
Master’s thesis

Master’s Programme in Computer Science

Modernizing usability and development with

microservices
Janne Kauhanen

November 06, 2022

FACULTY OF SCIENCE

UNIVERSITY OF HELSINKI

Tiedekunta - Fakultet - Faculty

Faculty of Science
Laitos - Institution – Department

Department of Computer Science

Tekijä - Författare - Author

Janne Kauhanen

Työn nimi - Arbetets titel - Title

Modernizing usability and development with microservices

Oppiaine - Läroämne - Subject

Computer Science

Työn laji/Ohjaaja - Arbetets art/Handledare – Level/Instructor

M.Sc. Thesis
Aika - Datum - Month and year

06.11.2022
Sivumäärä - Sidoantal - Number of pages

63 pp. + 3 appendices

Tiivistelmä - Referat - Abstract

Legacy software systems, which refers to old and likely outdated software applications and practices,
are a reality that most software development companies have to contend with. Old practices and tech-
nologies are often at fault for slowing down development and deployment of software, as they can have
compatibility, security, scalability and economic issues with their continued use, among other issues.
Software modernization, reengineering and refactoring can alleviate the issues stemming from legacy
systems, whether it be in the form of altering practices, updating technologies or changing platforms.

There are many technologies and methods that can facilitate the modernization of a software system,
including a move to using different architectures, specific newer technologies and changing the met-
hods of working and developing the software system. These technologies and methods, and moderniza-
tion in general, come with their own risks and challenges that must be considered for a successful
modernization to take place; These strategic considerations are a key factor in modernization.

This thesis will explore software modernization in general through literature reviews and as a case stu-
dy for a specific company using data from surveys and the case company’s logs, with a look into the
technologies, concepts and strategies required for a successful modernization, and what kinds of effects
modernization can have on the software system being modernized, both from a user perspective as well
as from a developer perspective. The end-result of this exploration reveals that modernization is a com-
plex subject with many challenges, but that also offers benefits to the software system being moder-
nized. These results are best used as a guideline on what issues should be concentrated on during mo-
dernization, with a mindful consideration for the limited scope of the case study represented within.

Avainsanat - Nyckelord - Keywords

software modernization, microservices, cloud computing

Säilytyspaikka - Förvaringsställe - Where deposited

Muita tietoja - Övriga uppgifter - Additional information

Table of contents

Table of contents

1. Introduction 1
1.1. Case company introduction 2
1.2. Research questions 3
1.3. Thesis structure 4

2. Background and motivation 5
2.1. Motivation 5
2.2. Legacy systems 6

2.2.1. Costs of legacy systems 7
2.3. Modern software architecture 9

2.3.1. Microservices 10
2.3.2. Tools and Frameworks 11
2.3.3. Developer team structure 18

3. Research Methods 20
3.1. Research environment 20
3.2. Survey and in-depth questionnaire 20
3.3. Literature review 22

4. Risks and challenges of software modernization 31
4.1. Modernization strategy and ensuring improvements 31
4.2. Personnel and training 32
4.3. Documentation 33
4.4. Communication 33
4.5. Accessibility 34
4.6. Integration 34

4.6.1 Databases 35
4.6.2 Testing 36

4.7. Economy 36
4.8. Software architecture is not a primary consideration 37
4.9. There is no notion of a separate and distinct reengineering process 37
4.10. Summary 38

5. Results 39
5.1. Survey results 39

5.1.1 All respondents’ results 40

5.1.2 Developers’ results 42
5.2. In-depth questionnaire results 44
5.3. Overall modernization results 45
5.4. Usability before and after modernization 46

6. Discussion 49
6.1. Surveys and in-depth questionnaires 49
6.2. Literature review 51
6.3. Limitations 51
6.4. Case A ongoing modernization 52

7. Conclusions 53

Bibliography 57

Glossary 62

Appendix A

Appendix B

Appendix C

1

1. Introduction

Software modernization [Gar06,Mal10], also known as legacy modernization, platform modernization

and application modernization, refers to a conversion, refactoring, rewriting or porting of application sys-

tems to using newer programming languages, architectures, hardware, libraries or frameworks, for

example. This is done to extend the life and value of old software, since often newer platforms and practi-

ces allow for easier, faster and more reliable development and maintenance of the system [Gar06]. Pre-

sently, software modernization can also involve data migrations to cloud-based platforms as well as the

adoption of scalable and modular microservices [BHJ16,Alt19]. In general, software modernization’s

most common use is to introduce new technologies to the system being modernized.

Microservice architecture allows for creating multiple loosely coupled autonomous services, which com-

municate with each other to act as a larger software as a whole, while still maintaining a single responsi-

bility principle [Kal17]. This allows for easier maintainability [OS19], development and testing of the

software, as each microservice can be addressed by itself and new microservices can be added as needed.

More in-depth benefits of a microservice architecture include developer independence, as each part of the

whole can be developed as a completely independent entity [OS19], allowing developers to work better in

parallel. Scalability, especially server-side scalability, is improved with microservices [Kal17,OS19], and

the smaller scope of each individual service instance can reduce complexity issues. Better quality and se-

curity of service is also almost guaranteed, due to the fact that if one microservice fails, it does not cause

the whole system to fail, as can be the case in monolithic architectures. Microservices also allow for much

higher scalability of software, as they can be scaled to meet the requirements for that component’s

functionality.

The basic idea behind software modernization via microservices is to improve an already existing service

to be much more modular, maintainable and usable. Older legacy software systems are often based on the

monolithic architecture [Alt19], as these older software systems have their roots in times before microser-

vices was introduced as a concept, in which everything was developed as a single artifact; Even now,

many software systems start out as monolithic systems [Kal17] due to their simplicity in new develop-

ment. While this is easy and works well for smaller codebases, a monolithic architecture can become very

difficult and slow to develop and maintain once the codebase becomes large [Kal17]. Many companies'

2

codebases can be decades old [Alt19], and for a monolithic architecture with that much legacy code that is

still in use, this can become a bottleneck in production, which microservices can alleviate.

Microservices do have their own issues [Fo15,Kal17], as a distributed microservice infrastructure is more

difficult and complex to create than a monolithic system, and maintaining the connections, communicati-

ons and transactions between different microservices within a microservice architecture is more challen-

ging, which in turn creates additional challenges for testing, deploying and production use. These issues

can pose great challenges for companies with little experience in their use, as training an organization’s

personnel to have the new skills required will take a great amount of time and effort [Fo15] that could

otherwise be used for more development and testing. In terms of modernization from a legacy product,

this also creates management and planning challenges, such as how to properly allocate resources to the

aforementioned training [Ber99,Fo15], choosing the solutions and products to use for microservices,

making a concrete schedule and communicating the necessary changes within the organization. In the

case of a software that needs to be kept in production use throughout the whole switch to microservices,

such as the case company of this thesis, this also creates additional issues as services cannot simply be

taken down to be made into a microservice, but must be maintained and developed in parallel with the old

methods.

This thesis explores the software modernization that happened in a small-sized Finnish software company

between 2018 and 2020 as a case study.

1.1. Case company introduction

The case company, referred to as Case A of this thesis, provides software-as-a-service (SaaS) for several

Finnish and international companies using enterprise resource planning (ERP), financial planning and

contract management solutions; These contracts include rental contracts as well as other financial con-

tracts, such as lease and billing.

The users of the software product come from many different background and computer-skill levels, ran-

ging from no experience to extensive experience. The most common use-case is using the software to log

and confirm different work-orders and service requests in the software.

Case A underwent an evolutionary software modernization process that started from the late 2018 and en-

ded halfway through 2020, with the aim of taking advantage of new techniques and technologies as well

as letting go of old practices. While the majority of the changes were finished halfway through 2020, the

3

iterative development and adoption of new practices is now an ongoing effort within Case A, so as to

keep Case A’s practices modern without having to specifically overhaul most of their existing practices.

Throughout the software modernization process, the software has been in constant production use, and

there have been parallel development tasks and software maintenance tasks that have been undergoing as

well.

While Case A had undergone many updates and modernizations to its techniques and technologies pre-

viously, these efforts had been on a smaller scale, with more of an iterative development approach than

the one planned in 2018.

As its main programming languages and technologies, Case A uses C# as the back end language, with

Javascript/JQuery for most of its front end work. At the start of the modernization, there were still several

services that were using Delphi for back end functionalities, but those were being slowly phased out of

use. For the database, Case A’s product uses Microsoft SQL Server, with local and remote servers.

1.2. Research questions

This thesis addresses the general research problem of software modernization [see e.g., Gar06,Mal10,

Alt19], such as changing the platform of a software from local servers to a cloud service or changing a

monolithic software architecture into a microservices architecture, and how it can affect the software pro-

duct and what challenges it poses, with the following specific research questions:

RQ1. How may software modernization affect a software product?

RQ2. How may software modernization affect the usability of a software product for the end

user?

RQ3. How may software modernization affect the development of a software product from a de-

veloper’s point of view?

RQ4. What challenges can modernizing a legacy system that is still in production use pose?

RQ5. How can the challenges of modernizing a legacy system that is still in production use be

mitigated?

4

1.3. Thesis structure

This section gives an outline of the structure and flow of the thesis, and explains what the different chap-

ters of the thesis contain.

Chapter 2 covers the background and motivation for the thesis itself. In that chapter we go through what is

meant by a legacy system, what monolithic architectures mean and what is meant by modern architec-

ture in this thesis. We also cover the various tools and frameworks used for the modernization effort in

Case A at length, along with the restructuring of Case A’s development teams that was a part of the mo-

dernization.

Chapter 3 covers the research methods used in the thesis, going through the research environment within

and without Case A. The survey and the in-depth questionnaire used in our case study and the methodolo-

gy used for employing them are covered, as well as the literature reviews used for the parts of the thesis

that are not company specific. In the research environment part we discuss the situation in Case A before

and after the modernization changes, and the survey and in-depth questions are covered after that. We also

cover the study plan for the thesis in this chapter. The literature reviews go through what modernization

strategies, methods and techniques are available in the field overall.

Chapter 4 covers many of the risks and challenges of modernization, as well as some of the solutions pro-

posed for them by existing literature.

Chapter 5 covers the answers gained from the survey and in-depth questionnaire, as well as analysis on

that data. The data is analyzed by comparing the answers gathered from the survey and in-depth question-

naire to each other, and then comparing these results to those generally gained from modernization efforts

in existing literature. These results are used to measure the efficacy of the modernization efforts between

the situation in Case A before the modernization and the situation after the modernization. We also cover

the results of Jira ticket analysis to see how the modernization impacted user ticket activity.

Chapter 6 covers discussion on the general topic of modernization, and what further research could be

done on the subject. This chapter covers company-specific discussion on the modernization effort.

Chapter 7 covers the overall conclusions we can draw from the research conducted in this thesis, as well

as answers to our research questions.

5

2. Background and motivation

This chapter details the motivation and background for modernizing a monolithic legacy system into a

more modern, microservice-centric system. We go through what legacy systems are and what they mean

to companies, as well as what costs they can generate for them. After that, we take a look at what a mo-

dern architecture is, what microservices are, different approaches to modernization and the variety of

different tools and frameworks that can be used for modernization, and how some of them were or are

used within Case A.

2.1. Motivation

The main motivation for this thesis came from the fact that while Case A had had several smaller moder-

nization efforts in the past, these efforts had been done with a business-focus approach, based upon the

software’s production performance and customer feedback, within Case A: Dotnet was taken into consi-

derable use within the software during the first quarter of 2017, and was used as a standard within Case A

afterwards. This eventually evolved into taking .Net Core as an object-relational mapper (O/RM) and

EFCore into full use, and EFCore mappings were implemented in the code and database in early 2018.

After that had been done, the planning of microservices was taken into more focus, and these plans were

well on their way in mid-2018, and by August 2018 tasks for microservices that would handle business

logic were already being made. This was when the larger modernization project was taken into planning.

Adding parameters to EFCore was still continuing in early 2019, and the Business Logic, which is a C#

library to share business logic code across applications, was being improved just before the start of the big

modernization that was the motivator of this thesis: This modernization started in earnest in mid-2019.

When this modernization project was initially taken into consideration in 2018, there weren’t many inter-

nal guidelines or documentation on best practices on how to practically do this modernization, so it took

time for the modernization to properly start. This was especially true as this was also Case A’s big foray

into using microservices, which Case A in general had no previous experiences in.

This larger modernization effort brought several changes into Case A, the largest of which was the afore-

mentioned usage of microservices, but also included the usage of Docker Containers, Microsoft Azure,

Syncfusion and Google’s Material Design. Of the ones mentioned, Docker and Azure required a great

6

deal of planning and education for the developers and other employees within Case A. A great many of

new, upcoming features were also planned to take advantage of these new technologies, and as such rep-

resented a unique challenge to Case A. To combat this, new employees with specific expertise in the

required technologies were hired to facilitate their adoption.

On top of this modernization effort on technology and techniques, a large change to Case A’s working

methods was also started alongside it: Restructuring of the teams according to the Spotify Model [KIS12]

to Tribes, Squads, Chapters and Guilds. As this coincided with the other changes, it compounded the

challenges of modernization within Case A, despite Case A having had similar team restructuring efforts

before.

2.2. Legacy systems

A legacy system refers to an old computer system, method, hardware or application that is still in active

use within an organization, and can be characterized by having been implemented with old technological

methods or outdated programming approaches. Legacy software systems are often monolithic in nature

[Kal17], where modifying one part of the system necessitates updating the system as a whole, and as such

are poor at scalability and maintainability. Layered monolithic architectures are widely used in

networking and operating systems [Kal17], and are split into a UI layer, a service logic layer and a data

access layer which accesses a single database and handles the application’s data; This configuration is

shown in Figure 1. In general, legacy systems are very resistant to the evolution of software [Mal10], but

are often critical to day-to-day operations of the organization.

Monolithic architectures refer to application architectures with a single codebase, which can also operate

on a single database system. This is considered to be a standard way to start development for most deve-

lopers, and due to everything being contained in one location, is very efficient as long as the codebase

stays small and manageable [Kal17]. However, there are numerous problems with monolithic architec-

tures that become more and more apparent as the codebase grows and becomes more tightly coupled,

some problems of which we cover in the next subchapter.

7

Figure 1: Standard monolithic application architecture with n-tiers. All parts of the application reside within the

single monolith. Figure adapted from [Kal17].

Legacy systems are most common in older companies [Alt19], where updating or replacing them has been

deemed to be less cost-effective than maintaining the existing legacy approaches. Other reasons for not

replacing a legacy system with more up-to-date systems include not having the time or the resources to

train or hire personnel to use a new system, difficulty in integrating data from the legacy system to a new

system, the possibility of having multiple legacy systems within one company and prioritizing them

accordingly, the difficulty of dealing with a great amount of additional codelines and the requirement of

having the skills to do so among other issues [Ber99,Alt19]. Many challenges of software modernization

have persisted for decades, such as issues relating to training personnel and management, while some

challenges are relatively recent, such as those pertaining to cloud-computing and microservices.

