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Resumo

Medidas de similaridade são a base para a maioria dos métodos de
mineração de dados e extração de conhecimento. Na área de trajetó-
rias de objetos móveis, por muitos anos a pesquisa em similaridade
de trajetórias focou nas trajetórias brutas, considerando somente a
informação de espaço e tempo. Com o enriquecimento das trajetórias
com informações semânticas, como o nome e a categoria dos locais
visitados, meio de transporte utilizado durante o movimento, o no-
me das ruas percorridas, etc, emergiu a necessidade por medidas de
similaridade que suportem espaço, tempo e semântica. Apesar de al-
gumas medidas de similaridade para trajetórias lidarem com todas
estas dimensões, elas consideram somente os locais onde o objeto
móvel faz paradas, denominados stops, ignorando o movimento que
ocorre entre as paradas, denominado move. Acredita-se que, para
algumas aplicações, o movimento entre os stops é tão importante
quanto o stop em si, e ele deve ser levado em consideração na análi-
se da similaridade, como em sistemas de transporte público, turismo,
planejamento urbano, entre outros. Nesta dissertação é proposta a
medida Similarity Measure for trajectory Stops and Moves (SMSM),
um nova medida de similaridade para trajetórias semânticas que con-
sidera tanto os stops quanto os moves. O SMSM é avaliado em três
conjuntos de dados: (i) um conjunto de dados de trajetórias sinté-
ticas criadas com o gerador de trajetórias semânticas Hermoupolis,
(ii) um conjunto de trajetórias reais de táxis do projeto CRAWDAD,
e (iii) o conjunto de dados de trajetórias reais chamado Geolife, com
trajetórias de pessoas na cidade de Pequim. Os resultados mostram
que o SMSM supera as medidas de similaridade do estado da arte
desenvolvidas tanto para trajetórias brutas quanto semânticas.

Palavras-chaves: Medidas de similaridade para trajetórias. Simila-



ridade de trajetórias semânticas. Framework de medição de simila-
ridade.



Resumo Expandido

INTRODUÇÃO

A análise de similaridade é um tema importante na área de minera-
ção de dados nas mais diversas áreas de aplicação, e não é diferente
na área de análise de dados de trajetórias de objetos móveis. Na
área de trajetórias, o cálculo da similaridade é importante para res-
ponder perguntas como “Dado um conjunto M de trajetórias, quais
são as mais parecidas com uma trajetória s?” ou “Quais são os pares
de trajetórias mais semelhantes em um conjunto M de trajetórias?”,
ou ainda, dado um conjunto de trajetórias quais são os diferentes
grupos de trajetórias que possuiem maior semelhança entre si? Pa-
ra tanto, é importante a criação de medidas de similaridade para
trajetórias. Por muitos anos a pesquisa em similaridade de trajetó-
rias focou nas trajetórias brutas, que são sequências de pontos com
informações de localização e tempo. Estas medidas de similarida-
de somente consideravam a informação espaço-temporal, limitando
a comparação das trajetórias às suas características geo-espaciais.
Com o advento das redes sociais e o enriquecimento das trajetórias
com informações semânticas, como o nome e a categoria dos locais
visitados, meio de transporte utilizado no deslocamento, o nome das
ruas percorridas, etc, emergiu a necessidade por medidas de simi-
laridade que suportem as trajetórias semânticas, onde cada ponto
possui informações de espaço, tempo e semântica. Apesar de algu-
mas medidas de similaridade para trajetórias lidarem com este novo
tipo de trajetória, elas consideram somente os locais visitados pelo
objeto móvel, denominados stops, ignorando aquilo que ocorre entre
os locais, denominado move. Acredita-se que para algumas aplica-
ções, o movimento entre os stops é tão importante quanto o stop em
si, e ele deve ser levado em consideração na análise de similaridade.



Por exemplo em sistemas de gerenciamento de tráfego, sistemas de
transporte público, planejamento urbano, entre outros. Nesta disser-
tação é proposta a medida SMSM (Similarity Measure for trajectory
Stops and Moves), uma nova medida de similaridade para trajetó-
rias semânticas que considera tanto os stops quanto os moves nas
trajetórias semânticas. O SMSM é avaliado em três conjuntos de da-
dos: (i) um conjunto de dados de trajetórias sintéticas criadas com o
gerador de trajetórias semânticas Hermoupolis, (ii) um conjunto de
trajetórias reais de táxis do projeto CRAWDAD, e (iii) o conjunto
de dados de trajetórias reais chamado Geolife, com trajetórias de
pessoas na cidade de Pequim. Os resultados mostram que o SMSM
supera as medidas de similaridade do estado da arte desenvolvidas
tanto para trajetórias brutas quanto semânticas.

OBJETIVOS

O objetivo geral deste trabalho é a proposição de uma nova medi-
da de similaridade para trajetórias semânticas. Mais especificamente
esta dissertação visa propor uma nova medida de similaridade pa-
ra trajetórias semânticas que trate tanto os stops quanto os moves
das trajetórias. A nova medida provê suporte a múltiplas dimensões
como espaço, tempo, semântica e quaisquer outras dimensões adici-
onais, atribuindo diferentes pesos e permitindo o uso de diferentes
funções de distância para cada dimensão, além de considerar parci-
almente a ordem dos pontos na trajetória semântica.

METODOLOGIA

Inicialmente foi realizada uma revisão da literatura em tópicos relaci-
onados à similaridade de trajetórias semânticas, através de ferramen-
tas de pesquisa como Google Scholar e em periódicos e conferências
de alto impacto (como TKDE, IJGIS, TGIS, VLDB, DKE, ACM-
SIGSpatial, entre outros). Através da análise e implementação das
medidas existentes foram identificadas algumas das suas limitações
e com isto foi possível propor uma nova medida de similaridade que
seja mais robusta para trajetórias semânticas e que acima de tudo
seja capaz de tratar todas as partes das trajetórias e suas dimensões.



A medida proposta denominada SMSM permite definir graus de im-
portância às diferentes partes da trajetória como: (i) o grau de im-
portância entre os stops e os moves, e (ii) o grau de importância de
cada atributo que compõe os stops e os moves e também os limiares
(thresholds) utilizados em cada atributo para definir se houve casa-
mento (matching) ou não entre os pontos.
A medida foi avaliada em conjuntos de trajetórias reais, já utilizadas
na literatura como (PIORKOWSKI; SARAFIJANOVIC-DJUKIC;
GROSSGLAUSER, 2009) e também (ZHENG et al., 2009), assim
como um conjunto de dados sintéticos, gerados com a ferramenta
Hermoupolis (PELEKIS et al., 2013). Inicialmente as bases de da-
dos de trajetórias brutas foram enriquecidas com informações sobre
os stops e os moves que ocorreram durante cada trajetória. Com as
trajetórias semanticamente enriquecidas, foi possível avaliar e com-
parar a medida proposta. Para isto foi utilizada a abordagem de pre-
cisão em diferentes níveis de cobertura (BAEZA-YATES; RIBEIRO-
NETO, 2011) em tarefas de recuperação da informação. Também
foram avaliados o impacto dos parâmetros de grau de importância
e limiares para a medida proposta e o tempo de execução da tarefa
de recuperação de informação.

RESULTADOS E DISCUSSÃO

Os resultados obtidos evidenciam que a medida SMSM mostrou-se
a mais robusta para avaliar a similaridade de trajetórias semânticas
onde tanto as informações sobre os stops quanto os moves são rele-
vantes. A medida também mostrou-se flexível para suportar múlti-
plas dimensões de dados tanto nos stops quanto nos moves e flexível
também ao permitir a definição de diferentes limiares (thresholds)
para cada dimensão e graus de importância.

CONSIDERAÇÕES FINAIS

A principal contribuição desta dissertação é uma medida de simi-
laridade para trajetórias semânticas que considera tanto os stops
quantos os moves, suportando dimensões espaciais, temporais e se-
mânticas, permitindo o uso de diferentes funções de distância para



cada dimensão. A medida de similaridade é flexível o suficiente pa-
ra considerar parcialmente a ordem dos stops, e suporta diferentes
pesos para os stops, os moves e as dimensões constituintes de cada
elemento, possibilitando atribuir maior ou menor importância para
cada elemento. A medida proposta nesta dissertação foi publicada
no periódico International Journal of Geographical Information Sci-
ence.

Palavras-chaves: Medidas de similaridade para trajetórias. Simila-
ridade de trajetórias semânticas. Framework de medição de simila-
ridade.



Abstract

For many years trajectory similarity research has focused on raw
trajectories, considering only space and time information. With the
trajectory semantic enrichment, using information as the name and
type of the visited places, the transportation mean, the name of
the streets, etc, emerged the need for similarity measures that sup-
port space, time, and semantics. Although some trajectory similar-
ity measures deal with all these dimensions, they consider only the
places where the moving object stays for a certain time, called stop,
ignoring the movement between stops. We claim that, for some ap-
plications, as traffic management systems, urban planning, public
transportation, etc, the movement between stops is as important
as the stops, and it must be considered in the similarity analysis.
In this thesis we propose the similarity measure called Similarity
Measure for trajectory Stops and Moves(SMSM), a novel similar-
ity measure for semantic trajectories that considers both stops and
moves. We evaluate SMSM with three trajectory datasets: (i) a syn-
thetic trajectory dataset generated with the Hermoupolis semantic
trajectory generator, (ii) a real trajectory dataset of taxis from the
CRAWDAD project, and (iii) the Geolife trajectory dataset, with
raw trajectories of persons around Beijing. The results show that
SMSM overcomes state-of-the-art measures developed for both raw
and semantic trajectories.

Keywords: Trajectory similarity measures. Semantic trajectory sim-
ilarity. Similarity measure framework
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Chapter 1

Introduction

Trajectory similarity measuring has received significant at-
tention in the last few years, and several measures have been pro-
posed to deal either with raw trajectories or semantic trajectories.
A raw trajectory is generally represented as a sequence of points
T =< p1, p2, ..., pn >, with pi = (xi, yi, ti) where x, y is the position
of the object in space at time instant t. Figure 1.1 presents an ex-
ample of a raw trajectory T , where the first point of the trajectory
is located at the coordinates (2, 3) at time instant 1.

Figure 1.1 – Example of a raw trajectory T

Examples of similarity measures for raw trajectories are
LCSS (Longest Common SubSequence) (VLACHOS; KOLLIOS; GUNOP-
ULOS, 2002), EDR (Edit Distance on Real sequences) (CHEN; ÖZSU;
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ORIA, 2005), NWED (NormalizedWeighted Edit Distance) (DODGE;
LAUBE; WEIBEL, 2012) and UMS (Uncertain Movement Similar-
ity) (FURTADO; ALVARES, et al., 2018). LCSS and EDR consider
the sequence, but they force a match in all dimensions, not allow-
ing partial similarity between trajectory points. UMS is a parameter
free method that considers only the spatial dimension, and it was
developed to deal with data of varied or low sampling rate.

Existing works for raw trajectory similarity are limited to
the spatio-temporal properties of raw trajectories, basically consid-
ering trajectories as data with only space information or space and
time.

Similarity measures are the basis of several data processing
and analysis techniques, such as information retrieval, location pre-
diction, nearest neighbour queries, outlier detection, clustering, etc.
A clustering algorithm, for instance, uses a similarity measure for
grouping objects with similar trajectories. Outlier detection meth-
ods use similarity to find groups of trajectories with normal behav-
ior, and the objects that are dissimilar to the majority, are the out-
liers. To detect specific trajectory patterns such as flocks (LAUBE;
KREVELD; IMFELD, 2005), for instance, a raw trajectory similar-
ity measure could be applied to find a minimal number of objects
moving together in space and time.

In 2008 emerged the concept of semantic trajectories, intro-
duced by (SPACCAPIETRA et al., 2008), where trajectories are
represented as sequences of stops and moves. Stops are the most im-
portant parts of trajectories, representing the places that an object
has visited for a minimal amount of time, and the moves are the
trajectory points between stops. In several works, stops are called
points of interest (POIs), episodes, or stay points. Semantic trajec-
tories are more complex than raw trajectories, because they have at
least three dimensions: space, time, and semantics. We consider in
this thesis that semantics is any type of information associated to
mobility data other than spatial location and time.

