is simple enough, but other times it is necessary to really think about how much
documentation is necessary, who needs it and for what reasons. Different approaches can
also be adjustable depending on the needs of the system as well. Certain guidelines and
trade-offs should be considered when selecting a suitable way of documenting. Only im-
portant information should be recorded, but what is important depends on the individual
system. The more risk is involved, the better the decisions should be recorded.

38 CHAPTER 4. DISCUSSION

4.2 Findings related to RQ2: benefits of the methods
and tools

Not all the papers gave a clear reason why it was suggested – this was especially apparent
with the analyzed grey literature papers. In many cases, the reasoning was more about
documenting decisions in general rather than what are the benefits of the discussed method
in comparison to other methods. Then again, some benefits, such as documenting being
an integral part of the workflow, are present when using any method or tool that requires
manual input. Some benefits associated with a specific method could theoretically be
adopted by other methods or tools. For example, the benefits of storage location near
source code is not necessarily unique to ADRs, although, there is no evidence of the
benefit of this in connection to other methods within this review.

Sometimes the methods give a lot of freedom to choose how they are used. This is common
to agile software development practices, as flexibility usually allows teams to work more
efficiently. However, some benefits mentioned are only present if the methods are used
in the intended ways. Especially ADRs and similar template approaches, where there
is a collection of short documents, can have their benefits diminished if they are used
incorrectly. Many different types of ADR templates and ways of using them exist, so it
helps to be aware of the trade-offs being made when choosing.

A minimal amount of work is the goal of most methods and tools. The majority of the
approaches are tools aimed at automatically extracting decision information or creating
documentation. Even templates aim to minimise the amount of text produced. This is
not only beneficial to writing but also to reading and maintenance.

Motivation to actually do the work helps with most manual approaches. This is the
result of specific processes. When the work is divided into small, simple chunks, it is much
more manageable from the cognitive perspective. Multiple other factors also support the
motivation, such as the amount of content required to be written or read. Approaches
demanding less content are more beneficial in this sense.

Usability is essential to readers because unused documentation is essentially a waste of
resources to even produce. This is where the organisation, content, size and location
become important. Creation tools remove the need to put too much thought into this,
but it is balanced out by the need to select and possibly learn a new tool. ADRs and
other templates tend to give suggestions related to usability, but there are also different

4.3. FINDINGS RELATED TO RQ3: DRAWBACKS 39

suggestions about what is best. The freedom can be great if the writers know what they
are doing, but it also gives space for mistakes. Usability was not really mentioned in the
context of automatic creation, but is probably something that should be considered. The
size of the documentation is less important if the search tools are good.

Reliability is another benefit for readers. This covers the quality of the content (correct
and complete information) as well as the documentation being up-to-date. These are
difficult to improve in approaches relying on human input, as there is always a chance for
mistakes. Especially extraction tools offer improved reliability. Although all automation
solutions are not equally reliable, their reliability is still higher than that of human input
due to automation being more consistent because people can forget and overlook important
parts by mistake.

Low cost is often a necessity because documentation is not something that brings tangible
profit quickly. Documentation tends to be neglected if the cost threatens to become too
high. Extraction tools tend to be very cost-effective, especially the most modern ones,
which require less human intervention. Simple, text-based approaches, like templates, are
also an excellent option for cutting costs because they do not require much set up.

4.3 Findings related to RQ3: drawbacks of the meth-
ods and tools

Like the benefits, the drawbacks were also not widely discussed. However, some papers
identified general issues with previous documentation practices. Sometimes the drawbacks
are only present if a particular documentation method is used incorrectly. Some drawbacks
have to be accepted as a tradeoff when prioritizing the requirements of a project.

Length of the documents can be problematic. If the length of the document is not
limited, they become too long very quickly. This is a problem sometimes even with
templates that are meant to be short. Sometimes, even a single page can seem daunting
when someone is looking for specific information.

Effort is often seen as the issue with writing documentation. Choices in file-type can
reduce the effort. For example, ontology-based approach takes a lot of effort despite its
benefits, which is why it is sometimes opted against [S17]. More often, effort is countered
with a smaller amount of optimised content, tools to reduce the need to organise and
maintain relationships between pieces of information and ultimately automation.

40 CHAPTER 4. DISCUSSION

The process of documenting design decisions can also adversely affect other design tasks.
When a practitioner is forced to make a separate effort for documenting, time and effort
are taken away from the actual design tasks. The process of documenting decisions should
be strongly linked to the process of making decisions.

Some automation solutions rely on teaching an artificial intelligence, which still takes some
effort. They also tend to rely on a large amount of existing data, which is not optimal for
younger projects. More recent natural language processing solutions are more attractive
and are meant to keep documentation up-to-date when a project is on going. However,
automation may not always be reliable, which means that the effort only moves from
writing to reviewing the output.

The drawback of Creation tools, which store and organise information that the user in-
puts, is the fact that practitioners often would rather just use text files instead. This is
most likely due to convenience, which is typical for agile software development methods.
Dedicated tools require decisions (which tool and why) and learning the use of it, as well
as, committing to using the tool once the selection process has happened. The tool could
also require purchasing a license, which would make the threshold even higher.

Gamification was not found to add any benefits. However, only one study related to
gamification was analyzed. Additionally, the experiment set-up did not take into account
the requirements of the game, which invalidated its benefits. Therefore, gamification
cannot be dismissed. Gamification tends to require the use of a certain tool which supports
the game. This leads to gamification suffering from the same issues as Creation tools.

