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1 Introduction

Efficiently representing a static set of integers drawn from a finite universe is one of the
fundamental tasks in data structures, and remains still an interesting and valid problem.
Today, because of massive digitalization of information the sizes of the integer sets in
current applications are large. Compression is therefore important, but at the same time,
efficient queries must be supported.

One of the interesting applications of static integer set, is inverted indices. Inverted indices
are the core data structure of many low level and useful applications like search engines,
relational database systems or social media graph database index systems. For example,
with search engines, inverted indices hold a list of documents for each term indexed by the
search engine. Each posting list is sorted static integer set. When a user types a query to
a search engine, each postings lists for each term in the query are intersected and the user
gets a list of documents that contain all query terms.

To achieve intersection efficiently, lists are processed two lists at a time with pointers to
the first list value v1 and second list value v2. If v1 is smaller than v2, we know that we
can skip all values between [v1, v2) in the first list and therefore find the next value greater
or equal (NextGEQ) to v2 in first list. After two lists are intersected, the third list is
intersected with the intersection of the first two lists and so on. To achieve intercetion
efficiently, sets need to be able to compute NextGEQ for a given integer quickly. Some
other operations of interest on static sets are access, rank and select.

Often integer sets are represented as a characteristic bitvector where a bit i is set on when
index value i is in the set. Then compressing sets converts to compressing bitvectors.
Compressing bitvectors is an interesting problem because it is such a widely used structure,
and so achieving new performance results on space or speed have an impact on solving
many other applications and problems.Querying NextGEQ can be done efficiently on
bitvectors by rank and select queries.

The current state–of–the–art in integer set compression is Partitioned Elias–Fano coding
(PEF) [36]. PEF has a good compression/speed tradeoff and it beats earlier compression
techniques like Binary Interpolative coding [30], PForDelta [44], Variant-G8IU [42], a
SIMD-optimized Variable Byte coding [42]. PEF parses the bitvector into blocks and
encodes each block differently depending its properties.
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Arroyuelo and Raman [1] presented new worst case entropy lower bound measures B1(r, n, m)
and B2(k, r, n, m) for bitvector sets where B2(k, r, n, m) ⊆ B1(r, n, m) ⊆ B(n, m). They
showed that if bitvector has some number of runs r and k number of runs that are bigger
than 1, this set can be smaller than the set of bitvectors B(n, m). For these sets they
provided constant time (or close) structures for rank and select. These new measures
are closely related to GAP [4, 3] and RLE [13] measures. If bitvector is represented as runs
of 0/1s, this could be thought of as a sequence of 2r ± 1 symbols, where r is the number
of runs. Arroyuelo and Raman showed new zero-order compression measures Hgap

0 ,Hrun
0

and Hhyb
0 , where Hrun

0 is instance of B1(r, n, m) and Hhyb
0 of B2(k, r, n, m), when the se-

quence of runs is encoded using zero-order entropy of symbols. They also presented data
structures that encoded sequences of runs close to these measures with constant time (or
close) support to rank and select.

In this thesis we continue the work of Arroyuelo and Raman [1] by compressing bitvectors
with gap and run techniques. We focus on representing a multiset SM of static integers
sets (eg. a posting lists) in small space with tradeoff having efficient NextGEQ operation
on each set. If all set in the multiset are from universe U (postings lists formed from D
documents), we deal the multiset as concatenation of each set S characteristic bitvector
of length |U| with |S| ones. The concatenated bitvector can then be thought of as one big
set S of integers from universe |SM | · |U| with ∑S∈SM

|S| items in the set.

To compress S we build its characteristic bitvector as mentioned above and form a new
sequence R of run-lengths of the bitvector. With our methods we try a few practical
implementations of the encodings of R. We also test compression efficiency by transforming
R into two sequences R0 and R1 which hold run-length values of 0s and 1s separately.

We first investigate the compressability of R, R0 and R1 by trying practical approaches.
In our first method we implement Top–k Hybrid coder that splits the k most frequent
symbols in R (R0, R1) and encodes these with variable-to-fixed Tunstall coding [43]. The
rest are encoded with classical Huffman coding [18].

In the recent years a new variant of Lempel–Ziv77 dictionary based compression, named
Relative Lempel–Ziv [7, 24] (RLZ), has aroused strong interest in bioinformatics and text
compression research. Because we convert bitvector to runs of 0s and 1s, there could be
possible repetition on run values and could be possibly separated to different clusters.
Therefore we run a set of experiments to test how good the compression effect is with
RLZ.

Secondly, in this thesis we take closer look at a new bitvector compression method called
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Zombit-vectors [14]. A Zombit-vector does not try to encode runs of 0s and 1s directly
but takes advantage of properties of runs if possible. In the original paper Zombit-vector
provide only a narrow set of expreriments and comparison to previous implementations
and the overall space usage is not obvious. We implement Zombit-vector and test our
implementation with a few variations and configurations. Also for NextGEQ queries in
this content we try to find an efficient practical solution.

We test our encodings with known sets of postings lists data Gov2 and compare results
with current state–of–the–art solution PEF.

Structure of this thesis is as following. First, in Chapter 2 we introduce core definitions,
compression techniques and the current state–of–the–art PEF. Then in Chapter 3, we show
in more detail how our methods work with sequences of runs. After methods have been
introduced we present results of our experimental testing on Chapter 4. In these expreri-
ments we test our implementations with different configurations and compare our results
to PEF. We show results on compression efficiency and with Zombit-vector NextGEQ
query efficiency. Finally we summarize our work and discuss future work in Chapter 5.



2 Background and Related Work

This chapter introduces the background information crucial to understand techniques,
structures and tools used by methods in Chapter 3.

Data compression tries to store data using as few bits as possible. In data compression
there usually are two phases: encoding and decoding, or compression and decompression.
Encoding is the process of transforming the original information to a new compressed
format. Sometimes the encoding method is called code or coding. Decoding is a re-
verse process of encoding: it transforms compressed data into the original format/coding.
Compression is useful when the compressed data fits in cache or main memory and uncom-
pressed data does not.Also data transmission comes quicker if data can be packed more
tightly, less bits need to transfer via cable wires or radio signals. It is usually more efficient
to compress data and send it through the network and then uncompress it, rather than
send the data in original from. Data compression is perhaps still best known for storing
files in a more compact form for long-term data storage like SSD or HDD.

An encoding C is defined as an injective function from source alphabet Σ to encoded
form C(s), C : Σ→ Γ. Notation C(s) for all s ∈ Σ is called codeword and has length l(s).
Sometimes we use with C(S) to denote encoding of the whole set or sequences, such that it
could be concatenation of each symbol encoding C(S[i]) or concatenation of variable sizes
parts of S. Usually encoding transforms the source alphabet to a binary representation
and therefore encoding is called binary encoding. In computers, information can be only
presented as bits, and therefore we focus only on binary encoding in this thesis.

Example 2.1 (encoding) Let Σ = {1, 2, 3}, then encoding C could represent these num-
ber as their binary values: C(1) = 1, C(2) = 10, C(3) = 11.

The set of all encodings has one important subclass called uniquely decodable. If encoding
is uniquely decodable then for all S1, S2 ∈ Σn it holds that C(S1) ̸= C(S2) and S1 ̸= S2.
Encoding in Example 2.1 is not uniquely decodable because ⟨1, 1, 1⟩ ≠ ⟨3⟩ but C(⟨1, 1, 1⟩) =
111 = C(⟨3⟩). The easiest way to make any encoding uniquely encodable is to set the same
length to all codewords. We could modify C(1) = 00, C(2) = 01, C(3) = 10 in example 2.1
to ensure that it is uniquely decodable.

One special encoding subclass guarantees to be always uniquely decodable: binary prefix
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coding or just prefix coding. Prefix coding ensures that any two symbols in the source are
not prefixes of another.

Example 2.2 (prefix coding) Let Σ be the same as in Example 2.1. Prefix coding for
Σ could be example: C(1) = 1, C(2) = 00, C(3) = 01.

Kraft [22] and MacMillan [26] present a theorem stating that if encoding codeword lengths
are l(s1), . . . , l(sσ) and the inequality

∑
s∈Σ

2−l(s) ≤ 1

holds, there exist aprefix encoding C that can be assigned for symbols in Σ. If inequality
becomes equality, C is said to be optimal. This means that there is no encoding C ′ that
|C ′(Σ)| < |C(Σ)|. Otherwise if ∑s∈Σ 2−l(s) < 1, encoding C is to be said redundant.

Data compression is typically measured by compression ratio or bit rate. In this thesis bit
rate is used to express the level of compression in bit per posting (bpp).

2.1 Entropy

Entropy is a measure of information content. The entropy of a data set is a lower bound on
compression in the sense that information can be decompressed without extra assumptions
in the decoding process. The concept of entropy was introduced by Shannon [41]. The
entropy of a set U expresses the minimum number bits needed on average to uniquely
encode an arbitrary element from the set. There are five types of entropy when dealing
with informations systems: worst case entropy, Shannon entropy, zeroth–order entropy,
kth–order entropy and empirical entropy.

With worst case entropy, all elements in the set are encoded with the same code length.
To encode each element in set U , there need to be at least 2|U| distinct codes. Then the
worst case entropy of set U is

Hwc(U) = log |U| bits.

So if set U elements are encoded with the same length, all need exactly ⌈Hwc(U)⌉ bits. For
example, let U = {1, 2, 5, 7, 8}, then worst case entropy of U is Hwc(U) = log 5 ≈ 2.322
bits. Because a bit representation must use whole bits, all elements in set U need 3 bits
for each. An example encoding of U is then C(U) = {000, 001, 011, 111, 110, 100}.
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Using fixed-length code lengths for elements does not guarantee optimal encoding. In
Shannon entropy [41] elements in U are given variable length codes, according to their
probabilities in the set probability distribution. Shorter lengths are assigned to more
probable codes. Then average lengths of the codes and Shannon entropy can be calculated
with following equation:

H(Pr) = −
∑
u∈U

Pr(u) · log (Pr(u)),

where Pr is a probability distribution, Pr : U → [0, 1]. For example, if Pr for U is
{0.6, 0.3, 0.05, 0.025, 0.025} then the Shannon entropy of U is:

H(U) = −(0.6 · log (0.6) + 0.3 · log (0.3) + 0.05 · log (0.05) + 0.025 · log (0.025) + 0.025 · log (0.25))

≈ 1.445 bits.

It can be seen that H(U) < Hwc(U) for this particular set. If the following codes are
assigned C(U) = {1, 01, 001, 0001, 0000} to the set, then the average code length is 1.55,
which is larger than H but less than Hwc.

Shannon entropy is maximized when all elements in the set have the same probability, in
which case H(U) = Hwc(U). Shannon also showed in his paper that any optimal prefix
code C from source alphabet Σ with model Pr has the following property:

H(Pr) ≤
∑
s∈Σ

Pr(s)|C(s)| < H(Pr) + 1.

This is known as the Noiseless Coding Theorem.

Shannon entropy can also be applied to sequences of symbols. This is called the zeroth-
order entropy of the sequence. Entropy of sequence of length n that comes from source
Σ = [1, σ] can be computed as the following:

nH(⟨p1, . . . , pσ⟩) = −n
∑

1≤s≤σ

ps log ps,

where ps is the probability of the symbol s ∈ Σ.

Zeroth-order entropy can be increased to higher orders. In some cases it can be useful to use
knowledge of previous symbols in the sequence. After reading symbols si, . . . , si+k−1 from
the sequence, it might be that some symbols have higher probability to occur after symbols
si, . . . , si+k−1 have occured. This is called kth-order entropy and it can be computed as
follows:

H(Pr) =
∑

s1,...,sk−1

Pr(s1, . . . , sk)H(⟨Pr(1|s1, . . . , sk−1), . . . , P r(σ|s1, . . . , sk−1)⟩)
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Having a sequence of n symbols, it is not clear which source and probability model the
sequence have been constructed. Then having encodings for symbols that do not occur in
the sequence is unnecessary and increases code lengths of sequence symbols. Then it is
good to build the source and the model from the sequence. The entropy is then called kth-
order empirical entropy. If k = 0 then it is the zero-order empirical entropy. Zero–order
empirical entropy of sequence S length n over alphabet Σ = [1, σ] is

nH0(S) = n
∑

1≤s≤σ

ns

n
log

n

ns

bits.