The enrichment of trajectories with semantic information
is a well studied topic in the literature, and a number of methods



27

have been developed for this purpose. Some of these methods are
summarized in (BOGORNY; BRAZ, 2012). The first work for de-
tecting stops was (ALVARES et al., 2007), followed by (PALMA
et al., 2008), and (ROCHA et al., 2010). In (FILETO et al., 2013)
an architecture is proposed to enrich trajectories with linked open
data. Applications as DayTag (RINZIVILLO et al., 2013) can detect
stops and moves and the user can annotate the semantics to his/her
stops and moves. Examples of semantic information related to the
stops can be, for instance, the name of the stop (e.g. Ibis Hotel) and
the category (e.g. Hotel, Museum, Restaurant), while the semantic
information related to the move could be, for instance, the name of
the streets followed by the moving object, and the category of the
transportation mode. An example of semantic trajectory is shown in
Figure 1.2, which has three stops (Hotel, Museum, and Restaurant)
and two moves (points between stops).

Figure 1.2 – Example of a semantic trajectory S

With the explosion of social media data, internet channels,
and the facility to enrich trajectories with more context information
as linked open data (FILETO et al., 2013), it is possible to represent
the movement in a more meaningful way. From social media data, for
instance, a stop at a hotel can be enriched with the information of the
number of stars, the price average, evaluation rate, facilities, parking,
wifi, etc. In this thesis we assume that semantic trajectories are
represented as sequences of stops and moves, as originally defined in
(SPACCAPIETRA et al., 2008), and the way how these trajectories
are generated or enriched is out of the scope of this thesis.

Similarity measures that consider both stops and moves can
be important in a vast number of applications such as public trans-
portation systems, traffic management, fraud detection, tourism, ur-
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ban planning, car sharing, etc. For instance, a similarity measure
that considers both stops and moves can be used to cluster the
trajectories of buses of the same line considering the traveled dis-
tance between two consecutive stops. The trajectories not included
in a cluster are outliers, and may characterize a deviation from the
scheduled itinerary. For the same application, the similarity mea-
sure could be used to check if the buses of the same line follow the
sequence of stops and roads of the pre-defined itinerary. Another ap-
plication is for car sharing, where the similarity of stops and moves
can be used to find groups of people that follow the same sequence
of stops and moves at similar times.

Only a few similarity measures were proposed for semantic
trajectories, as (KANG; KIM; LI, 2009), (LIU; SCHNEIDER, 2012),
(YING et al., 2010), and (FURTADO; KOPANAKI, et al., 2016).
The main problem of these measures is that they do not address
all three dimensions (space, time, and semantics), as the works of
(KANG; KIM; LI, 2009) and (LIU; SCHNEIDER, 2012); or they ex-
clusively address the stops, systematically ignoring all information
about the moves, as the works of (YING et al., 2010) and (FUR-
TADO; KOPANAKI, et al., 2016). To the best of our knowledge,
none of the existing similarity measures for semantic trajectories
have considered both stops and moves. The measure MSM (Multi-
dimensional Similarity Measure) (FURTADO; KOPANAKI, et al.,
2016), for instance, considers only the stops, and they are treated
as elements that are independent from each other, without consider-
ing the order/sequence as they appear in the trajectories. As MSM
ignores the moves between stops, it can only be used to answer ques-
tions like: how similar are two trajectories P and Q considering their
stops?

To better understand the need for considering both stops
and moves in trajectory similarity analysis, let us consider the ex-
ample in Figure 1.3, for a tourism application, which shows three tra-
jectories of tourists visiting Paris. These tourists visited four places,
in this order: Arc de Triomphe (first stop - S1), Place de la Concorde
(second stop - S2), the Louvre Museum (third stop - S3), and the
Notre Dame Cathedral (the last stop - S4). The three tourists visited
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the same places at the same order, but the tourists of trajectories
T2 (green trajectory) and T3 (red trajectory) moved on foot, follow-
ing the shortest path, while the tourist of trajectory T1 used a city
tour hop on and hop off bus to appreciate the view. The question
we want to answer in this thesis is how similar are trajectories T1,
T2 and T3 considering both stops and moves? From the figure it
is clear that trajectories T2 and T3 are more similar, because they
used almost the same paths between stops and moved on foot, while
trajectory T1 has a spatially different move, performed with a dif-
ferent transportation mode. Now suppose that a tourism manager
wants to recommend a trip to a new tourist arriving in Paris, and
this new tourist wants to visit the same places visited by the tourists
in the figure, but he wants to move on foot and follow the path used
by the majority of the tourists. For this case, we need to retrieve
trajectories T2 and T3. Another example is the evaluation of the
flow of tourists moving on foot between these four stops in order to
eventually propose a new and direct hop on hop off tourist bus line.

Figure 1.3 – Tourist trajectories in Paris with four stops

In taxi fraud detection, for instance, a similarity measure
will help to answer questions like: given two regions of interest,
which is the standard path followed by the majority of the taxis
and which are the outliers? A real example of an outlier taxi tra-
jectory is shown in Figure 1.4, in the San Francisco dataset of the
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CRAWDAD project (PIORKOWSKI; SARAFIJANOVIC-DJUKIC;
GROSSGLAUSER, 2009). In this example, given the stops Airport
and Westfield San Francisco Centre (WSFC), a similarity measure
must consider both stops and moves to find the black trajectories as
the most similar movements between the Airport and WSFC, and
the trajectory with purple dots as the most dissimilar trajectory,
which made a completely different and longer trip.

Figure 1.4 – An outlier trajectory (purple dots) going from Airport
to downtown of San Francisco

In all previous examples, MSM cannot distinguish the trajec-
tories, because it ignores the moves, and gives a similarity degree of
100% for the trajectories in both scenarios. Given the need of spatio-
temporal similarity measures that consider both stops and moves, in
this thesis we propose a new semantic trajectory similarity measure
that extends MSM, proposed in (FURTADO; KOPANAKI, et al.,
2016), to support both stops and moves. Our approach considers
the partial sequence of the stops, what is not supported by MSM,
allows different semantics for the moves, and uses weights to provide
importance degrees for stops, moves, and their attributes.
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In summary, we make the following contributions, as pub-
lished in (LEHMANN; ALVARES; BOGORNY, 2019): (i) we pro-
pose a new similarity measure for multidimensional sequences treat-
ing elements with heterogeneous dimensions, which is the case of
stops and moves; (ii) the semantic similarity measure considers both
stops and moves, as well as their space, time, and semantic dimen-
sions, allowing the use of different distance functions for each dimen-
sion, making the measure robust for several applications; (iii) the
measure is flexible enough to partially consider the order between
stops and to support different weights for stops, moves, and dimen-
sions, allowing to give more or less importance to different trajectory
parts; (iv) we evaluate the proposed measure with experiments over
synthetic and real data, comparing our proposal to a large number
of measures developed either for raw or semantic trajectories.

1.1 OBJECTIVE

The general objective of this thesis is the proposal of a novel
semantic trajectory similarity measure that takes into account both
stops and moves. The measure supports multiple dimensions, such
as space, time, and semantics, and allows distinct distance functions
for the dimension comparison.

1.2 METHODOLOGY

The methodology adopted in this thesis has 9 main steps:

Step 1: Perform a review of the literature in related subjects
such as trajectory similarity and semantic trajectory similarity using
Google Scholar.

Step 2: Study and implement related semantic trajectory
similarity measures to find and understand limitations in related
similarity measuring approaches.

Step 3: Define a new semantic trajectory similarity measure
to overcome limitations of the state of the art.

Step 4: Select, organize, and pre-process several datasets



32 Chapter 1. Introduction

with real trajectory data for the experimental evaluation.

Step 5: Define a set of experiments and establish a ground
truth dataset for evaluating and comparing the proposed measure
and state of the art.

Step 6: Study and define a set of measures to be used for
evaluating similarity.

Step 7: Comparison of the results obtained in all datasets
with the most related approaches in the literature.

Step 8: Write an article describing the proposed semantic
similarity measure.

Step 9: Write the thesis describing the problem, the state-
of-the-art, and the contribution for the problem solution with the
advances over the state-of-the-art.

1.3 SCOPE AND OUTLINE

This thesis is limited to the proposal of a novel similarity
measure for semantic trajectories, evaluation and comparison of this
new similarity measure with the most related approaches in the lit-
erature.

The rest of this thesis is organized as follows: Chapter 2
presents the basic concepts and the related works for this thesis.
Chapter 3 presents the proposed similarity measure with a running
example. Chapter 4 presents experiments over real and synthetic
trajectory data, and a discussion about the choice of a measure in
face of application problems, and Chapter 5 concludes the thesis,
presents its limitations, and points out future steps of the present
research.



Chapter 2

Basic concepts and Related

works

In this chapter we present the basic concepts for this the-
sis in Section 2.1. In Section 2.2 we present a review on trajectory
similarity measures, where the section 2.2.1 presents measures for
raw trajectory similarity and the section 2.2.2 presents measures for
semantic trajectory similarity.

2.1 BASIC CONCEPTS

In this section we present basic concepts related to trajec-
tories in Section 2.1.1 and basic concepts about similarity measures
and some evaluation techniques in Section 2.1.2.

2.1.1 Trajectories

There are two important concepts that need to be explained
and defined: raw trajectory and semantic trajectory. A raw trajec-
tory is a discrete representation of the movement of an object that
can be defined as a time-ordered finite sequence of space-time points,
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as formalized in Definition 1.

Definition 1 (Raw Trajectory). A raw trajectory is a time-ordered
sequence of points in the form T = < p1, ..., pn > where point pk ∈
T is a tuple pk = (x, y, t), where x, y represent the spatial location
of the moving object at a time instant t.

Figure 1.1 illustrates an example of a raw trajectory. The
spatial coordinates are annotated next to the trajectory points and
the time instants can be seen as the index associated to each point.
For instance, the first point of the trajectory in the figure is located
at the coordinates (2, 3) at time instant 1.

In 2007, Alvares (ALVARES et al., 2007) and Spaccapietra
(SPACCAPIETRA et al., 2008) proposed a new representation for
trajectories, called semantic trajectory. A semantic trajectory is a
time-ordered sequence of stops and moves, where the stops are the
most relevant parts of the trajectory. In this work we formally de-
fine semantic trajectory considering its sequence of stops and moves,
which is an enriched extension of the definition presented in (SPAC-
CAPIETRA et al., 2008):

Definition 2 (Semantic Trajectory). A semantic trajectory
S = 〈s1,m1, s2,m2, s3,m3, ...., sk,mk, sk+1〉 is a time ordered se-
quence of stops and moves, where each stop si has a set of attributes
{ds1, ds2, ..., dsq} (including space and time as mandatory dimen-
sions) characterizing it according to q-dimensions, and each move
mj has a set of attributes {dm1, dm2, ..., dmr} characterizing it ac-
cording to r-dimensions.

Figure 2.1 shows a semantic trajectory S representing the
movement of a professor. In this example the semantic trajectory is
enriched with the name of the place where the stop occurred, the
category of the place, its spatial coordinates, and the time interval
that the stop happened. The move is enriched with the name of
the street where the object moves, the traveled distance, and the
average speed during the move.
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Figure 2.1 – A semantic trajectory S representing the movement of
a professor

2.1.2 Similarity measures and evaluation techniques

To compare two trajectories we use a similarity measure. In
this thesis we use the intuitive concept of similarity stated in (LIN
et al., 1998), where two objects A and B are more similar as the
commonality between each other increases, and they are less similar
as their differences increase. We formalize the similarity measure
concept according to Definition 3 introduced by (LIN et al., 1998):

Definition 3 (Similarity Measure). A similarity measure on two
objects A and B is a function sim : A × B → [0, 1], such that
the objects are more similar when the score returned by sim(A,B)
increases.

To evaluate how well a measure computes the similarity of
two trajectories we use information retrieval evaluation techniques.
In this thesis we use the Precision-Recall approach, computing the
Mean Average Precision (MAP) and the Area Under the Curve
(AUC) values, as stated in (BAEZA-YATES; RIBEIRO-NETO, 2011).
In the Precision-Recall approach, the measure is evaluated as how
precise is the information retrieval in each recall level. In this sense,
the recall is the fraction of the relevant trajectories that are success-
fully retrieved. In the context of this thesis, a relevant trajectory
is a trajectory of the same class of the one that is being evaluated.
So, for each relevant trajectory retrieved, the precision increases.
The process is repeated for the entire ground truth dataset. The
Mean Average Precision (MAP) value of a Precision-Recall measure
is the average precision in the recall of all relevant trajectories. The
Area Under the Curve (AUC) value is calculated by constructing the
Precision-Recall curve and calculating the area under this curve.
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2.2 RELATED TRAJECTORY SIMILARITY MEASURES

Similarity measures have been proposed for several data pro-
cessing and analysis techniques, such as outlier detection, top-K sim-
ilarity queries, clustering, and others. In the context of trajectories,
several similarity measures were proposed for both raw trajectories
and semantic trajectories. In this section, we present a literature re-
view on similarity measures of raw trajectories in Section 2.2.1 and
Section 2.2.2 presents the similarity measures for semantic trajecto-
ries.

