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RESUMO

Os sistemas comunicação sem fio 5G e além (B5G, do inglês Beyong 5G) permitirão a
plena implantação de aplicações existentes, como carros autônomos, redes de sensores
massivas e casas inteligentes. Para tornar essas aplicações possíveis, requisitos rigoro-
sos, como alta eficiência espectral e ultra baixa latência de comunicação, devem ser
atendidos. Para atender a esses requisitos, diferentes tecnologias-chave estão em desen-
volvimento, como comunicações de Ondas Milimétricas (mmWave, do inglês Millimeter
Wave) e Superfícies Refletivas Inteligentes (IRS, do inglês Intelligent Reflecting Sur-
faces). As comunicações mmWave têm atraído grande interesse devido ao abundante
espectro de frequência disponível, ao contrário das bandas congestionadas adotadas nas
redes 4G. No entanto, as bandas mmWave apresentam características de propagação
desfavoráveis. Para superar tais problemas de propagação, o uso de beamforming alta-
mente direcional é uma solução eficaz. Além disso, recentemente, uma tecnologia de
baixo custo e alta eficiência energética denominada IRS, uma meta-superfície equipada
com um grande número de elementos passivos de baixo custo, capaz de refletir o sinal
incidente com uma dada mudança de fase/amplitude, foi desenvolvida para otimizar
a capacidade da rede. Implantando densamente IRSs em redes de comunicação sem
fio e coordenando seus elementos de maneira inteligente, os canais sem fio entre o
transmissor e o receptor podem ser intencional e deterministicamente controlados para
melhorar a qualidade do sinal no receptor. Embora essas tecnologias tenham inúmeros
benefícios para o desempenho do sistema, elas apresentam muitos desafios em sua
implantação. Mais especificamente, embora as bandas mmWave permitam considerar
o uso de beamforming altamente direcional tanto na BS quanto no UE, isto pode
representar um desafio para o processo de Acesso Inicial (IA, do inglês Initial Access)
pois, uma vez que a transmissão omnidirecional não pode ser aplicada, devido ao seu
baixo ganho de potência e SNR recebido, a duração geral do IA pode ser muito longa.
O atraso causado pela busca direcional deve ser pequeno para atender a alguns dos
requisitos das redes B5G como baixa latência de ponta-a-ponta. Além disso, apesar
da capacidade das IRSs de controlar os canais sem fio, o projeto do beamforming na
BS e na IRS é um problema desafiador devido à necessidade de estimar a informação
de estado do canal (CSI, do inglês Channel State Information) de todos os links do
sistema. No entanto, para estimar o CSI entre a IRS e a BS ou entre a IRS e o UE,
cada elemento da IRS precisa ser equipado com uma cadeia de radiofrequência (RF,
do inglês Radio Frequency), o que aumenta consideravelmente o custo e o consumo
de energia do sistema e vai contra algumas das principais vantagens de utilizar IRSs
em sistemas de comunicação sem fio. Portanto, motivados pelos problemas emergen-
tes acima, nesta tese, pretendemos desenvolver novos métodos baseados em técnicas
de Computação Evolutiva tais como, Algoritmos Genéticos (GA, do inglês Genetic
Algorithm) e Otimização por Enxame de Partículas (PSO, do inglês Particle Swarm



Optimization), visando resolver o problema de IA e realizar o projeto do beamforming
na BS e IRS sem conhecimento prévio do CSI na BS. Os resultados obtidos nesta tese
mostram que os métodos desenvolvidos podem reduzir consideravelmente o atraso e
alcançar um desempenho próximo ao ótimo no problema de projeto do beamforming
na BS e IRS com sobrecarga de treinamento reduzida.

Palavras-chave: 5G, 5G e além, ondas milimétricas, acesso inicial, superfícies refletivas
inteligentes.



RESUMO EXPANDIDO

Introdução
Como a 5G já iniciou a sua fase de implantação comercial, a indústria e a aca-

demia começaram a focar sua atenção no desenvolvimento da evolução das redes 5G
e da próxima geração de sistemas de comunicação sem fio. Os sistemas sem fio B5G
permitirão a plena implantação de aplicações emergentes já existentes, como carros
autônomos, grandes redes de sensores, telemedicina e casas inteligentes. Para tornar
essas aplicações possíveis, requisitos rigorosos como conectividade massiva, alta efi-
ciência espectral, cobertura e taxa de dados, além de latência ultrabaixa, devem ser
atendidos. A fim de atender a esses requisitos, várias tecnologias candidatas foram
propostas, como comunicações mmWave e IRSs.

As comunicações mmWave têm atraído grande interesse da academia e da indústria
devido ao abundante espectro disponível, ao contrário das bandas congestionadas em
UHF e frequências sub-6GHz adotadas pelas redes 4G. No entanto, as bandas de
mmWave apresentam características de propagação desfavoráveis devido à alta perda
de percurso, atenuação atmosférica e de chuva, bloqueio e baixa difração em torno de
obstáculos. Para superar esses problemas, o uso de beamforming altamente direcional
é uma solução eficaz e pode ser obtida a partir do uso de grandes arranjos de antenas
na BS e no UE.

As IRSs emergiram recentemente como um novo paradigma promissor para alcan-
çar ambientes de propagação inteligentes e reconfiguráveis para sistemas de comunica-
ção sem fio B5G. Uma IRS é uma meta-superfície que compreende um grande número
de elementos refletivos, capazes de refletir o sinal incidente com um dado deslocamento
de fase/amplitude. Ao implantar IRSs em redes de comunicação sem fio e coordenar
de forma inteligente seus elementos, os canais sem fio entre o transmissor e o receptor
podem ser intencional e deterministicamente controlados para melhorar a qualidade do
sinal no receptor e, consequentemente, a capacidade e confiabilidade da rede.

Apesar de essas tecnologias-chave apresentarem inúmeras vantagens para o de-
sempenho do sistema, sua implantação apresenta diversos desafios para os projetistas
de redes de comunicação sem fio. Mais especificamente, embora as bandas mmWave
permitam a melhoria da capacidade do sistema através da implantação de um grande
número de antenas na BS e no UE, isso pode ser desafiador para o processo de IA, pelo
qual o UE estabelece um link físico com a BS. A duração geral do processo IA pode
ser muito longa devido ao atraso causado pela busca direcional. No entanto, o atraso
de IA deve ser pequeno para atender a alguns os requisitos emergentes das redes B5G,
como por exemplo baixa latência ponto-a-ponto. Além disso, embora a implantação
de IRSs em redes sem fio permita que os canais sem fio sejam deterministicamente
controlados, projetar o beamforming na BS e na IRS é um problema desafiador devido



ao overhead necessário para estimar os canais do sistema. Além deste grande overhead,
estimar o CSI entre IRS e BS ou entre IRS e UE requer que cada elemento da IRS
seja equipado com uma cadeia de radiofrequência o que aumenta consideravelmente o
custo e o consumo de energia do sistema, além de contrariar as principais motivações
para a implantação de IRSs em redes B5G

Portanto, motivados pelos problemas previamente apresentados, nesta tese, novos
métodos baseados em técnicas de Computação Evolutiva, isto é, GA e PSO, são apre-
sentados. Essas técnicas têm sido amplamente aplicadas nos mais diversos problemas
de otimização devido à sua simplicidade de implementação, baixos custos operacio-
nais e fácil paralelização. A partir dos métodos desenvolvidos o problema de IA em
sistemas mmWave e o projeto de beamforming na BS e IRS foram resolvidos com su-
cesso, demonstrando a relevância e eficiência dessas técnicas na resolução de problemas
emergentes das redes B5G.

Objetivos
O objetivo principal desta tese é o desenvolvimento de novos métodos baseados

em técnicas de Computação Evolutiva para a resolução de problemas emergentes de
sistemas de comunicação B5G. Além disso, os objetivos específicos desta tese são:

• Desenvolver um novo método baseado em técnicas de Computação Evolutiva para
resolver o problema de IA em sistemas MIMO mmWave.

