
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CAMPUS REITOR JOÃO DAVID FERREIRA LIMA

UNDERGRADUATE PROGRAM IN COMPUTER SCIENCE

Filipe Oliveira de Borba

AN IND-CCA RANK METRIC
ENCRYPTION SCHEME IMPLEMENTATION

Florianópolis, Santa Catarina – Brazil
2022

Filipe Oliveira de Borba

AN IND-CCA RANK METRIC
ENCRYPTION SCHEME IMPLEMENTATION

Bachelor's Thesis submitted to the Undergraduate
Program in Computer Science of Universidade Fe-
deral de Santa Catarina for degree acquirement in
Bachelor of Science degree in Computer Science.
Supervisor: Ricardo Felipe Custódio, PhD.

Florianópolis, Santa Catarina – Brazil
2022

Legal Notes:
There is no warranty for any part of the documented software. The authors have

taken care in the preparation of this thesis, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained here.

Cataloging at source by the University Library of the Federal University of Santa Catarina.
File compiled at 12:33h of the day Sunday 27th March, 2022.

Filipe Oliveira de Borba
An IND-CCA Rank Metric Encryption Scheme Implementation / Filipe Oliveira de Borba; Su-

pervisor, Ricardo Felipe Custódio, PhD.; Co-supervisor, Daniel Panario, PhD. – Florianópo-
lis, Santa Catarina – Brazil, 16 of March of 2022.

76 p.

Bachelor's Thesis – Universidade Federal de Santa Catarina, INE – Department of In-
formatics and Statistics, CTC – Technological Center, Undergraduate Program in Computer
Science.

Includes references

1. Post-Quantum Cryptography, 2. Code-Based Cryptography, 3. Rank Metric, 4. PKE,
5. IND-CCA, I. Ricardo Felipe Custódio, PhD. II. Daniel Panario, PhD. III. Undergraduate
Program in Computer Science IV. An IND-CCA Rank Metric Encryption Scheme Implementation

CDU 02:141:005.7

Filipe Oliveira de Borba

AN IND-CCA RANK METRIC
ENCRYPTION SCHEME IMPLEMENTATION

This Bachelor's Thesis was considered appropriate to get the Bachelor of Science
degree in Computer Science, and it was approved by the Undergraduate Program in
Computer Science of INE – Department of Informatics and Statistics, CTC – Techno-
logical Center of Universidade Federal de Santa Catarina.

Florianópolis, Santa Catarina – Brazil, 16 of March of 2022.

Jean Everson Martina, PhD.
Coordinator of Undergraduate Program in

Computer Science

Examination Board:

Ricardo Felipe Custódio, PhD.
Supervisor

Universidade Federal de Santa
Catarina – UFSC

Daniel Panario, PhD.
Co-supervisor

Carleton University – CU

Florian Reneld Ghislain Caullery, PhD.
Qualcomm Technologies Incorporated –

QTI

Thaís Bardini Idalino, PhD.
Universidade Federal de Santa Catarina –

UFSC

ACKNOWLEDGEMENTS

Gostaria de agradecer à minha mãe, ao meu irmão, às minhas avós, e minha
namorada, pelo seu carinho, apoio e torcida. Agradecimentos especiais aos meus
orientadores, Custódio e Daniel, por todo o suporte e confiança, mesmo nos momentos
mais difíceis, e ao Florian pelo convite para a pesquisa que deu início a este trabalho.
Agradeço também meu amigo Eduardo, que despertou em mim o desejo da pesquisa.

ABSTRACT

The advances in the field of quantum computation impose a severe threat to the cryp-
tographic primitives used nowadays. In particular, the community predicts public-key
cryptography will be turned completely obsolete if these computers are ever produced.
In the light of these facts, researchers are contributing in a great effort to preserve cur-
rent information systems against quantum attacks. Post-quantum cryptography is the
area of research that aims to develop cryptographic systems to resist against both quan-
tum and classical computers while assuring interoperability with existing networks and
protocols. This work considers the use of Gabidulin codes—a class of error-correcting
codes using rank metric—in the construction of encryption schemes. We first introduce
error-correcting codes in general and Gabidulin codes in particular. Then, we present
the use of these codes in the context of public-key encryption schemes and show
that, while providing the possibility of smaller key sizes, they are especially challenging
in terms of security. We present the scheme proposed in Loidreau in 2017, showing
that although correcting the main weakness in previous propositions, it is still insecure
related to chosen-ciphertext attacks. Then, we present a modification to the scheme,
proposed by Shehhi et al. to achieve CCA security, and provide an implementation. We
also analyze the theoretical complexity of recent attacks to rank-based cryptography
and propose a set of parameters for the scheme.

Keywords: Post-Quantum Cryptography. Code-Based Cryptography. Rank Metric. PKE.
IND-CCA.

LIST OF FIGURES

Figure 1 – Venn diagram for code construction 28
Figure 2 – Venn diagram for received word 0011010 28
Figure 3 – Minimum key sizes to resist algebraic attacks 44
Figure 4 – Key sizes of Figure 3 for practical security levels 44
Figure 5 – Context model . 47
Figure 6 – Package organization . 48

LIST OF FRAMES

Frame 1 – ASN.1 syntax of private and public keys. 49
Frame 2 – PEM-encoded private key sample 53
Frame 3 – PEM-encoded public key sample 53

LIST OF TABLES

Table 1 – Cayley tables for addition and multiplication in F2 24
Table 2 – Cayley table for addition in F4 . 25
Table 3 – Cayley table for multiplication in F4 25
Table 4 – Selected parameters. 45

LISTINGS

Listing 1 – SecretKey generation . 52
Listing 2 – PublicKey generation . 53
Listing 3 – ENC implementation . 54
Listing 4 – DEC implementation . 55
Listing 5 – Generating a new key pair . 56
Listing 6 – Encoding the key pair . 57
Listing 7 – Importing a public key and encrypting a plaintext 58
Listing 8 – Importing a private key and decrypting a ciphertext 58

LIST OF ABBREVIATIONS AND ACRONYMS

CCA Chosen-Ciphertext Attack

CPA Chosen-Plaintext Attack

KEM Key Encapsulation Mechanism

NIST National Institute of Standards and Technology

PKE Public-Key Encryption

XOF Extendable-Output Function

CONTENTS

I RESEARCH 13

1 INTRODUCTION . 14

2 BACKGROUND . 17
2.1 PUBLIC-KEY ENCRYPTION . 17
2.2 SECURITY PROOFS . 18
2.2.1 Security Definitions . 18
2.2.1.1 Chosen-Plaintext Attack . 19
2.2.1.2 Chosen-Ciphertext Attack . 20
2.2.2 Assumptions . 22
2.2.3 Proofs . 22
2.3 FINITE FIELDS . 23
2.3.1 Definition and Notation . 23
2.3.2 Properties . 25
2.4 CODING THEORY: AN INTRODUCTION 26
2.4.1 A first example . 26
2.4.2 A classical example: the (7, 4) Hamming code 27
2.4.3 Generator and Parity-check matrices 28
2.5 GABIDULIN CODES . 29

3 RANK METRIC BASED CRYPTOSYSTEMS 35
3.1 INTRODUCTION . 35
3.2 THE GPT CRYPTOSYSTEM . 36
3.3 THE LOIDREAU CRYPTOSYSTEM 38
3.4 THE SHEHHI ET AL. PUBLIC-KEY ENCRYPTION SCHEME . . . 40
3.5 ANALYSIS OF THE SECURITY OF RANK BASED CRYPTOSYS-

TEMS . 43

II IMPLEMENTATION 46

4 IMPLEMENTATION . 47
4.1 SYSTEM OVERVIEW . 47
4.2 PUBLIC AND PRIVATE KEYS . 49
4.2.1 ASN.1 Syntax . 49
4.2.2 Encoding PKE Parameters . 50
4.2.3 Encoding Keys . 50
4.3 PKE ALGORITHMS IMPLEMENTATION 51

CONTENTS 12

4.3.1 GEN Implementation . 51
4.3.2 ENC Implementation . 53
4.3.3 DEC Implementation . 55
4.4 USING THE CRYPTOSYSTEM . 56
4.4.1 Generating a key pair . 56
4.4.2 Exporting and storing keys . 56
4.4.3 Importing a public key and encrypting a message 57
4.4.4 Importing a private key and decrypting a ciphertext 58

5 FINAL REMARKS . 59

REFERENCES . 60

ANNEX A – SBC FORMAT ARTICLE 66
A.1 ENGLISH GUIDELINES FOR PUBLICATION 66

Part I

Research

1 INTRODUCTION

Our world runs on software. From sensor networks to online banking, from social
networks to electronic voting. These applications shape our economy, society, and the
way we live like never seen before. Nonetheless, to be useful, these systems need to
exchange information. More important, this communication must happen in a manner
that unauthorized parts do not participate in the sense that information transmitted is
not disclosed to them for as long as its secrecy is necessary.

Cryptography provides the basic building blocks which cryptographic functionali-
ties develop on top to secure such systems. It divides into two broad classes of methods
to implement before-mentioned functionalities: asymmetric cryptography, also known
as public-key cryptography, which makes use of a pair of distinct but related keys to
achieve its goal, and symmetric cryptography, that makes use of a unique key for such.
Then, the keys are pieces of information used as inputs for these functions so that the
output of operations using one of the keys can only be reverted using the other one.
Here we shall only discuss the former.

Three of the main cryptographic functionalities used nowadays are public-key
encryption, digital signatures, and key exchange, and many of the most crucial com-
munication protocols rely on them. These functionalities are currently implemented
primarily using Diffie-Hellman key exchange, the RSA cryptosystem, and elliptic curve
cryptosystems, all of which belong to the class of public-key cryptography methods.
They rely on well-known number theoretical problems such as the integer factorization
and the discrete log problem to create one-way functions.

It happens that while these problems are considered to have no efficient solution
on a classical computer, it turns out not to be true for quantum computers—computers
that make use of the properties of quantum mechanics to perform computations. Al-
though it is not yet clear what class of problems a quantum computer can solve, strong
evidence suggests it has computational powers exceeding those of classical comput-
ers. Remarkable results in the field due to Shor (1997) and Grover (1996) give further
evidence to this belief. While Grover’s algorithm does not turn current cryptographic
technologies obsolete, it offers quadratic speedup for problems relating to searching,
collision finding, and the evaluation of Boolean formulae, thus imposing a severe threat
to symmetric-key cryptography. On the other hand, Shor’s discovery renders public-key
cryptography completely useless by solving both problems mentioned earlier, which all
public-key cryptography relies upon, in subexponential time using a quantum computer.

The need for a new class of algorithms that can offer resistance to quantum
computers becomes more urgent as the field of quantum computation evolves. Since
Shor, the theory of quantum algorithms has developed significantly and is unpredictable
how advantageous can be the use of quantum mechanics for information processing.

Chapter 1. Introduction 15

Another concern is that of when will quantum computers be built in large-scale. While
this question was still unclear at the time when Shor and Grover first published its
findings, it does not seem to be the case now, and many scientists expect quantum
computers to be widely available in the next ten or twenty years. For them, the physical
implementation of these machines is simply a question of engineering.

Taking into account these facts, an international community composed by
academia, industry, and government organizations, is working on the task of
developing, testing, and standardizing new quantum-resistant primitives. To this
new field of study is given the name of post-quantum cryptography in allusion to
the scenery after the deployment of quantum computers, although for the quantum
skeptic, this is a misnomer to the quest. Among these initiatives, the most prominent
is that of the National Institute of Standards and Technology of the United States.
The agency initiated a process to standardize post-quantum cryptographic primitives
that offer resistance to both classical and quantum computers. Besides that, these
primitives should interoperate with current systems and protocols. The role of NIST
in the standardization of cryptography is well-known due to its Advanced Encryption
Standard competition that selected Rijndael as the encryption algorithm to be used by
the U.S Government and, voluntarily, by the private sector.

As mentioned before, the impact of these new technologies on symmetric cryp-
tography is not as severe as it is for the public-key counterparts. In particular, Grover’s
algorithm provides only a quadratic improvement on current algorithms as opposed to
Shor’s, which provide exponential improvements. Furthermore, it has been shown that
exponential speedups for search algorithms are not feasible and, therefore, symmetric
algorithms and hash functions may be useful in a quantum world. Given that, the focus
is on public-key algorithms on the NIST standardization process.

The institute expects to standardize at least one proposal for each public-key
encryption, digital signatures, and key exchange protocols. However, in contrast to
the previous processes that led to the Advanced Encryption Standard and the Secure
Hash Algorithm-3, this time the process is not in a competition format. Instead, NIST
sees it as an opportunity of achieving community consensus in a transparent and
timely manner. As a result, more than one proposal in each category can be seen
as good choices and recommended by the institute. Currently, the process is in its
third round. Among the main families of proposed post-quantum primitives are hash
based signatures, lattice-based cryptography, multivariate polynomial cryptography, and
code-based cryptography.

This work concerns a specific branch of the latter which relies on rank metric
codes. The objective is to introduce post-quantum cryptography using rank metric
codes through the example of a cryptosystem, proposed by Shehhi et al. (2019), and
an implementation of it. Along the way we give an overview of this field of research,
showing the origins of rank metric cryptography with the work in Gabidulin, Paramonov,

Chapter 1. Introduction 16

and Tretjakov (1991), the cat-and-mouse game played by variants of this scheme and
attacks breaking them, and a proposal that rules out polynomial-time attacks, and
discuss how recent attacks impacts on the key sizes for the scheme we implement.

Chapter 2 provides a brief introduction to the topics necessary to understand the
rest of the work. We start by defining a public key encryption scheme and show how
one can prove a scheme secure from security assumptions and definitions. Then, it
introduces finite fields and the most relevant properties to understand the rest of the
work. The chapter finishes with a gentle introduction to coding theory and presents
Gabidulin codes with examples.

In Chapter 3, we present cryptography based on Gabidulin codes, starting with
the GPT cryptosystem deriving McElice’s to rank metric and the structure of Gabidulin
codes allowed a myriad of attacks, including the Overbeck attack that has polynomial
time complexity. We show many attempts to patch the scheme failing. Then, we present
a proposal by Loidreau that effectively defends against the Overbeck attack and its
CCA-secure variant proposed by Shehhi et al. We conclude by demonstrating through
experiments how recent attacks have decreased the security of these systems, forcing
them to use larger keys and select the parameters used in our implementation based
on the results.

Finally, Chapter 4 presents and explains in detail our implementation of Shehhi et
al.: its dependencies and how keys are structured and encoded into bytes so that one
can import and export them. Then we map each line of the code for the three algorithms
composing the cryptosystem to the corresponding steps in their definitions. In the end,
we demonstrate how to use the implementation through an example of communication
between Alice and Bob.

Chapter 5 concludes the thesis.

2 BACKGROUND

2.1 PUBLIC-KEY ENCRYPTION

As mentioned in the Chapter 1, in private-key encryption the key used to encrypt
a message is the same that should be used to decrypt this very message, or at least
the keys are related in a manner that is very easy to compute one key from another
and we can assume they are the same for simplicity. This means that if Alice and
Bob want to communicate, they must agree on the keys to use and keep them secret.
Moreover, if they want to communicate with any other party, they need to agree on
new secret keys with these parties. If Alice, for example use the same key shared with
Bob to communicate with Charles, then the latter can use the key to eavesdrop the
communication between Alice and Bob.

The public-key revolution led by (Diffie and Hellman, 1976) allowed private com-
munication without the previous establishment of secret keys. Public-key encryption
makes use of a pair of distinct but related keys, the public key and the private key.
Contrary to the private-key counterpart, only the private key can derive the public one
and a message encrypted with the latter can only be decrypted with the former. This
allows Alice to sent Bob her public key in the clear without risking someone to read the
messages she receives. There are still issues like how Bob knows a public key is in
fact Alice’s public key and how Alice can be sure that the message she receives is from
Bob. These issues are treated by other parts of cryptography and we won’t touch the
subject here.

We now define, in a generic manner, a public-key encryption scheme and then
discuss some characteristics relevant to our discussion.

Definition 2.1 (Public-Key Encryption Scheme). A public-key encryption scheme is a
triple of probabilistic polynomial time algorithms Π = (GEN,ENC,DEC), where:

• The key generation algorithm GEN takes as the security parameter N and outputs
a pair of keys (pk, sk), where pk is the public key and sk is the private one.

• The encryption algorithm ENC takes a public key pk and a message m as input
and outputs a ciphertext c.

• The decryption algorithm DEC takes as input the secret key sk and a ciphertext c
and outputs either a message m corresponding to the input ciphertext or a failure
symbol we denote by ⊥.

Chapter 2. Background 18

2.2 SECURITY PROOFS

Cryptography is usually referred to as the art of hiding information. And, in fact,
for a long time hiding information was an exercise of inventiveness, with the design
and analysis of encryption schemes done in an ad hoc fashion. The general workflow
used to be the identification of a flaw in such schemes, followed by a patch to hinder
the attack. No definition of what requirements an encryption scheme should satisfy
to be considered secure and no way to prove the security of such schemes existed.
Nowadays, cryptography evolved into more of a science, relying on three principles to
prove the security of a system: definitions, assumptions, and proofs.

2.2.1 Security Definitions

Security definitions state precisely the security guarantees a scheme provides
and what threats are present in the environment. The security guarantees refer to
results the system should prevent attackers from achieving and the threat model to
what capabilities the attackers have.

