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Abstract 

Background: Time spent in movement behaviours, including physical activity (PA), sedentary behaviour (SB) and 
sleep, across the 24‑h day may have distinct health consequences. We aimed to describe 24‑h movement behaviour 
(24 h‑MB) profiles in children and how profile membership changed from age 5.5 to 8 years.

Methods: Children in the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort were asked to wear 
an accelerometer (ActiGraph‑GT3X+) on their wrist for seven consecutive days at ages 5.5 and 8 years to measure 
24 h‑MB patterns. Time spent in night sleep, inactivity (proxy for SB), light PA, moderate PA (MPA), and vigorous PA 
(VPA) per day were calculated using the R‑package GGIR 2.0. Using latent profile analyses (n = 442) we identified 
24 h‑MB profiles, which were given animal names to convey key characteristics. Latent transition analyses were used 
to describe the profile membership transition from ages 5.5 to 8 years. Associations with sex and ethnicity were 
examined.

Results: We identified four profiles, “Rabbits” (very high‑MPA/VPA, low‑inactivity and average‑night‑sleep), “Chim‑
panzees” (high‑MPA, low‑inactivity and average‑night‑sleep), “Pandas” (low‑PA, high‑inactivity and high‑night‑sleep) 
and “Owls” (low‑PA, high‑inactivity and low‑night‑sleep), among children at both time points. At ages 5.5 and 8 years, 
the majority of children were classified into profiles of “Chimpanzees” (51 and 39%, respectively) and “Pandas” (24 and 
37%). Half of the sample (49%), particularly “Rabbits”, remained in the same profile at ages 5.5 and 8 years: among chil‑
dren who changed profile the predominant transitions occurred from “Chimpanzees” (27%) and “Owls” (56%) profiles 
to “Pandas”. Sex, but not ethnicity, was associated with profile membership: compared to girls, boys were more likely 
to be in the “Rabbits” profile (adjusted OR [95% CI]: 3.6 [1.4, 9.7] and 4.5 [1.8, 10.9] at ages 5.5 and 8 years, respectively) 
and less likely to be in the “Pandas” profile (0.5 [0.3, 0.9] and 0.4 [0.2, 0.6]) at both ages.
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Background
The prevalence of non-communicable diseases (NCDs), 
such as diabetes and cardiovascular disease, is one of the 
major public health challenges globally [1]. The World 
Health Organization (WHO) estimated that nearly two-
thirds of premature deaths in adults are associated with 
lifestyle behaviours, including physical inactivity, and 
childhood conditions, such as overweight and obesity 
[2]. Evidence further suggests that lack of physical activ-
ity (PA), high sedentary behaviour (SB) and insufficient 
sleep are associated with adverse physical, mental, and 
social health indicators in children and adolescents [3–6]. 
Moreover, reviews of longitudinal studies highlight that 
PA, SB and sleep behaviours track from childhood to 
adulthood [7–9]. In recent years, there has been a para-
digm shift from the isolated focus on the health impact 
of a single behaviour to the combination of these behav-
iours for maximum health benefits [3, 10]. Therefore, 
investigating combined movement behaviour profiles of 
PA, SB and sleep in childhood is important for the iden-
tification of existing behavioural patterns and to examine 
their effects on health and well-being.

A 24-h day comprises a sequence of movement behav-
iours distributed on a continuum ranging from no 
movement to high-intensity movement: sleep, SB, light-
intensity PA (LPA), moderate-intensity PA (MPA) and 
vigorous-intensity PA (VPA) [11]. However, previous 
studies identified profiles/clusters of children mainly 
based on PA and SB or combinations of the crude adher-
ence to guidelines of at least 60 min of moderate-to-vig-
orous PA (MVPA) and no more than 2-h of screen-based 
SB. Sleep was rarely included in previous studies and the 
clusters were predominantly based on non-movement 
behaviours, such as one or more types of diet intake [10, 
12, 13]. Identifying profiles based on the time spent on 
the full continuum of movement behaviours is important 
to understand how children allocate their time in a day.

Technological and methodological developments of 
accelerometry now enables measuring movement behav-
iours continuously over 24 h and several nights/days [14]. 
Placement of accelerometers on the wrist, instead of the 
traditional location on the hip/thigh, has contributed to 
this progress, since it is associated with a greater com-
pliance and is more comfortable to the participants [14]. 

The wrist placement, however, goes along with the ina-
bility to detect lower body posture which is an essential 
element of SB definitions: any waking behaviour charac-
terized by energy expenditure ≤1.5 metabolic equivalent 
tasks (METs), while in a sitting, reclining or lying down 
posture [14, 15]. Instead, wrist-worn accelerometers 
measure inactivity during waking hours, which corre-
sponds to energy expenditure ≤1.5 METs and can be 
viewed as a proxy for SB time [16].