4.4 Limitations and threats to validity

This section takes a look at the recognized limitations and discusses validity. The explicit
description of the methodology supports the validity. However, the most noticeable short-
comings are due to only one person working on the review and the major keywords being
common.

This literature review is not likely to cover all relevant studies. The fact that some
papers were found only in the grey literature search when they were available on the
Web of Science database indicates this. The availability of the papers was confirmed by
performing an individual search in the scientific database for each scientific paper found
in the Google search. The papers being available but not found with the search string

4.4. LIMITATIONS AND THREATS TO VALIDITY 41

demonstrates that defining the search string was problematic. The key terms are very
common and many specific keywords and filters had to be used. So, at least some on-topic
results did not show up in the results of the scientific search. Also, only one scientific
library and one generic search engine were used. More relevant material could have been
found if more libraries and search engines were utilised. The repeatability of the study
suffers from the optimization of results done by the Google algorithm. The results may
not always be the same even if the same key terms and settings are used. Relevant grey
literature material was likely to also have been left out of the study. There were mentions
of tools related to the ADRs, but only one such tool showed up in the search results.

While crafting the search string it became clear that the terminology is fuzzy. Papers men-
tioned, for example, architecture decisions, design decisions and architectural knowledge.
While these terms mean different things the line between them was not always clear. The
terms might sometimes be used interchangeably. The search term was designed to cover
as many ways of discussing architecture decisions as possible. Because of this fuzziness
there is the possibility that some data was misinterpreted.

The quality of the studies was evaluated by extracting quality criteria from each study. The
quality assessment of the scientific papers observes the context of the study, as suggested
by Alves et al., 2010. Each paper was given an evidence level rating (see Table 3.1).
The evidence levels of the papers were fairly evenly divided into the lower end and the
higher end of the evidence level categories. The papers with a higher evidence level were
paid more attention when evaluating, for example, the usefulness of the found tools. The
validity of the studies was not assessed, which could affect the results somewhat. For
example, one of the papers [S25] mentions that the results are not transferrable to a
professional environment because the experiments were conducted on students and there
are significant differences in the circumstances of these groups. So, the external validity
of the study could be tied to the potential viability of the method or tool.

Each grey literature paper was given a quality score based on six quality criteria (see Table
3.3). Each criterion had the same weight, which means that even a paper with low outlet
control was able to get a relatively high score, such as 4.1/6 [G7]. The impact metrics
were oversimplified for this thesis. It did not take into account the different types of source
materials and brought down some quality scores unfairly. The impact metric was based
on the traffic on the website and its domain. This does not give a realistic impact metric
on all types of results. For example, one of the search results presented a book. The traffic
on that particular webpage presenting the book is not likely to accurately represent the

42 CHAPTER 4. DISCUSSION

impact of the book itself. Additional metrics could have helped the scores to show the
impact of each paper more accurately. A high quantity (8 out of 15) of the grey literature
papers are blogs making their general quality relatively low.

The data extraction form was piloted to find potential problems before collecting the data,
but it was not reviewed. As it is, the form did help collect the necessary information.
Nevertheless, the fields could have been more refined or fine-grained. For example, the
extraction form could have explicitly defined fields for collecting information about the
status of the method or tool. In other words, whether it is ready to be used or years away
from a practical solution. This would mostly apply to the scientific literature as the grey
literature tends to discuss solutions that are ready or already in use. There could have
also been a separate field for the “problem” that the tool or method attempts to solve to
help analyse the focus and direction of the subject.

Only one person performed everything from planning to data extraction, which means
that some of the data may contain errors. Also, the inclusion and exclusion criteria are
defined and explained, but there were no sanity checks because only one person made all
the decisions about inclusion and exclusion. The same applies to the validation of the
entire process.

Some results are based on only a subset of the analysed papers. Not all of the papers gave
a clear reason for why the method, approach or tool itself was beneficial to documenting
architecture decisions. Instead, papers often focused on the benefits of documentation
in general and not so much on why one documentation method should be picked over
another. This was especially apparent in the analyzed grey literature papers. Some
individual categories of tools and methods were quite small because of the relatively small
amount of papers covering a large area of study. It is acceptable because this thesis builds
an overview of what is out there. However, reliable conclusions about the details of all
individual categories cannot be drawn.

5 Conclusions

The goal of this review was to examine the current situation of software architecture
design documentation methods, tools, and practices. The focus was on modern continuous
software development. The current research was assessed through scientific papers, and
the current practitioner’s point of view was assessed through grey literature. The benefits
and drawbacks of the methods, practices, and tools were also studied to assess the reasons
behind certain developments and potential directions in the future. Altogether, 36 out of
64 discovered papers were analysed.

The results show that research mainly concentrates on tools. Especially automated extrac-
tion tools are under ongoing research. The grey literature indicates a preference for simple,
template based documentation. This is mainly because that the practitioners appear es-
tablished in their use of ADRs. However, simple template based documentation does not
exclude tool usage. Practitioners require the tools to be extremely cost-effective and sim-
ple, partly because documentation is not especially appreciated as a practice, despite it
being proven to be beneficial. This puts a lot of demands on the research. Automation in
itself is not enough if the content it produces is not high-enough quality. Effort needs to be
truly reduced instead of just shifting the work from writing documentation to something
else, when it is still documentation-related work.

