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This thesis presents a complication risk comparison of the most used surgical interventions for benign
prostatic hyperplasia (BPH). The investigated complications are the development of either a post-
surgery BPH recurrence (reoperation), an urethral stricture or stress incontinence severe enough to
require a surgical procedure for their treatment. The analysis is conducted with survival analysis
methods on a data set of urological patients sourced from the Finnish Institute for Health and
Welfare. The complication risk development is estimated with the Aalen-Johansen estimator and
the effects of certain covariates on the complication risks is estimated with the Cox PH regression
model. One of the regression covariates is the Charlson Comorbidity Index score, which attempts
to quantify a disease load of a patient at a certain point in time as a single number. A novel Spark
algorithm was designed to facilitate the efficient calculation of the Charlson Comorbidity Index
score on a data set of the same size as the one used in the analyses here. The algorithm achieved
at least similar performance to the previously available ones and scaled better on larger data sets
and with stricter computing resource constraints.

Both the urethral stricture and urinary incontinence endpoints suffered from a lower number of
samples, which made the associated results less accurate. The estimated complication probabilities
in both endpoint types were also so low that the BPH procedures couldn’t be reliably differentiated.
In contrast, BPH reoperation risk analyses yielded noticeable differences among the initial BPH
procedures. Regression analysis results suggested that the Charlson Comoborbidity Index score
isn’t a particularly good predictor in any of the endpoints. However, certain cancer types that
are included in the Charlson Comorbidity Index score did predict the endpoints well when used as
separate covariates. An increase in the patient’s age was associated with a higher complication risk,
but less so than expected. In the urethral stricture and urinary incontinence endpoints the number
of preceding BPH operations was usually associated with a notable complication risk increase.
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1. Introduction

Benign prostatic hyperplasia (BPH) is the most common benign tumor found in the male
population. While many patients can make do without treatment, the mere amount of
cases makes even the small subsection of the patients that do need interventions rather
sizable. This also means that an optimal treatment choice is important for the well-being
of a large patient contingent. Surgical procedures are the most effective BPH treatments.
While efficacious, they are unfortunately also associated with risks of multiple types of
complications. The complication risks are dependent on the chosen BPH procedure and
the attributes of the treated patient, which means that quantifying the risk discrepan-
cies between the intervention options and the effects of certain clinical characteristics of
the treated patients on the risk development is important for the clinician planning the
treatment of a particular patient. In addition to having the best chance of a successful
treatment, a correct procedure choice can save the patient from additional procedures and
troublesome complications.

The BPH procedure complications chosen to be investigated in this thesis were a
BPH recurrence necessitating a new BPH procedure (reoperation), stress incontinence
(SI) and urethral stricture (US). A BPH recurrence refers to a case where the initial
BPH procedure was successful but the patient redevelops the symptoms at a later time.
Stress incontinence is a condition where physical stress can cause the patient to lose their
ability to control their urination. While not a life-threatening condition by itself, stress
incontinence can still be an extreme nuisance in the patient’s daily life. An urethral
stricture refers to scar tissue that narrows the patient’s urethra. It often occurs as an
unwanted side effect of surgical procedures that affect the area around the urethra. Com-
mon symptoms of strictures include pain and either a reduction or a total blockage of
the flow of urine, the latter being an especially severe complication which requires urgent
care.

The study presented in this thesis is a retrospective analysis of patient health records
done in collaboration with a group of urologists with a clinical interest in the results, which
are also planned to be submitted for a release in a medical journal. The choice of the
retrospective analysis was partly motivated by the fact that Finland has a long history of
collecting medical data in an electronic form. As medical studies are often plagued with
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3 Chapter 1. Introduction

small sample sizes, a well-sized source of good-quality data offers a possibility of important
insight. Finnish Institute for Health and Welfare (THL) manages two separate registries
for Finnish inpatient and outpatient care data, Hilmo and Avohilmo, respectively. Health
care providers operating in Finland are obligated by law to provide the information about
patient visits to the registries. The research data used in this study was formed by
requesting the available inpatient and outpatient data for a cohort of patients who had
received any of the certain urological diagnoses or procedures detailed later in Chapter
3. Some of the key data points included in the research data are the time periods the
patients have spent in the health care facilities and both the diagnoses and the procedures
that the patient received during a particular visit.

A few other authors have investigated the BPH procedure complication risks before,
but their works have been limited in scope due to their less comprehensive research data
sources with limited sample numbers and follow-up times. These issues are common in
medical data. One reason for this is that medical data is often protected by legislation
which causes getting access to it to be challenging. Another factor is that while medical
facilities nowadays commonly store health records in an electronic form, the data formats
are often incompatible between the facilities even inside a single country. This means
that researchers aiming to obtain data from several sources need to perform the necessary
harmonization work in order to merge the data sets to a usable form. Each additional
data source also adds another possible source of either incomplete or incorrect data.
These problems were minimized in the analyses of this thesis by mostly relying on the
harmonization and validation work done by the THL personnel.

Survival analysis is a branch of statistics for the analysis of the distribution of
amount of time before some event happens, i.e. the survival distribution. Rephrased in
more practical terms, survival analysis attempts to answer questions such as “what is
the probability of surviving for 1 year after a prostate cancer diagnosis” and “how does
age affect the risk of developing a complication after a surgery”. As the thesis analyses
the period of time between the first BPH procedure of a patient and the first following
procedure treating an associated complication, survival analysis methods are the natural
tools of choice for the task. The analysis results presented in Chapter 4 use survival
analysis methods to estimate the survival distributions in the different scenarios, to test
whether the survival distributions from the different initial BPH procedure options to
a certain complication procedure are significantly different and to perform regression
analysis to estimate the effect of the clinical characteristics of the patients on the risk
development.

One of the investigated clinical characteristics of the patients is the so-called Charl-
son Comorbidity Index (CCI) score. The CCI score attempts to quantify the patient’s
diagnoses into a single number to enable the stratification of the patients per the severity
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of their total diagnosis load. CCI score has also proven to be a functional statistical
indicator for the mortality rate of a disease. The basic idea of scoring diseases is simple,
but there are certain specific characteristics which make the CCI surprisingly problem-
atic from an algorithmic perspective. The difficulty comes from the temporal component
caused by the facts that the CCI scores are assigned to groups of diseases instead of
individual ones and that a patient can receive the score of a certain group only once.
There are also some pairs of groups comprised of a less severe and a more severe form
of the same disease. The temporal component means that the ordering of the diagnoses
matters, which complicates the performance considerations. The available implementa-
tions of the CCI score calculation algorithm failed to finish due to the size of the research
data. To remedy the issue a new algorithm for calculating the CCI scores was designed
on the Apache Spark big data processing platform. The algorithm was designed to scale
to support the sizes of the ever increasing medical data sources.

To help to familiarize the reader with the necessary medical science domain knowl-
edge, Chapter 2 will give an overview of the background of BPH and the investigated
complications in addition to introducing the reader to the medical coding systems used in
Finland. This chapter is mandatory reading to understand the rest of the text. Chapter 3
describes the methodology used to perform the analyses. The methodology is comprised
of the data preparation process, the novel Charlson Comorbidity Index algorithm and a
brief overview of the theory behind the used survival analysis methods. Chapter 4 details
the results of the performed analyses. Chapter 5 provides a discussion of the results in ad-
dition to the associated relevance and limitations. The thesis then ends with a conclusion
in Chapter 6.

1.1 Research questions
• Some possible complications that can develop after a patient’s first BPH procedure

include recurrent BPH, stress incontinence and an urethral stricture. How do the
risks for a severe enough form of these complications to require another procedure
develop with time for a subset of the more common initial BPH procedures?

• How do the complication risks compare among the initial BPH procedures?
• What are the effects of certain clinical factors on the risk development?
• How do the effects of the clinical factors differ among the initial BPH procedures?
• Do the results of the previous short-term BPH procedure complication studies match

ones from a cohort with longer follow-up times?
• How can the Charlson Comorbidity Index scores be efficiently computed for a very

large cohort?
• Does the Charlson Comorbidity Index score predict any of the investigated compli-
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cations?
• A survival analysis course meant for practitioners often consists of a set of simple

and rigid methods whereas the bleeding edge research can be inaccessible without
sufficient statistical training. What are the common pitfalls in applying survival
analysis models and how can they be remedied?



2. Medical background

The analysis of medical data presents several challenges. Understanding the content of
medical data necessitates the analyst to possess the medical domain knowledge and to
understand the often Latin-based specialized vocabulary. Medical data entities such as
diagnoses, procedures, laboratory tests and medicines are also often denoted in the data by
their representation in an appropriate standardized medical coding system. Accessing and
using medical data is also often limited by legislation and requires special considerations
due to the inclusion of personally identifiable information. As an example, only the
structure of the analyzed data can be presented in this thesis as the content of the research
data includes personally identifiable patient information which is protected by the law [3].

The main aim of this chapter is to familiarize the reader with the prerequisite med-
ical knowledge that is necessary to understand the research questions and the clinical
motivations behind them. The main topics covered are the diagnosis and procedure cod-
ing systems that are currently used in Finland and the brief medical backgrounds of BPH,
urethral strictures and stress incontinence. The investigated procedures are mentioned
by name but not described in detail as further discussion would be unnecessary for the
purposes of this thesis.

2.1 Electronic medical records
While the definition of an electronic medical record (EMR) varies in the literature, the
underlying idea is to store the information about the interactions between a patient and
a health care provider on a computer. EMR systems have greatly increased the efficacy
and reduced the costs of care in the health care facilities which have accommodated
their use [63,65]. One practical issue of EMR systems is the format that the different
interactions are stored in. Medical data includes entities such as diagnoses, procedures
and medicines that are not specific to a particular health care provider, so they should
be encoded in a standardized way in order to enable interoperability. Medical coding
systems offer an answer to the problem by providing a way to map the entities to a
standardized representation in the data. They are also convenient from the perspective
of data analysis as the standardized codes provide the medical data analysts a common
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Table 2.1: A list of the chapters of the ICD-10 system

Chapter Code range Name

1 A00-B99 Certain infectious and parasitic diseases
2 C00-D49 Neoplasms
3 D50-D89 Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism
4 E00-E89 Endocrine, nutritional and metabolic diseases
5 F01-F99 Mental, Behavioral and Neurodevelopmental disorders

6 G00-G99 Diseases of the nervous system
7 H00-H59 Diseases of the eye and adnexa
8 H60-H95 Diseases of the ear and mastoid process
9 I00-I99 Diseases of the circulatory system
10 J00-J99 Diseases of the respiratory system

11 K00-K95 Diseases of the digestive system
12 L00-L99 Diseases of the skin and subcutaneous tissue
13 M00-M99 Diseases of the musculoskeletal system and connective tissue
14 N00-N99 Diseases of the genitourinary system
15 O00-O9A Pregnancy, childbirth and the puerperium

16 P00-P96 Certain conditions originating in the perinatal period
17 Q00-Q99 Congenital malformations, deformations and chromosomal abnormalities
18 R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified
19 S00-T88 Injury, poisoning and certain other consequences of external causes
20 V00-Y99 External causes of morbidity

21 Z00-Z99 Factors influencing health status and contact with health services

vocabulary for interactions with the domain expert clinicians. The later chapters of this
thesis will refer to the discussed procedures and diagnoses only with their codes in the
appropriate medical coding systems.

2.1.1 ICD-10

ICD-10 is a diagnosis classification system developed by the World Health Organization
(WHO) [47]. The tenth version of the system was finalized in 1990, but it has received
several smaller amendments after the initial creation. Finland’s health care sector is
currently storing diagnosis information using the ICD-10 system with some additional
country-specific modifications. ICD-10 encodes the diagnoses as alphanumeric codes. In
addition to describing the diagnosis itself, the codes are hierarchically structured to also
contain additional information about the diagnosis. As an example of a such structure,
the ICD-10 code for benign prostatic hyperplasia without urinary tract issues is N40.0.
If the patient has lower urinary tract issues, then the code N40.1 is used instead [39]. An
ICD-10 code includes diagnostic criteria which must be reached in order for a clinician to
be able to diagnose the patient with a disease represented by that particular code [47].
The following details of the ICD-10 system are mainly based on a Finnish ICD-10 manual
by Komulainen et al. because of the country-specific codes contained in research data [39].
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ICD-10 has a hierarchical structure consisting of chapters, sections, classes and
subclasses. Chapters represent a high-level categorization of the diagnoses. In practice
the chapters consist of ranges of diagnostic codes. The current version of the ICD-10
contains 21 chapters. These are listed in Table 2.1. ICD-10 codes always start with an
alphabetic character. In most cases the first character denotes the chapter of the code.
Exceptions to this are letters H, used in both sections 7 and 8, and letter D, used in
both chapters 2 and 3. Usually the initial character of the code is followed by a numeric
character. Exceptions to this are the chapters 1, 2, 19 and 20, which include codes that
begin with a longer sequence of alphabetical characters [39].

Each chapter is further divided into sections. Each section is a range of 3-character
codes. A section represents some logic for further categorizing the diseases of the chapter.
As an example, chapter 1 is grouped according to the disease location, the way of infecting
of the disease and the organism that causes the disease. A chapter can also have multiple
levels of sections. For instance, chapter 2 has two levels of sections based alternatively on
either tumor severity or the tumor location [39].

All of the sections contain one or more classes. A class is a single 3-character code.
Classes can either define a disease on their own or represent an even more specialized
category. To represent an actual diagnosis in the latter case the code needs to define
additional one or two levels of subclasses. Subclasses are formed by adding an alphabetical
character to the code as a suffix, which causes the length of an ICD-10 code to range from
3 to 5 characters, which provides a helpful limitation while processing ICD-10 codes. Each
subclass further clarifies a detail about the disease, e.g. the location. A dot is usually used
as a delimiter between the third and fourth characters [39]. Some examples of real ICD-10
codes are listed in Table 2.2, which shows the 20 most common ICD-10 codes found in
the research data.