Studies have reported that PA and sleep decrease, 
while SB increases with age [17–19]. These behavioural 
changes coincide with changes in children’s school cur-
ricular activities, in particular the transition from kin-
dergarten (5–6 years of age) to primary school (7–8 years 
of age) [17]. However, such transitions remain poorly 
understood because the available evidence on movement 
behaviour profiles/clusters in children aged 12 years or 
below is largely based on cross-sectional studies [10, 12, 
13]. Only one longitudinal study investigated how move-
ment behaviour profile membership changes from age 6 
to 9 years [20]. However, this study did not examine sleep 
and to our knowledge, profiles/clusters based on the 
combinations of the full continuum of movement behav-
iours using a 24-h time-use approach have not previously 
been investigated among children.

To address these gaps in the evidence in an Asian 
multi-ethnic cohort study, we investigated the movement 
behaviour profiles of children aged 5.5- and 8- years, and 
explored how the profile membership changed from age 
5.5- to 8- years. Due to differences in values/norms and 
biological susceptibility among boys and girls, as well as 
differences in culture, beliefs and socio-economic sta-
tus among different ethnic groups [21–23], movement 
behaviours may evolve differently in children of different 
sex and ethnicity [10, 20, 24–29]. We therefore further 
describe profile membership and transitions in profile 
membership from age 5.5 to 8 years according to sex 
and the three main ethnic groups (Chinese, Malay and 
Indian) residing in Singapore.

Methods
Study design and participants
We used data from the Growing Up in Singapore 
Towards healthy Outcomes (GUSTO) study, an ongoing 

Conclusions: With increasing age about half the children stayed in the same of four 24 h‑MB profiles, while the 
predominant transition for the remaining children was towards lower PA, higher inactivity and longer sleep duration. 
These findings can aid development and implementation of public health strategies to promote better health.

Study registration: This study was registered on 4th August 2010 and is available online at ClinicalTrials.gov: NCT01 
174875.
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multi-ethnic mother-offspring cohort study. The GUSTO 
study aims to investigate the role of early life factors on 
the child’s health and development. Between June 2009 
and September 2010, pregnant women aged ≥18 years, of 
Chinese, Malay or Indian ethnicity with a same-ethnicity 
partner, Singapore citizens or permanent residents and 
attending their antenatal clinic visit at two major pub-
lic maternity units (KK Women’s and Children’s Hospi-
tal, and National University Hospital) in Singapore were 
invited to participate. The protocol of the GUSTO study 
has been detailed previously [30]. The study received 
approval from ethics committees of the two study cen-
tres, the SingHealth Centralized Institutional Review 
Board and the National Healthcare Group Domain Spe-
cific Review Board in Singapore, and written informed 
consent was obtained from all participants. In total, 
1450 women were recruited at their first trimester of 
pregnancy (< 14 weeks of gestation) and 18 women were 
recruited at delivery, and 1199 singleton babies were 
born and enrolled.

The children were followed up at the frequent clinic 
and home visits: at least four visits from birth to 1 year, at 
least two visits per year from 1 to 7 years and thereafter 
at least one visit per year in child’s birthday month [30]. 
Children’s date of birth, sex and ethnicity were extracted 
from medical records. Weight (to the nearest gram) and 
height (to the nearest 0.1 cm) of children were measured 
up to three times at age 5.5 years by trained research 
staff using a weighing scale (SECA model 803) and a 
stadiometer (SECA model 213, Hamburg, Germany), 
respectively, and repeated readings were averaged. BMI 
(in kg/m2) was derived from the average weight (in kg) 
divided by squared average height (in  m2). Information 
about maternal age and educational level were obtained 
at recruitment as part of an interviewer-administered 
questionnaire, and household income was collected when 
the child was 5 years old as part of a self-administered 
questionnaire.

Measurement of movement behaviours
ActiGraph GT3X+ (Actigraph Inc., Pensacola, FL), a 
triaxial accelerometer, was used to collect movement 
behaviour data on the children at age 5.5 and 8 years. 
During home (5.5 y) and clinic (8 y) visits, researchers 
attached an accelerometer with a non-removable strap on 
the child’s non-dominant wrist. Accelerometers were ini-
tialized to start recording at midnight after the visit, with 
a sampling rate of 80 Hz. Parents were asked to remove 
the device from the child’s wrist on the 9th day after the 
visit so that 7 complete days of continuous, 24-h data got 
captured. Data were downloaded in raw format (GT3X) 
and converted into raw, non-aggregated, comma-sepa-
rated values file (CSV) format using the ActiLife software 

(version 6.13). Raw data were then processed in R soft-
ware using the GGIR package (version 2.0) [31, 32].