For many companies still using legacy systems, a move away from them takes a great amount of resour-

ces and time that could be used in developing new functionalities in the base product, and can be seen as a

waste. There is also a fear of failure when it comes to updating legacy systems [Ber99]. We will take a

closer look at the risks of updating a legacy system in chapter 3.1.3.

2.2.1. Costs of legacy systems

Legacy systems have a number of costs to companies still relying upon them [Alt19], with a great many

of these costs caused by the fact that most legacy systems are implemented with a monolithic architecture

8

over a number of years, becoming extremely large and complex. This can cause the software to fossilize,

having accumulated enough technical debt to cause the software to become extremely difficult to main-

tain and update [FB19].

Monolithic architectures are common and useful in the beginning of the lifecycle of a software product

[Kal17], but over time they can become huge burdens for the organization. Because monolithic architec-

tures are developed on a single codebase, for most language-bases the developers cannot simply deploy a

single change to the codebase as its own unique item: They must deploy every part of the application,

which harms continuous deployment, as any background tasks must be interrupted and parts of the appli-

cation that are not updated may fail [Ric15]. This constant re-deployment also makes iterative develop-

ment slow, as it lengthens the release cycle of the product [Ric15,Kal17]. All of this makes deployment of

a large monolithic application into a cumbersome process, which is prone to issues unless strict rules are

followed every deployment.

This development can be exacerbated by the fact that developers within a team change over time, and this

can result in the necessary knowledge on keeping a legacy software product maintained disappearing with

old employees. This is especially challenging for an organization if there are only very few developers

who know how the legacy systems work; There exists some correlation between technical debt and de-

velopers leaving a company [SS21].

The previous issue can be alleviated with proper documentation [Alt19], but this only highlights another

problem with many legacy systems: The lack of documentation. While not an issue with all of the organi-

zations using legacy software, the lack of documentation can greatly decrease productivity, as a lot of re-

sources has to be expended on training and retraining developers to use the legacy software that exists

within the organization. Even with proper documentation in place, legacy software systems may use out-

dated languages and methods which many modern developers are no longer familiar with, which necessi-

tates finding specialist developers for the post or investing in time-consuming training sessions

[Ber99,Alt19].

With legacy systems, yet another cost comes from integrations with other systems: Due to legacy systems

using outdated technologies, methods and techniques, it becomes very challenging to integrate them with

newer systems. This may necessitate the use of third-party tools, or a great amount of custom code

[Alt19], to act as interfaces between the two systems, which automatically causes another layer of risk be-

cause it adds another layer to the software that must be kept track of and maintained. This difficulty in in-

tegrating with new ease-of-use functionalities such as geolocation, user authentication and data-sharing

9

can cause an organization to miss out on business opportunities because the cost of creating the needed

connection with the legacy system is too high [Alt19]. There can also be issues with compliance to indus-

try standards [Cap19], especially in heavily regulated sectors. For example, GDPR (General Data

Protection Regulation) caused a great deal of issues for many companies, especially those still using out-

dated technologies: In a report by the CapGemini Research Institute [Cap19], 38% of the responding IT

executives reported that the most complex barrier to aligning their organization to GDPR, were their

existing legacy systems. 42% of these executives considered legacy IT as their most critical challenge.

Another issue with legacy systems is the difficulty to maintain comprehensive tests for the different parts

of the software due to the codebase slowly becoming less comprehensible for the developers over time

[Kal17], which is often a symptom of long-term legacy systems. This is of course not always the case, as

it can be mitigated with disciplined documentation and the creation of tests by the developers and softwa-

re architects, but is still one of the risks of using legacy systems.

Security also becomes an issue, as legacy systems may be less resistant to harmful programs and cyber

attacks. This can be due to the sheer age of the components of the legacy system, which translates to more

knowledge about its exploits, or even because the vendors no longer support the components [Alt19].

From a less technical point of view, using legacy systems can translate to lost business opportunities

[Alt19], as prospective clients may think twice if a company they are negotiating with is using archaic

methods and technologies. One of the biggest reasons to modernize for some is, indeed, the ability to sa-

tisfy customer expectations and thus not lose business revenue due to old technologies.

2.3. Modern software architecture

Modern software architecture in the context of this thesis consists of modular and scalable techniques and

technologies that improve the development cycle and maintainability of a software product or a system.

Many of these techniques and technologies have become widely used by many software companies in re-

cent years, as the benefits of using them far outweigh the necessary development and training time it takes

for a company to adopt them.

The technologies we will mainly be exploring in this thesis are Microsoft Azure, Docker containers,

Material Design by Google, OpenAPI, Dotnet Core, Entity Framework Core and Asp.net Core.

10

We also discuss different strategies on modernization, and what choices Case A took, as well as how the

development team structure changed within Case A to facilitate better communications and compartmen-

talized working practices.

2.3.1. Microservices

Microservice architectures are cloud-native architectures that focus on breaking down a software system

into small, modular applications that can work both independently and interconnected with each other

[LF14, BHJ16]; An example of what a microservices architecture can look like is presented in Figure 2.

Each distinct microservice can be on a completely different platform, working on a different program-

ming language, and are connected to each other and the UI via APIs so they can work together in unison.

Microservices facilitate easier Continuous Integration (CI) and Continuous Delivery (CD), and they are

helpful in a more iterative development cycle, as well as iterative modernization for the whole software

base [BHJ16].

Figure 2: An example of a microservice architecture, using an API gateway and three separate microservices with

their own databases/storages. Figure adapted from [MW21].

The reasons for adopting a microservices architectural approach over a monolithic one are several: As

each microservice is an independent modular component of the software, they can be developed indepen-

dently of each other, helping to decouple developers and development teams from each other. This way,

an issue in the code or logic that would prevent further development for one team does not necessarily

11

hamper the progress of another team in any way, and accidental breaches between different services’

fields become rarer [Kal17]. This also helps with testing, as each microservice can be tested indepen-

dently, speeding up the testing process. Both of the aforementioned reasons to use microservices also

contribute to making development cycles faster: Because the development of microservices can be

asynchronous, it contributes to the flexibility of development of the system as a whole [OS19,Aka20].

As microservices also scale much easier than monolithic systems [OS19], they are very attractive to orga-

nizations undergoing growth or other organizational changes.

For the end-user, the use of microservices architecture can appear as improved stability [Aka20], as the

unavailability of one service does not necessarily mean that the system as a whole is completely unusable,

as not all end-users require the use of all microservices in a single system. This also translates to impro-

ved performance, as only the parts necessary for the end-user are loaded and used when using the system.

End-users also benefit from the flexibility from a business standpoint: Because each microservice is

independent, they can pick and choose what services they wish to have from the system to themselves,

improving the flexibility of the product’s pricing model [BHJ15].

2.3.2. Tools and Frameworks

Here we take a look at some of the technologies that can be used to enable modernization for companies

and developers that are using less efficient legacy methods. Many current software solutions and applica-

tions already use some of these technologies in some capability, as they are easily available and have ex-

tensive documentation and software support.

Microsoft Azure

Microsoft Azure is a flexible cloud computing service provided by Microsoft that offers the ability to

build, test, deploy and manage applications and microservices in a cloud. It has a number of services that

can be subscribed to individually, making the platform very customizable, as it can offer SaaS, PaaS and

IaaS according to its customers’ needs. It was originally launched in 2008 under the name of Windows

Azure, but was renamed in 2014 to Microsoft Azure, and has since expanded greatly in the services it

offers [SrA08,Azu10].

As mentioned, Microsoft Azure offers a great breadth of services within it, including products for AI and

machine learning, analytics, blockchain, containerization, devops, integration, authentication and others

12

[Azd21]; A comprehensive list of their services will not be listed here, as we are not focusing solely on

Azure in this thesis. In short, it can generally be said that if a company or developer requires a compre-

hensive and customizable cloud computing package, they can find it on Microsoft Azure.

For Case A, the main use cases for Azure are monitoring and error investigations as well as the ease with

which APIs can be created and configured using it.

As Microsoft Azure is a cloud computing service, a short explanation of cloud computing services is in

order: Cloud computing services operate on external data centers provided by external service providers,

rather than being provided by their users in-house [CaV20]. A cloud provider has the hardware, servers,

virtualization and other infrastructure as a shared resource in the cloud, as illustrated by Figure 3, and

users of the cloud computing service can choose what resources they want to use from the cloud. This dis-

tribution of cloud services is generally automated by the cloud provider, offering a very dynamic service

for the users of the cloud computing service, as the users can choose to subscribe to the services they need

on-demand. This allows cloud providers to have very flexible billing models, something that was more

difficult to do with in-house data centers, or even with external non-cloud data centers. In short, cloud

computing is an utility, like electricity, but for applications, storage or virtual machines. Docker utilizes

this to great effect due to how it is structured [CaV20].

13

Figure 3: A general example of a cloud architecture. Multiple users can access and use the cloud backend, regardless

of their own hardware/software, as long as they can access the frontend. Figure adapted from [Jen21].

There are some drawbacks to cloud services, such as security and privacy concerns, data mobility issues

and responsiveness in the face of technical problems among other issues [AA13,PV19]. But in many ca-

ses, the pros of utilizing cloud services for large web-based applications outweigh the cons, as their cost-

effectiveness over conventional data centers is quite high, especially when the up-front costs of setting up

an in-house data center are taken into account. In the case of microservices, cloud services become even

more effective, as is illustrated more in the next technology: Docker.

The most interesting aspect of Azure for Case A was its ability to deliver granular data about transactions

and other logs within Case A’s software package, and between its microservices. Azure’s microservice

and API deployment handling could also be important for Case A, as it offers a simple and unified plat-

form to do this from. Using Azure still offers a simple API configuration and subscription utility for Case

A, even though API deployment in Case A is being handled by Jenkins [Jen11], an open-source automa-

tion server.

14

Docker

Docker is a set of products that allow its users to have multiple small independent containers for each

application in isolation [PoN19,PoN20,Doc17], allowing easier development in different environments.

It works as a combination of multiple platform-as-a-service (PaaS) products that use OS-level virtualiza-

tion to provide similar services as virtual machines, but unlike virtual machines, they do not need to simu-

late a complete OS and machine for each separate application within a single server. Instead, Docker uses

software packages called containers, which contain the software system, libraries and other necessary files

to run a single application, working on top of one shared OS and Kernel. Containers are isolated slices of

the OS located on the machine, rather than completely separate virtual machines that simulate a whole

computer system.

Docker containers are an organized collection of namespaces [PoN18], which wrap system resources into

abstractions that make them appear to the processes within the same namespace as isolated instances

instead of a global resource that is used by other processes; An example of this is shown in Figure 4.

There are eight types of namespaces [KeM21]:

1. Cgroup: Control group root directory.

2. IPC (Inter-process communication): Message queues, System IPC, POSIX.

3. Network: Network devices, stacks, ports.

4. Mount/Filesystem: Mount points.

5. PID (Process Identification): Process IDs.

6. Time: Boot and monotonic clocks.

7. User: User and group IDs.

8. UTS (UNIX time-sharing): Hostname and NIS (Network Information Service) domain name.

Fortunately, Windows calls its own OS isolation namespaces as well, so we can avoid a lot of cross-

platform confusion, and Docker works the same way regardless of whether or not the underlying OS is

Linux or Windows.

15

Figure 4: Illustration on how a Docker container resides “on top of” the linux namespaces: Container 1 and

container 2 are each their own separate groups of namespaces, isolated from each other [PoN18].

What this all means in practice is that each container uses a lot less resources on a server than a virtual

machine, and as such more of them can be run on a single server without appreciable loss of performance.

For software companies managing software-as-a-service (SaaS) products, this can create great opportuni-

ties for boosting performance and saving resources, especially servers, which can easily become a bottle-

neck in a growing software system. This also helps in making software development platform-indepen-

dent, as the minimum that is required from a specific computer is the ability to create a Dockerfile, which

is a set of build instructions for Docker to build an app and its dependencies into a container image

[PoN20]. So a developer might develop this at the office or in the cloud with minimal setup required for

the environment.

Due to how Docker works with containers, it is extremely useful for developing microservices, as each

application can be more efficiently sliced to run in their own specific environments within a server.

Taking Docker, and microservices, into use was one of the main changes that came with the moderniza-

tion effort, and was one the technologies with the least previous experience within Case A.

Material Design and Syncfusion

Material Design is a design language developed by Google with the intent of creating designs that mimic

the style of paper and ink [Mat14]: A viewer of a page created with the principles of Material Design can

16

decipher at a glance what can and cannot be interacted with, using seams and shadows of the buttons and

other components to highlight the interactable parts, as if they were different physical materials and parts

of the page rather than flat buttons and links.

It is used to provide a framework for building easily identifiable and interactable frontend user interfaces

for many applications, including many of Google’s own applications.

Along with Syncfusion, Material Design was used to provide a new way to design the frontend user inter-

face for Case A, as previous methods for user interface design were more ad hoc within Case A.

Syncfusion is a developer platform that offers hundreds of different user interface components for .NET

and Javascript, as well as comprehensive support for each of its components [Syn01].

It is primarily aimed towards enterprise usage, and offers several different packages depending on how

many developers are going to use it. As a developer platform it supports ASP.NET MVC, ASP.NET Core,

ASP.NET Web Forms, Angular, Javascript and jQuery among many others, and makes further forays into

user interface development that much easier, especially for organizations who have not had an organized

UI platform beforehand.

For Case A, Material Design and Syncfusion were chosen to better organize and streamline the design of

the product’s interface, and to provide a guideline on future development of the UI.

OpenAPI and Swagger

Swagger is a tooling ecosystem for the development and description of APIs that use the OpenAPI Spe-

cification, in particular it is used in RESTful web services [SmB16,OAS17]. Swagger tooling can also be

used to describe APIs outside of the OpenAPI standard, but when used together with the standard it can

create OpenAPI documentation directly from the code itself, streamlining any documentation tasks. It is

also possible to create SDKs directly from the OpenAPI documentation itself using Swagger Codegen

[SmB16].

Swagger was initially created in November 2015 along with the advent of the OpenAPI Initiative by a

company called SmartBear Software, which had created the Swagger API before this, with several other

large companies acting as founding members, such as Google and Microsoft. This initiative eventually led

to the rebranding of Swagger to OpenAPI specification in January 2016 [SwG15].

17

Swagger API 2.0 was renamed to OpenAPI 2.0 in 2016, which can cause some confusion, but regardless

of whether or not someone is talking about Swagger or OpenAPI, they are often talking about the same

thing: OpenAPI [MHR20]. In this thesis, we will be using the terms OpenAPI and Swagger interchange-

ably.