Definitions support designers of cryptographic primitives to make the best possible
use of computational resources while still confident it attains the required level of secu-
rity. On the other hand, a scheme cannot be claimed insecure without these definitions
in place. Consider the algorithms post-quantum cryptography wants to replace. They
are not secure against quantum computers. However, if the cost of using a quantum
computer to obtain a piece of information surpasses the return, an attacker is unlikely to
spend resources on this purpose. Then, one can define a system that does not regard
this kind of attack and use algorithms that might be more efficient or have shorter keys.
Having formal definitions also helps users evaluate which primitives are suitable for an
application and choose which one fits better. But the benefit that shines brighter for
them is the possibility of substituting one primitive with another. Users can replace a
primitive with another because it is more efficient, or perhaps the old one has been
broken because one of its assumptions no longer holds. We’ll talk about assumptions
in the next section.

Although it seems straightforward to formulate an informal notion of what it means
for a scheme to be secure, we can argue to the contrary. Let’s start with Kerckhoff’s
principle that states the key is the only component of a cryptographic primitive that
should be kept secret and define the encryption scheme not to leak the key, i.e., the
attacker should not recover the key. Now, consider an encryption algorithm in which the
the encryption of a message is the message itself. It leaks no information about the
key since the ciphertext does not depend on the key at all, and nevertheless, it is far
from secure. We might strengthen our requirements and aim for a guarantee that the
attacker cannot recover the message. After all, the goal is to protect the communication,
not the key. However, this definition is not enough to claim a scheme secure; no bank

Chapter 2. Background 19

would like to have data of half of its clients exposed, not even the number of digits in
their current accounts. It is clear from this observation that a more restrictive definition
is necessary.

There are many subtleties in defining what it means for an encryption scheme to
be secure. In particular, the point stressed in the last paragraph needs to be formally
defined. If the attacker knows the message sent is an email, she knows some charac-
ters present in the header. Moreover, she may know in advance or even guess other
information in the email, such as the email domain, sender, recipient, and contents. For
this reason, the security guarantee must take into account the prior knowledge and or
the expectations the attacker has about the contents of the encrypted messages. A
better definition would ask that regardless of any prior knowledge an attacker has, a
ciphertext must not give any additional information about the underlying plaintext. Here,
we assume that multiple messages are encrypted using the same key, so the result-
ing ciphertexts must not leak information on any of the plaintexts. We give a precise
definition of a security guarantee after introducing indistinguishability experiments.

As explained, the threat model specifies the types of attackers the scheme should
defend against by defining their capabilities. Consequently, if an attacker can take some
action not stated in the model, the security guarantees do not necessarily hold for
this attacker. In this case, the model does not capture all of the attacker’s abilities, or
perhaps it considers that such an attack is unlikely, as in the case we mentioned before.
Now we present the two most widely used threat models. Alongside, we introduce
experiments that help to define secure encryption against the modeled adversaries.

2.2.1.1 Chosen-Plaintext Attack

The first model is the chosen-plaintext attack (CPA), presented in the context
of the experiment in Definition 2.2. In this model, the attacker has the capability of
obtaining ciphertexts corresponding to plaintexts of its choice. We represent this ability
by giving the attacker access to an encryption oracle that, given a message m, returns
the encryption of m using the public key pk. In the context of public-key encryption, this
is the minimum required of a threat model because, as pointed in Section 2.1, the key
used is assumed to be publicly available, and the attacker is free to use it according to
its will.

Definition 2.2 (The CPA indistinguishability experiment). Let Π = (GEN,ENC,DEC)
be a public-key encryption scheme and let A be an adversary composed of a pair of
probabilistic polynomial time algorithms. We define the chosen-plaintext attack indistin-
guishability experiment EXPcpa

A,Π(1n) as the following sequence of steps:

1. A key pair (pk, sk) = GEN(1n) is generated.

Chapter 2. Background 20

2. A is given input 1n and oracle access to ENCpk(·). It outputs a pair of messages
(m0,m1) of same length.

3. A uniform bit b is chosen.

4. A ciphertext c← ENCpk(mb) is computed. We call c the challenge ciphertext.

5. A tries to figure out the value b and outputs a bit b′ corresponding to its answer.

6. Return 1 if b′ = b and 0 otherwise.

With this definition in hands, we can define precisely the security guarantee we
only stated informally before. Definition 2.3 takes its randomness from the attacker A,
the encryption scheme Π, and the sampling of b in Step 3 of the CPA indistinguishability
experiment. One can interpret it as follows. Take the probabilities of the adversary
succeeding and failing. If they are the same, i.e., 1/2, one can say that the adversary
cannot distinguish if c is the encryption of m0 or m1 since these are the probabilities
one would get for an attacker that only makes random guesses. However, we allow the
attacker to succeed with a chance a little better than guessing, more precisely 1/2 + ε.

Definition 2.3 (Indistinguishability under chosen-plaintext attacks). Let Π be a public-
key encryption scheme. Then, Π has indistinguishable encryptions under a chosen-
plaintext attack, or is CPA-secure, or is IND-CPA, if for all adversaries A, there is a
negligible function ε such that

Pr
(
EXPcpa

A,Π(1n) = 1
)
≤ 1

2 + ε(1n).

This extra chance is necessary to model situations in which, instead of guessing
which message was encrypted, the adversary obtains, maybe in a randomized manner,
some information that helps to find out the correct answer. Consider the situation in
which A requests the oracle to encrypt messages m2,m3, . . . ,m`, obtaining ciphertexts
c2, c3, . . . , c`. Then, independently of the choice of m0 and m1, it can guess a random
private key k and check whether DECk(ci) = mi for 2 ≤ i ≤ `, and in the affirmative
case, use k to decrypt c, succeeding in the experiment. Then, the extra chance ε(1n) of
succeeding is exactly (`− 1)/|K|, where K is the key space, and, if |K| is exponential
in n, it is negligible for any polynomial-time adversary.

Of course, this is not the only way to recover the key, and more elaborate attacks
may exist. The definition of a chosen-plaintext attack left this avenue open, describing
only the tools the attacker has under his belt to perform his strategy.

2.2.1.2 Chosen-Ciphertext Attack

The other threat model is the chosen-ciphertext attack (CCA), in which the adver-
sary, in addition to the previous model capabilities, can obtain decryptions for cipher-

Chapter 2. Background 21

texts of its choice. Definition 2.4 introduces the chosen-ciphertext attack indistinguisha-
bility experiment.

Definition 2.4 (The CCA indistinguishability experiment). Let Π = (GEN,ENC,DEC) be
a public-key encryption scheme and let A = (A1,A2) be an adversary composed of a
pair of probabilistic polynomial time algorithms. We define the CCA indistinguishability
experiment EXPcca

A,Π(1n) as the following sequence of steps:

1. A key pair (pk, sk)← GEN(1n) is generated.

2. A1 is given input 1n and oracle access to ENCpk(·). It outputs a pair of messages
(m0,m1) of same length.

3. A uniform bit b is chosen.

4. A ciphertext c← ENCpk(mb) is computed. We call c the challenge ciphertext.

5. A2 is given input 1n and c, and oracle access to ENCpk(·). Then, A2 tries to figure
out the value b and outputs a bit b′ corresponding to its answer.

6. Return 1 if b′ = b and 0 otherwise.

This experiment is identical to the one in Definition 2.2, except for the decryption
oracle access in Steps 2 and 5, and one additional requirement: after receiving the
challenge ciphertext in Step 4, the adversary cannot query the encryption of this very
same ciphertext. Otherwise, he will obtain the message m0 or m1 which generated it,
assuming perfect correctness of the scheme.

The definition of a chosen-ciphertext attack seems too strong to concern about
in practice. However, padding-oracle attacks work using the definition of a chosen-
ciphertext attack to some degree; instead of requiring the corresponding plaintext, the
attacker only needs to know if the ciphertext decrypted correctly. For example, a server
might request re-transmission or even close connection if the decryption of a ciphertext
is not a valid message. Next, we define what is necessary to consider a scheme secure
under a chosen-ciphertext attack.

Definition 2.5 (Indistinguishability under chosen-ciphertext attacks). Let Π be a public-
key encryption scheme. Then, Π has indistinguishable encryptions under a chosen-
ciphertext attack, or is CCA-secure, or is IND-CCA, if for all probabilistic adversaries A,
there is a negligible function ε such that

Pr
(
EXPcca

A,Π(1n) = 1
)
≤ 1

2 + ε(1n).

Again, the definition of a chosen-plaintext attack does not specify how an attacker
may work to achieve its objective. This fact is stated in the requirement that the inequality

Chapter 2. Background 22

holds for all probabilistic polynomial-time adversaries. Notice also that the extra chance
epsilon expresses the possibility the adversary succeeds in some experiments as long
as this number is negligible compared to the number of failures. Next, we turn our focus
into a crucial part of public-key cryptography: assumptions.

2.2.2 Assumptions

The security of a cryptosystem often relies on assumptions that some problems
are difficult to solve computationally or that some construction used as building blocks
satisfies some properties. For the first one, the theory of computational complexity
provides us with well-studied problems that, up to these days, still don’t have an efficient
solver—at least without a quantum computer. Examples include the planted clique, the
random SAT, the discrete logarithm, and the integer factoring. Therefore, for schemes
relying on such problems, breaking means solving a long-standing open problem in
computer science, and any other construction relying on it is also insecure and needs
at least a redesign.

Concerning building blocks used in cryptography, things are a bit different. Again,
breaking them means breaking the scheme. However, in this case, substituting one
building block with any other that does satisfy the required properties may fix the cryp-
tosystem. An example is a pseudo-random number generator used in all cryptosystems
or, as we will see later in our implementation, a hash function. Breaking such a function
means no scheme shall rely on it. However, there is no need to redesign the scheme.
It suffices to replace the hash function with another attending the requirements to
reestablish security.

2.2.3 Proofs

Proofs are the glue that binds things together to claim a cryptosystem is secure.
A proof may assume some facts and show a scheme achieves a precise security
guarantee against a specific type of attacker. As an example, we may want to prove a
scheme CCA-secure. So, we have defined the attackers the scheme needs to defend
against and what it means to resist successfully. We may start from Definition 2.4 and
Definition 2.5 that give a framework that deals exactly with the attackers and guarantees
we want. If our cryptosystem relies on some building block or computational problem, we
may add these as assumptions. Then, we manipulate the experiment in Definition 2.4,
trying to show that the inequality in Definition 2.5 holds, and if so, our proof is complete.

It is important to stress that any modification in the elements used in a proof
nullifies its validity. A misconception often occurs when dealing with quantum computers.
Since we speculate that these computers can efficiently solve problems that classical
computers cannot, people claim that the proofs are probably wrong and the related
cryptosystem is not secure. Even if quantum computers break the adjacent scheme

Chapter 2. Background 23

eventually, what happens is that one of the assumptions used in the proof no longer
holds and is not a mathematical or logical error.

2.3 FINITE FIELDS

The theory of finite fields is a branch of abstract algebra emerging in the last
century to the general interest due to its applications to coding theory and cryptography,
both discussed here, and to other topics such as combinatorics and the study of switch-
ing circuits. The subject has its origins with prominent mathematicians such as Pierre
de Fermat, Leonhard Euler, Joseph-Louis Lagrange, and Adrien-Marie Legendre. The
contribution from these names to the theory was the so-called finite prime fields—finite
fields with a prime number of elements. A more general theory of finite fields is said to
have started with the work of Carl Friedrich Gauss and Évariste Galois. In this section,
we only touch the surface of this rich subject, covering what is necessary for the rest
of the work. For a thorough introduction, we refer the interested reader to Lidl and
Niederreiter (1996) and for an extensive collection of results in finite fields, see Mullen
and Panario (2013).

2.3.1 Definition and Notation

Definition 2.6 (Group). A group is a non-empty set G equipped a binary operation
denoted ∗, closed on G, such that the following properties hold:

1. Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c), for all a, b, c ∈ G.

2. Existence of an identity or unit element: there is an element e ∈ G, such that
a ∗ e = e ∗ a = a, for all a ∈ G.

3. Existence of an inverse for every element: for each a ∈ G, there exists an inverse
element a−1, such that a ∗ a−1 = a−1 ∗ a = e.

If in addition it holds that a ∗ b = b ∗ a, for all a, b ∈ G, the group is said to
be commutative or Abelian. From the definition of a group, it is easily noted that the
identity element e and the inverse element a−1 of any a ∈ G are uniquely determined.
In discussing groups, we shall often use either the multiplicative or the additive notation.
+ and · respectively, for the binary operator although these operations does not
necessarily have the usual semantics. For the first, we denote a ∗ b as a · b or simply as
ab and the inverse element as a−1. Furthermore, we denote the n-fold composition of
a ∈ G with itself, for n ∈ N, as

an = aa . . . a︸ ︷︷ ︸
n times

.

Chapter 2. Background 24

The later notation is usually reserved to refer to a commutative group, in which
case we denote the operator as +, the inverse element of a ∈ G as −a, and the n-fold
composition as

na = a+ a+ · · ·+ a︸ ︷︷ ︸
n times

.

Definition 2.7 (Field). A field is a non-empty set F equipped with two binary operations,
+ and · , such that:

1. F together with + is a commutative group.

2. The set F× = F \ {0}, where 0 is the identity of +, forms a commutative group
with respect to · .

3. Left distributivity: a · (b+ c) = a · b+ a · c, for all a, b, c ∈ F .

4. Right distributivity: (b+ c) · a = b · a+ c · a, for all a, b, c ∈ F .

Definition 2.8 (Finite field). A finite field, denoted F, is a field with a finite number of
distinct elements.

We shall not enter the theory behind the construction of finite fields as it is not
necessary to the topic. For the purpose of this work it suffices to say that finite fields
have either p or pn elements, where p is a prime and n is a positive integer. p is the
characteristic of the finite field and the number of elements it contains is called its order.
Any two finite fields of same order are equivalent up to isomorphism.

The finite field with p elements is the set {0, 1, . . . , p− 1} together with arithmentic
modulo p. These are the prime finite fields mentioned earlier and we denote them as
Fp. A very useful example is the binary field F2. The tables below, referred to as Cayley
tables, show how addition and multiplication works on the binary field F2

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

Table 1 – Cayley tables for addition and multiplication in F2

For the latter case, a finite field with pn elements that we denote Fpn is formed
by the polynomials of degree less than n with coefficients in Fp, and the operations of
addition and multiplication are performed modulo an irreducible polynomial of degree
n, again over Fp. An irreducible polynomial over a finite field is equivalent to a prime
number over the natural numbers and cannot be factored into two polynomials greater
than 1. As an example we show the Cayley tables for the finite field F22 ∼= F4, with
operations modulo m(x) = x2 + x+ 1.

Chapter 2. Background 25

+ 0 1 x x+ 1

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

Table 2 – Cayley table for addition in F4

· 0 1 x x+ 1

0 0 0 0 0

1 0 1 x x+ 1

x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Table 3 – Cayley table for multiplication in F4

An often useful representation of a finite field of order pn, especially in coding
theory, is to view the coefficients of the polynomials in F2n as a coordinate of a vector
of length n. So, in the previous example, we write the polynomial p(x) = x as the vector(
1 0

)
. In this case, the finite field is a vector space over Fp and we denote it as Fnp .

2.3.2 Properties

In this section, we define a few properties concerning finite fields as well as
polynomials and matrices over them.

Lemma 2.1. Let F be a finite field with qn elements. Then, αqi = αq
(i mod n) for any

α 6= 0 ∈ F and any integer i.

The previous lemma implies that αqn−1 = 1 and the inverse of α is αqn−2, since we
have αqn−2 · α = αq

n−1 = 1.

Definition 2.9 (Linearized polynomial). A polynomial p(x) is a linearized polynomial if
it has the form

p(x) =
d∑
i=0

aix
qi , ai ∈ Fqm , ∀i ∈ [0, d]. (1)

Definition 2.10 (Subfield mapping). Let B = β1, . . . , βm be a basis of Fqm over Fq. The
subfield mapping of a vector v =

(
α1 . . . αn

)
in Fnqm with respect to B is given by the

map fB(v) = (aij) ∈ Fm×nq such that

Chapter 2. Background 26

αi =
m∑
j=1

aijβj, 1 ≤ i ≤ n.

Example 2.3.1. As an example, let β1 = x3 + x+ 1 and β2 = x3 + x2 + 1 form a basis B
of F24 over F22. Then, the subfield mapping of v =

(
1 0 1 0

)
with respect to B is

fB(α) =
x+ 1
x+ 1

 .
It is easy to verify that fB(α) satisfies the definition:

a11β1 + a21β2 = (x+ 1)(x3 + x+ 1) + (x+ 1)(x3 + x2 + 1)

= (x3 + x2 + x) + x2

= x3 + x ∼= α.

2.4 CODING THEORY: AN INTRODUCTION

The field of coding theory has its origins in the seminal publication by Claude
Shannon in 1948, where the author guarantees the existence of codes that can transmit
information at rates close to the channel’s capacity with an arbitrarily small probability
of error. Since then, algebraic coding theory has evolved, developing tools to construct
codes that can achieve these rates.

Algebraic coding theory is used to transmit information in a plethora of ways:
digital television, bar code scanners, radio waves, and magnetic disks, just to cite a few.
However the channel of communication used to transmit and the means used to store
information are not ideal in the sense the the information may may be distorted. The
problem algebraic coding theory aims to solve is the correct storage and delivery of
information through a noisy channel, where the "noise" we refer to may be human error,
thermal noise, physical deterioration, etc.

2.4.1 A first example

As an introductory example, consider we want to send a message composed by a
sequence of 0s and 1s of length 1024. Assume further that errors occur independently,
with probability 0.01. Thus, the probability P (X) of receiving an error-free message is

P (X) = 0.991024 ≈ 0.00003.