2.2.1 Related works on raw trajectory similarity measures

As presented in Section 2.1, a raw trajectory is a time-
ordered sequence of points containing a spatial coordinate and a
timestamp. For this reason, existing measures developed for generic
time-ordered sequences or time-series can be applied to raw trajecto-
ries, even though they were not originally developed for this. At the
beginning of this section, we present a distance measure proposed for
time-series called Dynamic Time-Warping (DTW)(BERNDT; CLIF-
FORD, 1994) that was adapted to work with raw trajectory data
in the work of (HOLT; REINDERS; HENDRIKS, 2007), creating
the Multidimensional DTW (MD-DTW). Then we present similar-
ity measures developed for raw trajectories which were adapted from
more general similarity measures such as Discrete Fréchet Distance
(EITER; MANNILA, 1994), w-constrained discrete Fréchet Distance
(wDF) (DING; TRAJCEVSKI; SCHEUERMANN, 2008), Longest
Common Subsequence (LCSS) (VLACHOS; KOLLIOS; GUNOPU-
LOS, 2002), Edit Distance on Real sequence (EDR) (CHEN; ÖZSU;
ORIA, 2005) and after, the similarity measure proposed exclusively
for raw trajectories called Uncertain Movement Similarity (UMS)
(FURTADO; ALVARES, et al., 2018).

Throughout this section, we use a set of symbols to denote
hypothetical trajectories. Table 2.1 summarizes the symbols used in
this section.

An early proposed distance measure is the Dynamic Time
Warping (DTW) (BERNDT; CLIFFORD, 1994), developed for time-
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Symbol Meaning
P , Q and R Trajectories
m and n Number of points of trajectories P and Q, respectively

di ith-dimension of data in a point
window Size of the window

k Number of moves in a semantic trajectory
ε Distance threshold between two points matching
x, y Spatial coordinates
dist() Distance function

Table 2.1 – Symbol meanings

series. DTW is used to find the best match between the points of
two time-series independent of their sizes. It creates a matrix with all
possible pairs of points of the time-series with the pairwise distances
as the entries. The distance between two trajectories is given by the
sum of the entries of the minimum contiguous path in the matrix,
where the minimum contiguous path is the best alignment between
the sequences. Because DTW sums the distances between all points,
it is sensitive to noise. For example, when a trajectory P has a point
that is significantly distant from all points of the trajectory Q, even
if all the other points of P and Q are close, their distance will be
dominated by the distant point. A recursive formalization of DTW
is presented in Equation 2.1.

DTW (P,Q) =



0 if m = n = 0
∞ if m = 0 or n = 0
dist(p1, q1) +min( otherwise

DTW (< p2...pm >,< q2...qn >),
DTW (< p2...pm >,Q),
DTW (P,< q2...qn >))

(2.1)

The Multidimensional DTW (MD-DTW) (HOLT; REIN-
DERS; HENDRIKS, 2007) extends DTW for dealing with sequences
whose points have more than one dimension. MD-DTW normalizes
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the distance in the different dimensions and then creates a matrix
with entries as the sum of the distances in all dimensions. Finally,
it runs DTW over the matrix and finds the minimum contiguous
path, that is, the path in the matrix connecting all points of both
trajectories with minimum distance. Figure 2.2 illustrates the com-
putation of MD-DTW between trajectories P and Q. Its distance
is calculated as the sum of the minimum contiguous path between
points of P and Q, i.e. the sum of all dashed lines.

Figure 2.2 – MD-DTW score is the sum of distances of the minimum
contiguous path between P and Q trajectories (dashed
lines)

In the work of (SHOKOOHI-YEKTA et al., 2017) is pro-
posed an adaptive DTW (DTWa) to multidimensional data. This
adaptive approach is based on how the DTW computes the distance
between two multidimensional sequences: (i) if the distance in each
dimension is computed independently and summed at end; or (ii) if
the distance between each multidimensional point is computed tak-
ing into account all dimensions together. The adaptive term comes
from the decision of which approach is more reliable, by using a
training dataset of multidimensional sequences and performing an
evaluation.

Discrete Fréchet Distance was proposed in (EITER; MAN-
NILA, 1994) as an adaption of the classical Fréchet Distance (FRÉCHET,
1906) to work with trajectories. This distance is also called the cou-
pling distance, where the distance of two trajectories is the maximum
distance of all aligned trajectory points on both trajectories. In this
sense, an aligned trajectory point is a pair of points, where each
point of one trajectory is coupled with one and only one point of the
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other trajectory, taking into account the order of the points in each
trajectory. Due to this characteristic, the Discrete Fréchet Distance
demands that both compared trajectories have the same number of
points, what is a problem for real data.

Ding in (DING; TRAJCEVSKI; SCHEUERMANN, 2008)
proposes w-constrained discrete Fréchet Distance (wDF), which ex-
tends the Discrete Fréchet distance (EITER; MANNILA, 1994) by
adding a temporal window, in order to consider only the pairs of
points that are within a given window time window. As DTW, wDF
calculates the distance between the trajectory points by a continu-
ous distance function (e.g. Euclidean distance), making it sensitive
to noise. Indeed, this measure makes the assumption that the two
trajectories have the same number of points, making point interpo-
lation when necessary. This is a strict assumption and not good for
real trajectories, that normally have very different sizes. The wDF
distance is given by the minimum distance of all possible time win-
dows over two trajectories, where the distance of each window is the
maximum distance between all pairs of points of P and Q inside the
window, as shown in Equation 2.2.

wDF (P,Q) = min(∀i,j=0max(dist(Pi, Qj)))
⇒ i ≤ j + window ∧ j ≤ Pm − window

(2.2)

Figure 2.3 shows trajectories P and Q and a window time-
window. The wDF distance between the trajectories is computed
as the lower distance found among all window -constrained time-
windows. As the time-window shifts over trajectories, the maximal
distance between their points is computed using the Euclidean dis-
tance.

In 2002, Vlachos (VLACHOS; KOLLIOS; GUNOPULOS,
2002) proposed the Longest Common Subsequence (LCSS) for raw
trajectory similarity measuring, considering the spatial distance be-
tween two points. In LCSS, given a point p of a trajectory P and a
point q of a trajectory Q, they match if the distance between them
is less or equal to a given threshold ε, as can be seen in Equation 2.3.
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Figure 2.3 – wDF score is the minimal distance of all maximal dis-
tances between two points within the given time win-
dow window

LCSS reduces the effect of noisy data by quantifying the similarity
between two points to binary values: 1 if the points match, and 0
otherwise. The longer the common subsequence of point matches
between two trajectories, the more similar they are. A recursive for-
malization of LCSS is presented in Equation 2.4, which gives the
total similarity of two trajectories P and Q.

match(p, q) =


true dist(px, qx) ≤ ε

and dist(py, qy) ≤ ε
false otherwise

(2.3)

LCSS(P,Q) =


0 if m = n = 0
1 + LCSS(< p2...pm >,< q2...qn >) if match(p1, q1)
max(LCSS(< p2...pm >,Q), otherwise

LCSS(P,< q2...qn >))
(2.4)

A drawback of LCSS is its subsequence specificity, causing
a inability to take into account gaps of any size in the trajectory. A
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gap is a subsequence of points in a trajectory P that is not close
to any subsequence of points in a trajectory Q. Since the LCSS
computation only takes into account the common/close points on
both trajectories, this gap subsequence will not impact the computed
similarity score. Figure 2.4 shows three trajectories P , Q, and R,
with 3, 4, and 5 points, respectively. As can be seen, the first point
of trajectory P matches with the first point of the trajectories Q and
R, since the distance between the points is less than the threshold
ε. The total LCSS similarity of P and Q is LCSS(P,Q) = 1, while
the similarity of P and R is also LCSS(P,R) = 1, even though two
points of R do not match any points of P .

Figure 2.4 – Trajectories P , Q and R have 3 points matching, while
trajectories Q and R have 4 points matching.

The LCSS similarity score is given by the size of the longest
common subsequence (LCSS(P,Q)) over the size of the shortest tra-

jectory, i.e.,
LCSS(P,Q)
min(m,n) . Figure 2.5 shows the matching of points

of trajectories P and Q considering a threshold ε = 15. The LCSS
similarity score of P and Q is the number of points that match (solid
black points) normalized by the size of the shortest trajectory, i.e.
4
6 ≈ 0.67.

Chen in (CHEN; ÖZSU; ORIA, 2005) proposes the Edit
Distance on Real sequence (EDR), another similarity measure for
raw trajectories. EDR calculates the distance between two trajecto-
ries by computing the edit distance between their points. The edit
distance between two trajectories is given by summing the distance
between their points quantified as 1 if their points do not match, and
0 when they match (Equation 2.5). Using this approach, EDR solves
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Figure 2.5 – LCSS similarity score is the number of matched points
normalized by the size of shortest trajectory.

the problem of the gaps in LCSS, by taking into account points that
do not match. However, to enforce a match between two points EDR
requires that their distance is below a given threshold in all dimen-
sions. A recursive formalization of EDR is presented in Equation
2.6.

match(p, q) =
{

0 dist(p, q) ≤ ε
1 otherwise

(2.5)

EDR(P,Q) =



0 if m = 0
0 if n = 0
min(EDR(< p2...pm >,< q2...qn >)+ otherwise

match(p1, q1), EDR(< p2...pm >,Q) + 1,
EDR(P,< q2...qn >) + 1)

(2.6)

The EDR similarity score is given by the inverse of the num-
ber of non-matched points over the size of the longest trajectory, i.e.,

1− EDR(P,Q)
max(m,n) . In the example of Figure 2.6, trajectories P and Q

match in 4 of their points when using a threshold ε = 15. As an edit
distance, EDR takes into account how many changes in one of the
trajectories are necessary to transform one trajectory in the other. In
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this case, the trajectories have four common/close points. To make
the trajectories look similar, the trajectory P needs three changes
in its points. For instance, 1) adding a new point similar to q1; 2)
changing the point p1 to be close to the point q2; and 3) moving the
point p5 closer to the point q6. The EDR similarity score of P and Q
is the inverse of the total of non-matched points over the size of the

longest trajectory, i.e. 1− 3
7 ≈ 0.57. This similarity score shows that

EDR is robust to compare trajectories of different sizes, by giving
distinct similarity scores for trajectories of different sizes, solving
the drawback of LCSS. Moreover, EDR maintains the robustness to
noise of LCSS by using a threshold value in all dimensions.

Figure 2.6 – EDR distance score is the number of non-matched
points normalized by the size of largest trajectory, sub-
tracted by 1.

Very recently in 2018, Furtado proposed the Uncertain Move-
ment Similarity (UMS) in (FURTADO; ALVARES, et al., 2018).
UMS is a parameter-free similarity measure designed exclusively for
raw trajectories, using only the spatial dimension. The main contri-
bution of UMS is the elimination of parameters for similarity mea-
suring, by defining a dynamic spatial threshold that is computed
automatically according to the distance between the pairs of points
of a trajectory. As a consequence, it solves the problem of irregular
distribution of trajectory points. UMS represents trajectories as a
sequence of movement ellipses, covering the space between two sam-
pled trajectory points. By using a dynamic ellipse size, UMS avoids
the definition of a radius of fixed size around each point, which is
a problem for real applications where the sampling rate is normally
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irregular as the object changes its movement speed.

Figure 2.7 shows the trajectories P and Q represented as
two elliptical trajectories according to UMS. UMS computes the
similarity score taking into account three premises: i) alikeness: the
number of P ellipses that have some intersection with Q ellipses plus
the number of Q ellipses that have some intersection with the P el-
lipses; ii) shareness: the space covered by ellipses of trajectories P
and Q have a big shared area; and iii) continuity : the ellipses order
represents moving objects traveling continually in the same direc-
tion. The limitation in this method lies in its inability to handle
trajectories with higher sampling rate, because the higher the sam-
pling rate of the points is, the smaller will be the generated ellipses,
making the shared area between trajectories shorter.