Empirical entropy can limit possible sequences from the original universe. Let S =
⟨0, 1, 2, 3, 0, 1, 3, 4, 1⟩. Then n = 9 and n0 = 2, n1 = 3, n2 = 1, n3 = 2, n4 = 1. Therefore
zero-order empirical entropy would be:

nH0(S) = 9 ·

2
9 log

9
2

+
3
9 log

9
3

+
1
9 log

9
1

+
2
9 log

9
2

+
1
9 log

9
1


 ≈ 19.774

bits. If S would been expected to come from source Σ = [0, 5] with model
Pr = {0.20, 0.25, 0.15, 0.10, 0.05, 0.25}, the entropy would have been

nH(Pr) = −9·(0.20 log (0.20) + 0.25 log (0.25) + 0.15 log (0.15) + 0.10 log (0.10)

+ 0.05 log (0.05) + 0.25 log (0.25)) ≈ 21.809 bits.

The kth–order empirical entropy computed as:

Hk(S) =
∑

Si=si···si+k∈S

k

n
· H0(Si).

It is easy to encode U in a number of bits that is to close entropy, but it is not trivial
always to decode those bits back to the original input unless U is small and a lookup table
for the codes C could be afforded. In the next section we are going to look at these kinds
of structures that place additional structure on the compressed data so that fast decoding
and other queries can be supported.

2.2 Succinct data structures

Succinct data structures (SDS) are data structures that try to represent data in space
close to the entropy with additional sublinear structures for answering fast to queries.
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There is no need to decompress data during querying data.Succinct data structures can
be thought as compressed data plus a sublinear index structure. The most used additional
structure in SDS, are bitvectors with constant time rank and select–queries. We will
return bitvectors in Section 2.3. An overview of succinct data structures can be seen in
Figure 2.1

Figure 2.1: High-level illustration of succinct data structures. Succinct data structures consist of com-
pressed data which is encoded using some data compression technique and an index structure for the
compressed data. Then when information is needed from the compressed data, full decompression of the
data is not needed and index structure can handle and answer the query.

SDS queries typically need more steps to answer, which can make them slower than clas-
sical solutions. However if SDS can be stored to lower memory hierarchy or in cache than
classical solution, SDS could be much more efficient. The biggest difference in efficiency
between SDS and classical solution is when classical solution cannot fit to main memory
and needs fetching from secondary memory.

In the next section we introduce a fundamental component of succinct data structures:
bitvectors.

2.3 Bitvectors

A bitvector is a string on the alphabet Σ = {0, 1}. An example bitvector can be seen
in Figure 2.2. Usually we want to support the following operations: access, rank
and select on bitvectors. access returns the ith bit value in the sequence.rank and
select–functions are defined as follows.

Definition 2.1 (rankx) rankx(B, i) returns number of x–bits in first i bits in bitvector
B.

rankx(B, i) = |{j ∈ [0 . . . i] : B[j] = x}|
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Definition 2.2 (selectx) selectx(B, j) returns index of jth x–bit.

selectx(B, i) = max{i ∈ [1 . . . n] : rankx(B, i) = j}

Examples of the rank and select can be seen in Figure 2.3.

0 0 1 0 1 0 0 1 1 1 0 0 1 0 0

Figure 2.2: Example of bitvector.

There are many applications of bitvectors in succinct data structures. Bitvectors are also
in an important role when compressing postings lists.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B[i] 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0

rank1(B, i) 0 0 1 1 2 2 2 3 4 5 5 5 6 6 6
rank0(B, i) 1 2 2 3 3 4 5 5 5 5 6 7 7 8 9

select1(B, i) 3 5 8 9 10 13
select0(B, i) 1 2 4 6 7 11 12 14 15

Figure 2.3: Example of rank and select functions for bitvector B = 001010011100100. Figure shows
function values for both 0s and 1s.

2.3.1 Constant time select–function

To support constant time select, the bitvector needs to have additional structure. With-
out additional structures the select function needs to always scan the bitvector from the
start and count 1 bits. It will be shown that an o(n) space additional structure allows us
to support the select function in constant time.

Let B be bitvector of length n that has n0 0s and n1 1s. The simplest way to answer
select in constant time is to compute and store all select values to an array S[0, n1).
Then select1(B, i) = S[i]. This approach adds O(n1 log n) bits of space. Sometimes this
is a good solution for example, when the bitvector is very sparse and so has small number
of 1s. More precisely when n1 = O(n/(log n)2).

To achieve o(n) space and constant query time B needs to be separated to n1/b1 variable
size blocks B0, . . . , Bn1/b1 . Each block Bk contains exactly b1 = (log n)2 1-bits. A select
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query can be then answered as follows:

select1(B, j) =
∑

i∈[0,k)
|Bi|+ select1(Bk, j − ib1),

where k = ⌊j/b1⌋. Prefix sums ∑i∈[0,k) |Bi| for all k ∈ [0, n1/b1) can be computed to a
lookup table using O(n1/ log n) bits.

Blocks Bk local select query depends on size of the block. If |Bk| ≥ (log n)4, this means
Bk is sparse and all select queries can be stored to array Sk[0, b1). Precomputed queries
need O((log n)3) bits. Because there are no more than O(n/(log n)4) these kinds of blocks,
the total space usage of sparse Bk blocks is O(n/ log) bits.

Otherwise we need to build another block level inside blocks smaller than (log n)4. These
kinds of blocks are divided into smaller blocks, each containing b2 =

√
log n 1–bits. These

smaller blocks B′
k also need to have prefix sums stored, like bigger blocks. These prefix

sums fit an array of O(n1 log log n/
√

log n) bits. Blocks B′
k need to have their own local

select so that block Bk local select is fast. These blocks local select are also divided
by the sizes of the blocks. If |B′

k| < log n, local select query values can be stored in
lookup tables that need O(

√
n(log n)2) bits of space. Otherwise queries are stored in

array S ′
k[0, b2). Array S ′

k needs O(b2 log log n) bits, which means arrays S ′
k uses in total

O(n log log n/
√

log n) bits because there are no more than n/ log n such blocks.

In summary, bitvector B can answer select1 queries in constant time using an additional
structure of size O((n log log)/

√
log n) = o(n) bits. The same kind of structure can be

built to implement the select0 function if needed. Typically applications need only one
of these select functions to be answered in constant time. When the other select
function is working at constant time, the other can be answered in O(log n) time by using
the other select function.

2.3.2 Compression

Without compression, a bitvector of length n takes n bits of space. Because so many
succinct data structures use bitvectors, improving bitvectors space usage can have a huge
impact on improving other structures space usage or efficiency (faster rank/select).
Typically bitvectors can be compressed by dividing the bitvector into block or clusters, so
that each block/cluster has some properties that allow it to be compressed. Compressing
bitvecors is not interesting if its basic functions rank and select cannot be implemented
efficiently. Next we present the compressibility of bitvectors from [33].
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Let B be a bitvector of length n and let m be the number of 1s in B. In the worst case,
representing any bitvector B needs n bits (Hwc(B) = n). Although B has m 1s, which
leads that class of bitvectors of length n with m 1s (B(n, m)) is smaller than 2n. Then
we need Hwc(B(n, m)) = log

(
n
m

)
bits to present any bitvector in the set B(n, m), because

there are
(

n
m

)
bitvectors that have m 1s. If B if thought to come from a zero order source,

it has zero-order empirical entropy of

H0(B) = H

m

n

 =
m

n
log

n

m
+

n−m

n
log

n

n−m

bits. Figure 2.4 presents the function of zero-order empirical entropy for all m and n. For
m = n and m = 0 function H(m/n) is undefined, but it approaches to 0 in analytically∗.
It is notable that Hwc(B(n, m)) < nH0(B), where B ∈ B(n, m). This is because

Hwc(B(n, m)) = log
(

n

m

)
= n log n−m log m− (n−m) log (n−m)−O(log n)

= n

m

n
log

n

m
+

n−m

n
log

n

n−m

−O(log n)

= nH0(B)−O(log n)

As seen in Figure 2.4, the entropy of bitvector is most 1, which happens when B has
as many 0s and 1s. In terms of worst case and zero-order empirical entropy, B is in-

compressible. This is because the size of set B(n, n/2) is
(

n
n/2

)
=

2n

√
n
· Θ(1), therefore

Hwc(B(n, n/2)) = n−Θ(log n) and nH0(B) = n · 1 = n. These types of bitvectors can be
still compressed with other methods, like run-length coding.

Arroyuelo and Raman [1] presented a new lower bound measure for specific bitvector sets
B1(r, n, m) and B2(k, r, n, m), where r is the number of runs of 1s and k is the number
of runs that are bigger than 1. Class B1(r, n, m) contains bitvectors that are of length n

with m 1s and r number of groups of contiguous 1s. Class B2(k, r, n, m) is almost same
as B1(r, n, m) does not include bitvectors having less than k runs bigger than 1. They
showed that these new classes are subclasses of set B(n, m) and it hold that B2(k, r, n, m) ⊆
B1(r, n, m) ⊆ B(n, m). In Section 3.1 we try a few practical approaches to achieve these
bounds.

∗limx→0 log
1
x

= 0
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Figure 2.4: Graph shows binary entropy values changes according to probability of 1s (or 0s).

The succinct representation of bitvectors has been an interesting problem in research field
of data compression. All current solutions are based on the earlier work from [2, 5, 15,
16, 19, 31, 37, 32, 39]. RRR-vector from Raman et. al [38] was the first representation of
bitvectors that achieved B(n, m) + o(n) space usage to support constant time queries on
rank and select. RRR-vector is still very usefull implementation, because it achieve
usually best compression with random bitvectors. In recent years there have been inter-
esting competitive bitvector compression implementations [20, 36, 35].

In Kärkkäinen et. al [20], the Hybrid scheme compresses bitvector with worst case upper
bound n + o(n) and support rank in O(1) time and select in O(log n). In practice the
space of the Hybrid bitvector is much less than n + o(n) bits on compressible inputs. It
was developed for fast count-queries for patterns in text T with FM–indices. The idea is
to split bitvector to ⌈n/b⌉ blocks, size of b. Each block is encoded with different coding
method depending its properties: i) if the block has less runs of 1s, then it use run–length
encoding; ii) if block is sparse (measured by minority bit), it is encoded with position of
minority bits; iii) otherwise the block is encoded as a plain bitvector. Worst case space
usage is obtained when all blocks have b/ log b minority bits or the same amount of runs.
However, in practice this would be very rare.
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If m ≪ n, then the bitvector is sparse and the overhead of o(n) can be large. For these
types of bitvectors, Okanohara and Sadakane [35] presented sd-array structure. Their
structure needs overall m log (n/m)+O(m) bits, and answers select in constant time and
rank with O(log (n/m)) time. Sd-array is actually an implementation of plain Elias-Fano
coding which we discusses more in Section 2.6 and show optimized version of Elias-Fano.

2.4 Huffman coding

One of the most known entropy compression methods is Huffman coding [18]. Huffman
coding compute minimum-redundancy prefix codes from given alphabet Σ = [1, σ] and
probability model Pr : Σ→ [0, 1] or weights W : Σ→ N . Because Huffman coding builds
optimal prefix coding of the source it is guaranteed to use on average below H(Pr) + 1 bit
per symbol. So any sequence S ∈ Σn can be encoded using n(H0(S) + 1) bits. Huffman
coding can be constructed in O(σ) time if the model Pr and Σ are in sorted order,
otherwise O(σ log σ) time. Encoding can be done in O(1) and decoding near O(1) time
per symbol. In this section we introduce simple way to construct Huffman coding and how
to decode sequence of Huffman codes. Section A introduces a more efficient way to build
and decode Huffman codes. We use this approach in our Huffman coding implementation
with Hybrid coder.