On the other hand, if we use a simple coding scheme, the threefold repetition
scheme, which consists of sending each digit three times on transmission and decoding
each block of three digits using the majority rule, we can achieve a much better result.
Again, if we consider the occurrence of errors is independent, the probability of an error
to occur in any block, say a block encoding a 0, is then the probability of receiving one

Chapter 2. Background 27

of 111, 110, 101, 011. That is, the probability of errors occurring in all three position plus
three times the probability of errors occurring in two positions

P (X) = (0.01)(0.01)(0.01) + 3 ∗ (0.01)(0.01)(0.99)

= 0.000001 + 3 ∗ 0.000099

= 0.000298.

Therefore, the probability of receiving an error-free message is greater than
0.9997. Compare this with the result of sending a message without any encoding;
it justifies the study and use of algebraic coding theory to transmit information over
noisy channels. Despite the better results in transmission of information of the threefold
coding scheme, this class of codes, called repetition codes, are far from efficient. For
this one specifically, two thirds of all data transmitted is useless in the sense that it does
not contain relevant information.

From the example, we see that the objective of algebraic coding theory is to
devise methods to encode and decode information in a reliable and efficient manner.
We have an encoding method where we add redundancy in a systematic manner and
a decoding method where we use this redundancy to detect and occasionally correct
errors in transmission.

2.4.2 A classical example: the (7, 4) Hamming code

Now we turn our attention to a more elaborated and the most widely used class
of codes: Hamming codes, named after Richard Hamming in 1948.

The example we show here is a (7, 4) Hamming code. This notation means a
message of four symbols long is encoded with seven symbols. That is, we add three
symbols of redundancy. Again, consider out alphabet to be the set {0, 1}. This simple
encoding scheme can be suitably depicted by a Venn diagram as shown in Figure 1.
Start by placing the symbols in the message in regions 1, 2, 3, and 4. Then, for each
region I, II, and III, put 0 on it if the correspondent circle has an even number of 1s.
Otherwise, put 1.

To check a received code word for correctness, it suffices for us to place the
symbols received in regions 1, 2, 3, 4, I, II, III, in order, and then analyze the Venn
diagram. For example, consider the Venn diagram for the received code word 0011010
in Figure 2. In this example, C has the correct parity; the number of 1s is even. But this
is not the case, for neither A or B. Therefore the error is in the intersection of these two
circles, i.e., in region 1.

Chapter 2. Background 28

I II

III

A B

C

3

1

2 4

Figure 1 – Venn diagram for code construction

0 1

0

A B

C

1

0

0 1

Figure 2 – Venn diagram for received word 0011010

2.4.3 Generator and Parity-check matrices

The example above shows a graphic manner to detect and to correct errors in a
(7, 4) Hamming code. But the Venn diagram does not tell how to encode a message
and it is not suitable to any code. In special if the code is not from the family of Hamming
codes. Moreover, there no way of deriving and proving properties using it.

For the purpose of representing a code, one of the two matrices we present in
this section are normally employed. They are used interchangeably since they are
algebraically related to one another. But first we define formally a linear code, which is
the type of code we refer to in this work.

Definition 2.11 (Linear code). An (n, k) linear code C over a finite field Fq is a
k-dimensional subspace of Fnq .

That is, the encoding scheme represents messages as elements in the vector
space Fkq and encodes them by applying a linear transformation from Fkq into Fnq . Such
a transformation carrying elements from on vector space into another is performed
by a k × n full-rank matrix G. It is called the generator matrix of the code since it
effectively generates the code from the message space. Take into consideration the
code in example of Section 2.4.2. A possible generator matrix for the (7, 4) Hamming

Chapter 2. Background 29

code on it is

G =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 1 0 1 1

 . (2)

The generator matrix for a given code is not unique as any Fq-linear combination
of its rows also generates the same code. On the decoding side is the second matrix
used to represent a code, called the parity-check matrix and usually denote by H. A
parity-check matrix of a code relates to the corresponding generator by the equation
GH> = 0. For the generator G in Equation 2 we can obtain the following parity-check
matrix

H =

1 1 1 0 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 . (3)

The matrix receives this name because one of its roles is to detect occurred
errors, which is done through the calculation of a vector called syndrome. A syndrome
is always related to a received word, be it a valid codeword or a codeword distorted by
errors. Then, we say that s is the syndrome of c if s = cH>. For a codeword transmitted
without errors its syndrome should be 0 and can be justified by observing that for any
m in Fk2, we have s = mGH> = 0.

To finish this section we show a bit of how these matrices work. Suppose we
want to encode a message m =

(
1 0 0 1

)
. To that end, it suffices to multiply m to

the right by G, which in this case produces c =
(
1 0 0 1 1 0 1

)
as codeword.

Then, if we calculate the syndrome of c, the result is 0. Now, if a received word contain
errors, say c′ =

(
0 0 1 1 0 1 0

)
as in Section 2.4.2, the calculated syndrome is

s′ =
(
1 1 0

)
, indicating an error occurred.

From this example, we can define informally two important notions concerning
error-correcting codes. The first of them is the notion of Hamming weight which, for any
vector v, is defined as the number of coordinates of V that differs 0. So, the Hamming
weight of c′ and s′ are 3 and 2, respectively. The second concept is the Hamming
distance between vectors, defined, for any vectors u and v, as the Hamming weight of
u− v or, equivalently, the number of coordinates in which u diverges from v.

In the next section, we define notions of weight and distance with greater detail
and rigor when we introduce a family of codes using a different measure of distance.

2.5 GABIDULIN CODES

Gabidulin codes are an especial class of error-correcting codes using rank dis-
tance instead of the more widely known Hamming distance used in the example of

Chapter 2. Background 30

Subsection 2.4.2. These codes were first introduced in Delsarte (1978), where the
author presents the concept of a rank metric code, proves an upper bound on its
cardinality, and shows how to construct a class of codes achieving this bound. Later,
Gabidulin (1985) proved several properties and showed an efficient decoding algorithm.
Given the significance of these contributions, this class of codes receives its name after
the author. Roth (1991) also discovered this class of codes, independently of previous
works.

This section starts defining the notions of rank weight and rank distance, shows
that the rank distance induces a metric, and establishes some properties related to the
rank of products involving matrices. Then, we define Gabidulin codes as the evaluation
of linearized polynomials up to a certain degree, define their generator and parity-check
matrices and give examples of the computation of a codeword and its syndrome.

Definition 2.12 (Rank weight). Let v ∈ Fnqm and let fB denote the subfield map with
respect to a basis B of Fqm over Fq. The rank weight of v is defined as

ω(v) = rank(fB(v)).

Definition 2.13 (Rank distance). Let the rank weight be defined as above. The rank
distance between any two elements u,v ∈ Fnqm is given by

δ(u,v) = ω(u− b) = rank(fB(u)− fB(v)).

Definition 2.14 (Metric). Let S be a set. The distance measure function δ applied on
any two elements in S is a metric if, for any a, b, c ∈ S, the following properties are
satisfied:

1. Positive definiteness: δ(a, b) ≥ 0, with δ(a, b) = 0 if and only if a = b.

2. Symmetry: δ(a, b) = δ(b, a).

3. Triangle inequality: δ(a, b) + δ(b, c) ≥ δ(a, c).

Given the definition of rank distance in Definition 2.13 and the requirements of a
metric in Definition 2.14 we can prove rank distance is indeed a metric.

Lemma 2.2 (Rank distance induces a metric). Let Fnqm be an n-dimensional vector
space over Fq. Then, the rank distance function ω in Definition 2.13 induces a metric
over Fnqm.

Proof. Let A,B,C be the subfield mappings of any three elements of Fnqm . By definition,
the rank of a matrix is a non-negative integer. Moreover it is zero if and only if A−B = 0
or, equivalently, if and only if A = B, and we prove positive definiteness. Symmetry is
trivial since rank(A) = rank(−A) and so it holds for A−B. For triangle inequality, we

Chapter 2. Background 31

rely on the well known property of linear algebra that

rank(A + B) ≤ rank(A) + rank(B),

then, we have

rank(A−C) = rank(A−B + B−C)

≤ rank(A−B) + rank(B−C),

and the proof is complete. �

Another property concerning the rank of matrices over finite fields and that will
be important is the rank of the product between matrices (Lemma 2.3 or between a
vector and a matrix with elements restricted to a particular subspace of the finite field
(Lemma 2.4).

Lemma 2.3 (Rank of matrix product). Let A and B be matrices of order k×m and m×n,
respectively. Them, the rank of AB is less than or equal to the minimum betweem the
rank of A and the rank of B. That is

rank(AB) ≤ min(rank(A), rank(B)). (4)

Lemma 2.4 (Rank of subspace matrix product). Let P be an invertible matrix with
entries in a δ-dimensional vector space V ⊂ Fqm. Then, for all e ∈ Fnqm ,

rank(eP) ≤ δ rank(e). (5)

Definition 2.15 (Gabidulin code). Let 1 ≤ k < n ≤ m be integers, and g1, . . . , gn ∈ Fqm
be linearly independent elements over Fq. An (n, k) Gabidulin code over Fqm defined at
points g1, . . . , gn is the set of code words, each of which is defined as

(
p(g1) . . . p(gn)

)
,

for a distinct linearized polynomial p over Fqm of degree less than qk. That is,

Gab(n, k) =
{(
p(g1) p(g2) . . . p(gn)

)
: p(x) ∈ Lqm , deg(p(x)) < qk

}
. (6)

In practice, the polynomials p(x) correspond to the possible messages in the mes-
sage space and will become clear when we present the generator matrix for a Gabidulin
code and link its use to evaluation of a linearized polynomial at points g1, g2, . . . , gn.

Definition 2.16 (Generator matrix of a Gabidulin code). Let C be an (n, k) Gabidulin
code defined over points g0, . . . , gn−1 ∈ Fqm. Then, the generator matrix G of C has the
following form

Chapter 2. Background 32

G =

g1 g2 . . . gn

gq1 gq2 . . . gqn
...

...
gq

k−1

1 gq
k−1

2 . . . gq
k−1
n

 . (7)

We call the vector g =
(
g1 g2 · · · gn

)
, composed of the elements from the first

row of G, the generator vector of C. It is not unique—nor the generator matrix—as
any vector αg, with α ∈ Fqm, is also a generator vector of C. As an example, consider
the (4, 2) Gabidulin code C over F2[x]/(x4 + x + 1) defined at the points x2 + x, x2 + 1,
x3 + x2 + x, and x3 + x2 + x+ 1. Then, the generator matrix of C is

G =
 x2 + x x2 + 1 x3 + x2 + x x3 + x2 + x+ 1
x2 + x+ 1 x x3 + x+ 1 x3 + x

 . (8)

Lemma 2.5 (Parity-check matrix of a Gabidulin code). Let C be an (n, k) Gabidulin
code over Fqm defined at points g1, g2, . . . , gn and let h1, h2, . . . , hn ∈ Fqm such that∑n
i=1 g

qj

i hi = 0 for j ∈ [k − n+ 1, k − 1]. The parity-check matrix H of C is defined as

H =

h1 h2 . . . hn

hq1 hq2 . . . hqn
...

...
hq

n−k−1

1 hq
n−k−1

2 . . . hq
n−k−1
n

 (9)

That is, the values hi are a solution for the system of linear equations involving
the points at which generated the code. In practice, if we let G be a generator matrix
of C, each of these equations corresponds to the calculation of an entry of the matrix
GH>. Since the system if homogeneous, the matrix H is the parity-check matrix of C.
To ilustrate, take for instance, j = k − n+ 1, obtaining the equation.

n∑
i=1

gq
k−n+1

i hi =
n∑
i=1

(
gq

k−n+1

i hi
)qn−k−1

=
n∑
i=1

gih
qn−k−1

i = 0 (10)

This corresponds exactly to the last element in the first row of GH>. Similarly,
other values of j results in the equation for different entries of GH>. We now expand
on the previous example, constructing the parity-check matrix of the code generated
by G in Equation 8. First, we concoct the following system of linear equations in matrix
form:

Chapter 2. Background 33

x2 + x2−1

x2 + 12−1
x3 + x2 + x2−1

x3 + x2 + x+ 12−1

x2 + x20
x2 + 120

x3 + x2 + x20
x3 + x2 + x+ 120

x2 + x21
x2 + 121

x3 + x2 + 121
x3 + x2 + x+ 121

h0

h1

h2

h3

 = 0 (11)

Solving the system, we obtain h0 = x3 + 1, h1 = x2, h2 = x3 + x2 + x, and h3 = 1.
Now, we can construct the code’s parity-check matrix:

H =
 x3 + 1 x2 x3 + x2 + x 1
x3 + x2 + 1 x+ 1 x3 + x+ 1 1

 (12)

We finish this section on Gabidulin codes with an almost complete example of
encoding and decoding. In reality what we do is to encode a message and then show
that the syndrome of the resulting codeword is zero. To that, consider the code C and
its generator and parity-check matrices G and H we have been working with.

Example 2.5.1 (Encoding a message with the generator matrix). To encode a message
m =

(
x2 x

)
with C one multiplies it by the generator matrix G:

mG =
(
x2 x

) x2 + x x2 + 1 x3 + x2 + x x3 + x2 + x+ 1
x2 + x+ 1 x x3 + x+ 1 x3 + x

=
(
x2 + 1 x+ 1 x3 x3 + x2 + x

) (13)

That is, the linear transformation induced by G takes each message in Fkqm into
a codeword in C. Before showing an example involving the parity-check matrix, we
establish the mapping between the evaluation of the linearized polynomial in Defini-
tion 2.15. For that, consider the message from the previous example. If we write it as
the polynomial p(y) = x · y2 + x2 · y over indeterminate x, and evaluate at g1 = x2 + x

from the previous example, we recover the first component of the codeword mG:

x · g21

1 + x2 · g20

1 = x(x2 + x+ 1) + x2(x2 + x)

= x2 + 1.

Example 2.5.2 (Computing the syndrome with the parity-check matrix). Let c be the
codeword computed in Example 2.5.1. To calculate the syndrome of c, we multiply

cH> =

x2 + 1
x+ 1
x3

x3 + x2 + x

>
x3 + 1 x3 + x2 + 1
x2 x+ 1

x3 + x2 + x x3 + x+ 1
1 1

 = 0 (14)

Chapter 2. Background 34

Since c belong the code C, its calculated syndrome is 0. However, if we add and
error e of rank weight 1, say

(
0 0 0 x

)
, we end up with

cH> =

x2 + 1
x+ 1
x3

x3 + x2

>
x3 + 1 x3 + x2 + 1
x2 x+ 1

x3 + x2 + x x3 + x+ 1
1 1

 =
(
x x

)
(15)

3 RANK METRIC BASED CRYPTOSYSTEMS

3.1 INTRODUCTION

Cryptographic schemes and, more specifically, public-key encryption schemes
based on rank metric codes started with the GPT cryptosystem in Gabidulin, Para-
monov, and Tretjakov (1991), where the authors adapted the McEliece cryptosystem
to Gabidulin codes. The peculiarities of this type of code allowed a myriad of attacks
from day one, with the most devastating among them due to Overbeck. These days,
even though techniques proposed to hinder the Overbeck’s attack exist, new algebraic
attacks pose a menace to these schemes. This chapter outlines the timeline of rank-
based cryptosystems, introducing GPT, the attacks proposed, and the patches to the
scheme to thwart attacks. Then, it finishes presenting in detail the PKE introduced in
2017 by Pierre Loidreau and its IND-CCA-secure variant by Shehhi et al.

The first public-key encryption scheme lying on the theory of error-correcting
codes appeared in McEliece (1978). In this work, the author proposes an encryption/de-
cryption scheme analogous to encoding/decoding but, to prevent unauthorized parties
from accessing the messages, the ciphertext should look like a codeword from a random
linear code, for which decoding is NP-complete (BERLEKAMP; MCELIECE; TILBORG,
1978). To this end, McEliece used a Goppa code and hid the generator matrix G, mul-
tiplying it to the left by a matrix S and to the right by another matrix, P. The resulting
matrix G′ = SGP generates a linear code with the same minimum distance and rate
as the one generated by G. Then, the private key is the tuple G, S, P, while the public
key is G′. On encryption, the user encodes a message m with G′ and adds an error
e of a certain distance t less than or equal to the error-correcting capacity of the code
generated by G. The decryption process multiplies the ciphertext by the inverse of P,
resulting in a codeword of the Goppa code generated by G, namely mSG + eP−1. This
codeword is decoded into mS and multiplied by S−1, recovering the original message.

These schemes claim security against quantum computers by relying on similar
problems that differ on the metric and the field over which the code is defined. Defini-
tion 3.1 states the rank metric version of it.

Definition 3.1 (Rank decoding problem). Let G ∈ Fk×nqm be a matrix, c ∈ Fnqm be a vector,
and w an integer. Find m ∈ Fkqm and e ∈ Fnqm such that c = mG + e and the rank weight
of e is less than or equal w?

Even if the rank decoding problem is not known to be NP-complete, there is a
randomized reduction to an NP-complete problem (GABORIT; ZÉMOR, 2016). Next,
we introduce the GPT cryptosystem.

Chapter 3. Rank Metric Based Cryptosystems 36

3.2 THE GPT CRYPTOSYSTEM

The work in Gabidulin, Paramonov, and Tretjakov (1991) proposed a cryptosys-
tem, named GPT in honor of its authors, based on McEliece’s but this time using the
so-called Gabidulin codes, introduced in the previous chapter. The argument is that
decoding a codeword from a random code in rank metric is exponentially more difficult
than decoding one from a random code in Hamming metric. See (GABORIT; RUATTA;
SCHREK, 2016). Definition 3.2 below presents the GPT formally.