• Desenvolver um novo método baseado em técnicas de Computação Evolutiva
visando realizar o projeto de beamforming na BS e na IRS sem a necessidade de
estimar o CSI instantâneo de todos os links do sistema.

Em relação à Computação Evolutiva, o objetivo é demonstrar que esses méto-
dos podem ser usados com sucesso para resolver problemas emergentes relevantes e
complexos das redes B5G. Assim, o foco não é ajustar os parâmetros dos algoritmos
propostos para atingir um desempenho ótimo, mas demonstrar que eles são capazes de
atingir um desempenho próximo ao ótimo com complexidade razoável e configuração
padrão. A otimização detalhada dos parâmetros do PSO e GA é deixada como um
potencial trabalho futuro.

Metodologia
A pesquisa desenvolvida para elaboração desta tese iniciou-se com uma revisão

biliográfica dos principais problemas encontrados na implantação das redes B5G. Mo-
tivados pelos problemas apresentados na literatura, dois problemas emergentes foram
selecionados para serem alvo de estudo nesta tese, são eles: IA em sistemas mmWave
e projeto de beamforming em redes assistidas por IRS.



Após definido os problemas a serem abordados, foi realizada uma revisão bibli-
ográfica das técnicas de IA existentes na literatura, visando elencar suas principais
características, vantagens e desvantagens. Além disso, foi realizado um estudo das
características de propagação em sistemas mmWave e de técnicas de beamforming a
serem utilizadas com o objetivo de otimizar o desempenho do sistema.

Ademais, realizou-se um amplo estudo das características físicas das IRSs e dos
principais desafios existentes para sua plena implantação em redes B5G. Tendo em
vista que ambos os problemas de otimização, alvo de estudo nesta tese, são não
convexos, ou seja, não existe um método padrão para resolvê-los, foi realizado um
estudo aprofundado das principais técnicas de Computação Evolutiva existentes e da
viabilidade de utilizá-las na resolução dos problemas abordados.

Para finalizar, foi realizado o desenvolvimento de métodos baseados em técnicas
de Computação Evolutiva capazes de reduzir o atraso inserido pela busca celular no
procedimento de IA e realizar o projeto sub-ótimo do beamforming na BS e IRS
reduzindo o consumo de energia do sistema e otimizando o seu desempenho. Os
métodos desenvolvidos foram avaliados em diferentes cenários, visando comprovar sua
eficiência e aplicabilidade em aplicações práticas.

Resultados e Discussão
Nesta tese, tanto o problema de IA em sistemas mmWave quanto o projeto de

beamforming em sistemas sem fio assistidos por IRS são abordados. Uma das principais
contribuições desta tese é mostrar que a Computação Evolutiva pode ser usada com
sucesso para resolver tais problemas de otimização os quais são relevantes para o pleno
desenvolvimento das redes B5G.

Nesta tese, diferentes problemas de otimização são apresentados e resolvidos com
sucesso usando técnicas de Computação Evolutiva. Mais especificamente, um método
de refinamento de feixe baseado em GA é proposto a fim de reduzir o atraso da busca
direcional no procedimento de IA em sistemas mmWave, considerando cenários com
e sem restrições de atraso. O método proposto foi avaliado em diferentes cenários.
Através dos resultados obtidos foi possível concluir que o método proposto apresenta
um excelente desempenho quando comparado a outras heurísticas apresentadas na
literatura e pode atingir os mesmos resultados que a Busca Exaustiva (ES, do inglês
Exhaustive Search). Além disso, o algoritmo proposto pode reduzir o atraso de busca
celular introduzido pelo uso de beamforming na BS e UE.

Ademais, a implantação de IRSs em sistemas de comunicação sem fio é estudada
e diferentes abordagens são avaliadas. Incialmente, um novo método baseado em
PSO é proposto a fim de minimizar a potência de transmissão na BS, otimizando
conjuntamente o beamforming na BS e na IRS considerando fases contínuas na IRS e



restrição de taxa mínima no UE. A solução proposta alcançou um desempenho próximo
ao ideal com uma quantidade razoável de feedback do UE, permitindo o uso de IRS sem
a necessidade de implantar uma cadeia de RF por elemento, já que não é necessário
realizar a aquisição do CSI, reduzindo, assim, o custo e o consumo de energia do
sistema. Para finalizar, um cenário mais realista o qual considera fases discretas na IRS,
é avaliado. Em seguida, duas soluções diferentes são propostas. Primeiramente, um
novo método baseado em GA é proposto, o qual não considera nenhum conhecimento
do CSI na BS. Um projeto sub-ótimo de beamforming na BS e na IRS, considerando
mudanças de fase discretas, é apresentado. Para finalizar, outra solução baseada em
GA é proposta com o objetivo de resolver o problema de projeto do beamforming
explorando apenas o conhecimento estatístico do canal. As novas soluções foram
avaliadas considerando diferentes configurações de parâmetros do sistema e, a partir
dos resultados obtidos, pôde-se concluir que os métodos propostos apresentam um
ótimo desempenho considerando fases discretas com um pequeno números de bits
de controle em cada elemento e com uma quantidade razoável de feedback do UE.
Portanto, as soluções propostas são muito atrativas na prática.

A partir dos resultados apresentados nesta tese, é possível confirmar a eficiência das
técnicas de Computação Evolutiva na solução de problemas emergentes de otimização
não convexa relacionados a sistemas sem fio B5G.

Considerações Finais
Nesta tese diferentes problemas emergentes das redes B5G são abordados a partir

da aplicação de técnicas de Computação Evolutiva. Mais expecificamente, esta tese
demostra que a Computação Evolutiva pode ser usada com sucesso para resolver
o problema de IA em sistemas de comunicação mmWave e otimizar o projeto de
beamforming em sistemas sem fio assistidos por IRS. No entanto, alguns cenários
práticos, otimização de parâmetros e outros problemas de otimização emergentes não
são investigados e são propostos em trabalhos futuros.

Palavras-chave: 5G, 5G e além, ondas milimétricas, acesso inicial, superfícies refletivas
inteligentes.



ABSTRACT

Beyond 5G (B5G) wireless systems will enable the deployment of demanding appli-
cations such as autonomous cars, massive sensor networks, and smart homes. To
make these applications possible, stringent requirements such as improved spectrum
efficiency and low communication latency must be fulfilled. In order to meet these
requirements, different key technologies are in development such as millimeter Wave
(mmWave) communications and Intelligent Reflecting Surfaces (IRS). The mmWave
communications have attracted great interest due to the abundant available spectrum,
unlike the congested bands adopted in the 4G networks. However, the mmWave bands
present poor propagation characteristics. To overcome these propagation issues, the
use of highly directional beamforming is an effective solution. In addition, recently, an
energy-efficient and low-cost technology named IRS, which is a meta-surface equipped
with a large number of low-cost passive elements, capable of reflecting the incident
signal with a given phase/amplitude shift, was developed to increase the network ca-
pacity. By densely deploying IRSs in wireless communication networks and intelligently
coordinating their elements, the wireless channels between the transmitter and receiver
can be intentionally and deterministically controlled to improve the signal quality at the
receiver. Although these technologies have uncountable benefits for the system perfor-
mance, they present many challenges in their deployment. More specifically, although
the mmWave bands allow to consider highly directional beamforming at the BS and
UE, this can be challenging for the Initial Access (IA) process. Since omnidirectional
transmission may not be applied, due to its low power gain and received SNR, the
overall duration of IA can be very long. The delay caused by directional search must
be small to meet some of the B5G requirements for low end-to-end latency. Moreover,
despite the capacity of controlling the wireless channels of the IRSs, designing the
beamforming at the BS and at the IRS is a challenging problem due to the necessity of
estimating the channel state information (CSI) of all system links. However, to estimate
the CSI between IRS and BS or between IRS and UE, each element of the IRS needs to
be equipped with one radio-frequency (RF) chain which greatly increases the cost and
energy consumption of the system and goes against some of the original advantages
of using an IRS. Therefore, motivated by the above emerging problems, in this thesis,
we intend to develop new methods based on Evolutionary Computation techniques,
i.e., Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), to solve the IA
problem and to design the beamforming at the BS and IRS without CSI. Results show
that the developed methods can reduce the IA delay and achieve a close-to-optimal
performance in the IRS beamforming problem with reduced training overhead.