Accelerometer devices are calibrated relative to grav-
ity thus the raw acceleration was expressed in gravity 
(g units; 1 g = 9.81 m.s − 2). The vector magnitude was 
taken from the three axes raw signals and then subtracted 
by one gravity (g) after that negative values were rounded 
up to zero; this method is referred as Euclidian Norm 
Minus One (ENMO) in the literature. The resulting value 
was expressed in milligravity (mg, 1 mg = 0.00981 m.s − 2) 
[31]. Indices of 24-h activity were then calculated/aggre-
gated based on 5-s epoch periods, since it is established 
that children largely engage in short bursts of movement 
[33]. Non-wear time was calculated based on the stand-
ard deviation (< 3 mg) and value range (< 50 mg in two of 
three-axis) of accelerometer axis, using the acceleration 
windows of 60 min with 15-min increments [31, 32, 34]. 
Days with ≥16 h/d of activity recordings (from midnight 
to midnight) were considered as valid, and children with 
at least two valid weekdays and one valid weekend day 
were included in the analysis.

Night sleep duration was calculated using GGIR default 
algorithm, as described by Van Hees et  al. [35, 36]. 
Briefly, the Heuristic algorithm looking at Distribution of 
Change in Z-Angle (HDCZA) was applied to detect sus-
tained inactivity bouts where the z-angle did not change 
by more than 5 degrees for at least 5 min, and then to 
determine the sleep window. Non-sleep time was clas-
sified based on ENMO cut-points as inactivity (ENMO 
< 35 mg), LPA (35 to 200 mg), MPA (200 to 707 mg) and 
VPA (≥707 mg) using prediction equations provided by 
Hildebrand et al. [16, 37]. Intuitively, inactivity time can 
be viewed as a proxy for SB time. However, it was not 
possible to determine posture and distinguish other types 
of inactivity from SB using wrist-worn accelerometers 
[14, 15]. Hence, in this study, we used the term inactiv-
ity as a proxy for SB. The weighted averages of time spent 
on each movement behaviour across all valid days, where 
weekend days are weighted 2/5 relative to the contribu-
tion of weekdays, were calculated and used in the cur-
rent study. The weighted averages of MPA and VPA time 
per day were summed up to derive the MVPA time per 
day at both time points. MVPA (≥60 min/d) and sleep 
(9–11 h/d) variables were categorized based on meeting 
recommended (WHO/Canadian) guidelines [38, 39].

Statistical analyses
Frequencies and percentages for categorical variables, 
means and standard deviations for continuous vari-
ables were calculated. Chi-square tests were performed 
to test differences between included and excluded chil-
dren. Frequency distribution of PA, inactivity and sleep 
variables were visually inspected for normality, and 
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outliers were excluded from the analyses (n = 1). These 
analyses were performed with STATA version 15.1 
(StataCorp, College Station, Texas, USA, 2017). Latent 
profile analysis was conducted to derive a categori-
cal latent variable that represents unobserved hidden 
subgroups (profiles) in the movement behaviour pat-
tern of children aged 5.5 and 8 years using time spent 
in LPA, MPA, VPA, inactivity and sleep (continuous 
variables in min/d). Latent profile analysis uses a finite 
mixture modelling approach that accounts for time-use 
balance within 24-h day and provides data-driven cat-
egorization. The identified profiles can be defined by 
means and variances [40, 41]. We estimated how the 
profile membership changed from age 5.5 to 8 years 
using latent transition analysis, which is an extension 
of latent profile analysis [42, 43]. We conducted latent 
profile and latent transition analysis using a three-step 
approach, and then assessed the associations of sex and 
ethnicity with profile membership in Mplus (version 
8.4, Muthen & Muthen) [44–46].

In the first step, we examined the 24-h movement 
behaviour profiles for children at both ages. We fitted 
cross-sectional latent profiles at age 5.5 and 8 years in 
separate models. We explored models with 2 to 7 pro-
files without any constrains or covariates. The final latent 
profiles model were identified on the basis of the best fit 
model, the number of profiles, their prevalence and dis-
tinguished 24-h movement behaviour pattern. Then, the 
corresponding longitudinal latent profile analysis mod-
els were examined using conditional models, where the 
number of profiles (configural similarity), mean and vari-
ance of 24-h movement behaviour indicators within each 
profile (structural and dispersion similarity) were similar 
across the time points as suggested by Morin and col-
leagues [47, 48]; this ensures interpretation of each pro-
file is the same across the time points while maintaining 
the differences between profiles. The models were then 
compared for the goodness of fit using log-likelihood, 
Akaike’s Information Criterion (AIC), Bayesian Infor-
mation Criterion (BIC) and sample-size adjusted BIC 
(SABIC) (for all models), where the lower value indi-
cated a better fit [49, 50], bootstrapped likelihood ratio 
test (BLRT) for statistical significance (only for cross-
sectional models), and higher posterior probability and 
entropy (≥0.75) [40, 49, 50]. Indices of model fit for latent 
profile analyses containing 2 to 7 profiles showed that 
AIC, BIC, SABIC and the log-likelihood decreased as the 
number of profiles increased in the models. The four-
profiles model with similar mean and variance of move-
ment behaviours of each profile across the time points 
was identified as the most parsimonious model in terms 
of goodness of fit, entropy and conceptually meaning-
ful heterogeneous profiles at each time point compared 