Definition 3.2 (GPT Cryptosystem). The GPT cryptosystem is composed by a triple of
probabilistic polynomial-time algorithms, (GEN, ENC, DEC), where:

GEN(1N)
1 n, k, r := SELECTPARAMETERS(1N)
2 G← {M ∈ Fk×nqm : 〈M〉 ∈ Gab(n, k)}
3 S← {M ∈ GLk(Fqm)}
4 a← {v ∈ Fkqm : v 6= 0}
5 e0 ← {v ∈ Fnqm : 0 < ω(v) ≤ r}
6 G′ := SG + a>e0

7 return pk = G′, sk = (G,S−1)

Algorithm 1: GPT key generation

ENCpk(m)
1 e←

{
v ∈ Fnqm : ω(v) = bn−k2 c − r}

2 c := mG′ + e
3 return c

Algorithm 2: GPT encryption

DECsk(c)
1 c0 := DECODE(c,G)
2 m := c0S−1

3 return m

Algorithm 3: GPT decryption

Before explaining the algorithms, we point to the subroutine SELECTPARAMETERS

in Step 1 of Algorithm 1. We use this subroutine to indicate the selection of arbitrary
parameters, usually the ones suggested by the authors. So, in Algorithm 1, for example,
N may be the scheme security in bits and the parameters k, m, and n the suggested
values that attain the N bits security. The subroutine DECODE in Algorithm 3 stands
for any polynomial-time decoder for a Gabidulin code taking as input a codeword in
the code and the generator matrix of this code, even though particular instances take
different parameters.

Chapter 3. Rank Metric Based Cryptosystems 37

The key generation in the GPT cryptosystem starts with parameters k, m, n, and
r. It uses the first three to construct a Gabidulin code; they must obey the relation
k < n ≤ m. The last parameter, r, must be less than the error-correcting capacity of the
code used in the scheme as we will see later. Here we emphasize that the original GPT
cryptosystem uses n = m, while Definition 3.2 uses a more general Gabidulin code,
that is, n ≤ m. We make this choice because later schemes use values of n that may
not be equal to m.

Step 2 generates a random matrix G that generates an (n, k) Gabidulin code over
Fqm. This matrix is part of the secret key, and the subsequent steps will transform it
into a generator matrix of a random-looking code. To that, Steps 3, 4, and 5 generate
a random invertible matrix S over Fqm, of order k, and random vectors a in Fkqm and e0

in Fnqm, such that the former is different from 0 and the latter has rank weight less than
or equal to r. Finally, Step 6 computes the public code generator matrix G′, and Step 7
returns G′ and (G,S) as the public and private keys, respectively.

Contrary to the original McEliece scheme, the key generation in GPT does not
multiply the code generator matrix G to the right by an invertible matrix. Instead, it adds
SG to a random matrix that decomposes into two vectors, as specified in Algorithm 1.
This way, encoding a message m with G′ results in mSG + ma>e0. The left-hand side
of this addition is a codeword in the secret code, namely the encoding of a message mS
using G and the right-hand side is a vector of rank weight at most r. To see this, consider
the matrices A and B, subfield mappings of ma> and e0, respectively, for some basis
of Fqm over Fq. Given Lemma 2.3, we have rank(AB) ≤ min(rank(A), rank(B)) ≤ r. In
practice, the matrix G′ generates a code with a smaller error-correcting capacity than
the code generated by G and, from the coding theory point of view, the addition of a>e0

corresponds to adding an error that depends on the value of m.
Encryption (Algorithm 2) and decryption (Algorithm 3) of the GPT cryptosystem

are straightforward. The first encodes the input plaintext with G′ and adds a random
error e, which rank summed to r, the maximum possible rank of e0, equals the number
of errors one can correct using G. The second decodes the ciphertext it receives as a
parameter using G and recovers the original plaintext by multiplying the result by S−1

to the right.
The GPT system suffered its first attack in Gibson (1995) and Gibson (1996),

where the cryptanalytic algorithm presented runs in exponential time and only worked
for the small parameters proposed at that time. Latter works introduced variants of GPT
that attempted to better hide the structure of the secret code. In Gabidulin and Ourivski
(2001) and Gabidulin, Ourivski, et al. (2003) the authors returned to the idea of using a
column scrambler matrix P as in the original McEliece proposal to avoid Gibson’s attack.
However, Overbeck (2005) and Overbeck (2008) completely broke the system using the
strong structure of Gabidulin codes and the fact P is defined over Fq. Even subsequent
schemes claiming security against the Overbeck attack by taking the elements from

Chapter 3. Rank Metric Based Cryptosystems 38

Fqm instead of Fqm , such as Gabidulin (2008), Gabidulin, Rashwan, and Honary (2009),
and Rashwan, Gabidulin, and Honary (2011), could not stand. Otmani, Kalachi, and
Ndjeya (2018) have shown latter that is possible to reformulate all of them as instances
of the system attacked by Overbeck. The solution to this problem came only in Loidreau
(2017) which mixed the ideas usually applied in McEliece-like cryptosystems to others
ideas arising from the design of low rank parity-check codes (LRPC).

3.3 THE LOIDREAU CRYPTOSYSTEM

The main weakness of variants of the GPT cryptosystem exploited in the works
Overbeck (2005), Overbeck (2008), and Otmani, Kalachi, and Ndjeya (2018) is the
possibility to express the public code generator G′ of each of these encryption schemes
as a matrix S

(
X G

)
P, where P is a square matrix over the ground field Fq of order

(n + t), and S, G, and X are matrices over Fqm of dimensions s × k, k × n, and k × t,
respectively. Then, an attacker can apply the operator Λi to the public code generator

Λi(G′) =

G′

(G′)q
...

(G′)qi

 , (16)

where (G′)qi is the matrix G′ with each of its elements raised to the power qi.
While for a matrix M generating a random (n+t, s) code over Fqm the rank of Λi(M)

would be, with great probability, min(n+ t, s(i+ 1)), for the public code generator G′ the
rank of the result after applying Λi would be min(n+t, s+t+i). This clearly distinguishes
the code generated by G′ from a random code. Moreover, under certain circumstances,
the attacker can find an alternative column scrambler P′ and thus recover a valid secret
key in O(n3) using elementary linear algebra.

Observing this fact, Loidreau proposed the cryptosystem in Definition 3.3, in which
the column scrambler draws its elements neither from Fq or Fqm . Rather, they belong to
a vector subspace of small dimension contained in the extension field Fqm seen as an
m-dimensional vector space over Fq.

Definition 3.3 (Loidreau Cryptosystem). The Loidreau cryptosystem is composed by
a triple of probabilistic polynomial-time algorithms, (GEN, ENC, DEC), where:

Chapter 3. Rank Metric Based Cryptosystems 39

GEN(1N)
1 k,m, n, δ := SELECTPARAMETERS(1N)
2 G← {M ∈ Fk×nqm : 〈M〉 ∈ Gab(n, k)}
3 S← {M ∈ GLk(Fqm)}
4 P← {M ∈ GLn(V) : V ⊂ Fqm and dim(V) = δ}
5 G′ := SGP−1

6 return pk = G′, sk = (G,S−1,P)

Algorithm 4: Loidreau key generation

ENCpk(m)
1 e←

{
v ∈ Fnqm : ω(v) = bn−k2δ c}

2 c := mG′ + e
3 return c

Algorithm 5: Loidreau encryption

DECsk(c)
1 c0 := cP
2 c1 := DECODE(c0,G)
3 m := c1S−1

4 return m

Algorithm 6: Loidreau decryption

From Definition 3.2 the main difference relates to the key generation algorithm
GEN. In Step 1 of Algorithm 4, SELECTPARAMETERS outputs an extra parameter δ,
which is the dimension of the subspace containing the elements of P. It is important to
choose δ so that the code rate is greater than or equal to 1− 1

δ
and that δ itself is greater

than 3 as Coggia and Couvreur (2020), Ghatak (2022), and Loidreau and Pham (2022)
demonstrated that a distinguisher, and consequently a secret key, can be recovered
for parameter sets not obeying these conditions. With δ selected, the only remaining
difference is in Step 4 where rather than constructing a matrix using two vectors and
adding SG, as in Algorithm 1, it generates a random δ-dimensional vector subspace
V and constructs an invertible matrix P from random elements in V . P becomes part
of the private key and its inverse multiplies SG to the right to produce the public code
generator G′ as in Step 5.

To encrypt a message m, Algorithm 5 does exactly what the encryption algorithm
in GPT does, except that the rank weight of the generated error should be bn−k2δ c. Then,
to decrypt a ciphertext c, instead of decoding it directly using G, it first multiplies c by
the private key component P and only in Step 2 it decodes the result c0 = mSG + eP−1

of Step 1. This step explains the reason behind the choice of the rank weight in Step 1
of ENC. Given Lemma 2.4, we have ω(eP) ≤ δbn−k2δ c ≤ b

n−k
2 c, and so it can be decoded

Chapter 3. Rank Metric Based Cryptosystems 40

using G. After that, the algorithm follows in the same manner as in GPT and outputs
the decrypted message.

The argument the author gives for the security of its cryptosystem is that elements
in P belong to the vector subspace V of Fqm, but the same is not guaranteed for the
elements in P−1. After all, even if we draw the elements from a specific subspace (V in
this case) the operations are still performed in Fqm . Therefore, applying the operator Λi

to G′, as constructed in Step 5 of Algorithm 4, changes the rank of the resulting matrix
in a manner that the distinguishing property used in Overbeck attack no longer holds,
i.e., it is not possible to distinguish the public code generator matrix from a random rank
metric code generator. It seems this proposal solves the problem of structural attacks
for schemes based on Gabidulin codes. However, to be practical, an encryption scheme
needs to offer security guarantees such as the ones we presented in Section 2.2.1 and,
as the author states, the Loidreau cryptosystem does not achieve indistinguishability;
neither against chosen-plaintext or chosen-ciphertext attacks. In the next section we
present an encryption scheme that solves this issue.

3.4 THE SHEHHI ET AL. PUBLIC-KEY ENCRYPTION SCHEME

The encryption scheme proposed in Loidreau (2017) does not achieve indistin-
guishability under chosen-plaintext attack, which is the minimum required by the NIST
competition. Therefore, it does not provide security against chosen-ciphertext attack
as well. A security notion required in many use cases. To see why this is the case, let
Π be an instance of the Loidreau PKE as in Definition 3.3 and A an attacker that in
Step 2 of the chosen-plaintext indistinguishability experiment EXPexp

A,Π, select messages
m0 = 0 and m1 6= 0. If the challenge ciphertext c is the encryption of m0, for sure its
rank weight is bn−k2δ c while if it is the encryption of m1 there is a great chance for its
rank to be different from bn−k2δ c. This is enough for an attacker to guess the value of b in
Step 5 of the experiment with probability greater than 1/2.

Given that, Shehhi et al. (2019) proposed an IND-CCA variant of Loidreau’s cryp-
tosystem borrowing ideas presented in works such as Fujisaki and Okamoto (1999),
Fujisaki and Okamoto (2013), Hofheinz, Hövelmanns, and Kiltz (2017), and Saito, Xa-
gawa, and Yamakawa (2018), usually applied to a public key encryption scheme to turn
it into an IND-CCA key encapsulation mechanism or hybrid encryption scheme. The
product of the transformation presented by the authors is nonetheless a PKE scheme.

The new construction, presented in Definition 3.4, demands the use of two hash
functions. One is a traditional hash function, referred to as H0. The other, H1, is a
hash function where one can choose the output size via an extra argument, called an
extendable-output function (XOF). It is important to note these functions need to offer at
least the same level of security expected for the PKE as a whole. Otherwise its security
is reduced to the hash algorithms.

Chapter 3. Rank Metric Based Cryptosystems 41

The transformations from previous works normally require the decryption algo-
rithm to recompute the ciphertext, i.e., repeating the encryption process with the de-
crypted message as input and adding the error recovered in the decoding phase instead
of a fresh generated one. This is not necessary in this IND-CCA variant and it could
even spare a matrix multiplication if was not for the need to recover the error from
eP−1 in decryption. Nevertheless, the result from Shehhi et al. (2019) shows that the
decryption in their implementation of the scheme is about 5% slower in comparison
to the implementation of Loidreau’s in Abdouli et al. (2018) corresponding to the extra
matrix multiplication. This overhead is comparable to the application of a transformation
like Fujisaki-Okamoto alone, excluding particularities of the PKE it is applied to. On the
encryption side the lost of performance is more significant, 23%, since computing the
two digests occupies a large portion of time compared to the matrix multiplication to
encode the message and some additions that can be done via XOR operations.

The transformation proposed by the authors allows one to encrypt an amount
of data larger than the Fujisaki-Okamoto’s at a cost of 23% in decryption only. It can
be employed, for example, as KEM to exchange multiple keys in one ciphertext. The
security proof in Shehhi et al. (2019) relies on properties specific to the Loidreau’s
scheme. Nevertheless, the authors claim that the transformation might be adapted to
other schemes as well. We now define the Shehhi et al. cryptosystem.

Definition 3.4 (Shehhi et al. Cryptosystem). The Shehhi et al. cryptosystem is com-
posed by a triple of probabilistic polynomial-time algorithms, (GEN, ENC, DEC), where:

GEN(1N)
1 k,m, n, δ := SELECTPARAMETERS(1N)
2 G← {M ∈ Fk×nqm : 〈M〉 ∈ Gab(n, k)}
3 S← {M ∈ GLk(qm)}
4 P← {M ∈ GLn(V) : V ⊂ Fqm and dim(V) = δ}
5 G′ := SGP−1

6 return pk = G′, sk = (G,S−1,P)

Algorithm 7: Shehhi et al. key generation

ENCpk(m)
1 e←

{
v ∈ Fnqm : ω(v) =

⌊
n−k
2δ
⌋}

2 v := H0(e,m)
3 m0 := (m v)
4 m1 := m0 + H1(e)
5 return m1G′ + e

Algorithm 8: Shehhi et al. encryption

Chapter 3. Rank Metric Based Cryptosystems 42

DECsk(c)
1 c0 := DECODE(cP,G)
2 if c0 = ⊥
3 return ⊥
4 m′1 := c0S−1

5 e′ := c− c0P−1

6 m′0 := m′1 − H1(e′)
7 (m′ v′) := m′0
8 if H0(e′,m′) 6= v′ and ω(e′) 6=

⌊
n−k
2δ
⌋

9 return ⊥
10 return m′

Algorithm 9: Shehhi et al. decryption

The key generation algorithm GEN in Definition 3.4 works exactly like the
homonym algorithm in Definition 3.3. The difference between the two encryption
schemes starts in ENC, where the plaintext m goes through a few transformations
before encoding and adding the error vector e generated in Step 1. So, after generating
e with prescribed rank weight, both the plaintext and the error are used as input to a
hash function H0. The resulting digest v is called the verification digest or verification
hash, and it serves as a random parameter for correctness validation during decryption.
Next, it augments the original ciphertext with v producing the extended plaintext m0

in Step 3. Following this, the extended plaintext is added to the digest of e using
the extendable-output function H1. Here it is imperative to set the output size of H1

to match the size of m0. Lastly, Step 5 encrypts the result from Step 4 in the same
manner as in Loidreau’s PKE and returns the ciphertext.

The decryption of a ciphertext c described in Algorithm 7 works as follows. The
first step is identical to that of Algorithm 6. That is, multiply the ciphertext to the right by
P and then decode the result using an algorithm that decodes codewords in the code
generated by G. Step 2 checks if decoding was not successful, that is, if c0 is the decod-
ing failure symbol ⊥. If so, DEC immediately forwards the symbol in Step 3 to indicate a
decryption failure and finishes. If not, the process continues, and Step 4 computes m′1
using the usual technique of multiplying by the inverse of the row scrambler matrix S.
Steps 1–4 are roughly equivalent to decryption in the Loidreau scheme. The following
steps are specific to this algorithm.

Step 5 of Algorithm 9 retrieves an error vector e′ that ENC supposedly used to
generate the ciphertext. To visualize what is happening in this step, remember that if
c = m1SGP−1 + e, then c0 = m1SG, and their difference equals the error e. The digest
of e′, obtained by applying the extendable-output function H1, is subtracted from m′1
to produce an extended plaintext m′0 in Step 6, and Step 7 splits it into two vectors,
m′ and v, effectively undoing Step 3 of ENC. At this point, ENC has decrypted c into

Chapter 3. Rank Metric Based Cryptosystems 43

the plaintext m′. A check is necessary to confirm that c is a valid ciphertext, so Step 8
verifies if either the output of H0 on inputs e′ and m′ does not match the verification
hash v′ or the rank weight of e′ is different from the error-correcting capacity of the
public code. If any of these inequalities hold, the algorithm stops returning the failure
symbol. Otherwise, the decryption process is successful and returns the plaintext m′.

3.5 ANALYSIS OF THE SECURITY OF RANK BASED CRYPTOSYSTEMS

Now we analyze rank-based encryption schemes concerning their security, key
sizes, and code rates. To this end, we compute the theoretical complexity of recent
attacks to our cryptosystem and depict how these attacks have affected the choice
of parameters over the last years. We also compare the best attack using different
techniques against rank-based systems.

There are two possible forms of breaking a scheme based on rank metric codes.
The first is to recover a decoder for the underlying code, the class to which the Overbeck
attack mentioned earlier belongs. We disregard this attack as recent proposals seem
to hinder this menace. However, for the Loidreau cryptosystem specifically, the Coggia
and Covreur attack and its extensions restrict the choice of the subspace dimension δ;
the designer has to make a trade-off between the private key size and the amount of
redundant information in each ciphertext. Another form is to recover the message from
the ciphertext via a combinatorial or algebraic approach.

Combinatorial attacks have been studied for longer, with Aragon et al. (2018) and
Gaborit, Ruatta, and Schrek (2016) the most remarkable works and although these
attacks can make use of Grover’s algorithm to speed up, they are not as dangerous as
the recent algebraic attacks. (GABORIT; RUATTA; SCHREK, 2016; BARDET; BRIAUD,
et al., 2020; BARDET; BROS, et al., 2020) accelerated an area in which relevant
discoveries did not show since Ourivski and Johansson (2002). Even if these attacks
solve the rank decoding problem in exponential time, the advance was enough to left
schemes such as ROLLO and RQC out of NIST’s third round.

