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“The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a
model is meant a mathematical construct which, with the addition of certain verbal interpretations,
describes observed phenomena. The justification of such a mathematical construct is solely and

precisely that it is expected to work - that is correctly to describe phenomena from a reasonably wide
area. Furthermore, it must satisfy certain esthetic criteria - that is, in relation to how much it describes, it

must be rather simple.”
John von Neumann apud Leary (1955)



ABSTRACT

Physics-informed neural networks (PINNs) and deep equilibrium models (DEQs) are
novel approaches that approximate deep learning’s representational power to applica-
tions with realistic requirements such as robustness, data scarcity and explainability.
PINNs propose an efficient way to train neural networks to model physical phenom-
ena. DEQs are a new model architecture that can provide more representational power
with fewer parameters. This work aims to study both and apply them to solve initial-
value problems (IVPs) of ordinary differential equations (ODEs), in an approach coined
physics-informed deep equilibrium model (PIDEQ). We implement the proposed ap-
proach and test it, analyzing the impacts of the multiple hyperparameters in the approxi-
mate solution of the Van der Pol oscillator. Our results show that indeed PIDEQ models
are able to solve IVPs, providing approximate solutions with small errors.

Keywords: Physics-Informed Neural Network; Deep Equilibrium Model; Implict Model;
Initial-Value Problem; Deep Learning.



RESUMO

Redes neurais para solução de problemas físicos, denominadas physics-informed neu-
ral networks (PINNs), e modelos profundos de equilíbrio (do inglês, DEQs), são contri-
buições recentes que facilitam o uso de modelos de aprendizagem profunda, conheci-
dos pela capacidade representativa, de aplicações com requisitos realistas de robustez,
explicabilidade e escassez de dados. PINNs se mostraram uma forma eficiente de trei-
nar redes neurais para modelar fenômenos físicos. DEQs, por outro lado, empregam
uma nova arquitetura que promete mais capacidade de representação com menos
parâmetros. Este trabalho consiste em um estudo de ambos, além de uma aplicação
que combina-os para resolver problemas de valor inicial de equações diferenciais ordi-
nárias, com um modelo chamado PIDEQ. A abordagem proposta para resolver esse
tipo de problema foi implementada e testada utilizando o oscilador de Van der Pol, com
uma análise de impacto dos seus diferentes hiperparâmetros. Os resultados mostram
que, de fato, é possível treinar um PIDEQ para resolver o problema proposto, gerando
soluções aproximadas com baixo erro.
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1 INTRODUCTION

The numerous successful applications of deep learning in the most varied in-
dustries (CIREGAN; MEIER; SCHMIDHUBER, 2012; KRIZHEVSKY; SUTSKEVER;
HINTON, Geoffrey E, 2012; SILVER et al., 2016) have established it as a cornerstone
of artificial intelligence. With such a fame, one could easily suppose that it can be a
powerful tool to solve a very common problem in the study of dynamical systems: the
initial-value problem (IVP) of differential equations.

Yet, deep learning models gather knowledge by learning from experience, which
gives them a data-driven nature. Unfortunately, gathering sufficient data (samples,
records, experiment history) from real-life dynamical systems can be costly, as it may
require an assortment of measurement devices and expensive material to stimulate
and observe the phenomena of interest. This makes training deep learning models, in
such context, quite challenging.

Raissi, Perdikaris, and Karniadakis (2019) proposed to optimize the dynamics
of the model instead of its outputs. This way, one can train a deep learning model to
approximate the dynamics of a system, given that an accurate description of these
dynamics is known (e.g., in the form of differential equations). Therefore, only minimal
data is necessary to cover the initial and boundary conditions.

At the same time, Bai, Zico Kolter, and Koltun (2019) and Ghaoui et al. (2019)
proposed a novel approach to deep learning: to define the output of a model implic-
itly, in the form of a solution to an equilibrium equation. A model defined this way is
effectively an infinite-depth network (BAI; ZICO KOLTER; KOLTUN, 2019) with residual
connections(HE et al., 2016), which results in a great representational power with a
small amount of parameters. This reduced set of parameters improves the model’s
explainability, which in turn helps with deriving causality and robustness, all of which
are desirable features in safety-critical applications (e.g., in the automation industry).

Even though successful applications of deep equilibrium model (DEQ)s have
already appeared in the literature (BAI; KOLTUN; KOLTER, 2020), it is still unknown, for
the majority of deep learning applications, the problems in which DEQs can succeed
over traditional models. Since to generate the output of an equilibrium model one has to
solve an equilibrium equation, these models present an iterative behavior, hence similar
to commonly used differential equation solvers such as the Runge-Kutta algorithm.
Therefore, given the novelty of the model and its iterative behavior, the question this
work aims to answer is: can a DEQ be trained to solve an IVP of an ordinary differential
equation (ODE) in a physics-informed approach?
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1.1 OBJECTIVES

This work aims to study, implement and validate the use of Deep Equilibrium
models as effective and efficient solvers for IVPs, making use of physics-informed
training. An efficient model is twofold: it does not require costly (many samples or hard-
to-acquire samples) data for training, and it does not require expensive hardware to
generate fast results. At the same time, an effective model is one that can provide
accurate results on a large domain, i.e., it can solve a given ODE for a long range of its
independent variable.

More specifically, the work described in here aims to:

1. Implement a Deep Equilibrium model following the design proposed by Bai, Zico
Kolter, and Koltun (2019);

2. Design and implement a physics-informed neural network (PINN) training algo-
rithm suitable for DEQs, building on top of the work by Raissi, Perdikaris, and
Karniadakis (2019);

3. Evaluate the physics-informed deep equilibrium model in the task of solving an
IVP.

With these steps, it is expected that a solid conclusion will be achieved on the suitability
of DEQs, a state-of-the-art deep learning architecture, on this novel application.

In the first two chapters below, a brief introduction to ODEs (Ch. 2) and deep
learning (Ch. 3) is presented, aiming to lay a foundation and establish a concise refer-
ence. The following chapters are dedicated to the novel contributions of PINNs (Ch. 4)
and DEQs (Ch. 5), which are central for the aim of this work. Finally, Chapter 6 presents
the experimental results of a physics-informed DEQ trained to solve an IVP. These
results are discussed in Chapter 7 together with an outlook of future work.



17

2 ORDINARY DIFFERENTIAL EQUATIONS

Differential equations were first defined upon the invention of calculus. In fact,
they were studied by both Newton and Leibniz, and by many of the greatest mathemati-
cians such as Euler and Bernoulli. Even when limited to ODEs, it would be unreasonable
to assume that one chapter of a bachelor thesis could cover what many authors have
dedicated entire books to communicate. Therefore, it is assumed that the reader has a
basic (undergraduate level) understanding of the theory of differential equations1.

This first chapter is, then, a short review of ODEs and how to solve them numeri-
cally. This way, the focus is on reviewing the fundamentals and establishing a concise
notation for the following chapters. Furthermore, the approach to numerically solve
ODEs and the Van der Pol oscillator are also introduced, as they are essential for the
experiments described in Chapter 6.

2.1 INTRODUCTION AND DEFINITIONS

A differential equation can be seen as a description of the relationship between
unknown quantities and their rates of change. Because of this broader definition and
direct relationship to applications, differential equations arise naturally in many fields of
applied sciences (HAIRER; WANNER; NØRSETT, 1993), as it is often the case that
the rate of change of a certain quantity of interest is related to the rate of change of
other quantities. A classical example of a differential equation is Newton’s second law
of motion,

F (x (t)) = M
d2

dt2
x(t), (2.1)

in which x (t) is the position of an object at time t, M is its mass, and F (x) is the force
under which the object is at a given position. This example highlights one of the great
powers of the differential equations, which is to describe the dynamics of a certain
phenomenon without explicitly defining it.

For a more tangible definition, any equation that contains the derivatives of (at
least) one unknown function with respect to (at least) one independent variable is called
a differential equation (ZILL, 2013). A differential equation that involves only ordinary
derivatives, that is, only derivatives of functions with respect to a single variable, (such
as Equation (2.1)) is called an ODE. ODEs can be represented in the normal form

dnx(t)

dtn
= N ′

(︃
t,x (t) ,

dx(t)

dt
, . . . ,

dn−1x(t)
dtn−1

)︃
.

in which x : R → Rm′
, N ′ : R × Rnm′ → Rm′

are continuous functions, dnx(t)
dtn is the

vector containing the derivatives (with respect to t) of all x (t) components, and n is the
1 Otherwise, the books of Zill (2013) and Simmons (2017) are great sources.
1 I.e., the first (and only) row-vector of the Jacobian of x (t).
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order of the highest derivative in the equation and is commonly referred to as the order
of the differential equation.

Any function ϕ : I ⊂ R → Rm′
, I an interval, is said to be a solution of an n-th

order ODE if it is n-times differentiable on I and satisfies

dnϕ(t)

dtn
= N ′

(︃
t,ϕ (t) ,

dϕ(t)

dt
, . . . ,

dn−1ϕ(t)
dtn−1

)︃
, ∀t ∈ I.