The benefits of individual methods, practices, and tools were not always extensively dis-
cussed in the analysed literature, especially in the grey literature. However, the benefits
mainly focus on reducing the amount of work and ensuring the usability and reliability
of documentation while keeping the cost as low as possible. What is seen as a drawback
is a high cost, high effort and producing too much or badly organised content. There
are requirements and tradeoffs to be considered when choosing how to do the documenta-
tion because the demands of the project itself affect what kind of documentation is good
enough. There is a delicate balance between too much and not enough documentation.

The different approaches to the issues of documentation all have their own merits. The
perfect tool is likely to combine multiple aspects into a single tool. Automation would help
a lot with the initial issue of neglecting documentation. The content would still need to be
editable, shareable, searchable, conveniently located (connected to the source code) and
of good quality. Due to the different needs of different types of projects customizability

44 CHAPTER 5. CONCLUSIONS

would be quite important. Low motivation for documenting needs to be taken into account.
Gamification deserves more research because it still has potential. However, the rewards
need to be interesting enough as it is not likely that people are interested in points that
mean nothing if the task to gain them is tedious. Supporting the process of design and
documentation is also important, especially with less experienced professionals. Although,
making architecture design decisions is a whole area of study in itself. Maintenance of
documentation should be paid more attention to because documentation loses all of its
value once it is out-of-date. It would be nice to see some automation or linking between
the documentation and the code. As reading through the documentation for maintenance
purposes tends to be a problem, it could be reduced by automatic indication of related
code being changed.

Because ADRs are already the standard way of documenting architecture decisions an in-
teresting next step would be to study them further and develop tools for them specifically.
Further research would need to be conducted on how widely ADRs are used within the
industry. Only one ADR tool appeared in this review, so further research on the already
existing ADR tools would also be required. Another interesting question is what moti-
vates professionals to document. It would be interesting to study cases where decision
documentation was done well. Of course, such cases would have to be found first and the
definition of “done well” would need to be established.

Bibliography

Reviewed – Web Of Science

[S1] Ahn, H., Kang, S., and Lee, S. (2018). “Reconstruction of Execution Architecture
View Using Dependency Relationships and Execution Traces”. In: 33rd Annual
ACM Symposium on Applied Computing (ACM SAC). Assoc Computing Machin-
ery, pp. 1417–1424. isbn: 978-1-4503-5191-1. doi: 10.1145/3167132.3167284.

[S2] Andres Diaz-Pace, J., Villavicencio, C., Schiaffino, S., Nicoletti, M., and Vazquez,
H. (2016). “Producing Just Enough Documentation: An Optimization Approach
Applied to the Software Architecture Domain”. In: Journal on Data Semantics
5.1, pp. 37–53. issn: 1861-2032. doi: 10.1007/s13740-015-0053-0.

[S3] Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., and Matthes, F. (2017).
“Automatic Extraction of Design Decisions from Issue Management Systems: A
Machine Learning Based Approach”. In: 11th European Conference on Software
Architecture (ECSA). Vol. 10475. Lecture Notes in Computer Science. Springer In-
ternational Publishing Ag, pp. 138–154. isbn: 978-3-319-65831-5; 978-3-319-65830-
8. doi: 10.1007/978-3-319-65831-5_10.

[S4] Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Hassel, M., and Matthes,
F. (2017). “An Ontology-based Approach for Software Architecture Recommen-
dations”. In: 23rd Americas Conference on Information Systems (AMCIS). isbn:
978-0-9966831-4-2.

[S5] Bhat, M., Shumaiev, K., and Matthes, F. (2017). “Towards a framework for man-
aging architectural design decisions”. In: 11th European Conference on Software
Architecture (ECSA), pp. 55–58. doi: 10.1145/3129790.3129799.

[S6] Bhat, M., Tinnes, C., Shumaiev, K., Biesdorf, A., Hohenstein, U., and Matthes,
F. (2019). “ADeX: A Tool for Automatic Curation of Design Decision Knowledge
for Architectural Decision Recommendations”. In: IEEE International Conference
on Software Architecture (ICSA-C), pp. 158–161. isbn: 978-1-7281-1876-5. doi:
10.1109/icsa-c.2019.00035.

[S7] Brandner, K. and Weinreich, R. (2019). “A Recommender System for Software
Architecture Decision Making”. In: 13th European Conference on Software Archi-

https://doi.org/10.1145/3167132.3167284
https://doi.org/10.1007/s13740-015-0053-0
https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1145/3129790.3129799
https://doi.org/10.1109/icsa-c.2019.00035

46 CHAPTER 5. CONCLUSIONS

tecture (ECSA). Assoc Computing Machinery, pp. 22–25. isbn: 978-1-4503-7142-1.
doi: 10.1145/3344948.3344959.

[S8] Brandner, K., Mayer, B., and Weinreich, R. (2019). “Software Architecture Knowl-
edge Sharing with the Architecture Knowledge Base (AKB)”. In: 13th European
Conference on Software Architecture (ECSA), pp. 30–33. isbn: 978-1-4503-7142-1.
doi: 10.1145/3344948.3344960.

[S9] Capilla, R., Jansen, A., Tang, A., Avgeriou, P., and Babar, M. A. (2016). “10 years
of software architecture knowledge management: Practice and future”. In: Journal
of Systems and Software 116, pp. 191–205. issn: 0164-1212. doi: 10.1016/j.jss.