The original solution [18] building Huffman coding is to form Huffman tree from the source
Σ and simulate it to encode/decode process. The tree is formed by a greedy process by
setting all symbols s ∈ Σ as individual root nodes with weight value Pr(s). Then pick up
two lightest root nodes and form a tree with these nodes by adding parent node for them.
The new root node gets a weight of the sum of its childs. Continue this until all nodes are
in the same tree. Then all internal nodes have at least two children. Code for each s can
be then assigned by traveling the tree from root to leaf labeled by s. Concatenate symbol
0 to the code C(s) if the left child was selected on the way down and otherwise symbol 1.
Example of Huffman tree and constructing classical Huffman codes can be seen in figure
2.5. Algorithm 1 shows a detailed simple way to build Huffman codes from source Σ
and model Pr. Example if we have source Σ = [1, 2, 7, 22, 90, 131, 304, 501] with weights
W = {1, 2, 4, 4, 2, 1, 1, 9} we would have following Huffman codes as in figure 2.5(b).

Encoders need to store model of encoded Huffman codes, or if the source is small ac-
tual codes can be stored directly. Huffman encoded sequence can be simply decoded by
traveling Huffman tree bit by bit and echoing the symbol when leaf is reached and re-
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Algorithm 1: build-huffman-codes builds Huffman codes C from the source Σ
and the model Pr
Input: Alphabet Σ = [1, σ], probability model Pr over Σ
Output: Huffman codes C

1 PQ = min–heap
2 for s ∈ Σ do PQ.insert({ s }, Pr(s))
3 while |PQ| > 1 do
4 A← PQ.pop()

5 B ← PQ.pop()

6 for a ∈ A do C(a)← 1C(a)
7 for b ∈ B do C(b)← 0C(b)
8 PQ.insert( {A ∪B},∑a∈A Pr(a) +∑

b∈B Pr(b))

9 return C

turning back to the root node. Then the decoding symbol takes O(l) times, where l is
length of the encoded symbol. So total size of Huffman coded sequence of length n is
n(H(Pr) + 1) + size(Pr) bits.

If for all si, sj ∈ Σ holds that si < sj, |C(si)| = |C(sj)| and C(si) < C(sj) Huffman coding
is called canonical. Canonical Huffman coding can be formed by computing first lengths
of codes and then assigning codes for each symbol. Canonical Huffman coding is useful to
construct because it gives more information about the code for the decoder.

In appendix A we show a more efficient way to build Huffman coding and how to decode
sequence more quickly.

2.5 Tunstall coding

Tunstall coding is optimal variable-to-fixed length coding. It was first introduced by
Tunstall [43]. Like in Huffman coding we tried to use as less bits for more frequent symbols,
in Tunstall coding we try to assign fixed kth length codeword to as many symbols as we
can. Tunstall coding can be thought of as dictionary based compression

When given a sequence S of symbols, Tunstall coding builds a prefix free dictionary D
from the sequence or given model Pr. So for all di, dj ∈ D is holding that di is not a
prefix of dj. Then sequence S is parsed into variable length parts d1, d2, . . . , dm, where



2.5. TUNSTALL CODING 15

(a) Process of building Huffman codes.

Σ 1 2 7 22 90 131 304 501
C(s) 0000 0001 001 010 0110 01110 01111 0

(b) Final Huffman codes.

Figure 2.5: Example of classical procedure constructing Huffman codes of source Σ =
{1, 2, 7, 22, 90, 131, 304, 501} with weights W = {1, 2, 4, 4, 2, 1, 1, 9}. Figure 2.5(a) shows one example
for constructing Huffman codes, after phase 8 Huffman tree is finished. Figure 2.5(b) represents final
Huffman codes for Σ and W .

each di ∈ D. Then each part di is encoded with kth length encoding. Tunstall coding is



16 CHAPTER 2. BACKGROUND AND RELATED WORK

to be said optimal because it can minimize

m +
∑

di∈D
|di|

according to the model Pr and variable k. Model Pr can be constructed from the input
sequence.

Size of the dictionary D depends on variable k that is assigned before building D. Because
all di ∈ D have same length k, 2k ≥ |D| must hold. If it would not, then some items
in D would have same code. The dictionary can be seen as a tree structure, which is
typically called Tunstall tree. Each path from root to leaf concatenating labels from an
item in D. Because all items di in D have same length codeword, it do not matter which
codeword is assigned to each item di. Example codewords could be assigned in sorted
order from 0 to 2k. Algorithm 2 describe how k-Tunstall codes are builded from the
source or model. Figure 2.6(a) illustrates process of algorithm 2 when building 3-Tunstall
codes from model Pr = {2 : 0.6, 5 : 0.3, 7 : 0.1}. Example Tunstall coding for sequence
S = ⟨2, 2, 5, 2, 7, 5, 5, 2, 5⟩ using D from figure 2.6(b) would be 001100101101011

To decode Tunstall coding, the decoder needs the dictionary D or the model Pr to build
D. Then decoder can read k bits from the encoded sequence and convert k bits to j

symbols of the original sequence S. Example if we use same D as in figure 2.6(b), binary
sequence 000010001011000 would decode as sequence S = 22222722525222.

Algorithm 2: Builds Tunstall codings of length k from source Σ, model Pr.
Input: Alphabet Σ = [1, σ], model Pr and codeword length k

Output: Tunstall dictionary D
1 Create root node and assign all symbols s ∈ Σ its leaf node and give them value

Pr(s).
2 while 2k − σ > |D| do
3 Find leaf l with highest probability value.
4 For all si ∈ Σ add child with value value(l) · Pr(si) to node l, edges labeled with

si

5 return D

Overall Tunstall coded sequence takes km bits space, where m is number of dictionary
items used. Average bitrate for sequence S of length n is

1
n

σ∑
di∈D

Pr(di)|di|
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(a) Tunstall tree

D
di C(di)

222 000
225 001
227 010
25 011
27 100
5 101
7 110

(b) Tunstall codes

Figure 2.6: Example of Tunstall coding when Pr = {2 : 0.6, 5 : 0.3, 7 : 0.1}. Figure 2.6(a) illustrates
process of building the codes and shows the final Tunstall tree. Figure 2.6(b) shows the final Tunstall
codes and dictionary D.

bits. So the total size of Tunstall coding is km + (size(D) or size(Pr)) bits.

2.6 Elias-Fano coding

Elias–Fano coding (EF) [9, 10] is compresses an increasing positive integer sequence S =
⟨x1, x2, . . . , xn⟩ from universe U = [0, u]. Usually xn = u. EF coding gives efficient
access and NextGEQ operations for the sequence. It can compress the sequence S
down to n⌈log u/n⌉+ 2n bits.

Let us assume that elements of S are represented as ⌈log u⌉ bits each. EF Coding separates
the elements bits representation into two bitvectors L (lower) and U (upper). Vector L

holds l ”lower” bits of each xi ∈ S concatenated together. Integer l can be selected from
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range [0, ⌈log u⌉], but the best space usage is achieved when l = ⌊log u/n⌋. The remaining
⌈log u⌉−l bits from S items are set first as a temporary sequence T . Then T is converted as
delta–encoding (T [i+1] = T [i+1]−T [i] for all i ∈ [1, n)). Bitvector U is then constructed
from T by concatenating the unary encodings of its elements. An example of Elias–Fano
coding for sequence ⟨3, 4, 8, 13, 24⟩ can be seen in Figure 2.7.

Figure 2.7: Example how to construct Elias–Fano encoding for sequence ⟨3, 4, 8, 13, 24⟩. Size of the
lower bits are 2, which is optimal for total size of Elias–Fano encoding for the sequence (⌊log 24/5⌋ = 2).
Bits labelled red represents upper bits, and blue bits for lower bits. The final Elias–Fano encoding for the
sequence is L = 1100000100 and U = 10101010001.

To support operations access and NextGEQ operations bitvector U needs to have
an index structure to support select1 and select0 functions on U. To access S[i] on
S we have to locate and concatenate bits in L and U . Bits in L are easy to locate
because each element has the same width and bits needed for S[i] are in range [li . . . l(i +
1)) on L. Because U do not present upper bits explicitly, those can be computed with
select1(i, U)− i. Then final answer can be computed as access(i) = ((select1(i, U)−
i)≪ l)|L[li, l(i + 1)).

We can notice that there are p = select0(hx, U)− hx number of elements in S that have
smaller upper bits value than x and p′ = select0(hx +1, U)− (hx +1) elements that have
smaller or equal upper bits, where hx is upper bits of x. Then to find NextGEQ(x),
p elements can be skipped and L can be scanned starting from p + 1 to p′ finding next
greater or equal than lx, where lx are x lower bits. If L[i] is first equal or greater value
than lx, then we can return (hx ≪ l)|L[li, l(i + 1)). In the worst case we need to scan
2l items. If p = p′, there is not elements in S that has same upper bits than x. Then
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we know that the result is in index p + 1 in L. Because this element upper bits are
unkown, we need to fetch those same way as in access operation, and the result is
((select1(p + 1, U)− (p + 1))≪ l)|L[l(p + 1), l(p + 2)).

EF coding achieves good compression when the universe U is small. On average each
element needs ⌈logU/n⌉ + 2 bits. So more sparse sequence have more redundant bits.
Amount ⌈logU/n⌉ can be the average distance of sequence elements. Next we are going
to look for a way to compress sequences knowing this information about EF coding.

2.6.1 Partitioned Elias-Fano coding

As described above, the size of Elias–Fano coding depends on the sequence length n

and universe u. Ottaviano and Venturini [36] presented a two-level Elias–Fano coding
representation of a positive increasing sequence S that tries to reduce the universe in
Elias–Fano coding.The scheme they presented is called Partitioned Elias–Fano coding. As
the name suggest, sequence is to be separated into variable sizes blocks and each block is
encoded separately.

For simplicity let us first assume S is partitioned with same size blocks length of b, such that
S = S1, S2, . . . , S⌈n/b⌉ and all blocks are encoded with Elias–Fano coding (PEF-uniform).
To reduce the universe of each block and to help implement operations access, NextGEQ,
array L′ is constructed from last elements of each block, so L′ = [S1[b], S2[b], . . . , S⌈n/b⌉[b]].
Array L′ is encoded with Elias–Fano coding. With array L′ each block Sj can be encoded
to universe u′ = L′[j]−L′[j−1]−1 and each item in Sj need to be reduced by L′[j−1]+1.
Then Sj needs log (u′/b) + 2 bits per element.

Operation access for S can be computed fast from the partitioned representation. To
get the ith item in S, we need to get block boundaries from the block Sj where item i lies
and its previous block Sj−1, such that we can compute the universe size u′ of block Sj.
Let j = ⌊i/b⌋ and k = i mod b, so item i is kth item in Sj and block Sj is encoded from
universe L′[j]− L′[j − 1]− 1. Then access(i) = L′[j − 1] + 1 + Sj[k], where Sj[k] can be
computed as a normal access operation on Elias–Fano coding.

To compute operation NextGEQ(x) we need to first find the successor of x in L′. This
can be done by a local NextGEQ query on L′. Let L′[j] be largest value in L′ that is
equal or greater than x, then the successor of x is in block Sj and the next or equal item
on S of x can be found from this block j by computing NextGEQ(x − L′[j − 1] − 1)
from block Sj. As it can be seen block size b do not affect the performance of access and
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NextGEQ operations.

If block is dense it can be better to encode without Elias-Fano. When the block size
b approaches the universe size u′, it can be seen that the encoding size of the block
approaches then to 2u′ bits. Then it is more efficient to represent the block as a plain
bitvector using only u′ bits. So when b = u′ block Sj can be encoded using 1s and the
result of operations access(i) and NextGEQ(i) in the block is simply i. If b ̸= u′ but
b > u′/4 it is also effective to encode block as a plain bitvector. Operations access and
NextGEQ are not so trivial as when b = u′ but can be answered efficiently by creating
structures for rank and select operations and using these for the query.

Ottaviano and Venturini also presented an optimized version (PEF ϵ-optimal) of the fixed
block size version. In the optimized version, block sizes are variable length size. They
presented a linear time dynamic programming algorithm to find the partition of blocks
withing cost (1+ϵ) factor to size of optimal partition, where ϵ ∈ (0, 1). The idea in dynamic
programming algorighm is to build a weighted graph of all the possible partitions. Edges
in the graph represent cost of next partition. Then optimal partion can be found by
finding the lightest path from the graph. Because finding the optimal path would take
O(n2) time, an approximation algorithm is needed.