ICD-10 has three special code types. They are all used to encode a causal relation-
ship between two codes. The three possible causal relationship types are the disease and
its symptom, a tumor and its symptom or a harmful effect caused by a chemical/biologi-
cal agent and the associated Anatomical Therapeutic Chemical (ATC) code of the agent.
ATC is the coding system currently used in Finland to store information about medicines.
For the purposes of this thesis the details of the ATC system are not necessary and are
therefore omitted. Table 2.3 summarizes the different types of combination ICD-10 codes
and their structures [39].

The coding system has drawn criticism from psychiatrists. Some of the claimed
issues include that the system does not distinguish between problem behaviors caused by a
psychiatric illness and those that are merely symptoms of another medical problem. Other
criticism is mainly directed towards the diagnostic criteria for certain diagnostic codes.
Some psychiatrists feel that the criteria doesn’t always match the clinical presentations
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Table 2.2: A list of 20 most common diagnoses in the research data.

Diagnosis Count Name

C61 2345077 Malignant neoplasm of prostate
I10 1577908 Essential (primary) hypertension
I48 1297654 Atrial fibrillation and flutter
N40 978068 Hyperplasia of prostate
Z491 724170 Extracorporeal dialysis

I251 580188 Atherosclerotic heart disease
K021 563659 Caries of dentine
N189 547090 Chronic renal failure, unspecified
E119 529111 Non-insulin-dependent diabetes mellitus - Without complications
G473 447118 Sleep apnoea

N0839 433867 Glomerular disorders in diabetes mellitus microalbuminuria
I702 384798 Atherosclerosis of arteries of extremities
J448 370840 Other specified chronic obstructive pulmonary disease
E11 361192 Non-insulin-dependent diabetes mellitus
E112 348224 Non-insulin-dependent diabetes mellitus - With renal complications

J189 339660 Pneumonia, unspecified
I509 303914 Heart failure, unspecified
G20 279107 Parkinson’s disease
H903 263872 Sensorineural hearing loss, bilateral
R104 251966 Other and unspecified abdominal pain

Table 2.3: A summary of the combination code types of the ICD-10 system.

Code 1 Delimiter Code 2

Causal code * Symptom code
Tumor code & Tumor symptom code
Overdose/poisoning code # ATC code
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of the disease and that the criteria is overly complex in general [18]. Additionally, the
author holds the opinion that the need for country-specific versions of the coding system
can be considered a severe flaw.

2.1.2 NCSP

Finland is currently using a modified version of the Nordic Classification of Surgical
Procedures (NCSP) as the coding system for medical procedures. NCSP was released in
1996 by Nordic Medico-Statistical Committee (NOMESCO) [1]. NCSP procedure codes
are alphanumeric sequences of 5 characters. It is also a hierarchical system, as codes with
fewer characters can form categories of connected procedure codes, but the categories
are not procedures by themselves. This is in contrast with the ICD-10 system, which
uses the optional suffixes for encoding additional information. The limitation to codes of
length 5 means that the NCSP system is not necessary to be described in detail here, as
the static structure will not require any particular concern while processing the research
data. A separate procedure coding system called PTHAVO or SPAT is concurrently used
in outpatient care. While SPAT codes were used in defining the research cohort, the
analysed procedures themselves are not done in outpatient care so a detailed description
of the SPAT system is also omitted [41].

2.2 Prostate
The prostate is a gland (a substance-producing organ) that is a part of the male repro-
ductive system. Figure 2.1 illustrates the structure of the system. As can be seen from
the picture, the prostate resides directly under the bladder. The location in the body is
also the etymology of the term, as the word prostate originates from the Greek expression
for “one who stands before”. When viewing the male reproductive system from below, the
prostate appears to be in front of the bladder. The prostate weighs about 30 grams and
is about the size of a chestnut. The main function of the prostate is to produce fluid that
is a key ingredient of semen. It also transforms testosterone to a more potent form called
dihydrotestosterone (DHT). The prostate is surrounded by connective tissue and muscle
fibers. These muscles also enable ejaculation by expelling the semen through the urethra
[2].

The structure of the prostate comprises of three different parts. These can thought
of as layers, starting from the around the center of the gland. The transition zone is
located there surrounding the upper part of the urethra. The central zone resides around
the transition zone. The seminal duct and the seminal vesicles (the ejaculatory duct) are
located in the transition zone. The peripheral zone is the last layer. The tissue mass of
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the prostate is divided to approximately 10% for the transition zone, about 20% for the
central zone and around 70% for the peripheral zone. The transition zone tissue is the
area which benign prostatic hyperplasia affects. Malignant growth, i.e. cancers, tend to
affect the peripheral zone [2].

Figure 2.1: Human male reproductive system © 2021 by Wumingbai is licensed under CC BY-SA 4.0.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ [67].

2.3 Benign prostatic hyperplasia (BPH)
Benign prostatic hyperplasia (BPH) is a common disease among the male population.
As the medical term suggests, BPH refers to increased non-cancerous cell production in
the prostate and the associated connective tissue. Worldwide autopsy studies have shown
that BPH affects around 10% of the men in their 30s, 20% of the men in their 40s, 50%
of the men in their 60s, and between 80% and 90% of the men in their 70s and 80s. It is
postulated that most men would develop a some degree of BPH if they would live long
enough. Age and normal androgen production are the only known risk factors in BPH.
Increased physical activity and moderate alcohol consumption might have a preventative
effect. The role of genetics is possible but remains unconfirmed [51,55].

http://creativecommons.org/licenses/by-sa/4.0/
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Table 2.4: A list of the investigated BPH procedures.

NCSP code Name Abbreviation

KED00/KED10 Transvesical prostatectomy / Retropubic prostatectomy OSP
KED22 Transurethral resection of prostate TURP
KED33 Transurethral incision of prostate TUIP
KED52 Laser resection of prostate VLAP

BPH is not always a clinical condition. It transforms into one only if the patient
presents with any of the associated symptoms. Three categories of symptoms are espe-
cially prevalent. Lower urinary tract symptoms (LUTS) can negatively affect the flow of
urine and the need to urinate. Benign prostatic enlargement (BEE) refers to an increase
in the size of the prostate. Bladder outlet obstruction (BOO) is a blockage in the bladder
caused by a pressure gradient at the bladder neck and the prostatic urethra. It is impor-
tant to note that BPH, LUTS, BEE and BOO can all also occur independently of each
other [51,55].

Disease development varies greatly among patients. With a follow-up time of 3-5
years, two thirds of the patients experience either no change or even an improvement
in their symptoms, but a longer follow-up time generally makes them worse. Patients
with mild or moderate symptoms and no complications often require no treatment as
long as the progression is monitored annually and the symptoms do not largely affect the
quality of life. The predicted outcome in these cases is often determined by the size of
the prostate. A clear increase in the size tends to result in increased severity later. In
the cases where treatment is necessary, medication is initially considered if it is enough
to either remove or substantially reduce the symptoms. However, the efficacy of the BPH
medications is weaker than the surgical intervention options [51,55]. The NCSP codes
of the BPH procedures investigated in this paper are listed in Table 2.4. Table 2.5 lists
the procedures that are considered as reoperations after the initial BPH procedure. The
ICD-10 code for BPH is N40.1.
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Table 2.5: A list of the investigated BPH reoperations.

NCSP code Name Abbreviation

KED00/KED10 Transvesical prostatectomy / Retropubic prostatectomy OSP
KED22 Transurethral resection of prostate TURP
KED33 Transurethral incision of prostate TUIP
KED52 Laser resection of prostate VLAP
KED62 Transurethral needle ablation of prostate TUNA

KED72 Transurethral microwave therapy of prostate TUMT
KED76 Transurethral electrovaporization of the prostate TUVP

2.4 Urethral stricture
Urethral stricture is a narrowing of the urethra that is caused by scar tissue. The causes
of urethral strictures can be divided into 4 categories. These are unknown causes (idio-
pathic), side effects from other procedures (iatrogenic), inflammatory diseases and physical
injuries (traumatic). Patients of all ages can develop an urethral stricture, but it is more
common in the older population. Urethral stricture is rare in women [6,62]. Urethral
stricture incidence rate for men in the UK has been estimated to range from 10 to 100
per 100 000 men, depending on the age bracket [46].

Symptoms of an urethral stricture are similar to the lower urinary tract symptoms
of BPH. If left untreated, they can in some cases also develop into a life-threatening
renal failure. Treatment choice depends on the symptom profile. If the symptoms are
not troublesome, a treatment might not be necessary. If they are, a procedure is usually
required [6,62]. The NSCP codes of the urethral stricture procedures that are investigated
in this paper are listed in Table 2.6. The ICD-10 code for urethral stricture is N35.9.

Table 2.6: A list of the investigated urethral stricture procedures.

NCSP code Name Abbreviation

TKD00 Dilatation of urethra Urethral dilation
KDV10/KDV12 Internal urethrotomy / Urethroscopic internal urethrotomy Urethrotomy
KDH70 Plastic repair of stricture of urethra Urethroplasty
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2.5 Stress incontinence
Stress incontinence has been defined in several ways. The key symptom is an involuntary
loss of urination control. The different definitions revolve around the clinical criteria
according to which the diagnosis should be given. The differing criteria alternatives center
around the involuntariness of the incontinence, whether it causes a social or a hygienic
problem and the frequency of the incontinence [32].

Stress incontinence is a specific form if incontinence where an activity causes a
sudden and involuntary loss of urine for the patient. Activities that can cause stress
incontinence include effort, physical exertion, sneezing and coughing. This form inconti-
nence is notably more prevalent in women than men. Stress incontinence can be caused
by anything that either directly injures or reduces the capacity of maintaining suitable
resistance of the urinary sphincter. Such causes be be categorized to neurological causes,
side effects of BPH and prostate cancer treatments and physical injuries (traumas). Aging
is a risk factor in stress incontinence for both sexes, but more steeply for women [20].

Stress incontinence is often treated with lifestyle changes. If these are not sufficient
to control the condition, physical therapy and medications that improve the bladder
control can be tried. Severe cases can require a surgical procedure [20]. The NCSP codes
for the stress incontinence procedures investigated in this paper are listed in Table 2.7.
The ICD-10 code of stress incontinence is N39.3.

Table 2.7: A list of the investigated stress incontinence procedures.

NCSP code Name Abbreviation

KDK00/KDK10 Implantation of artificial
urinary sphincter around
bladder neck /
Implantation of artificial
urinary sphincter around
bulbar urethra

AUS

KDG43 Transobturatorial sling
urethrocystopexy

Sling



3. Methods

The aim of this chapter is to explain and motivate the chosen methodology of the thesis.
The methodology is composed of three distinct parts. These are the the Charlson Comor-
bidity Index and its computation, the survival analysis methods and the data preparation
process. Each part will be detailed in their respective sections. The structure and the
content of the research data will be described along with the data preparation process.

3.1 Charlson Comorbidity Index
Treatment efficacy studies are burdened by the fact that the treated patients are not
limited to having only the disease that the treatment is meant for. These coexisting
health problems are called comorbidities. The problem they cause stems from the fact
that having multiple concurrent illnesses can make it difficult to accurately point out the
cause of each of them. This can present a severe problem as the comorbidities can mask
the effect of the studied treatment. Higher number of comorbidities, i.e. a high disease
load, can also increase the risk of the patient to drop out of the study before completion.
As the treatments are often meant for severe diseases, accounting for comorbidities to
prevent incorrect conclusions is of utmost importance [15].

A traditional way to do this has been to exclude any patients with a certain number
of comorbidities to reduce the probability of the confounding influence. This approach
is practical but has the downside of limiting the generality of the results. It can also
make the recruitment of a sufficient number of patients problematic if too many possible
candidates are excluded. Another way to solve the problem is to use statistical methods to
control for the patient-specific comorbidities. The vast amount of possible comorbidities
makes classifying them difficult. Stratifying (partitioning) the patients according to their
disease load requires a quantitative measure to determine it and to compare it with others
[15]. The Charlson Comorbidity Index provides such a measure, which has also shown to
predict various clinical outcomes well [14,16].

The CCI is not the only way to quantify the disease load. While the underlying
basic idea of quantifying the disease load is shared among the alternatives, their predictive
performance differs depending on the task. Austin et al. provide a general proof for

15
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the mathematical validity of comorbidity measures. Ou et al. provide a performance
comparison of several different comorbidity measurement schemes in various predictive
tasks for an American diabetic patient cohort. The comparison includes the Charlson
Comorbidity Index (CCI), Elixhauser Index (EI), Chronic Disease Score (CDS), Health-
related Quality of Life Comorbidity Index (HRQL-CI) [48].

The viability of the CCI score for the prediction of the BPH procedure complications
was chosen to be investigated because it would offer a convenient tool for clinicians if found
to be effective. Additionally, to the author’s knowledge, no previous work has investigated
the predictive power of the CCI scores for the prediction of BPH complications.

Only the CCI is detailed in this chapter as the other mentioned measures aren’t
considered in the analyses of this thesis, but an interested reader is directed to Charlson
et. al for the CCI, Elixhauser et al. for the EI, von Korff et al. for the CDS and Muhkerjee
et al. for the HRQL-CI [15,23,45,64].