Note, however, that the solutions are not necessarily unique. As an example, given
Newton’s second law of motion, as shown in equation (2.1), with constant force (F (x) =

C), then it is easy to see that any second-order polynomial of the form:

ϕ (t) =
C

2M
t2 + a1t+ a0, a0, a1 ∈ R

is a solution.
Now, given an n-th order ODE, let y1 (t) = x (t) , y2 (t) =

dx(t)
dt , . . . ,yn (t) =

dn−1x(t)
dtn−1 . Note that we can now write the following system of first-order differential

equations:

dy1 (t)

dt
=

dx (t)

dt
= y2 (t)

...

dyn−1 (t)

dt
=

dn−1x (t)

dtn−1
= yn (t)

dyn (t)

dt
=

dnx (t)

dtn
= N ′

(︃
t,x (t) ,

dx(t)

dt
, . . . ,

dn−1x(t)
dtn−1

)︃
= N ′ (t,y1 (t) , . . . ,yn (t)) .

Then, for m = nm′, define y : R→ Rm such that

y (t) =

⎡⎢⎢⎣
y1 (t)

...
yn (t)

⎤⎥⎥⎦ ,

and N : R× Rm → Rm such that

N (t,y (t)) =

⎡⎢⎢⎢⎢⎣
y2
...
yn

N ′ (t,y1 (t) , . . . ,yn (t))

⎤⎥⎥⎥⎥⎦ .

With this, it is easy to see that the first-order ODE

dy (t)

dt
= N (t,y (t)) (2.2)

is equivalent to the original n-th order ODE, that is, given a solution for one of the
equations, one can trivially derive the solution for the other. In other works, any n-th
order ODE can be written as a first-order ODE with n times the number of variables.
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As an example, let us take once again Newton’s second law (Eq. (2.1)) with
constant force F (x) = C. This equation in the normal form can be written

d2x (t)

dt2
=

C

M
.

Now, define y : R → R2, y(t) = (y1 (t) , y2 (t)) such that y1(t) = x(t) and y2(t) =
dx(t)
dt .

Thus, we can write the first order ODE

dy (t)

dt
=

[︄
dy1(t)
dt

dy2(t)
dt

]︄
=

[︄
y2(t)
C
M

]︄
.

The solution to this equation is of the form[︄
C
2M t2 + a1t+ a0

C
M t+ a1

]︄
, a1, a0 ∈ R,

which, from the definition of y(t), is in accord with the solution for the original ODE.

2.2 INITIAL VALUE PROBLEMS

It is a common problem to find an explicit definition of the unknown functions in
a differential equation. For ODEs, it is often the case that, if one knows side conditions
on the unknown function, then a solution exists and it is unique. More precisely, for an
ODE defined as in (2.2), conditions of the form

y (t0) = y0

guarantee the existence and uniqueness of an (analytic) solution on the interval I ⊂ R,
t0 ∈ I, if N is an analytic function2 in I × R, R ⊂ Rm with y0 ∈ R, which is the case
for many practical applications (ISERLES, 2008). The problem of finding the solution
given conditions as above is called the IVP.

IVPs show up frequently when the current (or past) value of the function is known
and a future value is desired. Recalling Newton’s second law example, suppose that,
besides F (x) = C, it is also known that the object lies still at t = 0, i.e.,

y(0) = 0,
dy(0)

dt
= 0,

and we are interested in the solution on the interval I = [0, T ], for T > 0. Then, the only
solution is

ϕ (t) =
C

2M
t2.

2 A function is said analytic if and only if its Taylor series expansion converges in the entirety of its
domain.
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2.3 NUMERICAL SOLVERS

2.3.1 Euler’s Method

In an IVP, one has the value of y (t) at a given instant in time t0 and can find
the slope at that time through N . Therefore, it is natural that an efficient numerical
solution is derived from the linear approximation of y (t) at t0. In practice, this means
to approximate N (t,y (t)) ≈ N (t0,y0) , ∀t ∈ Ih, where Ih is a neighborhood of t0
(i.e., Ih ⊂ I is an interval with length h such that t0 ∈ Ih). Then, a solution can be
approximated as

ϕ (t) = y (t0) +

∫︂ t

t0
N (τ,y (τ)) dτ

≈ y (t0) + (t− t0)N (t0,y0) , t ∈ Ih.

Of course, the performance of this naïve approach (for any non-constant N ) is
satisfactory only for small h. However, one can perform many of such approximations
with arbitrarily small h. Let us assume that I = [t0, tN ]3 and that one desires an
approximation of an exact solution ϕ (t) on I. Given a sequence t0, . . . , ti, . . . , tN such
that ti+1− ti = h, i = 1, . . . , N , let us call yi the approximation of an exact solution at ti
for i = 1, . . . , N , i.e., yi ≈ ϕ(ti). One can use the first order approximation recursively
and compute

yi+1 = yi + hN (ti,yi) , i = 1, . . . , N,

which is as to give one large step, one takes multiple small steps in the same direction.
By increasing the number of steps, one reduces the length of each step and, thus,
reduces the approximation error ∥yi+1 − ϕ(ti+1)∥. By increasing the number of steps,
one can achieve an arbitrarily low error (ISERLES, 2008). This approach is the Euler’s
method, and besides being the simplest way of effectively solving the IVP, it forms the
basis of most of the commonly used advanced numerical solvers for ODEs.

2.3.2 Runge-Kutta Method

Euler’s method comes short in that it uses only the information from the pre-
vious step at each iteration, i.e., it discards the information from yi−1,yi−2, . . . (when
available). The Runge-Kutta methods, on the other hand, feed from the rich theory
on numerical integration and use multiple approximations of y (t) to take a step. More
precisely, the classic Runge-Kutta method (RK4), also known as classic Runge-Kutta,
uses 4 approximations of the solution to estimate yi+1.

Similar to Euler’s method, Runge-Kutta is also an iterative approach, which
means that given yi (an approximation of the solution at ti) it will compute yi+1 (an
3 If t0 is not the extrema of the interval, one can just apply the method in both directions.
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approximation of the solution at ti+1 = ti + h). The intuition of RK4 is to iteratively
approximate N (the slope) for the solution within the step (i.e, the interval [ti, ti+1])
and use this information to compute yi+1. Let us denote k1, . . . ,k4 as intermediate
approximations of N such that

k1 = N (ti,yi)

k2 = N
(︃
ti +

h

2
,yi +

h

2
k1

)︃
k3 = N

(︃
ti +

h

2
,yi +

h

2
k2

)︃
k4 = N (ti + h,yi + hk3) .

Note that each approximation depends on the previous ones. Furthermore, one can
see that k1 is the approximation of N at the beginning of the step (ti ), while k2 and
k3 are at the middle (ti + h

2 = ti+1 − h
2 ) and k4 is at the end (ti+1). Finally, yi+1 is

computed taking a weighted average of these approximations as

yi+1 = yi + h
k1 + 2k2 + 2k3 + k4

6
.

Even though Runge-Kutta’s approach seems quite simple and magic, it provides
a significant error reduction in a still very lean algorithm. In fact, even when one bases
around the number of evaluations of the N function (which tends to be the costlier
operations for complex functions), it still outperforms the Euler’s method, even with a
step size 5 times larger4. This combination makes RK4 one of the most used ODE
solvers yet. An example can be seen in Figure 1.

2.4 VAN DER POL OSCILLATOR

The Van der Pol oscillator was first described by Van der Pol (1920) on the study
of oscillatory behavior in electrical circuits with triodes. Since then, it has been used
plenty to model natural phenomena (LUCERO; SCHOENTGEN, 2013; FITZHUGH,
1961; NAGUMO; ARIMOTO; YOSHIZAWA, 1962; CARTWRIGHT et al., 1999). A com-
mon representation is as a second-order differential equation

d2y(t)

dt2
= µ

(︂
1− y(t)2

)︂ dy(t)

dt
+ y(t),

where µ ∈ R dictates the dampening behavior. As has been shown in the previous
section, the equation can be written in the form of Equation (2.2) as

d

dt

[︄
y1 (t)

y2 (t)

]︄
=

[︄
y2 (t)

µ
(︂
1− y1 (t)

2
)︂
y2 (t)− y1(t)

]︄
. (2.3)

4 Each iteration of RK4 makes 5 N function evaluations while Euler’s method’s makes only one evalua-
tion for iteration, so we can estimate that RK4 is 5 times more expensive than Euler’s.
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Figure 1 – Comparison of RK4 and Euler’s method for dy(t)
dt = y(t) sin(t)2 with y(0) = 1.

The analytical solution ϕ(t) is shown in the solid line while the solvers with
different step sizes are shown in broken lines. The image on the right shows
the impact in a long-term run, highlighting the comparison between RK4 with
h = 5 and Euler’s with h = 1.

In the example shown in Figure 2, the impact of µ in the non-linearity of the solution is
shown.

The Van der Pol oscillator has no analytic solution (PANAYOTOUNAKOS; PANAY-
OTOUNAKOU; VAKAKIS, 2003), so it requires an accompanying numerical solver to be
studied. Nevertheless, it is well known that the oscillator has a unique and stable limit
cycle5(GRIMSHAW, 1993). These limit cycles can be seen in the examples shown in
Figure 2b.