In Case A Swagger was taken into use in late 2017, and remains in use to this day as the tooling eco-

system for Case A’s APIs. The main reason why Swagger was taken into use was to provide a develop-

ment interface for the customers, as the integration between Case A’s product and the customer’s software

was being developed simultaneously on both sides. Another big reason to have taken Swagger into use,

was the ability to create documentation straight out of the code itself, rather than having to document

everything by hand. Previously, Case A used to have paper documentations on its software integrations,

which mostly pertained to customer use-cases rather than internal technical comments: Those were

handled in the code itself and in comments of the code. Swagger allows documentation to be created in a

much more simple fashion, and thus increases developer efficiency.

Dotnet Core

Dotnet Core, which was renamed to .NET in late 2020, is an open-source general-purpose development

platform provided by Microsoft that has cross-platform functionality and is lightweight, fast and modular

[DNC16, DNC20]. It is used to create software solutions that require to be run across multiple devices,

from backend servers to mobile devices, as it works agnostically over all of these devices. It uses NuGet

packages to achieve architectural modularity, which can be added or removed to projects as required.

Dotnet Core is a lighter version of .NET with an emphasis on performance and modularity.

Dotnet Core fully supports C#/C++/CLI and F# languages, and can be used with Visual Studio 2017/2019

or later. Other IDEs are also supported, such as Visual Studio Code and VIM [DNC20].

In Case A, Dotnet Core was taken into full use in 2017, and has been in use ever since, with an update

from .NET Core 2.x to .NET Core 3.x taking effect in late 2020. It was added to the software stack be-

cause JSONAPI needed to be very fast. It also served as a useful springboard with other tech-moderni-

zations.

Entity Framework Core

Entity Framework Core (EFCore) is Microsoft’s cross-platform data-access framework for .NET that can

function as an object-relational mapper (O/RM), which enables developers to work with databases by

18

using .NET objects, rather than having to create a great amount of custom data-access code to do the same

[LeJ20,EFC20].

Case A had used PETAPOCO for nearly all of its object-relational mappings since early 2015’s, before it

slowly started moving towards using EFCore, which started happening with the adoption of JsonApi-

DotNetCore in 2017. This shift picked up more speed in 2018, when Case A started to use specialized

business logic organization within the software, and took EFCore as the main focus for its O/RM needs.

For the modernization that happened in 2019-2020, EFCore was used as one of the key components in

conjunction with microservices, and is now in more wide-spread use within the codebase.

For Case A’s modernization, the micro O/RM Dapper [Dap20] was also used as a way to streamline some

issues and legacy tables during the process.

Asp.net Core

Asp.net Core is an open-source cross-platform web framework provided by Microsoft, and it runs on

.NET, .NET Framework and on Windows [ANC16]. Its main uses are building web apps and services,

internet of things (IoT) applications and mobile backends, and is platform-agnostic for ease of use. It can

be used to deploy directly into the cloud or local servers. It is a direct successor, and combination of,

ASP.NET MVC and ASP.NET Web API.

Case A adopted Asp.net Core 3.1 for the modernization effort’s backend framework in 2019, and the

current plans are to upgrade to 6.0 in the near future.

2.3.3. Developer team structure

Before the modernization, Case A had been using a team-based approach, with a sprint-based rotation that

allowed all of Case A’s developers and testers to get familiarized with all of the parts of Case A’s product.

But with the onset of the modernization, this came under scrutiny, as the new methods, especially in rela-

tion to microservices, allowed for more modular and segregated development practices: Specialization on

specific parts of the software was now more viable, and doing so would allow for faster turn-around on

new features, testing and bug-fixing. This would also simplify role-division, as specialization would

enable more stability between sprints.

The structure for the teams was given consideration, and what was eventually chosen was a modified

Squad based structure used by Spotify [KIS12]:

19

● Squad: A modified agile Scrum-team, designed to mimic a small start-up, where each member of

the squad works with each other in close proximity who self-organize and decide on their own

methods on how to go about development. The members of a squad have the tools, skills and

knowledge to design, develop, test and deploy their part of the software into production inde-

pendently. A squad has a long-term mission of some kind within the software, such as improving

and scaling the UI, handling the back-end scaling or developing a specific business logic part of

the application. Squads do not generally have a formal lead, but they do have a product owner,

whose primary duty is the prioritization of the squads workload. These product owners communi-

cate with other product owners within the organization to maintain a roadmap of overall develop-

ment for the organization, and they also maintain matching product backlogs for their respective

squads.

● Tribe: A tribe is a collection of squads, preferably amounting to less than 100 people or so. Each

tribe has a tribe lead, who will work to provide the best habitat for each of the squads within the

tribe.

● Chapter: A chapter is a cross-squad team within the same tribe, with similar areas of competence

and responsibility, such as: Testing chapter, UI chapter, backend chapter.

● Guild: A guild is a more general and flexible chapter, which can comprise members from multiple

squads from multiple tribes. A guild comprises people who have the same areas of inte- rest, who

want to share resources and knowledge about this area of interest. This area can be about testing,

agile coaching, web technologies etc.

While the Spotify squad model was taken as a basis for the new structure within Case A, it ended up get-

ting modified towards the end of the modernization: Case A ended up mainly using squads and chapters.

This was mostly due to Case A being relatively small, so adopting tribes and guilds would not have been

very feasible for the organization.

After the modernization, Case A has 4 squads: Two specialized software development squads for the two

main parts of the software, infrastructure software development squad as well as a sales and management

squad. Each development squad also includes testers and support personnel.

20

3. Research Methods

In this chapter we cover what research methods we used to find information on modernization and legacy

systems, as well as what methods we used to gain data about the modernization efforts of Case A in speci-

fic, and what the experiences of the employees were on this modernization.

3.1. Research environment

The study plan for the thesis consisted of both an e-mail survey and several in-depth questions, as well as

the literature reviews from the background material as data collection methods.

Case A was introduced briefly before, but it is useful to add in additional information about the company,

as it was the research environment for the thesis: Case A is a small-sized company, with around 24

employees, accounting for small fluctuations. The software development teams account for about 70% of

this personnel, including testers and the infrastructure team. Case A began its operations in the early

1990’s, but it pivoted to being mainly a software development company in 2016, so considering its long

operational history, Case A’s period of time as a software developer has been relatively short.

3.2. Survey and in-depth questionnaire

We used an email survey and several in-depth questions with the developers and other employees within

Case A to gather information on the modernization effort within Case A.

The survey was originally sent to 24 of the employees within Case A, 12 of whom were developers and

12 who were in software support or lead positions. Out of the 12 developers, 3 were senior developers,

one was the CIO of Case A, one was the solution architect of Case A, 2 were lead developers, one was a

reporting specialist, while the remaining 4 were software developers. The exact composition of survey re-

cipients and other details is shown in Table 1. Software Developer 1 and 2 are marked separate from the

others, as they answered the in-depth questionnaire.

The survey covered questions on what effects the new tools and methods had on the employees’ work and

what were their previous experience-levels on the tools and methods. The survey also covered opinions

21

on whether the new tools were helpful, and how effective the restructuring of the teams within Case A

was for them.

In addition to the surveys, there were 6 in-depth questionnaires sent over email, which had more specific

questions about the modernization change and their experiences with it. These were sent to 2 software de-

velopers, Software Developer 1 and Software Developer 2; The in-depth surveys were also sent to 2 other

software developers, a senior software developer and the CTO, but without replies from these recipients.

Table 1: Table of the survey recipients’ job titles in Case A, categorized between software/architecture development,

software support and management personnel. Rows listed in approximation of the recipient’s duty-load in Case A in

descending order.

Development Software support Management

CIO Senior Customer Service Manager COO

Solution Architect Customer Service Expert CFO

Senior Software Developer (3) Quality Assurance Specialist (3) CCO

Lead Developer (2) Senior Development Manager

Software Developer (2) Project Manager

Software Developer 1 Product Owner

Software Developer 2 Director of People and Culture

Reporting Specialist

Survey composition

The very first question of the survey was to establish the role the recipient has within Case A, be it Deve-

loper, Tester, Product Owner or other, as this sets the basis of the weight on how the new technologies and

methods used in modernization might affect them.

The email survey was then composed of questions with a rating of 0 to 10, asking the recipients on the

effect of the new technologies and methods on their work, and how much previous experience they had in

using those technologies and methods. They were also asked to rate on how much of an effect the general

modernization effort had on their work, and to rate their general opinion on the new tools and methods.

The technologies and methods that were covered in the survey were Microsoft Azure, Angular, Docker,

Syncfusion, Material Design, OpenAPI/Swagger and Dotnet Core. We also asked the recipients to rate

how the team restructuring affected them and how they felt about it.

22

Additionally, there was a free comment question at the end of the survey, for any additional comments

and notes the recipients might have had.

The full survey is attached to this thesis as Appendix A.

Questionnaire protocol

The in-depth questionnaires sent to the recipients focused on getting more granular answers from specific

recipients. The in-depth questions consisted of three main questions, and one free comment field. In the

questions, we use the word modernization to refer to the software modernization in specific. The

questions were:

Q1: In general, what are your opinions on using the new tools after the software modernization

finished?

Q2: Why was modernization important for the company?

Q3: If another modernization change should take place in the future, would you like to change

anything in the implementation or planning of such a change?

With these questions, we aimed to gauge the acceptance of the new tools and the opinion on moderniza-

tion and how it should move forward.

The in-depth questions were sent specifically to the development team, the titles of which are shown in

Table 1 the Development column, as they could provide an expert’s opinion on the matter.

The in-depth questionnaire, and its answers, is attached to this thesis as Appendix B.

3.3. Literature review

For the purposes of this thesis, we used a literature review to find out more about previous attempts at

modernization, what pitfalls they can have and what methods and techniques could be used for such a

change. The search for literature to use in this thesis started by using the Scopus citation database [Sco04]

with “(usability OR ‘user experience’) AND agile” as the initial search terms, with another search term

“modernization AND ‘computer science’ “ used afterwards. These initial searches together yielded a good

amount of starting literature from which to begin research, including [Kal17] and [Ber99]. In addition,

white papers published by companies specializing in software modernization were used to gather further

data, such as [Alt19]. Information was also gathered directly about the tools from the specific companies’

23

websites providing the tools, such as [Azu10] and [Mat14]. Supplemental data was gathered mostly

through snowballing backwards and forwards from the original materials’ references.

Modernization strategies

As several enterprises and companies have become keenly aware of the demerits of clinging to old tech-

nologies, several different modernization strategies, some concerned with a decomposition of a monolith

into microservices [Kal17,FB19], have appeared over the last two decades [Mal10,Alt19]. In particular,

Balalaie et al. [BHJ15,BHJ16] outline several microservice migration patterns, including the problems,

solutions and situations where they could be used.

Because different companies are often in differing situations, with varying team skills, resources, require-

ments etc., there is no silver bullet strategy that can work with all situations, so a situational-method-

engineering (SME) [HaA97] approach is usually needed to find the correct strategy for the scenario

[BHJ15].

Seacord et al. [SPL03] outline three high-level modernization strategies that can be used for software

modernization:

● Maintenance:

○ This is an iterative and incremental strategy that involves UI/UX improvements, perfor-

mance optimization and database migration. These changes are usually small, and busi-

ness logic and core architecture is usually unchanged. Migration to using cloud-based ser-

vices can happen in this strategy.

● Modernization:

○ More extensive than Maintenance, but still conserves a significant part of the existing

system. Seeks to do enhancements to the core product: Architecture optimization, code

refactoring, UX updates or general performance optimizations are included, without sig-

nificant changes to the core business logic. May include restructuring of the existing

software.

● Replacement:

○ Existing legacy or outdated software features of the software system are identified, and

then the features that are to be kept are re-created from the ground up, using modern

technologies for improved performance. This is the most time and resource consuming

strategy, as it requires the complete re-creation of existing features. This strategy can be

24

implemented either incrementally over time, or by doing it all as one large project and

getting all the features replaced when the project is finished.

These high-level strategies offer a guideline on modernization, and there are multiple ways to perform

each of these, depending on the needs of the software system and company in question.

These strategies can further be categorized into two different categories: Black-box modernization and

white-box modernization [SPL03]: Black-box modernization involves evaluation and investigation of the

inputs and outputs of the system that is being modernized, and knowing how its interfaces work. Using

this information, the system can be, for example, wrapped by a new software layer that hides the old sys-

tem’s complexity and can then use a modern interface [SPL03]. This can be achieved by using Azure or

other cloud-based solutions, and having the outputs be interpreted and analyzed by them; Azure Applica-

tion Insights can be used for this. While black-box modernization can only involve inputs and outputs of

the system, it may become necessary to alter the underlying code, to add telemetry event hooks for Azure

to use, for example. In this case, the line between black-box and white-box modernization can become

less distinct.

White-box modernization on the other hand is more involved than black-box modernization: This is the

process that is often referred to as software reengineering, and white-box modernization requires under-

standing the internal procedures of the system to be modernized, rather than only its inputs and outputs.

Software reengineering in the case of modernization can be defined in a way that the old software system

is to be fully evaluated, and then rebuilt in a new more modern format. This procedure can take the form

of replacing the entire system, or only parts of it with the new, rebuilt parts, and then this new form in its

entirety is implemented into production use [Mal10].

Modernization methods and techniques

Aside from the general strategies and categories in which they belong, there are also multiple different

modernization and migration patterns, methods and techniques that developers and management can

choose from when they are implementing and planning the modernization. We cover some of these

techniques next, as there is a good deal of variance in the ways a modernization can be implemented with

them.

There are multiple different modernization techniques that can be used in modernization, fitting different

situations and used technologies, as explained by Altexsoft [Alt19]. The first modernization technique is

encapsulation, which is a wrapping modernization technique [SPL03]. In this technique, the old legacy

25

system is left mostly intact, and is then accessed via an API. This is the least invasive technique of mo-

dernization, but it does not address problems already present in the old system itself. It is a useful

technique when the underlying code of the old system is of high value, and there are no significant issues

in continuing to use it.

Another technique that can be used is rehosting, which is a data migration technique, where the old sys-

tem is hosted on a different physical, virtual or cloud-based infrastructure without making changes in the

underlying code. This makes it a relatively fast technique to use in modernization. It offers flexibility,

lower physical space constraints, greater scalability and better stability, depending on what hosting solu-

tion is used: Rehosting to a cloud-based infrastructure can offer the greatest benefits these days, and can

also be used for replatforming and refactoring techniques. Cloud-based infrastructures can have their own

issues, however, as addressed in chapter 2.3.2.1.

There is another data migration technique aside from rehosting: Replatforming. In this technique, the plat-

form of the system is migrated to a new runtime platform while making only minimal changes to the un-

derlying code, leaving its structure unchanged. This technique can be used for cloud migration without

making the system being modernized completely cloud-native, which would also include refactoring the

underlying code.

Which leads us to the next technique, that of refactoring: This technique involves restructuring and opti-

mizing the existing code without changing its external behavior. This can remove or mitigate fossilization

and technical debt from the codebase. By updating the codebase, the organization undergoing moderniza-

tion can take full advantage of, for example, cloud-based features, if cloud-migration is also a considera-

tion during the modernization.