Keywords: 5G, 5G and beyond (B5G), Millimeter Wave, Initial Access, Intelligent
Reflecting Surfaces.
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Chapter 1
Introduction

As the fifth generation (5G) of wireless cellular systems is being deployed
commercially, the industry and academy focused their attention to the development
of its evolution and the next generation, named Beyond 5G (B5G). The B5G wireless
systems will enable the deployment of demanding applications such as autonomous cars,
massive sensor networks, telemedicine, and smart homes. To make these applications
possible, stringent requirements such as massive connectivity, improved spectrum, higher
efficiency, coverage, and data rate, besides ultra-low latency must be fulfilled. In order
to meet these requirements, various candidate technologies have been proposed such as
millimeter wave (mmWave) communications and Intelligent Reflecting Surfaces (IRS).

The mmWave communications have attracted great interest from academy and
industry due to the abundant available spectrum, unlike the congested bands in UHF
and sub-6GHz frequencies adopted in 4G networks [1]. However, the mmWave bands
present poor propagation characteristics due to the high path-loss, atmospheric and
rain attenuation, blockage and low diffraction around obstacles [2]. To overcome these
propagation issues, the use of highly directional beamforming is an effective solution.
Advances in the CMOS RF circuits together with the small wavelengths of mmWave
allow for the use of antenna arrays formed by a large number of antennas at the
Base Station (BS) and at the User Equipment (UE) [2, 3]. These large arrays allow
for high-performance beamforming, which can improve range, directivity, and spatial
multiplexing, thus obtaining a large capacity [4, 5].

Intelligent reflecting surfaces, also called reconfigurable intelligent surfaces [6],
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large intelligent surfaces [7], and software-controlled metasurfaces [8], have recently
emerged as a promising new paradigm to achieve smart and reconfigurable radio
propagation environments for B5G wireless communication systems [9]. An IRS is a
meta-surface comprising a large number of reflecting elements, capable of reflecting the
incident signal with a given phase/amplitude shift. By densely deploying IRSs in wireless
communication networks and intelligently coordinating their elements, the wireless
channels between the transmitter and receiver can be intentionally and deterministically
controlled to improve the signal quality at the receiver, and consequently the network
capacity and reliability [10–13].

Despite these key technologies have countless advantages for the system perfor-
mance, their deployment presents many challenges to the designer. More specifically,
although the mmWave bands allow the improvement of the system capacity by the
deployment of a huge number of antennas at the BS and UE, i.e., the use of high-
performance beamforming at the BS and UE, this can be challenging for the Initial
Access (IA) process, whereby the UE establishes a physical link with the BS [14]. Since
omnidirectional transmission may not be applied, due to its low power gain and received
SNR, while the best pair of beams between BS and UE is not known a priori, the overall
duration of IA can be very long, as in principle multiple preambles must be transmitted
repeatedly with all transmit/receive beam pairs. The delay caused by directional search
must be small to meet some of the B5G requirements for low end-to-end latency [15–
17].

Moreover, although the capacity of controlling the wireless channels presented
by the IRSs, designing the beamforming at the BS and the phase shifts at the IRS is
a challenging problem due to the system overhead necessary to estimate all channels
link. It is notable that, most works in the literature consider perfect Channel State
Information (CSI) at the BS [12, 18–22]. Estimating the CSI between IRS and BS
or between IRS and UE requires that each element of the IRS be equipped with one
radio-frequency (RF) chain. However, the low cost of the reflecting elements is key
in the IRS paradigm and installing multiple RF chains leads to high cost and energy
consumption, going against some of the original motivations of using an IRS.

Therefore, driven by the previous issues, in this thesis, new methods based on
Evolutionary Computation techniques, i.e., Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO), are presented. These techniques have been widely applied in the
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most diverse optimization problems [23–26], due to their simplicity of implementation,
low operating costs, and easy parallelization [27]. With the developed methods the IA
in mmWave bands and the beamforming at the BS and IRS were successfully solved,
demonstrating the relevance and efficiency of these techniques in solving emerging
problems of B5G.

1.1 THESIS GOALS

The main goal of this thesis is the development of new methods based on
Evolutionary Computation techniques in order to solve emerging problems of B5G. In
addition, the specific goals of this thesis are:

1. To develop a new method based on Evolutionary Computation in order to solve
the IA problem in mmWave Multiple-Input Multiple-Output (MIMO) systems.

2. To develop a new method based on Evolutionary Computation in order to jointly
design the beamforming at the BS and the phase shifts at the IRS without the
need of estimating the instantaneous CSI (I-CSI).

Regarding Evolutionary Computation, the goal is to show that these methods
can be successfully used to solve relevant and complex emerging problems in B5G
systems. Thus, the focus is not to tune the parameters of the proposed algorithms to
achieve the ultimate performance, but to demonstrate that they are able to achieve
close-to-optimal performance with reasonable complexity and standard configuration.
The detailed optimization of the parameters involved in the PSO and GA algorithms is
left as a potential future work.

1.2 CONTRIBUTIONS

The contributions of this thesis can be divided in two parts as follows.

1. With respect to IA in mmWave communications:

• The development of a meta-heuristics method based on GA to solve the
IA problem in mmWave systems using analog beamforming, reducing the
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IA delay compared to [23–25]. Consequently, the proposed method also
outperforms Link-by-Link search [28], Two-Level search [29, 30], and Tabu
search [31].

2. Regarding IRS beamforming design:

• The development of a meta-heuristics method based on PSO to design the
beamforming at the BS and the phase shifts at the IRS, without requiring
any CSI acquisition and considering continuous phases at the IRS, while
achieving close-to-optimal performance.

• The development of a meta-heuristics method based on GA to design the
beamforming at the BS and the phase shifts at the IRS, exploring the
Statistical Channel State Information (S-CSI) knowledge and considering
discrete phases at the IRS, while achieving close-to-optimal performance
with very limited training and control overhead.

1.3 PUBLISHED PAPERS

From the results obtained in this thesis the following papers were published.

• V. D. P. Souto, R. D. Souza, B. F. Uchôa-Filho, A. Li and Y. Li, "Beamforming
Optimization for Intelligent Reflecting Surfaces without CSI," in IEEE
Wireless Communications Letters, vol. 9, no. 9, pp. 1476-1480, Sept. 2020, doi:
10.1109/LWC.2020.2994218.

• V. D. P. Souto, R. D. Souza, B. F. Uchôa-Filho and Y. Li, "A Novel Efficient
Initial Access Method for 5G Millimeter Wave Communications Using
Genetic Algorithm," in IEEE Transactions on Vehicular Technology, vol. 68,
no. 10, pp. 9908-9919, Oct. 2019, doi: 10.1109/TVT.2019.2935695.

• V. D. P. Souto, R. D. Souza and B. F. Uchôa-Filho, "Tx-Rx Initial Access
and Power Allocation for Uplink NOMA-mmWave Communications,"
XXXVIII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais
(SBrT2020), Florianópolis, SC, Brasil, 22-25th November 2020,
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• V. D. P. Souto, R. D. Souza and B. F. Uchôa-Filho, "Power Allocation
and Initial Access Using PSO for Uplink NOMA mmWave Communi-
cations," 2019 IEEE 30th Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 2019, pp. 1-6,
doi: 10.1109/PIMRC.2019.8904292.