5 Loosely defined, a limit cycle can be seen as the image of the solution when it becomes periodic.
Refer to Grimshaw (1993) for a more precise definition.
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Figure 2 – Examples of (numerical) solutions for the Van der Pol oscillator. The notation
of Equation (2.3) is used. Different values of the dampening parameter are
used, but the initial condition is fixed as y1(0) = 0, y2(0) = 0.1. In (a), the
evolution of the numerical solution over 50 seconds is shown. In (b), the
trajectory of the numerical solution (y2 in the vertical axis and y1 in the
horizontal axis, i.e., a state-space plot) is shown for the same time horizon.
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3 DEEP LEARNING

In this chapter, a brief overview of the key elements of deep learning are pre-
sented. Deep Learning is a broad area of knowledge that can be seen (and pre-
sented) through many viewpoints, which results in a multitude of notations and few
well-established naming conventions. Here, the approach of Goodfellow, Bengio, and
Courville (2016) is followed, being altered only to make it consistent with the other
chapters. Furthermore, even though physics-informed learning and implicit models can
be seen as branches of deep learning, they are introduced in separated chapters for
their relevance.

3.1 INTRODUCTION AND DEFINITION

Even though Deep Learning may seem like a novel and exciting technology,
it has been studied under many different names since the 1940s (GOODFELLOW;
BENGIO; COURVILLE, 2016). Deep learning involves composing multiple levels1 of
representation learning. Representation learning, in turn, is about automatically extract-
ing higher level features from the input data (LECUN; BENGIO; HINTON, Geoffrey,
2015; BENGIO; COURVILLE; VINCENT, 2013), aiming to facilitate the extraction of
useful information, for example, to classify the data into given categories.

Following these definitions, we can see a deep learning model as a function
with multiple levels of representations. A simple way of putting this definition into terms
would be to define a model with L layers of representations as a function D such that,
for a given input x,

z[0] = x

z[i] = f [i](z[i−1]), i = 1, . . . , L

D(x) = z[L].

(3.1)

From this notation, it is easy to see that each function f [i] maps the outputs of the
previous layer into the input of the next, ideally achieving a higher abstraction level.

In this context, we can see the goal of learning as finding functions f [i] that
indeed extract the desired information, culminating in the model returning the desired
output. A classic toy example in deep learning models is to approximate the Exclusive-
OR function, that is, to find a model D : R2 → R such that

D([0, 0]T ) = D([1, 1]T ) = 0

D([1, 0]T ) = D([0, 1]T ) = 1.

1 The understanding of these levels as a learning depth is the origin of the naming for deep learning.
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We can construct this model’s layers as functions f [1] : R2 → R2 and f [2] : R2 → R
such that

f [1](z) =

[︄
OR(z)

NAND(z)

]︄
f [2](z) = AND(z).

Note how these functions are extracting simple information from the input, yet their
stacking can approximate very well the desired behavior.

3.2 DEEP FEEDFORWARD NETWORKS

Deep feedforward networks, often times also called Neural Networks2, are the
most essential deep learning models. They were inspired by the works of Rosenblatt
(1957) and refined through the many decades since, culminating in one of the most
important deep learning models for practitioners and the basis of the most prominent
results seen in recent years (GOODFELLOW; BENGIO; COURVILLE, 2016).

In this model, each layer is a simple affine operator followed by a nonlinear
activation function. Following the notation previously presented, we can define a deep
feedforward neural network DFN

θ with L layers as a stacking of parametrized functions,
such that, for a given input x,

z[0] = x

z[i] = f
[i]
θi (z

[i−1]) = g[i]
(︂
A[i]z[i−1] + b[i]

)︂
, i = 1, . . . , L

DFN
θ (x) = z[L],

in which θ =
(︂
θ1, . . . ,θL

)︂
are the vectors of parameters and g[i] are the activation

functions. It is common to see each of the θi as a vector composed of the individual
elements of the respective A[i] and b[i]. Usually, one denotes a single parameter vector
θ shared by all functions, assuming that each function "selects" only its own parameters,
therefore, writing f

[i]
θ = f

[i]
θi .

Using this notation, we can say that, given a target function f∗ and input data
X, the task of learning a deep feedforward network DFN

θ is resumed to finding a set of
parameters θ such that DFN

θ (x) ≈ f∗(x), ∀x ∈ X.
Following the Exclusive-OR example, one can construct a two-layer deep feed-

forward network such that the functions f
[1]
θ : R2 → R2 and f

[2]
θ : R2 → R are

f
[1]
θ (z) = σ

(︄[︄
2K 2K

−2K −2K

]︄
z +

[︄
−K
3K

]︄)︄
f
[2]
θ (z) = σ

(︂[︂
2K 2K

]︂
z − 3K

)︂
,

2 Neural Networks are usually regarded as a more broad set of models, that include the deep feedfor-
ward networks. However, for the sake of simplicity, both will be treated as synonyms in this work.



Chapter 3. Deep Learning 26

where the chosen activation function σ(.) is the sigmoid function3 and the parameters
are defined from K ≫ 1 such that σ(K) ≈ 1 and σ(−K) ≈ 0. Then, it is easy to see
that the first output of f [1] approximates the OR function applied to the input, while
the second output approximates the NAND function and f [2] approximates an AND
function.

For a network defined as previously, we say that the inner states z[i] which are
neither the input nor the output of the network (i.e., i ̸∈ {0, L}) are called the hidden
layers of the network. Note that even though the input and output dimensions are
defined by the target function, the dimensions of the hidden layers are a design choice,
as well as the number of hidden layers and the activation functions.

It has already been proven that a network with a single hidden layer can approxi-
mate any continuous function on a closed and bounded subset of Rn, for a broad range
of activation functions, given that the hidden layer has enough dimensions (HORNIK;
STINCHCOMBE; WHITE, 1989; LESHNO et al., 1993). Yet, even though this universal
approximation theorem guarantees that such a network exists, it provides no way to find
it. In practice, a network with a single hidden layer might need to be unfeasibly large
to achieve the desired approximation, while deeper models can be far more efficient
(GOODFELLOW; BENGIO; COURVILLE, 2016).

3.3 LEARNING

The Exclusive-OR example illustrates how a model built of multiple simple func-
tions can approximate very well a target behavior. Yet, if we consider complex tasks
(such as predicting age from humans’ photographs), it is easy to see that many com-
ponents and hundreds, maybe millions of parameters may be necessary4. Thus, it is
not always reasonable (or even possible) to design these components manually. That
is the reason learning algorithms are essential to make these models useful for realistic
tasks.

One can understand what a learning algorithm is from the definition from Mitchell
(1997): “A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E.” To narrow down this broad definition
to the scope of the presented work, we can consider the tasks in T to approximate a
target function. Then, the experience given is the target function itself. Furthermore, the
performance measure P is some sort of distance measure between the model and the
target function.
3 Applied element-wise where necessary.
4 A simple example would be to consider a deep feedforward network designed to have images as

inputs and output a single value. Even if small, 32-by-32 pixels, grayscale images are expected, the
domain will have dimension 1024. Thus, if a single hidden layer of dimension 256 (a quarter of the
input size) is desired before the output layer, the network will have over 200 thousand parameters.
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However, it is often impractical to evaluate both the model and the target function
in the entirety of the domain of interest. Such evaluation can be too expensive to
compute and the behavior of the target function might not be known beforehand. Thus,
the experience E is usually a (finite) set of samples from the domain paired with the
outputs of the target function of interest. These can be measurements of a real process,
like time (input) and the evolution of a quantity of interest (target function).

Roughly speaking, the deep learning algorithms of interest for this work are
those that provide a deep learning model that maximizes a performance measure on
data of the target function. This is called training a model.

3.3.1 Gradient Descent

The majority of deep learning algorithms of our interest require some sort of
optimization. It would be natural to frame the definition of a learning algorithm as an
optimization problem that maximizes the performance measure. Yet, not always the
performance measure of interest is easy to compute or provides useful features for the
optimization (e.g, differentiability). Therefore, it is usual to optimize indirectly, minimizing
a loss function while aiming to improve the performance measure.

Given a model DFN
θ : Rn → Rm and a target function f∗ : U ⊂ Rn → Rm, an

ideal performance measure could be
∫︁
U ∥Dθ(x)− f∗(x)∥dx. Yet, this integral could be

costly to compute and might not even be easily defined, as the target function might be
accessible only through a distribution due to, e.g., noise. Instead, one could evaluate the
model on a finite set of points from the domain X = {(x,y) ∈ U ×Rm : y = f∗(x) +ω}
(the data that forms the experience E), where ω is, e.g., measurement error and noise,
defining a loss function l : Rm × Rm → R (over the model’s output and the target) that
can be evaluated for each sample, e.g., the ℓ2-norm. This way, the outcome of a deep
learning algorithm would be a model DFN

θ∗ , such that

θ∗ = argmin
θ

∑︂
(x,y)∈X

l(DFN
θ (x),y).