Yet another technique for modernization is rearchitecting, which is the most synonymous technique to re-

engineering, and involves gathering requirements from existing legacy codebase/application and redeve-

loping them on new platforms using new techniques [Mal10]. Examples of this technique would be re-

engineering to use service-oriented architectures or microservice architecture.

There are two modernization techniques that seek to remake the application from the very beginning:

Rebuilding and replacing. Rebuilding involves rewriting the application completely, while retaining the

scope and specification of the original application. This allows for redesigning the application to involve

new features, functionalities and processes that can be used with the new technologies being adopted.

26

Replacing is more drastic than Rebuilding, as it will replace the existing application and codebase whole-

sale, with a new scope, specification and design, rather than attempting to modernize its parts.

Table 2: Table on different modernization techniques and methods [SPL03, Mal10, Alt19].

Description Pros Cons

Encapsulation Old system is left intact, and
an API is added to access it.

Structure of the code is left intact.
Fastest and least invasive technique.

Does not fix problems present in
the system.

Rehosting Old system is hosted on a
new infrastructure, without
modifying the internal code.

Structure of the code is left intact.
Fast and flexible, and can lower physical
space constraints as well as improve scala-
bility and stability.

Does not fix problems present in
the system. New infrastructures
can introduce additional issues.

Replatform The platform of the system is
changed, with minimal chan-
ges to the underlying code.

Structure of the code is left intact.
New platforms can offer new solutions,
such as cloud-based platforms.

Does not fix problems present in
the system. New platforms can
introduce additional issues.

Refactoring Restructures and optimizes
existing underlying code
without altering external be-
havior.

Can address many problems present in the
system, removing fossilization.
New code can take advantage of more mo-
dern features, tools and methods.

Time-consuming.
Requires having the legacy code
under control.

Rearchitecting Redevelops the required
functionalities of the old sys-
tem on new platforms using
new technologies.

Can address many problems present
in the system, removing fossilization.
New code can take advantage of
more modern features, tools and methods.

Time-consuming.
Requires having the legacy code
under control.

Rebuilding Rewrites the application in
question from scratch, using
the existing scope and re-
quirements.

Can address all of the issues present
that originate from the underlying code.
New code can take advantage of more
modern features, tools and methods.
Only requires the original scope, require-
ments and design.

Very time and resource con-
suming.
Does not address issues stem-
ming from scope, specification
or design of the system.

Replacing Rewrites the application in
question from scratch, using
the new scope and require-
ments.

Can address all of the issues of the system.
New code can take advantage of more mo-
dern features, tools and methods.
Requires no prior knowledge of the original
system.

The most time and resource con-
suming technique.

As can be seen, there are multiple different techniques on how to approach modernization, and they im-

pact the application in different ways: Encapsulation, rehosting and replatforming concern the technology

platform of the application, while refactoring and rearchitecting can solve issues in the codebase and

architecture itself. Rebuilding and replacing on the other hand are more comprehensive changes to the

application, which can involve changes in all aspects of the system and its peripherals [Alt19].

27

The choice of modernization technique depends on the application being modernized: Encapsulation, re-

hosting and replatforming fit applications that have no issues in the existing codebase, whereas refacto-

ring and rearchitecting can be used to fix underlying code-issues, as mentioned before. If there are deeper

issues with the application, rebuilding can fix these issues, as long as the overall design and specifications

are still valid; If not, then replacing the application wholesale should be considered, as the necessary

designs and specifications can be much different at the time of modernization than they were at the onset

of the application. A short summary of the modernization techniques is listed in Table 2.

Many third-party companies offer commercial-off-the-shelf (COTS) solutions to modernization, which

can mix and match many of the technologies and strategies examined here, but these packages can be li-

miting should the organization undergoing the modernization wish to reuse existing business logic or ha-

ve a more direct hand in the modernization [Mal10].

Microservice migration patterns

Modernization through migration to the cloud by using microservices is a very difficult task in itself, even

without considering the other techniques and strategies of modernizing software otherwise. As with mo-

dernization in general, microservice migration can happen in many different situations, in different kinds

of organizations with differing skills and technologies in use, and as such the situational-method-enginee-

ring (SME) is proposed [HaA97]. To facilitate this, Balalaie et al. [BHJ15,BHJ16] propose 15 migration

patterns with associated technology suggestions from which the method engineer in charge can select and

compose the required ones, based on the modernization project’s requirements, constraints, scope and ot-

her requirements; From this, an overall migration plan that is specific to the current situation can be craf-

ted.

The following microservice migration patterns, or more accurately steps to help finish a microservice

migration, are defined by Balalaie et al. [BHJ15]:

Table 3: Table on microservice migration patterns [BHJ15].

Pattern Description Technology
Stack

Enabling the
Continuous
Integration

Continuous integration (CI) allows the developers to integrate their work with other de-
velopers' work as early as possible, helping to prevent future conflicts with each others' work.
This is the first step towards continuous delivery (CD).

Gitlab,
Artifactory,
Nexus, Jenkins,
GoCD, Travis,
Bamboo,
Teamcity

28

Table 3: Continued

Recover the
Current
Architecture

Understanding the current architecture of the system is important in planning for migration,
as it allows the developers and planners of the migration to understand the big picture scope
of the system and information is sufficient for migration planning. In specific, understanding
the components, service, technology and deployment architectures are important to conso-
lidate a common understanding of the whole system. Documenting the current architecture is
optional, as it will cease to exist after the modernization; Rather it is important that the team
understands the architecture while the modernization is taking place [BHJ15].

Decompose the
Monolith

Decomposing a monolithic system with a complex domain into smaller chunks is an
important task, and how to do this and how big the resulting chunks should be is a non-trivial
issue. For example, domain-driven design can be used to identify subdomains of the business
the system is operating in, as is a good candidate for the initial decomposition. After the
initial decomposition, each subdomain can constitute separate bounded contexts which rep-
resent deployable units, the size of which can vary and change.

Decompose the
Monolith
Based on Data
Ownership

Decomposing a monolithic system based on data ownership involves finding distinct sets of
data entities in the monolith that can be grouped together and have a single unique owner,
which are then packaged together into being a service. Each of these services can then be
modified and created by only their corresponding service. The size of the services created
through data ownership decomposition are heavily contextual, and depends on the entities
located within the system.

Change Code
Dependency
to Service Call

After a software system has been decomposed into a microservices architecture, it becomes
important to decide when it is and when it isn't appropriate to change any code-level
dependencies to service-level dependencies. Keeping the services code separate is recom-
mended, as build processes of other services may fail as a result of shared code. Sharing
functionalities as separate, isolated services or as dependent services is a good practice, as
this also allows for independent scaling of the services and decouples the services code.

Introduce
Service
Discovery

Service discovery stores addresses of each service instance, as the new microservices need to
be able to locate each other dynamically: When a service is first initiated it registers itself and
then sends periodic heartbeat signals to the service discovery. This allows the registry to
contain a list of all available services at all times, which can then be easily located from an
edge server, load balancer or any of the other connected services.

Eureka, Consul,
Apache
Zookeeper, etcd

Introduce
Service
Discovery
Client

Each service should know the address of the service discovery and register itself to it during
the service's initiation. They should then follow the heartbeat signal procedure as above, and
as long as the heartbeat signal is sent, it is maintained in the service discovery's list of
services. The service instance can then be terminated by stopping the heartbeat signal from an
instance, or explicitly informing service discovery of the instance's termination.

Eureka is a Ser-
vice Discovery
which has a
Java client imp-
lementation for
its server ver-
sion.

Introduce
Internal Load
Balancer

An internal load balancer can be implemented in each of the services, which fetches a list of
available services from service discovery. The load balancer can then balance the load
between instances using local metrics, so that none of the services are under undue stress:
Using this, each service can have their own load balancing mechanism that is specific to their
context. This method is not centralized code-wise, and a separate load balancer needs to be
made for each of the programming languages in use amongst the services.

Ribbon is an in-
ternal load ba-
lancer for Java
that works well
with Eureka, a
Service Disco-
very.

29

Table 3: Continued

Introduce
External Load
Balancer

Alternatively to the above, an external load balancer is implemented as a separate component,
such as a proxy or an instance address locator, which still uses service discovery to gather the
list of service instances. There are some service discovery options with their own load
balancer built in, which could be used instead of another separate component. With an
external load balancer local metrics cannot be used, and neither can different clients have
their own customized load balancing strategies.

Amazon ELB,
Nginx,
HAProxy,
Eureka

Introduce
Circuit
Breaker

A circuit breaker can be a proxy to a remote client which monitors the recent responses from
the service provider. This solves an issue with failing fast in cases where a service is
unavailable, as when a service is available the circuit breaker does nothing and is in a closed
state, but when a service is unavailable a response or an error-message is sent to the end-user:
This state is called an open circuit, and is achieved when enough failed responses have
passed a user-defined failure threshold. A retry connection can also be included in the circuit
breaker, after a user-defined timeout.

Hystrix

Introduce
Configuration
Server

To modify the running service instances without redeploying them after every change, a
separate repository for software configurations can be used. While there may be a need for
synchronizing the repository with the source code repository when changes happen in the
configuration keys, they should evolve independently from each other. Any changes in the
configuration repository should be propagated to the corresponding running service instances.

Spring Config
Server,
Archaius

Introduce
Edge Server

Having an edge server applies a layer of abstraction that can handle dynamic routing based
on predefined configurations, with the service instance addresses for routing the incoming
traffic being fixed, hard-coded or fetched from service discovery. This solves the issue of
hiding the complexity of the system from the end-user, as they would only be interacting with
this abstraction layer, and as such would never be exposed to the complexities of the internal
structure of the system. Usage and status of the system can also be monitored within this edge
server layer, as all traffic between the users and the system goes through this layer.

Zuul

Containerize
the Services

Containerization is the act of creating container images for the services and storing them in a
repository during the continuous integration pipeline. This can solve issues stemming from
developers having different software environments, as the container images can be run on any
environment and produce the same results in each of them [PoN20].

Docker

Deploy into a
Cluster and
Orchestrate
Containers

A cluster of computing nodes is difficult to manage, therefore a management system that can
deploy the services container images on-demand, with a specified number of instances on
different nodes is recommended. This cluster management tool should also be able to handle
service instance failures and provide a means for auto-scaling the services it manages, as well
as providing the means to define the deployment architecture of services declaratively.

Mesos + Mara-
thon,
Kubernetes

Monitor the
System and
Provide
Feedback

Monitoring and logging to gather information, e.g. CPU and RAM usage, and sending them
to a monitoring server should be added for each of the services. In the monitoring server, this
information can then be parsed and aggregated into information that can be queried
efficiently by the services team. This helps development to refactor the architecture and code
to remove performance bottlenecks and other anomalies.

Collectd +
Logstash +
ElasticSearch +
Kibana

The patterns suggested in Table 3 follow a step-by-step process of microservices migration process, with

technologies and methods of how to avoid possible pitfalls in a generic microservices migration process.

While the process is contextual for each specific system, as there is no silver bullet for all systems, it does

30

provide a good guideline to follow on what steps should be taken during the process: The method engi-

neer, or the team of planners for the migration, can select what patterns they require and use only those

from the repository illustrated here; It is important that the planners and engineers understand the con-

textual needs of the migration. Adding to the repository of these migration patterns is encouraged, as new

patterns and contexts can only augment the set described here [BHJ15]. The examples in the proposed

technology stack for each pattern is very flexible, for example there are a great many monitoring solutions

available, such as Azure Application Insights [Azu10] as used by Case A.

31

4. Risks and challenges of software modernization

As with many large changes in operational and technological practices, modernization can carry a great

amount of risks and challenges that must be taken into account and overcome. In general these can be se-

parated to organizational challenges and architectural or technological challenges.

Bergey et al. [Ber99] list several key reasons why modernization efforts can fail:

Table 4: Table on the key reasons for modernization effort failure, as well as the sub-chapter where it is

covered[Ber99].

Reason for failure Subchapter(s) that covers the failure

The organization inadvertently adopts a flawed or incomplete reengi-
neering strategy

Subchapters 4.1. and 4.5.

The organization makes inappropriate use of outside consultants and
outside contractors

Subchapters 4.2. and 4.7.

The work force is tied to old technologies with inadequate training
programs

Subchapter 4.2.

The organization does not have its legacy system under control Subchapter 4.3.

There is too little elicitation and validation of requirements Subchapters 4.3. and 4.4.

Software architecture is not a primary reengineering consideration Subchapter 4.8.

There is no notion of a separate and distinct reengineering process Subchapter 4.9.

There is inadequate planning or inadequate resolve to follow the plans Subchapters 4.1. and 4.7.

Management lacks long-term commitment Subchapters 4.4. and 4.7.

Management predetermines technical decisions Subchapters 4.4. and 4.7.

We will cover the reasons listed in Table 4 in more detail, along with other challenges and risks in the

following subchapters.

4.1. Modernization strategy and ensuring improvements

One of the initial greater risks of going forward in modernization, is going forward without a clear

planned-out strategy [BHJ15]. In such a situation, the process becomes more trial-and-error, and is prone

32

to wasting time and even leading to a wrong solution [BHJ15] that either does not work correctly or does

not improve upon the existing system.

A flawed or incomplete modernization strategy can lead to severe issues in the modernization: Some-

times, the problems that occur during modernization stem from the fact that wrong issues are being add-

ressed instead of issues that were the actual problem [Ber99], and sometimes all of the components and

steps aren’t being addressed in the strategy.

This leads to another risk: Ensuring that the planned modernization improves the product in some aspect.

A good strategy greatly mitigates the risk of this happening, but as modernization and reengineering can

take a long time depending on the scale of the product being modernized, it is possible that by the time the

modernization process ends the planned improvements do not match the current situation, and another

round of modernization has to take place.

In general, if the starting strategy adopted for the modernization is flawed in some respect, it can have

wide-ranging consequences to the modernization effort at large. As these strategies represent high-level

choices for the modernization, it is paramount that a modernization effort is well-thought out at its onset

[Ber99]. Analyzing and assessing the state of the legacy software should be a part of this strategy, as the

legacy software system might actually serve as a viable basis for the modernization instead of something

to replace wholesale during modernization [Alt19].

4.2. Personnel and training

A challenge and a bottleneck for many modernization efforts can be the personnel of the organization:

Developers, testers, product owners, project managers etc. must all be trained and vetted in the use of the

new technologies and methods adopted by the organization during modernization [Ber99]. Coaching and

motivating personnel to adopt new technologies and methods can sometimes even create pushback from

the personnel [Alt19], especially in the case of a ‘big bang’ modernization, where the modernization is

conducted in one large chunk as a single project. The risks originating from personnel adoption and

compliance can be lessened by employing continuous learning (CL) [NaA17], which is also known as

lifelong learning, methods and using incremental and iterative development methods for modernization

rather than ‘big bang’ style methods, which focus on making all the changes as one single project, as this

allows all the personnel to learn the new methods in smaller pieces, which helps adoption of the new

methods [Ber99].