other models (Supplementary Table  1). The identified 
profiles were given animal names in an attempt to convey 
key characteristics.

In the second step, we obtained the final latent vari-
ables and classification errors for each time point by fix-
ing the measurement parameters, including the number 
of profiles, mean and variance, obtained from the final 
model in step one [44, 45, 51]. This step was repeated 
in the maximum sample at each time point to explore 
the consistency of profile membership. In the third step, 
we conducted latent transition analysis, the probability 
of transition between profiles across the time points 
was obtained after accounting for classification error 
derived in step two for each time point. This three-step 
method maintains the stability of profile membership 
within each time point during latent transition analysis 
[44, 45, 47, 51].

Finally, we examined the associations of sex and ethnic-
ity with profile membership with the Wald test by using 
the Bolck-Croon-Hagenarrs (BCH) method. The BCH 
method is robust to measurement error of latent profiles 
and estimates the associations without influencing indi-
vidual profile membership status [51, 52]. Additionally, 
sex- and ethnicity-specific transition probabilities of pro-
file membership were derived using stratified latent tran-
sition analysis.

Results
A total of 1199 children were enrolled in the GUSTO 
cohort. Of those, 574 and 634 children provided valid 
accelerometer measurements at ages 5.5 and 8 years, 
respectively (Fig. 1). Table 1 shows the characteristics of 
children at age 5.5 and 8 years. Among them, 442 chil-
dren provided valid data at both time points and were 
included in the main analyses; included children were 
similar to excluded children with regard to sex and 
ethnicity.

Latent profiles at age 5.5‑ and 8‑ years
The four identified profile characteristics are illustrated 
in Fig.  2. The description of latent profiles in terms of 
estimated means, variance and proportion of participants 
in each profile are presented in Table 2. Compared to the 
overall sample, (i) children in the “Rabbits” profile had 
higher levels of PA, particularly MPA and VPA, lower 
inactivity and average night sleep duration, (ii) children 
in the “Chimpanzees” profile had higher levels of LPA 
and MPA, average VPA, lower inactivity and average 
night sleep duration, (iii) children in the “Pandas” profile 
had lower levels of PA, higher inactivity and longer night 
sleep, and (iv) children in the “Owls” profile had lower 
levels of PA, higher inactivity and very short night sleep.
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The majority of the children belonged to the pro-
files “Chimpanzees” (5.5 years: 51.1%; 8 years: 39.1%) 
and “Pandas” (5.5 years: 24.4%; 8 years: 36.7%); less than 
20% belonged to the “Rabbits” and “Owls” profiles. The 
proportion of children in each profile meeting MVPA 
(≥60 min/d) and sleep (9–11 h/d) recommendations 
according to (WHO/Canadian) guidelines is presented 
in Table 2. Almost all children assigned to the “Rabbits” 
(100% at both time points) and the “Chimpanzees” pro-
files (5.5 years: 93.8%; 8 years: 94.2%) met the MVPA rec-
ommendations, while this proportion was small in the 
“Pandas” (5.5 years: 12.0%; 8 years: 13.0%) and the “Owls” 

profile (5.5 years: 24.5%; 8 years: 20.6%). The proportion 
of children meeting sleep recommendations was small 
across all profiles (≤25%), with almost none of the chil-
dren in the “Owls” profile was meeting the sleep recom-
mendation (Table 2).

The transition of movement behaviour profile membership
The transition of 24-h movement behaviour pro-
file membership from age 5.5 to 8 years is illustrated 
in Fig.  3. The latent transition probabilities of pro-
file membership are presented in Supplementary 
Table 2. About half of the sample (49.3%) remained in 

Fig. 1 Flowchart of the participants of the present study
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the same profile and the other half changed profiles 
between age 5.5 and 8 years. Children in the “Rabbits” 
profile at age 5.5 years had the highest probability to 
remain in the same profile at 8 years (0.81), followed 
by children in the “Chimpanzees” (0.61) and “Pandas” 
profiles (0.59). The predominant patterns of change 
in the profiles were from “Rabbit” to “Chimpanzees” 
(0.12), “Chimpanzees” to “Pandas” (0.27), “Pandas” to 
“Owls” (0.19) or “Chimpanzees” (0.20) and “Owls” to 
“Pandas” (0.56).