When the block are variable length, operation access needs additional information about
location of the block containing item i, NextGEQ work as before because it is not needed
to know the block location of search item explicitly. Ottaviano and Venturini’s idea was
to create array E to store position of each block endpoints. Then access operation can
locate item i block with NextGEQ on E. Array E is encoded as plain Elias-Fano, so
NextGEQ is easy and efficient to find.

In experimental testing in [36] PEF ϵ-optimal is about 43,9% smaller than plain Elias-
Fano coding and 11,3% smaller than PEF-uniform. Quering PEF ϵ-optimal is still slightly
slower than plain Elias-Fano and PEF-uniform.
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The goal of the thesis is to find a way to efficiently represent a static interger set, such that
the set can handle NextGEQ operations efficiently. Our goal is then to build a succinct
data structure for a static integer set. To achieve this we focus on converting the set to
the characteristic bitvector and then finding a way to compress it.

This chapter consists of two parts. First in Section 3.1 we continue Arroyuelo and Raman’s
work on compressing bitvector by its run-length of 0/1s [1]. Compressibility of runs
is also considered when runs of 0s and 1s are separeted into different sequences. We
experiment two practical methods to compress this sequence of runs. Then we focus
overall on compressing a sequence of symbols from a large source with these methods.
Compressing a sequence of symbols is not new task with textual data, and Hk would
be natural lower bound for compressing a sequence of runs and the total space usage
would be nHk + O(n + σk+1 log k) bits. However with textual data the alphabet is not
usually large, for example using an ASCII alphabet we have only 255 symbols, but with
integers the alphabet size can be much larger and the second term above is not negligible.
Then H0 would be an interesting compressibility measure of integers sequences with a
large alphabet. Our first method is an adaptive encoder, Top-k Hybrid coder which uses
Tunstall and Huffman coding to encode the sequence(s). The second practical method we
experiment with is Relative Lempel-Ziv.

In the second part of the chapter, Section 3.2 takes a closer look at the new bitvector
compression method Zombit-vector [14]. For compressing a bitvector with k runs of 1s, a
Zombit-vector needs O(

√
rn)+o(n) bits and can answer NextGEQ queries in O(1) time.

Zombit-vectors do not try to compress runs of 0/1s explicitly but reduce space by finding
runs implicitly by splitting the bitvector into blocks. If a block is full of 0s or 1s, the block
can be encoded using only 1 bit. Our method on Zombit-vector is to implement it and
take closer look of its compressibility and efficiency for NextGEQ queries on bitvectors
with runs.
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3.1 Approach with run–length encoding

As discussed in Section 2.3.2 Arroyuelo and Raman [1] showed a new lower bound for
spesific bitvector sets and how bitvector B can be compressed by converting B into a
sequence R = ⟨x10x11 . . . xr0xr1⟩ of run-lengths in B. We also consider splitting runs of
0s and 1s into separate sequences R0 = ⟨x10x20 . . . xr0⟩ and R1⟨x11x21 . . . xr1⟩. Because
the source of the run sequence is expected to be large, we are interested in compressing
the sequence with zero-order entropy. To illustrates this, let B = 111111001100011100101
which yields that R = ⟨6, 2, 2, 3, 3, 2, 1, 1, 1⟩, R0 = ⟨2, 3, 2, 1⟩ and R1 = ⟨6, 2, 3, 1, 1⟩. Next
we are going to introduce our two methods to encode these sequence(s) of run-lengths.

3.1.1 Top–k Hybrid coder

Top–k Hybrid coder is an adaptive succinct data structure that encode sequence of positive
integers using three different approaches: Tunstall coding T , Huffman coding HC and
bitvector B′. As the name suggests, the top k frequent symbols from the alphabet Σ are
encoded with Tunstall coding and the rest with Huffman coding. Bitvector B′ informs
us of the encoding of symbol R[i], such that B[i] = 0 iff symbol R[i] is encoded with
Tunstall coding and otherwise Huffman coding. Decoding is not possible without B′. A
plain representation of bitvector B′ have same length as sequence of runs R.

For example, let R = ⟨1, 2, 2, 3, 2, 4, 2, 1, 2, 4, 2, 4, 7, 4⟩ be runs of 0s and 1s (or only 0s or 1s).
If k = 2, the k most frequent symbols in R would be 2 and 4. Then R is split into sequences
T = ⟨2, 2, 2, 4, 2, 2, 4, 2, 4, 4⟩, HC = ⟨1, 3, 1, 7⟩ and bitvector B′ = 1001000100001. When
T and HC are encoded with their own H0 encodings. Codes for each symbol in T and
HC can be seen in Figure 3.1. Using these codes, the sequence R is encoded as:

C(T ) = 010011100

C(HC) = 010011

B′ = 1001000100001.

Algorithm 3 gives us a detailed version of constructing Top-k Hybrid coder.

The idea with Top-k Hybrid coder is that run-length sequence is formed from source
that there would be some small value k, such that the k most frequent symbols in the
sequence would cover almost all sequence symbols. Then in our case, we encode these k

most frequent symbols with Tunstall coding. If k is small, Tunstall coding could get good
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D
di C(di)

2222 000
2224 001
224 010
242 011
244 100
422 101
424 110
44 111

(a) Tunstall codes for T

Σ C(s)
1 0
3 10
7 11

(b) Huffman codes for HC

Figure 3.1: Tunstall and Huffman encodings for Tunstall sequence T = ⟨2, 2, 2, 4, 2, 2, 4, 2, 4, 4⟩ and
Huffman sequence HC = ⟨1, 3, 1, 7⟩.

Algorithm 3: build–hybrid–coder, builds Top-k Hybrid coder from positive inte-
ger sequence R and positive integer k.
Input: integer sequence R, integer k

Output: Top–k Hybrid coder HYB(T ,HC, B)
1 Function build–hybrid–coder(R, k):
2 freq_map← compute frequencies of different symbols in R

3 top_k_alphabet← top k most frequent symbols in freq_map
4 tunstall_seq, huffman_seq← {}; B ← [1, |R|]
5 for i← 1 to |R| do
6 if R[i] ∈ top_k_alphabet then tunstall_seq.add(r)

7 else
8 huffman_seq.add(r)

9 B[i] = 1

10 tunstall_seq.encode()

11 huffman_seq.encode()

12 B.encode()

13 HYB← {tunstall_seq, huffman_seq, B}
14 return HYB
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compression results and it is fast for decoding, because all codes have the same length.

For the rest of the symbols we use an encoding that achieves close to H0 encoding. The
decoding speed does not need to be efficient, because most of the time in decoding we
would need to fetch symbols from the Tunstall sequence. We therefore selected Huffman
coding because it has good compression efficiency.

For bitvector B′, the value B′[i] is 0 if R[i] belongs to the Tunstall sequence. In our
ideal case when Tunstall is used for encoding most of the symbols of the sequence R, the
bitvector B′ would be very sparse. Therefore, for example, Okanohara and Sadakane’s
sd-array [35] could be good practical choice for B′. Hybrid vector [20] also benefits if B′

has a small number of runs, which could be true because in the ideal case the bitvector
is sparse. Therefore we test both implementations for bitvector B′ in our experimental
testing.

3.1.2 Relative Lempel-Ziv

Relative Lempel-Ziv (RLZ) is a relative new dictionary based compression method [7, 24],
that has recieved a lot of interest in research Ex. [6, 8, 21, 23, 25, 34]. RLZ is based on
Lempel-Ziv 77 [45] (LZ77) compression method but it uses a static dictionary instead of
an adaptive/window dictionary. The static dictionary is formed from the target sequence
or using some known dictionary. Usually the RLZ dictionary is referred to as the reference
sequence. RLZ was first developed for genome data, which have repetitive structure. When
RLZ was used for genome data, one sequence in the collection of genomes is selected to
be the static dictionary. RLZ was later found to also be a good compression method for
other applications and it gets best compression on data if it has repetitive structure.

Let S be the target sequence and R its reference sequence. Relative Lempel-Ziv factorizes
sequence S by R to parts p1p2 . . . pm, where each part pi (1 ≤ i ≤ m) is i) a symbol s that
do not occur in R; ii) Longest prefix of S[j, |S|] that occurs as a substring in R, where
j = |p1p2 . . . pj−1|. If the prefix S[j, |S|] starts in R at index k and has length of l, then
pi encoded as (k, l), which is called a factor. In ideal situation compressing sequence with
RLZ is that S is factorized to S = RR . . .R︸ ︷︷ ︸

m

.

Example let S = 255257222225552225 and R = 22525552, then Relative Lempel-Ziv
factorization of S be RLZ(S|R) = (4, 3)(2, 2)7(8, 3)(1, 3)(6, 6).

As described above, RLZ factorizes the sequence by a greedy process, reading the sequence
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
S = 2 5 5 2 5 7 2 2 2 2 2 5 5 5 2 2 2 5
R = 2 2 5 2 5 5 5 2

Figure 3.2: Table of sequence S = 255257222225552225 and its reference sequence R = 22525552.

from left to right. It does not not try to find an optimal partition. Also it is still an open
question how to construct an optimal reference sequence R from S. However, Hoobin et
al. [17] have showed that taking random samples from S and concatenating them to form
R gives efficient factorization in practice. In their paper, they even obtained good results
when R was only 0.1% the size of S. Gagie et al. [11] provided a theoretical analysis of
why randomly generated references lead to effective compression.

We are assuming that the bitvector B consists of a list of postings lists and each postings
list is formed from different and unique terms. This means mostly postings lists are
not the same kinds, which leads to characteristic bitvectors of each list having different
kinds of structure, and finally that sequence of runs-lengths mostly do not consist of large
similar structures. That is why we cannot choose some posting list or some subsequence
as reference sequence like in DNA/RNA sequences. Then we are going to build a reference
sequenece for randomly taking random sample blocks of length b from the input sequence.

3.2 Zombit-vector

Second part of this chapter focuses on the new bitvector compression method called a
Zombit-vector introduced by Gómez-Brandón [14]. The Zombit-vector can represent a
bitvector of length n using O(rb + n

b
) + o(n) space, where r is the number of runs of 1s in

B and b is block length. It can support both rank, access and NextGEQ in O(1) time.
Our method is to implement Zombit-vector and investigate its space usage better than
in the original paper. We also for the first time implement the NextGEQ operation for
Zombit-vector, benchmarking and compare it to PEF. Next we introduce Zombit-vector
and how a NextGEQ query can be answered in constant time.

A Zombit-vector represents bitvector B with three bitvectors U, O and M . To form these
bitvectors we first have to split B into blocks of size b. Bitvectors U and O have length
of ⌈n/b⌉ and M ’s length depends on B blocks properties. Each block is labelled as z, o or
m depending on block values. If a block has only 0s, it is labelled z. If it is full of 1s, its
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label is o, and otherwise the label is m.

The bitvector U indicates union blocks. If a block i is labelled with z or o then U [i] = 1
(i ∈ ⌈n/b⌉), otherwise U [i] = 0. The bitvector O determines if a block has any 1s in it and
can be called ones blocks. Then O[i] = 1 if the block is labelled with o or m and otherwise
O[i] = 0. The bitvector M is concatenation of all the blocks that have been labelled
with m. A Zombit-vector can be represented also as a recursive schema. In recursive
version, the bitvector M is represented recursively as a Zombit-vector until level c. Figure
3.3 illustrates Zombit-vector without recursion with block length of 2. Algorithm 4 give
detailed instruction how to build Zombit-vector. For simplicity build-Zombit expect b

mod |B| to be 0. For example blocks B1, B3 and B6 are only blocks labelled with m, it can
be seen that M = B1B3B6. Blocks B1, B3 and B6 contain 0s and 1s, therefore O[i] = 1
but U [i] = 0 for all i ∈ {1, 3, 6}.