Figure 2.7 – UMS similarity score is given by: i) the shape alikeness
of ellipses; ii) the shared area of ellipses; and iii) the
continuity of points inside ellipses

2.2.2 Related works on semantic trajectory similarity measures

With the definition of semantic trajectory, the creation of
new semantic-aware similarity measures became necessary. These
new measures may analyze, besides the semantic information, any
other information about the trajectory, as for instance the temporal
duration of stops and moves, the moves spatial points, the average
speed of the moves and so on. In the following we describe existing
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semantic trajectory similarity measures, as well as their limitations
and applications.

An early similarity measure considering semantic trajecto-
ries is Common Visit Time Interval (CVTI) proposed in (KANG;
KIM; LI, 2009). It defines a measure for integrating the semantics
and the temporal dimensions of the stops. It finds the Longest Com-
mon Subsequence of two semantic trajectories in which all semantic
aspects are the same and there is a time intersection between the
stops. CVTI gives as similarity score the proportion of time that
two trajectories share in the same stops. As CVTI is strongly based
on LCSS, it presenting the same drawback of LCSS: the inability
to penalize gaps of any size in the trajectory. Although CVTI uses
different data dimensions, the measure is not extensible for other
data dimensions associated with stops and moves, since it handles
exclusively the semantic and the time dimensions of stops.

In (YING et al., 2010) the measure Maximal Semantic Tra-
jectory Pattern Similarity (MSTP) was proposed. It identifies the
Longest Common Sequence (LCS) between two semantic trajecto-
ries, which are sequences of labels describing the types of places
such as < School, Park, Cinema >. MSTP uses only the seman-
tic dimension of the trajectories, not being extensible for multiple
dimensions, as time and space. MSTP differentiates from LCSS be-
cause it computes a ratio between each trajectory and their common
patterns, i.e. the sequence of places visited by both trajectories. The
average ratio is used to compute the similarity score, avoiding the
drawback of LCSS that does not differentiate matching gaps of dif-
ferent sizes. The main limitation of the method lies in the exclusively
semantic focus, being not extensible to multiple dimensions.

The work of (LIU; SCHNEIDER, 2012) proposed a seman-
tic similarity measure that combines two distances: geographic and
semantic. The geographic distance considers three aspects: (i) the
distance between the centroids of the trajectories; (ii) the difference
in the length of the trajectories; and (iii) the cosine similarity of
the directions of subtrajectories. The measure uses the speed varia-
tion between the stops to split trajectories into subtrajectories. The
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semantic distance is based on LCSS to find the longest common sub-
sequence of stops that were visited by the individual. Limitations of
this approach include: i) sensibility to noise in the geographic dis-
tance; ii) the time distance is not considered; and iii) the prevalence
of the geographic distance, i.e. two trajectories are similar only if
they are similar in space.

The Maximal Travel Match (MTM)(XIAO et al., 2010) ana-
lyzes the trajectory similarity in the semantic dimension constrained
by time. In order to do that, MTM takes into account the semantics
of the visited places (e.g., restaurant, university etc.), the sequence
of these places, the traveled time between places, and the frequency
that a place was visited. Two trajectories are more similar if they
visited places of the same type, in the same order, with similar travel
times, according to a time threshold. Limitations of this approach
include: i) two semantic trajectories are similar only if they visit the
places in the same order; ii) the space dimension is not considered;
and iii) MTM measures the similarity considering the whole dataset
in order to obtain the frequency of the visited places, what makes
the result dependent of the other trajectories in the dataset.

Furtado in (FURTADO; KOPANAKI, et al., 2016) proposed
the MSM (Multidimensional Similarity Measure). This measure is
the first in the literature working with multiple dimensions of stops,
including space, time, and semantics. MSM was designed to handle
multidimensional sequences, in which each dimension is independent
and each dimension may have its own distance function. MSM uses
a threshold value for defining if two elements match in a dimension
or not, as can be seen in Equation 2.7.

matchd(a, b) =
{

1 distd(a, b) ≤ maxDistd
0 otherwise

(2.7)

Equation 2.8 presents how MSM computes the similarity
score between all possible pairs of stops of two trajectories. For each
pair of stops, MSM sums the matching value for all D dimensions
and multiplies it by a pre-defined importance weight wd for each
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dimension. With this, MSM supports to assign more or less relevance
for each dimension, based on the application needs.

score(a, b) =
D∑

d=1
matchd(a, b) ∗ wd (2.8)

To compute the similarity score between two trajectories,
initially MSM calculates the parity between them, as shown in Equa-
tion 2.9. The parity score is given by summing the highest similarity
scores of all stops a of the trajectory A when compared with all
stops b of the trajectory B.

parity(A,B) =
∑
a∈A

max{score(a, b) : b ∈ B} (2.9)

As the parity value is the number of commonalities between
two trajectories A and B, MSM computes the final similarity score
between them as the average of their parity values by the number
of stops in both trajectories, as presented in Equation 2.10.

MSM(A,B) =

0 if |A| = 0 ∨ |B| = 0
parity(A,B)+parity(B,A)

|A|+|B| otherwise

(2.10)

With this approach, MSM can take into account distinct
dimensions, such as space, time, and semantics, to be scored in a
single similarity value and it supports to define individual impor-
tance weights for each dimension. Some limitations of this approach
include: i) the elements homogeneity allows MSM to handle stops
only, since stops and moves have distinct attributes, and ii) the or-
der of the elements is not taken into account during the similarity
calculation.

Figure 2.8 shows the comparison of two semantic trajecto-
ries P and Q. In this figure, MSM scores the similarity in a pair-wise
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fashion, comparing all stops of trajectory P with all stops of trajec-
tory Q. Its compares each dimension of the stops (space, time, and
semantics), using a specific distance function for each dimension. Af-
ter all stop-to-stop comparisons, MSM computes the similarity score
as the sum of the best matching score of each stop of P and Q, di-
vided by the sum of the trajectories length. In this example, MSM
highly scores the similarity of the two trajectories, since both trajec-
tories basically visit the same places, both spatially and semantically,
and stay on the stops at approximately the same time. Notice that
the sequence of the visited stops is very different between the two
trajectories, but MSM does not take this into account, and what
distinguishes these trajectories is the sequence of the stops and the
moves.

Figure 2.8 – MSM similarity measure computes the similarity score
of P and Q using multiple dimensions with partial
matching.

Cai in (CAI; K. LEE; I. LEE, 2016) proposed a measure that
combines the strategies of LCSS (VLACHOS; KOLLIOS; GUNOP-
ULOS, 2002) and MSM(FURTADO; KOPANAKI, et al., 2016) for
semantic trajectories. It finds the longest common subsequence be-
tween two semantic trajectories. The difference to LCSS is that it
does not require the matching in all dimensions, and it does sep-
arate the dimensions in two types: required or optional. While all
required dimensions should be similar for two points to match, the
optional ones are used only to increase the score. It uses weights
for the optional dimensions, so if two points match in one required
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dimension, but do not match in other dimensions, their similarity is
greater than when compared with other points that match only in
the optional dimensions.

Table 2.2 summarizes the main characteristics of most re-
lated measures in comparison to the measure proposed in this thesis.
We group the measures in two distinct categories: raw or semantic
trajectory similarity.

In the first half of Table 2.2 are the similarity measures for
raw trajectories. These similarity measures take into account only
the raw data about trajectories, i.e., the space and the time dimen-
sions. Not all similarity measures for raw trajectories handle the
space and time dimensions. For instance, the wDF (DING; TRA-
JCEVSKI; SCHEUERMANN, 2008), DWTa (SHOKOOHI-YEKTA
et al., 2017), and UMS (FURTADO; ALVARES, et al., 2018) only
take into account the space. On the other hand, LCSS (VLACHOS;
KOLLIOS; GUNOPULOS, 2002) and EDR (CHEN; ÖZSU; ORIA,
2005) were developed to consider both space and time.

In the last half of the Table 2.2 are the similarity mea-
sures for semantic trajectories. All similarity measures for semantic
trajectories only consider the stops, and not all of them consider
all three stops dimensions (space, time, and semantics). The se-
quence of the stops is only taken into consideration in CVTI (KANG;
KIM; LI, 2009) , MSTP (YING et al., 2010), and the work of Liu
and Schneider (LIU; SCHNEIDER, 2012). Only MSM (FURTADO;
KOPANAKI, et al., 2016) and the work of Cai(CAI; K. LEE; I.
LEE, 2016) make the definition of weights when measuring trajec-
tory similarities, because they consider all three dimensions of stops.
The work of this thesis considers all these features when measuring
the similarity of two trajectories: i) the stops and the moves are
taken into account, using all data dimensions, as space, time, and
semantics; ii) there is a weight definition for each element (stop and
move) and for each data dimension; and iii) the sequence of the
elements is partially considered when comparing two trajectories.
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Related Works Raw trajectories Semantic trajectories Weights Sequence
Stops Move

Space Time Semantics Space Time Semantics
LCSS (Vlachos, 2002) X X
EDR (Chen, 2005) X X
wDF (Ding, 2008) X X
DTWa (Shokoohi-Yekta, 2017) X X
UMS (Furtado, 2018) X X
CVTI (Kang, 2009) X X X
MSTP (Ying, 2010) X X X X
Liu, Schneider (2012) X X X
MSM (Furtado, 2016) X X X X
Cai (2016) X X X X
SMSM (our) X X X X X X X X

Table 2.2 – Comparative table



Chapter 3

Proposed measure

Stops and moves by definition are different and heteroge-
neous trajectory elements. A stop may have a spatial position, a
start and end time, a category, and a set of attributes related to the
category. For example, a stop at a hotel may have the attributes spa-
tial location of the hotel, the start and end time the moving object
stayed at the hotel, the number of stars, rate, price of the hotel, etc.
A move starts and ends in a stop and may be characterized by dif-
ferent attributes as the average speed, traveled distance, sequence of
followed streets, duration, the sequence of raw points, etc. These at-
tributes are defined according to the needs of the application. From
these examples we notice that stops and moves are characterized by
different attributes, and they must be treated as different trajectory
elements.

In order to deal with these heterogeneous elements (stops
and moves), we introduce the concept of movement element. A move-
ment element is a new representation that is not treated by other
measures, mainly MSM, which supports only stops. Indeed, MSM
does not consider the order of trajectory elements, while in our ap-
proach we want to preserve the partial sequence of both stops and
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moves in a movement element. With this approach, we say that two
trajectories P and Q are more similar the more similar their move-
ment elements are, i.e., the more similar the attributes of the stops
(e.g. space, time, and semantics) and the moves are.

Definition 4 (Movement element). Amovement element e = (stopS,
move, stopE) is a tuple formed by a start stop stopS, the move be-
tween stopS and stopE, and the end stop stopE, where stopS and
stopE are two consecutive stops.

Figure 3.1 – A movement element from stop A to stop B passing
over the move M1

Figure 3.1 exemplifies how the movement elements are built:
the first movement element is formed by the sequence: stop A, move
M1, and stop B. The second movement element is formed by the
sequence stop B, move M2, and stop C.

Hereafter we will consider a semantic trajectory as a se-
quence of movement elements, as follows: P = 〈e1 = (s1,m1, s2), e2
= (s2,m2, s3), ..., en = (sn,mn, sn+1)〉.

Notice that we define a movement element as a trajectory
part, or subtrajectory, and this structure will be used for the pro-
posed similarity measure, where one trajectory will be compared
with another one based on their movement elements. In a movement
element we preserve the sequence of two stops and the move that
connects the stops.