Associations of sex and ethnicity with profile membership 
and profile transition
Child sex was associated with profile membership at 
ages 5.5 and 8 years: compared to girls, boys were more 
likely to be in the “Rabbits” profile (adjusted OR [95% 
CI]: 3.6 [1.4, 9.7] and 4.5 [1.8, 10.9] at ages 5.5 and 8 years, 
respectively) and less likely to be in the “Pandas” profile 
(0.5 [0.3, 0.9] and 0.4 [0.2, 0.6]) at both ages. We found no 
associations between ethnicity and profile membership at 
ages 5.5 and 8 years (Table 3).

Table 1 Characteristics of the children assessed by accelerometry at ages 5.5 and 8 years in the GUSTO cohort study

SD, standard deviation; BMI, body mass index; SGD, Singapore Doller

Maximum sample Overlapping sample

5.5 years
(n = 574)

8 years
(n = 634)

5.5 years (n = 442) 8 years (n = 442)

% (n) ormean ± SD % (n) ormean ± SD % (n) ormean ± SD % (n) ormean ± SD

Child sex
Girls 47.7 (274) 48.4 (307) 47.5 (210) 47.5 (210)

Boys 52.3 (300) 51.6 (327) 52.5 (232) 52.5 (232)

Ethnicity
Chinese 58.0 (333) 58.4 (370) 57.7 (255) 57.7 (255)

Malay 23.9 (137) 25.9 (164) 26.0 (115) 26.0 (115)

Indian 18.1 (104) 15.8 (100) 16.3 (72) 16.3 (72)

BMI at age 5 years
Below median (< 15.0 kg/m2) 47.2 (271) 46.4 (294) 46.4 (205) 46.4 (205)

Median and above (≥15.0 kg/m2) 47.9 (275) 48.1 (305) 50.0 (221) 50.0 (221)

Missing data 4.9 (28) 5.5 (35) 3.6 (16) 3.6 (16)

Maternal age at recruitment
< 27 years 23.3 (134) 22.4 (142) 21.7 (96) 21.7 (96)

27–33 years 39.9 (229) 40.4 (256) 40.5 (179) 40.5 (179)

> 33 years 35.2 (202) 35.5 (225) 36.2 (160) 36.2 (160)

Missing data 1.6 (9) 1.7 (11) 1.6 (7) 1.6 (7)

Maternal education
≤ secondary school 29.8 (171) 29.2 (185) 31.7 (140) 31.7 (140)

Post‑secondary school 32.8 (188) 33.4 (212) 32.6 (144) 32.6 (144)

University degree 35.9 (206) 35.7 (226) 34.2 (151) 34.2 (151)

Missing data 1.6 (9) 1.7 (11) 1.6 (7) 1.6 (7)

Household income at age 5 years
< 4000 SGD 33.6 (193) 31.1 (197) 35.1 (155) 35.1 (155)

4000–7999 SGD 25.8 (148) 27.9 (177) 27.8 (123) 27.8 (123)

≥8000 SGD 24.2 (139) 22.6 (143) 22.6 (100) 22.6 (100)

Missing data 16.4 (94) 18.5 (117) 14.5 (64) 14.5 (64)

Movement behaviours, min/day
Sleep 485.0 ± 56.9 498.6 ± 51.8 481.9 ± 58.4 500.0 ± 52.0

Inactivity 539.8 ± 79.4 536.6 ± 76.8 543.2 ± 82.0 538.3 ± 78.1

Light physical activity 344.3 ± 47.0 334.5 ± 52.0 343.8 ± 48.7 332.2 ± 52.3

Moderate physical activity 62.3 ± 19.2 61.3 ± 21.2 62.4 ± 19.8 60.4 ± 21.1

Vigorous physical activity 8.8 ± 4.8 8.9 ± 5.7 8.7 ± 4.9 9.1 ± 6.1
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The sex- and ethnicity-specific transition probabili-
ties of profile membership is shown in Supplementary 
Table  2. Compared to girls, the probability of boys 
to remain in the “Rabbits” profile was higher (0.91 

vs 0.36) and the probability to remain in the “Pan-
das” profile was lower (0.37 vs 0.72). The probability 
of moving from the “Chimpanzees” to the “Pandas” 
profile was lower in boys than girls (0.20 vs 0.35). It 

Fig. 2 Description of 24‑h movement behaviour profiles at age 5.5 and 8 years in children from the GUSTO cohort study

Table 2 Descriptive statistics of latent profiles derived from 24‑h movement behaviours in children aged 5.5 and 8 years in the GUSTO 
cohort study (n = 442)