33

New personnel and consultants brought specifically for the modernization effort can also prove a

challenge [Ber99], as they can lack the business-specific knowledge of the software required for proper

implementation of the modernization project. This can then translate to these personnel requiring more

training about the base software and the business practices, as well as having to be carefully monitored by

employees and managers who have business-knowledge of the base software.

4.3. Documentation

One of the biggest risks and a challenge in any decently-sized change in operational procedures or

adoption of new technologies, is documentation [Ber99]. Even in the case of smaller scale changes in

software and practices, good documentation and knowledge-base that is available to the personnel can

greatly alleviate problems with adoption and usage of those new methods. On the flipside, missing and in-

complete documentation can cause severe breaks in communication between the personnel, as there can

be cases where only one person actually knows how the new methods work, causing their workload to

increase as they must then teach the other personnel. The worst case scenario in situations like this is, if

the only person who knows the new process leaves an organization undergoing modernization, either per-

manently or temporarily: This can cause a gridlock effect within the organization if any problems arise

with the new methods, as there is no-one knowledgeable enough to investigate and fix it.

While the above low-level documentation pertaining software and technologies are a challenge even in

normal development, in a modernization process the lack of a documented project plan or a road map can

prove an even larger challenge [Ber99]. Because tactical management must be focused on a higher level

than the technologies used in a modernization effort, which is often planned by a team of interdisciplinary

engineers and experts, poor documentation of the implementation plan and roadmap of the modernization

can lead to severe issues during or after the modernization. This may be a result of members of the orga-

nization changing [Ber99], or even from simple human error, as undocumented plans that only exist in the

teams’ heads can decay and be misremembered.

4.4. Communication

Related to the challenge of documentation is communication: If the plans and roadmaps of the initial team

that plans the modernization are not adequately spread amongst the other members of the organization, it

is very possible that misunderstandings, lack of required knowledge and even disgruntlement can occur

[Ber99]: Poor and incomplete communication distorts the whole modernization effort. This can occur bet-

34

ween different levels in the organization: If the management does not properly communicate with the de-

velopers, or if the organization does not communicate properly with the users of the software, there is a

distinct risk of problems occurring. For example, the management or outside consultants can choose what

technical solutions, schedule, cost and performance the modernization effort should use by themselves

without sufficient project team input or communication. Without grassroots communication, this approach

can cause the modernization effort to fail [Ber99], as detailed planning of schedules and milestones can

only be reliably determined by studying the technical parameters of the system, which requires under-

standing the system and having specific business knowledge of the existing system.

4.5. Accessibility

One of the larger challenges for the modernization within Case A was that the software product was

required to be continuously accessible by current users and customers, without too much downtime that

might result from adopting new technologies and methods. In general, this means that an organization

going forward with modernization must allocate manpower for both the modernization and also the up-

keep of the current system. Without hiring new people, or external consultants and experts, this places an

extra burden on the current developers and their teams, which can result in slower production cycles and

less work done.

Accessibility can also become an issue when it is time to integrate the new technologies and methods to

the old system, or when moving the whole system onto different frameworks: A poorly planned-out integ-

ration can cause significant downtime or errors for the customers who are using the system [Ber99].

This is an important concern for SaaS products, such as what Case A provides, as customers who have

signed deals with such providers expect to receive what was prescribed to them in the contract they made

with the provider, regardless of any internal reorganizations or modernizations.

4.6. Integration

Integrating the new technologies coming from a modernization effort with any existing systems the orga-

nization has can become a roadblock for the whole project, especially if the organization does not have its

legacy system under control [Ber99]. This lack of control can be attributed to lack of documentation of

the legacy system, but can also stem from lack of understanding it. Aside from documentation, there

35

should be data on the maintenance costs [Ber99], configuration management, planning and project mana-

gement capabilities of the legacy system.

This thinking also extends to the other systems that the organization is using, as there can be non-legacy

systems that need to communicate with the new technologies the modernization effort brings into use, and

they also need to be understood and documented just as well as the legacy systems that are likely being

phased out with the modernization.

4.6.1 Databases

Integrating and migrating data to new databases, and providing new database solutions during the moder-

nization effort can prove to be costly and time-consuming, as this is often manual work requiring gat-

hering and systemizing all the legacy data [Alt19].

Choosing a correct database solution is very important to avoid problems down the line [Kal17], and for

microservices in specific, there are two main database patterns: Database by service and shared database

[Ric15a, Ric15b].

Database by service pattern keeps each microservice’s data private to only that service, and can only be

accessed via its own API, and the service’s transactions only concern its own database. No other services

can access this service’s database. This can be achieved by having each service own a set of tables

accessed by that service, each service having a database schema that is only for that service or each ser-

vice having its very own database server. There are several benefits to this database pattern: All services

are ensured to be loosely coupled and each service has a specific type of database best suited for their

needs. There are also several drawbacks as well, such as increased complexity in implementing business

transactions between different services [Ric15a], implementing join queries between multiple databases is

difficult and the complexity of having to manage multiple different databases.

Shared database pattern in contrast to database by service uses a single database that is shared by multiple

services, and each of those services are free to access the database and data of other services. The benefits

of this pattern include simplicity, as everything is handled by a single database, as well as having a good

rate of data consistency. The drawbacks, however, are that the services will be more tightly coupled,

which has to be handled during development and runtime, as each service has the chance to interfere with

other services. The chosen database might not be well-suited for all services either [Ric15b], which brings

additional concerns regarding data storage and access requirements.

36

4.6.2 Testing

There are also new challenges that stem from testing, as the old tests, which normally consist of unit tests,

integration tests and end-to-end tests, from before the modernization need to be remade and tested in turn

before they can be put into use with the new system. This is in addition to completely new tests that the

new system might require, which in the case of microservices would include component and contract tes-

ting on top of the existing tests. While the basic tests do not differ greatly between microservice archi-

tectures and monolithic architectures [Kal17], it is necessary to understand that they are still different.

As the microservices need to communicate with each other, databases and APIs, they introduce new

communication channels and boundaries between them [Kal17], which have to be taken into account

during the formulation of the testing strategy. Also, because these new communication channels and

boundaries can introduce new performance issues [Kal17], performance testing of different grades needs

to be considered for the testing strategies: End-to-end service calls should be considered as well as service

calls between single services.

Automated tests may need to be completely changed during modernization, but a modernization project is

also a good time to review any manual tests that an organization uses, and see if those can be automated

for further efficiency: Automated testing is more important in a microservices architecture, as the release

cycles are likely going to be shorter than on a monolithic architecture [Kal17], dissuading manual testing.

But as with all parts of the modernization, testing strategies must be carefully formulated at their incep-

tion, so as not to create flawed strategies that may not fit the result.

4.7. Economy

Large-scale modernization efforts can be very costly for an organization, depending on the overall stra-

tegy chosen for the modernization. As with other challenges, a flawed strategy can end up costing the or-

ganization a great deal of time, money and effort [Ber99]. These costs may not be reciprocated in the

results of the project, and this can make management apprehensive of investing in modernization, as it

can be seen as throwing money into a black hole. As project costs, schedules and deliverables can be pre-

determined by the management [Ber99], it can be very tempting for them to set specific deliverables and

timetables without consulting the project team, which can lead to poor results and a loss of resources.

37

Improper use of consultants and contractors can result in a strain on resources: While outside consultants

can provide great benefits to a modernization effort, they rarely have as much business knowledge as the

insiders of the organization [Ber99], which can lead to misunderstandings that can prove costly for the

organization. This can also be reflected in management using consultants improperly: If multiple con-

sultants are used by an organization, they may all find the same or similar issues, but even after they have

been found, the issues persist. This may be because their reports on the issues are rejected for being bi-

ased [Ber99], because the consultants do not have enough experience or credibility, or even because they

are not given enough time to actually address the found issues.

4.8. Software architecture is not a primary consideration

If there is no consideration for methodically evaluating the software architectures of the new and the old

system, and having that be one of the driving forces behind the modernization effort, it is possible that a

failure may occur in the modernization effort [Ber99]. Evaluation of the old architecture is important, and

even necessary, to know whether or not the old architecture is viable for further development; If the archi-

tecture is not viable, starting over from scratch can be considered. This further links to documentation, as

per subchapter 4.3., because the legacy architecture needs to be understood, and documentation enables

this: If the documentation on the old architecture is reliable, it can then be extended to encompass the new

architecture.

If there is no evaluation of the old architecture, it is highly likely that there will be inconsistencies bet-

ween the legacy and target systems, which leads to problems [Ber99].

4.9. There is no notion of a separate and distinct reengineering process

There are four critical elements to any modernization effort: People, technology, process, and available

resources [Ber99]. Should even one of these elements be lacking, the end-product of the modernization

effort may be of dubious quality. While software modernization parallels normal software development, it

must be considered separate from it [Ber99], on a different development track. If it is considered normal

development rather than its own process, it can be easy to overlook one of the elements critical to a suc-

cessful modernization effort, as normal development may not have such elements to consider.

38

4.10. Summary

There are a great number of complex challenges to consider in a modernization effort, especially in a mo-

ve from a monolithic legacy software to a microservices. Many of these challenges can be seen to stem

from faulty starting strategies and planning, while others can occur at any point within the modernization

effort.

From the challenges posed in this chapter, the greatest pertains to implementing a proper modernization

strategy at the outset of the modernization effort [Ber99, BHJ15]: As this strategy sets the roadmap, mile-

stones and even low-level technological choices among other considerations, it is the key for either a su-

ccessful modernization project, or a failed one; All other challenges and risks are somehow tied to the

overall strategy, and as such it needs to be done correctly to ensure success. This is not to say that a mo-

dernization strategy is set in stone once made, even if it is a very good one, as the situation can change

during modernization, necessitating changes or amendments to the strategy: Personnel can change, data

may be lost, some key technology may become unavailable etc. A good modernization strategy therefore

should have some flexibility in its implementation. For example, the technologies to be used in the project

should have alternatives to choose from if the initial choices become unviable, or that there are backup

personnel to fulfill project roles if the original members become unavailable. These can be accounted for

by the modernization strategy, but it requires certain flexibility from it instead of a rigid adherence to the

set rules.

With a good modernization strategy that is properly scoped and flexible to the modernization needs of the

organization, the chances of a successful modernization are much increased, but it is still not the moderni-

zation strategy in itself that guarantees success: It is important to keep in mind that problems can occur

whenever before, during or even after the modernization, and there is no silver bullet solution to them all.

39

5. Results

In this chapter we collate the results gained from the survey and in-depth questionnaire, as well as com-

pare the gained results from these to the guidelines and advice gathered from the literature reviews.

5.1. Survey results

Out of the 24 employees the email survey was sent to, 7 replied to the emails. While this is only a third of

the wanted replies, it does allow us to create a dataset that can be analyzed. A more thorough breakdown

of the recipients of the survey can be found in chapter 3.2, Table 1. As the survey was sent out during a

busy time of the modernization effort, it can be speculated that many of the recipients did not answer due

to having no time.

The breakdown of the 7 respondents can be seen in Table 5, and the recipients who did not respond to the

survey can be seen in Table 6.

Table 5: Table of the survey respondents’ job titles in Case A, ordered as per Table 1.

Development Software support Management

Software Developer (2) Customer Service Expert Project Manager

Software Developer 1 Product Owner

Software Developer 2

Table 6: Table of the recipients job titles of the survey who did not respond to the survey, ordered as per Table 1.

Development Software support Management

CIO Senior Customer Service Manager COO

Solution Architect Quality Assurance Specialist (3) CFO

Senior Software Developer (3) CCO

Lead Developer (2) Senior Development Manager

Reporting Specialist Director of People and Culture

Due to the varied positions of the respondents, the survey results are charted in two parts: All respondents

and only developers. This is done to have more granularity in the results, as non-developers may have no

experience or experience no effect from the adoption of new technologies and methods. But as we also

40

included more general questions in the survey relating to the modernization, their responses are also im-

portant to consider.

The data used for the averaging and calculation of the results in this chapter are attached in Appendix C.

5.1.1 All respondents’ results

From the results of the survey on how effective on the respondents’ working methods the change to new

technologies and methods were, we can see that the change to using Azure and OpenApi/Swagger had the

most effects, when all respondents are considered, as illustrated by Figure 5. For the purposes of this the-

sis, we use an average usage effect estimate in Figures 5, and 7, which is the average of the respondents’

own estimates on a scale of 1 to 10 on how much the listed technology or method impacted their work. In

Figures 6 and 8 we use an average previous experience estimate, which is the average of the respondents’

own estimates on a scale of 1 to 10 on how much previous experience they have had with the listed

technology or method. The resulting values are rounded to the first decimal for easier readability.

The estimated average effect for the change on using both Azure and OpenApi/Swagger were 6.6, when

averaged against all of the respondents’ answers, so they had a marked effect on the practices within Case

A. Docker and Angular had the highest effect after Azure and OpenApi/Swagger, with Docker averaging

4.7 and Angular averaging 4.6 on their effectiveness, according to the respondents of the survey. Among

all the respondents, the three lowest effectiveness estimates were Dotnet at 3.7, Syncfusion at 3.6 and Ma-

terial Design at 2.7.

41

Figure 5: Average effectiveness on working methods among all respondents.

As for the previous experiences all of the respondents had from the new technologies and methods, very

few of the respondents had much experience with the new tools, with the exception of OpenApi/Swagger,

as can be seen from Figure 6.

From Figure 6 it is clear to see that OpenApi/Swagger was the one technology all respondents were most

experienced with, with an average value of 4.4. The closest next technology was Dotnet at 2.7, with Doc-

ker, Angular and Azure tailing them with 2.1, 2 and 1.4 respectively. Material Design at 0.9 and Syncfu-

sion at 0.6 were the technologies the respondents were the least familiar with.

In general, we can see that the majority of the respondents were either unfamiliar with many of the tech-

nologies and methods covered by the modernization, with the most knowledge being with the ones expe-

rimented with previously by Case A, with OpenApi/Swagger being the standout technology.

Despite the lack of experience as listed in Figure 6, we can see from Figure 5 that the effectiveness of the

modernization on work had an appreciable impact.

42

Figure 6: Average previous experience on technology/method among all respondents.

5.1.2 Developers’ results

As many of the new changes in technologies and methods pertained to the usage of new programming

tools and interfaces, the developers reported overall higher usage effect estimates on nearly all of the

technologies, as can be seen in Figure 7.

43

Figure 7: Average effectiveness on working methods among developers.

Much like the results of the all respondents on effectiveness of the modernization, the developers reported

that the usage of Azure had a high effectiveness on their work, but a lesser impact from OpenApi/Swag-

ger. The latter is likely a result of Case A having been using OpenApi/Swagger among developers for a

longer time, so the modernization only added to its usage, rather than introducing something completely

new for the developers. This is also reflected in figures 6 and 8, where the overall previous experience

with OpenApi/Swagger is by far the greatest.