• V. D. P. Souto, R. D. Souza and B. F. Uchôa-Filho, "Acesso Inicial Utilizando
Algoritmos Genéticos para Redes Celulares 5G mmWave," XXXVI Sim-
pósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT2018),
Campina Grande, PB, Brasil, 16-19th September 2018.

1.4 DOCUMENT STRUCTURE

The rest of this thesis is organized as follows.

• Chapter 2 presents the basics concepts and operation of different metaheuristic
algorithms (GA and PSO).

• Chapter 3 discusses the initial access optimization problem, the proposed solu-
tion, and the obtained results.

• Chapter 4 introduces the beamforming optimization problem for IRS-assisted
network, the approaches proposed in this thesis, and the obtained results.

• Chapter 5 concludes this thesis.

1.5 HOW TO READ THIS THESIS

Chapters 3 and 4 present two different emerging problems in B5G wireless
systems, i.e., mmWave communications and IRS beamforming, respectively. Both chap-
ters bring a short description of the Evolutionary Computation method used to solve
their respective optimization problem. Therefore, they are somewhat self-contained and
they may be read independently, based on the reader’s interest. However, if the reader
has no familiarity with Evolutionary Computation Methods, then reading Chapter 2 is
recommended.
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Chapter 2
Evolutionary Computation
Techniques

Evolutionary Computation techniques have attracted great interest due to their
ability to solve complex optimization problems from different fields. These techniques
are inspired by biological evolution process, swarm behavior, and physics [32]. Among
the main Evolutionary Computation techniques, Genetic Algorithm (GA) and Parti-
cle Swarm Optimization (PSO) are algorithms widely used for handling optimization
problems. Their main concepts and operation are presented in this chapter.

2.1 GENETIC ALGORITHMS

GA are based on the Theory of Evolution by natural selection proposed by
Charles Darwin [33], which proves that the individuals change over time and these
changes help them to survive and to reproduce in order to generate more descendants
in the next generations. GAs have been widely applied in the most diverse optimization
problems, due to their simplicity of implementation, low operating costs, and easy
parallelization [27].

2.1.1 Basic Concepts and Operation

Many concepts and terminologies from Biology are used as a theoretical basis
in GAs. The main terms used in this work are: gene, chromosome, parents, children,
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Table 2.1 – The meaning of the main GA parameters.

GA Parameter Meaning
Chromosome Optimization variable.

Individual The set of all optimization variables in the problem.
Population A set of all possible solutions for the optimization problem.

Parents Individuals selected in the Selection Method.
Children Individuals generated by the Crossover Operator.

Fitness Function Performance metric defined by the optimization problem.
Fitness Output of the fitness function.

Generation Iteration of the algorithm.

and fitness function. A gene is defined as an optimization variable which is represented
in coded form. A chromosome represents a finite number of genes that characterize
an individual. Parents are the individuals selected by the process of natural selection
to participate in the reproduction process. Children are the resulting individuals of this
operator, and the value of the fitness function represents the degree of suitability of
each individual in the environment in which they live [27, 34]. In order to improve the
understanding about this terms, Table 2.1 presents the meaning of theses terms in the
optimization process. In addition, the basic operation of a GA can be described by the
following steps [27, 35]:

1. Randomly generate the individuals of the first generation;

2. Compute the fitness of each individual;

3. Elitism: Create a set with some of the fittest individuals of the current generation
and perpetuate these individuals to the next generation;

4. Select some individuals (named parents) by the Selection Method, which will
be submitted to the Reproduction Process (Crossover and Mutation Operators).

5. Crossover Operator: This operator makes the permutation of the genetic ma-
terial of the selected parents with probability pc and generates children.

6. Mutation Operator: The individuals generated in the previous step are submit-
ted to the Mutation Operator with probability pmut.
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7. Generate the new population by the union of the of individuals selected in Steps
3 and the new individuals generated in Step 6.

8. The GA finishes if the stop criterion is fulfilled. Otherwise, return to Step 2.

2.1.2 Selection Methods

As in the Theory of Evolution where the fittest individuals are more likely
to be selected to reproduce and generate more decedents, GAs implement selection
methods where each individual’s fitness value is considered so that they are selected
to participate in the reproduction process. In the current literature, several selection
methods are described [27, 36]. However, in this work, only the Tournament Method [27]
is considered and its operation is described next.

The Tournament Method takes some individuals to participate in a tournament,
where the selection criterion is the fitness value of each individual, that is, the individual
with the highest fitness wins the tournament and is selected to participate in the
reproduction process [27, 34, 36]. Moreover, the tournament size (Ttourn) defines how
many individuals must be selected to participate in each tournament [27]. As can be
seen, in this method, there is no favoritism for the fittest individuals due to the fact that
individuals with low fitness can be selected in some tournaments. Consequently, this
selection method can help to improve the genetic diversity of the next generation. In
order to improve the understanding of the reader, Figure 2.1 exemplifies the operation
of this method for Ttourn = 2.

2.1.3 Genetic Operators

After applying the selection method, the remaining individuals are submitted
to probabilistic modifications through the genetic operators. The main goal of these
operators is to optimize the individuals’ fitness through successive generations. The
main genetic operators presented in the literature are the crossover and mutation
operators [27, 34, 35], which are described next.
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Figure 2.1 – Tournament method example.

2.1.3.1 Crossover Operator

In this operator, the characteristics of two or more selected parents are exchanged
to form descendants. This operator is applied according to a given crossover probability
pc, which must be high to guarantee the genetic diversity of the next generation. There
are many crossover operators described in the literature. In this work, only the Discrete
Crossover Operator [27] is considered, as described next.

After selecting the individuals who will participate in the reproduction process,
a binary value (0 or 1) is drawn for each gene. If the value is “1” (resp., “0”) then the
first child receives the gene from the current position of the first (resp., second) parent
and the second child receives the gene from the current position of the second (resp.,
first) parent. The discrete crossover operator is used to create only two children, if the
designer needs to create more than two children it is recommended to choose another
crossover operator. Figure 2.2 exemplifies the discrete crossover operator.

Figure 2.2 – Discrete crossover operator example.
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2.1.3.2 Mutation Operator

Mutation operates on the individuals resulting from the crossover operator,
inserting new genetic material in the population. This operator is considered in order
to increase the genetic variability of the next generations and to avoid the GA from
being stuck in a local optimum solution. In addition, this operation improves the
performance and accuracy of the GA. There are many crossover operators described in
the literature [27, 36]. In this work, the Real Random Mutation Operator is evaluated
and its basic operation is described next.

The real random mutation operator randomly selects a value belonging to a
predetermined range and replaces the current value of a randomly selected gene with
the previous selected value. This operator is applied according to a given mutation
probability pmut [27, 34], which should be low to avoid that the GA becomes a random
search. Figure 2.3 illustrates this operation.

6.1 4.5 3.0 2.1 1.5 7.1 8.9

PRE-MUTATION INDIVIDUAL

6.1 4.5 4.1 2.1 1.5 7.1 8.9

INDIVIDUAL AFTER MUTATION

SELECTED VALUE

4.1 PREDETERMINED RANGE
[0,10]

Figure 2.3 – Real random mutation operator example.

2.1.4 Elitism

Elitism is a method that is used to ensure that the genetic material of the
fittest individuals of the current generation will be perpetuated to the next generation,
improving the GA convergence. In Elitism, the Nf best individuals of a population are
selected and kept to the next generation without going through the crossover and
mutation operators. This method guarantees that the quality of the solution obtained
by the GA does not decrease in the next generation. In addition, elitism improves the
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performance of GA because this concept ensures that the GA does not waste time
re-discovering good solutions previously analyzed [27, 36].