3.1.1 Definition

Charlson Comorbidity Index (CCI) is a weighted index that was developed to quantify
the severity of a patients comorbidities to a single number. CCI was empirically developed
by following a cohort of all the patients admitted in a 1-month period to the New York
Hospital-Cornell Medical Center for a year and analyzing the results of their outcomes
afterwards. The authors later validated the index as a good predictor of death due to a
comorbidity on a cohort of breast cancer patients [15].

CCI consists of 17 different comorbidity categories. These are essentially groups of
diseases that share characteristics and a similar risk of mortality. Each of the categories is
assigned a score representing that risk. The scores range from 0 to 6 and increase with the
severity of the risk. A total score is formed by summing the scores of all of the categories
that the patient has received diagnoses from. Each category is only counted once even if
the patient has multiple diagnoses from it. Some pairs of categories are also exclusionary
due to representing a milder and a severe form of the same disease. For instance, if a
patient has diagnoses of both diabetes without and with chronic complications, the one
without chronic complications will not contribute to the patients total score [15].

As the original CCI was developed by assessing the outcomes of real patients in 1987,
the scoring system was dependent on the state of the medical science at that particular
time. As advances in medicine can have an effect on the treatability of different comor-
bidities, Quan et al. published a revision to the scoring system in 2010 that attempted
to improve it to better fit the changed realities [49]. Both the original and the revised
scoring systems are listed in Table 3.2. The exclusionary categories are shared by both
versions and can be found in Table 3.1.
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Table 3.1: Exclusionary categories of the CCI

Mild form Severe form

Diabetes without chronic complication Diabetes with chronic complication
Renal disease Moderate or severe liver disease
Any malignancy, including lymphoma and leukemia, except malignant neoplasm of skin Metastatic solid tumor

As the comorbidity index was originally developed for empirical use, it made sense
to describe the diseases with their names. Retrospective studies are often using admin-
istrative health care data which contains the diagnosis information encoded with some
coding system. The medical community has developed several coding systems for storing
various types of health care data. Their general idea is to assign a short alphanumeric
code for each recognized entity [50].

Quan et al. developed a mapping between the disease categories defined by the
original CCI publication and ICD-10 codes [50]. The mapping can be found in Table 3.3.
An important observation about the mapping is that it is defined only for codes with a
length of 4 or less characters. Any country-specific alterations of the ICD-10 system were
not considered which means that the mapping should be valid for international source
data. This was also confirmed by Sundararajan et al., who found the Quan mapping
to perform better in predicting hospital mortality than some of the alternatives for an
Australian patient cohort [54].

The hierarchical structure of the ICD-10 system serves as a good practical example to
motivate the use of a comorbidity classification instead of the individual diagnoses. ICD-10
spans tens of thousands of diagnostic codes and most of them are rarely if ever used. Figure
3.1 depicts the skewness of the distribution of the unique diagnosis codes in the research
data. As similar diagnoses can have a huge number of separate codes, grouping them
together is important to prevent the less used ones from appearing statistically irrelevant
[66]. Figure 3.2 displays the occurrence distribution of the Charlson Comorbidity Index
comorbidities in the research data.
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Figure 3.1: Occurrences of the 100 most common ICD-10 codes sorted by occurrence count in a de-
creasing order.

Table 3.2: Diseases of the CCI with their corresponding weights

Disease Charlson weight Quan weight

Myocardial infarction 1 0
Congestive heart failure 1 2
Peripheral vascular disease 1 0
Cerebrovascular disease 1 0
Dementia 1 2

Chronic pulmonary disease 1 1
Rheumatologic disease 1 1
Peptic ulcer disease 1 0
Mild liver disease 1 2
Diabetes without chronic complication 1 0

Diabetes with chronic complication 2 1
Hemiplegia or paraplegia 2 2
Renal disease 2 1
Any malignancy, including lymphoma and leukemia, except malignant neoplasm of skin 2 2
Moderate or severe liver disease 3 4

Metastatic solid tumor 6 6
AIDS/HIV 6 4
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Table 3.3: Diseases of the Charlson Comorbidity Index with their corresponding ICD-10 codes

Disease ICD-10 codes

Myocardial infarction I21.x, I22.x, I25.2
Congestive heart failure I09.9, I11.0, I13.0, I13.2, I25.5, I42.0,

I42.5-I42.9, I43.x, I50.x, P29.0
Peripheral vascular disease I70.x, I71.x, I73.1, I73.8, I73.9, I77.1,

I79.0, I79.2, K55.1, K55.8, K55.9, Z95.8,
Z95.9

Cerebrovascular disease G45.x, G46.x, H34.0, I60.x-I69.x
Dementia F00.x-F03.x, F05.1, G30.x, G31.1

Chronic pulmonary disease I27.8, I27.9, J40.x-J47.x, J60.x-J67.x,
J68.4, J70.1, J70.3

Rheumatologic disease M05.x, M06.x, M31.5, M32.x-M34.x,
M35.1, M35.3, M36.0

Peptic ulcer disease K25.x-K28.x
Mild liver disease B18.x, K70.0-K70.3, K70.9, K71.3-K71.5,

K71.7, K73.x, K74.x, K76.0,
K76.2-K76.4, K76.8, K76.9, Z94.4

Diabetes without chronic complication E10.0, E10.1, E10.6, E10.8, E10.9, E11.0,
E11.1, E11.6, E11.8, E11.9, E12.0, E12.1,
E12.6, E12.8, E12.9, E13.0, E13.1, E13.6,
E13.8, E13.9, E14.0, E14.1, E14.6, E14.8,
E14.9

Diabetes with chronic complication E10.2-E10.5, E10.7, E11.2-E11.5, E11.7,
E12.2-E12.5, E12.7, E13.2-E13.5, E13.7,
E14.2-E14.5, E14.7

Hemiplegia or paraplegia G04.1, G11.4, G80.1, G80.2, G81.x,
G82.x, G83.0-G83.4, G83.9

Renal disease I12.0, I13.1, N03.2-N03.7, N05.2-N05.7,
N18.x, N19.x, N25.0, Z49.0-Z49.2, Z94.0,
Z99.2

Any malignancy, including lymphoma
and leukemia, except malignant neoplasm
of skin

C00.x-C26.x, C30.x-C34.x, C37.x-C41.x,
C43.x, C45.x-C58.x, C60.x-C76.x,
C81.x-C85.x, C88.x, C90.x-C97.x

Moderate or severe liver disease I85.0, I85.9, I86.4, I98.2, K70.4, K71.1,
K72.1, K72.9, K76.5, K76.6, K76.7

Metastatic solid tumor C77.x-C80.x
AIDS/HIV B20.x-B22.x, B24.x
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Figure 3.2: Occurrences of comorbidities in the research data.

3.2 Charlson Comorbidity Index on Spark
Current state-of-the art algorithm for computing the comorbidity scores is likely the R
library icd published by Wasey et al. [66]. Another good alternative is the comorbidity
R library by Gasparini et al [25]. However, both of these libraries ignore the temporal
factor of the data by focusing on the computation of the CCI scores at a certain point in
time. In other words, neither library will give you the history of the patient’s CCI scores
without running the algorithm several times on different data sets. This is understandable
as both algorithms are designed to be ran on a single computer. Limiting the calculation
to the total CCI score of the data set enables the algorithm designer to employ several
clever design choices to reduce the resource usage. See Appendix A for a description of
the icd algorithm. The next section details an alternative CCI score algorithm, which
builds a timeline of the patient’s CCI scores instead of just the total score. The usage
of the big data processing platform Apache Spark enables the algorithm to perform well
despite of the higher amount of work necessary.
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3.2.1 Apache Spark

Apache Spark is a software platform for large-scale data processing. Spark aims to provide
the infrastructure and the necessary functionality to enable users to easily write software
code that scales from limited computers to huge computing clusters. At the core of
Spark’s computation model is the resilient distributed data set (RDD), which is a fault-
tolerant immutable collection partitioned for parallel processing. The partitions can be
stored in different nodes of a computing cluster. A Spark application (driver program)
is built from operations that create and process RDDs. Before a Spark application is
executed it is split into one or more jobs depending on which RDD operations are used.
A directed acyclic graph (DAG) is calculated for each job representing the steps required
for the computation of the job. In addition to assisting in the distribution of the tasks,
the DAGs are used to optimize the execution plan. Jobs comprise of ordered stages. A
stage is a set of tasks, which are the smallest unit of computation in Spark. Each task
operates on a single partition. See Figure 3.3 for a graph of the computation model. After
the whole execution plan is ready, the driver program requests executors from a cluster
manager. Executors are processes which execute the tasks. They can reside in the same
or a different computer than the driver manager. The executors will send the results
back to the driver program after they are finished. Figure 3.4 summarizes the described
structure of a Spark application [29,68].

Figure 3.3: An outline of the computation model of a Spark program.
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Figure 3.4: An outline of the structure of a Spark program.

Spark exposes an application programming interface (API) for Python, Scala, Java
and R. The core programming model of Spark can be extended with modules that serve
as a replacement for specialized tools meant for different workloads [68]. Spark SQL is
the module meant for processing structured data. In addition to the typical tabular data
analysis tools, Spark SQL can function as a Structured Query Language (SQL) engine.
SQL is a standardized domain-specific programming language used to operate relational
databases [38]. SQL is declarative by nature, which means that the user expresses their
outcome intent instead of the procedural alternative of explicit instructions on how to
achieve that outcome. Spark SQL translates the SQL query to Spark’s native functions
while also providing superior performance compared to the RDD API as knowing the data
structure allows better optimization [5]. Another upside of writing an algorithm in SQL
is that assuming that the standard is followed, the used SQL engine is usually not locked
to Spark SQL and can be chosen as desired [68]. A concrete benefit of the declarative
SQL algorithm was realized when an update to Spark increased the performance of the
algorithm on the same hardware by roughly a fifth with no changes.

3.2.2 Algorithm

When designing a new algorithm for calculating the CCI scores, it should be noted that
while in an optimal case a patient would have all of their valid diagnoses stored in an
electronic health record system at the time of their visit, in this practice this does not
necessarily hold. A physician can just as well only store only the newly given diagnoses
for a particular patient visit, which means that using the whole diagnosis history of a
patient is the only way to ensure the accuracy of the CCI score calculation. Computing
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the CCI scores for a set of patients can then be divided to following stages:

1. Parse the either the Charlson or the Quan version of the comorbidity mapping
between the CCI diseases and the ICD-10 codes

2. Match the diagnoses to the corresponding CCI categories
3. Sum the scores of each category with one or more diagnoses
4. If a patient has diagnoses of both forms of any exclusionary diseases, reduce the

score of the mild form from the total score

Computational problems of the algorithm are mainly string matching, taking into
account the logic of the ICD-10 coding system and handling the temporal components of
stages 3 and 4. Assuming that the data has no illogical entries, stage 2 of the above can
be represented by the following naive pseudocode:

f o r each pa t i e n t :
f o r each v i s i t o f the pa t i e n t :

f o r d i a g n o s i s o f the v i s i t :
f o r each p o s s i b l e comorb id i ty :

f o r each code o f the comorb id i ty :
i f d i a g n o s i s i s comorb id i ty code :

i f no pr e c ed ing o c cu r r en c e s o f the same d i a g n o s i s
ca t ego ry :
i f p r e c ed ing o c cu r r en c e s o f mi lde r form o f the

d i s e a s e :
ad ju s t s c o r e

add comorb id i ty s c o r e o f the ca t ego ry to the
t o t a l

As is evident, a naive implementation of the algorithm would be extremely slow.
Electronic health record systems can contain hundreds of millions rows of data, so nested
loops without any special considerations would not scale well. In addition to the perfor-
mance considerations, stage 1 of the algorithm also requires some thought. As mentioned,
Quan et al. defined their mapping between the ICD-10 codes and the CCI diseases for
ICD-10 codes up to length of 4 characters despite the fact that valid ICD-10 codes can be
longer than that. The mapping is also not defined in terms of exact codes, but as ranges
with following forms (the delimiter symbol . is not counted as a character) [50]:

• I13.0
• I42.5-I42.9
• I21.x
• C77.x-C80.x
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Table 3.4: The schema of the ’diagnosis’ table.

Column Type Purpose

id string patient identifier
date datetime date of diagnosis
diagnosis string ICD-10 code

The Finnish Institute for Health and Welfare (THL) publishes a list of currently
valid ICD-10 codes [60]. The list is defined as codes ranging between 3 and 5 characters
in length. Because the latter characters only add details to the diagnosis, Quan’s ranges
can be converted to codes of the aforementioned lengths as follows:

• I13.0 -> I130, I1300-I1399
• I42.5-I42.9 -> I425-I429, I4250-I4299
• I21.x -> I21, I210-I219, I2100-I2199
• C77.x-C80.x -> C77-C80, C770-C809, C7700-C8099

Each of the generated codes must then be checked against the THL’s list to ensure
that it is actually a valid diagnosis code in addition to just fulfilling the syntax require-
ments of an ICD-10 code. When this process is done, the generated mapping can be used
with naive string matching against the patient diagnosis codes truncated to the length of
4 characters. All of the ranges include codes of length 4, so such code must either exist
in the generated mapping or not be a comorbidity code.

The new CCI algorithm was written in SQL as a Spark SQL application. The design
of the algorithm requires two Spark SQL tables to be setup prior to execution. Because
the data files can’t be distributed alongside of the thesis, only the contents of the tables are
described here. diagnosis holds the information about the patients and their diagnoses.
The schema is summarized in Table 3.4. cci stores the information about the ICD-10
codes that describe a disease in the CCI and the associated CCI score. The schema can
be found in Table 3.5. It should be noted that the disease categories of the CCI are
mapped to integers to improve performance in the disease column of the cci_table table.