SD, standard deviation; MVPA, moderate-to-vigorous intensity physical activity
a  The proportion of children met MVPA (≥60 min/d) recommendation of WHO/Canadian guidelines
b  The proportion of children met (9–11 h/d) recommendation of Canadian guidelines

Profile 1 Profile 2 Profile 3 Profile 4
Profile name “Rabbits”

mean ± SD
or
% (n)

“Chimpanzees”
mean ± SD
or
% (n)

“Pandas”
mean ± SD
or
% (n)

“Owls”
mean ± SD
or
% (n)

24‑h movement behaviours, min/day
Sleep 488.6 ± 51.3 497.3 ± 49.0 507.7 ± 46.0 424.0 ± 63.8

Inactivity 493.3 ± 67.3 507.0 ± 53.5 560.7 ± 47.8 687.9 ± 61.6

Light physical activity 350.1 ± 50.1 359.4 ± 39.0 321.6 ± 41.0 281.3 ± 58.2

Moderate physical activity 90.6 ± 16.8 67.1 ± 10.5 45.0 ± 8.9 41.4 ± 15.4

Vigorous physical activity 17.5 ± 6.0 9.3 ± 3.1 5.1 ± 2.1 5.5 ± 4.0

Proportion of children assigned to the profile
5.5 years 12.4 (55) 51.1 (226) 24.4 (108) 12.0 (53)

8 years 16.5 (73) 39.1 (173) 36.7 (162) 7.7 (34)

Proportion of children adhering to MVPA guidelinea

5.5 years 100.0 (55) 93.8 (212) 12.0 (13) 24.5 (13)

8 years 100.0 (73) 94.2 (163) 13.0 (21) 20.6 (7)

Proportion of children adhering to sleep guidelineb

5.5 years 10.9 (6) 19.0 (43) 17.6 (19) 0.0 (0)

8 years 15.1 (11) 19.7 (34) 25.3 (41) 2.9 (1)
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appears that the transition of profile membership was 
similar across the ethnicity of children.

Additionally, Supplementary Table  3 shows the 24 h 
movement behaviour profiles at age 5.5 and 8 years 
according to characteristics of children and their fam-
ily: the proportion of children assigned in each profile 
varied by maternal education, but not by children’s BMI, 
maternal age and household income. Children of moth-
ers with higher educational level were less likely to be 
assigned to the “Owls” profile at both time points, com-
pared to children of mothers with lower educational 
level (5.5 years: 15.4% vs 44.2%; 8 years: 8.8% vs 58.8%).

The sensitivity analysis of latent profile analysis
Latent profile analyses were repeated in the maximum 
samples at age 5.5 (n = 574) and 8 years (n = 634), and 
yielded similar profiles (Supplementary Table  4) and 
result for the associations of sex and ethnicity with 
profile membership at each time point.

Discussion
This study described accelerometer-measured 24-h 
movement behaviour latent profiles at age 5.5 and 8 years 
in a multi-ethnic Asian population. The evidence from 
this study suggests that, based on their time use in LPA, 
MPA, VPA, inactivity and sleep at both ages, children 
can be classified into four distinct profiles: the profile 
with higher PA, lower inactivity and average night sleep 
duration (“Chimpanzees”) was most prevalent, followed 
by the profile with lower PA, higher inactivity and longer 
night sleep duration (“Pandas”). However, the two more 
extreme profiles, comprising children with very high 
VPA/MPA, low inactivity levels and average night sleep 
duration on the one hand (“Rabbits”), and low PA, high 
inactivity, and low night sleep duration on the other hand 
(“Owls”) represent sizable and from a health promotion 
perspective potentially important populations. In addi-
tion, this study provides novel evidence on the transi-
tion between profiles with increasing age: while about 
50% of children stayed in their profile, the predominant 

Fig. 3 Transition of 24‑h movement behaviour profiles from age 5.5 to 8 years in children from the GUSTO cohort study (n = 442)
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transition among the remaining children occurred 
towards lower PA, higher inactivity and longer night-
sleep patterns. Differences between boys and girls in 
terms of their profile membership but also their transi-
tion with age were apparent.