From Figure 3, it is easy to note that the attack in Bardet, Briaud, et al. (2020)
needs much larger public-key sizes than the other as the security increases. However,
Figure 4 focuses on the security levels relevant to use in practice, and it is possible to
observe a different scenario. For them, the two attacks in Bardet, Bros, et al. (2020)
force the scheme to have larger sizes in their public keys than the one in Bardet, Briaud,
et al. (2020).

A feature noticed through our experiments is that a significant variation occurs in
the sizes of keys offering the same level of security, even when considering a single
attack. As we can see in the graph of Figure 4, on the line of 96 bits of security, there is
a set of parameters whose public key must have about 30 KB to offer approximately that
security against hybrid attack in Bardet, Bros, et al. (2020). Nevertheless, it is possible

Chapter 3. Rank Metric Based Cryptosystems 44

Figure 3 – Minimum key sizes to resist algebraic attacks

Source: The author.

Figure 4 – Key sizes of Figure 3 for practical security levels

Source: The author.

to choose parameters that n way that the resulting key is shorter and more secure, such
as the one in the 160-bit line, with approximately 25 KB. This observation highlights the
importance of carefully choosing the parameters of our system.

We finish this chapter defining the parameters used in our implementation.Table 4
shows the parameters m, n, k, and δ, and the public and private keys sizes, for the
more widely used security levels.

Chapter 3. Rank Metric Based Cryptosystems 45

Table 4 – Selected parameters.

Security m n k δ r PK size SK size

80 72 68 38 3 5 10260 15369

128 80 80 44 3 6 15840 22590

192 104 100 50 3 8 32500 37589

256 168 116 60 3 9 70560 83145

Source: The author.

Note: The key sizes are expressed in bytes.

Part II

Implementation

4 IMPLEMENTATION

4.1 SYSTEM OVERVIEW

Our implementation, available at github.com/flpborba/shehhi, uses Python, an
interpreted high-level language. Python’s dynamic type system together with its simple
yet elegant syntax allows the rapid development of applications in a clear and organized
manner. The language constructs enable a variety of programming styles, also called
programming paradigms, such as procedural and object-oriented programming. These
features make the language a reasonable choice for the purposes of this work.

Besides the advantages mentioned, the main reason for choosing Python as the
implementation language is the use of SageMath (or Sage for short), which is an open-
source mathematical software system providing the vast majority of the requirements
for the construction of our cryptosystem, including Gabidulin codes, finite fields, and
matrices. Another library we use is PyCryptodome, mainly for its implementations of
hash algorithms, namely the SHA-3 family of algorithms and the extendable-output
functions SHAKE128 and SHAKE256. PyCryptodome also offers functionality used
to encode and decode keys in PEM and DER formats. The use of this libraries is
expressed in the context model in Figure 5.

�system�
shehhi

�system�
sage

�system�
pycryptodome

Figure 5 – Context model

The implementation is organized into the five packages depicted in Figure 6 ac-
cording to their concerns. The matrix package implements functions to create random
matrices and vectors with the necessary properties for use in our cryptosystem (e.g., a
vector with a certain rank to use as the error in encryption). The io package contains
functions to encode into bytes finite field elements, as well as matrices and vectors over
finite fields. It also offers functions to decode bytes back into the mentioned objects.

The hash package gives the abstract classes HashFunction and ExtendableOut-

putFunction, which the hash functions and extendable-output functions used with the
cryptosystem shall inherit. None of these classes imposes any restriction on the rep-
resentation or construction of objects, except for the __call__ method. For a class
inheriting from HashFunction, it takes the message bytes and returns the message
digest. For a class inheriting ExtendableOutputFunction, in addition to the message
bytes, the output size is required. Another method of compulsory implementation for

Chapter 4. Implementation 48

�package�
cipher

�package�
matrix

�package�
key

�package�
hash

�package�
io

Figure 6 – Package organization

a HashFunction is digest_size that returns the number of bytes the message digest
contains. The package also provides concrete implementations of both cryptographic
primitives via classes SHA3 and SHAKE, respectively (SHA-3 and SHAKE are well-known
algorithms standardized by NIST).

Package key provides functionalities to handle private and public keys. Among
these are the generation of private keys, the derivation of public keys from privates ones,
and the importation and exportation of both types. The generate function generates a
new SecretKey instance given the required security level (128, 192, or 256-bits). The
actual values of m, n, k, and δ used for each security level are the ones in Shehhi et al.
(2019). It is also possible to create a SecretKey directly, although not recommended.
After creating an instance, one can use it to derive the corresponding PublicKey using
the public_key method. We decided to separate the generation of private and public
keys, so we generate the latter only when necessary (even if, in most cases, one would
want to send it to another party or a repository).

Importation and exportation of keys support DER and PEM formats. The DER
format encodes keys using the ASN.1 structure presented in the next section and
returns the bytes, while the PEM format first encodes using DER and only then encodes
the resulting bytes as the corresponding type of key. The package asymmetrically
provides the two operations (i.e., class methods provide exportation since an instance
is necessary while functions provide importation as we do not have the key yet).

The last package, cipher, is the one that glues it all together. It comprises two
functors, Enc and Dec, that share the class Cipher as a common base. As expected, Enc
and Dec implement Algorithm 8 and Algorithm 9, respectively, which implementations
we will explain in detail in the next section. One creates an instance of one of these
functors passing the proper key, a hash function, and an extendable-output function. As
already mentioned, both function objects must inherit from the proper classes in the
hash package. Notice that the cryptosystem has its security limited by the key and the
hash algorithms used. Therefore, if one generates keys with 192 bits of security, these
must be used with hash algorithms providing at least 192 bits of security.

Chapter 4. Implementation 49

4.2 PUBLIC AND PRIVATE KEYS

This section explains how keys are stored. We begin showing the ASN.1 syntax
for our public and private keys, a standard description language used for data structures.
Then, we relate the key generation in Algorithm 7 to the ASN.1 structure of the keys,
explaining how these are generated, stored, and used in practice to reduce their size.

4.2.1 ASN.1 Syntax

The ASN.1 syntax is a joint standard of ISO/IEC and the ITU-T (International
Telecommunication Union Telecommunication Standardization Sector). This standard
aims to define a language to describe data structures independent of platform and is
both human-readable and machine-readable. Frame 1 shows the ASN.1 syntax for pub-
lic and private keys of our implementation. We will not discuss the syntax, nonetheless,
to give an intuition of how it works, consider PrivateKey in the first line of Frame 1.
This is a type that specifies how to encode private keys and is defined as a SEQUENCE,
an ASN.1 type used to express a collection of grouped items. The items, enclosed in
curly braces, are the components of PrivateKey and have an identifier and a type. For
example, generator identifies an item that must be encoded as an OCTET STRING (i.e.,
binary data that is multiple of 8 bits). While the first three components of PrivateKey
are of type OCTET STRING, a native ASN.1 type, the last item, parameters, is a type we
defined ourselves.

PrivateKey ::= SEQUENCE {
generator OCTET STRING
rowScrambler OCTET STRING
colScramblerBasis OCTET STRING
colScramblerSubvector OCTET STRING
parameters Parameters

}

PublicKey ::= SEQUENCE {
publicGenerator BIT STRING
parameters Parameters

}

Parameters ::= SEQUENCE {
extDegree INTEGER
codeLength INTEGER
codeDim INTEGER
subspaceDim INTEGER

}

Frame 1 – ASN.1 syntax of private and public keys

Chapter 4. Implementation 50

4.2.2 Encoding PKE Parameters

We start by type Parameters, the simplest of the three SEQUENCEs in Frame 1,
containing four INTEGERs which are the parameters chosen in step:shehhi-Step 1 of
Algorithm 7. The components extDegree, codeLength, codeDim, and subspaceDim, map
to m, n, k, and δ, respectively. They are necessary to store because we use them to
reconstruct the key parts, i.e., vectors and matrices, from data on disk. Next, we present
PrivateKey. and explain how it differs from the key presented in Algorithm 7 and how it
is generated in practice to reduce size in storage.

4.2.3 Encoding Keys

Component generator is simple. The private key contains the matrix G generated
in Algorithm 7, or as we will see later, a Gabidulin code with such a generator. However,
instead of storing the matrix in its entirety, we keep only its first row, which corresponds
to the code generator vector. Later, when we want to use the key again, it is easy to
reconstruct G by observing Definition 2.16. This method reduces the size needed to
store G by a factor of k.

The matrix P from GEN maps to components colScramblerBasis and colScram-

blerSubvector. If we consider that each element of F2m needs m bits of storage, P
would typically require mn2 bits. But the entries on it are taken from a δ-dimensional
subspace V of F2m, so we take advantage of it to reduce the necessary disk space
by storing a matrix and a vector. Let A and B represent colScramblerSubvector and
colScramblerBasis, respectively. The latter is the basis of V and has dimension m× δ,
and the former is an n× n matrix over F2δ where, for each element aij, the linear com-
bination of rows of B given by the coefficients of aij results in the element pij of P. That
is, for each aij ∈ V,

ai,jB = pi,j ∈ P.

In fact, this is how the implementation generates P, with a random basis of V
and a random matrix with elements in F2δ . Storing it in this way reduces the size
required to store the column scrambler matrix to δ(m + n2) and the reduction is not
negligible since, when comparing the dimensions of the three matrices G, S, and P, the
latter is responsible for the largest storage space. To make things concrete, consider
parameters m = 128, n = 120, k = 80, and δ = 5 proposed in Loidreau (2017). The
number of bits necessary is about 25 times smaller (from 1843200 to 72640).

Using the public generator in row echelon form could cause some trouble because
the first k coordinates of ciphertexts would be identical to the corresponding plaintext,
except possibly for coordinates modified by the error vector. However, Algorithm 8
encodes not the original plaintext but a modified version, as depicted in Step 4.

Chapter 4. Implementation 51

The rowScrambler corresponds to the matrix S in key generation. However, in
practice, the product of Step 3 in Algorithm 7 is not just a random k× k matrix over F2m

but a transformation involving this matrix and also the matrices G and P−1 that reduces
the size of the public key in the disk. To see how it works, remember that linear algebra
guarantees that the multiplication of a matrix M by a square full-rank matrix preserves
M’s rank. In particular, the product of two invertible matrices is again an invertible
matrix. With this in mind, consider the public key, SGP−1, from Algorithm 7, and write it
as
[
A |B

]
, where A is a square matrix of order k and B is a k× (n− k) matrix. Since G

has rank k,
[
A |B

]
also has rank k and can be reduced to row echelon form, i.e., there

exists a matrix T, such that T
[
A |B

]
=
[
I |B′

]
, and it is easy to see that T = A−1. Now,

if we let G′ = TSGP−1 =
[
I |B′

]
instead, we can reduce its size by storing only B′ as

long as we compensate in the private key, storing (TS)−1 = S−1T−1 = S−1A. Therefore,
in Frame 1, rowScrambler contains the encoding of S−1A, and PublicKey’s component
publicGenerator contains the encoding of B′.

4.3 PKE ALGORITHMS IMPLEMENTATION

This section shows the main pieces of code that implement the three algorithms
of our public-key encryption scheme and describes, for each algorithm, how the state-
ments in it map to code explaining the design decisions made. We follow the natural
order, first explaining GEN, then ENC, and finally DEC.

4.3.1 GEN Implementation

The keys used in the cryptosystem correspond in code to classes SecretKey and
PublicKey, located in the key module. Both store the respective components described
in Algorithm 7 (i.e., a SecretKey object stores its Gabidulin code and its row and column
scrambler matrices). Additionally, the keys store the dimension of the subspace used in
key generation. This value is necessary since we must calculate the maximum number
of errors to add to the codeword in encryption and check if this number matches the
number of errors corrected in decryption. We could have stored this number directly,
but as we will see later, we need the subspace dimension to reconstruct the key when
importing. The keys also have methods to retrieve the parameters used with keys.
Namely, m, n, k, and δ.

The implementation of GEN is divided into two main components. The first is
a function that generates a new private key, given the required security level. We
implement it as a function because the algorithm does not need to store a state, nor it
depends on any object. On the other hand, public keys depend on private keys, and so
their generation or, more precisely, their derivation always rely on the previous existence
of a private key. Therefore, the second component is a method of the SecretKey class.

Chapter 4. Implementation 52

Listing 1 and Listing 2 depict these two components implementing key generation and,
starting in the next paragraph, we describe how the code maps to Algorithm 7 step by
step.

1 def generate (s e c u r i t y _ l e v e l) :
2 m, n , k , de l t a = _select_parameters (s e c u r i t y _ l e v e l)
3
4 c = _random_gabidulin_code (m, n , k)
5 p = random_inver t ib le_subpace_matr ix (GF(2 * * m) , de l ta , n)
6
7 r = random_ inver t i b le_mat r i x (GF(2 * * m) , k)
8 t = r * c . genera tor_mat r ix () * p . inverse ()
9 s = r . inverse () * t . submatr ix (ncols=k)

10
11 r e t u r n SecretKey (c , s , p , de l t a)

Listing 1 – SecretKey generation

The first major component of Algorithm 7 implementation is the function generate

(Listing 1). It takes an integer representing the security level as the parameter and re-
turns a new private key. The first step of GEN corresponds to Line 2 of Listing 1, which
takes the security level in variable security_level and uses it to call _select_parame-
ters, which returns suitable values for k, n, m, and δ, assigning them to the respective
variables. The next step of the algorithm maps to Line 4. In this line, the function _ran-

dom_gabidulin_code, with inputs m, n, and k from the previous step, generates a new
random (n, k) Gabidulin code over F2m . We to store the Gabidulin code directly instead
of its generator matrix for convenience.

Step 3 of Gen generates the row scrambler matrix s as a random invertible k × k
matrix. However, in practice, we perform some extra computations to reduce the size
of the public keys used in the cryptosystem. Therefore, we skip to Step 4 and revisit
Step 3 later. The fourth step produces the column scrambler matrix p directly by calling
the function random_invertible_subspace_matrix from matrix. The function takes as
input the base field the elements belong to, along with the vector subspace dimension
and the matrix order, and returns a matrix with the desired characteristics. Back to
Step 3, represented in code by Lines 7, 8, and 8. We first generate a random invertible
matrix of order k over F2m as in Algorithm 7 and assign it to r. Then, we multiply it by the
generator matrix of c and the inverse of p, obtaining t. Finally, we compute the matrix s

by multiplying the inverse of r by the submatrix of t composed of the first k rows and
columns. Frame 2 depicts a sample of a private key in PEM format.

The second major piece of code implementing GEN is the method public_key from
SecretKey (Listing 2). It only takes self as a parameter since it is the only dependency
and returns its corresponding public key. Line 2 corresponds to Step 5 of Algorithm 7,
and it simply takes the three matrices: the row scrambler _s, the generator of the secret

Chapter 4. Implementation 53

-----BEGIN PRIVATE KEY -----
MIKDigSCAdBxToQUtnsewc90OnozEAlHTUZ0lDNM +5N+dKaxWwUZbG1woUny/Vi6
smeG0C9aqwnrW+MoBDP6Uz2UqfXKhdhB6tvbV43E3pR9yL3fFmyyYcacbwFEv34d
jYAGCImfPJN6rrB2Y/LF1D9iu8lip7ERodb1QY+moOvzrs4mlZ4F2UbiE8P /1AdL

...
Z3tA+M4gQAC+fPRAsWSPq2d7QPjOIEAAAAAAAAAAAABne0D4ziBAAEfOqUsQjY+r
AAAAAAAAAAC+fPRAsWSPq0fOqUsQjY+rILXps96tz6ueyR3zb8lAAEfOqUsQjY+r
Z3tA+M4gQABne0D4ziBAADAMAgFAAgE6AgEcAgED
-----END PRIVATE KEY -----

Frame 2 – PEM-encoded private key sample

code _c, and the column scrambler _p, and multiply them. Note that the resulting matrix
is in echelon form.

1 def pub l ic_key (s e l f) :
2 g = s e l f . _s . inverse () * s e l f . _c . genera tor_mat r ix () * s e l f . _p . inverse ()
3 r e t u r n Publ icKey (g , s e l f . _d)

Listing 2 – PublicKey generation

To finish, the last stop GEN is not implemented in a specific part of the code but is
represented by the return statements in Listing 1 and Listing 2. Besides the private and
public keys components defined in GEN, the dimension delta of the vector subspace
used in generation also composes both. This value is necessary for Steps 1 and 8 of
ENC and DEC, respectively. Frame 3 shows an example of a PEM-encoded public key.

-----BEGIN PUBLIC KEY -----
MIIaUwOCGkEAa38xq0wSQRbKhGDIeqzOx0LDOfH1euAJaa3X9SrwanwJR3kUsIxC
9RrPLepRmX26M9COsWkkuzOv4mKgZ70AdgNqd5Fz73B2zP+lP/tJ/CfFU6xqp/xo
ANxh7T1l6rvleDYUyV73Uj+spiOqDRjC1bkpKOf7B4ZdpyW123/fMm0M6tZGnwWT

...
H280IBH9bPvg76ihwlLOpWtIVr9+PmLazMeu6FK9k51/o5OiKsz0ioKKGjjEt2ag
eoCiPHaZh6K+hUaPbgV13dBgLw9fg +0 BMCialOUDIZqfprlaesfmRUxrz0CWE63n
YmHSnDcTZ3o0MAwCAUACAToCARwCAQM=
-----END PUBLIC KEY -----

Frame 3 – PEM-encoded public key sample

4.3.2 ENC Implementation

Contrary to GEN which entry point is a function, ENC, as well as DEC, is a function
object or a functor. We implemented them as functors because it more directly reflects
the fact that the key to use is fixed. Listing 3 below shows the method __call__ of class
Enc that implements the homonym algorithm. Since the object already contains the
public key to use, the method __call__ takes only the bytes of the plaintext we want to
encrypt.