Usually, though, given the data X and the model DFN
θ , it is easy to define a cost

function J : Θ → R, which can be an aggregation of the per-sample loss function
like J (θ) =

∑︁
(x,y)∈X l(DFN

θ (x),y). Therefore, to train a model one can solve the
optimization problem

min
θ

J (θ)

s.t. θ ∈ Θ,

where Θ is the set of feasible parameters for DFN
θ .

The most common way to solve this optimization for deep learning models is
to use the gradient descent algorithm. This method was first proposed by Cauchy in
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the XIX century (LEMARECHAL, 2012) based on the definition of the gradient of a
differentiable function. It is known that, given a differentiable function f : A → R and
a ∈ A, if ∥∇f(a)∥ ≠ 0, ∃γ > 0 such that f(a − γ∇f(a)) < f(a), that is, if one takes a
small enough step in the opposite direction of the gradient, the function is certain to
decrease. The scalar γ is called the learning rate, and defines the size of the step that
is taken (GOODFELLOW; BENGIO; COURVILLE, 2016).

Following the notation of the previous example, if we assume that both the model
and the cost function are differentiable, given parameters θk such that ∥∇J(θk)∥ ≠ 0, if
we set

θk+1 ← θk − γ∇J(θk), (3.2)

then, for a sufficiently small γ, we know that

J (θk+1) < J (θk) ,

i.e., the cost will decrease. Notice how intuitively it seems that if one takes enough steps
like (3.2) with small enough γ, the parameters will converge to a point that is a local
minimum of the cost function. In the context of the learning algorithm, every iteration in
which the cost is computed on the whole training data and the parameters are updated
following Equation (3.2) (or similar) is called an epoch.

Gradient descent usually provides poor convergence conditions (WOLFE, 1969),
being considered unreliable and slow for many practical optimization problems. Still,
gradient descent is known to work very well for deep learning. In this area, it has shown
to achieve low values of the cost function fast enough to be useful, even if it does not
find a local minimum (GOODFELLOW; BENGIO; COURVILLE, 2016)

3.3.2 Gradient Descent Variations

Over the years, many improvements on the gradient descent algorithms made
it even more reliable and efficient for learning deep networks. In particular, the use of
momentum on the update of the parameters has shown to accelerate significantly the
learning process (SUTSKEVER et al., 2013). Momentum can be seen as computing a
"velocity" vector over the parameter update steps, and taking this into account when
performing the update. The classical way of doing this is to replace the update in
Equation (3.2) by

vk+1 ← µvk − γ∇J(θk)

θk+1 ← θk + vk+1,

where vk is the velocity at the k-th step, and µ is the momentum coefficient.
A major challenge of the gradient descent as a learning algorithm is that it intro-

duces a parameter that is not learned in the process (those are called hyperparameters)
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and that is crucial to finding a good model: the learning rate. Using momentum reduces
a little the sensitivity of the results to the choice of the learning rate, but does so while
introducing a new hyperparameter (the momentum coefficient µ). Furthermore, it is
known that the cost function can be sensitive to some of the parameters while being
numb to others (GOODFELLOW; BENGIO; COURVILLE, 2016).

In face of these challenges, strategies were proposed that use different learning
rates for each parameter and automatically change these learning rates throughout
the learning process. The simplest way of doing this is through the rationale that if
the gradient with respect to a given parameter does not change sign (i.e., remains
positive (or negative)) over the epochs, the cost is not very sensitive to changes in this
parameter and, thus, its associated learning rate should increase; otherwise, it should
decrease. This adaptive learning rate approach makes the training more stable.

Adam (KINGMA; BA, 2015) combined two gradient descent variations proposed
by Duchi, Hazan, and Singer (2011) and Tieleman and Hinton (2012), encompassing
both adaptive learning rates and momentum, and taking them one step further. After
showing excellent empirical results over many application areas, Adam became one
of the most commonly used algorithms and is seen as one of the best choices overall
(AN. . . , 2017).

3.4 REGULARIZATION

One of the biggest challenges in deep learning is to get models that perform
well also on samples that are not in the data provided during training, i.e., models that
generalize well. Strategies designed to improve performance outside of the data seen
during training at the cost of decreased performance in the training data are known as
regularization (GOODFELLOW; BENGIO; COURVILLE, 2016).

One of the most common regularization practices is to penalize the magnitude
of the parameters by adding a term to the cost function such as

J (θ) =
∑︂

(x,y)∈X
l(Dθ(x),y) + αΩ (θ) ,

where α is a hyperparameter that weighs the contribution of the new term and Ω :

Θ → R can be, e.g., the ℓ1-norm. This can be seen as an incentive for the model
to be built on simple features, in an effort to approximate the training data with the
simplest model possible (GOODFELLOW; BENGIO; COURVILLE, 2016). One may
ponder why this may be useful, when limiting the complexity of the model through
hard constraints is rather easy (e.g., limiting the number of parameters, reducing Θ,
etc.). Unfortunately, properly defining these hard constraints is not trivial, as finding
the “simplest” model that is still able to approximate the target function can be hard.
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In practice, complex models properly regularized almost always perform better than
simpler models (GOODFELLOW; BENGIO; COURVILLE, 2016).

Another way to improve generalization is to use regularization to drive the learn-
ing towards models that present some desired characteristics. One of the most common
of such characteristics is noise robustness. If one wants to train a model that is robust
to noise in its input, one way to achieve this is to reduce the output’s sensitivity. The
output can be said less sensitive to variations of an input dimension if its derivative with
respect to this input dimension has a small magnitude. This can be enforced through a
regularization term on the gradients of the model’s outputs (DRUCKER; LE CUN, 1992).
E.g., given a model Dθ : Rn → R, one can use a regularization term of the form

Ω (θ) =
∑︂

(x,y)∈X
∥∇Dθ (x) ∥2.

Note, however, that to use gradient descent with this type of regularization, one must
be able to compute second-order derivatives of Dθ.

3.5 BACK-PROPAGATION

Even from the most simplistic description of the gradient descent algorithm, as
in Equation (3.2), it is clear that the challenge lies in computing the gradient of the cost
function. Taking deep feedforward networks as an example, the analytical formula for
this gradient can be derived without much effort. Yet, evaluating this formula can be
quite expensive, given that, as already seen, deep learning models can have millions of
parameters, thus making even the computation of a linear application non-trivial. The
back-propagation algorithm (RUMELHART; HINTON, Geoffrey E.; WILLIAMS, 1986)
provides a clever way of computing the gradient with respect to each parameter without
great computational costs.

Back-propagation works based on the chain-rule for the derivatives. We first note
that, from (3.2) and the definition of the cost function, ∇J can be reduced to evaluating
the gradient of the loss function at several points. Therefore, if we want to compute the
derivative of the cost function with respect to each of the parameters θi, i = 1, . . . , L,
we need to look at the derivative of the loss function with respect to these parameters.
Now, by the chain-rule, let us take the case for θL and see that

∂l

∂θL
= ∇Dθ

l
dDθ

dθL

= ∇z[L]l
df

[L]
θL

dθL
,

where ∇z[L]l is the gradient of the loss function with respect to the model’s output

(Dθ(x) = z[L]) and
df

[L]

θL

dθL is the Jacobian of the last layer of the model. Now, if we
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consider the case for θL−1 and θL−2

∂l

∂θL−1
= ∇z[L]l

df
[L]
θL

dz[L−1]
df

[L−1]
θL−1

dθL−1

∂l

∂θL−2
= ∇z[L]l

df
[L]
θL

dz[L−1]
df

[L−1]
θL−1

dz[L−2]
df

[L−2]
θL−2

dθL−2
,

it is easy to see repeating terms: the result of∇z[L]l
df

[L]

θL

dz[L−1] , necessary to compute ∂l
∂θL−1 ,

can be reused to compute ∂l
∂θL−2 as well as the gradients of θL−3, . . . ,θ1.

Back-propagation exploits this by computing the gradients with respect to each
parameter "from left to right", that is, starting by computing the gradient of the outer-
most component of the composition and storing the intermediate result. Applied to the
equations above, the first operation would be to compute uT ← ∇z[L]l, which would be
used in the vector-Jacobian product

uT
df

[L]
θL

dθL

to compute the gradient with respect to θL. Then, the intermediate result can be updated

through the vector-Jacobian product uT ← uT df
[L]

θL

dz[L−1] , which is useful to compute the
gradient with respect to θL−1.

It is easy to see that this procedure can be repeated, propagating the gradient
through each layer of the network until every parameter is covered, effectively reducing
the evaluation of the gradient to computing several vector-Jacobian products. Further-
more, back-propagation can be also very memory efficient, as the chain-rule can be
applied to each f

[i]
θi and, thus, the stored values are limited by the layer size5.

5 The presented approach considers the θi vectors as the parameters of interest, when in a practical
application the gradients would be computed with respect to each of the A[i] and b[i] parameters.
Therefore, the Jacobian matrices computed would be limited by the sizes of each of these parameters.
Finally, it is easy to see that the intermediate value stored u will have the same dimension as the next
layer used in the vector-Jacobian product to update it.
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4 PHYSICS-INFORMED LEARNING

Solving an IVP for ODEs using deep learning is not as straight-forward as it may
seem. Indeed, it falls under the function approximation paradigm, in which we want to
train a deep learning model to approximate a target function (which is the solution to
the IVP). In this scenario, it is usual that either the target function is unknown or it is too
complex to be useful, and, thus, only input-output samples are available to train the deep
learning model. This is the case for most of the well-known successful applications of
deep learning, such as those involving computer vision and the classification of images.