Our results generally support the most recent sys-
tematic review on lifestyle behaviour patterns among 
children aged 5–12 years: the review found seven stud-
ies that investigated clustering of children based on PA 
and SB patterns and identified healthy (high PA and low 
SB), unhealthy (low PA and high SB) and the mixture of 
healthy and unhealthy behaviours (both PA and SB were 
high or low) [10]. Few studies included sleep and all 
these studies also included dietary factors to determine 
the clusters/profiles [10, 12, 13], and none of the studies 
reported the clusters/profiles exclusively based on move-
ment behaviours across a 24-h day. In the present study, 
we could not classify the profiles as healthy or unhealthy, 
because the health effects of single movement behav-
iours may be counteracting each other and the health 
outcomes associated with these profiles are currently 
unclear. However, “Rabbits” and “Chimpanzees” profiles 
can be considered relatively healthy profiles as they had 
a higher PA, lower inactivity and average sleep dura-
tion with almost all children meeting the recommended 
60 min of MVPA. However, the proportions of children 
meeting the sleep guideline (9–11 h) in our study were 
very low across all profiles. While the “Pandas” profile 
(lower PA, higher inactivity and longer sleep duration) 
has unhealthy PA and inactivity patterns, this profile 
may still have some health-promoting attributes due to 
its longer sleep duration. Therefore, the “Pandas” profile 
may be considered as a combination of healthy sleep and 
unhealthy PA and inactivity patterns, while the “Owls” 
profile (lower PA, higher inactivity and shorter sleep 
duration) is characterised by a generally unhealthy move-
ment behaviour pattern. Further investigation of the 
health outcomes associated with these profiles may help 
determine to what extent movement behaviour profiles 
are healthy or unhealthy.

This is the first study reporting movement profiles 
in children based on the full continuum of 24-h move-
ment behaviours, including LPA, MPA, VPA, inactiv-
ity and sleep. This approach aligns with the Framework 
for Viable integrative Research in Time-Use Epidemiol-
ogy (VIRTUE) that emphasizes the importance of using 
an integrated approach to studying time-use balance in 
movement behaviours and their prevalence in popula-
tions [11, 53]. Previous studies among children (aged 
5–12 years) did not take sleep into consideration, nor did 
they consider MPA and VPA separately [20, 54]. This, 
however, seems important, since we identified the “Rab-
bits” profile that had a high level of VPA, and this might 

have important health implications: evidence suggests 
that greater amounts of VPA are associated with favour-
able cardio-metabolic health outcomes and improved 
cardiorespiratory fitness [55, 56]. WHO strongly recom-
mends at least three days of vigorous-intensity activities 
per week for children and adolescents aged 5–17 years in 
the 2020 guidelines [38]. Similar to our approach, Gupta 
et  al. identified four 24-h movement behaviour profiles. 
The authors also labelled the profiles with animal names. 
However, comparison of profile characteristics in both 
studies remains challenging given that their study was 
conducted among adults and focussed on occupational 
and leisure-time LPA, MVPA, SB and standing and bed-
time [53].

The vast majority of previous studies among children 
were cross-sectional, and only one investigated the pro-
files of movement behaviours longitudinally [20]. Jago 
et  al. investigated PA and SB profiles, but not sleep, 
among UK children in the B-PROACTIVE study. Their 
result suggested greater movement between profiles. 
While about 30% of children were in the same profile 
at age 6 and 9 years, the majority moved towards lower 
MVPA and higher SB at the three-year follow-up [20]. 
Transition patterns in the present study may not be 
directly comparable with these findings from the UK, 
because sleeping behaviour was not included in the UK 
study. Our results showed that nearly half of the children 
were in the same profile at age 5.5 and 8 years, which 
confirms evidence on the tracking nature of movement 
behaviours with increasing age [7–9]. Considering only 
PA and inactivity, we also found that a substantial pro-
portion of children moved to the profiles with lower PA 
and higher inactivity pattern, resulting in a greater pro-
portion of children in the “Pandas” profile at age 8 years 
(5.5 years: 24%; 8 years: 37%). However, moving to the 
“Pandas” profile may also be considered as a positive 
evolution in sleep pattern as children in this profile dem-
onstrate a longer sleep duration. Similarly, a meaning-
ful proportion of children moved to “Rabbits” profile, 
depicting more favourable movement behaviours. Hence, 
our findings demonstrate that positive evolutions exist 
in our study population among Asian children, which is 
encouraging for future health promotion activities and 
warrants further investigation to better understand these 
transitions between profiles.

The potential mechanism of changing profile mem-
berships between age 5.5 to 8 years is currently not well 
understood since this is the first study to describe such 
transitions. Evidence suggests that multiple factors, 
including personal, parental/family, social and environ-
mental factors, could explain the changes in movement 
behaviours of children as they transit between schools 
or with increasing school years [17, 57–59]. For instance, 
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changing from kindergarten to primary school (grade 2) 
between ages 5.5 to 8 years may require the children to 
sit longer for academic activities and increase the use of 
screen devices [17, 58]. Moreover, napping is common 
at kindergarten but not at primary school in Singapore, 
which might explain the predominant changes of mov-
ing towards profiles with lower PA and higher inactivity 
and/or longer night sleep duration at age 8 years. Simi-
larly, children might have been motivated differently by 
schools/parents/pear groups to practice healthier behav-
iour such as participating in PA or extracurricular organ-
ised sports and maintain sleep hygiene [60–62], which 
could partly explain why some children moved towards 
profiles with higher PA and lower inactivity or higher 
night sleep duration.