2015.08.054.
[S10] Cho, C., Lee, K. S., Lee, M., and Lee, C. G. (2019). “Software Architecture Module-

view Recovery Using Cluster Ensembles”. In: IEEE Access 7, pp. 72872–72884.
issn: 2169-3536. doi: 10.1109/access.2019.2920427.

[S11] Dasanayake, S., Aaramaa, S., Markkula, J., and Oivo, M. (2019). “Impact of re-
quirements volatility on software architecture: How do software teams keep up
with ever-changing requirements?” In: Journal of Software-Evolution and Process
31.6, p. 19. issn: 2047-7473. doi: 10.1002/smr.2160.

[S12] Diaz-Pace Andres, J. and Bianchi, A. J. (2019). “High-level Design Stories in
Architecture-centric Agile Development”. In: IEEE International Conference on
Software Architecture (ICSA-C), pp. 137–144. isbn: 978-1-7281-1876-5. doi: 10.

1109/icsa-c.2019.00032.
[S13] Farwick, M., Schweda, C. M., Breu, R., and Hanschke, I. (2016). “A situational

method for semi-automated Enterprise Architecture Documentation”. In: Software
and Systems Modeling 15.2, pp. 397–426. issn: 1619-1366. doi: 10.1007/s10270-

014-0407-3.
[S14] Galster, M., Treude, C., and Blincoe, K. (2019). “Supporting Software Architec-

ture Maintenance by Providing Task-specific Recommendations”. In: 35th IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE
International Conference on Software Maintenance. IEEE, pp. 370–372. isbn: 978-
1-7281-3094-1. doi: 10.1109/icsme.2019.00060.

[S15] Gerdes, S., Jasser, S., Riebisch, M., Schroder, S., Soliman, M., and Stehle, T.
(2016). “Towards the Essentials of Architecture Documentation for Avoiding Ar-
chitecture Erosion”. In: Acm Proceedings of the 10th European Conference on Soft-
ware Architecture Workshops (ECSA-W), p. 4. doi: 10.1145/2993412.3004844.

https://doi.org/10.1145/3344948.3344959
https://doi.org/10.1145/3344948.3344960
https://doi.org/10.1016/j.jss.2015.08.054
https://doi.org/10.1016/j.jss.2015.08.054
https://doi.org/10.1109/access.2019.2920427
https://doi.org/10.1002/smr.2160
https://doi.org/10.1109/icsa-c.2019.00032
https://doi.org/10.1109/icsa-c.2019.00032
https://doi.org/10.1007/s10270-014-0407-3
https://doi.org/10.1007/s10270-014-0407-3
https://doi.org/10.1109/icsme.2019.00060
https://doi.org/10.1145/2993412.3004844

REVIEWED – WEB OF SCIENCE 47

[S16] Gilson, F. and Weyns, D. (2019). “When Natural Language Processing Jumps
into Collaborative Software Engineering”. In: IEEE International Conference on
Software Architecture (ICSA-C). IEEE, pp. 238–241. isbn: 978-1-7281-1876-5. doi:
10.1109/icsa-c.2019.00049.

[S17] Graaf, K. A. de, Liang, P., Tang, A., and Vliet, H. van (2016). “How organisation of
architecture documentation affects architectural knowledge retrieval”. In: Science
of Computer Programming 121, pp. 75–99. issn: 0167-6423. doi: 10.1016/j.

scico.2015.10.014.
[S18] Graaf, K. A. de, Tang, A., Liang, P., and Khalili, A. (2017). “Querying Software

Architecture Knowledge as Linked Open Data”. In: IEEE International Conference
on Software Architecture (ICSA), pp. 274–277. isbn: 978-1-5090-4793-2. doi: 10.

1109/icsaw.2017.13.
[S19] Guillem, A., Bruseker, G., and Ronzino, P. (2017). “Process, concept or thing?

Some initial considerations in the ontological modelling of architecture”. In: In-
ternational Journal on Digital Libraries 18.4, pp. 289–299. issn: 1432-5012. doi:
10.1007/s00799-016-0188-0.

[S20] Hesse, T. M. and Paech, B. (2016). “Documenting Relations Between Require-
ments and Design Decisions: A Case Study on Design Session Transcripts”. In:
22nd International Working Conference on Requirements Engineering - Founda-
tion for Software Quality. Vol. 9619. Lecture Notes in Computer Science. Springer
International Publishing Ag, pp. 188–204. doi: 10.1007/978-3-319-30282-9_13.

[S21] Jong, P. de, Werf, J. van der, Steenbergen, M. van, Bex, F., and Brinkhuis, M.
(2019). “Evaluating Design Rationale in Architecture”. In: 2019 IEEE Interna-
tional Conference on Software Architecture Companion (ICSA-C 2019), pp. 145–
152. doi: 10.1109/icsa-c.2019.00033.

[S22] Keim, J. and Koziolek, A. (2019). “Towards Consistency Checking between Soft-
ware Architecture and Informal Documentation”. In: IEEE International Confer-
ence on Software Architecture (ICSA-C), pp. 250–253. isbn: 978-1-7281-1876-5.
doi: 10.1109/icsa-c.2019.00052.

[S23] Lytra, I., Carrillo, C., Capilla, R., and Zdun, U. (2020). “Quality attributes use in
architecture design decision methods: research and practice”. In: Computing 102.2,
pp. 551–572. issn: 0010-485X. doi: 10.1007/s00607-019-00758-9.