However, that is not the case for IVPs. When a solution for an IVP is desired, the
target function is not known, but neither are the input-output pairs. Actually, generating
such training data is essentially solving the IVP. Yet, the dynamics of the solution is
usually well-known, in the form of an ODE. This chapter focuses on communicating an
approach to harvest this knowledge efficiently and to use it to train deep feedforward
networks that approximate the solution of IVPs. More specifically, the work of Raissi,
Perdikaris, and Karniadakis (2019) is presented in a more limited formulation, targeting
ODEs1.

4.1 PROBLEM STATEMENT

Let us first recall the IVP. Given an ODE (written like in Equation (2.2)) and
boundary conditions, we want to find a solution that satisfies both. More precisely, given
N : R × Rm → Rm and initial conditions t0 ∈ I ⊂ R, y0 ⊂ Rm, we want to find
ϕ : I → Rm such that

dϕ(t)

dt
= N (t,ϕ(t)) , t ∈ I

ϕ(t0) = y0.

Solving this using deep feedforward networks means to train a model DFN
θ :

I → Rm, parametrized by θ ∈ Ω, that satisfies the same conditions, i.e.,

dDFN
θ (t)

dt
= N

(︂
t,DFN

θ (t)
)︂
, t ∈ I (4.1)

DFN
θ (t0) = y0. (4.2)

The naïve approach would be to construct a set X = {(t,y) ∈ I × Rm : y = ϕ(t)}
to be used as the experience for the learning algorithm. Then, with a properly con-
structed cost function and given that the model is complex enough, the model DFN

θ

would approximate the target ϕ and, by consequence, satisfy Equation (4.1) and Equa-
tion (4.2). However, note how this approach assumes that ϕ is known, as it is required
1 The original work focuses on partial differential equations, having ODEs as a particular case.
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to construct a set X with more than just (t0,y0). Therefore, in many IVP setups, training
a deep learning model this way would either be impossible or useless.

4.2 PHYSICS REGULARIZATION

The naïve approach described above is quite inefficient in that it does not use
the information provided by the known N function. This is precisely the turning point for
making deep learning a viable option in solving IVPs. The approach of Raissi, Perdikaris,
and Karniadakis (2019) proposes to train the model using a regularization based on N .
This means to train DFN

θ to approximate ϕ at the initial condition (since this is known
by the definition), satisfying Equation (4.2), but also to train its Jacobian to approximate
N , satisfying Equation (4.1).

For this, let us define the singleton Xb = {(t0,y0)} and the set XN ⊂ I. Then,
we can construct

Jb (θ) =
∑︂

(t,y)∈Xb

∥DFN
θ (t)− y∥22 = ∥DFN

θ (t0)− y0∥22,

which looks like a usual cost function, and

JN (θ) =
∑︂
t∈XN

⃦⃦⃦⃦
⃦dDFN

θ (t)

dt
−N

(︂
t,DFN

θ (t)
)︂⃦⃦⃦⃦⃦

2

2

.

Notice how the definition of JN resembles a gradient regularization as discussed in
Section 3.4. The difference is that instead of penalizing high derivatives, we want them
to approach a desired value. Then, the cost function used to train the model is defined
as

J (θ) = Jb (θ) + λJN (θ) ,

where λ ∈ R+ is a scalar value to weight in the components of the loss function.
Originally, Raissi, Perdikaris, and Karniadakis (2019) define this value as λ =

|Xb|
|XN | ,

that is, proportional to the contribution of both sets in the training of the network. A
neural network trained to learn a differential equation following a cost function as the
one defined above is called a PINN.

The intuition of this approach is that Jb will guide the optimization so that Equation
(4.2) is satisfied, while JN will ponder it towards satisfying (4.1). Unfortunately, no
theoretical guarantees have been published to prove this intuition. Nevertheless, the
authors have provided plenty of empirical evidence together with a robustness analysis,
indicating that with enough samples in XN and a sufficiently complex model Dθ, a small
error (e.g., ∥Dθ (t)− ϕ (t) ∥) can be achieved (RAISSI; PERDIKARIS; KARNIADAKIS,
2019). This result has also been achieved by others in different applications, validating
the claims (NOAKOASTEEN et al., 2020; ZHANG; LIU; SUN, 2020; ARNOLD; KING,
2021; YUCESAN; VIANA, 2022).
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Finally, note how this approach does not require that the target function is known.
Actually, XN can be constructed randomly by extracting samples of I, therefore, making
deep learning an efficient approach to solving IVPs.

Example

Let us apply the approach presented above and train a PINN to solve an IVP for
Newton’s second law of motion. Recall that it can be modeled as a first-order ODE of
the form

dy(t)

dt
=

[︄
dy1(t)
dt

dy2(t)
dt

]︄
=

[︄
y2(t)
C
M

]︄
,

assuming that the force applied to the object is a constant C. For simplicity, let us
assume that C = M = 1. Finally, let us define the IVP through t0 = 0 and y0 = (0, 0),
that is, at the initial time, the object stands still at the reference position. Also, the
interval in which we are interested is I = [0, 1].

Now, for the deep learning model, let us use a deep feedforward network with 2
hidden layers of size 10, i.e., our model is a function DFN

θ : R→ R2 such that

z[0] = t

z[i] = f
[i]
θ (z[i−1]), i = 1, 2, 3

DFN
θ (t) = z[3],

in which f
[1]
θ : R→ R10, f [2]

θ : R10 → R10, f [3]
θ : R10 → R2, and

f
[i]
θ (z) = tanh

(︂
A[i]z + b[i]

)︂
.

In the results shown in Figure 3, this model was implemented using PyTorch (PASZKE
et al., 2019) and trained using Adam with γ = 0.1 and λ = 0.1. Running the algorithm
for 1000 epochs took less than 2 seconds on a high-end, 16-core processor (no GPU
was used). Notice how the PINN evolves over the epochs, achieving the same results
of the numerical solver even though only the dynamics and the initial condition were
experienced during training.
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Figure 3 – Performance of a PINN in comparison to RK4 in solving an IVP of Newton’s
second law for I = [0, 1]. In the graphic, y1 and y2 are the results of the
numerical solver, while ŷ1 and ŷ2 are the results of the PINN trained after
different numbers of epochs. PINN results for 1000 epochs overlap RK4
results.
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5 DEEP EQUILIBRIUM MODELS

This chapter’s focus is to define the deep learning model that is the central
investigation point of this work. DEQs have been proposed by Bai, Zico Kolter, and
Koltun (2019) and Ghaoui et al. (2019), the latter naming them implicit models. In this
chapter, we follow the notation of the former.

Furthermore, one of the greatest challenges in working with DEQs is that, by their
implicit nature, they do not fit perfectly well with current deep learning tools. Therefore,
to better understand the nuances and challenges that this family of models present
during the experiments, a good share of attention is dedicated to the specificities of
performing back propagation with DEQs.

5.1 INTRODUCTION AND DEFINITION

In Chapter 3, the intuition behind a deep learning model was introduced, that is,
to model complex features through the composition of simple-yet-non-linear parametrized
functions. Besides the network defined in Section 3.2 (which is the base for PINNs, as
shown in Chapter 4), many other deep learning model architectures have been pro-
posed over the years. Some of the architectures with the most surprising results involve
composing the models with the same function applied multiple times, i.e., following
the notation of Chapter 3, instead of defining the model as a composition similar to
Dθ = f

[L]
θ ◦ · · · ◦ f

[1]
θ , these architectures suggest a model similar to Dθ = f

[1]
θ ◦ · · · ◦ f

[1]
θ .

Inspired by this, Bai, Zico Kolter, and Koltun (2019) take a step further, defining the
model with a (possibly) infinite stack of the same function, which was named DEQ.

For the definition of a DEQ D
EQ
θ , let us start with the definition of a deep learning

model as proposed in Equation (3.1), but imagine it having an infinite number of layers
(infinite depth). Of course, if each f

[i]
θ is a different function (with different parameters),

then this would be impossible to fit in memory. Therefore, let us assume that f [i]θ = fθ,∀i,
i.e.,

z[0] = x

z[i] = fθ(z
[i−1]),∀i ≥ 1,

in which the output would be

D
EQ
θ (x) = z⋆ = z[∞].

If this iterative process converges, that is, if there is a number N such that ∀i ≥ N, z[i] ≈
z[i+1], then the output z⋆ ≈ z[N ] is well-defined, and it is also true that

z⋆ = fθ (z
⋆) .
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One can say that z⋆ is an equilibrium point of fθ. Therefore, the output of a well-behaved
(i.e., one that respects the restrictions above presented) infinite-depth deep learning
model can be computed by finding an equilibrium point.