2.1.5 Stop Criterion

In order to avoid to simulate indefinitely, it is necessary to define a stop criterion.
There are some possible approaches: (i) Maximum number of iterations; (ii) When the
diversity of the population is very small or non-existent, i.e., the individuals present
similar fitness and keep these fitness for at least a predefined number of iterations;
(iii) A predetermined fitness value is reached. In this work, the maximum number of
iterations is used as a stop criterion.

2.2 PARTICLE SWARM OPTIMIZATION

PSO technique is a stochastic optimization approach based on the social be-
havior of some animal species, which present the capacity to work collectively [37].
Although PSO does not consider any concept of natural selection, it is classified as
an evolutionary method as PSO makes use of populations of individual solutions and
presents similar aspects to evolutionary operators implemented by GAs. In addition,
PSO also considers collaboration strategies in order to evolve its population [38]. It is
important to emphasize that PSO is effective in optimizing non-convex problems with
continuous variables and it has been widely applied in several optimization problems [26],
due to its simplicity of implementation and low computational complexity [37].

2.3 BASIC CONCEPTS AND OPERATION

PSO uses some terminologies for its main parameters that need to be clearly
understood. The main terms used by this technique are: particle, swarm, velocity, posi-
tion, gbest, and pbest. A particle is a possible solution to the optimization problem and
represents a position in the search space, as particle represents the set of optimization
variables in the optimization problem. The swarm is the set of all particles in the
current iteration, i.e., it represents all possible solutions in the current iteration. The
velocity is the speed that one particle changes its position. In addition, PSO explores
the experience of its particles. Thus, gbest is defined as the swarm experience, and
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pbest denotes the individual experience, which are obtained by evaluating the position
of each particle through a fitness function. Each particle presents its own pbest value
and all particles present the same gbest value. In order to improve the understanding
about these terms, Table 2.2 presents their meaning in the optimization process. In
addition, the basic operation of a PSO is described by the following steps [37]:

Table 2.2 – The meaning of the main PSO parameters.

PSO Parameter Meaning
Particle The set of all optimization variables in the problem.
Swarm A set of all possible solutions for the optimization problem.

Fitness Function Performance metric defined by the optimization problem.
Fitness Output of the fitness function.
gbest The best fitness value reached by the swarm up to the current

iteration.
pbest The best fitness value reached by each particle up to the current

iteration.
Position The value of the optimization variables (particle) given by (2.2).
Velocity A value computed by (2.1) to change the value (position) of

the optimization variables (particles).

1. Randomly initialize the first swarm, i.e., the initial velocity and position of each
particle.

2. Compute the fitness of each particle;

3. Update pbest and gbest from the fitness computed in the previous step: pbest is
the best position visited for each particle up to the current iteration, and gbest
is the best position visited for all particles.

4. Update the new velocity and position of each particle based on [37]

[v]t+1
i = ω[v]ti + ℓ1rand() × ([pbest]

t
i – [x]ti )

+ ℓ2rand() × ([gbest]
t – [x]ti ), (2.1)

[x]t+1
i = [x]ti + [v]t+1

i (2.2)
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where [v]ti and [x]ti represent the velocity and the position of particle i at it-
eration t , respectively, ℓ1 and ℓ2 are the particle learning factors, which define
the influence of individual and collective experience on the motion of particles,
respectively, while the function rand() returns a random number between 0 and
1 with uniform distribution. Moreover, ω is the inertia velocity weight, which de-
fines the influence of the current velocity on the update velocity of each particle,
being

ω =

⎛⎝ωmax –
(ωmax –ωmin)t

Nit

⎞⎠ (2.3)

where Nit is the maximum number of iterations, and ωmax and ωmin are the
maximum and minimum value of ω, respectively.

5. Generate a new swarm from the particles (x,v) computed in the Step 4.

6. The PSO finishes if the stop criterion is fulfilled. Otherwise, return to Step 2.

Although both GA and PSO are able to successfully solve different complex
problems, they present some relevant differences that need to be taken into account
by the designer. First, GA is discrete by nature, i.e., it is preferable to use GA to solve
discrete optimization problems. In contrast, PSO is suited to continuous optimization
problems. PSO needs to be deeply modified to solve discrete optimization problems
and usually does not present a great performance for complex problems of such kind.
Similarly, GA can be applied in continuous optimization problems, however, GA presents
a higher computational cost and a larger number of parameters that need to be tuned
when compared to PSO in such cases. Finally, it is important to deeply evaluate the
optimization problem in order to choose the technique to be applied [27, 34, 37, 39].
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Chapter 3
IA in mmWave Communications

3.1 INTRODUCTION

mmWave communications have attracted great interest from the academy and
industry due to the abundant available spectrum, unlike the congested bands in UHF
and sub-6GHz frequencies adopted in the 4G networks [1]. However, the mmWave
bands present poor propagation characteristics due to the high path-loss, atmospheric
and rain attenuation, blockage, and low diffraction around obstacles [2]. To overcome
these issues, the use of highly directional beamforming is an effective solution. However,
the use of beamforming at the BS and/or UE is challenging for the IA process.

The IA can be defined as the process whereby the UE establishes a physical
link with the BS [14]. Both the BS and UE need to determine their appropriate beam
directions to establish a directional communication. Due to the huge number of antennas
at the BS and UE and, consequently, the high directivity beamforming, the search space
greatly increases and the duration of the IA process can be prohibitively long, as in
principle multiple preambles must be transmitted repeatedly with all transmit/receive
beam pairs. The delay caused by directional search must be small to meet some of the
B5G requirements for low end-to-end latency [15–17].

Basically, the IA process in mmWave systems can be divided into three steps
as presented in Figure 3.1 and described next [14].

1. Cellular Search: The BS periodically transmits synchronization signals in differ-
ent beam directions to the UE. If the UE detects the signal, the beam direction
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Figure 3.1 – IA process.

of the UE and BS are defined.

2. Random Access: In this step, the beam directions are known at the BS and UE
and they exchange random access messages to establish a physical link.

3. Scheduled Communications: In this step, the beam refinement process can
be applied to further optimize the beam directions and the UE mobility can be
addressed. After this step, the communication between the UE and BS can be
effectively established with maximum beamforming gain using scheduled channels.

Due to the complexity of the IA problem, in this chapter, a novel efficient
method based on GA is presented. As explained in Chapter 2, the GAs provide an
alternative to traditional optimization techniques by using directed random searches to
locate optimal solutions in complex problems. This evolutionary technique shows high
efficiency to solve problems that do not have feasible analytical solutions, for example,
efficient antenna [40, 41] and communication systems design [42, 43].

3.1.1 Related Work

Most IA techniques can be classified into six groups: Exhaustive, Iterative/
Hierarchical, Statistical/Probabilistic, Meta-Heuristics, Context-Information Based, and
Machine Learning. Table 3.1 lists the main works related to these groups, as well as
some of their distinguishing characteristics.
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Table 3.1 – Some relevant literature on IA for mmWave networks.

Techniques Low Low Context-Information Generic/
Search Delay Outage Prob. Based Flexible

Exhaustive [14, 15, 17,
44–46]

√

Iterative/Hierarchical
[14, 17, 28–30, 45]

√

Statistical/Probabilistic
[47–49]

√ √

Meta-Heuristic [23–25,
31]

√ √ √

Context-Information
Based [17, 50–55]

√ √ √

Machine Learning [55–
57]

√ √ √

Exhaustive Search (ES) is a brute force sequential beam search technique [14, 17,
45], where both BS and UE scan sequentially all the beamspace, adding a significant
delay to the IA process [14, 15, 17, 44–46]. However, ES shows low misdetection
probability and is indicated for use in scenarios with large cells and edge users [14,
17]. Moreover, the Iterative Search techniques scan the beamspace in some steps.
These techniques use codebooks with different sizes. In the first step, the BS scans the
beamspace using macro beams, while in the subsequent steps the search is performed
only in the best sector found, but then using narrower beams [14, 17, 28–30, 45, 46].