Chapter 4. Implementation 54

1 def __ca l l__ (s e l f , p l a i n t e x t) :
2 rank = s e l f . _decoding_capaci ty ()
3 e r r o r = encode (random_rank_vector (s e l f . _codeword_space () , rank))
4
5 v e r i f i e r _ h a s h = s e l f . _hash (e r r o r + p l a i n t e x t)
6 ex tended_p la in tex t = p l a i n t e x t + v e r i f i e r _ h a s h
7
8 error_hash = s e l f . _xof (e r ro r , len (ex tended_p la in tex t))
9

10 message = s t r x o r (ex tended_p la in tex t , error_hash)
11 message = decode (message , s e l f . _message_space ())
12
13 codeword = encode (message * s e l f . _key . g ())
14 c i p h e r t e x t = s t r x o r (codeword , e r r o r)
15
16 r e t u r n c i p h e r t e x t

Listing 3 – ENC implementation

Step 1 of Algorithm 8 corresponds to Lines 2 and 3 of Listing 3. The first line
computes the value n−k

2δ from Step 1 by calling the _decoding_capacity. As already
explained, this value is the maximum number of errors we can add to a codeword in the
public code and still decode it using secret code. Then, we use the result, stored in rank,
and generate a random vector in the codeword space with this rank. Here, we call the
method _codeword_space, which uses the key parameters to calculate the codeword
space, and the function encode from module io to get the error vector represented
as bytes. Next, Line 5 implements Step 2, which concatenates the bytes of the error
vector and the plaintext and computes the digest of the result using _hash to get the
verifier_hash, and Line 6 concatenates plaintext with verifier_hash to obtain the
extended plaintext of Step 3.

Step 4 corresponds to Lines 8, 10, and 11. In Line 8, we use the extendable-output
function object _xof to compute the digest of the error bytes. Since we add this value
to the extended plaintext, we know they have to be of the same length so we pass
len(extended_plaintext) as the second parameter to the method __call__ of _xof.
Lines 10 and 11 compute the addition of Step 4 in two parts. The first line calculates the
XOR between extended_plaintext and error_hash, and the second line decodes the
resulting bytes into a message vector in the public code. Similar to Line 15, where we
called the method _codeword_space, we now call _message_space to obtain the vector
space where the messages in the public code lie and use the returned value as the
second parameter to the function decode.

Finally, Lines 13, 14, and 16 compute the codeword from the message vector
constructed in Line 11, adds the error vector, and returns the encrypted bytes, equating
to Step 5 of Algorithm 8. It does by first encoding the message with the public code
generator and converting the result into bytes in Line 13, and then applying the XOR

Chapter 4. Implementation 55

operator between the codeword and error bytes in Line 14. In Algorithm 8, this step
performs an addition of the error and codeword vectors. However, we have been using
the error represented as bytes and the finite field of their elements has characteristic 2,
so applying XOR to their bytes is more convenient.

4.3.3 DEC Implementation

As already mentioned, we implement the decryption algorithm as a functor. So,
after constructing the Enc object passing the private key and the hash and XOF algo-
rithms, one can decrypt ciphertext calling the __call__ method in Listing 4. It takes
the ciphertext as the sole argument and returns either the corresponding plaintext or a
DecodingError.

1 def __ca l l__ (s e l f , c i p h e r t e x t) :
2 received_word = decode (c i phe r t ex t , s e l f . _codeword_space ())
3 codeword = s e l f . _key . c () . decode_to_code (received_word * s e l f . _key . p ())
4
5 message = encode (s e l f . _key . c () . unencode (codeword) * s e l f . _key . s ())
6
7 e r ro r_ vec t o r = received_word + codeword * s e l f . _key . p () . inverse ()
8 e r r o r = encode (e r ro r _vec to r)
9

10 ex tended_p la in tex t = s t r x o r (message , s e l f . _xof (e r ro r , len (message)))
11 p l a i n t e x t , v e r i f i e r _ h a s h = s e l f . _ext ract_hash (ex tended_p la in tex t)
12
13 hash_ve r i f i ed = v e r i f i e r _ h a s h == s e l f . _hash (e r r o r + p l a i n t e x t)
14 r a n k _ v e r i f i e d = rank_weight (e r r o r _vec to r) == s e l f . _decoding_capaci ty ()
15
16 i f not hash_ve r i f i ed and not r a n k _ v e r i f i e d :
17 ra i se DecodingError ()
18
19 r e t u r n p l a i n t e x t

Listing 4 – DEC implementation

The method starts taking the ciphertext bytes and converting them to a vector
in the codeword space in Line 2. To this end, it uses the function decode from the io

module. Then, the method implements Steps 1–3 of Algorithm 9 in Line 3, recovering
c0 by multiplying received_codeword by the matrix P and decoding the result with
the secret code. In case of a decoding failure, the method decode_to_code raises a
DecodingError, corresponding to Steps 2 and 3 of the algorithm. Otherwise, Line 5
of Listing 4 retrieves m1 by decoding codeword using the method unencode from the
secret code and multiplying it by the matrix S, also contained in the key. Then, Line 7
computes the error vector e by multiplying the codeword with the inverse of P and
adding the result to received_word, mapping to Step 5 of the algorithm, and Line 8
converts e to bytes. This conversion is necessary to take its hash value later.

Chapter 4. Implementation 56

Lines 10 and 11 correspond to Steps 5 and 6 of Algorithm 9. Line 10 computes
extended_plaintext, which matches m0 in the algorithm. Again, since we are in a finite
field of characteristic 2, the addition of elements corresponds to the XOR of their bytes
representation. Then, in Line 11, we get back both the plaintext and the verification
hash applying the _extract_hash method on extended_plaintext. This method uses
the expected plaintext length to determine where to split the extended plaintext.

Steps 8 and 9 of Algorithm 9, which checks the verifier hash and rank of the error
vector, corresponds to Lines 13–17 of Listing 4. Line 13 computes if the verifier_-

hash obtained before matches the hash calculated from the bytes of the error and the
plaintext concatenated, storing the result in hash_verified. Line 14 compares the rank
of the error vector to bn−k2δ c, obtained through the _decoding_capacity function, and
stores the result in rank_verified. Then, Line 16 checks the variables and, if both are
false, it raises a DecodingError in Line 17. Otherwise, decryption is successful, and the
method returns the plaintext in Line 19.

4.4 USING THE CRYPTOSYSTEM

This section describes the operations one may want to perform using our imple-
mentation, such as instantiating a new cipher object, generating and exporting keys,
and encrypting and decrypting plaintexts and ciphertext, respectively, considering the
situation in which Alice wants to send Bob a message.

4.4.1 Generating a key pair

We start showing how Bob can generate a new key pair, and for this purpose,
he needs to choose the desired security level. Three standard security levels used in
cryptography are available to him, 128, 192, and 256 bits. Bob opts to use a 128-bits
key to receive messages from Alice and creates a new secret key, sk, by calling the
generate function with the value 128 as the argument in Line 1 of Listing 5. Then, he
derives the corresponding public key, pk, calling the public_key method on sk in Line 2:

1 sk = generate (128)
2 pk = sk . pub l ic_key ()

Listing 5 – Generating a new key pair

4.4.2 Exporting and storing keys

Now that Bob has a key pair, he might want to share the public one with a com-
municating party, store the private key and send the public to a repository, or even
store both keys to use later. In any case, he needs to serialize both keys. Suppose the

Chapter 4. Implementation 57

communication will not happen immediately, so Bob wants to store sk using PEM en-
coding but send sk to Alice using DER. To encode the secret key, Bob calls the method
export_pem on sk as in Line 1 of Listing 6. The method returns a string containing the
PEM encoded key that he writes to file "secret.pem" (Lines 3 and 4). Then, he encodes
pk by calling the method export_der (Line 6) and send the resulting bytes to Alice (we
deliberately omit the transmission as we are not concerned with the method used for
that).

1 encoded_sk = sk . export_pem ()
2
3 wi th open (" secre t .pem" , "w") as f i l e :
4 f i l e . w r i t e (encoded_sk)
5
6 encoded_pk = pk . expor t_der ()
7
8 # send `encoded_pk` to A l i ce

Listing 6 – Encoding the key pair

4.4.3 Importing a public key and encrypting a message

Now, imagine that on receiving the public key, Alice stores it in a file called "bob_-
pk.der". Later, when the time comes for Alice to send a message, she imports Bob’s
public key by opening the file containing the key in DER format, reads its bytes, and
calls the function import_public_der, passing the bytes as the only argument (Lines 1
and 2 of Listing 7). The function returns a PublicKey object representation of the key,
which Alice assigns to variable bob_pk.

To send a message, Alice needs to create an instance of the Enc class. As we
discussed before, this requires a public key along with the chosen hash and extendable-
output functions. Alice opts to use the SHA3 and SHAKE implementations provided by
the hash module and, knowing the key offers 128 bits of security, she instantiates both
hash functions passing the value 128 (Line 4). Finally, Alice can use enc to encrypt the
message she wants to send to Bob and assume it is "the quick brown fox jumps over the
lazy dog" (Line 6). Since the plaintext length is less than the input length expected by the
__call__ method of enc, it must be padded (for the parameters used in key generation,
it expects a 192 bytes input). Alice uses the pad function from PyCryptodome to pad
the message using PKCS#7 option and encrypts the resulting bytes (Line 7).

Chapter 4. Implementation 58

1 key_data = open (" bob_pk . der " , " rb ") . read ()
2 bob_pk = impor t_pub l i c_der (key_data)
3
4 enc = Enc (bob_pk , SHA3(128) , SHAKE(128))
5
6 p l a i n t e x t = b " the quick brown fox jumps over the lazy dog "
7 c i p h e r t e x t = enc (pad (p l a i n t e x t , enc . p l a i n t e x t _ l e n ())
8
9 # send Bob the c i p h e r t e x t

Listing 7 – Importing a public key and encrypting a plaintext

4.4.4 Importing a private key and decrypting a ciphertext

On the other side of communication, Bob prepares to receive Alice’s message
and needs to follow a procedure similar to what Alice did. First, he imports the secret
key previously stored in PEM format, opening the file "secret.pem" and reading the
string it contains (Line 1 of Listing 8). Bob then imports the key calling the function
import_secret_pem, passing the read string as an argument, and assigns the returned
SecretKey to sk. With sk, he now creates an Enc object in Line 4, sending as arguments
sk and new instances of SHA3 and SHAKE. Again, Bob knows the secret key used provides
128 bits of security and therefore instantiates both the SHA3 and SHAKE accordingly. Bob
must use the same algorithms Alice used for the hash and the extendable-output
functions in encryption; otherwise, the verification hash computed at one end will not
match the verification hash computed at another end. Lastly, Bob decrypts the ciphertext
he received using enc, and the result should be the original plaintext encrypted by Alice.
He undoes the padding made by Alice and retrieves the intended message. Bob used
the unpad function from PyCryptodome to revert padding, although any piece of code
implementing PKCS#7 would suffice.

1 # rece ive c i p h e r t e x t from A l i ce
2
3 key_data = open (" secre t . der " , " r ") . read ()
4 sk = import_secret_pem (key_data)
5
6 dec = Dec (sk , SHA3(128) , SHAKE(128))
7
8 c i p h e r t e x t = unpad (dec (c i p h e r t e x t) , enc . p l a i n t e x t _ l e n ())

Listing 8 – Importing a private key and decrypting a ciphertext

5 FINAL REMARKS

This thesis discussed rank metric cryptography based on Gabidulin codes. We out-
lined the attacks and corrections these schemes went through, presented an IND-CCA
scheme and its implementation, and proposed its parameters based on experiments.
We also gave a slight hint of what may come next for this type of cryptography by
showing the improvements in attacks in recent years.

The use of this family of codes promised post-quantum cryptographic primitives
with key sizes much smaller than other alternatives such as the McEliece cryptosystem
but suffered from attacks since its first use. Some of them forced schemes to increase
the size of keys, while others completely broke systems. And while new proposals
have successfully depleted polynomial-time attacks until now, a fresh understanding
of the rank decoding problem (Definition 3.1) allowed the cryptanalysis of this type of
scheme to disregard their specific structure. Despite all this pessimistic scenario, NIST
recommends the continuation in the studies of rank metric cryptosystems since they
offer an attractive alternative to Hamming metric with comparable bandwidth (ALAGIC
et al., 2020). We believe the topic needs further research, either in the direction of
reducing the key sizes through techniques or in the opposite direction, developing more
powerful attacks to discard the use of these schemes in practice.

REFERENCES

ABDOULI, Ameera Salem Al et al. DRANKULA: A McEliece-like Rank Metric based
Cryptosystem Implementation. In: SAMARATI, Pierangela; OBAIDAT, Mohammad S.
(Eds.). Proceedings of the 15th International Joint Conference on e-Business
and Telecommunications, ICETE 2018 - Volume 2: SECRYPT, Porto, Portugal,
July 26-28, 2018. [S.l.]: SciTePress, 2018. P. 230–241. DOI:
10.5220/0006838102300241. Available from:
<https://doi.org/10.5220/0006838102300241>. Cit. on p. 41.

ALAGIC, Gorjan et al. Status report on the second round of the NIST post-quantum
cryptography standardization process. US Department of Commerce, NIST, 2020.
Cit. on p. 59.

ARAGON, Nicolas et al. A New Algorithm for Solving the Rank Syndrome Decoding
Problem. In: 2018 IEEE International Symposium on Information Theory (ISIT).
[S.l.: s.n.], 2018. P. 2421–2425. DOI: 10.1109/ISIT.2018.8437464. Cit. on p. 43.

BARDET, Magali; BRIAUD, Pierre, et al. An Algebraic Attack on Rank Metric
Code-Based Cryptosystems. In: CANTEAUT, Anne; ISHAI, Yuval (Eds.). Advances in
Cryptology – EUROCRYPT 2020. Cham: Springer International Publishing, 2020.
P. 64–93. Cit. on p. 43.

BARDET, Magali; BROS, Maxime, et al. Improvements of Algebraic Attacks for Solving
the Rank Decoding and MinRank Problems. In: MORIAI, Shiho; WANG, Huaxiong
(Eds.). Advances in Cryptology – ASIACRYPT 2020. Cham: Springer International
Publishing, 2020. P. 507–536. Cit. on p. 43.

BERLEKAMP, E.; MCELIECE, R.; TILBORG, H. van. On the inherent intractability of
certain coding problems (Corresp.) IEEE Transactions on Information Theory, v. 24,
n. 3, p. 384–386, 1978. DOI: 10.1109/TIT.1978.1055873. Cit. on p. 35.

COGGIA, Daniel; COUVREUR, Alain. On the security of a Loidreau rank metric code
based encryption scheme. Designs, Codes and Cryptography, Springer Verlag,
v. 88, n. 9, p. 1941–1957, Sept. 2020. Long version of an article accepted at the
conference WCC 2019. DOI: 10.1007/s10623-020-00781-4. Available from:
<https://hal.archives-ouvertes.fr/hal-03049694>. Cit. on p. 39.

DELSARTE, Ph. Bilinear forms over a finite field, with applications to coding theory.
Journal of Combinatorial Theory, Series A, v. 25, n. 3, p. 226–241, 1978. ISSN

https://doi.org/10.5220/0006838102300241
https://doi.org/10.5220/0006838102300241
https://doi.org/10.1109/ISIT.2018.8437464
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/s10623-020-00781-4
https://hal.archives-ouvertes.fr/hal-03049694

REFERENCES 61

0097-3165. DOI: https://doi.org/10.1016/0097-3165(78)90015-8. Available from:
<https://www.sciencedirect.com/science/article/pii/0097316578900158>. Cit. on
p. 30.

FUJISAKI, Eiichiro; OKAMOTO, Tatsuaki. Secure Integration of Asymmetric and
Symmetric Encryption Schemes. In: PROCEEDINGS of the 19th Annual International
Cryptology Conference on Advances in Cryptology. Berlin, Heidelberg:
Springer-Verlag, 1999. (CRYPTO ’99), p. 537–554. Cit. on p. 40.

FUJISAKI, Eiichiro; OKAMOTO, Tatsuaki. Secure Integration of Asymmetric and
Symmetric Encryption Schemes. J. Cryptol., Springer-Verlag, Berlin, Heidelberg,
v. 26, n. 1, p. 80–101, Jan. 2013. ISSN 0933-2790. DOI: 10.1007/s00145-011-9114-1.
Available from: <https://doi.org/10.1007/s00145-011-9114-1>. Cit. on p. 40.

GABIDULIN, E. M.; PARAMONOV, A. V.; TRETJAKOV, O. V. Ideals over a
Non-Commutative Ring and their Application in Cryptology. In: DAVIES, Donald W.
(Ed.). Advances in Cryptology — EUROCRYPT ’91. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1991. P. 482–489. Cit. on pp. 15, 35, 36.

GABIDULIN, E.M.; OURIVSKI, A.V. Modified GPT PKC with Right Scrambler.
Electronic Notes in Discrete Mathematics, v. 6, p. 168–177, 2001. WCC2001,
International Workshop on Coding and Cryptography. ISSN 1571-0653. DOI:
https://doi.org/10.1016/S1571-0653(04)00168-4. Available from:
<https://www.sciencedirect.com/science/article/pii/S1571065304001684>.
Cit. on p. 37.

GABIDULIN, E.M.; OURIVSKI, A.V., et al. Reducible rank codes and their applications
to cryptography. IEEE Transactions on Information Theory, v. 49, n. 12,
p. 3289–3293, Dec. 2003. ISSN 1557-9654. DOI: 10.1109/TIT.2003.820038. Cit. on
p. 37.