Out of the new technologies, Microsoft Azure and Dotnet Core had the highest effectiveness in develo-

pers’ work, with an average of 5.8 each. Docker had the next most effect on work, with an average of 5.5,

and Angular was close behind it in effectiveness with an average of 5.3.

OpenApi/Swagger had an average effectiveness among developers of 4.8, with Material Design and

Syncfusion coming in with having the least effect in the developers work with 3 and 2.5 respectively.

44

Figure 8: Average previous experience on technology/method among developers.

As was mentioned, we can see from Figure 8 that the developers had the most experience with OpenApi/

Swagger before the modernization with a respondent average score of 6.3; As OpenApi/Swagger had

been previously used by Case A by the developers in a more limited fashion, these results are not unex-

pected. Experience with Dotnet came in second with an average of 4.8, and Angular and Docker were

evaluated at nearly the same experience levels, with both of them averaging out at 3.5.

Material Design and Syncfusion were the tools that the developers had the least previous experience with,

coming in at 1.5 and 0.8 respectively; Experience with UI, UX and frontend elements among Case A’s de-

velopers were not very high at the time of the survey, which explains the low numbers here.

5.2. In-depth questionnaire results

Out of the 4 employees the email in-depth questionnaire was conducted with, 2 replied with comprehen-

sive answers. As with the survey, this allows us to create a small dataset from the answers. Both of the

questioned employees were developers, one of them a senior developer.

45

The questions and answers from each of the respondents will be covered in order, with a short per

question analysis based on their answer. We shall call the two respondents Software Developer 1 and

Software Developer 2 respectively, as per Table 1 and Table 5.

For the first question concerning the respondents’ opinions on using the new tools after the software mo-

dernization had finished, both respondents answered that new tools and technologies are of importance to

the future well-being of organizations and its employees, bringing up improvements to development time

and employee learning and future prospects; They generally held a positive outlook on new technologies

and methods.

On the second question, concerning why the modernization was important for Case A, Software Develo-

per 1 emphasized the importance for a SaaS company with a long history to transition to new technologi-

es, as this could help build the software faster and more efficiently. Software Developer 2 pointed out the

importance of modernization on remaining competitive and efficient in the long-term; From the answers,

both developers seem to view modernization as important for the future of Case A.

As for the final question on what should possibly be changed on the implementation and planning in any

future modernizations concerning Case A, both developers highlight the importance of a more iterative

system of modernization, where smaller modernization efforts are constantly ongoing instead of making a

large project in a short period of time. Software Developer 1 brings up the importance of planning, while

keeping in mind the resources and time available.

In general based on their answers, both recipients agree that continuous development and iteration on

using and finding new tools is very important.

It is interesting to notice, that both of the recipients also agree that continuous, smaller improvements and

modernization via degrees is likely a good course in the future, rather than implementing larger moderni-

zation efforts. This is in line with the thinking found in iterative development, where each feature is deve-

loped in small chunks and tested continuously.

The full in-depth questions are included in Appendix B.

5.3. Overall modernization results

From the data in figures 6 and 8, we can see that while the overall experience level with many of the

newly adopted technologies was low to average, they did have an appreciable effect on work, as can be

46

seen in figures 5 and 7. This may be exactly because the organization in general did not have much ex-

perience with the adopted technologies, as picking up new knowledge on how to use these technologies

already causes an effect in work due to having to learn to use them.

Both Azure and OpenApi/Swagger were both relatively approachable by all of the respondents, whether

they were developers or not, as both of these tools offer easily human-readable analytics and other data

from the product, and OpenApi/Swagger had been in use as an event logger beforehand, offering insights

into transactions happening between the users and the databases.

Event logging specifically changed a great deal within the organization, as previously it had been handled

with a combination of Swagger logging from an external site, and holding internal logs within Case A’s

own database. With the advent of Azure, both of these old logging systems started getting phased out, and

were being replaced with Azure’s built-in event and transaction logging system: Application Insights.

This was further reinforced with the usage of custom transaction logging codes within the codebase itself,

enabling developers to track specific events. Swagger logging still remains in use, as taking Azure AI

(Application Insights) into use everywhere takes effort and time.

5.4. Usability before and after modernization

From the customer usage perspective, we can infer the impact the modernization had on usability, perfor-

mance and stability from the number of support tickets in Case A’s Jira system that were issued by the

customers on non-project issues: For the purposes of this thesis, we used the overall number of created

customer tickets from before and after the modernization to measure the impact of the modernization on

the customer.

Before the modernization started, in September 2018, there were 241 tickets created by the customers on

a number of issues, which included technical issues that needed programming support to solve, guidance

on how to use the system properly as well as issues that needed to be solved by a meeting with the cus-

tomer and the Product Owners. Out of these tickets, 169 were resolved within that timescale. At the very

start of the modernization, between the 1st and the 30th of January 2019, the tickets created rose to a high

of 369, out of which 357 were solved during this time. This bump also includes the seasonal post-holiday

high, which explains some of the tickets.

47

Figure 9: Trend of Jira ticket generation at the start of the modernization and after it.The dips in July, June, August

and December are due to seasonal holidays, with peaks of activity following them.

After a good deal of the modernization was already done, between 1st and 31st of July 2020, the numbers

were down to 92 created and 98 resolved. Finally, at the end of the tracking for this thesis, between the 1st

and the 31st of August 2021, the numbers were 121 created tickets and 108 resolved tickets. An illustra-

tion on the trend throughout the modernization can be seen in Figure 9.

While it would be tempting to infer that this correlation between the modernization time and the created

ticket count is a direct result from the modernization itself, there are other factors that are at play here that

are more difficult to calculate the impact of: A medium-sized customer of Case A ended its contract with

Case A in 2019-2020, which had its own impact on the ticket count, but the analysis on how large this

impact was is difficult to calculate, as during this time period new contracts were also made with new

customers. Another reason for the impact on ticket counts could be the hiring of a new customer service

expert to handle the tickets, but this was also tempered with a small company restructuring that ended

with a smaller amount of help desk personnel. There is also the possibility that long-time clients of the

software were gaining experience in using the software, or that they had better internal guidelines on

using it; This is difficult to quantify, however. And finally, we cannot discount the possibility of the

48

COVID-19 pandemic having its own effect on the number of tickets, as it would have a small effect on

nearly everything.

But even with these other factors in play, the overall trend during and after the modernization seems to

have been a lessened amount of tickets created, which can be inferred to mean that the usability of Case

A’s software has increased for the end-user. While promising, this inference should be confirmed from the

customer through some manner of feedback cycle in the future, whether it is through surveys, interviews

or other methods; This is outside of the scope of this thesis, however.

49

6. Discussion

The main research question of this thesis was about the impact of modernization on the developers of the

product, the end-users of the product as well as the product itself, and what challenges such moderniza-

tion efforts can face and how they can be mitigated with sufficient measures. While many of these ques-

tions did get answered within the framework of this thesis, there are still pitfalls and challenges related to

modernization of software products that could not be covered completely. In this chapter, we will go

through the parts of the thesis that are open to more discussion, such as how the thesis managed to cover

its research material, what limitations it had, why the research was conducted as it was as well as what

could possibly be improved in a future thesis on the subject.

6.1. Surveys and in-depth questionnaires

The decision to use in-depth questions and surveys was initially based on the fact that a modernization

effort of a software system required a varied set of multidisciplinary skills, and because those skills were

largely present within Case A itself, it was deemed to be useful to use that as a resource. This would also

allow the thesis to get a more grass-roots experience and information on the subject matter, as well as opi-

nions on the modernization itself straight from the source.

The questionnaire and survey process was completed in 2019, right in the middle of the modernization,

which also accommodated the chance of accumulating pertinent data.

The gathered answers and data provided a decent look into how the other employees, developers and

otherwise, saw the modernization, as all of them saw the modernization end-goal in a very positive light.

The new methods and technologies had an impact on most of them as well, especially on the developers,

who were the ones most directly influenced by the changes. Even though the experience level in some of

the technologies was initially low among the employees, especially concerning front-end UI development

tools like Material Design and Syncfusion, the overall results and effects remained impactful on each of

the respondents’ answers.

Unfortunately, due to the high attrition rate of the survey and in-depth questionnaire, with only 7 out of 24

answering the survey and 2 out of 4 answering the in-depth questions, the dataset for that specific part

was not large enough to draw on concrete conclusions; Out of the respondents, 4 were developers, one

was a product owner, one a project manager and one a customer relations manager. The answers provided

50

still allowed us to find out several interesting pieces of information, when looked at in conjunction with

the material from the literature review.

This could be much expanded upon in a follow-up survey and in-depth questionnaire, especially if there

would be a continuation on this thesis, as a 29.2% coverage with the surveys could use a great deal of

improvement.

The questions in the survey and the in-depth questionnaire were a bit more broad than we would

eventually have wanted them to be, and could have used more prototyping, with perhaps a round of demo

surveys. Expanding more on the actual research questions rather than honing in on the technologies would

have allowed for a more precise scope on the subject matter. Also, giving the customers and other

end-users a survey on the usability of the modernized product would have given much more insights to

the product’s usability than simply following the data provided by customers through Jira. This would be

a very useful follow-up course of action, as precise data from multiple customers on the product’s

usability after modernization could provide a great deal of insights into how the product can be developed

in the future, and could be something that Case A could explore.

Overall, the usage of a survey and an in-depth questionnaire was a useful tool for the thesis, but had many

problems in the end, mostly due to low participation rate. Pursuing respondents more aggressively could

have provided more results and answers, perhaps with follow-up emails for those who did not answer, as

it is possible that the initial message was lost or forgotten; In the case of senior developers or other senior

personnel, it may be that they were too busy with their other duties to take the time to answer. For non-de-

velopers, it may be that the subject of the survey was too much outside of their field, and writing satis-

factory answers and ratings may not have been comfortable for them.

As we could not get results from all of the employees within Case A, the results from the surveys and in-

depth questionnaires are to be considered guidelines on prevailing trends within Case A rather than the

whole picture.

While the respondents from the development side all had solid background and experience in back-end

development, none of the developers came specifically from front-end and UI/UX backgrounds, which

also reflects in the results of the surveys and the in-depth questionnaires.

51

6.2. Literature review

In this thesis we have performed a literature review over multiple different sources, with some of the main

sources having been [Ber99] by Bergey et al., [Kal17] by Kalske, M., as well as several white papers by

companies specializing in modernization such as Altexsoft [Alt19] and Capgemini [Cap19]. We also used

several papers and product documentations on the technologies used, such as with Docker and Dotnet

Core, as background material for explaining the impacts of the used technologies and new methodologies.

The usage of a literature review was decided because just having a survey and in-depth questionnaire

would not have given a thorough enough look into the background of modernization, and how it can

affect work in a company going through it. Reading through the references was very helpful in opening

up the subject matter, and using it broadened the scope of the thesis.

6.3. Limitations

As the thesis was based on an ongoing software modernization in a company, we could have a good look

at how modernization flows in practice, and the respondents to the in-depth questionnaire and survey all

had ongoing experience with the modernization. This gave a more comprehensive base for the answers in

the in-depth questionnaire and survey, as it was not based on a what-if scenario, but rather the ongoing

modernization. Unfortunately, as mentioned, we only managed to reach only less than a third of the in-

tended respondents, which decreased the accuracy of the conclusions that could be drawn from the

remaining answers.

The data gathered about end-user usage statistics from Jira were used to indicate improved usability on

the end-user side. This metric was decided upon due to it allowing us to see how the users could be using

the software throughout the modernization, and how often they were raising tickets about issues within

the software. While the figures and data show that the number of tickets created were steadily decreasing

throughout the modernization, this is only a single data point correlation, and we listed several other rea-

sons that could cause this downtick in created tickets. Whether or not this correlation is correct as we

surmise in this thesis, or whether it is due to other factors that were discussed upon when going through

the data, would require more research that is unfortunately out of scope for this thesis at the current time.

As said in the literature review part, we used a broad base of literature to try and accurately gauge the

impacts of modernization, and how it can be properly handled. As software modernization is a constantly

52

evolving and progressing concept, it is necessary to consider the impact of even single pieces of techno-

logy in a whole modernization stack. The difficult part in having a very broad scope in terms of literature

review, both in breadth and age, is that it can run the risk of losing focus on the important parts. Hopefully

the focus of the thesis, software modernization, its challenges and how to pursue it, were clear to the

reader. In the future, this is one area where we should keep the scope more concise, as while having a lot

of sources and references is useful, it can easily become difficult to find the important information.

6.4. Case A ongoing modernization

During the software modernization outlined in this thesis Case A decided to implement a constant, itera-

tive software modernization working in parallel to normal development; This would ensure that the soft-

ware product stays up to date and utilizes the newest technologies as they emerge to maintain efficiency

and usability. To facilitate this, a new development team was conceived within Case A in early 2020,

which would focus mostly on achieving this goal. This team consisted of several senior developers, with

other members of the development team rotating in and out of it to facilitate continuous learning for all of

the developers working for Case A.

The ongoing modernization team was tasked with several parts of any future modernization efforts: Re-

searching viable technologies, choosing the most appropriate one for the software product and then imple-

menting them in both the back- and front-end of the software product: At the time of writing, the software

modernization team has already implemented many of the proposed technologies for the purposes of

comprehensive development demos they chose, and the team-rotation has almost finished for all of the

developers in Case A.

The technologies adopted and moved to the demo-stage include RavenDB [Rav10] which is a NoSQL ba-

sed document database, EventStoreDB [Eve12] for event sourcing and handling and Svelte UI [Sve16] for

building front-end user interfaces; Case A is moving to implement more of the CQRS, command query

responsibility segregation, pattern for all of its programming design using these new technologies.

In addition to the above technologies in use, the Jira Atlassian issue tracker was updated to Jira Software

Cloud [Jir02] for a more decentralized solution, and Case A’s knowledge base wiki was migrated to use

Atlassian’s Confluence wiki [Con04].

53

7. Conclusions

In this thesis we have explored the impact that modernization of technologies, methods and processes

have had on a SaaS product using a real-life company as a case study. For this purpose, we used a survey

and in-depth questionnaire with the employees of that company as well as background literature reviews

to find out that impact in specific.

As RQ1, “How may software modernization affect a software product?”, is very broad in scope, all of the

conclusions of this chapter on the other research questions also apply to answering this question.

From the material and research done on the subject, we can conclude that software modernization has had

a significant impact on Case A’s product: The modernization of technology has opened doors for

additional modernization in the future, as newer technologies are more modular and supported by more

commonly used libraries and apps than legacy technologies.

As such, modernization has several benefits that have been discussed in the previous chapters of this the-

sis, but how do these benefits transfer to the end-user as improved usability, stability and performance?