In [14, 17, 45] the authors compare ES with Iterative Search, showing that
Iterative Search reduces the IA delay, but increases the misdetection probability and
should be used only for short distances between BS and UE. In addition, the results
demonstrate that Iterative Search is not indicated for edge users because its performance
decreases with the distance between BS and UE, and also due to the low beamforming
gain present in the first step. Furthermore, this technique presents a high outage
probability as compared to ES.

In [28], the authors proposed an Iterative Search method where the BS-UE beam
pair is settled user-by-user by considering the interference from the other links. However,
this method cannot find a better transmit/receive beam set by conducting beamforming
link-by-link. Therefore, the method in [28] can obtain only a locally optimal solution
and cannot ensure global optimality.
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In a different approach, some works in the literature consider statistical knowl-
edge about the mobility and connection probability of users [47, 48]. Probabilistic
methods can be used to perform the beam refinement in order to reduce the IA
delay [49]. These techniques depend on prior knowledge of the system’s and users’
behaviors. In addition, these methods are not generic. Yet it is possible to model the
problem mathematically and ensure the method’s convergence.

Techniques using Context Information aim at exploiting knowledge about UE
and/or BS positions [17, 51, 52], user profiles, application quality requirements, net-
work status, and traffic prediction [17, 51, 52]. From the exploration of this type of
information many IA methods have been developed. These methods can, for instance,
handle the presence of obstacles inside the service area [50, 53, 54], showing a good
performance and reduced delay. However, in many cases it may be very difficult to
obtain such amount of prior information, limiting the applicability of this strategy.

In another group, IA based on Machine Learning normally exploits context
information for the learning process. Currently, these techniques have been applied to
the beam refinement problem in order to reduce the IA delay in complex scenarios,
e.g., considering mobile users [55–57], multiple users [55], multiple BSs [56, 57] and/or
obstacles [55]. In [55–57] techniques based on Machine Learning are used for cell
search using different context information and the results show that these techniques
improve the IA performance. However, the system’s performance depends on the level
of accuracy of the information and it is necessary to maintain, access, and update these
databases in real time.

Finally, Meta-Heuristic techniques are often used to solve an optimization prob-
lem generically. For the IA problem this means that the method can be used for different
system models and performance metrics, which is very relevant. In addition, these tech-
niques present low search delay and outage probability, because they scan the search
space intelligently and with few iterations. In [23–25] an IA method was proposed
using GA. The results show that the method achieves the same capacity as the ES
and considerably reduces the IA delay. However, the method almost totally consists of
random operations that do not follow some of the basic principles of a GA. In [31] an
IA method based on Tabu search was proposed and simulation results verify that it can
achieve near-optimal performance and reduced delay with low complexity. Even so, the
method in [23–25] achieves a superior result in comparison to the Tabu search in [31].
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In conclusion, among the techniques presented in Table 3.1, and described above,
the Meta-Heuristics techniques are generic, i.e., they can be applied in different sce-
narios without deep modifications. Furthermore, unlike ES, Meta-Heuristic techniques
achieve a low IA delay and low outage probability in mmWave communication systems
when compared to Iterative Search [23–25, 31]. In addition, unlike Machine Learning
techniques and those based on Context-Information, Meta-Heuristic techniques do not
require context information. Therefore, in this chapter, a new meta-heuristic beam
refinement method based on GA is proposed. The proposed method differs from the
techniques in Table 3.1 in several ways, such as:

• It is generic, i.e., it can be applied to different scenarios without considerable
modifications;

• It does not use context information, such as prior knowledge on channel state or
users’ behavior;

• It is based on GA, as [23–25], but with a different implementation with respect
to selection, crossover, mutation, and elitism. Such differences lead to a better
performance, e.g., the proposed GA reduces the number of antennas at the BS
and UE, power consumption and IA delay when compared to the method in [23–
25].

Next, we present in details the system model, the proposed method and the
obtained simulation results.

3.2 SYSTEM MODEL

The system model illustrated in Figure 3.2 where the BS and the UE are
equipped with an Uniform Planar Array (UPA) with M and N antennas, respectively,
is considered. Beamforming is considered at both the BS and the UE. For each time
interval t , the received signal at the UE is [25]

y(t) =

√︄
PT
M

⎡⎣U(t)HH(t)W(t)

⎤⎦s(t) + n(t), (3.1)

where PT is the total transmit power, W(t) ∈ CM ×M and U(t) ∈ CN ×N denote
the beamforming arrays at the BS and UE, respectively, s(t) ∈ CM ×1 is the intended
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Figure 3.2 – System Model.

message, n(t) ∈ CN ×1 denotes the independent and identically distributed (IID)
Gaussian noise vector, and H(t) ∈ CM ×N is the channel matrix. For simplicity, the
time index t is omitted in the rest of this chapter.

In this work, the Saleh-Valenzuela extended geometric channel model is as-
sumed [4, 58]. This channel model is often used in mmWave scenarios [59–61]. The
channel is composed of Nl grouped propagation paths in Nc clusters, each cluster
corresponding to a spreading path at a macro level and each path or subcluster being
composed of several subpaths. The channel matrix H ∈ CM ×N is given by

H =
√︄

MN
NcNl

Nc∑︂
i=1

Nl∑︂
l=1

βL
ilar(ϕr

il , θ
r
il )a

H
t (ϕt

il , θ
t
il ), (3.2)

where βL
il is the small-scale complex fading gain of the l -th subpath in the i -th cluster,

ar(·) denotes the normalized receive antenna array response as a function of the azimuth
and elevation angles of arrival (AoA), ϑr

il and ϕr
il , respectively, and at(·) denotes the

normalized transmit antenna array response, expressed as a function of the azimuth
and elevation angles of departure (AoD), ϑr

il and ϕr
il , respectively, which are given by

ar(ϕr
il , θ

r
il ) =

1
N

⎡⎣1, ej 2π
λ

darray

(︂
sin(ϕr

il) sin(θr
il)+cos(θr

il)
)︂
, . . . ,

ej 2π
λ

darray

(︂
(N –1) sin(ϕr

il) sin(θr
il)+(N –1) cos(θr

il)
)︂⎤⎦, (3.3)
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at(ϕt
il , θ

t
il ) =

1
M

⎡⎣1, ej 2π
λ

darray

(︂
sin(ϕt

il) sin(θt
il)+cos(θt

il)
)︂
, . . . ,

ej 2π
λ

darray

(︂
(M –1) sin(ϕt

il) sin(θt
il)+(M –1) cos(θt

il)
)︂⎤⎦, (3.4)

where darray is the distance between the array elements and λ is the wavelength.
Although it is not so realistic, in our simulations, we consider darray = λ/2 for the BS
and UE. Moreover, discrete fourier transform (DFT)-based codebooks [62] at the BS
and at the UE are considered. The BS codebook CT ∈ CM ×Nvec is defined as

CT(m, u) = e(–j2π(m–1)(u–1)/Nvec), (3.5)

while the UE codebook CR ∈ CN ×Nvec is

CR(n, u) = e(–j2π(n–1)(u–1)/Nvec), (3.6)

where m = 1, . . . ,M , u = 1, . . . Nvec and n = 1, . . . ,N . In this work, CT and CR
are refered as codebooks, and Nvec

(︂
Nvec ≥ max(M ,N )

)︂
denotes the size of the

codebooks. Nvec must be chosen carefully, because large codebooks increase the IA
delay, although it improves the capacity of beam refinement. This is because the
codebook defines the radiation pattern of the antenna array, so the proper choice of
a codebook allows to define the width of the main beam, directivity, and array gain.
Such features directly influence the IA delay and misdetection probability. Therefore,
the design of an optimal codebook is very relevant and is an open problem in the
literature [63, 64].