B0 B1 B2 B3 B4 B5 B6 B7

i: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B: 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1

labels: o m o m z z m o

(a)

0 1 2 3 4 5 6 7
U: 1 0 1 0 1 1 0 1

O: 1 1 1 1 0 0 1 1

M: 0 1 1 0 1 0

(b)

Figure 3.3: Example of Zombit-vector constructed from B = 110111100001011 with block length 2.
Figure 3.3(a) shows bitvector values and how blocks are labelled. Figure 3.3(b) represents the final
Zombit-vector (U, O and M -vectors) for bitvector B combined according to the block labels and properties.
For example three blocks are labelled with m, the M -vector is then of length 6 and it values are the
concatenation of block B1, B3 and B6. Also because B0 is labelled to o, this means the block is full of
ones and union blocks and then U [0] = O[0] = 1.

Total space usage of the Zombit-vector depends on the properties of the input bitvector
B. Zombit-vector use 2 · ⌈n/b⌉+ |M | bits to represent B. Gómez-Brandón [14] showed an
upper bound for Zombit-vector to be O(rb + n

b
) + o(n) bits. If b is selected to

√
n/r, then

the space bound reduces to O(
√

rn) + o(n) bits. The size of the recursive representation
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Algorithm 4: build-Zombit, builds Zombit-vector with block size b from bitvector
B
Input: Bitvector B, block size b, recursion level c
Output: next or equal integer in B than x

1 Function build-Zombit(B, b, c):
2 U, O← init bitvector(⌈b/n⌉)
3 label← o; m_blocks← 0
4 for i← 1 to ⌈b/n⌉ do
5 if B[ib] = 0 then label← z

6 else label← o

7 for j ← 2 to b do
8 if B[ib + j] = 0 and label = z then continue
9 if B[ib + j] = 1 and label = o then continue

10 if B[ib + j] = 0 and label = o then label← m; break
11 if B[ib + j] = 1 and label = z then label← m; break

12 if label = z or label = o then U[i]← 1
13 else U[i]← 0
14 if label = z then O[i]← 0
15 else O[i]← 1
16 if label = m then
17 m_blocks← m_blocks + 1
18 m_blocks_idx.add(i)

19 M← init bitvector(b ·m_blocks)
20 i← 1
21 for x in m_blocks_idx do
22 for k ← 1 to b do M[i]← B[xb + k]; i← i + 1

23 if c > 0 then
24 b′ ← block-model()

25 M← Zombit-Vector(M, b′, c− 1)

26 return (U, O, M)

is not clear. In the original paper [14] it is claimed to be O(r1−ϵn1−ϵ), where ϵ = 1/2c.
With a recursive representation the operations get a bit slower and can be computed in
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O(log n/r) time.

3.2.1 NextGEQ query

A non-recursive version of the Zombit-vector provides efficient constant time NextGEQ
queries on B. Let x be an integer in the range [0, |B|); begi be first index in block Bi; endi

be last index in Bi; and ∆k be distance of begi and begi + k, such that begi ≤ k ≤ endi.
Let Bj be a block where x lies in B. There are three scenarios for finding successor of x:
i) Block Bj is labelled with o, then B[x] = 1 and the successor of x is itself; ii) Block Bj is
labelled with m and the successor of x is in the same block. iii) Block Bj is labelled with
z or m and the successor of x is in the next block that contains 1s (either block labelled
with o or m).

Case i) is the easiest, and we can return just x. To check that the case is i), we need
to check that both U [j] = O[j] = 1. For example, if x = 5, then x is in block B2, and
U [2] = O[2] = 1, therefore the result is 5.

In case ii) because Bj is labelled with m, we need to find the location of block Bj in M .
This can be found with q = rank0(U, j) because if for some block index k, U [k] = 0
then block Bk is labelled with m. Then the final location of Bj in M is found with
begM(q). The successor for x in case ii) can be answered by quering the successor of
begM(q) + ∆x in M . If s is the result of the query, then the final answer is begB(j) + ∆s.
For example if x = 2, x is in block B1 (2/2 = 1) and the block is labelled with m.
Then δx = 0 and q = rank0(U, 2) = 1, which tells us that B1 is the first block labelled
with m and its bits are located in M [0, 1]. To get the final result, we need to compute
NextGEQ(M, begM(1) + ∆2) = NextGEQ(M, 0 + 0), which is 1, and the final result is
begB(1) + ∆1 = 2 + 1 = 3.

If s > endM(q) or Bj is labelled with z, searching for a successor for x falls in case iii).
To find the successor of x in this case we need to find the next block Bj′ that contains at
least one 1. bit. This is found with NextGEQ(O, j + 1) query. If Bj′ is a union block,
we can just return the starting index of Bj′ . Otherwise Bj′ is a mixed block and we can
find the next 1-bit the same way as in case ii).

Algorithm 5 gives details on how to find NextGEQ in a Zombit-vector.
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Algorithm 5: Zombit-vector-nextGEQ, return first index i greater or equal than
the index x, such that B[i] = 1, where B is the original input bitvector for Zombit.
Input: Bitvector B and integer x

Output: next or equal integer in B than x

1 Function nextGEQ(B, x):
2 j ← ⌊x/b⌋
3 q ← rank0(U, j)
4 if U[j] then
5 if O[j] then return x

6 else
7 s← NextGEQ(M, (begq + ∆x))
8 if s ≤ endq then return begj + ∆s

9 j′ ← NextGEQ(O, j + 1)
10 if U[j′] then return begj′

11 q ← U[j] ? q : q + 1
12 s′ ← NextGEQ(M, begq)
13 return begj′ + ∆s′

3.2.2 Practical implementation

In the original Zombit article [14], it is not described how U, O and M -vectors are imple-
mented. Also implementation of local NextGEQ operation for O and M -vector is not
discussed in the article. Therefore we experiment in Section 4.2.2 with different practical
implementations for U, O and M -vectors. We test of implementations bitvector, sd-vector,
hybrid vector, interleaved bitvector and RRR from SDLS-library [12] for all Zombit bitvec-
tors. We also try different block sizes, and test how it affects compression size. As
Algorithm 5 use ∆-functions (modulo), it could be good choice to choose a block size that
is a power of 2, which can give as benefits in practice.

Zombit-vector can be implemented recursively, as mentioned earlier. Therefore we want to
test how much a recursive implementation of the M vector can affect total compression. An
M -vector consists of mixed blocks, and then each block has a run of 0s and 1s. Depending
on the block size and concatenations of the blocks, in each level the probability that the
M -vector would have blocks full of 0s or 1s goes down rapidly. Then doing a deep recursion
would not be efficient because the M structure is random (many small runs of 0s and 1)
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and could not compress further. The original article does not say anything about what
block size should be used at the next recursion level. One choice would be to compute
the optimal block size. In our experimental testing we try 3 different block models for
the next recursive level, div2, div4 and div8. As the names suggest, divX divides current
level block length by X and continues to the next recursive level with this and keeps next
block length as power of 2. In our experimental testing, recursion ends when the input
recursive-level is zero or next recursive level block length is 1. When the block length is
one, no further compression of bitvector M can be achieved.

Implementing local NextGEQ query

For NextGEQ queries for O, M -vectors we want to test two different options, which
are described in Algorithms 6 and 7. Algorithm 6 computes the successor of x using
rank and select functions and returns select1(B, rank1(B, x)+1). If rank1(B, x) =
rank1(B, |B|) this means B do not have more 1s after x and the select1 function is not
valid for rank1(B, x)+1. Therefore B does not have successor for x. The time for finding
a successor with rank and select depends on the implementations of those. However,
although the time for finding the successor with rank and select would be constant
time, it can be ”slow” in practice because of the complex index structure for the select
function. Therefore the query can include many cache misses. Our other method for local
NextGEQ tries to get around of that.

Algorithm 6: nextGEQ-rank-select, return first index i greater or equal than
the index x, such that B[i] = 1.
Input: Bitvector B and integer x

Output: next or equal integer in B than x

1 Function nextGEQ-rank-select(B, x):
2 r ← rank1(B, x) + 1 if r > rank1(B, |B|) then
3 return −1

4 return select1(B, r)

We assume that O, M -vectors have random structure or more dense 1s than 0s. Therefore,
in practice the successor of x is located nearby x, and in practical implementation actually
inside the same word or in the next one. Of course there might be cases where this
is not true, specially with O-vector, where the original input bitvector holds a lot of
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blocks labelled with z (full of 0s). Therefore we want to use the same kind of super
block structure to find the next 1 bit from x as practical rank structures computes
rank queries in contant time. We actually use almost the same super block structures as
rank_support_v5 from [12]. A rank_support_v5 stores super block prefix values of rank
queries for all 2048i, i ∈ [0, |B|/2048]. The next super block that has a higher value than
the previous super block, contains the answer for the x NextGEQ query. Algorithm 7
presents more detail how to find a local NextGEQ answer using super block scanning,
and then word scanning inside the super block. At a high-level we check first the current
super block for the next 1 bit (iterating super block words from location of x). If the result
cannot be found, then we iterate the super blocks until super block i has a higher value
than super block i− 1 (SB[i] > SB[i− 1]). After super block i, we iterate its word-level
blocks. The successor of x is in the word that is greater than zero (i.e. has some 1 bits).
After the word block is located, the first 1 bit can be found on it by a built-in hardware
function like __builtin_ctz, which returns the number of zeros before the first 1 bit in
the integer. This implementation is interesting only for plain bitvectors because it is hard
to get word blocks of compressed bitvectors. For our implementation we assume w is a
power of 2.
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Algorithm 7: nextGEQ-superBlock-scan, return first index i greater or equal
than the index x, such that B[i] = 1 by finding first next super block that has a 1-bit,
and then scanning that super block words and stopping after finding first 1-bit.
Input: Bitvector B and integer x

Output: next or equal integer in B than x

1 Function nextGEQ-superBlock-scan(A, x):
2 x_w← A[⌊x/w⌋]≫ (x & (w − 1))
3 if x_w > 0 then return x + __builtin_ctz(x_w)

4 if ⌊x/64⌋ = ⌊|B|/64⌋ then return −1
5 sb_i← x/2048
6 if |sb| = 0 or (x/2048) ≥ |S| then j ← |B|/64
7 else j ← (sb_i + 1) · 32 + 32

// Check first current super block

8 for i = ⌊x/w⌋+ 1 to j do
9 if A[i] then return __builtin_ctz(A[i]) + iw

// Find next super block that have 1-bit

10 while sb_i + 1 ≤ |sb| and sb[sb_i] = sb[sb_i + 1] do sb_i← sb_i + 1
11 if x/2048 = sb_i then j ← (x/64) + 1
12 else j ← (sb_i · 32 + 32)

// Scan founded super block

13 for i = j to |A| do
14 if A[i] then return __builtin_ctz(A[i]) + iw

15 return −1



4 Experiments

In this chapter we present experiments aimed at determining the compression effect and
speed of NextGEQ gained with our methods. The efficiency of the NextGEQ function
is only measured for Zombit-vector. We used the Gov2 dataset as an input for compression,
which is widely used in the information retrieval community. Because the Gov2 dataset
is composed of a list of postings lists, we also show how we converted that list into a
bitvector for compression.

First we show compression results and charasteristics of structures from RLZ and the
Top-k Hybrid coder, and then compression results of Zombit-vector. Finally, we show
efficiency of the Zombit-vector’s NextGEQ query.

sequences n size int size alphabet size
Gov2 5 055 078 461 38GB 64 NA

R 3 303 572 206 13GB 32 175 118
R0 1 651 786 104 6.2G 32 175 000
R1 1 651 786 104 6.2G 32 7 899

(a)

n size 1-bits runs of 1s
B 196 433 251 848 23GB 5 055 078 461 1 651 786 104

(b)

Figure 4.1: Information on Gov2 dataset and run-length sequences R, R0 and R1. Run-length sequences
are created from the bitvector in Figure 4.1(b), which is created using the Gov2 dataset as an input for
Algorithm 8. The alphabet for the Gov2 sequence is NA because the file has been already preprocessed
to one big integer set from lists of postings lists.