We analyze the similarity of a movement element a ∈ A

with another movement element b ∈ B, where A and B are semantic
trajectories, in two parts: their stops and their moves. The basis for
measuring the similarity of these two parts is the match function,



53

given in Equation 3.1. The function returns 1 if the distance between
an attribute i (also called dimension) of two movement elements
is less than a given threshold maxDist for the dimension i, and
zero otherwise. This function is used for measuring the distance
of all dimensions of both the stops and the moves. For analyzing
the spatial distance between two stops, for instance, if considering
maxDist = 100, two stops match when their spatial distance is less
or equal to 100.

matchi(a, b) =
{

1 disti(a, b) ≤ maxDisti
0 otherwise

(3.1)

To compute a total score for two movement elements a and
b, we define the function score(a,b) in Equation 3.2, where wstop and
wmove are the weights of the stops and the moves, respectively, and
their sum should be one. The importance of either stops or moves
can vary from one application to another, so we can use the weights
to give the respective importance.

score(a, b) = scoreStop(a, b) ∗ wstop + scoreMove(a, b) ∗ wmove

(3.2)

In our measure we consider a score for the stops (scoreStop)
and a score for the move (scoreMove). The functions scoreStop(a,b)
and scoreMove(a,b) are defined in Equations 3.3 and 3.4, respec-
tively. In both equations, r and q are the number of dimensions
(attributes) of stops and moves, respectively. The score of the stops,
computed according to Equation 3.3, is given by the weighted sum
of all dimension matches of the start and end stops of two move-
ment elements a and b. Some examples of computing scoreStop()
and scoreMove() are presented in the next section. We observe in
Equations 3.3 and 3.4 that, as MSM, we also give a weight for the
dimensions. For instance, the spatial dimension or the semantic di-
mension of a stop could have a higher weight than the time.
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scoreStop(a, b) =
r∑

i=1
(matchi(astopS , bstopS)+

matchi(astopE , bstopE))÷ 2 ∗ wi

(3.3)

scoreMove(a, b) =


q∑

i=1
matchi(amove, bmove) ∗ wi ifmatchStops(a, b)

0 otherwise

(3.4)

Note in Equation 3.4 that the scoreMove depends on the
function matchStops(a, b). The intuition is that the moves of two
trajectories should be compared only if their starting positions (start-
ing stops) are spatially close and the ending positions (ending stops)
are close as well. The function matchStops(a,b) is true when the
spatial distance between astopS and bstopS as well as between astopE

and bstopE is less than or equal to maxDist.

Let us consider the example of Figure 3.2 with two trajecto-
ries P and Q. The movement elements of trajectory P are Pe1 =<
A,M1, B > and Pe2 =< B,M2, C >. The trajectory Q has the
movement elements Qe1 =< A,M1, B > and Qe2 =< B,M3, D >.
Considering Pe1 and Qe1, the function scoreMove(PM1, QM1) will
only be executed if the function matchStops(Pe1, Qe1) is true, i.e.,
if the spatial distance between the stops PA and QA and between
the stops PB and QB are both less than maxDistspace. Here, as
both start stops and end stops are close in space, the function
matchStops(Pe1, Qe1) returns true, leading the function scoreMove(PM1, QM1)
to be executed, by computing the similarity of both moves.

For the movement elements Pe2 =< B,M2, C > and Qe2 =
< B,M3, D > shown in Figure 3.2, the start stops B and B match
in space, but the end stops C and D do not have a spatial match
(suppose their spatial distance is higher than maxDistspace). In this
comparison the value of scoreMove(M2,M3) is zero because the
moves will not be compared.
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Figure 3.2 – Movement elements: (i) stop A to stop B through the
move M1, (ii) stop B to stop C passing through the
move M2, and (iii) stop B to stop D by the move M3

The function scoreMove() guarantees the order of the stops
inside the movement elements, what partially includes the order of
stops in the similarity analysis. Suppose the example in Figure 3.2
is a real scenario, where A, B, C and D represent places as Spain,
France, Germany, and Italy respectively. We believe that the move-
ment elements going from Spain (A) to France (B) must have their
move analyzed because they visit the same sequence of places, while
the trajectory with the movement element that goes from France (B)
to Germany (C) does not share the same destination of the trajec-
tory with the movement element that goes from France (B) to Italy
(D), so the moves of both movement elements are not compared,
and the function scoreMove(M2,M3) has value zero.

Having defined the score for stops and moves for comparing
movement elements, Equation 3.5 defines the parity of two semantic
trajectories P and Q. The parity of P with Q is the sum of the
highest score of all the elements p ∈ P when compared with all the
elements of Q.

parity(P,Q) =
∑
p∈P

max{score(p, q) : q ∈ Q} (3.5)

Finally, we can define the global similarity of two trajec-
tories P and Q with SMSM . Equation 3.6 defines the stops and
moves similarity measure SMSM(P,Q) by the average parity of P
with Q and of Q with P . The average parity is given by the sum of
both parities over the sum of the number of elements in P (|P |) and
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the number of elements in Q (|Q|).

SMSM(P,Q) =

0 if |P | = 0 ∨ |Q| = 0
parity(P,Q)+parity(Q,P )

|P |+|Q| otherwise

(3.6)

SMSM holds the same properties as MSM(FURTADO; KOPANAKI,
et al., 2016), namely: non-negativity (Lemma 1); relaxed identity of
indiscernibles (Lemma 2); and symmetry (Lemma (3).

Lemma 1. Non-negativity Given any two semantic trajectories A
and B, then in all cases SMSM(A,B) ≥ 0.

Proof. Direct from Equations 3.5 and 3.6

Lemma 2. Relaxed identity of indiscernibles Given two semantic
trajectories A and B, and matching thresholds maxDiststop

k and
maxDistmove

j , then SMSM(A,B) = 1 if and only if A = B or
(∀a ∈ A∃b ∈ B | (distk(astop_start, bstop_start) ≤ maxDistk)∧
(distj(amove, bmove) ≤ maxDistj) ∧ (distk(astop_end, bstop_end)
≤ maxDistk)) ∧ (∀b ∈ B∃a ∈ A | (distk(astop_start, bstop_start)
≤ maxDistk) ∧ (distj(amove, bmove) ≤ maxDistj)∧
(distk(astop_end, bstop_end) ≤ maxDistk))

Proof. Equation 3.2 denotes that when an element a is within max-
imum distance thresholds for each dimension of the start stop, the
end stop, and the move of another element b, score(a, b) = (1 ×
wstop+
1 × wmove) = 1. Considering that the sum of the weights for the

stop dimensions is 1, i.e.
r∑

i=1
wi = 1, the sum of the weights for the

move dimensions is 1, i.e.,
q∑

i=1
wi = 1, and the sum of the weights

of stop and move is 1, i.e., (wstop + wmove) = 1, we would have
that for each element a ∈ A, at least one element b ∈ B would
be within the threshold in all dimensions of both stops and move
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(and vice-versa) hence score(a, b) = 1. Therefore, parity (A,B) and
parity(B,A) computed by Equation 3.5 will receive the maximum
value (the number of movement elements of A and B, respectively).

Finally, if A = B then we have that
|A|+ |B|
|A|+ |B| = 1. On the other

hand, if at least one element of a ∈ A does not match with at least
one element b ∈ B in all dimensions (or vice-versa), then its best
matching score will be less than one. Hence, since SMSM(A,B) is
the average parity of A with B and of B with A (Equation 3.6) we
have that in any other case SMSM(A,B) < 1.

Lemma 3. Symmetry Given any two semantic trajectories A and
B, then in all cases SMSM(A,B) = SMSM(B,A).

Proof. Direct from Equation 3.6

The complexity of SMSM is defined by the function parity
(P,Q) that executes the function score() m ·n times, where m and n
are the length of trajectories P and Q. This is the same complexity
of other similarity methods as MSM, LCSS and EDR, when the
function match() inside scoreMove() is constant in time, that is
the case when match() compares the name of the streets of the
moves, the transportation means of the moves, the duration of the
moves, etc. The processing time of SMSM is higher when the raw
trajectories of the moves are considered for match(). When this is
the case then the complexity of match() can become O(r · s), where
r and s are the number of points of the two moves being compared.
On the other hand, SMSM is faster than methods applied to raw
trajectories.

3.1 EVALUATION OVER A RUNNING EXAMPLE

In this section we present a running example, comparing
SMSM and MSM, since SMSM is an extension of MSM. Let us
consider the two trajectories shown in Figure 3.3. Trajectory Q rep-
resents the daily routine of a professor, that starts his day at the



58 Chapter 3. Proposed measure

gym in the morning, while trajectory P is the daily routine of a
student, that starts his day at a coffee shop. Both trajectories visit
the same places, sharing some streets, but in totally different order.
The trajectories are annotated with the stop category, start and end
time of the stop, an hypothetical geographic position (x, y) of the
stop and the main street followed during the moves. So consider-
ing the notation stop name ((x, y), [start timestamp - end times-
tamp]), the student has the following movement behavior: stays at
Home ((96,215), [8pm-8am]), then he goes via Edu Vieira street to
have breakfast at the Coffee shop ((182,201), [8:50am-10am]), and
from there goes via Delfino Conti street to the University ((59,127),
[10:25am-6:10pm]), finishing the day moving via Henrique Fontes
street to the Gym ((268,63), [7:30pm-9pm]). The professor (trajec-
tory Q) goes from Home ((13,81), [7pm-7am]) via Beira-mar av-
enue for jogging at the Gym ((268,63), [7:30am-8:30am]). After he
goes via Edu Vieira street to the Coffee shop ((182,201), [8:45am-
9:55am]), and via Delfino Conti reaches the University ((59,127),
[10:15am-7:45pm]) to teach his classes until the end of the day. We
have two trajectories P and Q with their stops and moves annotated
with the category of the place, the spatial position of the visited
place, the time of the visit, and the name of the street to represent
the move.

Figure 3.3 – Semantic Trajectories P (Student) and Q (Professor)
with stops and moves

In order to calculate the SMSM similarity value, we first
need to construct all movement elements for each trajectory. Table
3.1 lists these elements, where each element contains the start stop,
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the name of the street followed during the move, and the next stop.

Student (P) Professor (Q)
<Home, Edu Vieira, Coffee shop> <Home, Beira-mar, Gym>

<Coffee shop, Delfino Conti, University> <Gym, Edu Vieira, Coffee shop>
<University, Henrique Fontes, Gym> <Coffee shop, Delfino Conti, University>

Table 3.1 – Movement elements

To measure the distance between two movement elements,
in this example we use the following distance functions for each stop
dimension:

• Space: the Euclidean distance between the centroids of the
stops. In this running example, the centroid is the central point
of the stop;

• Time: let [t1, t2] be the time interval of a stop. The time dis-
tance of two stops is given by:

distt(a, b) = 1− duration([a.t1, a.t2] ∩ [b.t1, b.t2])
duration([min(a.t1, b.t1),max(a.t2, b.t2)])

(3.7)

We use this formula in order to have a proportion of the time
intersection and not an absolute value;

• Semantics: the distance is equal to 0 in case of exact match
and equal to 1 otherwise.

For the sake of simplicity, for the move, in this example we
consider only the semantic information, i.e., the name of the followed
street, where the distance is equal to 0 in case of exact match of
street name and equal to 1 otherwise. We consider that stops and
moves have the same weight and also the dimensions space, time
and semantics of the stops.

In this running example we use as thresholds maxDistspace
= 100 and maxDisttime = 0.5, i.e. two stops are said as matched
in time when both share half of their period in that stop. With
the distance functions and threshold values defined and elements
constructed, we use Equation 3.2 to measure the similarity values
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between all element dimensions, computing first the match in both
start and end stops and, if the stops match, we compute the match
for the move.

To better understand how to measure the movement element
similarity let us consider the following two movement elements:

• elementP =
< Home[8pm−8am], EduV ieira, Coffee shop[8:50am−10am] >

• elementQ =
< Home[7pm−7am], Beira−mar,Gym[7:30am−8:30am] >

First, we apply the function match() (Equation 3.1) for the stops.
In this case, the start stops have some degree of similarity: their
semantics is the same and the time distance of HomeP and HomeQ

is ≈ 0.15, lower than our defined threshold of 0.5. However, the
spatial distance is disteucl(HomeP , HomeQ) ≈ 158, higher than the
defined threshold (100), so not matching in space, only in time and
semantics, leading to a similarity score of 2/3 between start stops
Home[8pm−8am] and Home[7pm−7am]. The end stops (Gym and Cof-
fee Shop) are dissimilar in space (with a distance of ≈ 163), in time
(no overlap), and in semantics, then the similarity score between
both end stops is 0.0.

Equation 3.3 computes the stops similarity as the average
similarity of start stops and end stops as: scoreStops( elementP ,
elementQ) = (2/3 + 0)/2 ≈ 0.33. As the function matchStops() is
false in this example since disteucl(Coffee shopP , GymQ) > 100,
when applying Equation 3.4, the function scoreMove() = 0. Then,
with Equation 3.2 we compute the movement element similarity as
the sum of stops similarity weighted by wstops and the move simi-
larity weighted by wmove. Keeping this running example simple, we
chose the same weights for the stops and the moves, i.e., 0.5 for
wstops and 0.5 for wmove. In this case, score(elementP , elementQ)
= (0.33 ∗ 0.50) + (0.00 ∗ 0.50) ≈ 0.17. Table 3.2 summarizes SMSM
similarity scores between all movement elements.