Covering RQ2, “How may software modernization affect the usability of a software product for the end

user?”, the adoption of new standards and techniques in UI design and standardization of such designs,

such as with taking Google’s Material Design [Mat14], Syncfusion [Syn01] or Svelte [Sve16], all con-

tribute to creating a design for applications that are easy to use and easy to understand. This translates to a

more cohesive usage experience for the end-users. And even if the methods are not completely adopted

for usage in the app, they provide guidelines on how to make the UI better. We can infer some of the

effects from usability from chapter 5.4., where the overall number of tickets created by users has a steady

downwards trend as the modernization progresses, and while this has some caveats as covered by the

chapter, there does seem to be a positive effect to the usability from the customer’s point of view

following the modernization. This conclusion is reinforced by [Ric15c], which emphasizes how microser-

vices can be used to create less tightly coupled services, whose functionality is not dependent on the func-

tionality of other services within the same system: The failure of one service does not cause the whole

system to be incapacitated, such as can happen in monolithic systems with tight coupling. Improved log-

ging and problem-tracking through the new tools, Microsoft Azure Application Insights, OpenApi and

54

Swagger, also contribute to improving the stability of the system, as they reduce the time it takes for the

developers to locate issues in the system.

From a purely developers’ point of view, the adoption of new tools has at the same time made updating

the software simpler, as the monolith has been decomposed to smaller services that are easier to handle,

and the developer workflow was improved through those same technologies. Usage of Azure for event

logging and configuration of services has simplified both of these procedures, albeit the creation of cus-

tom Azure event logging is an ongoing process within Case A, so Seq [Seq13] logs are still in active use;

It is likely that this will continue for a while, as iterative development of the custom logs takes extra deve-

lopment time. Containerization of services with Docker has allowed for looser coupling of services within

the software system, and thus improved development by the developers not having to consider every

single connection between the different services while developing and testing the differing services. All of

these taken together answers RQ3, “How may software modernization affect the development of a

software product from a developer’s point of view?”, on the developers’ side.

As we covered in chapter 4 in depth, there are a myriad different challenges that a product undergoing

software modernization can face, which help in answering RQ4 “What challenges can modernizing a le-

gacy system that is still in production use pose?”: Be they challenges from a software perspective to

challenges coming from the environment, such as management, personnel or documentational challenges.

The challenges to software modernization documented in this thesis alone can make the task into a risky

endeavor, yet there is a high possibility of encountering unique challenges depending entirely on the

context of the software modernization task: Updating the platform of a multiplayer video game is much

different from updating the core software of critical medical devices, for example. Some of the challenges

relate to challenges included in any modernization endeavor, software or otherwise, such as the aforemen-

tioned management and personnel challenges, and have existed for as long as any kind of modernization

concepts have existed, while others are uniquely scoped to software development as it is now: People are

generally change-resistant, and may pose challenges regardless of what year it is and where it happens,

while challenges relating to moving a software from local servers to a cloud-based platform as microser-

vices is uniquely challenging for software in use today. Software in production use is no exception, for

while there are general challenges from software modernization that applies to it, it has its own unique

challenges, such as having to be constantly available to the users using it, and not breaking down for these

users while the software is being modernized.

55

In chapters 3.3 we covered several modernization strategies, methods and techniques as well as mic-

roservice migration patterns, and in covering modernization challenges in chapter 4 we arrived at several

different solutions to RQ5 “How can the challenges of modernizing a legacy system that is still in produc-

tion use be mitigated?”; The main solution to mitigating challenges to a modernization effort is a solid,

correctly formulated modernization strategy that is communicated throughout the whole company going

through it [BHJ15], as this strategy will affect all parts of modernization. The context of the moder-

nization dictates what methods and techniques are optimal for each modernization, and choosing the

correct technique for the context from encapsulation, rehosting, replatforming, refactoring, rearchitecting,

rebuilding or replacing is a key step in any modernization strategy. For this reason, it is important to gat-

her as much information about the original system as possible before modernization, as well as gathering

and documenting what the requirements of the post-modernization system are; Documentation takes an

important role here, for both pre- and post-modernization purposes. Maintaining training for all

employees on the modernization and all adopted new technologies and methods is important for miti-

gating issues originating directly from personnel [Ber99]; A maintained and comprehensive knowledge

base on the modernization also helps personnel to keep up-to-date on it, and can be used to facilitate in-

formation comprehensively throughout the workers of the company.

For systems that are in production use, one of the most important challenges to overcome is accessibility:

Maintaining a balance between development and maintenance of the SaaS -product while at the same ti-

me working on the modernization effort. For this purpose, as earlier explained, a clear and planned-out

modernization strategy is extremely important, as putting extra effort in at the planning stage will help

mitigate challenges down the line. Case A planned this issue using a specific modernization team that

worked alongside the other development teams, which concentrated only on the issue of modernization;

This modernization team had several consultants working on it, while the development teams continued

working normally on the product’s development and maintenance: This approach worked out relatively

well for Case A, as the SaaS -product kept improving simultaneously while the modernization progressed.

Most of the other solutions to challenges from and during modernization were introduced in chapter 4, so

other than the key-solutions above, we shall refrain from repeating those solutions here; What bears

repeating, however, is that all modernization situations are different, and while some of the solutions here

may work in specific cases, there are cases where they may be wrong: There is no silver bullet for moder-

nization challenges.

The results for Case A from modernization have so far been encouraging. While there have been

challenges with training personnel to use the new technologies and methods, the impact on customer-

56

generated tickets about the software as well as the effect on the product’s development cycle have been

positive enough to offset these initial challenges. The adoption of the microservices pattern has allowed

the development teams to work in a less tightly coupled fashion, enabling better parallel development, and

the new tools and continuous, iterative modernization have made the product more viable for future

development.

There still remain challenges to overcome in continuing forward with modernization, chief among them

the allocation of resources to maintain and develop the base product, while simultaneously researching

and developing new technologies to keep the product competitive with the other products on the market.

From Case A, we have seen that modernization generally benefits software products, as long as there is a

well-thought out modernization strategy to follow when implementing it: While there are many

challenges set out for modernization, they can be avoided or mitigated with proper planning and re-

search. We can also see from Case A that large batch modernizations can take a long time and place an

undue effort on the party implementing it, so having an iterative modernization development that works in

parallel to normal development can help mitigate this impact: This type of modernization can help a

product stay competitive for a long time into the future.

57

Bibliography

AA13 Apostu, A., Puican, F., Ularu, G., Suciu, G., Todoran, G., Study on advantages

and disadvantages of Cloud Computing - the advantages of Telemetry

Applications in the Cloud, 2013.

https://www.semanticscholar.org/paper/Study-on-advantages-and-disadvantages-

of-Cloud-%E2%80%93-of-Apostu-Puican/da6249af5e0df8ed36334b34c2f1010e

d19c53f4 [20.02.2022]

Aka20 Akana by Perforce, Microservices: What, Why, and How, 06.04.2020.

https://www.akana.com/blog/microservices-what-why-and-how [05.12.2021]

Alt19 Altexsoft, Legacy System Modernization: How to Transform the Enterprise for

Digital Future white paper, 2019.

https://www.altexsoft.com/whitepapers/legacy-system-modernization-how-to-tra

nsform-the-enterprise-for-digital-future/ [26.11.2019]

ANC16 Microsoft, Asp.net Core, 27.06.2016.

https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-3.1 [10.03.2020]

Azd21 Microsoft, Microsoft Azure Documentation, 2021.

https://docs.microsoft.com/en-us/azure/?product=featured [21.05.2021]

Azu10 Microsoft, Microsoft Azure, 01.02.2010. https://azure.microsoft.com/en-us/

[28.11.2019]

Ber99 Bergey, J; Smith, D; Tilley, S; Weiderman, N; Woods, S., Why Reengineering

Projects Fail, 1999. https://apps.dtic.mil/docs/citations/ADA362725 [26.11.2019]

BHJ15 Balalaie, A., Heydarnoori, A. and Jamshidi, P., Microservices Migration Patterns,

Technical Report No. 1, TR-SUT-CE-ASE-2015-01, Automated Software

Engineering Group, Sharif University of Technology, 10.2015.

http://ase.ce.sharif.edu/pubs/techreports/TR-SUT-CE-ASE-2015-01-Microservice

s.pdf [11.06.2021]

BHJ16 Balalaie, A., Heydarnoori, A. and Jamshidi, P., Microservices architecture

enables devops: migration to a cloud-native architecture, 05.2016. IEEE

Software, 33,3(2016), pages 42–52. [28.05.2021]

https://www.semanticscholar.org/paper/Study-on-advantages-and-disadvantages-of-Cloud-%E2%80%93-of-Apostu-Puican/da6249af5e0df8ed36334b34c2f1010ed19c53f4
https://www.semanticscholar.org/paper/Study-on-advantages-and-disadvantages-of-Cloud-%E2%80%93-of-Apostu-Puican/da6249af5e0df8ed36334b34c2f1010ed19c53f4
https://www.semanticscholar.org/paper/Study-on-advantages-and-disadvantages-of-Cloud-%E2%80%93-of-Apostu-Puican/da6249af5e0df8ed36334b34c2f1010ed19c53f4
https://www.akana.com/blog/microservices-what-why-and-how
https://www.altexsoft.com/whitepapers/legacy-system-modernization-how-to-transform-the-enterprise-for-digital-future/
https://www.altexsoft.com/whitepapers/legacy-system-modernization-how-to-transform-the-enterprise-for-digital-future/
https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/azure/?product=featured
https://azure.microsoft.com/en-us/
https://apps.dtic.mil/docs/citations/ADA362725
http://ase.ce.sharif.edu/pubs/techreports/TR-SUT-CE-ASE-2015-01-Microservices
http://ase.ce.sharif.edu/pubs/techreports/TR-SUT-CE-ASE-2015-01-Microservices

58

Cap19 Jiang, Z., Tolido, R., Jones, S., Hunt, G., Budor, I., Bartoli, E., Van der Linden,

P., Buvat, J., Theisler, J., Wortmann, A., Cherian, S., Khemka, Y., Championing

Data Protection and Privacy, 09.03.2019.

https://www.capgemini.com/gb-en/wp-content/uploads/sites/3/2019/09/Report-%

E2%80%93-GDPR.pdf [28.11.2021]

CaV20 Catrinescu, V., Microsoft Azure Cloud Concepts, 17.07.2020

https://app.pluralsight.com/library/courses/microsoft-azure-cloud-concepts/table-

of-contents [19.05.2021]

Con04 Atlassian, Confluence wiki, 25.03.2004

https://www.atlassian.com/software/confluence/use-cases/wiki [16.10.2022]

Dap20 Dapper, Dapper ORM 05.04.2020. https://github.com/DapperLib/Dapper

[05.12.2021]

DNC16 Microsoft, Dotnet Core, 27.06.2016. https://dotnet.microsoft.com/ [10.03.2020]

DNC20 TutorialsTeacher, .NET Core Overview, 2020.

https://www.tutorialsteacher.com/core/dotnet-core [20.08.2021]

Doc17 Docker Inc., Docker, 2013. https://www.docker.com/ [28.11.2019]

EFC20 Microsoft, Entity Framework Core documentation, 20.09.2020.

https://docs.microsoft.com/en-us/ef/core/ [12.05.2021]

Eve12 Event Store, EventStoreDB, 2012. https://www.eventstore.com/eventstoredb

[13.07.2022]

FB19 Fritzsch, J; Bogner, J; Zimmermann, A; Wagner, S., J.-M. Bruel et al. (Eds.):

DEVOPS 2018, LNCS 11350, pp. 128–141, From Monolith to Microservices: A

Classification of Refactoring Approaches, 2019.

https://www.researchgate.net/publication/326646378_From_Monolith_to_Micros

ervices_A_Classification_of_Refactoring_Approaches [06.08.2020]

Fo15 Fowler, M., Microservice Trade-Offs, 01.07.2015.

https://martinfowler.com/articles/microservice-trade-offs.html [06.02.2022]

Gar06 Gardner, D., Not just a nip and tuck, application modernization extends the

lifecycle of legacy code assets, 06.10.2006.

https://www.zdnet.com/article/not-just-a-nip-and-tuck-application-modernization

-extends-the-lifecycle-of-legacy-code-assets/ [10.12.2019]

https://www.capgemini.com/gb-en/wp-content/uploads/sites/3/2019/09/Report-%E2%80%93-GDPR.pdf
https://www.capgemini.com/gb-en/wp-content/uploads/sites/3/2019/09/Report-%E2%80%93-GDPR.pdf
https://app.pluralsight.com/library/courses/microsoft-azure-cloud-concepts/table-of-contents
https://app.pluralsight.com/library/courses/microsoft-azure-cloud-concepts/table-of-contents
https://www.atlassian.com/software/confluence/use-cases/wiki
https://github.com/DapperLib/Dapper
https://dotnet.microsoft.com/
https://www.tutorialsteacher.com/core/dotnet-core
https://www.docker.com/
https://docs.microsoft.com/en-us/ef/core/
https://www.eventstore.com/eventstoredb
https://www.researchgate.net/publication/326646378_From_Monolith_to_Microservices_A_Classification_of_Refactoring_Approaches
https://www.researchgate.net/publication/326646378_From_Monolith_to_Microservices_A_Classification_of_Refactoring_Approaches
https://martinfowler.com/articles/microservice-trade-offs.html
https://www.zdnet.com/article/not-just-a-nip-and-tuck-application-modernization-extends-the-lifecycle-of-legacy-code-assets/
https://www.zdnet.com/article/not-just-a-nip-and-tuck-application-modernization-extends-the-lifecycle-of-legacy-code-assets/

59

GiA20 Gillis, S. A., RESTful API definition, 09.2020.

https://searchapparchitecture.techtarget.com/definition/RESTful-API

[28.05.2021]

HaA97 Harmsen, A.F., Situational Method Engineering, 31.01.1997.