The model proposed by Bai, Zico Kolter, and Koltun (2019) has a slight change
in how it handles the input, feeding the input vector at each layer of the model. This
means that the equilibrium function fθ has as arguments both an input vector x and a
state vector z. More precisely, we can say that a DEQ of the form

D
EQ
θ : Rn −→ Rm

x ↦−→ D
EQ
θ (x) = z⋆

defines its output as the equilibrium point of a function fθ : Rn+m → Rm for a given
input,

z⋆ = fθ (x, z
⋆) . (5.1)

5.2 FORWARD

The simplest way to perform the forward pass of a DEQ, i.e., to compute the
output of the model given an input, is to iterate the application of the equilibrium function
fθ until the current value is close enough to the previous. More specifically, given an
input x and an initial guess z[0], the procedure is to update the equilibrium guess z[i]

by
z[i] = fθ(x, z

[i−1])

until ∥z[i]−z[i−1]∥ is small enough. This approach is the simple iteration method (SÜLI;
MAYERS, 2003). Even though this approach is very intuitive given our derivation of
a DEQ from an infinite-depth model, it is quite limited. First because it can be quite
slow, i.e., it can take many iterations until convergence is achieved, being very sensitive
to the starting point. But mostly because this approach only finds equilibrium points if
the function of interest is a contraction between the starting point and the equilibrium
point (SÜLI; MAYERS, 2003).

This limitation can be easily visualized by trying to use the simple iteration
method to find the equilibrium of f(z) = 2z − 1. The function clearly has an equilib-
rium at z = 1. Yet, at any starting point except the equilibrium, the simple iteration
method will diverge.

Luckily, we know from Equation (5.1) that the equilibrium point, for a given input,
is also the root of a function gx(z) = fθ(x, z)−z. This means that using any root-finding
algorithm on gx yields z⋆, the desired output. Perhaps the most classical root-finding
algorithm is Newton’s method, which proposes to iterate over the solution space given

z[i+1] = z[i] −

(︄
dfθ(x, z

[i])

dz

)︄−1
fθ(x, z

[i]),
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in which d
dzfθ(x, z

[i]) represents the Jacobian of fθ with respect to z1. Newton’s
method not only has guaranteed convergence for a broader class of functions in com-
parison to simple iteration, but also converges much faster (SÜLI; MAYERS, 2003).

5.2.1 Practical Considerations

Most modern algorithms that help us find the desired equilibrium point are either
modifications of the simple iteration algorithm (e.g., Anderson Acceleration (WALKER;
NI, 2011)) or modifications of Newton’s method (e.g., Broyden’s method (BROYDEN,
1965)). Nevertheless, all these methods require an initial guess z[0] and a tolerance
ε > 0. The initial guess, or starting point, is clearly necessary, as it is natural for iterative
procedures, and is usual to find it as z[0] ← 0 by default. The tolerance is necessary to
define a stopping condition for the algorithm, when the approximation for the equilibrium
point is “good enough,” i.e., if ∥z[i]−z[i−1]∥ < ε then it is considered that the equilibrium
has been reached. Furthermore, it is also usual to define a limit for the number of
iterations, avoiding that the algorithms run for an indefinite amount of time.

5.2.2 Jacobian Regularization

Two common empirical findings of DEQ applications are that they are 1) unstable
to architectural choices (BAI; KOLTUN; KOLTER, 2021) and 2) increasingly slower over
training iterations (BAI; ZICO KOLTER; KOLTUN, 2019; WINSTON; KOLTER, 2020).
This is a direct implication of the equilibrium-finding nature of the forward pass, which
relies heavily on the behavior of fθ. Intuitively, the complexity of fθ, which depends
heavily on the architecture and is expected to increase during training, makes it harder
for the root-finding algorithm to converge.

In a very recent work, Bai, Koltun, and Kolter (2021) discussed how the Jacobian
of fθ with respect to z is related to both problems. The authors propose, then, to
penalize large values in this Jacobian during training and show how this increases
robustness and convergence speed of DEQs, reducing training and inference times.
More specifically, they propose to compute the Frobenius norm2of the Jacobian of fθ
and add it as a regularization term to the cost function (see Sec. 3.4).

5.3 BACKWARD

It was shown in Sec. 3.5 that, in order to use a gradient descent algorithm to
train a deep learning model, one must compute the derivatives of the cost function with
1 To avoid the computational burden of inverting the Jacobian matrix, it is usual that the iteration focuses

on solving dfθ(x,z
[i])

dz

(︁
z[i+1] − z[i]

)︁
= −fθ(x, z

[i]) instead.
2 The Frobenius norm of a matrix A can be written ∥A∥F =

√︂∑︁n
i,j=1 |ai,j |2.



Chapter 5. Deep Equilibrium Models 39

respect to the model’s parameters. In the case of DEQs, this computation is not straight-
forward. Given D

EQ
θ : Rn → Rm a DEQ as defined above, computing the derivative of

a cost function J : Ω→ R with respect to the parameters can be seen as

∇θJ (θ) = ∇z⋆J(D
EQ
θ (x))

dD
EQ
θ (x)

dθ
.

At the same time, we know that the output of a model is given by an equilibrium point
of fθ, which is computed using a root finding method as

D
EQ
θ (x) = RootF ind(g, z[0]),

where g is the function g(x, z) = fθ(x, z)− z. Therefore, directly computing the deriva-
tives of DEQ

θ requires the computation of the derivatives of the root-finding algorithm.
Yet, not only root-finding algorithms are not usually differentiable, but even those that
are differentiable may have an enormous computational cost to compute the deriva-
tives. To illustrate the point, if we restrain ourselves to using the simple iteration method
as the root-finding algorithm, we can apply the chain rule and decompose the deriva-
tive in computing the derivative of fθ for as many times as there were iterations until
convergence, which can make practical applications impossible.

Luckily, we can exploit the fact that the output of the model (DEQ
θ (x) = z⋆) is an

equilibrium point of fθ, as done by Bai, Zico Kolter, and Koltun (2019). This implies that,
in a neighborhood of the input vector x, DEQ

θ is a parametrization of z with respect to
x, i.e.,

fθ

(︂
x, D

EQ
θ (x)

)︂
−D

EQ
θ (x) = 0

is true. Then, by the definition of g, it is also true that

g
(︂
x, D

EQ
θ (x)

)︂
= 0

holds in a neighborhood of the input. Therefore, by the implicit function theorem (applied
to g with D

EQ
θ as the parametrization), we can write

dD
EQ
θ (x)

dθ
= −

[︄
dg(x, D

EQ
θ (x))

dz

]︄−1
dg(x, D

EQ
θ (x))

dθ
. (5.2)

Now, by the definition of g we know that

dg(x, z)

dz
=

dfθ(x, z)

dz
− I

and
dg(x, z)

dθ
=

dfθ(x, z)

dθ
.

Therefore, we can rewrite (5.2) as

dD
EQ
θ (x)

dθ
= −

[︄
dfθ(x, D

EQ
θ (x))

dz
− I

]︄−1
dfθ(x, D

EQ
θ (x))

dθ
, (5.3)
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which allows us to compute the derivative of the DEQ model regardless of how the equi-
librium was computed. This makes it possible for us to use any root-finding algorithm
in the forward pass and still optimize the parameters of the model. Furthermore, the
implicit function theorem can also be applied to find the derivatives of the DEQ model
with respect to the input vector, enabling back-propagation even if the "infinite depth" is
just a component of a larger deep learning model.

5.3.1 Implementation

One may notice that trading the computation of the derivative of the root-finding
algorithm for the computation of a matrix inverse (the Jacobian of fθ with respect to
z) might not be a good idea. Luckily, we do not actually need to compute the Jacobian
of DEQ

θ to perform back-propagation. As discussed in Section 3.5, all we need is to

compute a vector-Jacobian product of the form uT dDEQ
θ (x)
dθ , which, in turn, can also be

reduced to computing other vector-Jacobian products, following Equation (5.3).
It is clear that the challenge lies in computing the vector-Jacobian product

uT
[︂
dfθ

dz − I
]︂−1

efficiently, as a matrix inversion is oftentimes too costly. Yet, we can
see that

vT = uT
[︃
dfθ
dz
− I

]︃−1
=⇒ uT = vT

[︃
dfθ
dz
− I

]︃
= vT

dfθ
dz
− vT

=⇒ vT = vT
dfθ
dz
− uT . (∗)

The above equation tells us that, given u the result of the previous step, the challenging
vector-Jacobian product can be computed by finding the equilibrium point of Equation
(∗) on v. Therefore, a root-finding algorithm can be used to compute the result of the
challenging vector-Jacobian product, just like in the forward pass.



41

6 EXPERIMENTS AND RESULTS

In this chapter, we build on the theoretical foundations exposed above and pro-
pose a novel solution method for IVPs of ODEs. The main goal of the chapter is to
validate the approach and explore its performance under different hyperparameter con-
figurations. This is done through a series of experiments on the Van der Pol oscillator.

We benchmark our approach to PINNs, a well-established deep learning solution
to this kind of problem. The comparison is made both in terms of approximation error
and in solution speed. Overall, this chapter lays out the results for the discussion
provided in Chapter 7.