After computing the similarity scores of both trajectories,
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Q
P <Home, Edu V., Coffee>

[8pm-8am] [8:50am-10am]
(96,215) (182,201)

<Coffee, Delfino C., University>
[8:50am-10am] [10:25am-6:10pm]
(182,201) (59,127)

<University, Henrique F., Gym>
[10:25am-6:10pm] [7:30pm-9pm]
(59,127) (268,63)

<Home, Beira-mar, Gym>
[7pm-7am] [7:30am-8:30am]
(13,81) (268,63)

0.17 0 0.25

<Gym, Edu V., Coffee>
[7:30am-8:30am] [8:45am-9:55pm]

(268,63) (182,201)
0.25 0 0

<Coffee, Delfino C., University>
[8:45am-9:55am] [10:15am-7:45pm]
(182,201) (59,127)

0.08 1 0

Table 3.2 – Similarity scores for SMSM

with Equation 3.5 we compute the parity of trajectories, summing
the highest scores of all movement elements of one trajectory when
compared with all elements of the other trajectory. The parity calcu-
lus of parity(P,Q) = (0.25+1.00+0.25) = 1.50 and parity(Q,P ) =
(0.25 + 0.25 + 1.00) = 1.50. The final SMSM score is given by Equa-
tion 3.6 with (parity(P,Q) + parity(Q,P ))/(|P | + |Q|) = (1.50 +
1.50)/(3 + 3) = 0.50, indicating that the trajectories have some
degree of similarity, since the two trajectories have several common
stops at similar time, move across the same streets, but the most im-
portant is that the order of the stops is different. Notice from Table
3.2 that movement elements where either the start stops or the end
stops do not match, still have a degree of similarity, which is the case
of the movement elements < Home,EduV ieira, Coffeeshop > and
< Home,Beira − mar,Gym >, because they have a partial stop
matching, i.e., their starting stops.

To compare SMSM with MSM, which is the closest work
to our approach, we used for MSM the same thresholds for the
stops and the same weights for space, time and semantics. MSM
will measure the similarity between all stops using the same dimen-
sions: space, time, and semantics. Let us consider the two stops at
Home. Both stops have the same semantics and their time overlap
is ≈ 0.15, lower than the defined threshold of 0.5. As the spatial
distance between both (≈ 158) is higher than the defined thresh-
old (100), in this dimension they do not match. The similarity score
between both Home stops is the average of matched dimensions,
leading to a similarity score of 2/3, the same as SMSM. The MSM
similarity scores between all stops of trajectories P and Q are shown
in Table 3.3.
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P
Q Home

[7:00pm-7:00am]
(13,81)

Gym
[7:30am-8:30am]

(268,63)

Coffee shop
[8:45am-9:55pm]

(182,201)

University
[10:15am-7:45pm]

(59,127)
Home

[8:00pm-8:00am]
(96,215)

2/3 0 1/3 1/3

Coffee shop
[8:50am-10:00pm]

(182,201)
0 0 1 0

University
[10:25am-6:10pm]

(59,127)
1/3 0 0 1

Gym
[7:30pm-9:00pm]

(268,63)
0 2/3 0 0

Table 3.3 – Similarity scores for MSM

MSM calculates the parity between both trajectories by
summing the highest scores of all stops of one trajectory compared
with all stops of the other trajectory. The similarity value of MSM
is given by (parity(P,Q) + parity(Q,P ))/(|P | + |Q|) = (3.33 +
3.33)/(4 + 4) ≈ 0.83, indicating that the two trajectories have a
high similarity degree, what is not the case of the trajectories in
the example. The high similarity given by MSM is due to the fact
that the order of the stops is not important and the moves are not
considered.

As we claimed initially, in some applications the movement
sequence can be very important. In this example, SMSM evidences
that, beside a strong similarity in the spatial dimension and stop
semantics, the sequence of stops (i.e person routine) and the moves
is very dissimilar. As SMSM compares the move between two con-
secutive stops using all data dimensions, or any information defined
by the user, it is suitable for use with any kind of semantic trajec-
tory, where the moves have multiple data dimensions to be analyzed,
such as the spatial GPS points, the name of the followed streets, the
traveled distance or travel time, etc. In the following section we com-
pare our measure with other state-of-the-art approaches, considering
both real and synthetic trajectories.
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Experimental Evaluation

To evaluate the proposed measure we performed three differ-
ent experiments. The two first experiments use real and well-known
trajectory datasets: the taxi trajectories in San Francisco from the
CRAWDAD project (PIORKOWSKI; SARAFIJANOVIC-DJUKIC;
GROSSGLAUSER, 2009) and the Geolife dataset (ZHENG et al.,
2009). The third experiment uses a synthetic trajectory dataset, cre-
ated using the Hermoupolis (PELEKIS et al., 2013) trajectory gen-
erator, which generates semantic trajectories with stops and moves.
In the Geolife and taxi datasets we evaluate the similarity of both
stops and moves, where the moves similarity is evaluated consider-
ing its raw points, while in the synthetic dataset we consider several
types of semantic information associated to the moves.

We also evaluated how SMSM is impacted by changing its
parameters and compare the running time of SMSM and the other
similarity measures, for both raw and semantic trajectories.

We evaluate the precision of SMSM by the retrieval-based
approach (precision and recall), computing the Area Under the Curve
(AUC) and Mean Average Precision (MAP). To calculate the preci-
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sion and recall, the trajectories are segregated into Tclass by their
classes and were used as the ground truth trajectories. For each
ground truth trajectory, the |Tclass| most similar trajectories should
also belong to Tclass. For each one, a similarity search over the
dataset is performed, ranking the trajectories until all Tclass tra-
jectories are found. Ideally, a similarity measure should return all
trajectories in the ground truth between 1 to |Tclass| positions. The
results of precision at each recall level are the average obtained for all
Tclass trajectories at that recall level. We compared SMSM with the
following state-of-the-art similarity measures: MSM, LCSS, EDR,
MSTP, CVTI, DTWa, wDF, and UMS.

Section 4.1 describes the experiment with the taxi dataset,
Section 4.2 details the experiments with the Geolife dataset, Section
4.3 details the experiments with the synthetic dataset, Section 4.4
details the experiments changing the SMSM parameters, Section 4.5
evaluates the running time of the similarity measures, and Section
4.6 presents a discussion about the choice of a measure in face of
application problems.

4.1 EXPERIMENT WITH THE TAXI DATASET

The epfl/mobility dataset contains taxi trips in San Fran-
cisco collected between May and June 2008, with an average sam-
pling rate of about one point per minute. Each trajectory has several
days of duration, what is not useful to determine similar movements
around the town. For that reason, we split each taxi trajectory into
short trajectories: (i) splitting when the occupation status of the
taxi changed (taken or free); and (ii) splitting when a 5 minutes gap
between two consecutive points was found, i.e. if a taxi does not
send a GPS signal for 5 minutes we assume that the car was not
moving around the city.

4.1.1 Ground truth generation

In this experiment we defined six distinct regions in San
Francisco with high density of trajectories moving between these
regions, which are shown in Figure 4.1(left). The regions are the
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Park, the Fisherman’s Wharf, the Pier, the Westfield San Fran-
cisco Center (WSFC), the Intersection between highways 280 and
101, and San FranciscoAirport. In total, there are 6940 trajectories
moving between these regions.

Figure 4.1 – (left) All trajectories moving between the six regions,
where the red points are the ground truth trajectories
and the light blue points are the remaining trajecto-
ries. (right) Ground truth trajectories, where dark blue
points are the trajectories moving on highway 101 and
green points are trajectories using highway 280

As ground truth we consider the subset of trajectories mov-
ing between Airport, Intersection, and WSFC. These trajectories
were selected because they have different moves. Figure 4.1 (right)
shows a zoom over the trajectories moving between Airport and
WSFC using the Intersection of highways 101 (blue) and 280
(green), where we can visualize that the trajectories have different
moves. We consider as the ground truth the four distinct paths fol-
lowed by the trajectories that move between these regions, which
are shown in Table 4.1. This ground truth definition is very spatial-
based, with the classes defined as the spatial location of the stops
and the moves.
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Direction Highway Trajectories Class
Airport to WSFC 101 145 A1
WSFC to Airport 101 1242 A2
Airport to WSFC 280 531 B1
WSFC to Airport 280 704 B2

Table 4.1 – Ground truth trajectories

4.1.2 Results for the taxi trajectories

In this experiment we considered the following dimensions
for stops and moves: as spatial dimension of the stops we considered
the centroid of the stop; as temporal dimension we used both start
and end time of the stop; and as semantic information we used the
name of the region (WSFC, Pier, Fisherman’s Wharf, Park, Inter-
section, and Airport). For the moves, we analyze the real movement,
and use as spatial dimension the moves raw points.

For measuring the stop similarity we use: (i) the Euclidean
distance for space; (ii) distance 0 in case of exact match for semantics
and 1 otherwise; and (iii) for the time dimension, where [t1, t2] is
the time interval of a stop, the time distance of two stops is given by
Equation 3.7. For the moves, we consider the raw trajectory points
and use the UMS measure for the move spatial similarity because
it is the most appropriate for low sampled trajectories, which is the
case for this dataset.

In this experiment we consider the same weights for each
dimension and for stops and moves, so 0.5 for the stops and 0.5 for
the moves, and 0.33 for the dimensions space, time, and semantics.
Later, in the parameter analysis section, we show how the results
change as we vary the weights of the stops and moves, as they are
the central contribution of this thesis.

As several measures were not developed for semantic tra-
jectories, for a more fair comparison we apply existing measures
over semantic trajectories and over raw trajectories. For doing so we
split the experiment in two parts: 1) a precision and recall evalua-
tion using only semantic trajectories; and 2) a precision and recall
evaluation using the raw trajectories.

Table 4.2 summarizes the dimensions used in each measure.
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To general multidimensional similarity measures as MSM, we pro-
vide as input all dimensions of each stop, namely: 1) spatial infor-
mation; 2) time interval; and 3) semantic information. We extend
LCSS and EDR to support multiple dimensions, as in (FURTADO;
KOPANAKI, et al., 2016): given two multidimensional trajectories,
two points match when all dimensions match, where each dimen-
sion has a distinct distance threshold. With those adaptations, both
LCSS and EDR are used to measure similarity using the dimensions
of space, time and semantics for stops. For CVTI, we provide as
input the time interval of the stops and the stop names. For MSTP,
we provide the stop names only.

Semantic trajectories Raw trajectories
Stop Move

Space Time Semantics Trajectory points Space
SMSM X X X X
MSM X X X
MSTP X
CVTI X X
LCSS X X X X
EDR X X X X
DTWa X
UMS X
wDF X

Table 4.2 – Dimensions used for each measure

Table 4.3 shows the thresholds used for each measure. To
define threshold values for the stops we experimented a range of
values on each dimension as follows: for space (distance between stop
centroids) we varied the distance from 100 meters to 500 meters in a
100 meters range; and for the time distance we tested a proportion
of intersection from 0% to 100% varying in ranges of 10 %. For the
move threshold we varied the UMS similarity for two moves from 0
to 1 in a 0.1 unit step.

Table 4.4 shows the comparison of SMSM with approaches
developed either for raw or semantic trajectories. For semantic tra-
jectories, SMSM (MAP=0.84) outperformed the other measures in
50% or more. This occurs because state-of-the-art measures do not
take into account the move between two stops or consider only stops.
We may notice that the second best measure for semantic trajecto-
ries is MSM, but it reaches only 39% of precision. This shows that
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MSM is not robust when considering both stop and move similar-
ity, because MSM cannot deal with moves and does not distinguish
the order of the stops, i.e., the direction of the trajectories. To com-
pare SMSM with similarity measures for raw trajectories, we use
the SMSM MAP result (0.84) for semantic trajectories. SMSM was
27 % better than UMS (MAP=0.62) and DTWa (MAP=0.61), that
were the most accurate measures apart from SMSM. Both UMS and
DTWa perform worse than SMSM because, on the contrary to MSM,
they consider only raw trajectories, and cannot deal with stops and
their semantics.