Given these tables, the following query adds information about the temporal order-
ing of the diagnoses, whether the diagnosis is a CCI disease and whether the diagnosis is
either a mild form or a severe form of a pair of exclusive diagnoses to the diagnosis table
(see Spark documentation for an explanation about the broadcast join hint [4]):

SELECT
/∗+ BROADCAST( c c i _ t a b l e ) ∗/
d i agno s e s . ∗ ,
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Table 3.5: The schema of the ’cci’ table.

Column Type Purpose

disease integer disease
diagnosis string ICD-10 code
points integer CCI score
mild integer mild form of the disease (null if doesn’t exist)
severe integer severe form of the disease (null if doesn’t exist)

change integer -1 * (severe - mild) (null if doesn’t exist)

ROW_NUMBER( ) OVER (PARTITION BY id , d i s e a s e ORDER BY d i agno s e s .
date ) AS dg_ix ,

c c i_ tab l e . po int s ,
c c i_ tab l e . d i s e a s e ,
c c i_ tab l e . disease_name ,
c c i_ tab l e . mild ,
c c i_ tab l e . s eve re ,
c c i_ tab l e . change

FROM d i agno s e s
LEFT JOIN c c i_ tab l e

ON ( substring ( d i agno s e s . d i a gno s i s , 1 , 4) = cc i_tab l e .
d i a g n o s i s )

The following query selects the rows where the diagnosis is not a comorbidity, the
diagnosis is not the first diagnosis of that disease and the ones where the diagnosis is a
comorbidity but has no exclusionary diseases (in other words, the rows that require no
further changes) while setting the CCI score to 0 for the first two row types and keeping
the score assigned in the query above for the last one:

SELECT
ordered_diagnoses . id ,
o rdered_diagnoses . date ,
o rdered_diagnoses . age ,
o rdered_diagnoses . v i s i t_dura t i on ,
o rdered_diagnoses . d i a gno s i s ,
o rdered_diagnoses . disease_name ,
CASE
WHEN ( o rdered_diagnoses . dg_ix==1) AND ( o rdered_diagnoses . p o i n t s

IS NOT NULL) THEN ordered_diagnoses . p o i n t s
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ELSE 0
END as po i n t s
FROM ordered_diagnoses
WHERE ( ( o rdered_diagnoses . d i s e a s e IS NULL) OR (

o rdered_diagnoses . dg_ix != 1) OR ( o rdered_diagnoses . change
IS NULL) )

The following query selects the rows which do need to be checked for whether they
need to be modified due to preceding or succeeding exclusionary diseases:

SELECT
ordered_diagnoses . ∗ ,
ROW_NUMBER( ) OVER w AS over r ide_ix ,
COUNT( 1 ) OVER w AS count
FROM ordered_diagnoses
WHERE ( ( o rdered_diagnoses . change IS NOT NULL) AND (

o rdered_diagnoses . dg_ix = 1) )
WINDOW w AS (PARTITION BY id , ( o rdered_diagnoses . mild ∗

ordered_diagnoses . s e v e r e ) ORDER BY date , p o i n t s )

The final query applies combines the previous query results and corrects the score
in the cases where an appropriate exclusionary disease diagnosis exists:

SELECT ∗ FROM diagnoses_no_changes
UNION
SELECT
diagnoses_changes . id ,
d iagnoses_changes . date ,
d iagnoses_changes . age ,
d iagnoses_changes . v i s i t_dura t i on ,
d iagnoses_changes . d i a gno s i s ,
d iagnoses_changes . disease_name ,
CASE
WHEN ( d iagnoses_changes . d i s e a s e=diagnoses_changes . mild ) AND (

d iagnoses_changes . ove r r i d e_ ix==2) THEN 0
WHEN ( d iagnoses_changes . d i s e a s e=diagnoses_changes . s e v e r e ) AND (

d iagnoses_changes . ove r r i d e_ ix==2) THEN ( d iagnoses_changes .
po i n t s + diagnoses_changes . change )

ELSE diagnoses_changes . p o i n t s END as {points_col_name}
FROM diagnoses_changes
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The resulting algorithm calculates the CCI scores for 54 158 895 diagnoses in under
five minutes on a modest laptop with an Intel(R) Core(TM) i5-8350U CPU and 16 GB
of RAM while Spark was limited to using 10 gigabytes of the available RAM. An accurate
benchmarking between the algorithms on a smaller data was not done as Spark’s lazy
execution makes it difficult to compute the full result of the algorithm without some
follow-up I/O operations such as writing the result to a file. While similar I/O burden
could be added to the icd algorithm, the differences in the I/O libraries would make
accurate comparison impossible. It is also of questionable value to compare the running
times as the goals of the algorithms are not directly comparable. icd algorithm has to be
ran repeatedly to build a history of the CCI scores whereas the Spark algorithm does it
in a one go. Despite the aforementioned limitations, the algorithm performance was still
measured to be in roughly same ballpark as the icd implementation. The correctness of
the Spark algorithm was verified to match the results of another R implementation in the
comorbidity.

3.3 Survival analysis
The theory of survival analysis is rooted in advanced probability theory concepts, which
necessitates a limitation in depth for the exposition presented here due to the high number
of necessary topics. The most notable omission is the generalization of survival analysis
methods to the counting process and martingale theory. The methods are detailed in
the depth necessary to have a high-level understanding of the methods used to attain
the results of the next chapter. The reader is assumed to be familiar with elementary
statistics, probability theory and calculus concepts.

Survival analysis is the branch of statistics that provides methods for analyzing the
distribution of the amount of time taken before a subject experiences an event of interest
[36]. An equivalent way to define survival analysis is as the analysis of the distribution of
the survival time before experiencing a failure. The latter definition is a historical artifact
stemming from the survival analysis’ roots in being used in the analysis of mortality
rates [13]. The former definition is likely less confusing as it emphasizes the fact that the
event of interest can be freely chosen and is not limited to death. In addition to death,
other typical events of interest studied in cancer research include disease recurrence and
treatment response [17].

A typical survival analysis scenario defines an entry event that the subjects must
experience to enter the studied cohort and what is the event of interest being studied. The
maximum observation period that the subject will be followed for after the entry event
is usually limited to a some fixed amount of time. The collected data is referred to as
time-event-data. Sometimes an event of interest can be precluded by another event. For
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example, a total thyroidectomy would prevent a subject from dying from thyroid cancer.
These scenarios are collectively called competing risks and have their own specialized
analysis methods. Survival analysis also includes regression analysis methods to determine
the effect of covariates on the survival time [33].

An important characteristic of time-to-event data is incomplete data, which can
happen for many different reasons. For example, a subject might drop out of the study
before experiencing the event or they might experience the event after the observation
period has ended. Survival analysis deals with subjects with missing event observations by
censoring the corresponding subjects. Subjects can be either right censored, left censored
or interval censored. Subjects are right censored if they have not experienced the event of
interest during their observation period. Conversely, the subjects who have experienced
the event of interest before their entry event are left censored. If a subject is known to
have experienced the event of interest during a certain interval of the observation period
but the exact time is unknown, the subject is interval censored [36].

Censoring is important because censored subjects are handled differently to the
uncensored ones by the survival analysis methods. It is usually assumed that censoring is
non-informative, which means that the censoring time should be independent of the event
of interest. An illustrative counterexample where the independence assumption does not
hold is a scenario of a sick patient leaving a treatment efficacy study because their disease
symptoms get worse and they are no longer able to participate in the study. Worsening
symptoms are clearly related to whichever suitable event of interest is being studied [36].

Time-to-event can also be truncated. Truncation sets either a lower or an upper
limit for the observation period length. Left truncation happens when a subject starts
being observed some time after their entry event to the research cohort. This can happen
for instance if patients who have been diagnosed with the studied disease prior to study
enrollment are recruited to the study. Right truncation happens when the lengths of the
observation periods have an upper limit. The situation can occur e.g. when the study has
a fixed end date. If the subjects have not started their observation periods at the same
time, the latter ones will not be observed for the full duration [36].

3.3.1 Survival distribution

A procedure is called random if it can be repeated infinitely many times and it has a
well-defined set of multiple possible outcomes. Probability theory is the mathematical
framework for studying random procedures. The sample set Ω is the collection of all the
possible outcomes 𝜔 of a random procedure. The subsets of Ω are called events. Events
are realized by outcomes. For example, when throwing a single die, the sample set is
Ω = {1, 2, 3, 4, 5, 6} and the event of getting an odd number is realized by any of the
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outcomes in the outcome subset 𝐴 = {1, 3, 5}. 𝐹 is a 𝜎-algebra on Ω that defines the
observable events, i.e. those that are assigned a probability value. A 𝜎-algebra is defined
so that [12]:

1. the empty set ∅ (impossible event) and the Ω (certain event) belong to it
2. if a subset (event) belongs to it, so does the complement of the subset
3. if the subsets 𝐴1, 𝐴2… belong to it, so does ∪∞

𝑘=1𝐴𝑘

A random variable is a function 𝑋 ∶ Ω → 𝑅 for which {𝜔; 𝑋(𝜔) ≤ 𝑎} ∈ 𝐹 , 𝑎 ∈ 𝑅
holds. Let the random variable 𝑇 represent the time from the start of an observation
period to the event of interest. The probability distribution of 𝑇 is called the survival
distribution. The survival distribution can be characterized with several different repre-
sentations. These include the survival function 𝑆, the failure function 𝐹 , the probability
density function 𝑓 , the hazard function ℎ and the cumulative hazard function 𝐻. The
survival function represents the probability of survival at least up to the point in time 𝑡
[33]:

𝑆(𝑡) = 𝑃(𝑡 < 𝑇 )
for which holds

0 ≤ 𝑆(𝑡) ≤ 1
𝑆(0) = 1

lim
𝑡→∞

𝑆(𝑡) = 0
𝜕𝑆(𝑡)

𝜕𝑡 ≤ 0
𝜕2𝑆(𝑡)

𝜕𝑡2 ≠ 0.

The mean of the survival distribution is defined in terms of the survival function
[33]:

𝜇 = ∫
∞

0
𝑆(𝑡)𝑑𝑡.

If some of the subjects do not experience the event of interest, the integral will
be infinite and so the mean can’t be calculated. A solution in such cases is to define a
maximum survival time in order to make the integral finite. The median of the survival
distribution is defined as the smallest time 𝑡 at which 𝑆(𝑡) ≤ 0.5. It is undefined if the
survival curve never reaches 0.5 [44].

Another way to convey the same information is to use the complement of the survival
function, which is referred to as either the failure function or the cumulative risk function.
In statistical sense, the failure function is the cumulative distribution function of the
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random variable 𝑇 . It represents the probability of failure before the point in time 𝑡 and
is defined as [33]:

𝐹 = 𝑃(𝑇 ≤ 𝑡)
= 1 − 𝑆(𝑡).

The probability density function 𝑓(𝑡) is a positive function depicting the rate of
change (or the slope) of the cumulative distribution function, which in this case is the
failure function 𝐹 . As the failure function is also the complement of the survival function,
the probability density function and the associated relations can be stated as [33]:

𝑓(𝑡) = lim
Δ𝑡→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + Δ𝑡)
Δ𝑡

= 𝜕𝐹(𝑡)
𝜕𝑡

= −𝜕𝑆(𝑡)
𝜕𝑡 .

The hazard function (hazard rate) 𝜃(𝑡) is the non-negative instantaneous failure rate
at the point in time 𝑡 [33]:

ℎ(𝑡) = 𝑓(𝑡)
1 − 𝐹(𝑡)

= 𝑓(𝑡)
𝑆(𝑡).

The cumulative hazard function 𝐻(𝑡) is the integral of the hazard function. It
represents the area under the curve of the hazard function up to the point in time 𝑡 [33]:

𝐻(𝑡) = ∫
𝑡

0
ℎ(𝑢)𝑑𝑢.

Given one of the survival distribution representations, all of the others can be de-
rived. The following states all of the others in terms of the survival function [33]:

𝑆(𝑡) = 1 − 𝐹(𝑡)

𝑆(𝑡) = exp(− ∫
𝑡

0
ℎ(𝑢)𝑑𝑢)

𝑆(𝑡) = exp (−𝐻(𝑡))

𝑆(𝑡) = 1 − ∫
𝑡

0
𝑓(𝑢)𝑑𝑢.
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3.3.2 Survival distribution estimation

Medical studies are often characterized by the competing risks model, where a subject can
exclusively experience either the main event of interest or one of the alternative events.
For example, if one is studying disease recurrence, a patient might die before a disease
can recur preventing the patient from experiencing the event of interest. Competing risks
scenarios are often avoided in epidemiological studies by either censoring the patients
when they experience one of the competing risks or forming a composite event of interest
which includes the competing risks events. Both of the approaches have downsides. A
composite event of interest makes the model difficult to interpret and can easily hide
important relationships. This issue is compounded if the competing risks events and the
event of interest are not similar. Censoring the competing risks overestimates the risk
of the event of interest, because the patients are still considered to be in risk set for
the main event of interest as censoring is used to indicate that the patient experiences
the event some time after being censored [22]. A better solution is to use a statistical
method which can handle the estimation of the survival function while accounting for
the presence of the competing risks. The Fine-Gray estimator is a method designed for
dealing with competing risks scenarios [24]. While the estimator is extremely popular
due to its interpretability, it has some severe statistical issues [8]. The Aalen-Johansen
estimator will be introduced next instead as a better behaving estimator for competing
risks scenarios.

A discrete-time stochastic process with a state space 𝐸 is a sequence of 𝑛 random
variables 𝑋𝑛 with values in a set 𝐸. The notation 𝑋𝑘 = 𝑖 means that the process is at
state 𝑖 at time 𝑘. A discrete-time stochastic process is called a Markov process if it fulfills
the Markov property of the next state only depending on the current state [12]:

𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋0 = 𝑖0, ..., 𝑋𝑛−1 = 𝑖𝑛−1) = 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖).