[S24] Maric, M., Matkovic, P., Tumbas, P., and Pavlicevic, V. (2016). “Documenting
Agile Architecture: Practices and Recommendations”. In: Information Systems:

https://doi.org/10.1109/icsa-c.2019.00049
https://doi.org/10.1016/j.scico.2015.10.014
https://doi.org/10.1016/j.scico.2015.10.014
https://doi.org/10.1109/icsaw.2017.13
https://doi.org/10.1109/icsaw.2017.13
https://doi.org/10.1007/s00799-016-0188-0
https://doi.org/10.1007/978-3-319-30282-9_13
https://doi.org/10.1109/icsa-c.2019.00033
https://doi.org/10.1109/icsa-c.2019.00052
https://doi.org/10.1007/s00607-019-00758-9

48 CHAPTER 5. CONCLUSIONS

Development, Research, Applications, Education 264, pp. 56–71. issn: 1865-1348.
doi: 10.1007/978-3-319-46642-2_4.

[S25] Mayer, B. and Weinreich, R. (2019). “The Effect of Gamification on Software Archi-
tecture Knowledge Management: A Student Experiment and Focus Group Study”.
In: 34th ACM/SIGAPP Annual International Symposium on Applied Computing
(SAC), pp. 1731–1740. isbn: 978-1-4503-5933-7. doi: 10.1145/3297280.3297449.

[S26] Roldan, M. L., Gonnet, S., and Leone, H. (2016). “Operation-based approach for
documenting software architecture knowledge”. In: Expert Systems 33.4, pp. 313–
348. issn: 0266-4720. doi: 10.1111/exsy.12152.

[S27] Rost, D. and Naab, M. (2016). “Task-Specific Architecture Documentation for De-
velopers Why Separation of Concerns in Architecture Documentation is Counter-
productive for Developers”. In: 10th European Conference on Software Architecture
Workshops (ECSA). Vol. 9839. Lecture Notes in Computer Science. Springer Inter-
national Publishing Ag, pp. 102–110. isbn: 978-3-319-48992-6; 978-3-319-48991-9.
doi: 10.1007/978-3-319-48992-6_7.

[S28] Schroder, S. and Riebisch, M. (2018). “An Ontology-Based Approach for Doc-
umenting and Validating Architecture Rules”. In: 12th European Conference on
Software Architecture (ECSA). Assoc Computing Machinery. isbn: 978-1-4503-
6483-6. doi: 10.1145/3241403.3241457.

[S29] Sobernig, S. and Zdun, U. (2016). “Distilling Architectural Design Decisions and
their Relationships using Frequent Item-Sets”. In: 13th Working IEEE/IFIP Con-
ference on Software Architecture (WICSA), pp. 61–70. isbn: 978-1-5090-2131-4.
doi: 10.1109/wicsa.2016.9.

[S30] Su, M. T., Hosking, J., Grundy, J., and Tempero, E. (2016). “Usage-based chunking
of Software Architecture information to assist information finding”. In: Journal of
Systems and Software 122, pp. 215–238. issn: 0164-1212. doi: 10.1016/j.jss.

2016.09.009.
[S31] Tamburri, D. A. and Kazman, R. (2018). “General methods for software archi-

tecture recovery: a potential approach and its evaluation”. In: Empirical Software
Engineering 23.3, pp. 1457–1489. issn: 1382-3256. doi: 10.1007/s10664-017-

9543-z.
[S32] Ven, J. S. van der and Bosch, J. (2016). “Busting Software Architecture Beliefs A

Survey on Success Factors in Architecture Decision Making”. In: 42nd Euromicro
Conference Series on Software Engineering and Advanced Applications (SEAA).

https://doi.org/10.1007/978-3-319-46642-2_4
https://doi.org/10.1145/3297280.3297449
https://doi.org/10.1111/exsy.12152
https://doi.org/10.1007/978-3-319-48992-6_7
https://doi.org/10.1145/3241403.3241457
https://doi.org/10.1109/wicsa.2016.9
https://doi.org/10.1016/j.jss.2016.09.009
https://doi.org/10.1016/j.jss.2016.09.009
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1007/s10664-017-9543-z

REVIEWED – GOOGLE 49

IEEE Computer Soc, pp. 42–49. isbn: 978-1-5090-2819-1. doi: 10.1109/seaa.

2016.35.
[S33] Yang, C., Liang, P., Avgeriou, P., Eliasson, U., Heldal, R., Pelliccione, P., and Bi,

T. T. (2017). “An industrial case study on an architectural assumption documen-
tation framework”. In: Journal of Systems and Software 134, pp. 190–210. issn:
0164-1212. doi: 10.1016/j.jss.2017.09.007.