ISBN: 90-75498-10-1. [11.06.2021]

Jen11 Kawaguchi, K., Jenkins, 02.02.2011. https://www.jenkins.io/ [22.11.2021]

Jen21 Jena, S., Architecture of Cloud Computing, 25.03.2021.

https://www.geeksforgeeks.org/architecture-of-cloud-computing/ [06.02.2022]

Jir02 Atlassian, Jira Software Cloud, 2002.

https://www.atlassian.com/software/jira/whats-new/cloud [13.07.2022]

Kal17 Kalske, M., Transforming monolithic architecture towards microservice

architecture, 19.11.2017.

https://helda.helsinki.fi/handle/10138/234239 [26.11.2019]

KeM21 Biederman, E.W.; Kerrisk, M., Linux Programmer's Manual, 22.03.2021.

https://man7.org/linux/man-pages/man7/namespaces.7.html [29.04.2021]

KIS12 Kniberg, H.; Ivarsson, A., Scaling Agile @ Spotify with Tribes, Squads,

Chapters & Guilds, 10.2012.

https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf

[28.05.2021]

LeJ20 Lerman, J., Entity Framework Core: Getting Started, 15.12.2020.

https://app.pluralsight.com/library/courses/entity-framework-core-get-started

[12.05.2021]

LF14 Lewis, J; Fowler, M., Microservices a definition of this new architectural

term, 25.03.2014. https://martinfowler.com/articles/microservices.html

[05.12.2019]

Mal10 Malinova, A., Approaches and techniques for legacy software modernization,

01.2019.

https://www.researchgate.net/publication/267181092_Approaches_and_techniqu

es_for_legacy_software_modernization [26.11.2019]

Mat14 Google, Material Design, 25.05.2014. https://material.io/ [28.11.2019]

MHR20 Monson-Haefel, R., Getting Started with Swagger Tools, 08.17.2020.

https://app.pluralsight.com/library/courses/getting-started-swagger-tools/table-of-

contents [27.05.2021]

https://searchapparchitecture.techtarget.com/definition/RESTful-API
https://www.jenkins.io/
https://www.geeksforgeeks.org/architecture-of-cloud-computing/
https://www.atlassian.com/software/jira/whats-new/cloud
https://helda.helsinki.fi/handle/10138/234239
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://app.pluralsight.com/library/courses/entity-framework-core-get-started
https://martinfowler.com/articles/microservices.html
https://www.researchgate.net/publication/267181092_Approaches_and_techniques_for_legacy_software_modernization
https://www.researchgate.net/publication/267181092_Approaches_and_techniques_for_legacy_software_modernization
https://material.io/
https://app.pluralsight.com/library/courses/getting-started-swagger-tools/table-of-contents
https://app.pluralsight.com/library/courses/getting-started-swagger-tools/table-of-contents

60

MW21 MiddleWare Team, What Are Microservices? How Microservices Architecture

Works, 23.09.2021.

https://middleware.io/blog/microservices-architecture/ [06.02.2022]

NaA17 Nagpal, A., 7 Reasons Why Continuous Learning is Important, 30.06.2017.

https://www.linkedin.com/pulse/7-reasons-why-continuous-learning-important-a

mit-nagpal [05.08.2021]

OAS17 Linux Foundation, OpenAPI specification, 26.07.2017.

https://www.openapis.org/ [10.03.2020]

OS19 Opensource.com, What are microservices?, 2019.

https://opensource.com/resources/what-are-microservices [19.05.2020]

PoN18 Poulton, N., Pluralsight web course: Docker Deep Dive, 01.04.2018.

https://app.pluralsight.com/library/courses/docker-deep-dive-update/table-of-cont

ents [09.04.2019]

PoN19 Poulton, N., Pluralsight web course: Docker and Kubernetes: The Big Picture,

02.13.2019.

https://app.pluralsight.com/library/courses/docker-kubernetes-big-picture/table-of

-contents [09.04.2019]

PoN20 Poulton, N., Pluralsight web course: Getting Started with Docker, 27.10.2020.

https://app.pluralsight.com/library/courses/getting-started-docker/table-of-content

s [09.04.2019]

PV19 Peshraw, A., A., Varol, A., Advantages to Disadvantages of Cloud Computing for

Small-Sized Business, 2019. https://ieeexplore.ieee.org/document/8757549

[20.02.2022]

Rav10 Hibernating Rhinos, RavenDB, 2010. https://ravendb.net/ [10.07.2022]

Ric15 Richardson, C., Monolithic architecture, 2015.

http://microservices.io/patterns/monolithic.html [24.08.2020]

Ric15a Richardson, C., Microservices Database per service, 2015.

https://microservices.io/patterns/data/database-per-service.html [06.08.2021]

Ric15b Richardson, C., Microservices Shared database, 2015.

https://microservices.io/patterns/data/shared-database.html [06.08.2021]

Ric15c Richardson, C., Microservices decompose by business capability, 2015.

https://microservices.io/patterns/decomposition/decompose-by-business-capabilit

y.html [12.12.2021]

https://middleware.io/blog/microservices-architecture/
https://www.linkedin.com/pulse/7-reasons-why-continuous-learning-important-amit-nagpal
https://www.linkedin.com/pulse/7-reasons-why-continuous-learning-important-amit-nagpal
https://www.openapis.org/
https://opensource.com/resources/what-are-microservices
https://app.pluralsight.com/library/courses/docker-deep-dive-update/table-of-contents
https://app.pluralsight.com/library/courses/docker-deep-dive-update/table-of-contents
https://app.pluralsight.com/library/courses/docker-kubernetes-big-picture/table-of-contents
https://app.pluralsight.com/library/courses/docker-kubernetes-big-picture/table-of-contents
https://app.pluralsight.com/library/courses/getting-started-docker/table-of-contents
https://app.pluralsight.com/library/courses/getting-started-docker/table-of-contents
https://ieeexplore.ieee.org/document/8757549
https://ravendb.net/
http://microservices.io/patterns/monolithic.html
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/shared-database.html
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html

61

Sco04 Elsevier, Scopus, 2004. https://www.scopus.com/home.uri [06.03.2022]

Seq13 datalust, Seq, 2013. https://datalust.co/seq [15.05.2022]

SmB16 SmartBear Software, Swagger/OpenAPI specification, 2016.

https://swagger.io/ [27.05.2021]

SPL03 Seacord, R., D. Plakosh, G. Lewis, Modernizing Legacy Systems: Software

Technologies, Engineering Processes, and Business Practices, Addison-Wesley,

2003. [05.09.2021]

SrA08 Srivastava, A., Introducing Windows Azure, 27.10.2008

https://archive.is/M0vvP [21.05.2021]

SS21 StepSize, State of Technical Debt 2021, 09.2021.

https://www.stepsize.com/report [06.02.2022]

Sve16 Harris, R., Svelte, 29.11.2016. https://svelte.dev/ [21.12.2021]

SwG15 Linux_Foundation, New Collaborative Project to Extend Swagger

Specification for Building Connected Applications and Services, 05.11.2015.

https://web.archive.org/web/20160427104213/http://www.linuxfoundation.org/ne

ws-media/announcements/2015/11/new-collaborative-project-extend-swagger-sp

ecification-building [27.05.2021]

Syn01 Syncfusion Inc., Syncfusion, 06.2001. https://www.syncfusion.com/ [28.11.2019]

TH99 Thomas, David; Hunt, Andrew. Pragmatic Programmer, 10.1999. [09.06.2020]

ToC21 Torre, C., Modernize existing .NET applications with Azure cloud and

Windows Containers, 07.01.2021.

https://docs.microsoft.com/en-us/dotnet/architecture/modernize-with-azure-conta

iners/ [28.05.2021]

https://www.scopus.com/home.uri
https://datalust.co/seq
https://swagger.io/docs/specification/about/
https://archive.is/M0vvP
https://www.stepsize.com/report
https://svelte.dev/
https://web.archive.org/web/20160427104213/http://www.linuxfoundation.org/news-media/announcements/2015/11/new-collaborative-project-extend-swagger-specification-building
https://web.archive.org/web/20160427104213/http://www.linuxfoundation.org/news-media/announcements/2015/11/new-collaborative-project-extend-swagger-specification-building
https://web.archive.org/web/20160427104213/http://www.linuxfoundation.org/news-media/announcements/2015/11/new-collaborative-project-extend-swagger-specification-building
https://www.syncfusion.com/
https://docs.microsoft.com/en-us/dotnet/architecture/modernize-with-azure-containers/
https://docs.microsoft.com/en-us/dotnet/architecture/modernize-with-azure-containers/

62

Glossary

CD Continuous Delivery: “Continuous delivery is a software development practice

where code changes are automatically prepared for a release to production. A pillar of

modern application development, continuous delivery expands upon continuous

integration by deploying all code changes to a testing environment and/or a production

environment after the build stage. When properly implemented, developers will always

have a deployment-ready build artifact that has passed through a standardized test

process.” Amazon AWS, https://aws.amazon.com/devops/continuous-delivery/

[24.09.2021].

CI Continuous Integration: “Continuous integration is a DevOps software

development practice where developers regularly merge their code changes into a central

repository, after which automated builds and tests are run. Continuous integration most

often refers to the build or integration stage of the software release process and entails

both an automation component (e.g. a CI or build service) and a cultural component (e.g.

learning to integrate frequently). The key goals of continuous integration are to find and

address bugs quicker, improve software quality, and reduce the time it takes to validate

and release new software updates.” Amazon AWS,

https://aws.amazon.com/devops/continuous-integration/ [24.09.2021].

CL Continuous Learning: The process of continuously and consistently learning new

skills and knowledge. Can relate to casual learning, tutoring, attending classes etc. This

can happen personally as lifelong learning, or within an organization as a result of a

learning strategy set up by the organization. Also known as lifelong learning [NaA17].

ERP Enterprise Resource Planning: “Enterprise resource planning (ERP) refers to a

type of software that organizations use to manage day-to-day business activities such as

accounting, procurement, project management, risk management and compliance, and

supply chain operations. A complete ERP suite also includes enterprise performance

management, software that helps plan, budget, predict, and report on an organization’s

financial results.”. Oracle, https://www.oracle.com/applications/erp/what-is-erp.html

[07.04.2020].

IFRS International Financial Reporting Standards: “International Financial Reporting

https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/devops/continuous-integration/
https://www.oracle.com/applications/erp/what-is-erp.html

63

Standards, commonly called IFRS, are accounting standards issued by the IFRS

Foundation and the International Accounting Standards Board (IASB). They constitute a

standardised way of describing the company’s financial performance so that company

financial statements are understandable and comparable across international boundaries.

They are particularly relevant for companies with shares or securities listed on a public

stock exchange.”. Wikipedia,

https://en.wikipedia.org/wiki/International_Financial_Reporting_Standards [07.04.2020].

PaaS Platform as a service: “Platform as a service (PaaS) or application platform as a

service (aPaaS) or platform-based service is a category of cloud computing services that

provides a platform allowing customers to develop, run, and manage applications without

the complexity of building and maintaining the infrastructure typically associated with

developing and launching an app.”. Wikipedia,

https://en.wikipedia.org/wiki/Platform_as_a_service. [07.04.2020]

O/RM Object-relational mapper: Reduces friction on how data is structured in a

relational database and how it is defined in classes. Without an ORM, you have to write a

lot of code to transform database results to transform them to be usable by our code.

ORMs allow us to express our database queries using classes, building and executing the

query we want. Also, ORMs allow us to store, update and delete data from the database

[LeJ20, EFC20].

REST Representational State Transfer: This is an architectural style often used in the

context of RESTful APIs as a part of a web service or communications over the web. A

RESTful API uses HTTP requests to GET, UPDATE, INSERT and DELETE data types,

which in turn do the above operations on data resources [GiA20].

SaaS Software as a service: “Software as a service (SaaS /sæs/) is a software

licensing and delivery model in which software is licensed on a subscription basis and is

centrally hosted. It is sometimes referred to as "on-demand software", and was formerly

referred to as "software plus services" by Microsoft.”. Wikipedia,

https://en.wikipedia.org/wiki/Software_as_a_service [07.04.2020].

SOA Service-oriented architecture: “A style of software design where services are

provided to the other components by application components, through a communication

protocol over a network.”. Wikipedia,

https://en.wikipedia.org/wiki/Service-oriented_architecture [03.12.2019].

https://en.wikipedia.org/wiki/International_Financial_Reporting_Standards
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Service-oriented_architecture

Appendix A

Hi!

I am currently doing my master’s thesis on the subject of software modernization within Fatman (and in

general), and would greatly appreciate it if you had the time to answer a quick survey on the subject.

It shouldn’t take more than 5-10 minutes of your time to fill out, and it would really help me out.

There are also a few more open-ended interview questions after the survey, and I hope you can find the

time to answer those as well.

With best regards,

Janne Kauhanen

Company Survey

● What is your role in the company?

○ Developer

○ Tester

○ Quality Assurance

○ System Administrator

○ Project Owner

○ Project Manager

○ Other (what?)

● On a scale of 0 to 10, with 0 being “No effect” and 10 being “Large effect”, how did the change

to use the new tools and frameworks affect your job?

○ Azure

○ Angular

○ Docker

○ Syncfusion

○ Material Design

○ OpenAPI / Swagger

○ Dotnet Core

● On a scale of 0 to 10, with 0 being “No experience” and 10 being “Very experienced”, rate your

level of experience with the following tools before the change:

○ Azure

○ Angular

○ Docker

○ Syncfusion

○ Material design

○ OpenAPI / Swagger

○ Dotnet Core

● What are your opinions on using the new tools after the change happened?

○ On a scale of 0 to 10, with 0 being “Very negative” and 10 being “Very positive”.

● How did the restructuring of teams within the company affect your work?

○ On a scale of 0 to 10, with 0 being “Very negatively” and 10 being “Very positively”.

● Is there anything else you would like to say on the topic?

Interview

● In general, what are your opinions on using the new tools after the software modernization

finished?

● Why was modernization important for the company?

● If another modernization change should take place in the future, would you like to change

anything in the implementation or planning of such a change?

● Is there anything else you would like to say on the topic?

Appendix B

In-depth questionnaire questions and answers:

In-depth questionnaire, Software Developer 1:

Q: In general, what are your opinions on using the new tools after the software modernization

finished?

A: New Tools and technologies are improving and emerging faster than ever before. So it is

important to use the new technologies, the benefits are three fold; the tools and technologies are

helpful in terms of faster development time and improved services, second the employees are able

to keep up with new technologies and are always learning new things and tools and organization

is able to switch to newer tools faster according to the industry standards, third it is important for

the employee career.

Q: Why was modernization important for the company?

A: The company has been delivering SaaS to the customer for a long time and has a lot of legacy

applications. Thus, it was important to transition to newer tools and technologies to build faster (

both in terms of development time and software) and improved software.

Q: If another modernization change should take place in the future, would you like to change

anything in the implementation or planning of such a change?

A: Modernization is an ongoing process as the technologies and tools are keep (sic) on evolving

for better, faster and faster. So, it is important to keep modernizing. The implementation could be

improved by planning in advance while keeping in mind the required resources and time for

change.

In-depth questionnaire, Software Developer 2:

Q: In general, what are your opinions on using the new tools after the software modernization

finished?

A: New tools are generally a good idea. Even if it might cause some issues and even if its decided

that the new tool is dropped. Using new tools and technologies brings new perspectives and

potentially even fixes problems you didn’t know you had. Generally it’s a good idea for a

developer to be actively on a lookout for new tools.

Q: Why was modernization important for the company?

A: To remain competitive and increasingly profitable companies seek venues of improvement.

Part of companies (sic) continuous improvement, they attempt to more efficiently use available

resources. Modernization is a form of such improvement.

Q: If another modernization change should take place in the future, would you like to change

anything in the implementation or planning of such a change?

A: Considering the given parameters, best decisions were made. In future It would be good to do

smaller improvements more frequently. Rather then (sic) a big change in a relatively short time

period.

Appendix C