GABIDULIN, Ernst M. Attacks and counter-attacks on the GPT public key
cryptosystem. Des. Codes Cryptogr., v. 48, n. 2, p. 171–177, 2008. DOI:
10.1007/s10623-007-9160-8. Available from:
<https://doi.org/10.1007/s10623-007-9160-8>. Cit. on p. 38.

GABIDULIN, Ernst M. Theory of Codes with Maximum Rank Distance. Probl.
Peredachi Inf., v. 21, p. 3–16, 1 1985. Cit. on p. 30.

https://doi.org/https://doi.org/10.1016/0097-3165(78)90015-8
https://www.sciencedirect.com/science/article/pii/0097316578900158
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/https://doi.org/10.1016/S1571-0653(04)00168-4
https://www.sciencedirect.com/science/article/pii/S1571065304001684
https://doi.org/10.1109/TIT.2003.820038
https://doi.org/10.1007/s10623-007-9160-8
https://doi.org/10.1007/s10623-007-9160-8

REFERENCES 62

GABIDULIN, Ernst M.; RASHWAN, Haitham; HONARY, Bahram. On Improving
Security of GPT Cryptosystems. In: PROCEEDINGS of the 2009 IEEE International
Conference on Symposium on Information Theory - Volume 2. Coex, Seoul, Korea:
IEEE Press, 2009. (ISIT’09), p. 1110–1114. Cit. on p. 38.

GABORIT, Philippe; RUATTA, Olivier; SCHREK, Julien. On the Complexity of the Rank
Syndrome Decoding Problem. IEEE Transactions on Information Theory, v. 62, n. 2,
p. 1006–1019, 2016. DOI: 10.1109/TIT.2015.2511786. Cit. on pp. 36, 43.

GABORIT, Philippe; ZÉMOR, Gilles. On the Hardness of the Decoding and the
Minimum Distance Problems for Rank Codes. IEEE Transactions on Information
Theory, v. 62, n. 12, p. 7245–7252, 2016. DOI: 10.1109/TIT.2016.2616127. Cit. on
p. 35.

GHATAK, Anirban. Extending Coggia–Couvreur attack on Loidreau’s rank-metric
cryptosystem. Designs, Codes and Cryptography, v. 90, p. 215–238, 1 2022. ISSN
1573-7586. DOI: 10.1007/s10623-021-00972-7. Available from:
<https://doi.org/10.1007/s10623-021-00972-7>. Cit. on p. 39.

GIBSON, Keith. Severely Denting the Gabidulin Version of the McEliece Public Key
Cryptosystem. Des. Codes Cryptogr., v. 6, n. 1, p. 37–45, 1995. DOI:
10.1007/BF01390769. Available from: <https://doi.org/10.1007/BF01390769>. Cit. on
p. 37.

GIBSON, Keith. The Security of the Gabidulin Public Key Cryptosystem. In:
PROCEEDINGS of the 15th Annual International Conference on Theory and
Application of Cryptographic Techniques. Saragossa, Spain: Springer-Verlag, 1996.
(EUROCRYPT’96), p. 212–223. Cit. on p. 37.

GROVER, Lov K. A Fast Quantum Mechanical Algorithm for Database Search. In:
PROCEEDINGS of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing. Philadelphia, Pennsylvania, USA: Association for Computing Machinery,
1996. (STOC ’96), p. 212–219. DOI: 10.1145/237814.237866. Available from:
<https://doi.org/10.1145/237814.237866>. Cit. on p. 14.

HOFHEINZ, Dennis; HÖVELMANNS, Kathrin; KILTZ, Eike. A Modular Analysis of the
Fujisaki-Okamoto Transformation. In: KALAI, Yael; REYZIN, Leonid (Eds.). Theory of
Cryptography. Cham: Springer International Publishing, 2017. P. 341–371. Cit. on
p. 40.

https://doi.org/10.1109/TIT.2015.2511786
https://doi.org/10.1109/TIT.2016.2616127
https://doi.org/10.1007/s10623-021-00972-7
https://doi.org/10.1007/s10623-021-00972-7
https://doi.org/10.1007/BF01390769
https://doi.org/10.1007/BF01390769
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866

REFERENCES 63

LIDL, Rudolf; NIEDERREITER, Harald. Finite Fields. 2. ed. [S.l.]: Cambridge
University Press, 1996. (Encyclopedia of Mathematics and its Applications). DOI:
10.1017/CBO9780511525926. Cit. on p. 23.

LOIDREAU, Pierre. A New Rank Metric Codes Based Encryption Scheme. In:
LANGE, Tanja; TAKAGI, Tsuyoshi (Eds.). Post-Quantum Cryptography. Cham:
Springer International Publishing, 2017. P. 3–17. Cit. on pp. 38, 40, 50.

LOIDREAU, Pierre; PHAM, Ba-Duc. An analysis of Coggia-Couvreur Attack on
Loidreau’s Rank-metric public-key encryption scheme in the general case. working
paper or preprint. [S.l.], Jan. 2022. Available from:
<https://hal.archives-ouvertes.fr/hal-03514106>. Cit. on p. 39.

MCELIECE, R. J. A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report, v. 44, p. 114–116, Jan. 1978. Cit. on p. 35.

MULLEN, Gary L; PANARIO, Daniel. Handbook of Finite Fields. [S.l.]: CRC Press,
2013. Cit. on p. 23.

OTMANI, Ayoub; KALACHI, Hervé Talé; NDJEYA, Sélestin. Improved cryptanalysis of
rank metric schemes based on Gabidulin codes. Des. Codes Cryptogr., v. 86, n. 9,
p. 1983–1996, 2018. DOI: 10.1007/s10623-017-0434-5. Available from:
<https://doi.org/10.1007/s10623-017-0434-5>. Cit. on p. 38.

OURIVSKI, A. V.; JOHANSSON, T. New Technique for Decoding Codes in the Rank
Metric and Its Cryptography Applications. In: p. 237–246. DOI:
10.1023/A:1020369320078. Available from:
<https://doi.org/10.1023/A:102036932007>. Cit. on p. 43.

OVERBECK, Raphael. A New Structural Attack for GPT and Variants. In:
DAWSON, Ed; VAUDENAY, Serge (Eds.). Progress in Cryptology - Mycrypt 2005,
First International Conference on Cryptology in Malaysia, Kuala Lumpur,
Malaysia, September 28-30, 2005, Proceedings. [S.l.]: Springer, 2005. (Lecture
Notes in Computer Science), p. 50–63. DOI: 10.1007/11554868_5. Available from:
<https://doi.org/10.1007/11554868%5C_5>. Cit. on pp. 37, 38.

OVERBECK, Raphael. Structural attacks for public key cryptosystems based on
Gabidulin codes. Journal of cryptology, Springer, v. 21, n. 2, p. 280–301, 2008.
Cit. on pp. 37, 38.

https://doi.org/10.1017/CBO9780511525926
https://hal.archives-ouvertes.fr/hal-03514106
https://doi.org/10.1007/s10623-017-0434-5
https://doi.org/10.1007/s10623-017-0434-5
https://doi.org/10.1023/A:1020369320078
https://doi.org/10.1023/A:102036932007
https://doi.org/10.1007/11554868_5
https://doi.org/10.1007/11554868%5C_5

REFERENCES 64

RASHWAN, Haitham; GABIDULIN, Ernst M.; HONARY, Bahram. Security of the GPT
cryptosystem and its applications to cryptography. Security and Communication
Networks, v. 4, n. 8, p. 937–946, 2011. DOI: https://doi.org/10.1002/sec.228.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.228. Available from:
<https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.228>. Cit. on p. 38.

ROTH, R.M. Maximum-rank array codes and their application to crisscross error
correction. IEEE Transactions on Information Theory, v. 37, n. 2, p. 328–336, 1991.
DOI: 10.1109/18.75248. Cit. on p. 30.

SAITO, Tsunekazu; XAGAWA, Keita; YAMAKAWA, Takashi. Tightly-Secure
Key-Encapsulation Mechanism in the Quantum Random Oracle Model. In:
NIELSEN, Jesper Buus; RIJMEN, Vincent (Eds.). Advances in Cryptology –
EUROCRYPT 2018. Cham: Springer International Publishing, 2018. P. 520–551.
Cit. on p. 40.

SHEHHI, Hamad Al et al. An IND-CCA-Secure Code-Based Encryption Scheme Using
Rank Metric. In: BUCHMANN, Johannes; NITAJ, Abderrahmane;
RACHIDI, Tajjeeddine (Eds.). Progress in Cryptology – AFRICACRYPT 2019.
Cham: Springer International Publishing, 2019. P. 79–96. Cit. on pp. 15, 40, 41, 48, 66.

SHOR, Peter W. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing, v. 26, n. 5,
p. 1484–1509, 1997. DOI: 10.1137/S0097539795293172. eprint:
https://doi.org/10.1137/S0097539795293172. Available from:
<https://doi.org/10.1137/S0097539795293172>. Cit. on p. 14.

https://doi.org/https://doi.org/10.1002/sec.228
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.228
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.228
https://doi.org/10.1109/18.75248
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172

Annex

ANNEX A – SBC FORMAT ARTICLE

A.1 AN IND-CCA RANK METRIC ENCRYPTION SCHEME IMPLEMENTATION

Abstract: The advances in quantum computation impose a severe threat to the public-
key cryptographic primitives used nowadays and will turn them completely obsolete
if these computers are produced in large scale. Post-quantum cryptography is the
area of research that aims to develop cryptographic systems to resist against these
attacks. This work considers the use of Gabidulin codes in the construction of encryp-
tion schemes. We show that, while providing the possibility of small key sizes, they
are especially challenging in terms of security. Then, we present an IND-CCA scheme,
proposed by (SHEHHI et al., 2019), provide an implementation, and analyze the the-
oretical complexity of recent attacks with respect to the scheme and propose a set of
parameters to use.

An IND-CCA Rank Metric Encryption Scheme
Implementation
Filipe O. de Borba1

1Departamento de Informática e Estatı́stica – Universidade Federal de Santa Catarina (UFSC)
Florianópolis – SC – Brazil

filipe.borba@grad.ufsc.br

Abstract. The advances in quantum computation impose a severe threat to the
public-key cryptographic primitives used nowadays and will turn them com-
pletely obsolete if these computers are produced in large scale. Post-quantum
cryptography is the area of research that aims to develop cryptographic systems
to resist against these attacks. This work considers the use of Gabidulin codes in
the construction of encryption schemes. We show that, while providing the pos-
sibility of small key sizes, they are especially challenging in terms of security.
Then, we present an IND-CCA scheme, proposed by [Shehhi et al. 2019], pro-
vide an implementation, and analyze the theoretical complexity of recent attacks
with respect to the scheme and propose a set of parameters to use.

1. Introduction
Our world runs on software. From sensor networks to online banking, from social net-
works to electronic voting. These applications shape our economy, society, and the way
we live like never seen before. Nonetheless, to be useful, these systems need to exchange
information. More important, this communication must happen in a manner that unautho-
rized parts do not participate in the sense that information transmitted is not disclosed to
them for as long as its secrecy is necessary.

Cryptography provides the basic building blocks which cryptographic functional-
ities develop on top to secure such systems. Three of the main cryptographic functional-
ities used nowadays are public-key encryption, digital signatures, and key exchange, and
rely on well-known number theoretical problems considered to have no efficient solution
on a classical computer. However, it turns out not to be true for quantum computers, and a
remarkable result due to [Shor 1997] renders public-key cryptography completely useless
by solving these problems mentioned in subexponential time using a quantum computer.

Taking into account these facts, an international community composed by
academia, industry, and government organizations, is working on the task of develop-
ing, testing, and standardizing new quantum-resistant primitives. To this new field of
study is given the name of post-quantum cryptography in allusion to the scenery after
the deployment of quantum computers, although for the quantum skeptic, this is a mis-
nomer to the quest. Among these initiatives, the most prominent is that of the National
Institute of Standards and Technology of the United States. The agency initiated a pro-
cess to standardize post-quantum cryptographic primitives that offer resistance to both
classical and quantum computers. Besides that, these primitives should interoperate with
current systems and protocols. The role of NIST in the standardization of cryptography is
well-known due to its Advanced Encryption Standard competition that selected Rijndael

ANNEX A. SBC Format Article 67

as the encryption algorithm to be used by the U.S Government and, voluntarily, by the
private sector. Currently, the process is in its third round. Among the main families of
proposed post-quantum primitives are hash based signatures, lattice-based cryptography,
multivariate polynomial cryptography, and code-based cryptography.

This work concerns a specific branch of the latter which relies on rank metric
codes. The objective is to introduce post-quantum cryptography using rank metric codes
through the example of a cryptosystem, proposed by [Shehhi et al. 2019], and an imple-
mentation of it. Along the way we give an overview of this field of research, showing the
origins of rank metric cryptography with the work in [Gabidulin et al. 1991], the cat-and-
mouse game played by variants of this scheme and attacks breaking them, and a proposal
that rules out polynomial-time attacks, and discuss how recent attacks impacts on the key
sizes for the scheme we implement.

2. Preliminaries

A finite field is an algebraic structure composed of a non-empty set S equipped two binary
operations called addition and multiplication, closed on S. Both operations are associa-
tive and have uniquely determined identity and inverse elements in S. Moreover, it holds
the distributive property of multiplication over addition can multiplication. A finite field
has always pn elements, where p is a prime and n is a positive integer. Any two finite
fields with the same number of elements are isomorphic. We use Fqn when represent-
ing the finite field with qn elements as polynomials of degree less than n and Fn

q when
representing it as an n-dimensional vector space over Fq.

A (n, k) linear code over Fqm is defined as a k-dimensional subspace C of Fn
qm . A

code has an associate distance measure function and in rank metric the distance between
two elements is given by the rank of the difference between their matrix representations
given by the mapping defined below.

Definition 2.1 (Subfield mapping). Let B = β1, . . . , βm be a basis of Fqm over Fq. The
subfield mapping of a vector v =

(
α1 . . . αn

)
in Fn

qm with respect to B is given by the
map fB(v) = (aij) ∈ Fm×n

q such that

αi =
m∑

j=1

aijβj, 1 ≤ i ≤ n.

Given that, one can compute the distance between any two vectors in a rank metric
code C as in Definition 2.2. For any vector v, its rank weight is measured as the distance
between v and the zero vector.
Definition 2.2 (Rank distance). Let f be the subfield mapping in Definition 2.1. The rank
distance between any two elements u,v ∈ Fn

qm is given by

δ(u,v) = rank(fB(u)− fB(v)).

Gabidulin codes are an especial class of error-correcting codes using rank distance
instead of the more widely known Hamming distance. These codes were first introduced

ANNEX A. SBC Format Article 68

in [Delsarte 1978]. Later, [Gabidulin 1985] proved several properties and showed an ef-
ficient decoding algorithm. Given the significance of these contributions, this class of
codes receives its name after the author. [Roth 1991] also discovered this class of codes,
independently of previous works. An important concept necessary to define Gabidulin
codes is that of linearized polynomial (Definition 2.3).
Definition 2.3 (Linearized polynomial). A polynomial p(x) is a linearized polynomial if
it has the form

p(x) =
d∑

i=0

aix
qi , ai ∈ Fqm , ∀i ∈ [0, d]. (1)

We denote the set of univariate linearized polynomials over Fqm with indetermi-
nate x by Lqm . They have the important property that for all p(x) in Lqm , all α, β in Fqm ,
and all c in Fq, it holds that p(α + β) = p(α) + p(β), and p(cα) = cp(α).
Definition 2.4 (Gabidulin code). Let 1 ≤ k < n ≤ m be integers, and g1, . . . , gn ∈ Fqm

be linearly independent elements over Fq. An (n, k) Gabidulin code over Fqm defined at
points g1, . . . , gn is the set of code words, each of which is defined as

(
p(g1) . . . p(gn)

)
,

for a distinct linearized polynomial p over Fqm of degree less than qk.

In practice, each possible polynomial p corresponds to a different message in the
message space. These codes can correct errors at a rank distance up to ⌊n−k

2
⌋ in polyno-

mial time.
Definition 2.5 (Generator matrix of a Gabidulin code). Let C be an (n, k) Gabidulin code
defined over points g0, . . . , gn−1 ∈ Fqm . Then, the generator matrix G of C has the
following form

G =

g1 g2 . . . gn
gq1 gq2 . . . gqn
...

...
gq

k−1

1 gq
k−1

2 . . . gq
k−1

n

 . (2)

We call the vector g =
(
g1 g2 · · · gn

)
, composed of the elements from the

first row of G, the generator vector of C. It is not unique—nor the generator matrix—as
any vector αg, with α ∈ Fqm , is also a generator vector of C.
Lemma 2.1 (Check matrix form of a Gabidulin code). Let C be an (n, k) Gabidulin
code over Fqm defined at points g1, g2, . . . , gn and let h1, h2, . . . , hn ∈ Fqm such that∑n

i=1 g
qj

i hi = 0 for j ∈ [k − n+ 1, k − 1]. The parity-check matrix H of C is defined as

H =

h1 h2 . . . hn

hq
1 hq

2 . . . hq
n

...
...

hqn−k−1

1 hqn−k−1

2 . . . hqn−k−1

n

 (3)

That is, the values hi are a solution for the system of linear equations involving
the points at which generated the code. In practice, if we let G be a generator matrix
of C, each of these equations corresponds to the calculation of an entry of the matrix
GH⊤. Since the system if homogeneous, the matrix H is the parity-check matrix of C.
To ilustrate, take for instance, j = k − n+ 1, obtaining the equation.