Semantic trajectories Raw trajectories
Space (meters) Time proportion Move Space (meters)

SMSM 100 0.3 0.8 -
MSM 100 0.1 - -
LCSS 100 0.1 - 100
EDR 100 0.1 - 100

Table 4.3 – Thresholds used for each measure

Semantic Raw
MAP AUC MAP AUC

SMSM 0.84 0.87 0.84 0.87
UMS - - 0.62 0.66
DTWa - - 0.61 0.65
wDF - - 0.47 0.51
MSM 0.39 0.42 - -
EDR 0.26 0.30 0.36 0.40
LCSS 0.29 0.33 0.34 0.38
MSTP 0.30 0.33 - -
CVTI 0.28 0.32 - -

Table 4.4 – MAP and AUC evaluation for the taxi dataset

Figure 4.2 (left) and Figure 4.2 (right) summarize the results
of precision and recall of all similarity measures. On the left, SMSM
was better to recover trajectories of the same class than the other
methods in almost all recall levels, being around 60% more precise
than state-of-the-art measures. On the right, we may notice that the
measures developed for raw trajectories performed well because the
trajectories of the different classes are partially discriminated by the
moves, characterized by the trajectory raw points. These measures
do not perform better than SMSM because they ignore the semantic
dimensions and the stops.
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Figure 4.2 – Precision and recall results for semantic and raw tra-
jectories

4.2 EXPERIMENT WITH THE GEOLIFE DATASET

The Geolife is a well-known trajectory dataset, created by
Microsoft Research Asia (ZHENG et al., 2009) containing trajecto-
ries of 182 users, moving around Beijing, collected between April
2007 and August 2012. As a preprocessing step, we split trajectories
when a 5 minutes gap between two consecutive points was found,
since the trajectories of this dataset are highly sampled (lower than
2s).

4.2.1 Ground Truth Definition

As in the previous experiment, the Geolife dataset has no
ground truth for evaluating similarity measures, so we had to gen-
erate a ground truth. We had to find stops where the objects make
different moves between the stops in order to distinguish the trajec-
tories. To build the ground truth, we chose an area in Beijing, where
pedestrians move between the University Dormitories and Microsoft
Research Office. We considered five places as stops (Microsoft, Star-
bucks, Market, Park and Dormitory), that are shown in Figure 4.3
(left). We selected 1976 trajectories that pass over two or more of
these places. Among the 1976 trajectories we defined as ground truth
the 337 trajectories that go from Microsoft to Dormitory (and vice
versa) passing by Park and Market or Starbucks. We considered 5
distinct paths connecting the stops, labeled as A, B, C, D, and E,
as shown in Figure 4.3 (right).
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Figure 4.3 – (left) All trajectories moving between the five regions,
where the red points are the ground truth trajectories
and the light blue points are the remaining trajectories.
(right) zoom over the ground truth trajectories moving
between Park and Dormitory to observe their moves

In Table 4.5 we define as ground truth 8 distinct classes of
movement based on the sequence of stops and the followed path:
Microsoft to Dormitory via Market and Park by path A with 5
trajectories named as class A, Microsoft to Dormitory via Market
and Park by path B with 40 trajectories named as class B, Dormitory
to Microsoft via Park and Starbucks by path C with 11 trajectories
named as class C, Dormitory to Microsoft via Park and Starbucks
by path D with 115 trajectories named as class D1, Dormitory to
Microsoft via Park and Market by path D with 7 trajectories named
as class D2, Microsoft to Dormitory via Market and Park by path D
with 149 trajectories named as class D3, Microsoft to Dormitory via
Starbucks and Park by path D with 6 trajectories named as class D4
and Microsoft to Dormitory via Market and Park by path E with 4
trajectories named as class E.

It is worth mentioning that in this experiment, similar to
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the previous one, the moves are characterized by the raw trajectory
points and we use these points to compare stops and moves similar-
ity.

Direction Path Trajectories Class
Microsoft to Dormitory via Market and Park A 5 A
Microsoft to Dormitory via Market and Park B 40 B

Dormitory to Microsoft via Park and Starbucks C 11 C
Dormitory to Microsoft via Park and Starbucks D 115 D1
Dormitory to Microsoft via Park and Market D 7 D2
Microsoft to Dormitory via Market and Park D 149 D3

Microsoft to Dormitory via Starbucks and Park D 6 D4
Microsoft to Dormitory via Market and Park E 4 E

Table 4.5 – Classes representing distinct paths of the ground truth

4.2.2 Results with the Geolife dataset

Following a similar methodology used for the previous ex-
periment, we calculate the precision and recall for all classes in the
ground truth (8), comparing the SMSM results to the other mea-
sures. The dimensions used for stops are: a) space; and b) the region
name (Dormitory, Park, Starbucks, Market and Microsoft). For the
moves we used the raw points of the move. The time dimension was
not taken into account because in this experiment there are classes
with few trajectories and most of them do not match in time.

For measuring the stop similarity we use: (i) the Euclidean
distance for space; and (ii) 1 and 0 for the semantics in case of ex-
act match or no match, respectively. For the moves, we consider the
raw trajectory points. In this experiment we use DTW distance for
analyzing the spatial similarity of the moves because the trajectory
points are highly sampled and trajectory points are very near in
space. For this dataset UMS is not the best measure for distinguish-
ing the moves, since it was developed for irregular sampling. When
the points are highly sampled, UMS tends to build small ellipses, so
giving low similarity degree for very similar/close trajectories. For
the weights we give the same importance for stops and moves, so we
use 0.5 for stops and 0.5 for moves and for the dimensions, we use
0.5 for space and 0.5 for semantics.

Table 4.6 presents the thresholds used for each measure. We
defined the thresholds by running each experiment over a range of
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possible threshold values and the best results for each method are
reported. For raw trajectories, we evaluated as threshold the values
2, 4, 6, 8 and 10 meters because this dataset is highly sampled and is
of pedestrian trajectories. The threshold for the move dimension was
defined as follows: two moves are said to match if the DTW distance
between them is less than the sum of the Euclidean distance of the
moves. We used this approach for the move comparison because the
DTW distance of two point sequences is not in the closed range
between 0 and 1 as UMS, but an unbounded value, since DTW uses
the Euclidean distance function to compare the points.

Semantic trajectories Raw trajectories
Space (meters) Space (meters)

SMSM 100 -
MSM 100 -
LCSS 100 8
EDR 100 8

Table 4.6 – Thresholds used for each measure

Table 4.7 shows the experimental results. SMSM (MAP=0.94)
outperforms all measures for semantic trajectories, being significantly
better than MSM (MAP=0.66), which ignores the moves and the se-
quence of stops, so it is not able to distinguish trajectories that move
in the opposite direction. On the other hand, EDR (MAP=0.72) per-
forms better than MSM because it considers the sequence, and the
order of the stops distinguishes the classes. The measures for raw
trajectories perform very well because of the low number of stops in
this dataset and because the raw trajectories are similar in terms of
space, and the classes were build based on the moves spatial simi-
larity, so benefiting DTWa (MAP=0.92), LCSS (MAP=0.81), and
EDR (MAP=0.81).

Figure 4.4 shows the precision and recall results. Figure 4.4
(left) shows that SMSM was better to recover semantic trajectories of
the same class in all recall levels, while Figure 4.4 (right) shows that
all measures developed for raw trajectories, except wDF, performed
well, but the closest results to SMSM were achieved with DTWa.
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Semantic trajectories Raw trajectories
MAP AUC MAP AUC

SMSM 0.94 0.95 0.94 0.95
DTWa - - 0.92 0.93
EDR 0.72 0.73 0.81 0.83
LCSS 0.27 0.30 0.81 0.83
UMS - - 0.70 0.73
MSM 0.66 0.68 - -
wDF - - 0.54 0.58
CVTI 0.30 0.34 - -
MSTP 0.28 0.32 - -

Table 4.7 – MAP and AUC evaluation with the Geolife dataset

Figure 4.4 – precision and recall results to semantic (left) and raw
(right) trajectories

4.3 EVALUATION WITH A SYNTHETIC DATASET

The objective of this experiment with synthetic data is to
evaluate trajectory similarity considering trajectories with different
number of stops and the semantic dimensions of the moves, instead
of the raw points of the moves that were evaluated in the previous
experiments.

We generate the trajectories with the Hermoupolis trajec-
tory generator (PELEKIS et al., 2013), that allows creating trajecto-
ries based on pre-defined profiles. It generates semantic trajectories
where both stops and moves are semantically enriched with anno-
tations defined by the user. Therefore, it is possible to enrich the
moves between the stops with semantic information, such as the
transportation mean, the goal of the move, the name of the streets,
etc. Hermoupolis has several parameters to simulate real trajectories,
such as the definition of the average time of the moving object at
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each stop, the standard deviation of the time of each stop, the speed
of the moves, sampling rate, and so on. We generated 440 trajecto-
ries with several stops and moves, using as semantics of the stops
the POI category and the activity performed at the stop. For the
moves we generated the raw points with the following attributes:(i)
the transportation mode; (ii) the goal of the move; (iii) the traveled
distance; (iv) the average speed; and (v) the duration of the move.

There are two main differences of this experiment w.r.t. the
previous ones: (i) the trajectories of the ground truth have a different
number of stops; and (ii) the moves have several and heterogeneous
dimensions.

4.3.1 Ground Truth Definition

In this experiment we defined two classes, summarized in
Table 4.8: (i) students with a job (80 trajectories); and (ii) students
without a job (60 trajectories). What distinguishes the classes in this
experiment is not the followed paths, but mainly the time and the
duration of the stops, as well as the transportation mode and the
goal of the move. The trajectories of class (Student Workder) start
at Home, stay some time at the Mall working, after they go to the
University to study and then they go back Home. The primary
transportation mean is the public bus, but some trajectories move
on foot or by car. The trajectories of class (Only Student) also start
at Home, but instead of going to the Mall to work, they go to the
Mall either for shopping or for lunch. After this, the trajectories go
to University and end at Home. Besides the 140 trajectories of the
ground truth, we generated 300 other trajectories in the same area,
with distinct behaviors, to make the retrieval task more challenging.

Class Trajectories number of stops
Student worker 80 4 and 5
Only student 60 between 4 and 7

Table 4.8 – Ground truth trajectories

Figure 4.5 (left) shows the generated trajectories, where the
points in red are the trajectories of the ground truth, while the light
blue points represent the remaining trajectories of the dataset. Some
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stops are Home, University, Supermarket, Restaurant, Bar, Mall, etc.
Figure 4.5 (right) shows the trajectories of the ground truth.

Figure 4.5 – (left) Hermoupolis generated trajectories in red
(ground truth) and light blue (remaining); and (right)
Ground truth trajectories in green (student worker)
and blue (only student).

4.3.2 Results with the Synthetic Dataset

Following the methodology used in the previous experiments,
we calculate the precision and recall for the two classes in the ground
truth, comparing the results of SMSM with the other measures. The
dimensions used for the stops are: a) the spatial centroid of the stop;
b) the duration of the stop; and c) the stop name (Home, Mall, Uni-
versity, etc). For the moves we used several dimensions, including
the transportation mode, the goal of the move, the traveled distance,
average speed, and duration.

For measuring the stops similarity, we use: (i) the Euclidean
distance for space; (ii) the proportion of the intersection between the
time intervals of two stops, as given by Equation 3.7; and (iii) 1 for
the semantics in case of exact match and 0 for no match. For the
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moves, the transportation mode and the goal have similarity as 1 in
the case of exact match and 0 otherwise. The weights for the stops
and the moves are the same (0.5), and 0.33 for of the dimensions
space, time, and semantics. The thresholds used for each measure
are shown in Table 4.9. As in the previous experiments, we define the
thresholds for each dimension after having tested a range of values in
each dimension (space and time), and the best results are reported
for each measure.