A Markov process is called non-homogeneous if the quantity 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖)
is dependent on the time 𝑛. The state space is defined hereafter as 𝐸 = {0, 1, ..., 𝑘−1, 𝑘}.
Transition intensity 𝛼𝑔ℎ(𝑡) denotes the instantaneous transition rate from the state 𝑔 ∈ 𝐸
to the state ℎ ∈ 𝐸, 𝑔 ≠ ℎ. 𝑃𝑔ℎ(𝑠, 𝑡) is the probability that a subject who is in state 𝑔 at
time 𝑠 will later be in state 𝑔 at time 𝑡, 𝑠 < 𝑡. 𝑃(𝑠, 𝑡) is a (𝑘 + 1) × (𝑘 + 1) transition
matrix containing the aforementioned probabilities for each state. The competing risks
scenario can be modeled as a non-homogeneous Markov process by considering subjects
to start at the initial state 0 (transient state) and defining states 1...𝑘 as the competing
risks (absorbing states). The transition matrix 𝑃(𝑠, 𝑡) can be estimated using the Aalen-
Johansen estimator 𝑃(𝑠, 𝑡) [11]:
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𝑃 (𝑠, 𝑡) = ∏
𝑠<𝑡𝑗≤𝑡

(𝕀 + ̂𝛼𝑗)

where
𝑔, ℎ ∈ 𝐸, 𝑔 ≠ ℎ

𝑡𝑗 = time with a transition
𝑑𝑔ℎ𝑗 = transitions from 𝑔 to ℎ at 𝑡𝑗

𝑑𝑔𝑗 = ∑
𝑔≠ℎ

𝑑𝑔ℎ𝑗 = transitions out of 𝑔 at 𝑡𝑗

𝑟𝑔𝑗 = subjects in 𝑔 just prior to 𝑡𝑗

𝕀 = (𝑘 + 1) × (𝑘 + 1) identity matrix
̂𝑎𝑗 = (𝑘 + 1) × (𝑘 + 1) transition intensity matrix

̂𝑎𝑔ℎ𝑗 = 𝑑𝑔ℎ𝑗
𝑟𝑔𝑗

, 𝑔 ≠ ℎ

̂𝑎𝑔𝑔𝑗 = −𝑑𝑔𝑗
𝑟𝑔𝑗

.

The covariance estimates for data with either no tied event times or where ties have
been broken at random can be computed as follows (see Borgan et al. for the case with
ties) [11]:

𝑔, ℎ, 𝑚, 𝑟 ∈ 𝐸

ĉov(𝑃𝑔ℎ(𝑠, 𝑡), 𝑃𝑚𝑟(𝑠, 𝑡)) =
𝑘

∑
𝑖=0

∑
𝑙≠𝑖

∑
𝑠<𝑡𝑗≤𝑡

𝑃𝑔𝑖(𝑠, 𝑡𝑗−1)𝑃𝑚𝑖(𝑠, 𝑡𝑗−1)(𝑃𝑙ℎ(𝑡𝑗, 𝑡)

− 𝑃𝑖ℎ(𝑡𝑗, 𝑡))(𝑃𝑙𝑟(𝑡𝑗, 𝑡) − 𝑃𝑖𝑟(𝑡𝑗, 𝑡))(𝑟𝑖𝑗 − 1)𝑟−3
𝑖𝑗 𝑑𝑖𝑙𝑗.

The transition probabilities 𝑃𝑔ℎ(𝑠, 𝑡) are often called the cumulative incidence func-
tions (CIF) in the survival analysis literature. They can be thought of as risk-specific
failure functions. Assuming time-to-event data without truncation (every subject starts
at time 0), the CIF for the competing risk ℎ is [11,59]:
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𝐶𝐼ℎ(𝑡) = 𝑃0ℎ(𝑡)

= ∫
𝑡

0
𝛼0ℎ(𝑢)𝑆(𝑢)𝑑𝑢

where
𝛼0ℎ(𝑢) = cause-specific hazard (transition intensity)

𝑆(𝑢) = survival function to any event

= exp(− ∫
𝑡

0

𝑘
∑
ℎ=1

𝛼0ℎ(𝑢)𝑑𝑢) .

The Aalen-Johansen estimator 𝑃0ℎ(𝑡) for the CIF is [11]:

𝑃00(𝑡) = the Kaplan-Meier estimator
= 𝑆(𝑡)

= ∏
0<𝑡𝑗≤𝑡

1 − 𝑑0𝑗
𝑟0𝑗

v̂ar(𝑃00(𝑡)) = Greenwood’s formula

= 𝑆(𝑡)2 ∑
𝑡𝑗≤𝑡

𝑑𝑗
𝑟𝑗(𝑟𝑗 − 𝑑𝑗)

𝑃0ℎ(𝑡) = ∑
0<𝑡𝑗≤𝑡

𝑃00(𝑡𝑗−1)(𝑑0ℎ𝑗
𝑟0𝑗

)

v̂ar(𝑃0ℎ) = ∑
𝑠<𝑡𝑗≤𝑡

(𝑃00(𝑠, 𝑡𝑗−1)𝑃0ℎ(𝑡𝑗, 𝑡))2(𝑟0𝑗 − 1)𝑟−3
0𝑗 𝑑0𝑗

+ ∑
𝑠<𝑡𝑗≤𝑡

𝑃00(𝑠, 𝑡𝑗−1)2(1 − 2𝑃0ℎ(𝑡𝑗, 𝑡))(𝑟0𝑗 − 1)𝑟−3
0𝑗 𝑑0𝑗.

Confidence bounds of the Aalen-Johansen and the Kaplan-Meier estimators are
based on their asymptotic multinormality and normality, respectively. The variance for-
mulas above are again assuming untied data. See the original paper by Johansen et al. for
further details on the Aalen-Johansen estimator [34]. Survival function estimation in cases
with only one (absorbing) state can be done with the Kaplan-Meier estimator mentioned
above. The details of the Kaplan-Meier estimator can be found in the original paper by
Kaplan et. al [35].

A common research question is to determine whether there is a statistically signif-
icant difference between two different survival function estimates. The log-rank test is a
statistical test derived for that purpose [43]. Given estimates 𝑆1 and 𝑆2, the log-rank test
can be used to test the null hypothesis that 𝑆1(𝑡) ≠ 𝑆2(𝑡). First, assume two groups of
subjects and define the following [44]:
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𝑑1𝑖 = the number of events at time i for group 1
𝑑2𝑖 = the number of events at time i for group 2
𝑑𝑖 = 𝑑1𝑖 + 𝑑2𝑖

𝑛1𝑖 = the number of subjects at risk before time i for group 1
𝑛2𝑖 = the number of subjects at risk before time i for group 2
𝑛𝑖 = 𝑛1𝑖 + 𝑛2𝑖.

Assuming that the events in each group are independent and there is no difference
between the survival functions, a conditional probability for the number of events in the
group 1 at the failure time 𝑖 follows a hypergeometric distribution with the following
expected value and variance [44]:

𝑃(𝑑1𝑖|𝑛1𝑖, 𝑛2𝑖, 𝑛𝑖, 𝑑𝑖) =
(

𝑛1𝑖
𝑑1𝑖) (

𝑛2𝑖
𝑑2𝑖)

(
𝑛𝑖
𝑑𝑖)

𝐸(𝑑1𝑖) = 𝑛1𝑖𝑑𝑖
𝑛𝑖

var(𝑑1𝑖) = 𝑛1𝑖𝑛2𝑖(𝑛𝑖 − 𝑑𝑖)
𝑛2

𝑖 (𝑛𝑖 − 1) .

A Cochran-Mantel-Haenszel test statistic following a large-sample chi-squared dis-
tribution with one degree of freedom can then be constructed [7]:

∑𝑁
𝑖=1 (𝑑1𝑖 − 𝐸(𝑑1𝑖))

2

∑𝑁
𝑖=1 var(𝑑1𝑖)

∼ 𝜒2
1.

When multiple tests are performed on the same data set, the results are generally
recommended to be corrected for the multiplicative false positive (type I) error rate. One
method to do the correction is the Benjamini–Hochberg (BH) procedure. The description
of the method is omitted here as it is rather elementary and only one of the possible op-
tions, but the underlying idea is to scale the p-values upwards to control for the increased
amount of false positives. See Benjamini et al. for the details method [10]. It should be
noted that some researchers disagree with the idea of doing multiple test correction at all.
Rothman et al. provide several compelling arguments [52].

3.3.3 Cox proportional hazard model

Regression analysis attempts to estimate the relationships between a set of covariates and
an outcome variable. In the context of regression analysis, the previous definitions for
the various representations of the survival distribution are amended to include a vector
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of covariates 𝑋 as an additional input. As an example, the hazard function would then
be defined as ℎ(𝑡, 𝑋) [33]. The Cox proportional hazard model (CPH model) is likely the
most popular method for the regression analysis of time-to-event data. The covariates 𝑋𝑘
are modeled as a linear combination of a weight vector 𝛽 and a subject-specific covariate
vector 𝑋: [19,33]:

𝛽𝑇 𝑋 = 𝛽0 + 𝛽𝑋1 + ... + 𝛽𝑋𝑘.
The CPH model belongs to a family of statistical models requiring that the data

follows the so-called proportional hazards assumption (PH assumption), which states that
the hazard function can be separated into a product [33]:

ℎ(𝑡, 𝑋) = ℎ0(𝑡)𝜆(𝛽𝑋)
where

ℎ0 = a non-negative baseline hazard function
𝜆 = a non-negative function scaling the baseline hazard for each subject.

The baseline hazard function depends only on the time 𝑡. 𝜆 incorporates the subject-
specific variability in the hazard rate with exp being the most common function used as
the 𝜆. Assuming that the PH assumption holds and using exp as 𝜆, the quotient of the
hazard functions of subjects 𝑖 and 𝑗 at the point in time 𝑡𝑘 results in [33]:

ℎ(𝑡𝑘, 𝑋𝑖)
ℎ(𝑡𝑘, 𝑋𝑗)

= exp (𝛽𝑋𝑖 − 𝛽𝑋𝑗)

= exp (𝛽[𝑋𝑖 − 𝑋𝑗])
if 𝑋𝑖𝑦 ≠ 𝑋𝑗𝑦 is the only difference, then

= exp (𝛽𝑘[𝑋𝑖𝑦 − 𝑋𝑗𝑦])
if 𝑋𝑖𝑦 − 𝑋𝑗𝑦 = 1, then

= exp (𝛽𝑘).
The last quantity is known as the hazard ratio. It corresponds to the proportionate

change in the hazard rate when the covariate at the index 𝑦 increases by one, assuming
that all of the other covariates remain unchanged. The coefficient at the index 𝑦 depicts
the proportional change in the hazard from the absolute changes in the covariates as
follows [33]:

𝛽𝑦 = 𝜕 logℎ(𝑡, 𝑋)
𝜕𝑋𝑦

When the PH assumption holds, any differences between the subjects can be ex-
plained by scaling the baseline survival function [33]:
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𝑆(𝑡, 𝑋) = exp (− ∫
𝑡

0
ℎ(𝑢)𝑑𝑢)

= exp (−𝜆 ∫
𝑡

0
ℎ0(𝑢)𝑑𝑢)

= exp (− ∫
𝑡

0
ℎ0(𝑢)𝑑𝑢)

𝜆

𝑆0 = the baseline survival function

= (𝑆0(𝑡))𝜆 .
The key insight of the CPH model is that while the PH assumption holds, the

estimation of the weight vector 𝐵 does not depend on the baseline hazard function ℎ0.
Cox proved this by defining the model in terms of a partial likelihood (PL) function of the
failure times [31,33]. The intuition for the partial likelihood function can be explained
without delving deep into the underlying theory. Assume a sample of 𝑛 subjects of which
𝑘 experience the event of interest. Assume further that the survival times of the subjects
are in the vector 𝑡 which is in sorted in increasing order and contains no ties. Define
𝑅𝑖 as the set of the 𝑗 subjects whose survival time 𝑌𝑗 is equal or greater than 𝑡𝑖. Now
the conditional probability that the subject 𝑖 experiences the event of interest at 𝑡𝑖 given
that the subject is in the risk set 𝑅𝑖 and that a single subject experiences the event at 𝑡𝑖,
i.e. the partial likelihood function for 𝑡𝑖, is defined as [31]:

𝐿𝑖(𝛽) = 𝑃(𝐴|𝐵, 𝐶)

= 𝑃(𝐴, 𝐶|𝐵)
𝑃(𝐶|𝐵)

= ℎ0(𝑡𝑖) exp(𝛽𝑇 𝑋𝑖)
∑𝑗∈𝑅𝑖

ℎ0(𝑡𝑖) exp(𝛽𝑇 𝑋𝑗)

= exp(𝛽𝑇 𝑋𝑖)
∑𝑗∈𝑅𝑖

exp(𝛽𝑇 𝑋𝑗)

= exp(𝛽𝑇 𝑋𝑖)
∑𝑡𝑖≤𝑌𝑗

exp(𝛽𝑇 𝑋𝑗)

where
𝐴 = subject 𝑖 fails at 𝑡𝑖

𝐵 = subject 𝑖 ∈ 𝑅𝑗

𝐶 = one subject fails at 𝑡𝑖.
By arguing that each of the subjects is independent of each other, a partial likelihood

function for the joint set of failures can be formed [31]:
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𝐿(𝛽) = ∏
𝑡𝑖 with event

exp(𝛽𝑇 𝑋𝑖)
∑𝑡𝑖≤𝑌𝑗

exp(𝛽𝑇 𝑋𝑗)

log𝐿(𝛽) = ∑
𝑡𝑖 with event

⎛⎜
⎝

𝛽𝑇 𝑋𝑖 − log⎛⎜
⎝

∑
𝑌𝑖≤𝑌𝑗

exp (𝛽𝑇 𝑋𝑗)⎞⎟
⎠

⎞⎟
⎠

= 𝑙(𝛽).
The log partial likelihood log𝐿(𝛽) has been shown to behave like a regular log

likelihood function and can therefore be used to perform maximum likelihood estimation
(MLE) [31] for the weight vector 𝛽. The first derivative of the log partial likelihood is
called the score 𝑈 [44]:

𝑈(𝛽) = ∑
𝑡𝑖 with event

⎛⎜
⎝

𝑋𝑖 − ∑
𝑌𝑖≤𝑌𝑗

𝑋𝑗𝑝(𝛽, 𝑋𝑗)⎞⎟
⎠

where

𝑝(𝛽, 𝑋𝑘) = exp(𝛽𝑇 𝑋𝑗)
∑𝑌𝑘≤𝑌𝑗

exp(𝛽𝑇 𝑋𝑘).