The present study also found that sex was associated 
with profile membership in our population: as com-
pared to girls, boys were approximately four times more 
likely to be in the “Rabbits” profile. These results gener-
ally support the findings of previous systematic reviews 
which reported that a greater proportion of boys were 
assigned to the clusters with higher PA, whereas a greater 
proportion of girls was assigned in clusters with lower 
PA [10, 29]. We also explored the transition of profile 
membership from age 5.5 to 8 years and found that girls 
had a higher probability of moving from the more active 
“Chimpanzees” profile to the less active “Pandas” profile 
than boys. These findings are generally consistent with 
findings of the previous prospective study from the UK, 
which reported that girls were more likely to move into 
less active profiles from age 6 to 9 years [20]. A recent 
systematic review also reported that girls had a higher 
reduction in PA time compared to boys between the 
ages of 4 and 9 [63]. This warrants further investigation 
to examine the mechanisms underlying different patterns 
of profile membership and transition in profile member-
ship, which will ultimately help in the development of 
more targeted health promotion strategies. Some possi-
ble associations between ethnicity and profile member-
ships were noted, but they were not consistent. This may 
also be due to a lack of statistical power, and requires fur-
ther investigation with larger sample size to understand 
ethnic differences in movement behaviour patterns of 
children in Asia.

A major strength of the study is the use of acceler-
ometers with non-removable wrist strap, allowing us to 
collect high-quality data across the full continuum of 
24-h movement behaviours seamlessly. The longitudinal 
study design and repeated measures helped to examine 
changes in profile membership during the transition from 
pre-school to school age. Some limitations have to be 
acknowledged, though. Our study is not representative of 
the general Singaporean population, and the proportion 

of children who completed both time points was only 
about 40% of the original study population, which fur-
ther reduces generalizability and statistical power. We 
used wrist-worn accelerometers to measure movement 
behaviour which was associated with high compliance. 
However, unlike hip- or thigh-worn accelerometers that 
are closer to the centre of the body, wrist-worn acceler-
ometer have a lower correspondence with whole body 
movements [14]. For instance, wrist-worn accelerom-
eters could register acceleration while sitting [64] and are 
not able to differentiate SB from other types of inactiv-
ity, including nap time [14, 16, 31, 32]. Consequently, it 
was not clear whether lower night sleep at younger age 
was due to differences in napping behaviour in some chil-
dren, particularly among children assigned in the “Owls” 
profile, and this warrants further investigation. Moreover, 
movement behaviour patterns were measured only at two 
time points, thus we could not measure the longer-term 
trends in movement behaviours among children; further 
follow-up of our cohort will shed light on this. Nonethe-
less, our findings are important by taking a contemporary 
perspective to identify distinct patterns across the full 
continuum of movement behaviours in a full day. This 
information can be useful in highlighting opportunities 
for research and designing strategies to improve move-
ment behaviours for health.

Conclusions
Our study among a multi-ethnic population of children 
in Singapore identified four distinct movement behaviour 
profiles: “Rabbits (higher PA, particularly MPA and VPA, 
lower inactivity and average night sleep), “Chimpanzees” 
(higher PA, lower inactivity and average night sleep), 
“Pandas” (lower PA, higher inactivity and longer night 
sleep) and “Owls” (lower levels of PA, higher inactiv-
ity and very short night sleep duration). “Chimpanzees” 
followed by “Pandas” profile were the most prevalent. 
These findings demonstrate the importance of consider-
ing the full continuum of movement behaviours as com-
pared to investigating them separately. With increasing 
age, almost half of the sample remained in their profile, 
highlighting the importance of engagement in healthy 
movement behaviours early in life. Among those who 
changed profile, a ‘downward’ trend towards less active 
movement behaviours was most common (especially 
“Chimpanzees” to “Pandas” profile). Compared to girls, 
boys were more likely to be in the very active “Rabbits” 
profile and less likely to be in the more inactive “Pandas” 
profile at both ages. This study provides novel evidence 
on classifying children based on the full spectrum of 24 h 
movement behaviour patterns, and this is the vital step to 
identify healthier movement behaviour patterns and their 
determinants. Therefore, further research is warranted to 
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confirm our findings and to understand health outcomes 
and the determinants of unhealthy movement behaviour 
profiles, as well as transitions between profiles. Subse-
quently, this evidence will contribute to the development 
of more targeted and potentially more effective interven-
tion strategies to promote healthier movement behav-
iours among children.
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