Semantic trajectories Raw trajectories
Space (meters) Time (intersection proportion) Space (meters)

SMSM 300 0.1 -
MSM 300 0.2 -
LCSS 100 0.2 8
EDR 100 0.2 8

Table 4.9 – Spatial and temporal thresholds used for each measure

Table 4.10 presents the experimental results, in which we
tested SMSM with several attributes over the moves, and the best
results where achieved with the dimensions transportation mode and
goal. Comparing with measures for semantic trajectories, SMSM
(MAP=0.95) was around 14% more precise than LCSS (MAP=0.82),
EDR (MAP=0.82) and MSM (MAP=0.81). The other measures for
semantic trajectories had worse results, with MAP scores of 0.40
and 0.33 for MSTP and CVTI, respectively. As can be noticed in
the results, SMSM did not perform well for the dimensions duration,
average speed, and traveled distance, because these dimensions are
extracted from the moves raw points. As this experiment is char-
acterized by the semantic dimensions of the moves, we can also
notice that the measures for raw trajectories (EDR (MAP=0.51),
DTWa (MAP=0.45), LCSS (MAP=0.44), UMS (MAP=0.29)) that
performed well in the previous datasets where the moves raw points
were considered, achieved at maximum 51% of precision in the cur-
rent experiment.

Figure 4.6 (left) shows the precision and recall curves for all
similarity measures developed for semantic trajectories. SMSM, us-
ing the transportation mode as the semantic dimension of the moves,
is more accurate at each level, but EDR, LCSS, and MSM had good
results despite considering only the stops. All the remaining mea-
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Semantic Raw
MAP AUC MAP AUC

SMSM (Transportation Mode) 0.95 0.95 - -
SMSM (Goal) 0.93 0.94 - -
SMSM (Duration) 0.73 0.75 - -
SMSM (Average Speed) 0.72 0.75 - -
SMSM (Traveled Distance) 0.72 0.74 - -
EDR 0.82 0.85 0.51 0.54
LCSS 0.82 0.85 0.44 0.47
MSM 0.81 0.83 - -
DTWa - - 0.45 0.48
MSTP 0.40 0.44 - -
wDF - - 0.35 0.39
CVTI 0.33 0.37 - -
UMS - - 0.29 0.33

Table 4.10 – MAP and AUC evaluation for the Hermoupolis dataset

sures present worse results. Figure 4.6 (right) shows the precision
and recall curves for similarity measures developed for raw trajecto-
ries. In this dataset, all similarity measures developed for raw tra-
jectories had poor results, because each class has several paths for
each move, but what distinguishes the moves are not the raw points,
but the transportation mode.

Figure 4.6 – (left) precision and recall results for semantic trajec-
tories and (right) precision and recall results for raw
trajectories

4.4 PARAMETER ANALYSIS

SMSM has two important groups of parameters: i) the weights
to define the importance of stops/moves and dimensions; and ii) the
spatial threshold to define if two stops match in order to analyze the
moves. With the weights framework, SMSM is flexible to give more
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or less importance to the stops, moves, and dimensions.

To show the impact of the weight parameters on the similar-
ity analysis, we evaluate the weight of the stops and the moves in all
experimental datasets. Table 4.11 shows the results for the weight
varying from 0 to 1, where 0 means that the moves will be ignored
and 1 means that just the moves will be considered. As can be seen,
if the influence of the moves is ignored, i.e., weight = 0, and all im-
portance is given to the stops, SMSM reaches a MAP score of only
0.49 in the Taxi dataset, 0.72 in the Geolife dataset, and 0.75 in the
synthetic dataset, indicating a confusion between the similarity of
the trajectories that are also discriminated by the moves. The best
average result is achieved when the weight of the moves is set as 0.5,
i.e, half of the weight goes for the stops and the other half to the
moves. This is because the move information, such as the raw points
for the Taxi and Geolife dataset or the transportation mean for the
Hermoupolis, play a decisive role in the information retrieval task.

Stop weight Move weight Taxi (MAP) Geolife (MAP) Hermoupolis (MAP)
0.00 1.00 0.66 0.93 0.67
0.25 0.75 0.66 0.94 0.96
0.50 0.50 0.70 0.94 0.96
0.75 0.25 0.71 0.94 0.92
1.00 0.00 0.49 0.72 0.75

Table 4.11 – Impact of the weights over the moves in trajectory similarity

We also evaluate the behavior of SMSM as the spatial dis-
tance threshold of the stops varies, from very low values (50 me-
ters) up to very high values (2, 000 meters). As SMSM uses the
spatial match between the start stops and between the end stops of
two movement elements, the definition of this threshold has a great
impact in the similarity score of the trajectories because the num-
ber of stop matches will increase. Table 4.12 shows the impact of
the spatial threshold in the MAP results for the three experiments,
i.e., Geolife, Taxi, and Hermoupolis datasets. As can be observed,
there is not much variation in the results for the Geolife and Taxi
datasets, where the stops are spatially distant from each other. For
the synthetic dataset, when the distance threshold increases to 2, 000
meters, the precision decreases significantly, from 0.96 to 0.69, be-
cause the stops of different classes will have a spatial match and so
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the moves will be analyzed and many will match, so confusing the
classes.

Threshold (meters) Geolife (MAP) Taxi (MAP) Hermoupolis (MAP)
50 0.94 0.70 0.95
100 0.94 0.70 0.95
300 0.94 0.70 0.96
500 0.93 0.70 0.96
1000 0.93 0.70 0.93
2000 0.92 0.68 0.69

Table 4.12 – The MAP score for the spatial threshold variation from 50 up to 2,000
meters

4.5 RUNNING TIME EVALUATION

The computation time of a similarity analysis is affected
directly by two points: (i) the similarity measure employed; and (ii)
the number of points of the trajectories. In a similarity analysis task,
we compute a similarity matrix between all trajectories of a dataset.

Table 4.13 presents the average running times of 5 separate
runs for each similarity measure for semantic trajectories in seconds.
The running times of SMSM were higher than all other measures.
Comparing SMSM with the measures in the literature, the running
time of SMSM in the Taxi dataset (354 seconds) was about 4 times
higher than the CVTI (71 seconds) running time. In the Geolife
dataset, SMSM (135 seconds) was approximately 13 times higher
than MSM (7.8 seconds). In the Hermoupolis dataset, the SMSM
running time (4.5 seconds) is about 9 times higher than the running
time of CVTI (0.5 seconds). These differences rely on the move anal-
ysis performed by SMSM. In the Taxi and Geolife datasets, the move
is evaluated through the raw points of the movement, and in this
kind of analysis the quantity of GPS points affects proportionally the
running time. The Taxi dataset has 132, 680 GPS points in 6, 940 tra-
jectories, with 11, 936 moves. The similarity analysis task computes
the similarity between all trajectories and, consequently, all moves,
leading to perform 142, 468, 096 move spatial points comparisons.
The Geolife dataset has 806, 688 GPS points in 1, 976 trajectories,
with 6, 494 moves, leading to 42, 172, 036 move spatial points com-
parisons.
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The focus of SMSM is its accuracy in measuring the simi-
larity between semantic trajectories, and not on the running time.
However, there are some techniques that can be used to speed up the
running time, as the method proposed by Furtado in (FURTADO;
PILLA; BOGORNY, 2018).

On the Hermoupolis dataset where we used the semantic
information for the move comparison (transportation mode), the
SMSM running time was lower. The comparison of the semantic di-
mension is less computationally intensive, reducing the total running
time of the similarity analysis task.

Taxi Geolife Hermoupolis
CVTI 71 11 0.5
EDR 77 14 1.2
LCSS 79 13 1.0
MSM 191 7.8 2.8
MSTP 100 13 1.0
SMSM 354 135 4.5

Table 4.13 – The average running times (in seconds) of the similarity analysis for the
similarity measures for semantic trajectories

Table 4.14 shows the average running times for the similarity
measures for raw trajectories. SMSM performed much faster than
other measures on the Geolife and Hermoupolis datasets. That is
directly related to the trajectory number of points, since SMSM
compares semantic trajectories, with less points (as the stops and the
moves), and similarity measures for raw trajectories compare each
spatial point of each trajectory with the spatial points of all other
trajectories. For instance, in the Taxi dataset the average number of
points of the raw trajectories ≈ 19.12. When enriched with stops and
moves, each trajectory has ≈ 2.72 stops and each move about 8.43
points. The difference in the number of points (raw points or stops)
is about 1 order of magnitude. In the Geolife dataset that difference
is bigger, since the average number of points of the raw trajectories
is around 408, while the average number of stops in the semantic
trajectories ≈ 4.29, leading to the difference being about 2 order of
magnitude. The Hermoupolis dataset has the biggest difference on
average number of points of the two kinds of trajectories: the raw
trajectories have on average ≈ 3, 232.84 points, while the semantic
trajectories have ≈ 5.23 stops and the moves raw points are not
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analyzed, only their semantics.

Taxi Geolife Hermoupolis
DTWa 789 26,501 82,542
EDR 268 5,886 19,867
LCSS 255 5,919 20,337
UMS 729 5,219 17,086
wDF 240 1,302 3,177
SMSM 354 135 4.5

Table 4.14 – The average running time (in seconds) of the similarity measures devel-
oped for raw trajectories and the running time of SMSM

4.6 DISCUSSION

Trajectory data can have several formats. Depending on the
format and the application requirements, different trajectory analy-
sis and mining methods will be needed, and so different similarity
measures can be applied. For applications that use raw GPS data,
as trajectories of taxis, buses, or cars, with the intend to detect,
for instance, traffic conditions or traffic jams, the most appropri-
ate measures are UMS and DTWa. UMS is robust for trajectories
with different sampling rates or different distances between trajec-
tory points (the case when a trajectory varies the speed in a city),
because instead of using a radius around each trajectory point to
find the similar trajectories in the spatial neighbourhood, it uses
ellipses between every two trajectory points, and the size of the
ellipses is dinamically defined based on the distance between two
trajectory points. UMS is not the best measure in highly sampled
trajectories, where the ellipses are very small. In this case, DTWa is
a good choice.

For applications that use GPS trajectories annotated only
with stops or where the moves are not important, or trajectories
extracted from social media data, which are more sparse and that
do not have moves, the best measure is MSM. MSM is useful in
applications where one is interested in finding users that visit the
same places, at similar times, but where the order of the visits is not
important. In tourism applications where the analyst wants to find
similar tourist trajectories to either predict or to recommend the
next place to be visited, MSM is not appropriate because it ignores
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the order. When the sequence of the visited places is important, even
when the details about the moves are not available, SMSM is more
appropriate, because it considers the order of the stops.

For dealing with GPS trajectories enriched with both stops
and moves, and the spatial, temporal or semantic characteristics of
both stops and moves are important, SMSM is the most appropriate
measure. In a tourism application, for instance, where the tourist
has a time constraint to visit a city, a sequence of visits can be
recommended based on the similarity analysis of other tourists that
visited the same city. SMSM is also robust in applications that focus
on the most similar paths or popular routes between stops.

It is important to emphasize that for applications where the
spatial movement of the moves is important, i.e., the raw trajectory
points, SMSM can use UMS for the move similarity when trajecto-
ries have low sampling rate, and DTW when trajectories have high
sampling rate.
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Conclusion

In this work we proposed SMSM, a new similarity measure
for semantic trajectories that supports both stops and moves. To the
best of our knowledge, SMSM is the first semantic trajectory simi-
larity measure that deals with both stops and moves and their space,
time and semantic dimensions. Our similarity measure is robust to
consider multiple dimensions of stops and moves, where a move, for
instance, can be represented as raw points, the traveled distance, the
major direction, the names of streets, the transportation mode, etc.

SMSM is framework that supports the definition of weights
for stops, moves and dimensions, so the measure is flexible to give
more or less importance for specific parts of trajectories. On the
other hand, these weights may be difficult to estimate from the user
point of view, but in case he has no knowledge about the domain,
the best option is to define the same weight for all elements.

We performed experiments using real and synthetic data of
distinct contexts, including car trajectories and pedestrian trajecto-
ries. By evaluating SMSM with an information retrieval approach,
we show that SMSM was more accurate than other measures devel-
oped either for raw or semantic trajectories.
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We also evaluate the impact of the matching thresholds and
weights in SMSM similarity, as well as its running time with respect
to other measures.

SMSM requires a full spatial match between the start and
end stops of two movement elements to evaluate the move. In future
works we will study an extension of SMSM to evaluate the move in
cases where the final stops of two movement elements do not have a
match. Another future work is the expansion of the movement ele-
ment in order to look ahead, not only to the final stop of a movement
element. In other words, the idea is to allow movement elements with
noise/gaps. For instance, a trajectory J1 that goes from A to B and
a trajectory J2 that goes from A to X to B. According to SMSM,
both trajectories will have little match, because J2 has a stop X

between A and B. An extension of SMSM to allow a more flexible
construction of the movement element could benefit the semantic
trajectory similarity.
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