4.1 Setup

All tests were run on Cubbli/Ubuntu 20.04.5 LTS (GNU/Linux 5.11.0-40-generic x86_64)
with Intel(R) Xeon(R) CPU E7-4830 v3 @ 2.10GHz CPU and 1,5MiB + 1,5MiB L1, L2
12MiB and L3 120MiB cache levels. The test server had 1.4TB size of RAM. All tests were
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executed with neglible usage on the server. All tested programs were implemented in C++
and compiled using the GNU Compiler Collection (GCC) version 9.4.0 with -std=c++11
-03 -lsdsl -ldivsufsort -ldivsufsort64 compiler optimization and libraries. Implementations
used help structures from SDSL-library [12].

The Gov2 dataset consits of 64-bit positive integers. To encode this sequence of integers we
create a bitvector from it. The constructed bitvector can be thought of as a charasteristic
bitvector of a large integer set. Figure 4.1 gives information on Gov2 dataset and the
run-length sequences created from the bitvector.

To form the bitvector from Gov2, we used the following Algorithm 8 to preprocess it.

Algorithm 8: build-Bitvector , builds bitvector from given sequence of positive
integers.
Input: Intger sequence S
Output: bitvector B

1 Function built-Bitvector(S):
2 S_diff[1]← S[1]
3 sum← S_diff[1]
4 for i← 2 to |S| do
5 if S[i] > S[i− 1] then S_diff[i]← S[i]− S[i− 1]
6 else S_diff[i]← S[i]
7 sum← sum + S_diff[i]

8 B← init bitvector(sum + 1)
9 for i← 2 to ∑ do B[i] = 0

10 sum← S_diff[1]
11 B[sum]← 1
12 for i← 2 to |S| do
13 sum← sum + S_diff[i]
14 B[sum]← 1

15 return B
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4.2 Results

Next we present the results of our experiments. We observe all encodings beat PEF in
terms of space. Figure 4.2 highlights the results of the top configuration for each encoding.
All encodings were tested with different configurations to find the best compression result
and to see how encodings behave with different settings.

Overall Top-k Hybrid encoded postings lists to the most compact from, using only 2.463 bit
per posting which is clearly smaller than the current state-of-the-art, PEF. However, with
this configuration Top-k Hybrid coder is not efficient at NextGEQ, because not enought
symbols are not encoded with Tunstall coding. With the best settings for hypothetical
speed/space tradeoff, Top-k Hybrid coder got compression result 2.705 bpp, which was
still better than the other encoders. The speed for NextGEQ query for Top-k Hybrid
might not be constant time, which makes it somewhat unattractive, especially in cases
were speed is critical. Therefore RLZ and Zombit-vector results may give a better overall
space/speed-tradeoff.

encoder size (bpp) size (GB)
Top-128 Hybrid coder(R0)+ Top-8 Hybrid coder(R1) 2.705 1.592

Top-64 Hybrid coder(R) 2.958 1.741
RLZ (R0 + R1) 3.193 1.879

RLZ (R) 3.156 1.857
Zombit-vector<RRR>-512-Rec1 SB scan 3.121 1.837

PEF 8.838 5.201

Figure 4.2: Figure highlights results of top configuration from each encoding tested in this thesis. RLZ
and Top-k Hybrid coder are presented two times in the figure because both were tested with sequence
of runs of 0s and 1s (R) and runs separated to separate sequences (R0, R1). Encoders are not in spesific
order.

4.2.1 Run length sequence(s) compression

Next we look at RLZ and Top-k Hybrid coder compression results on run-length encoding
of the bitvector of the Gov2 dataset. Both encoders obtain good overall compression
results. Results for RLZ are just hypothetical and give us a good guideline for future
research work. It is interesting to see that RLZ is more efficient with compressing runs of
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0s and 1s together, whereas Hybrid coder is more efficient when runs are split into separate
sequences. In this Section, R means sequence of run-lengths of 0s and 1s. Sequence R0

and R1 holds runs of 0s and 1s separately. Sequences R, R0 both have a large alphabet
approximately 175 000, but the 512 most frequent symbols cover about 99% of the symbols
in the sequence. The alphabet for R1 is much smaller, and to cover about 99% of the
sequence symbols in R1, only the 8 most frequent symbols in needed. This is what we
expect from a run-length sequence of postings lists, but still when only 512 symbols are
needed to cover 99% of symbols in the sequence, Tunstall coding lacks the efficiency to
adequately compress R and R0 in Hybrid coder.

Relative Lempel-Ziv results

For Relative Lempel-Ziv we experimented with different sizes of reference seqeunce. We
used sizes from 0.1% to 0.4% of the input sequence. Results for RLZ are promising and
better than we expected. It seems that RLZ compresses R and R1 much better than R0.
Sequence R beats sequence R0 and R1 in space when they are combined to together. Our
space usage for RLZ is hypothetical and its computed as follows:

⌈log2 |ΣR|⌉ · |R|+ 32 ·#factors.

Therefore, our space usage of RLZ consists of encoding of the reference sequence R, where
we could encode each symbol in the reference sequence using log2 |ΣR| bits, where ΣR is
alphabet of R. And then we could encode the factors using 32 bits for each factor. For
aswering queries like NextGEQ, the RLZ encoding would need, for example, some kind
of succinct structure for prefix sum queries. Therefore our results are not that accurate
but represent a good lower bound. All RLZ results can be seen in Figure 4.3. The figure
presents information of RLZ properties, such as the amount of factors, factors of length
one, and the size of reference sequence alphabet.

Although R0 and R1 have same length, there is big difference in compression results. One
explanation is that R1’s alphabet is much smaller than R0’s, where R1’s alphabet size is
4% of R0’s alphabet size. Then less and longer factors are needed to encode R1. This can
be seen also in the results in Figure 4.3, where in the worst case R1 have approximately
93 million factors, where R0 has in best case approximately 360 million. Also the average
factor length is over 4 times bigger with R1, and there are 20 times less factors of length
1.

Increasing the size of the reference sequence gives better compression results. With all
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sequences, the amount of factors and length-1 factors decrease, and average/maximum
factor lengths also increase. However, encoding the refence sequence gives more overhead
to overal space usage than compression effect obtained with increasing reference seqeunce
size.

Although with R, R0, the reference sequence alphabet covers only on average 30% of the
input seqeunce symbols, we are going to see with Top-k Hybrid coder that with only 512
symbols, 99% of the whole sequence is covered.With RLZ we are not sure if the alphabet
includes all those most frequent symbols, which could lead to an inefficiency of compression
with R and R0. With R1 the 2 most frequent symbols cover 88% of the sequency and the
4 most frequent 96% of the symbols. This might be the reason why RLZ is efficient with
R1: there is simply a higher probability that these 4 symbols are inlcuded with reference
sequence alphabet.

sequence Reference
seq size
(%) from
org seq

Reference
seq |Σ|

factors AVG
factor
length

MAX
factor
length

unit factors size (bpp)

R0 0.1 20 084 410 312 448 4.03 774 28 684 491 2.656
0.2 28 434 385 822 680 4.28 770 21 711 299 2.560
0.3 34 565 371 055 902 4.45 1031 18 388 518 2.604
0.4 39 934 360 135 025 4.59 1068 16 294 817 2.620

R1 0.1 1 609 93 257 441 17.71 1034 870 562 0.633
0.2 2 267 87 600 981 18.86 1302 604 589 0.639
0.3 2 577 84 137 491 19.63 1649 445 458 0.787
0.4 2 845 81 628 776 20.24 2057 375 865. 0.857

R 0.1 20 479 497 280 867 6.64 817 2 734 109 3.246
0.2 28 572 467 585 765 7.07 1024 1 976 057 3.156
0.3 34 862 449 614 623 7.35 1254 1 623 287 3.160
0.4 40 332 436 338 017 7.57 1792 1 396 758 3.180

Figure 4.3: Results of RLZ compression on run-length sequences. Three different sequences were tested,
R, R0 and R1. Sequence R holds run-length values of 0s and 1s from bitvector formed from Gov2 dataset.
Sequences R0 and R1 holds also run-length values from bitvector formed from Gov2 dataset, but R0 have
only run-length values for 0s and R1 for 1s. Table results factorize compression results of RLZ. Each
sequence is tested with 4 different sizes reference sequence, 0.1-0.4% from original sequence.
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Top-k R-
Tunstall
bpp

R-
Huffman
bpp

R-B
bpp

R%
symbols
in tun-
stall

R total
bpp

2 0.381 1.602 1.107 0.601 3.09
4 0.738 1.316 0.889 0.703 2.944
8 1.129 1.038 0.714 0.786 2.88

16 1.535 0.779 0.539 0.853 2.853
32 1.924 0.555 0.398 0.904 2.876
64 2.312 0.374 0.271 0.94 2.958

128 2.706 0.238 0.178 0.964 3.122
256 3.082 0.142 0.109 0.98 3.333
512 3.448 0.079 0.063 0.99 3.59

1024 3.791 0.041 0.033 0.995 3.866
2048 4.145 0.021 0.017 0.998 4.184
4096 4.473 0.011 0.009 0.999 4.493

Figure 4.4: Results of Top-k Hybrid coder on Gov2 dataset for run-length sequence of 0s and 1s (R).
Hybrid coder results are presented separately by each substructure. Column R% symbols in Tunstall
shows how usefull R would be in practise for NextGEQ, values higher ∼ 90% are interesting.

Top-k Hybrid coder results

Top-k Hybrid coder shows interesting results for compression and it obtains the best
compression results compared to others encodings we present in this thesis. When runs
of 0/1s are separated, compression results are more efficient than having a combined
sequence. However, combining runs into same sequence R may be a much better choice
even if it is bit larger because decoding is simpler and has better cache behavior. All Top-k
Hybrid coder results are presented in Figures 4.5 and 4.4. In the figures, Top-k Hybrid
coder strctures are broken down. We exprerimented with different k values from 2 to 4096.
For bitvector B, we used the sd-array implementation from [12], and omit results were B

is implemented with Hybrid bitvector.

The results show that it is not feasible to choose always the same value for k. This is
explained from the sequences alphabet size and symbol frequencies. Therefore, choosing
best value for k seems to have some sweet spot for all sequences. Tunstall coding seems to
have better compressibility with smaller k values. This is explained by the fact that, when



4.2. RESULTS 39

Top-k R0-
Tunstall
bpp

R0-
Huffman
bpp

R0-B
bpp

R0%
symbols
in Tun-
stall

R0 total
bpp

R1-
Tunstall
bpp

R1-
Huffman
bpp

R1-B
bpp

R1%
symbols
in Tun-
stall

R1 total
bpp

total
bpp
(R0 +
R1)

2 0.122 1.457 0.762 0.315 2.342 0.25 0.119 0.221 0.888 0.59 2.932
4 0.304 1.248 0.663 0.45 2.216 0.397 0.06 0.107 0.956 0.564 2.78
8 0.56 1.007 0.562 0.589 2.129 0.491 0.029 0.048 0.983 0.567 2.697

16 0.861 0.765 0.436 0.712 2.061 0.555 0.014 0.022 0.994 0.59 2.652
32 1.176 0.548 0.332 0.81 2.056 0.608 0.007 0.01 0.997 0.625 2.681
64 1.478 0.371 0.23 0.881 2.079 0.663 0.003 0.005 0.999 0.672 2.751

128 1.748 0.236 0.153 0.929 2.138 0.722 0.002 0.003 0.999 0.727 2.864
256 2.025 0.141 0.096 0.961 2.262 0.794 0.001 0.001 0.999 0.797 3.059
512 2.289 0.078 0.056 0.98 2.422 0.878 0.001 0.001 0.999 0.879 3.302

1024 2.542 0.041 0.03 0.99 2.613 0.983 0.00025 0.0003 0.999 0.984 3.597
2048 2.824 0.021 0.016 0.995 2.861 1.122 0.0001 0.0001 0.999 1.122 3.983
4096 3.13 0.011 0.008 0.998 3.149 1.302 0.00003 0.00003 0.999 1.302 4.451

Figure 4.5: Results of Top-k Hybrid coder on Gov2 dataset for run-length sequence of 0s (R0) and
1s (R1). Hybrid coder results are presented separately by each substructure. Column Rx% symbols in
Tunstall shows how usefull Rx would be in practise for NextGEQ, values higher ∼ 90% are interesting.
Column total bpp combines results from columns R0 totall bpp and R1 totall bpp for same k value but in
practise we use different k value for R0 and R1.

alphabet for Tunstall coding is bigger, then the Tunstall tree becomes more and more flat.
This causes codewords to include smaller amounts of symbol, which leads to inefficiency
of Tunstall coding.