Reviewed – Google

[G1] arc42 contributors (2022). 9. Architecture Decisions. url: https://docs.arc42.

org/section-9/.
[G2] Architectural Decision Records community contributors (2021). ADR. url: https:

//adr.github.io/.
[G3] Atmakur, N. (2020). What is Architecture Decision Record (ADR)? Do I need

it? How is it useful? Blog. url: https://www.linkedin.com/pulse/what-

architecture-decision-record-adr-do-i-need-how-useful-atmakur.
[G4] Blake, J. (2020). When Should I Write an Architecture Decision Record. url:

https://engineering.atspotify.com/2020/04/when- should- i- write-

an-architecture-decision-record/.
[G5] Capilla, R., Jolak, R., Chaudron, M. R. V., and Carrillo, C. (2020). “Design Deci-

sions by Voice: The Next Step of Software Architecture Knowledge Management”.
In: Human-Centered Software Engineering: 8th IFIP WG 13.2 International Work-
ing Conference, HCSE 2020, Eindhoven, The Netherlands, November 30 – Decem-
ber 2, 2020, Proceedings. Eindhoven, The Netherlands: Springer-Verlag, pp. 166–
177. isbn: 978-3-030-64265-5. doi: 10.1007/978-3-030-64266-2_10.

[G6] Cervantes, H. and Kazman, R. (2016). Designing Software Architectures: A Prac-
tical Approach (SEI Series in Software Engineering). isbn: 978-0134390789. url:
https://www.informit.com/articles/article.aspx?p=2738304&seqNum=6.

[G7] Chappen, E., Hofschneider, R., King, M., and Ballard, T. (2021). Architecture De-
cision Records: Helpful now, invaluable later. Blog. url: https://18f.gsa.gov/

2021/07/06/architecture_decision_records_helpful_now_invaluable_

later/.

https://doi.org/10.1109/seaa.2016.35
https://doi.org/10.1109/seaa.2016.35
https://doi.org/10.1016/j.jss.2017.09.007
https://docs.arc42.org/section-9/
https://docs.arc42.org/section-9/
https://adr.github.io/
https://adr.github.io/
https://www.linkedin.com/pulse/what-architecture-decision-record-adr-do-i-need-how-useful-atmakur
https://www.linkedin.com/pulse/what-architecture-decision-record-adr-do-i-need-how-useful-atmakur
https://engineering.atspotify.com/2020/04/when-should-i-write-an-architecture-decision-record/
https://engineering.atspotify.com/2020/04/when-should-i-write-an-architecture-decision-record/
https://doi.org/10.1007/978-3-030-64266-2_10
https://www.informit.com/articles/article.aspx?p=2738304&seqNum=6
https://18f.gsa.gov/2021/07/06/architecture_decision_records_helpful_now_invaluable_later/
https://18f.gsa.gov/2021/07/06/architecture_decision_records_helpful_now_invaluable_later/
https://18f.gsa.gov/2021/07/06/architecture_decision_records_helpful_now_invaluable_later/

50 CHAPTER 5. CONCLUSIONS

[G8] Deshpande, T. (2018). A Simple but Powerful Tool to Record Your Architectural
Decisions. Blog. url: https://betterprogramming.pub/here-is-a-simple-

yet-powerful-tool-to-record-your-architectural-decisions-5fb31367a7da.
[G9] Dorado, S. H. and Hurtado, J. A. (2019). Documenting architectural rationale

using source code annotations: An exploratory study. Ed. by F. Harris, S. Dascalu,
S. Sharma, and R. Wu. doi: 10.29007/f5md.

[G10] Enstrom, D. W. (2018). Guideline: Architectural Decision. url: http://www.

unified - am . com / UAM / UAM / guidances / guidelines / uam _ architectural _

decision_BAE7AFA2.html.
[G11] Evans, P. (2018). Lightweight Architecture Decision Records. Blog. url: https:

//peterevans.dev/posts/lightweight-architecture-decision-records/.
[G12] Gilson, F., Annand, S., and Steel, J. (2020). “Recording Software Design Decisions

on the Fly”. In: Joint Proceedings of SEED NLPaSE co-located with 27th Asia
Pacific Software Engineering Conference 2020.

[G13] Google Cloud (2021). Architecture decision records overview. url: https : / /

cloud.google.com/architecture/architecture-decision-records.
[G14] Hesse, T. M., Kuehlwein, A., and Roehm, T. (2016). “DecDoc: A Tool for Doc-

umenting Design Decisions Collaboratively and Incrementally”. In: Proceedings
2016 1st International Workshop on Decision Making in Software Architecture,
pp. 30–37. doi: 10.1109/march.2016.9.

[G15] Janssen, J. W. (2019). Documenting Your Architectural Decisions. Blog. url:
https://www.avisi.nl/blog/documenting-your-architectural-decisions.

[G16] Kapuscik, J. (2020). What’s an Architecture Decision Record? Blog. url: https://

betterprogramming.pub/what-is-architecture-decision-record-110c597c13d.
[G17] Keeling, M. and Runde, J. (2017). Architecture Decision Records in Action. Pow-

erpoint. url: https://resources.sei.cmu.edu/asset_files/Presentation/

2017_017_001_497746.pdf.
[G18] Keeling, M. and Runde, J. (2018). Share the Load: Distribute Design Authority

with Architecture Decision Records. Conference Proceedings. url: https://www.

agilealliance.org/resources/experience- reports/distribute- design-

authority-with-architecture-decision-records/.
[G19] Keller, F. (2017). Documenting Architecture Decisions. Blog. url: https://www.

fabian-keller.de/blog/documenting-architecture-decisions/.
[G20] McLintock, A. (2020). Key Design Decisions. Blog. url: https://www.cafeassociates.

co.uk/2020/10/28/key-design-decision-documents/.