The MLE of the Cox PH model is computed with an optimization algorithm from
the partial likelihood equation [56]:

𝑈( ̂𝛽) = 0.
The confidence bounds of ̂𝛽 are based on its asymptotic normality [56]. The variance

of the score is called the information and it is equivalent to the negative second derivative
of the log partial likelihood [44]:

𝐼(𝛽) = −𝜕𝑈(𝛽)
𝜕𝛽 .

The Therneau-Grambsch test is a diagnostic test developed to investigate the ful-
fillment of the proportional hazards assumption. The test is derived from the score of the
log partial likelihood function. The individual terms of sum of the score function for each
failure time 𝑖 are called the Schoenfeld residuals 𝑟𝑖:

𝑟𝑖 = 𝑋𝑖 − ∑
𝑌𝑖≤𝑌𝑗

𝑋𝑗𝑝(𝛽, 𝑋𝑗).

They can be interpreted to roughly correspond to the difference of the observed
covariate values and their expected value. The way the residuals help in testing the PH
assumption is through another result, which states that adding the residuals 𝑟𝑖 scaled
with the coefficient variance to the corresponding coefficient estimate from a Cox model
approximates time-varying coefficients [56]:
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𝐸(𝑟∗
𝑖 ) + ̂𝛽 ≈ 𝛽(𝑡)
where

𝑟∗
𝑖 = Var−1( ̂𝛽, 𝑡𝑖)𝑟𝑖.

If the assumption of proportional hazards holds, a plot of the sum of the scaled
Schoenfeld residuals and the coefficient estimate vector against time should be horizontal,
i.e. the coefficients should not be time-dependent. The corresponding test statistic follows
a chi-squared distribution with number of covariates 𝑛 degrees of freedom. The test has
separate forms for testing either the whole model’s (global) or the individual covariate’s
compliance with the proportional hazards assumption. Because the Grambsch-Therneau
test has the null hypothesis of proportionality, an insignificant result indicates that the
assumption of proportional hazards is not violated [28].

Interpreting the results of the Grambsch-Therneau tests is highly dependent on the
number of events experienced by the subjects of that particular cohort and any possible
extreme outlier values. Very low event numbers will not yield trustworthy results and
very high event numbers result in the test being too sensitive. This is a common problem
in diagnostic tests, as the underlying statistical assumptions are often not met in the data
depicting real world. In this case the assumption of proportional hazards will likely never
be exactly true, so as more data is used the more likely the test is to detect the true
non-proportionality [56].

The cases where the test shows a significant result of non-proportionality should
therefore be confirmed by visually inspecting the corresponding plot and using domain
knowledge to determine whether the actual amount of non-proportionality has a practical
effect [56]. Therneau et al. and Grambsch et al. discuss the properties of the test in
detail [28,56]. Keele et al. provide a treatment on the common mistakes made in the
interpretation of the Grambsch-Therneau test and the steps one should follow to remedy
any issues [37].

The Cox model’s partial likelihood framework supports the use of the Wald test, the
score test and the likelihood ratio test, which are the three standard asymptotic likelihood
inference tests. All of them have 𝛽 = 0 as the null hypothesis with a chi-squared distribu-
tion having number of covariates 𝑘 − 1 degrees of freedom. The test statistics are defined
as follows [44]:

Wald test statistic = ̂𝛽𝑇 𝐼( ̂𝛽) ̂𝛽
score test statistic = 𝑈(𝛽 = 0)𝑇 𝐼(𝛽 = 0)−1𝑈(𝛽 = 0)

likelihood ratio test statistic = 2 (𝑙(𝛽 = ̂𝛽) − 𝑙(𝛽 = 0)) .
A common need is for the covariate values to be able to change with time. For

example, if one wants to assess the effect of changing laboratory measurement values dur-
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ing a patient’s observation period, the Cox model must be extended in order to allow for
time-varying covariates. A typical error in such scenarios is to use a static covariate value
even though it was not known at the start of the observation period. A historical example
of the error is a study which found that heart transplants lead to significantly longer lives.
The problem was a correlation with time, the patients who had received a transplant dur-
ing the study were by definition the ones who had already lived long enough to receive
the transplant [44]. The previous considerations assume that the covariates 𝑋𝑗 remain
fixed with respect to the time 𝑡, but the underlying proportional hazards assumption can
incorporate time-varying covariates by generalizing the definition to proportionality at a
point in time 𝑡 [33]:

ℎ(𝑡, 𝑋𝑡) = ℎ0(𝑡) exp(𝛽𝑋𝑡).

The definition of the survival function is done under the assumption that the co-
variates are constant during a certain interval. For example, illustrating the idea with a
single covariate that takes on different values before and after a point in time 𝑠 [33]:

𝑋 = 𝑋1 when 𝑡 < 𝑠
= 𝑋2 when 𝑡 ≥ 𝑠.

Now the survival function is [33]:

𝑆(𝑡, 𝑋) = exp(− ∫
𝑡

0
ℎ(𝑢)𝑑𝑢)

= exp(− ∫
𝑡

0
ℎ0(𝑢) exp (𝛽𝑋𝑢)𝑑𝑢)

= exp(− ∫
𝑠

0
ℎ0(𝑢) exp (𝛽𝑋1)𝑑𝑢 − ∫

𝑡

𝑠
ℎ0(𝑢) exp (𝛽𝑋2)𝑑𝑢)

= exp(−𝜆1 ∫
𝑠

0
ℎ0(𝑢)𝑑𝑢 − 𝜆2 ∫

𝑡

𝑠
ℎ0(𝑢)𝑑𝑢)

= exp(−𝜆1 ∫
𝑠

0
ℎ0(𝑢)𝑑𝑢) exp(−𝜆2 ∫

𝑡

𝑠
ℎ0(𝑢)𝑑𝑢)

= 𝑆0(𝑠)𝜆1
𝑆0(𝑡)𝜆2

𝑆0(𝑠)𝜆2
.

The other representations of the survival distribution can be derived similarly [33].
The assumption of proportionality at a point in time brings an additional burden for the
data preparation, as the patient data must be split into intervals which end in the point
in time where a covariate value changes. The use of time-varying covariates requires no
other special consideration from the analysts perspective, as even though the likelihood



40 Chapter 3. Methods

equations do not cancel out to equally clean forms, the additional bookkeeping is handled
by the analysis routines [44].

The aforementioned significance tests and the Grambsch-Therneau test also are
valid for models with time-varying covariates. The interpretation of the results with
time-varying covariates is also similar, as while the relative hazard depends on time,
the coefficient estimates ̂𝛽 still summarize the relative impact of the different covariate
values. One unfortunate downside of the time-varying covariates is that they limit the
available methods for adjusting a model which contains covariates that don’t fulfill the
the proportional hazards assumption [56].

3.4 Data preparation
The main source for the research data is a national Finnish system called Hoitoilmoitusjär-
jestelmä (Hilmo), which is used for information-gathering and reporting by the social and
health care services. It comprises of three sub-registries, which are the social service
registry (sosiaali-Hilmo), the health care registry (terveys-Hilmo, Hilmo) and the outpa-
tient care registry (Avohilmo). The outpatient care registry also includes occupational
health care and domiciliary care. Health care registry includes inpatient care, outpatient
surgeries and publicly funded outpatient care. Social service registry includes institu-
tional care and housing services. Hilmo is managed by the Finnish Institute for Health
and Welfare (THL). THL publishes a manual which details Hilmo’s data sources and the
details of the collected data [30].

After the research plan was approved by the HUS (Hospital District of Helsinki and
Uusimaa) ethics committee, the research data was requested from the health care registry
(Hilmo) and the outpatient care registry (Avohilmo). The requested data was specified
as all of the diagnoses and all of the procedures received by a cohort of patients defined
separately for each of the registries. The cohort of the Hilmo data included patients that
had ever received any of the procedures listed in Table 3.9 or any of the diagnoses listed in
Table 3.10. The cohort of the Avohilmo data included patients that have had any of the
diagnoses listed in Table 3.10 and any of the procedures listed in Table 3.11. It should
be noted that the Avohilmo procedure table uses the outpatient care SPAT procedure
codes. Statistics Finland, the national statistical institution of Finland, was used as a
secondary data source to enrich the Hilmo data with the time of death for all the patients
of the both cohorts for whom the information was available. The details of the death data
registry can be found on the Statistics Finland website [61]. All of the aforementioned
data sources only include data up to the year 2018.

The Hilmo data has some major limitations. The biggest one of these is caused by
the usage of visits as the base data entity. The data includes the start and the dates of
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the treatment provider visitation period, but not the exact dates of the diagnoses and
procedures received by the patient during their visit. For example, if a patient stayed at
a treatment facility for four days and received a different diagnosis each day, the latter
diagnoses can’t be dated correctly. One practical negative effect of this issue was that
some patients had to be excluded from the cohorts as they had received two or more
BPH procedures during the visit which contained their first BPH procedure. As the
order of the procedures couldn’t be determined, the patients couldn’t be appropriately
categorized according to their initial BPH procedure. Table 3.12 displays the amount of
excluded patients.

If one would follow the definitions presented in the survival analysis section to the
letter, Hilmo data would be considered interval censored as the events are only known
to have happened inside an interval (during a visit). Unfortunately the methods for the
analysis of interval censored data are notably more complex and less developed, so the
data was chosen to be considered right censored [42]. This was achieved by dating each
of the procedures and diagnoses to the starting date of the visit during which they were
received by the patient. While this does introduce some inaccuracies to the data, the
negative effect is minimized by the fact that the vast majority of the visits lasted only
a day [58]. This is displayed in Figure 3.5, which shows the distribution of the visit
durations between 0 and 10 days. See Lindsey et al. for an overview on the methods for
dealing with inverval censored data [42].

The data received from Hilmo was also missing the ages of the patients. While a
crucial omission otherwise, the situation here was saved by the inclusion of the personal
identification codes of the patients in the data. A Finnish personal identification codel
(PIC) is an official identifier given by the Finnish government, which is partly formed
by the date of birth of the person in question. The official format of a PIC is defined
in the Finnish legislation. A PIC consists of the person’s birth date, an identification
number and a checksum symbol used for checking the validity of the PIC. The structure
is summarized in table 3.8. Table 3.6 describes how the seventh character is used to depict
the century of the birth date [21].

A PIC can also be used to determine the gender of the person, because the identi-
fication number formed by the combination of the characters at the indices 8, 9 and 10
is odd for males and even for females. The last character is calculated from the date of
birth and the identification number by concatenating them together to form an integer
with a length of 9. The result is then divided by 31 and the remainder is used to find the
matching the checksum character as shown in table 3.7. If the checksum does not match,
then the PIC can be determined to be invalid [21]. The PICs were used to calculate the
birth dates and as an additional validation tool. 290 patients were discarded because their
PIC failed the validation algorithm.
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Table 3.6: Century symbols of Finnish personal identification codes.

Century Symbol

twenty-first (2000s) A
twentieth (1900s) -
nineteenth (1800s) +

0e+00

1e+07

2e+07

3e+07

4e+07

0 1 2 3 4 5 6 7 8 9 10
Age

O
cc

ur
re

nc
es

Figure 3.5: The distribution of the visitation period lengths for the first 10 days.
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Table 3.7: A conversion table from the remainders to the checksum symbols.

Remainder Checksum symbol

0 0
1 1
2 2
3 3
4 4

5 5
6 6
7 7
8 8
9 9

10 A
11 B
12 C
13 D
14 E

15 F
16 H
17 J
18 K
19 L

20 M
21 N
22 P
23 R
24 S

25 T
26 U
27 V
28 W
29 X

30 Y
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Table 3.8: The structure of a Finnish personal identification code.