6.1 PROBLEM DEFINITION

The Van der Pol oscillator (Sec. 2.4) was chosen as the ODE system for which
an IVP will be solved. This system is known for having no analytical solution, thus
becoming a benchmark for solvers. As well, Antonelo et al. (2021) have already studied
a solution using PINNs, which is considered as a starting point and a reference for
performance in the experiments.

More specifically, we define the first-order formulation of the Van der Pol oscillator
(as presented in Equation (2.3)) as the ODE system, with µ = 1. Then, the IVP is defined
with initial condition y(0) = y0 = (0, 0.1), simulating a small perturbation to the system
around the unstable equilibrium at the origin. The solution is desired for a horizon of
2 seconds. In this interval, the solution is expected to gravitate to a limit cycle, as
illustrated in Figure 2.

6.1.1 Evaluation Metrics

As there is no analytical solution to the IVP at hand, the solutions will be evalu-
ated in comparison to the approximation found using RK4. This reference was gener-
ated from 1000 points equally spaced in the solution interval I = [0, 2], with a time step
of 2 ms1. Then, a solution’s approximation to the reference is measured through the
integral of absolute error (IAE), which can be defined here as

IAE =
1

h

1000∑︂
i=1

∥yi − ŷi∥1,

where yi are the points in the RK4 solution, ŷi are the points in the solution being
evaluated, and h = 0.002 is the time step. Therefore, a solution is said to be suitable for
the problem if it achieves a low IAE.
1 Of course, this set does not include the initial condition, which is already given, meaning that the first

point of evaluation is at t = 0.002.
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Besides the quality of the approximation, the time required to achieve such an
approximation is also of interest, as many applications (e.g., model predictive control)
are highly time-dependent. The hardware resources used are valuable metrics, as the
necessary computing power limits the range of equipment that can support a given
solution. These will be auxiliary to the IAE in the analysis of the approximations.

6.2 PIDEQ

As already discussed in Section 4.1, solving IVPs is (mostly) only reasonable if
using a physics-informed approach, that is, if “teaching” the model through the known
dynamics instead of through actual samples of the target function. Therefore, a reason-
able solution using DEQs must follow the same principle, which implies in a physics-
informed training of DEQs (thus the naming physics-informed deep equilibrium model
(PIDEQ)).

For the IVP defined above, we recall the definition of Section 5.1 and propose a
DEQ similar to Ghaoui et al. (2019), that is, a model

D
EQ
θ : R −→ R2

t ↦−→ Dθ(t) = ŷ

such that

D
EQ
θ (t) = Cz⋆

z⋆ = fθ (t, z
⋆)

fθ (t, z) = tanh (Az + ta+ b)

, (6.1)

in which the parameters θ are a vectorization of the matrices and vectors, i.e., θ =

(A,C,a, b), and the hyperbolic tangent function is applied to each element of the result-
ing vector.

Notice that this formulation is very close to the one used in Chapter 5, except for
the linear transformation of the equilibrium point at the model’s output. This implies that
both forward and backward operations can be performed as previously shown, except
that the term

dD
EQ
θ

dz⋆
= C

must be considered in the computation of the gradients. The advantage of this mod-
ification is that we can have z with an arbitrary dimension, that is, we can have an
arbitrary number of states, which results in arbitrary representational power (GHAOUI
et al., 2019).

The challenge in physics-informing a DEQ is to optimize a cost function on its
derivatives. As it was shown in Section 5.3, Bai, Zico Kolter, and Koltun (2019) have
proposed an efficient way to compute the first derivative of a DEQ with regard to either
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its parameters or the input, which allows us to compute the cost function value. Yet,
for an application of gradient descent with such cost function, it is required that the
second derivatives of the model (with respect to the input and the parameters) are
computable during training time. In practice, this implies in the computation of the
derivative of the root-finding algorithm used to compute the first derivative, as seen
in Section 5.3.1.2 This restricts us to using differentiable root-finding algorithms to
compute the first derivative, relying on automatic differentiation tools to compute the
second derivative.

Finally, we propose to use a cost function for training a PIDEQ model of the form

J (θ) = Jb (θ) + λJN (θ) + κ

⃦⃦⃦⃦
dfθ
dz

⃦⃦⃦⃦
F
,

in which Jb, JN and λ are as defined in Section 4.2, while
⃦⃦⃦
dfθ

dz

⃦⃦⃦
F

is the Frobenius norm
of the Jacobian of the equilibrium function, as exposed in Sec. 5.2.2, a regularization
term weighted by κ ∈ R+. This cost function ensures the physics-informed training from
PINNs with the regularization term which was shown essential to DEQs.

6.3 TRAINING

Early experiments helped to define the design choices for the training algorithm
and the hyperparameters. Adam (KINGMA; BA, 2015) was the optimizer of choice, with
γ = 0.001 and default configuration. The cost-weighting coefficients were initially set
as λ = 0.1 and κ = 1.0. The solver used for the forward pass of the model was the
Anderson Acceleration (WALKER; NI, 2011), while best results were found using simple
iteration to compute the backward pass. For both algorithms, the tolerance was set as
ε = 10−4 and they were limited to 200 iterations. The initial guess was always z0 = 0.

The set Xb, of course, contained only the initial condition, while XN contained
105 random samples within I. The regularization term

⃦⃦⃦
dfθ

dz

⃦⃦⃦
F

was computed on the
input values of both data sets.

6.4 EXPERIMENTS

The experiments reported below concern the training of the deep learning
model proposed above to solve the IVP described in the first section of this chap-
ter. The implementation was done using PyTorch (PASZKE et al., 2019) and is available
at https://github.com/brunompacheco/pideq. All experiments were performed on a
high-end computer, using an RTX 3060 GPU. A budget of 50000 epochs was chosen.
5 models with each configuration were trained, with different initial (random) weights.
2 In theory, it could be possible to use the implicit function theorem once again to achieve an analytical

formula for the second derivative, but this is left for future work.

https://github.com/brunompacheco/pideq
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6.4.1 Baseline Results

The baseline result for a PINN trained to solve an IVP of the Van der Pol oscillator
comes from Antonelo et al. (2021). We replicate these results, that is, a traditional PINN
with 4 hidden layers with 20 nodes each, following the same setup proposed above
(except for the regularization term of the cost function). At the same time, Ghaoui et al.
(2019) showed that a DEQ with as many states as there are hidden nodes in a given
deep feedforward network, has at least as much representational power as that network.
Then, our starting DEQ is a model with 80 states. The results for both models can be
seen in Figure 4.

0 10000 20000 30000 40000 50000
Epoch

10 4

10 3

10 2

10 1

100

IA
E

PINN
PIDEQ

Figure 4 – Learning curve for the baseline models trained on the IVP for the Van der
Pol oscillator. Solid lines are mean values (n = 5), shaded regions represent
minimum and maximum values. For a better visualization, a moving average
of 100 epochs was taken.

Given that the PINN was able to “learn” (i.e., to achieve a low IAE on) the task,
we expect that the large PIDEQ model also is capable of learning. PIDEQs indeed
achieved a low IAE, yet not as low as the PINNs. Furthermore, PIDEQs had a much
slower convergence rate, while PINNs converged in under 10000 epochs. Besides
being much more complex (in its structure) than the feedforward network, the PIDEQ
also has many more parameters, in a total of 6802 against 1342. This results in a big
difference in the effective training time: the PINNs took, on average, 11 ms for each
epoch, while the PIDEQs took 209 ms.
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6.4.2 Number of States

A deeper look at the A matrix of the baseline PIDEQs after training, as illustrated
in Figure 5, shows that many of the rows are practically zero vectors, in comparison to
the remaining. Having “empty” rows implies that the states associated with these rows
are not effectively contributing to the results, that is, given the parameters of this model,
a smaller model could be constructed with the same result.
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(a) Magnitude of the elements of A.
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(b) Histogram of ℓ1 norm of the rows of A.

Figure 5 – A matrix of the baseline PIDEQ after training. From all models trained, the
one with median final performance was used to generate the graphics.

This analysis motivates the training of models with fewer states. The experiment
was defined as an iterative procedure based on the intuition above. A new model was
trained with fewer states, its A matrix was analyzed, and, if there were still empty rows
in the A matrix, a new model was proposed with even fewer states. This procedure was
repeated for models with 40, 20, 10 and 5 states. The models with 5 states showed no
“empty rows” in the A matrix, as shown in Figure 7, but still a model with only two states
was trained. The results can be seen in Figure 6.

The smaller models achieve even better results than the baseline and converge
much faster, except for the smallest one, which was not able to learn within the training
budget, reinforcing the intuition exposed above. The model with 5 states takes more
epochs to converge, intuitively this can be attributed to it being close to its representa-
tional limit, but as it is much smaller (with only 52 parameters), it trains faster than the
larger ones. Table 1 exposes the times for each model.
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Figure 6 – Learning curve of the models trained with fewer states. Solid lines are mean
values (n = 5). For a better visualization, a moving average of 100 epochs
was taken.
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Figure 7 – A matrix of the PIDEQ with 5 states. From the 5 models trained, the one with
median final performance was selected to generate the graphic.