https://betterprogramming.pub/here-is-a-simple-yet-powerful-tool-to-record-your-architectural-decisions-5fb31367a7da
https://betterprogramming.pub/here-is-a-simple-yet-powerful-tool-to-record-your-architectural-decisions-5fb31367a7da
https://doi.org/10.29007/f5md
http://www.unified-am.com/UAM/UAM/guidances/guidelines/uam_architectural_decision_BAE7AFA2.html
http://www.unified-am.com/UAM/UAM/guidances/guidelines/uam_architectural_decision_BAE7AFA2.html
http://www.unified-am.com/UAM/UAM/guidances/guidelines/uam_architectural_decision_BAE7AFA2.html
https://peterevans.dev/posts/lightweight-architecture-decision-records/
https://peterevans.dev/posts/lightweight-architecture-decision-records/
https://cloud.google.com/architecture/architecture-decision-records
https://cloud.google.com/architecture/architecture-decision-records
https://doi.org/10.1109/march.2016.9
https://www.avisi.nl/blog/documenting-your-architectural-decisions
https://betterprogramming.pub/what-is-architecture-decision-record-110c597c13d
https://betterprogramming.pub/what-is-architecture-decision-record-110c597c13d
https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_497746.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_497746.pdf
https://www.agilealliance.org/resources/experience-reports/distribute-design-authority-with-architecture-decision-records/
https://www.agilealliance.org/resources/experience-reports/distribute-design-authority-with-architecture-decision-records/
https://www.agilealliance.org/resources/experience-reports/distribute-design-authority-with-architecture-decision-records/
https://www.fabian-keller.de/blog/documenting-architecture-decisions/
https://www.fabian-keller.de/blog/documenting-architecture-decisions/
https://www.cafeassociates.co.uk/2020/10/28/key-design-decision-documents/
https://www.cafeassociates.co.uk/2020/10/28/key-design-decision-documents/

REVIEWED – GOOGLE 51

[G21] Morris, B. (2020). Architecture without documentation is incomplete. Blog. url:
https://www.ben-morris.com/architecture-without-documentation-is-

incomplete/.
[G22] Nigh, M. (2021). How to Document Software Architecture Decisions. url: https:

//medium.com/leading-literally/how-to-document-software-architecture-

decisions-9529a3a3efb6.
[G23] Peinelt, J. (2021). Architectural Decision Record (ADR) Templates in Markdown

and Excel. Blog. url: https://loqbooq.app/blog/architectural-decision-

record-templates.
[G24] Poort, E. (2019). Value-driven Architecture Documentation. Blog. url: https://

eltjopoort.nl/blog/2019/02/01/value-driven-architecture-documentation/.
[G25] Rupp, H. W. (2021). Why you should be using architecture decision records to

document your project. Blog. url: https : / / www . redhat . com / architect /

architecture-decision-records.
[G26] Sami, M. (1027). Architectural Design Decisions. Blog. url: https://melsatar.

blog/2017/04/29/architectural-design-decisions/.
[G27] Scheufler, B. (2020). Documenting Design Decisions using RFCs and ADRs. Blog.

url: https://brunoscheufler.com/blog/2020-07-04-documenting-design-

decisions-using-rfcs-and-adrs.
[G28] Shahbazian, A., Kyu Lee, Y., Le, D., Brun, Y., and Medvidovic, N. (2018). “Re-

covering Architectural Design Decisions”. In: 2018 IEEE International Conference
on Software Architecture (ICSA), pp. 95–9509. doi: 10.1109/ICSA.2018.00019.

[G29] Smith, S. (2020). Getting Started with Architecture Decision Records. Blog. url:
https://ardalis.com/getting- started- with- architecture- decision-

records/.
[G30] Srikrishnan, Y. (2017). Documenting Architecture. Blog. url: https://dzone.

com/articles/documenting-architecture-1.
[G31] Taylor, T. (2020). 4 best practices for creating architecture decision records. url:

https://www.techtarget.com/searchapparchitecture/tip/4-best-practices-

for-creating-architecture-decision-records.
[G32] Zimmermann, O. (2021). Architectural Decisions — The Making Of. Blog. url:

https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.

html.

https://www.ben-morris.com/architecture-without-documentation-is-incomplete/
https://www.ben-morris.com/architecture-without-documentation-is-incomplete/
https://medium.com/leading-literally/how-to-document-software-architecture-decisions-9529a3a3efb6
https://medium.com/leading-literally/how-to-document-software-architecture-decisions-9529a3a3efb6
https://medium.com/leading-literally/how-to-document-software-architecture-decisions-9529a3a3efb6
https://loqbooq.app/blog/architectural-decision-record-templates
https://loqbooq.app/blog/architectural-decision-record-templates
https://eltjopoort.nl/blog/2019/02/01/value-driven-architecture-documentation/
https://eltjopoort.nl/blog/2019/02/01/value-driven-architecture-documentation/
https://www.redhat.com/architect/architecture-decision-records
https://www.redhat.com/architect/architecture-decision-records
https://melsatar.blog/2017/04/29/architectural-design-decisions/
https://melsatar.blog/2017/04/29/architectural-design-decisions/
https://brunoscheufler.com/blog/2020-07-04-documenting-design-decisions-using-rfcs-and-adrs
https://brunoscheufler.com/blog/2020-07-04-documenting-design-decisions-using-rfcs-and-adrs
https://doi.org/10.1109/ICSA.2018.00019
https://ardalis.com/getting-started-with-architecture-decision-records/
https://ardalis.com/getting-started-with-architecture-decision-records/
https://dzone.com/articles/documenting-architecture-1
https://dzone.com/articles/documenting-architecture-1
https://www.techtarget.com/searchapparchitecture/tip/4-best-practices-for-creating-architecture-decision-records
https://www.techtarget.com/searchapparchitecture/tip/4-best-practices-for-creating-architecture-decision-records
https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html
https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html

52 CHAPTER 5. CONCLUSIONS

References

Alves, V., Niu, N., Alves, C., and Valença, G. (2010). “Requirements engineering for
software product lines: A systematic literature review”. In: Information and software
technology 52.8, pp. 806–820. issn: 0950-5849. doi: 10.1016/j.infsof.2010.03.014.