3.2.1 Performance Metrics

In the following, the capacity and outage probability are defined as the per-
formance metrics considered in the optimization problem. Let Nit be the maximum
number of iterations of the beam search procedure, which is defined by the system
designer. For the k -th iteration, where k = 1, 2, ...,Nit, the Shannon capacity in bits
per second (bits/s) is given as [23]

C(k) = (1 – αk) · B log2(1 + Γk ), (3.7)
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where α denotes the delay cost for running each iteration of the particular search
algorithm (αNit < 1), B is the system bandwidth, and Γk is the user SNR in the k -th
iteration,

Γk =
PT
M ||UH

k HWk ||2

BN0
, (3.8)

where N0 is the noise power spectral density, and for the sake of simplicity, BN0 = 1.
From the system capacity in (3.7) it is possible to observe that the larger the number
of iterations, the larger the IA delay and consequently the greater the penalty in (3.7).

Any application demands a minimum SNR, denoted as Γmin, to deliver an ac-
ceptable quality of service. Therefore, it is important to evaluate the outage probability,
given by

Pout = Pr
(︂
rk < rmin, ∀k

)︂
. (3.9)

where rk = log2(1 + Γk ) and rmin = log2(1 + Γmin).

3.3 PROPOSED IA ALGORITHM

In this thesis, a novel solution for the IA problem based on GA is proposed. The
IA problem can be defined as the establishment of an initial connection between the
BS and the UE. In this work both BS and UE are equipped with an antenna array, i.e.,
beamforming is considered. Therefore, for solving the IA problem the BS and the UE
need to scan the beam search space to find the best beam alignment. The search space
is defined by the codebooks in (3.5) and (3.6). Therefore, there is a finite, although
usually very large, number of possible beamformers for the BS and the UE. The possible
pairs of beamformers are evaluated according to the performance metrics defined in
(3.7) and (3.9), and the best possible beamforming matrices (U and W) are found.

The proposed method considers a population with L individuals in each gen-
eration. In the first generation, the individuals are generated in a completely random
way. From the second generation on, the new population is formed with the following
composition: Nf individuals given by the Elitism, (L – Nf)/2 individuals generated
by the Crossover Operator, and (L – Nf)/2 individuals generated by the Mutation
Operator. The implementation of the proposed beam refinement algorithm for IA is
described in Algorithm 3.1 and, in order to improve the understanding of the proposed
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Figure 3.3 – (a) Steps of the proposed method; (b) Steps of the algorithm proposed
in [23–25].

method, Table 3.2 relates the main terms of GA to their meaning in the IA problem.
In addition, with the help of Figure 3.3a, the steps of the algorithm are detailed next.

1. Randomly generate L pairs of beamforming arrays (individuals), (Wl , Ul ), l =
1, . . . ,L, taken from the coodebooks CT and CR of the BS and the UE, respec-
tively, to form the first population.

2. Calculate the fitness of each individual based on the performance metrics pre-
sented in Section 3.2.1.

3. Elitism: From the L individuals, select the Nf fittest ones, which are perpetuated
for the next generation.

4. By the Tournament Method, select (L–Nf)/2 parents from the current generation.
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Table 3.2 – The relation between the main GA parameters and their meaning in the IA
problem.

GA Parameter Meaning in IA
Gene The columns of the beamforming matrices (U, W).

Chromosome Either beamforming matrix.
Individual A pair of TX-RX beamforming matrices (U, W).
Population A set with L possible solutions (U, W) for the IA problem.

Parents Individuals selected in the Selection Method.
Children Individuals generated by the Crossover Operator.

Fitness Function Performance metric, defined in (3.7) and (3.9).
Fitness Output of the fitness function: quality of a beam alignment.

Search Space The codebooks in (3.5) and (3.6).
Generation Iteration of the algorithm.

5. Crossover Operator: With crossover probability pc, the parents selected in the
previous step generate (L – Nf)/2 children by the Discrete Crossover Operator.
Otherwise, with probability 1 – pc, the children generated are the same as the
selected parents.

6. Mutation Operator: Generate each child in the third group as follows. With
mutation probability pmut, change η% of the columns of the fittest individual
— 10% in the simulations (similar to [23–25]). Otherwise, with probability 1 –
pmut, randomly select a child generated in Step 5 and submit it to the Real
Random Mutation Operator1. This step must be run (L – Nf)/2 times to form
the individuals in the third group.

7. The population of the next generation is formed by the union of the individuals
in the three groups, generated in Steps 3, 5, and 6. In other words, the pairs of
beamforming arrays, (Wl , Ul ), l = 1, . . . ,L, are updated.

8. Check if the stop criterion has been satisfied. In this approach, the maximum
number of iterations Nit (generations) is considered as the stop criterion. If so,
then return the fittest individual. Otherwise, go to Step 2.

1 Both the mutation and crossover operators are restricted to operate only within the columns of
W and U defined in (3.5) and (3.6), respectively. The following constraints are ensured: Constant
modulus and progressive phases in the columns. These constraints ensure the practical feasibility
of these beamforming matrices in Uniform Planar Arrays.



Chapter 3. IA in mmWave Communications 46

Algorithm 3.1: Proposed GA.
Input : Number of antennas at the BS: M

Number of antennas at the UE: N
Size of the population: L
Maximum number of generations (iterations): Nit
Mutation probability: pmut
Crossover probability: pc
Number of users in the elitism process: Nf
Size of the codebooks: Nvec

Output : Ubest, Wbest

1 Define the codebook at the BS and UE based on (3.5) and (3.6), respectively.
2 Randomly initialize the first population: XBS(m, :) = CT(randi(Nvec), :),

XUE(n, :) = CR(randi(Nvec), :) where m = 1, . . . ,M and n = 1, . . . ,N .
3 for g = 1 : Nit do
4 Determine the fitness of each individual based on (3.7) or (3.9).
5 Determine the Nf fittest individuals defined as XBS

elite, XUE
elite.

6 Determine (L – Nf)/2 parents by the Tournament Method.
7 for pop = 1 : (L – Nf)/2 do
8 if pc < rand() then
9 Generate two new children by the Discrete Crossover Operator.

10 These new generated individuals are defined as XBS
crossover, XUE

crossover.
11 else
12 The parents selected by the Tournament Method are kept for the next

generation.
13 These new individuals are defined as XBS

crossover, XUE
crossover.

14 end
15 end
16 for pop = 1 : (L – Nf)/2 do
17 if pmut < rand() then
18 Change 10% of the columns of the fittest individual.
19 These new generated individuals are defined as XBS

mutation, XUE
mutation

20 else
21 Select a child generated in the previous step;
22 Submit the selected child to the Real Random Mutation Operator.
23 These new generated individuals are defined as XBS

mutation, XUE
mutation.

24 end
25 end
26 Determine the new population: XBS = [XBS

elite XBS
crossover XBS

mutation],
XUE = [XUE

elite XUE
crossover XUE

mutation]
27 end
28 Determine Ubest and Wbest, the fittest individuals in XUE and XBS, according to (3.7)

and (3.9).
29 return Ubest, Wbest
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Algorithm 3.2: GA proposed in [23–25].
Input : Number of antennas at the BS: M

Number of antennas at the UE: N
Size of the population: L
Maximum number of generations: Nit
Size of the codebooks: Nvec

Output : Ubest, Wbest
1 Define the codebook at the BS and UE based on (3.5) and (3.6),

respectively.
2 Randomly initialize the first population: XBS(m, :) = CT(randi(Nvec), :),

XUE(n, :) = CR(randi(Nvec), :) where m = 1, . . . ,M and n = 1, . . . ,N .
3 for g = 1 : Nit do
4 Determine the fitness of each individual based on (3.7) or (3.9).
5 Determine the fittest individual (Queen) defined as XBS

queen, XUE
queen.

6 for pop = 1 : L/2 do
7 Generate L/2 new individuals changing 10% of the columns of the

fittest individual.
8 These new generated individuals are defined as XBS

new, XUE
new.