ANNEX A. SBC Format Article 69

n∑

i=1

gq
k−n+1

i hi =
n∑

i=1

(
gq

k−n+1

i hi

)qn−k−1

=
n∑

i=1

gih
qn−k−1

i = 0 (4)

This corresponds exactly to the last element in the first row of GH⊤. Similarly,
other values of j results in the equation for different entries of GH⊤.

3. Rank Metric Cryptography
The first public-key encryption scheme lying on the theory of error-correcting codes ap-
peared in [McEliece 1978]. In this work, the author proposes an encryption/decryption
scheme analogous to encoding/decoding but, to prevent unauthorized parties from ac-
cessing the messages, the scheme hides the generator matrix G, by computing a matrix
G′ = SGP, and encrypts messages by encoding them with G′ and adding a certain num-
ber of errors to the resulting codeword. The idea is that if G′ generates a random looking
linear code, then the ciphertext should look like a codeword from a random linear code,
for which decoding is NP-complete [Berlekamp et al. 1978], and only who has S, G, and
P can recover the message. The main disadvantage of McEliece’s proposal is the size of
the keys that is prohibitive for many applications.

An alternative offering smaller key sizes came with [Gabidulin et al. 1991]
proposing the GPT, in honor of its authors, and adapted McEliece’s ideas to Gabidulin
codes. It relies on the rank decoding problem, presented in Definition 3.1, and the
argument is that decoding a codeword from a random code in rank metric is expo-
nentially more difficult than decoding one from a random code in Hamming metric
[Gaborit et al. 2016]. Even if the rank decoding problem is not known to be NP-complete,
there is a randomized reduction to an NP-complete problem [Gaborit and Zémor 2016].
Next, we introduce the GPT cryptosystem.
Definition 3.1 (Rank decoding problem). Let G ∈ Fk×n

qm be a matrix, c ∈ Fn
qm be a vector,

and w an integer. Find m ∈ Fk
qm and e ∈ Fn

qm such that c = mG+ e and the rank weight
of e is less than or equal w?

The GPT system suffered its first attack in [Gibson 1995] and [Gibson 1996],
where the cryptanalytic algorithm presented runs in exponential time and only worked for
the small parameters proposed at that time. Latter works introduced variants of GPT that
attempted to better hide the structure of the secret code. In [Gabidulin and Ourivski 2001]
and [Gabidulin et al. 2003] the authors returned to the idea of using a column scram-
bler matrix P as in the original McEliece proposal to avoid Gibson’s attack. However,
[Overbeck 2005] and [Overbeck 2008] completely broke the system using the strong
structure of Gabidulin codes and the fact P is defined over Fq. Even subsequent schemes
claiming security against the Overbeck attack by taking the elements from Fqm instead of
Fqm , such as [Gabidulin 2008], [Gabidulin et al. 2009], and [Rashwan et al. 2011], could
not stand. [Otmani et al. 2018] have shown latter that is possible to reformulate all of
them as instances of the system attacked by Overbeck. The solution to this problem came
only in [Loidreau 2017] which mixed the ideas usually applied in McEliece-like cryp-
tosystems to others ideas arising from the design of low rank parity-check codes (LRPC).

3.1. The Shehhi et al. Cryptosystem
The encryption scheme proposed in [Loidreau 2017] does not achieve indistinguisha-
bility under chosen-plaintext attack, which is the minimum security guarantee required

ANNEX A. SBC Format Article 70

the NIST standardization process. Therefore, it does not provide security against
chosen-ciphertext attack as well. Given that, [Shehhi et al. 2019] proposed an IND-
CCA variant of Loidreau’s cryptosystem borrowing ideas presented in works such as
[Fujisaki and Okamoto 1999], [Fujisaki and Okamoto 2013], [Hofheinz et al. 2017], and
[Saito et al. 2018], usually applied to a public key encryption scheme to turn it into an
IND-CCA key encapsulation mechanism or hybrid encryption scheme. The product of
the transformation presented by the authors is nonetheless a PKE scheme.

The new construction, presented in Definition 3.2, demands the use of two hash
functions. One is a traditional hash function, referred to as H0. The other, H1, is a
hash function where one can choose the output size via an extra argument, called an
extendable-output function (XOF). It is important to note these functions need to offer at
least the same level of security expected for the PKE as a whole. Otherwise its security
is reduced to the hash algorithms. We define the Shehhi et al. cryptosystem below.

Definition 3.2 (Shehhi et al. Cryptosystem). The Shehhi et al. cryptosystem is composed
by a triple of probabilistic polynomial-time algorithms, (GEN, ENC, DEC), where:

GEN(1N)
1 k,m, n, δ := SELECTPARAMETERS(1N)
2 G← {M ∈ Fk×n

qm : ⟨M⟩ ∈ Gab(n, k)}
3 S← {M ∈ GLk(q

m)}
4 P← {M ∈ GLn(V) : V ⊂ Fqm and dim(V) = δ}
5 G′ := SGP−1

6 return pk = G′, sk = (G,S−1,P)

Algorithm 1: Shehhi et al. key generation

ENCpk(m)
1 e←

{
v ∈ Fn

qm : ω(v) =
⌊
n−k
2δ

⌋}

2 v := H0(e,m)
3 m0 := (m v)
4 m1 := m0 + H1(e)
5 return m1G

′ + e

Algorithm 2: Shehhi et al. encryption

DECsk(c)
1 c0 := DECODE(cP,G)
2 if c0 = ⊥
3 return ⊥
4 m′

1 := c0S
−1

5 e′ := c− c0P
−1

6 m′
0 := m′

1 − H1(e
′)

7 (m′ v′) := m′
0

8 if H0(e
′,m′) ̸= v′ and ω(e′) ̸=

⌊
n−k
2δ

⌋

9 return ⊥
10 return m′

Algorithm 3: Shehhi et al. decryption

ANNEX A. SBC Format Article 71

The transformation proposed by the authors allows one to encrypt an amount of
data larger than the Fujisaki-Okamoto’s at a cost of 23% in decryption only. It can be
employed, for example, as KEM to exchange multiple keys in one ciphertext. The secu-
rity proof in [Shehhi et al. 2019] relies on properties specific to the Loidreau’s scheme.
Nevertheless, the authors claim that the transformation might be adapted to other schemes
as well.

4. Analysis of the Security of Rank Based Cryptosystems

Now we analyze rank-based encryption schemes concerning their security, key sizes, and
code rates. To this end, we compute the theoretical complexity of recent attacks to our
cryptosystem and depict how these attacks have affected the choice of parameters over the
last years. We also compare the best attack using different techniques against rank-based
systems.

There are two possible forms of breaking a scheme based on rank metric codes.
The first is to recover a decoder for the underlying code, the class to which the Overbeck
attack mentioned earlier belongs. We disregard this attack as recent proposals seem to
hinder this menace. However, for the Loidreau cryptosystem specifically, the Coggia
and Covreur attack and its extensions restrict the choice of the subspace dimension δ; the
designer has to make a trade-off between the private key size and the amount of redundant
information in each ciphertext. Another form is to recover the message from the ciphertext
via a combinatorial or algebraic approach.

Combinatorial attacks have been studied for longer, with [Aragon et al. 2018] and
[Gaborit et al. 2016] the most remarkable works and although these attacks can make
use of Grover’s algorithm to speed up, they are not as dangerous as the recent algebraic
attacks. [Gaborit et al. 2016, Bardet et al. 2020a, Bardet et al. 2020b] accelerated an area
in which relevant discoveries did not show since [Ourivski and Johansson 2002]. Even
if these attacks solve the rank decoding problem in exponential time, the advance was
enough to left schemes such as ROLLO and RQC out of NIST’s third round.

Figure 1. Minimum key sizes to resist algebraic attacks

From Figure 1, it is easy to note that the attack in [Bardet et al. 2020a] needs much
larger public-key sizes than the other as the security increases. However, Figure 2 focuses

ANNEX A. SBC Format Article 72

on the security levels relevant to use in practice, and it is possible to observe a different
scenario. For them, the two attacks in [Bardet et al. 2020b] force the scheme to have
larger sizes in their public keys than the one in [Bardet et al. 2020a].

Figure 2. Key sizes of Figure 1 for practical security levels

A feature noticed through our experiments is that a significant variation occurs
in the sizes of keys offering the same level of security, even when considering a single
attack. As we can see in the graph of Figure 2, on the line of 96 bits of security, there
is a set of parameters whose public key must have about 30 KB to offer approximately
that security against hybrid attack in [Bardet et al. 2020b]. Nevertheless, it is possible to
choose parameters that n way that the resulting key is shorter and more secure, such as
the one in the 160-bit line, with approximately 25 KB. This observation highlights the
importance of carefully choosing the parameters of our system.

We finish defining the parameters used in our implementation (available at
github.com/flpborba/shehhi).Table 1 shows the parameters m, n, k, and δ, and the public
and private keys sizes, for the more widely used security levels.

Table 1. Selected parameters.

Security m n k δ r PK size SK size

80 72 68 38 3 5 10260 15369

128 80 80 44 3 6 15840 22590

192 104 100 50 3 8 32500 37589

256 168 116 60 3 9 70560 83145

5. Conclusion
This thesis discussed rank metric cryptography based on Gabidulin codes. We outlined
the attacks and corrections these schemes went through, presented an IND-CCA scheme
and its implementation, and proposed its parameters based on experiments. We also gave
a slight hint of what may come next for this type of cryptography by showing the improve-
ments in attacks in recent years. Despite all this pessimistic scenario, NIST recommends

ANNEX A. SBC Format Article 73

the continuation in the studies of rank metric cryptosystems since they offer an attrac-
tive alternative to Hamming metric with comparable bandwidth [Alagic et al. 2020]. We
believe the topic needs further research, either in the direction of reducing the key sizes
through techniques or in the opposite direction, developing more powerful attacks to dis-
card the use of these schemes in practice.

References

Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J., Liu, Y.-K.,
Miller, C., Moody, D., Peralta, R., et al. (2020). Status report on the second round
of the nist post-quantum cryptography standardization process. US Department of
Commerce, NIST.

Aragon, N., Gaborit, P., Hauteville, A., and Tillich, J.-P. (2018). A new algorithm for
solving the rank syndrome decoding problem. In 2018 IEEE International Symposium
on Information Theory (ISIT), pages 2421–2425.

Bardet, M., Briaud, P., Bros, M., Gaborit, P., Neiger, V., Ruatta, O., and Tillich, J.-P.
(2020a). An algebraic attack on rank metric code-based cryptosystems. In Canteaut,
A. and Ishai, Y., editors, Advances in Cryptology – EUROCRYPT 2020, pages 64–93,
Cham. Springer International Publishing.

Bardet, M., Bros, M., Cabarcas, D., Gaborit, P., Perlner, R., Smith-Tone, D., Tillich,
J.-P., and Verbel, J. (2020b). Improvements of algebraic attacks for solving the rank
decoding and minrank problems. In Moriai, S. and Wang, H., editors, Advances in
Cryptology – ASIACRYPT 2020, pages 507–536, Cham. Springer International Pub-
lishing.

Berlekamp, E., McEliece, R., and van Tilborg, H. (1978). On the inherent intractabil-
ity of certain coding problems (corresp.). IEEE Transactions on Information Theory,
24(3):384–386.

Delsarte, P. (1978). Bilinear forms over a finite field, with applications to coding theory.
Journal of Combinatorial Theory, Series A, 25(3):226–241.

Fujisaki, E. and Okamoto, T. (1999). Secure integration of asymmetric and symmetric
encryption schemes. In Proceedings of the 19th Annual International Cryptology Con-
ference on Advances in Cryptology, CRYPTO ’99, page 537–554, Berlin, Heidelberg.
Springer-Verlag.

Fujisaki, E. and Okamoto, T. (2013). Secure integration of asymmetric and symmetric
encryption schemes. J. Cryptol., 26(1):80–101.

Gabidulin, E. and Ourivski, A. (2001). Modified gpt pkc with right scrambler. Electronic
Notes in Discrete Mathematics, 6:168–177. WCC2001, International Workshop on
Coding and Cryptography.

Gabidulin, E., Ourivski, A., Honary, B., and Ammar, B. (2003). Reducible rank codes
and their applications to cryptography. IEEE Transactions on Information Theory,
49(12):3289–3293.

Gabidulin, E. M. (1985). Theory of codes with maximum rank distance. Probl. Peredachi
Inf., 21:3–16.

ANNEX A. SBC Format Article 74

Gabidulin, E. M. (2008). Attacks and counter-attacks on the gpt public key cryptosystem.
Des. Codes Cryptogr., 48(2):171–177.

Gabidulin, E. M., Paramonov, A. V., and Tretjakov, O. V. (1991). Ideals over a non-
commutative ring and their application in cryptology. In Davies, D. W., editor,
Advances in Cryptology — EUROCRYPT ’91, pages 482–489, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Gabidulin, E. M., Rashwan, H., and Honary, B. (2009). On improving security of gpt
cryptosystems. In Proceedings of the 2009 IEEE International Conference on Sympo-
sium on Information Theory - Volume 2, ISIT’09, page 1110–1114. IEEE Press.

Gaborit, P., Ruatta, O., and Schrek, J. (2016). On the complexity of the rank syndrome
decoding problem. IEEE Transactions on Information Theory, 62(2):1006–1019.

Gaborit, P. and Zémor, G. (2016). On the hardness of the decoding and the mini-
mum distance problems for rank codes. IEEE Transactions on Information Theory,
62(12):7245–7252.

Gibson, K. (1995). Severely denting the gabidulin version of the mceliece public key
cryptosystem. Des. Codes Cryptogr., 6(1):37–45.

Gibson, K. (1996). The security of the gabidulin public key cryptosystem. In Proceed-
ings of the 15th Annual International Conference on Theory and Application of Cryp-
tographic Techniques, EUROCRYPT’96, page 212–223, Berlin, Heidelberg. Springer-
Verlag.

Hofheinz, D., Hövelmanns, K., and Kiltz, E. (2017). A modular analysis of the fujisaki-
okamoto transformation. In Kalai, Y. and Reyzin, L., editors, Theory of Cryptography,
pages 341–371, Cham. Springer International Publishing.

Loidreau, P. (2017). A new rank metric codes based encryption scheme. In Lange, T. and
Takagi, T., editors, Post-Quantum Cryptography, pages 3–17, Cham. Springer Interna-
tional Publishing.

McEliece, R. J. (1978). A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report, 44:114–116.

Otmani, A., Kalachi, H. T., and Ndjeya, S. (2018). Improved cryptanalysis of rank metric
schemes based on gabidulin codes. Des. Codes Cryptogr., 86(9):1983–1996.

Ourivski, A. V. and Johansson, T. (2002). New technique for decoding codes in the rank
metric and its cryptography applications. volume 38, pages 237–246, Cham. Springer
International Publishing.

Overbeck, R. (2005). A new structural attack for GPT and variants. In Dawson, E.
and Vaudenay, S., editors, Progress in Cryptology - Mycrypt 2005, First International
Conference on Cryptology in Malaysia, Kuala Lumpur, Malaysia, September 28-30,
2005, Proceedings, volume 3715 of Lecture Notes in Computer Science, pages 50–63.
Springer.

Overbeck, R. (2008). Structural attacks for public key cryptosystems based on gabidulin
codes. Journal of cryptology, 21(2):280–301.

ANNEX A. SBC Format Article 75

Rashwan, H., Gabidulin, E. M., and Honary, B. (2011). Security of the gpt cryptosys-
tem and its applications to cryptography. Security and Communication Networks,
4(8):937–946.

Roth, R. (1991). Maximum-rank array codes and their application to crisscross error
correction. IEEE Transactions on Information Theory, 37(2):328–336.

Saito, T., Xagawa, K., and Yamakawa, T. (2018). Tightly-secure key-encapsulation mech-
anism in the quantum random oracle model. In Nielsen, J. B. and Rijmen, V., editors,
Advances in Cryptology – EUROCRYPT 2018, pages 520–551, Cham. Springer Inter-
national Publishing.

Shehhi, H. A., Bellini, E., Borba, F., Caullery, F., Manzano, M., and Mateu, V. (2019).
An ind-cca-secure code-based encryption scheme using rank metric. In Buchmann,
J., Nitaj, A., and Rachidi, T., editors, Progress in Cryptology – AFRICACRYPT 2019,
pages 79–96, Cham. Springer International Publishing.

Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509.

ANNEX A. SBC Format Article 76

	Capa
	Title page
	Ficha Catalográfica
	Approval
	Acknowledgements
	Abstract
	List of Figures
	List of Frames
	List of Tables
	Listings
	List of abbreviations and acronyms
	Contents
	Research
	Introduction
	Background
	Public-Key Encryption
	Security Proofs
	Security Definitions
	Chosen-Plaintext Attack
	Chosen-Ciphertext Attack

	Assumptions
	Proofs

	Finite Fields
	Definition and Notation
	Properties

	Coding Theory: An Introduction
	A first example
	A classical example: the (7,4) Hamming code
	Generator and Parity-check matrices

	Gabidulin Codes

	Rank Metric Based Cryptosystems
	Introduction
	The GPT Cryptosystem
	The Loidreau Cryptosystem
	The Shehhi et al. Public-Key Encryption Scheme
	Analysis of the Security of Rank Based Cryptosystems

	Implementation
	Implementation
	System Overview
	Public and Private Keys
	ASN.1 Syntax
	Encoding PKE Parameters
	Encoding Keys

	PKE Algorithms Implementation
	Gen Implementation
	Enc Implementation
	Dec Implementation

	Using the Cryptosystem
	Generating a key pair
	Exporting and storing keys
	Importing a public key and encrypting a message
	Importing a private key and decrypting a ciphertext

	Final Remarks
	REFERENCES
	SBC Format Article
	English guidelines for publication