Because Top-k Hybrid coder was build that some k symbols would take almost all per-
centage of the symbols, only results where %symbols in Tunstall coding is over 90% are
interesting. This is because Tunstall coding provides more efficient decoding versus de-
coding in Huffman coding. Figures 4.6(a) and 4.6(b) conludes our results of Top-k Hybrid
coder. In these figures results are better if they are closer to left top corner. The y-axis
shows the percentage of symbols in Tunstall coding and the x-axis shows the size of the
encoding. These figures illustrate the sweet spot for the Tunstall coding.

For the bitvector B in Hybrid coder, we tested hybrid vector and sd-array implementa-
tions from [12]. B[i] = 0 if i-th symbol in the sequence is encoded with Tunstall and
otherwise with Huffman. For the results of the Top-k Hybrid coder, we only show results
where bitvector B is implemented with sd-array, because it was clearly better with sparse
bitvectors. Hybrid vector was only better where the percentage of symbols in Tunstall
was low, which means the bitvector will have more 1s and be more random.
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Figure 4.6: Figures presents Top-k Hybrid coder compression results on Gov2 dataset. On the x-axis is
measured the size of the structure and y-axis shows how many symbols (%) from the sequence are encoded
with Tunstall coding. Result is better if it is closer to left top corner. On Figure 4.6(a) all sequences R, R0

and R1 are showed in own lines, where each point is for different k value. Sequence R holds run-length
values for both 0s and 1s, where R0 and R1 only for other (0s or 1s). Figure 4.6(b) combines results of R0

and R1. Values are combined that 4 best results from each R0 (Top-k: 64, 128, 256, 512) and R1 (Top-k:
4,8,16,32) added together, such that each line on the figure expect line for R varies R1 values on each R0

results separately.

4.2.2 Zombit-vector expreriments

For Zombit-vector we tested it with different block sizes and different implementations
for U, O and M -vectors. All bitvector implementations used were from the SDSL-library
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Figure 4.7: Figures presents Top-k Hybrid coder compression results breaked down to each substrucutre
on Gov2 dataset for each run-length sequences separately and different k values. Left figure shows results
on R0 sequence, middle for R1 and right for R. Sequence R holds run-length values for both 0s and 1s,
where R0 and R1 only for other (0s or 1s).

[12]. In our experimental testing we used block sizes as powers of 2 from 16 to 16384 and
the five bitvector implementations from SDSL: sd_array , RRR , Hybrid-vector ,
plain bitvector and interleaved bitvector . All block sizes were tested with the
recursive scheme. Overall space usage of non-recursive Zombit-vector is interesting because
it reduces space lower than PEF space usage. Also Zombit is faster with NextGEQ query,
which gives it much better space/time tradeoff and makes it much more attractive for
compressing postings lists. In our Zombit-vector results we show only the most important
results and focus on Zombit-vectors where U and O-vectors are implemented with plain
bitvector. For the M -vector we used plain bitvector and RRR implementations. Notation
Zombit<X> means that implementation X is used for vector M .

Different block sizes effect how well Zombit-vector compress bitvector. Figure 4.8 plots
non-recursive Zombit-vector space usage with different block sizes. On the graph there
are four lines, two have plain bitvector implementation for M -vector and the other two
M is implemented with RRR. The plot shows that there are tiny differences with space
when super block scanning is used versus rank & select for local NextGEQ query. The
figure shows that lower block sizes are more efficient. This is explained by the fact that
with bigger block sizes, the probability for the block being a mixed one is higher. On the
other hand, the smallest blocks are not most suitable because those increase sizes of U and
O-vector. The curve for RRR is much smoother because it still gets some compression on
M -vector. Figure 4.9 verifies why the plain bitvector implementation lacks of compression
efficiency with bigger block sizes. Already with block size 512, bitvector implementation



42 CHAPTER 4. EXPERIMENTS

on M -vector is dominating Zombit-vector space usage. The figure also shows why we
did not use other implementation than plain bitvector for U and O-vector. Using other
implementation would have reduced size, but time and cache misses would be increased.
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Figure 4.8: Zombit-vector space analysis without recursion model on Gov2 dataset for different block
sizes and implementations on Zombit-vector. Blue lines represent Zombit-vector, where M -vector is plain
bitvector. For red lines, M -vector is implemented with RRR. For Local NextGEQ query for O-vector
(also for M -vector with Zombti<bv>), super block scanning is used for solid lines and dashed lines
compute local NextGEQ with rank and select. Dashed orange horizontal line shows compression size
of best Top-k Hybrid coder implementation (Top-128 R0, Top-8 R1), and green dashed line shows PEF
compression size.
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Figure 4.9: Analysis to show how different vectors space usage effect Zombit-vector total space usage on
Gov2 dataset with different block sizes and implementations on Zombit-vector. Left figure represents a
Zombit-vector, where the M -vector is plain bitvector, and for right figure, M -vector is implemented with
RRR. For both figures, space usages are computed in the sense that local NextGEQ query for O-vector
(also for M -vector with Zombit<bv>) is computed with super block scanning.
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The recursive version of Zombit-vector reduces space usage. Figure 4.10 shows Zombit-
vector space usage for each different block sizes on plain bitvector and RRR implemen-
tations for M . Especially Zombit-vector with plain bitvector achieve more competitive
results with RRR version and reduce close to size of PEF. With the recursive version,
increasing the number of blocks for Zombit<RRR> reduces space usage below PEF. For
recusive Zombit we show only results for the div8 model to determine block length for next
recursion level of Zombit. Other models got the same results but with deeper recursive
usage. We continued with recurison levels until the next level Zombit-vector would have
block length 1 or space usage k +1 recursive level would use more memory than the k level
Zombit-vector. Going deeper and deeper with recursion is not good because overhead of
nested U and O-vector structures grows inside each recursion level. In the figure this can
be seen better with Zombit<RRR>.
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Figure 4.10: Recursive Zombit-vector space analysis on Gov2 dataset for different block sizes on Zombit-
vector. Left figure shows space analysis for Zombit<bv> and right for Zombit<RRR>. Each line in the
plots represent Zombit-vector implementation for specific block size (b-X), and shows how recursion
encoding of M -vector effects on total space usage. For local NextGEQ query for O-vector (also for
M -vector with Zombti<bv>), super block scanning is used in both figures.

For the NextGEQ query, as dicussed in Section 3.2, Zombit-vector was tested with
two different solutions for local NextGEQ queries. For PEF we used implementation
from https://github.com/hiipivahalko/PEF. Figure 4.11 show query results for Zom-
bit<bv> and Zombit<RRR> without recursion. Both implementations were tested with
super block scan technique (SB scan) and rank&select technique (RS). In the figure,
solid lines are methods using the super block scan technique and dotted lines are for
rank&select technique. As we expected, super block scanning is the more efficient

https://github.com/hiipivahalko/PEF
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solution, especially for plain bitvector implementation because we can use the solution
for both O and M vectors local NextGEQ queries. Another interesting result is that
all implementations beats PEF in speed. Figure 4.12 shows how the recursive version of
the Zombit-vector effects qeury time. It can be seen that growth is linear, but the deeper
recursive version is only usable if it gains enough compression, which would be case with
big block size on Zombit<bv>.
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Figure 4.11: Zombit-vector time analysis without recursion model on Gov2 dataset for different block
sizes and implementations on Zombit-vector. Blue lines represent Zombit-vector, where M -vector is plain
bitvector. For red lines, M -vector is implemented with RRR. For Local NextGEQ query for O-vector
(also for M -vector with Zombti<bv>), super block scanning is used for solid lines and dashed lines
compute local NextGEQ with rank and select.
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Figure 4.12: Zombit-vector recursion time analysis on Gov2 dataset for different block sizes on Zombit-
vector. Left figure shows time analysis for Zombit<bv> and right for Zombit<RRR>. Each line in
the plots represent Zombit-vector implementation for specific block size (b-X), and shows how recursion
encoding of M -vector effects on average time usage of NextGEQ query. For local NextGEQ query for
O-vector (also for M -vector with Zombti<bv>), super block scanning is used.
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Figure 4.13: Zombit-vector space/time tradeoff on Gov2 dataset for 2 type of Zombit-vector imple-
mentations (Zombit<RRR>, Zombit<bv>) and 2 type of NextGEQ query for O-vector (SB scan, RS).
Figure’s x-axis measures space usage for the Zombti-vector and y-axis average time usage for NextGEQ
query. Each point in the lines represents Zombit-vector implementation with different block size. Point
on the figure is better is is more close to bottom left corner. Red lines illustrates Zombit-vector build
using RRR-vector for M , and for blue lines Zombit-vector uses plain bitvector for M . For solid lines
local NextGEQ query for O-vector is implemented with super block scanning (SB scan). Zombit<bv>
use super block scanning also for M -vector. Dashed lines use rank and select (RS) to compute local
NextGEQ query. Dashed orange vertical line shows compression size of best Top-k Hybrid coder imple-
mentation (Top-128 R0, Top-8 R1), and green ”+” point shows PEF space/time tradeoff.
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Figure 4.14: Zombit-vector recursion space/time tradeoff on Gov2 dataset for 2 type of Zombit-vector
implementations (Zombit<RRR>, Zombit<bv>). Figure’s x-axis measures space usage for the Zombit-
vector and y-axis average time usage for NextGEQ query. Point on the figure is better is is more close to
bottom left corner. Dashed lines are for Zombit<bv> and solid lines for Zombit<RRR> implementation.
For Local NextGEQ query on O-vector (also for M -vector with Zombit<bv>), super block scanning
is used. Label b-X represent block size of Zombit-vector in the zeroth recursion level. Dashed orange
vertical line shows compression size of best Top-k Hybrid coder implementation (Top-128 R0, Top-8 R1),
and green ”+” point shows PEF space/time tradeoff.
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Figures 4.13 and 4.14 conclude the Zombit-vector experimental results. The figures a
shows time/space tradeoff, with the bottom left corner being better. Both figures are
using same scale and space over 10 bpp are omitted, because they are less interesting.
In Figure 4.13, all results are for the non-recursive Zombit-vector. Solid lined presents
super block scan results and dotted lines rank&select results, where blue lines are
Zombit<bv> implementation and Zombit<RRR> red ones. The figure shows that super
block scan gets a much more better tradeoff, and that non-recursive Zombit<bv> cannot
compete with Zombit<RRR>.

In Figure 4.14, only results for super block scan are shown, because it obtained much
better results in its non-recursive implementation. Solid lines represents results for Zom-
bit<RRR> and dotted lines for Zombit<bv>. As with the recursive version, Zombit<bv>
gets better space results, but Zombit<RRR> is still more attractive choice to take. Also
the non-recursive version of Zombit<RRR> is better than the recursive model, although
it has lower space usage. Recursive model of Zombit-vector almost doubles the time for
NextGEQ query versus non-recursive model.



5 Conclusions

This thesis investigated representations for static integer sets by application of list of
postings list converted as charasteristic bitvector. Then representing static integer set
converted to representing efficiently specific bitvector which is expected have property of
long runs of 0/1s. The thesis was separated into two parts that tried find to redudancy
in bitvector of runs of 0/1s. The first part further converted the bitvector to a sequence
of run-lengths and tried to find redudancy explicitly. Two different methods: Top-k Hy-
brid coder and Relative Lempel-Ziv were used to encode sequences of runs. The second
part of the thesis focused bitvector compression method called Zombit-vector [14], which
is an interesting encoding because of its efficient NextGEQ query. All these encoding
methods were introduced in detail and either implemented or used know efficient imple-
mentations.Practical implementations were tested with the Gov2-dataset.