Position Type Value range Meaning

1 integer 0-3 day of birth
2 integer 0-9 day of birth
3 integer 0-1 month of birth
4 integer 0-9 month of birth
5 integer 0-9 decade of birth

6 integer 0-9 year of birth
7 character A or - or + century of birth
8 integer 0-9 identification number
9 integer 0-9 identification number
10 integer 0-9 identification number

11 integer/character 0-9/A-Y checksum symbol

The details of the data cleaning process are omitted for brevity, but the general
workflow was the following:

1. Separate the diagnoses and procedures to distinct data sets
2. Transform the data to a form where a row represents either a single diagnosis or a

single procedure
3. Discard patients with invalid PICs

• also discard the cases where the PIC contains an invalid date of birth

4. Discard rows with invalid visitation dates
5. Discard rows with invalid procedure or diagnosis codes (not found in the THL

diagnosis/procedure list)

• remove non-alphanumeric characters first
• for diagnoses, match substrings of length 3-5
• for procedures, match the whole string (always length of 5)

6. Discard rows that have a date indicating occurrence after the date of death
7. Discard the rows that are either duplicated diagnosis codes or procedure codes inside

a single date
8. Discard patients without any procedures from Table 2.4

The resulting data set constituted the full research data set which contained 54 158
895 diagnoses, 17 965 650 procedures and 649 382 unique patients. Death dates were
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Table 3.9: A list of operations used for cohort selection for the Hilmo data set

NCSP range Name

KE** prostate operations
KC** bladder operations
KAS** kidney transplants
KAE** kidney stone operations
KAT00 Extracorporeal Shock Wave Lithotripsy (ESWL)

KAT*4 dialysis
TK8** dialysis
KBE** ureteral stone operations
KDK** artificial urinary sphincter operations
KDH** reconstructive urethral operations

KDV** urethral operations such as stents
KH1** imaging of the urinary tract
KW** operations due to complications of the urinary tract
TKC** catheterization
TKD00 expansion of the urethra

TKE00 biopsia of the prostate
UKC02 cystocopy
UKD02 urethroscopy
XKC00/XKC03 pressure measurements of the bladder

Table 3.10: A list of diagnoses used as an inclusion criteria for the Hilmo and the Avohilmo cohort.

NCSP code range Name

N17-N19 chronic kidney diseases
N20-N23 bladder stone diseases
N30 infections and dysfunctions of the bladder
N40-N42 hyperplasia of the prostate and other prostatic diseases
R30-R39 urinary problems
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Table 3.11: A list of procedures used as an inclusion criteria for the Avohilmo cohort.

SPAT code Name

SPAT1167 urinary catheter
SPAT1168 catheter education
SPAT11761 bladder puncture

available for 194 601 patients. See Figure 3.6 for an overview of the incidences of the
investigated procedures in the full research data set. A data set for the analysis of the
BPH reoperation data set was formed from the full research data set as follows:

1. Discard patients with two or more procedures from Table 2.4 during the visitation
containing the initial BPH procedure

2. Discard patients with procedures from Table 2.5 before or during the visitation
containing the initial BPH procedure

3. Discard patients with diagnoses from Table 3.13 before or during the visitation
containing the initial BPH procedure

• these diagnoses represent a malignancy, i.e. not benign prostatic hyperplasia

The resulting data set contained 5 797 416 diagnoses, 2 029 497 procedures and
66 617 unique patients. See Figure 3.7 for an overview of the clinical characteristics of
the patients of this cohort at the time of their first BPH procedure. The analysis of the
urethral stricture procedures and the stress incontinence procedures required separating
a new data set for them. The additional steps were as follows:

1. Discard patients with either the diagnosis for urethral stricture (ICD-10 code N35.9)
or a procedure from Table 2.7 before or during the visitation containing the initial
BPH procedure

2. Discard patients with either the diagnosis for stress incontinence (ICD-10 code
N39.3) before or during the visitation containing the initial BPH procedure

The resulting data set contained 5 168 281 diagnoses, 1 832 774 procedures and 59
599 unique patients. See Figure 3.8 for an overview of the clinical characteristics of the
patients of this cohort at the time of their first BPH procedure. The structure of the
diagnosis and procedure data was the same for both the reoperation and the US/SI data
sets. The diagnosis data included the following fields:

1. Patient identifier
2. Date of diagnosis
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Table 3.12: Occurrences of two or more BPH operations during the visitation period that contains the
first BPH operation.

Operation 1 Operation 2 Operation 3 count

KED00/KED10 KED00/KED10 1
KED00/KED10 KED22 KED33 2
KED00/KED10 KED22 37
KED00/KED10 KED33 4
KED00/KED10 KED52 1

KED00/KED10 KED62 1
KED00/KED10 KED76 1
KED22 KED22 KED33 1
KED22 KED22 28
KED22 KED33 KED76 18

KED22 KED33 1725
KED22 KED52 KED76 4
KED22 KED52 136
KED22 KED62 KED62 1
KED22 KED62 6

KED22 KED72 5
KED22 KED76 1086
KED33 KED33 8
KED33 KED52 9
KED33 KED62 1

KED33 KED76 KED76 1
KED33 KED76 46
KED52 KED52 14
KED52 KED76 28
KED62 KED76 1

KED72 KED72 2
KED76 KED76 2
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Table 3.13: A list of diagnoses used as an exclusionary criteria for both data sets.

code name

C61 Malignant neoplasm of prostate
C67 Malignant neoplasm of bladder
N31 Neuromuscular dysfunction of bladder, not elsewhere classified

3. Treatment provider visit duration in days
4. ICD-10 code
5. Patient age at the date of diagnosis

The procedure data included the following fields:

1. Patient identifier
2. Date of procedure
3. Treatment provider visit duration in days
4. NCSP code
5. Patient age at the date of procedure



49 Chapter 3. Methods

0

1000

2000

3000

1995 2000 2005 2010 2015

Year of occurrence

O
cc

ur
re

nc
es

Operation

KED00/KED10

KED22

KED33

KED52

KED62

KED72

KED76

BPH procedures

0

500

1000

1995 2000 2005 2010 2015

Year of occurrence

O
cc

ur
re

nc
es

Operation

KDH70

KDV10/KDV12

TKD00

Urethral stricture procedures

25

50

75

1995 2000 2005 2010 2015

Year of occurrence

O
cc

ur
re

nc
es Operation

KDG43

KDK00/KDK10

Stress incontinence procedures

Figure 3.6: A summary of the incidence rates of the investigated procedures.
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Figure 3.7: A summary of the initial BPH procedures in the reoperation cohort.
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Figure 3.8: A summary of the initial BPH procedures in the US/SI cohort.



4. Results

The aim of this chapter is to detail the performed analyses and to present the associated
outcomes. The results are also briefly commented with regards to how they explain
the research questions, but a more thorough consideration is left to the collaborating
clinicians as inferring the clinical relevance of the results requires extremely significant
domain expertise.

The complication risk development after the initial BPH procedure is presented
with Kaplan-Meier failure function estimates and Aalen-Johansen cumulative incidence
function estimates. Despite the overlap of the methods, the results of both the Kaplan-
Meier and the Aalen-Johansen estimators are presented to showcase the effect of the
common error of not accounting for the competing risks. Due to the non-exclusionary
nature of the investigated endpoints, the Aalen-Johansen estimates are modeled with
death as the sole competing risk.

Pairwise log-rank tests were used to determine any statistically significant differ-
ences between the Kaplan-Meier survival function estimates. The results of the tests were
adjusted with the Benjamini-Hochberg procedure. The differences were quantified with
pairwise Cox univariate regression analyses. The results use KED22 as a baseline, which
means that the presented hazard ratios are relative risks compared to the complication
risks of KED22. The effect of the clinical factors was determined with multivariate Cox
regression analyses. The significance of the fitted models was tested with likelihood ratio
tests and the significance of the individual covariates was tested with Wald tests. The
models and their covariates were also tested with Grambsch-Therneau tests to deter-
mine any violations of the proportional hazards assumption. All of the aforementioned
significance test results are interpreted with the standard p-value cutoff point of 5%.

As was described in Chapter 3, the different cohort selection criterion necessitated
using separate data sets for the analysis of the BPH reoperations and urethral stric-
ture/stress incontinence procedures. All of the analyses were done separately for subco-
horts formed by dividing the patients of the whole cohort according to their first BPH
procedure (either KED00/KED10, KED22, KED33 or KED52). The analyses were per-
formed using the R library survival by Therneau et al. survival is a general-purpose
survival analysis library that offers robust implementations for most of the traditional

52
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survival methods. Some notable survival features that were not covered in the last chap-
ter include both multi-state and basic frailty models [57].

4.1 Survival distribution analysis

4.1.1 Urethral stricture procedures

Figure 4.1 presents the Kaplan-Meier and the Aalen-Johansen risk estimates for an ure-
thral stricture procedure after each initial BPH procedure. All of the estimates are very
low and do not differ much from each other. The Aalen-Johansen estimates are expect-
edly somewhat lower than the corresponding Kaplan-Meier estimates. Table 4.1 lists
the pairwise results of log-rank tests for the Kaplan-Meier estimates adjusted with the
Benjamini-Hochberg procedure. Using a significance level of 5%, only the difference be-
tween KED22 and KED33 survival functions reaches statistical significance. A reason
for this is apparent on Figure 4.1, as the other survival function estimates suffer from
extremely wide confidence intervals due to low sample numbers.
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Figure 4.1: Failure function estimates for urethral stricture procedure endpoints.
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Table 4.1: A pairwise comparison of log-rank test of the stricture procedures corrected with the BH
procedure.

KED00/KED10 KED22 KED33

KED22 0.238
KED33 0.585 0.005
KED52 0.684 0.238 0.308

4.1.2 Stress incontinence procedures

Figure 4.2 presents the Kaplan-Meier and the Aalen-Johansen risk estimates for a stress
incontinence procedure after each initial BPH procedure. All of the estimates are ex-
tremely low and do not differ much from each other. The Aalen-Johansen estimates are
expectedly somewhat lower than the corresponding Kaplan-Meier estimates. Table 4.2
lists the pairwise results of log-rank tests for the Kaplan-Meier estimates adjusted with
the Benjamini-Hochberg procedure. Using the significance level of 5%, none of the com-
parisons reach statistical significance. All of the survival function estimates in Figure 4.2
suffer from low sample numbers and very wide confidence intervals.
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Figure 4.2: Failure function estimates for urinary incontinence procedure endpoints.
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Table 4.2: A pairwise comparison of log-rank test of the stress incontinence procedures corrected with
the BH procedure.

KED00/KED10 KED22 KED33

KED22 0.133
KED33 0.351 0.166
KED52 0.133 0.649 0.133

4.1.3 BPH reoperations

Figure 4.3 presents the Kaplan-Meier and the Aalen-Johansen risk estimates for a BPH
reoperation after each initial BPH procedure. The risk estimates present clear differences
between the BPH procedures. The ordering based on the estimated risks can be read
from the Figure 4.3. The Aalen-Johansen estimates are expectedly somewhat lower than
the corresponding Kaplan-Meier estimates. Table 4.3 lists the pairwise results of log-rank
tests for the Kaplan-Meier estimates corrected with the Benjamini-Hochberg procedure.
Using the significance level of 5%, only the difference between KED33 and KED52 fails
to reach statistical significance.
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Figure 4.3: Failure function estimates for BPH reoperation endpoints.
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Table 4.3: A pairwise comparison of log-rank test of the BPH reoperations corrected with the BH
procedure.

KED00/KED10 KED22 KED33

KED22 0
KED33 0 0
KED52 0 0 0.334

4.2 Cox PH regression
Covariates for the Cox regression analyses were chosen by the collaborating urologists
according to the ones they were interested in for their clinical practice. Most of the
covariates had to be encoded as time-varying covariates due to their nature. Table 4.4
lists the used covariates along with their descriptions. It contains two covariates which
have not been discussed before. clot refers to the number of blood clot removals from the
bladder done within 14 days of the initial BPH procedure. The NCSP operation code that
was considered to be a clot removal was KCV22. stone is a dummy variable representing
whether the subject had bladder stones removed during their initial BPH procedure. The
NCSP operation codes considered to be bladder stone removals were KCE00 and KCE02.
These covariates were only analyzed for the urethral stricture and stress incontinence
endpoints.

Table 4.4: A list of the covariates used the in the Cox regression analyses.

Covariate Meaning Type

age Time-varying patient age continuous
points Time-varying patient CCI scores ordered
bph_count Time-varying number of preceding BPH procedures ordered
stone Time-varying number of preceding bladder stone procedures ordered
clot Time-varying number of preceding clotting procedures ordered

N31 Time-varying indicator for a N31 diagnosis dummy
C61 Time varying indicator for a C61 diagnosis dummy
C67 Time-varying indicator for a C67 diagnosis dummy
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4.2.1 Urethral stricture procedures

Figure 4.5 summarizes the Cox regression results from each initial BPH procedure to
the first urethral stricture procedure. KED00/KED10 is the only model which fails to
achieve statistical significance in the global likelihood ratio test, which suggests that the
chosen covariates weren’t appropriate predictors for the model. This is also visible in the
individual Wald tests of the KED00/KED10 model covariates. The Grambsch-Therneau
plots for the individual covariates can be found in the Appendix B.1. All of the models
pass the global Grambsch-Therneau test. The effect of age and the Charlson Comorbidity
Index score seems to be rather small in all cases. This makes sense, as the diagnoses N31,
C61 and C67 (colloquially referred to as cancers henceforth) display a great risk increase
and they are included in the Charlson Comorbidity Index. Bladder stone and blood
clot removal procedures generally have too few samples for any reasonable interpretation.
Repeated BPH procedures seem to increase risk of an urethral stricture, which is to be
expected. Operations affecting that region of the body are known to be a risk factor of
urethral strictures [62]. Figure 4.4 presents the univariate Cox regression hazard ratio
estimates of the relative urethral stricture risks using KED22 as the baseline.
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Figure 4.4: A summary of the univariate hazard ratios using KED22 as a baseline.
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Figure 4.5: A summary of the urethral stricture Cox PH regression results.
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4.2.2 Stress incontinence procedures

Figure 4.7 summarizes the Cox regression results from each initial BPH procedure to the
first stress incontinence procedure. The KED00/KED10 model could not be estimated due
to too few samples. KED22 and KED33 achieved statistical significance in the likelihood
ratio test. KED56 model failed the likelihood ratio test, which means that a null model
with no covariates fit the data better. This could be due to either the low sample number
or inappropriate covariates. The Grambsch-Therneau plots for the individual covariates
can be found in the Appendix B.2. All of the models pass the global Grambsch-Therneau
test. A clear problem with the stress incontinence results is that there are too few samples
for trustworthy inference. Where the bar of significance is passed, the results seem similar
as with the urethral strictures. Cancers and repeated BPH procedures increase the risk
greatly and the effect of age and the CCI index score is slight. Figure 4.6 presents the
univariate Cox regression hazard ratio estimates of the relative stress incontinence risks
using KED22 as the baseline.
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Figure 4.6: A summary of the univariate hazard ratios using KED22 as a baseline.
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Figure 4.7: A summary of the stress incontinence Cox PH regression results.
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4.2.3 BPH reoperations

Figure 4.9 summarizes the Cox regression results from each initial BPH procedure to the
first BPH reoperation. The sample sizes in the reoperation models are a lot larger than
in both the urethral stricture and urinary incontinence models. All of the models achieve
statistical significance in the likelihood ratio test, which suggests that the models with the
chosen covariates fit the data better than null models with no covariates. The Grambsch-
Therneau plots for the individual covariates can be found in the Appendix B.3. KED22
and KED52 models fail the global Grambsch-Therneau test. Despite of the tests implying
non-proportionality, the plots of the scaled residuals remain almost perfectly horizontal
and near zero. It is therefore assumed that the test failures are caused by either the high
number of observations or extreme outlier values. The regression results are similar to the
results of the urethral stricture and urinary incontinence models. The effect of age and
the CCI score is slight. Cancers remain the dominant factor, even though their confidence
intervals narrow with the increased amount of samples. Figure 4.8 presents the univariate
Cox regression hazard ratio estimates of the relative reoperation risks using KED22 as
the baseline.
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Figure 4.8: A summary of the univariate hazard ratios using KED22 as a baseline.
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Figure 4.9: A summary of the BPH reoperation Cox PH regression results.