6.4.3 Jacobian Regularization

Following the previous results, the impact of the Jacobian regularization term in
the cost function is explored for the model with 5 states. From the work of Bai, Koltun,
and Kolter (2021), it is expected that this regularization term will have an impact on the
results. We verify this by training PIDEQ models without such term (κ = 0) and with a



Chapter 6. Experiments and Results 47

Table 1 – Median training and validation times per epoch for PIDEQ models with differ-
ent number of states.

Number of States Train [ms] Validation [ms]

80 99.1 2.1
40 51.2 1.7
20 37.1 1.2
10 29.7 1.1
5 26.0 1.2
2 24.8 1.2

reduced importance (κ = 0.1). The results are shown in Figure 8.
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Figure 8 – Learning curve for PIDEQs with different κ values. Only one model was
trained with κ = 0 because the training took over 30 times longer. Solid lines
are mean values (n = 5). For a better visualization, a moving average of 100
epochs was taken.

The experiments confirm the theory in that training without the regularization was
ineffective. Not using the regularization term resulted in models not learning the task
and taking over 30 times longer to train. At the same time, increasing or decreasing the
impact of the regularization term in the cost function resulted in worse models overall.

6.4.4 Solver

As discussed in Section 6.2, the solver used within the computation of the first
derivative of PIDEQs must be differentiable, and, for the experiments, was fixed as the
simple iteration method. Nevertheless, the impact of the solver used for the forward
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pass can be explored. Since the derivative is computed implicitly, solver’s impact in the
inference and training speed is clearer. Yet, as the algorithm of different solvers define
different paths through the domain to find an equilibrium point, different equilibria can
be found given distinct solvers, which can change the performance of the model with
respect to error levels.

In fact, this behavior is observed in the results of the experiments comparing
Anderson’s Acceleration with simple iteration and Broyden’s method (BROYDEN, 1965)
for the forward pass, as seen in Figure 9. Models using Broyden’s method achieve a
smaller error, but the iterations took much longer, with a median value of 212 ms in
comparison to 27 ms using Anderson Acceleration. At the same time, using simple
iteration resulted in a performance as good as using Anderson Acceleration, but with a
median epoch time of 9 ms. Of course, as was discussed in Section 5.2, simple iteration
is less reliable than the other two methods, yet, it seems to work well for the problem at
hand.
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Figure 9 – Learning curve of PIDEQ models with 5 states using different solvers for the
forward pass. Solid lines are mean values (n = 5). For a better visualization,
a moving average of 100 epochs was taken.

6.4.5 Solver Tolerance

As the previous experiment showed, the simple iteration was the best approach,
given the trade-off between prediction quality and training speed. Then, the ε parame-
ter is explored next. Intuitively, it is expected that a smaller tolerance imply in a slower
training but a smaller error. The results with models trained using the simple iteration al-
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gorithm with ε ∈
[︁
10−2, 10−4, 10−6

]︁
, as exposed in Figure 10, confirm that the tolerance

is indeed impactful, as increasing the "default" tolerance (of 10−4) tends to increase the
error of the trained models. At the same time, a decreased tolerance did not improve
the performance within the training budget, possibly pointing that the default value is
already sufficient for the problem.
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Figure 10 – Learning curve of PIDEQ models with 5 states when trained with different
tolerances for the simple iteration solver. Solid lines are mean values (n =
5). For a better visualization, a moving average of 100 epochs was taken.

6.4.6 Final Model

The previous experiments showed how a much smaller a model can be used to-
gether with the simple iteration method, which provides a faster training. In comparison
to the initial PIDEQ, there was a significant decrease in the error. Yet, the biggest im-
pact was in training time, which decreased from 99 ms to 9 ms for each epoch (median
value). The PIDEQ with only 5 states also has significantly fewer parameters (52), since
the number of parameters grows quadratically with the number of states. A reduced
number of parameters implies in less memory consumption and in greater explainability.

For a fair comparison, PINN models were trained with only 52 parameters, i.e.,
with only two hidden layers, each with dimension 5. The performance of the final model
and the small PINN model can be assessed in Figure 11, in comparison to the baseline
models. The final models can be assessed visually, against RK4’s approximate solution,
through the graphics in Figure 12.
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Figure 11 – Learning curve of the final models in comparison to the baselines. “Final
PINN” are the small PINN models, with only 52 parameters. “Final PIDEQ”
are the PIDEQ models with 5 states and using the simple iteration method
as solver for the forward pass. Solid lines are mean values (n = 5), shaded
regions represent minimum and maximum values. For a better visualization,
a moving average of 100 epochs was taken.

Both final models take around the same number of epochs to converge, but the
PINN models trained were able to achieve much smaller errors, almost as low as the
baseline models. The small PINNs also have a smaller training time. A breakdown of
the time per epoch spent by each approach can be seen in Figure 13. As expected, PI-
DEQs take longer to compute the output, which is a direct implication of computing the
equilibrium and storing intermediate values to compute the derivatives. This, however,
does not translate to inference, as both approaches take approximately the same to
compute the validation results each epoch. Computing the total cost is a more expen-
sive operation for PIDEQs. This extra cost comes mostly from the regularization term
necessary to convergence, as seen in the experiments from Section 6.4.3. It is surpris-
ing, however, how the PIDEQs did not take longer than PINN models to back-propagate
the cost and update the parameters..
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Figure 12 – Prediction of PINN and PIDEQ in comparison to the reference approxima-
tion resulting from RK4. Both models presented the median performance
in the respective experiments.

PIDEQ PINN
0

2

4

6

8

10

12

1.73 ms
0.49 ms

4.66 ms

3.80 ms

1.90 ms

2.63 ms

0.47 ms

0.48 ms

forward
cost
backward
validation

Figure 13 – Breakdown of median time per epoch for the final PIDEQ and the small
PINN. “forward” represents the time necessary to compute the output given
the input during the training time (with gradients computation enable). “cost”
indicates the time necessary to compute the cost function, given the pre-
dictions. “backwards” is the time necessary to back-propagate the cost to
the parameters.



52

7 CONCLUSION

An in-depth study was carried out with two novel approaches in the big area
of deep learning: PINN and DEQ. Both provide a deeper connection between deep
learning and other areas of knowledge, such as differential equations, optimization, and
numerical analysis. PINNs provide an efficient approach to train deep learning models
on problems involving physical phenomena. DEQs are a promising new architecture
that can provide a larger representational power with a small number of parameters.
This work proposed an application that combines both: using PIDEQs to solve IVPs
of ODEs. For this, we successfully studied, implemented and tested several PIDEQ
models.

To the best of our knowledge, this is the first study on physics regularization (or
any gradient regularization) for DEQs. In fact, we have not found any published result
reporting higher-order derivatives of these models, as Bai, Zico Kolter, and Koltun
(2019) only proposed an analytical solution for the first derivative. The requirement
for higher-order derivatives imposes limitations to the model, namely the use of a
differentiable solver to compute the first derivative.

To validate the implementation of the model, we trained PIDEQs to solve IVPs
of the Van der Pol oscillator, a well-known, ODE-governed system. The experimental
results showed that differentiating through the backward-pass solver (used to compute
the first derivative) did not have a big impact in the speed of training. Computing the
equilibrium (forward pass) and the Jacobian regularization are the most costly opera-
tions in comparison to PINNs, at least for small PIDEQs. We hypothesize that larger
models and more complex problems may result in harder-to-compute derivatives, as it
may be harder to find equilibria efficiently. This would change not only the forward pass
but also the Jacobian used by the backward pass, therefore, requiring more iterations
of the differentiable solver (simple iteration method) or even a more robust solver.

Comparing PIDEQ results with PINN models showed that the former has a
larger approximation error and slower training. Still, both presented very small errors in
the proposed problems, to the point of being almost indistinguishable visually. These
results indicate that the inner structure of DEQs do not provide significant advantage
for learning to solve the problem at hand.

7.1 OUTLOOK

Given that DEQs approximate infinite-depth models, it is reasonable to imagine
that they would be more effective in problems that benefit from deeper models, whereas
in the problem considered in this work, even a shallow deep feedforward network was
able to properly approximate the target function. Therefore, it is natural that a next
step is to apply the proposed model to more complex problems. The four-tanks system
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(JOHANSSON, 2000; GATZKE et al., 2000), which was better solved with deeper
networks in the approach of Antonelo et al. (2021), could benefit from PIDEQs. Also,
the proposed model could easily be generalized to partial differential equations, and
then compared to the original PINN of Raissi, Perdikaris, and Karniadakis (2019).

A variation of the IVP as discussed here is to train a model that can provide
approximate solutions for a set of initial conditions, as discussed in Antonelo et al.
(2021) and Arnold and King (2021). This enables the efficient use of PINNs for control
problems. Being able to train models for this problem with fewer parameters (such as
PIDEQs) can be very useful for increasing explainability and, thus, robustness for the
controller.

Lastly, another way to make PIDEQs more competitive is to improve their ef-
ficiency. In principle, the second (and any higher-order) derivative of DEQs can be
implicitly computed, without the necessity of differentiating the solver, by using the im-
plicit function theorem. This has the potential to significantly save training time, mainly
for larger DEQs, by allowing the use of non-differentiable solvers for computing the first
derivative of the output.
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