The current state–of–the–art, Partitioned Elias-Fano (PEF) encoding, for postings lists
characteristic bitvector was introduced by Ottaviano and Venturini [36]. Their solution
finds an almost optimal partition of the bitvector, such that each partition can be en-
coded to smaller universe which improves plain Elias-Fano and plain bitvector encoders.
Alternative encodings were presented in this thesis to compete with PEF. All encodings
were tested with a real application dataset and tested with different configurations. All
encodings introduced in this thesis beat PEF clearly in space, which was interesting result.
Althought Top-k Hybrid coder and RLZ beat PEF, time usage for NextGEQ is not yet
known and, especially for Top-k Hybrid coder, it is expected to be much slower than PEF.
Therefore if speed is a more important feature than space usage, PEF is likely a better
solution than Top-k Hybrid coder.

Although Top-k Hybrid coder and RLZ were not compared with PEF for speed, the
Zombit-vector space/time-tradeoff results were really interesting, because it beat PEF
in both dimensions for NextGEQ queries. However, Zombit-vector space result had
biggest variation from 3 bpp to 20 bpp, which shows that the Zombit-vector needs to be
configured carefully.
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5.1 Future work

Although all methods compressed the bitvector/sequence more efficiently than PEF, there
is room for improment, especially with the Zombit-vector. As we saw earlier, Zombit-
vector splits input vector blindly to blocks, and M -vector is the bottleneck in the com-
pression. One way to improve the size of M could be to split input bitvector with two
different block sizes. This way more blocks could be labelled with z or o, reducing the
size of M . To find the optimal partioning, some preprocing would be needed. Splitting
blocks to different sizes could make operations slower, but speed/space tradeoff may still
be useful. Because blocks are different sizes, information about which block is which size
needs to be stored. This could be done, for example, with bitvector B′ of length of bn/n,
where bn is the number of blocks. Bitvector B′ would then have the same size as vectors
U and O. As we saw in Section 4.2.2, combined space usage of U and O vectors is small
compared to overall space usage, bitvector B′ space would be small overhead to overall
space usage.

Using different block sizes could also be taken further. It would be interesting to see if all
block sizes would be variable size, like in PEF. Block partioning could be done in the same
way as it is done with PEF, using a graph based approximation algorithm to determine
shortest path in the partioning graph. This way more random bitvectors may also have
better compression with Zombit-vector.

As Arroyuelo and Raman showed in [1], run-length encoding could give good compression
results for bitvectors having a small number of runs. Although our Top-k Hybrid coder
gave better compression results than PEF, it could be improved. For example, Tunstall
coding could be replaced with some other more efficient and fast encoding because, as
we saw it did not work efficiently when 90% or more of the symbols were encoded with
Tunstall. Another way to improve Top-k Hybrid coder would be to make Huffman coding
decoding faster, allowing us to descrease k so that more symbols would be encoded with
Huffman. One way to improve Huffman coding decoding could be to build a lookup table,
where each key size of t bits would tell: i) how many Huffman codes this t bits include
(hn); ii) the sum s of the included codes (s); iii) location tend end of last code. Then in
decoding we could read t bits from the Huffman encoding and continue decoding if needed
from tend. Lookup table would then cost 2t bits plus key values {hn, s, tend}.
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Appendix A Efficient way to build Huffman coding

In the previous section 2.4 we presented a simple way to encode/decode sequence with
Huffman coding. In this section we introduce [27, 29] a fast way to construct Huffman
coding, and how to encode/decode sequence of symbols fast. To build Huffman coding
efficiently, explicit tree structure is not used. Moffat and Katajainen [29] showed a in place
way to compute codeword lengths in linear O(σ) time if the alphabet and the model Pr

are sorted order. If the model and alphabet are not sorted in order, those can be sorted
efficiently for example with a quicksort, so linear time changes to O(σ log σ).

In this Section we assume that source and probability/weight model are in sorted order.
Figure A.1 illustrates this with the same source and weights as in Figure 2.5.

si 1 2 7 22 90 131 304 501
wi 1 2 4 4 2 1 1 9

(a) Input source with weights.

ri 0 1 2 3 4 5 6 7
si 501 7 22 2 90 1 131 304

(b) Source mapping after sort.

Figure A.1: Example of sorting source model by weights and creating new mapping for the source.
Input alphabet for the sorting and mapping is Σ = {1, 2, 7, 22, 90, 131, 304, 501} with weights W =
{1, 2, 4, 4, 2, 1, 1, 9}. Figure A.1(a) presents the input source and its weights, where row si shows the
source and row wi weights for each symbol. Figure A.1(b) shows a new source on row ri after sorting and
mapping Σ and W . In row si are shown the original symbols for each new source symbol in ri.

Algorithm 9 from [28] shows Moffat and Katajainen idea to compute Huffman codeword
lengths. The algorithm consists of three phases. The first phase computes weight values
of internal nodes and root of Huffman tree. After the first phase W [1] contains sum of the
initial weight values. If W initially consist of values from the model Pr, then W [1] = 1.
Other σ − 2 internal nodes W [i] have an offset value from its parent node. Second phase
traverses array W from the root and computes each internal node depth. Lastly in the
final phase, the array W is looped a third time, where internal node depths are converted
as depths of leaf nodes. Figure A.2 shows array W at end of each phase to describe how
codeword lengths are computed.

With codeword lengths, codeword values are easy to assign to non-decreasing order [40].
Let L be maximum and Lmin minimum value in W = ⟨l1, . . . , lσ⟩ after algorithm 9. Lets
assign CL(1) = 0 for shortest symbol 1, then symbol i + 1 can be computed as CL(i + 1) =
CL(i) + 2L−li , where CL(i) is L–bit codeword for symbol i. Then canonical Huffman code
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Algorithm 9: CompHuffLen, Moffat [28] implementation on [29] to compute Huff-
man codeword lenths
Input: Model array W, alphabet size σ

Output: Huffman code lengths in array W
1 Function CompHuffLen(W, σ):

// Phase one

2 leaf ← σ − 1, root← σ − 1
3 for next← σ − 1 downto 1 do

// use internal node

4 if leaf < 0 or (root > next and W[root] < W[leaf] then W[next]← W[root]
// use leaf node

5 else W[next]← W[leaf], leaf ← leaf − 1
// use internal node

6 if leaf < 0 or (root > next and W[root] < W[leaf] then
7 W[next]← W[next] + W[root]

// use leaf node

8 else W[leaf]← W[leaf] + W[leaf], leaf ← leaf − 1

9 W[1]← 0
// Phase two

10 for next← 2 to n− 1 do W[next]← W[W[next]] + 1
// Phase three

11 avail← 1, used← 0, depth← 0, root← 1, next← 0
12 while avail > 0 do

// count internal nodes used at depth depth

13 while root < n and W[root] = depth do
14 used← used + 1, root← root + 1

// assign as leaves any nodes that are not internal

15 while avail > used do
16 W[next]← depth, next← next + 1, avail← avail− 1

// move to next depth

17 avail← 2 · used, depth← depth + 1, used← 0

18 return W, where W[i] now contains the length li of the ith codeword
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W
i 0 1 2 3 4 5 6 7

phase 1: 9 24 1 2 2 3 4 5
phase 2: 9 0 1 2 2 3 3 4
phase 3: 1 3 3 4 4 4 5 5

Figure A.2: Example values for array W after each phase in Algorithm 9, where W = {9, 4, 4, 2, 2, 1, 1, 1}
is W init values.

for symbol i is the li most significant bits in CL(i) (C(i) = CL(i) ≫ (L − li)). Figure A.3
illustrates this idea.

i wi li C(i) li-bit integer CL(i) L-bit integer
0 9 1 0 0 00000 0
1 4 3 100 4 10000 16
2 4 3 101 5 10100 20
3 2 4 1100 12 11000 24
4 2 4 1101 13 11010 26
5 1 4 1110 14 11100 28
6 1 5 11110 30 11110 30
7 1 5 11111 31 11111 31
8 - - - 32 100000 32

Figure A.3: Example of canonical Huffman codes for input source Σ = {1, 2, 7, 22, 90, 131, 304, 501} with
weights W = {1, 2, 4, 4, 2, 1, 1, 9}. Lengths of each code are computed using Algorithm 9. Column C(i)
shows final codes for each symbol i, where i is a symbol from new source created from Σ as in Figure A.1.

Let assume that all values i ∈ [1, σ] in C(i) and CL(i) are stored into arrays l-bit and
L-bit. Moffat and Turpin [27] showed that only the first elements (minimum code) for
each lengths in arrays l-bit and L-bit are needed to encode/decode symbols in Σ. This can
be done because all columns are in increasing order, so the arrays have known properties.
The arrays can have only L items stored, so these arrays are cheap to store because L≪ σ.
Let store these first values into arrays first_symbol, first_code_r and first_code_l, where
first_symbol has symbol values of each first item in length j, first_code_r has first values
from array l-bit and first_code_l from array L-bit. Figure A.4 shows an example using
values from figure A.3.

Algorithm 10 shows how to encode each symbol s ∈ Σ with arrays first_symbol and
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l first_symbol[l] first_code_r[l] first_code_l[l]
0 0 0 0
1 0 0 0
2 1 2 16
3 1 4 16
4 3 12 24
5 6 30 30

Figure A.4: Example of first_symbol, first_code_r and first_code_l values constructed from codewords
in Figure A.3

first_code_r. To encode symbols s, an array to determine codeword lengths is needed.
The algorithms use in this purpose array code_len. If space is concern in encoding, array
code_len uses σ codewords. Then the length l of symbol s could be linear or binary
searched from array first_code_r, but usually symbol s is mapped from original source Σ′,
where mapping uses σ words of space. Then the space safe if not magnitude and speed of
decoding suffers.

Algorithm 10: canonical–encoding
Input: symbol s ∈ Σ
Output: minimum prefix code of symbol s

1 Function canonical–encoding(s):
2 l← code_len[s]
3 offset← s− first_symbol[l]
4 return (first_code_r[l] + offset, l)

For decoding only arrays fisrt_symbol and first_code_l are needed. Process of decoding
is the same kind as encoding. Let buffer by next L-bits from the encoded input stream.
First we need to determine the length l of the next codeword. This cannot be found
from table because it would need at least array of 2L entries. So we compute length l by
linear searching from first_code_l until buffer < first_code_l[l + 1]. Then we need only
to find the offset from first_symbol[l] and then decoded symbol is first_symbol[l] + offset.
Algorithm 11 shows a detailed version of the decoding symbol s.

Bottleneck at decoding symbol in canonical-decoding is to find length of the next
codeword in the buffer. This could be speed up with a direct lookup table size of 2L. Size
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Algorithm 11: canonical–decoding
Input: buffer of L-bits
Output: decoded symbol s

1 Function canonical–decoding(buffer):
2 l← Lmin

3 while first_code_l[l] ≤ buffer < first_code_l[l + 1] do l← l + 1
4 offset← (buffer − first_code_l[l])≫ (L− l)
5 return first_symbol[l] + offset

v search_start2[v] search_start3[v]
0 1 1
1 1 1
2 3 1
3 4∗ 1
4 3
5 3
6 4
7 4∗

Figure A.5: Two examples for search_startt lookup table (t = 2 and t = 3) to speed up canoni-
cal–decoding . Values are computed using codewords in Figure A.3.

2L could be much larger than σ so it could dominate the total size. Moffat and Turpin
[27] showed that linear search and table lookup for finding l can be merged with small
extra space. In their idea, table search_start would be constructed with 2t entries, where
Lmin ≤ t ≤ L. Each value in search_start would tell the shortest length value l for the
prefix of t bits in the buffer. So search_start table could not possibly store all l values for
buffer, but could decrease the amount of time spended in the loop. Then we could change
line 2 in canonical-decoding following:

2: l← search_start[v]

Figure A.5 continues our example and shows an example of search_start table with values
t = 2 and t = 3.

So in total decoding sequence S ∈ Σn would need at least

n(H0(S) + 1) + 2(L + 1)w + 2t · 8 + σ⌈log σ⌉
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bits, where w is wordsize. If L ≤ 32 then w could be 32 otherwise 64 or larger but usually
L ≤ 32. We needed to also add σ⌈log σ⌉ bits because typically Pr(S) and Σ need to be
sorted and mapping for canonical codes need to be available in encoding and decoding.
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