5. Discussion

The main aim of this thesis was to analyse and compare the complication risks of the most
common BPH surgical intervention options. While this was achieved to a limited extent,
the results of the analyses were limited by the surprisingly low sample numbers. Out of the
three analysed complication endpoints (BPH reoperations, stress incontinence procedures
and urethral stricture procedures), only the BPH reoperations contained enough samples
for relatively trustworthy inference. One possible cause for the apparent lack of data is that
only complications which required a new procedure were considered. While unfortunate
from the perspective of the analysis results, the seemingly low urethral stricture and stress
incontinence risks are of course a positive fact from the patients’ point of view.

The survival function estimation provided interesting results for the BPH reop-
erations. Both the Kaplan-Meier and the Aalen-Johansen estimators showed notable
differences in the complication risks for the initial procedure options. However, as the
Kaplan-Meier estimator doesn’t account for competing risks, the difference between the
estimates was striking. The results of the analyses highlight the importance of accounting
for any of the possibly existing competing risks. While the choice of the estimator didn’t
matter for the determination of the initial procedure with the highest complication risk,
the absolute differences in the pointwise estimates were very large. One additional benefit
of the Aalen-Johansen estimator was that it provided narrower confidence intervals.

The Cox PH regression analysis results were of varying quality. The effect of age
tended to be lower than was assumed. As the patients undergoing their initial BPH
procedure were already quite old at the time of the procedure, one would have expected
to see a bigger risk increase as they aged further. The CCI index scores seemed to have
either a low impact or none at all on the complication risks. This is likely due to the fact
that most of the diseases of the CCI aren’t related to the prostate and the most serious
ones of those which were included in the analyses as separate covariates. The cases of
blood clots and bladder stones were so infrequent that their effect could only be estimated
in a few of the models. The urethral stricture and the stress incontinence analyses suggest
that recurring BPH procedures might be a significant risk factor for those complication
types.

It is important to keep in mind that the statistical interpretation of the regression
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results can be different from the clinical interpretation. The interpretation of hypothesis
test results under the selected significance level is that there was sufficient evidence to
reject the null hypothesis, which conversely means that the a non-significant result only
means that the evidence was not sufficient. A clinician can still find the evidence infor-
mative in some respects, be it the practical work at the clinic or as a basis for a new
research question. Gelman et al. provide a good discussion about the problems of using
arbitrary p-value cutoff points as the significance indicator [26].

Aside from the aforementioned low sample sizes, the results were additionally limited
by the quality of the source data. As was discussed in Chapter 3, the Hilmo data only
provided an interval (starting and ending dates of a visit at a treatment provider) during
which either a diagnosis or a procedure was received by the patient. Even though this
wasn’t a problem in most of the cases due to the distribution of the visit durations, a
sizable amount of diagnoses and procedures had to be arbitrarily dated to the starting
date of the visit. In addition to the introduced inaccuracies, the lack of exact dates lead
to excluding all of the patients who had received more than one BPH procedures during
the visit of their initial BPH procedure, as the first one couldn’t be determined in those
cases.

Because the Cox PH model covariates were defined by the collaborating clinicians
and their clinical interests without considering the the statistical validity, the models
generally suffer from overly many covariates for the amount of samples available. Many
of the covariates were also defined to be time-varying, which can be problematic. While
the theoretical aspects of the time-varying covariates are sound and the software libraries
do support their use, time-varying covariates still complicate the interpretation of the
results. Notably the fact that the temporal effect is summarized by a single number can
lead to inaccurate estimates if the covariate values tend to have great shifts. Time-varying
covariates also limit the available means of model adjustment for fixing any violations of
the PH assumption. The need for adjustments was avoided in the analyses of the thesis
as the Grambsch-Therneau diagnostics didn’t present any severe violations.

The Charlson Comorbidity Score algorithm lent itself well to a Spark implementa-
tion. The previous work and the associated algorithms have focused on computing CCI
scores at a certain point in time. The presented Spark SQL algorithm implementation
goes further by building a total timeline of the CCI scores while still remaining simple
to understand and performant. The algorithm is also written in standard SQL, which
should enable it to also be used in other SQL engines than just Spark SQL. One impor-
tant downside of the algorithm is that it’s currently limited to only the computation the
CCI scores, albeit still giving a choice to use either the original Charlson or the newer
Quan scoring system.

The final contribution of the thesis was the discussion of some practical issues that
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can be found in survival analysis studies performed by clinical practitioners. Survival
analysis is a complex topic based on advanced mathematical theory, which can make the
necessary concepts difficult to grasp. However, modern software libraries make the prac-
tical analysis straightforward as long as the interpretation of the results is done correctly.
A related goal of the thesis was to showcase some alternative methods for clinicians as
the material meant for them is often locked into a select few. For example, the use of
the Fine-Gray estimator is common in medical literature for the analysis of competitive
risks scenarios. The Aalen-Johansen estimator used in the analyses of this thesis possesses
better statistical properties with less constraints on data but is not as commonly taught
in applied courses. Therneau et al. give convincing arguments on the superiority of the
Aalen-Johansen estimator [59]. Austin et al. go further in explaining the problematic
aspects of the Fine-Gray estimator [8].

The results presented here generally agree with the preceding works. Stoddard et
al. found that TURP (KED22) has a lower risk of reoperations but a higher risk of urethral
strictures than procedures based on a laser (KED52) [53]. Gilfrich et al. found that
procedures based on a laser (KED52) have a similar reoperation risk with TURP (KED22)
and that OSP (KED00/KED10) has a lower reoperation risk than TURP (KED22) [27].
The only findings differing in the presented results are the stricture rates of TURP and
laser procedures as their difference did not reach statistical significance. It should be
noted that none of the aforementioned papers had an exactly equal methodology, which
is likely the cause of the discrepancy. The preceding studies also used notably different
study setting definitions with a narrower scope and shorter observation periods compared
to the analysis of this thesis.

The BPH complications remain a good candidate for future studies. The research
data used here was limited in the extent of the available clinical covariates. A simple
extension of the analyses presented here would be to include additional data sources with
additional samples and covariates to investigate their effect. Another alternative source
of future work is the choice of the used regression model. The Cox proportional hazards
model was chosen to be used here mainly due to its prevalence in the medical literature.
As the results are meant to be published, the use of the standard analysis methods of
the field was important. Additionally, the Cox PH model remains a good choice even
among more modern alternatives. However, the alternative models can be useful e.g. in
scenarios where the data does not fulfill the assumptions of the Cox model and none of
the available remedies work. Lee et al. provide a good overview of the alternatives, which
include machine learning approaches [40].



6. Conclusions

Benign prostatic hyperplasia is one of the most common male diseases, which makes an
optimal treatment choice for it important for a large number of patients. Surgical pro-
cedures are the most effective treatment options for BPH, but the choice between them
depends on the individual patient profile and the complications associated with the partic-
ular procedure. Complications present a problem for the well-being of the patients which
makes quantifying the complication risks important for the treating clinicians deciding
on the treatment plans. Recurring BPH, urethral strictures and stress incontinence were
the complications chosen to be investigated and only the cases where the complication
required another procedure were included in the analysis.

The Charlson Comorbidity Index score is a widely used measure of the disease load
of a patient at a particular point in time. It has proven to be an useful predictor of a
multitude of negative event types. While the intuition of the score calculation procedure is
easy to grasp, it presents some challenges for an algorithmic implementation. The novel
Spark algorithm described in this thesis is easy to understand, has good performance
characteristics and should scale well to any data sizes within reason. The CCI score was
also one of the patient profile attributes used in the regression analyses.

The results presented in this thesis showed distinct differences in the reoperation
risks between the choices for the initial BPH procedure. Urethral stricture and stress
incontinence complication risks did not show statistically significant differences, which is
attributed to the low sample numbers in both cases. Cox regression analysis results fol-
lowed a similar trend in almost all of the cases. Age and the disease load as measured with
the Charlson Comorbidity Index scores were associated with at most slight risk increases.
The various cancers presented both the greatest risk increase and the greatest variability
between the initial BPH procedures. An accurate comparison between the initial BPH
procedures is challenging because the urethral stricture and stress incontinence proce-
dures had low sample numbers resulting in extremely wide confidence intervals for the
parameter estimates. One important takeaway from the Cox analyses is that the individ-
ual cancers, which are also included in the CCI score, seem to predict the complications
better than the total CCI score. A higher number of preceding BPH procedures seemed
to increase the risk of urethral strictures and stress incontinence, which was expected.
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A. Algorithm of the icd library

Given a comorbidity mapping between the ICD-10 codes and the CCI disease categories,
the algorithm for ICD-10 codes has the following stages [66]:

1. Reduce the problem by using partial matching to compute the intersection of the
patient diagnoses and the comorbidity mapping codes

2. Reduce the computational cost of the algorithm by converting the ICD-10 codes of
the intersection to consecutive integers

3. Create a sparse matrix with a row for each visit of a patient and a column for each
computed ICD-10 code (patient-visit matrix)

4. Create a dense matrix with a row for each computed ICD-10 code and a column for
each comorbidity (comorbidity-matrix)

5. Multiply the matrices from the stages 3 and 4 together

Stage 1 is especially important to reduce the computational complexity because
of the skewness of the distribution of the ICD-10 codes. As comorbidities are typically

Table A.1: An example of a comorbidity mapping.

Disease Codes

Rheumatic Hearth Disease I098
Hypertension I10, I11
Heart failure I150, I110

Table A.2: An imaginary patient with four visits and the associated diagnoses.

Visit Diagnosis 1 Diagnosis 2 Diagnosis 3

1 K401
2 I0981 C450
3 M352 I10
4 I110
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uncommon diagnoses, removing the diagnosis codes which do not belong a comorbidity
category reduces the needed computations by a substantial amount [66].

Following the example in the original paper, using the comorbidity mapping listed
in Table A.1 and the artificial patient data for a single patient listed in Table A.2, the
algorithm performs as follows:

1. The computed intersection is [I098, I11, I10]
2. Assigned integers: I0981=0, I10=1, I110=2
3. The patient-visit matrix A is defined as:

𝐴 =
⎡
⎢
⎢
⎢
⎣

0 0 0
1 0 0
0 1 0
0 1 1

⎤
⎥
⎥
⎥
⎦

4. The comorbidity matrix B is defined as:

𝐵 = ⎡⎢⎢
⎣

1 0 0
0 1 0
0 1 1

⎤⎥⎥
⎦

5. The matrix multiplication results in:

𝐴𝐵 = 𝐶 =
⎡
⎢
⎢
⎢
⎣

0 0 0
1 0 0
0 1 0
0 2 1

⎤
⎥
⎥
⎥
⎦

6. The code I11 belongs to two different comorbidities, so the resulting incorrect indi-
cator must be corrected:

[𝐶 ≠ 0] =
⎡
⎢
⎢
⎢
⎣

0 0 0
1 0 0
0 1 0
0 1 1

⎤
⎥
⎥
⎥
⎦

The result of the algorithm can be interpreted as Table A.3. Columns of the result
matrix represent the different comorbidities, the rows are the patient visits and the cell



76 Appendix A. Algorithm of the icd library

Table A.3: The resulting matrix of the Wasey et al. algorithm

Visit Rheumatic Disease Hypertension Congestive Heart Failure

1 no no no
2 yes no no
3 no yes no
4 no yes yes

values correspond to whether a particular comorbidity diagnosis was observed during a
certain visit [66].

The algorithm implementation makes use of the heavily optimized RcppEigen linear
algebra library to improve the performance of the matrix calculations [9]. The paper does
not include the details of how the algorithm handles exclusionary categories, but as the
categories with non-zero scores can be read from the result matrix, the computational
cost of the score correction should be asymptotically irrelevant [66].
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B.2 Stress incontinences
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B.3 BPH reoperations
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