AsciiDoc (2022). url: https://asciidoc.org/ (visited on 06/19/2022).
Bosch, J. (2004). “Software Architecture: The Next Step”. In: Software Architecture. Ed.

by F. Oquendo, B. C. Warboys, and R. Morrison. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 194–199. isbn: 978-3-540-24769-2.

Fairbanks, G. (2010). Architecture Haiku. Presentation. url: https://de.slideshare.

net/matthewmccullough/architecture-haiku.
Garousi, V., Felderer, M., and Mäntylä, M. V. (2019). “Guidelines for including grey

literature and conducting multivocal literature reviews in software engineering”. In:
Information and software technology 106, pp. 101–121. issn: 0950-5849. doi: 10.1016/

j.infsof.2018.09.006.
Huynh Khanh Vi, T., Börstler, J., Ali, N. bin, and Unterkalmsteiner, M. (2022). “How

good are my search strings? Reflections on using an existing review as a quasi-gold
standard”. In: e-Informatica Software Engineering Journal 16.1. issn: 2084-4840. doi:
10.37190/e-Inf220103.

Ivarsson, M. and Gorschek, T. (2010). “A method for evaluating rigor and industrial rel-
evance of technology evaluations”. In: Empirical software engineering: an international
journal 16.3, pp. 365–395. issn: 1382-3256. doi: 10.1007/s10664-010-9146-4.

Kazman, R., Goldenson, D. R., Monarch, I., Nichols, W. R., and Valetto, G. (2016).
“Evaluating the Effects of Architectural Documentation: A Case Study of a Large Scale
Open Source Project”. In: IEEE Transactions on Software Engineering 42, pp. 220–260.

Kruchten, P., Lago, P., and Vliet, H. van (2006). “Building up and Reasoning about
Architectural Knowledge”. In: Proceedings of the Second International Conference on
Quality of Software Architectures. QoSA’06. Västerås, Sweden: Springer-Verlag, pp. 43–
58. isbn: 3540488197. doi: 10.1007/11921998_8.

Manteuffel, C., Avgeriou, P., and Hamberg, R. (2018). “An exploratory case study on
reusing architecture decisions in software-intensive system projects”. In: The Journal of
systems and software 144, pp. 60–83. issn: 0164-1212. doi: 10.1016/j.jss.2018.05.

064.
Nygard, M. (2011). Documenting architecture decisions. Blog. url: https://www.cognitect.

com/blog/2011/11/15/documenting-architecture-decisions.

https://doi.org/10.1016/j.infsof.2010.03.014
https://asciidoc.org/
https://de.slideshare.net/matthewmccullough/architecture-haiku
https://de.slideshare.net/matthewmccullough/architecture-haiku
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.37190/e-Inf220103
https://doi.org/10.1007/s10664-010-9146-4
https://doi.org/10.1007/11921998_8
https://doi.org/10.1016/j.jss.2018.05.064
https://doi.org/10.1016/j.jss.2018.05.064
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions

REFERENCES 53

Perry, D. E. and Wolf, A. L. (1992). “Foundations for the Study of Software Architec-
ture”. In: SIGSOFT Softw. Eng. Notes 17.4, pp. 40–52. issn: 0163-5948. doi: 10.1145/

141874.141884.
Tyree, J. and Akerman, A. (2005). “Architecture decisions: demystifying architecture”. In:

IEEE Software 22.2, pp. 19–27. doi: 10.1109/MS.2005.27.
Zdun, U., Capilla, R., Tran, H., and Zimmermann, O. (2013). “Sustainable Architectural

Design Decisions”. In: IEEE Software 30, pp. 46–53. doi: 10.1109/MS.2013.97.

https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/141874.141884
https://doi.org/10.1109/MS.2005.27
https://doi.org/10.1109/MS.2013.97

	Introduction
	Research Method
	Research questions
	Search strategy
	Scope and sources
	Search process
	Search terms for formal search
	Search terms for grey literature search
	Inclusion and exclusion criteria
	Quality assessment
	Data collection and analysis

	Results
	Overview of included studies
	RQ1. How are decisions documented in the literature?
	RQ2. What are the benefits of the methods?
	RQ2.1. What are the benefits to writers?
	RQ2.2. What are the benefits to readers?
	RQ2.3. What are the benefits to those who maintain the documentation?

	RQ3. What are the drawbacks of the methods?
	RQ3.1. What are the drawbacks to writers?
	RQ3.2. What are the drawbacks to readers?
	RQ3.3. What are the drawbacks to those who maintain the documentation?

	Discussion
	Findings related to RQ1
	Findings related to RQ2: benefits
	Findings related to RQ3: drawbacks
	Limitations and threats to validity

	Conclusions
	Bibliography