9 end
10 for pop = 1 : (L/2) – 1 do
11 Generate (L/2) – 1 new individuals randomly

XBS
random(m, :) = CT(randi(Nvec), :),

XUE
random(n, :) = CR(randi(Nvec), :).

12 end
13 Determine the new population: XBS = [XBS

queen XBS
new XBS

random],
XUE = [XUE

queen XUE
new XUE

random]
14 end
15 Determine Ubest and Wbest, the fittest individuals in XUE and XBS,

according to (3.7) and (3.9).
16 return Ubest, Wbest
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3.3.1 Comparison Between the Proposed IA Algorithm and the Method
in [23–25]

The proposed IA method, detailed in Algorithm 3.1 and Figure 3.3a, is now
compared in detail to the one proposed in [23–25], detailed in Algorithm 3.2 and
Figure 3.3b. The main differences in terms of implementation are:

• In the proposed method, the concept of Elitism is considered, where the Nf
individuals are kept for the next generation. This strategy is not considered
in [23–25].

• The proposed method uses the Tournament Method as the selection method.
This allows to increase the genetic diversity of the next generation. In [23–25]
the new generation is chosen in a random fashion.

• The proposed method uses the Discrete Crossover Operator, from which new
individuals are generated from those indicated by the selection method, i.e., the
new individuals are generated from the permutation of the genes of individuals
selected by the selection method, increasing the probability of generating individu-
als with greater fitness and increasing the genetic diversity of the new generation.
This procedure is not considered in [23–25].

• In [23–25] the Mutation Operator is based on the random change of 10% of
the columns of the fittest individual. In the proposed method, first, with a given
probability, 10% of the columns of the fittest individual is changed. Then, with a
given probability, an individual generated by the Crossover Operator is randomly
selected and submitted to the Real Random Mutation Operator. The use of this
Mutation Operator can improve the genetic diversity of the new population [27,
34].

• In [23–25] the new population of each generation is formed by: L/2 individuals
generated by the change of 10% of the columns of the fittest individual; (L/2) –
1 individuals generated randomly; and the fittest individual. However, in the
proposed method, the new population is formed from the following composition:
Nf individuals given by Elitism, (L–Nf)/2 individuals generated by the Crossover
Operator, and (L – Nf)/2 individuals generated by the Mutation Operator. It
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is possible to note that in the proposed method the new population is generated
by the classical GA principles, and the proposed method does not use random
operations to generate the new population. This feature improves convergence,
as will be shown in the simulations.

Despite the differences in implementation both methods share the following
aspects:

• They are generic. In other words, they can be used for different channel models,
performance metrics, and system configurations.

• They do not consider context information, i.e., prior knowledge of the channel,
users behavior, or system metrics are not required to solve the IA problem.

• For both the proposed GA and the one in [23–25], it can not be ensured that these
methods converge to a global optimum solution. These methods achieve a great
performance despite normally converging to a sub-optimum solution. Nonetheless,
as will be shown in the numerical results, the proposed GA achieves the same
performance as the method in [23–25] with considerably fewer iterations.

From the above, it is possible to observe that the proposed method presents
several novel features in its implementation. In addition, as will be demonstrated in the
next section, the proposed algorithm outperforms the method in [23–25]. Therefore,
the proposed modifications are very relevant to improve the system’s performance.

3.4 SIMULATION RESULTS

This section presents simulation results to show the performance of the proposed
method. The following simulation parameters are considered: Nit = 103, B = 1 GHz,
L = 10, and Nf = 2. In addition, Table 3.3 lists the parameters considered for the
definition of the channel model in (3.2) [4, 61]. In this section, all curves present the
average of 103 independent channel realizations.

It is important to highlight that, the GA parameters were defined after many
simulations. However, due to computational limitations, a detailed calibration of these
parameters was not evaluated. In other words, some simulations for different combi-
nations of the GA parameters were run and the combination that presented a better
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Table 3.3 – Parameters of the Saleh-Valenzuela channel model [4, 61]

Parameter Value
Nc 5
Nl 10
βil ∼ CN (0, 1)
ϕr

il ∼ U [0, 2π]
θr
il ∼ Laplace(µ, 1), where µ ∼ U [–π,π]
ϕt

il ∼ U [0, 2π]
θt
il ∼ Laplace(µ, 1), where µ ∼ U [–π,π]

darray λ/2

performance in most scenarios configurations was chosen. However, it is important to
remark, as it is mentioned in Chapter 1, that the goal of this thesis is to show that Evo-
lutionary Computation can be successfully used to solve relevant and complex emerging
problems in B5G systems. Thus, the focus is not to better tune the parameters of the
proposed algorithm to achieve the ultimate performance but to demonstrate that it is
able to achieve close-to-optimal performance with reasonable complexity and standard
configuration. The thin calibration of the GA parameters is left as a potential future
work.

In the simulations, the number of antennas at the BS and UE (M and N ),
codebook size (Nvec), and GA mutation probability (pmut), were evaluated. The influ-
ence of these parameters in the capacity in (3.7) and outage probability in (3.9) were
investigated. In addition, the results are split into two cases. Subsection 3.4.1 presents
results ignoring the delay cost for running each iteration of the algorithm (i.e., α = 0).
Subsection 3.4.2 considers the case of α ̸= 0. In all simulation results, the proposed
algorithm is compared to the GA method in [23–25], while another Meta-Heuristic
technique, Tabu Search [31], is also included in some analysis.
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3.4.1 Results for α = 0

Figure 3.4 presents the convergence2 analysis for the scenario with M = 4,
N = 4, PT = 10 dBm, and Nvec = 120, considering a given channel realization. From
the results, it is clear that the proposed algorithm converges with considerably fewer
iterations than [23–25]. Other analyses are presented next.
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Figure 3.4 – Convergence of the proposed method and the one in [23–25], for M = 4,
N = 4, Nvec = 120, PT = 10 dBm, pmut = 5%, and α = 0.

3.4.1.1 Effect of the Number of Antennas at the BS and UE

Now the effect of the number of antennas at the BS (M ) and UE (N ), con-
sidering Nvec = 120, PT = 10 dBm, and pmut = 5% are investigated. Figure 3.5a
shows the capacity versus the number of antennas at the UE, for M = 64. As can be
seen, increasing the number of antennas at the UE improves the system performance.
Moreover, the proposed method is able to achieve the same capacity as in [23–25] with
37.5% fewer antennas at the UE. That is a great reduction in complexity and cost. In
2 In this thesis, convergence is defined with respect to the fitness function. If the fitness of the

best individual at subsequent generations stops changing significantly, then the GA is said to have
converged.
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addition, Figure 3.5b presents the effect of the number of antennas at the BS (M ).
The proposed method is able to achieve the same capacity as in [23–25] with 22%
fewer antennas at the BS. Moreover, in this comparison another Meta-Heuristic named
Tabu Search [31]3 is included. From the results, it is possible to verify that the Tabu
Search technique performs worse than the other methods. This result corroborate those
in [23–25]. Then, in the rest of this section, the proposed approach only is compared
with the method in [23–25].
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Figure 3.5 – (a) Effect of the number of antennas at the UE (N ) on the capacity of
the proposed method, the one in [23–25], and Tabu Seach in [31], for
M = 64, Nvec = 120, PT = 10 dBm, pmut = 5%, and α = 0; (b) Effect
of the number of antennas at the BS (M ) on the capacity of the proposed
method and the one in [23–25] for N = 4, Nvec = 120, PT = 10 dBm,
pmut = 5%, and α = 0.

Figure 3.6 shows the capacity versus total transmit power for different number
of antennas at the UE. As expected, the performance is improved with the increase in
the total transmit power or, as previously observed, the numbers of antennas at the
UE. Moreover, for a fixed number of antennas at the UE, and the same capacity, the
proposed method uses about 4 dB less power, which may represent a reduction of up
to 60%, depending on N , when compared with [23–25]. All these improvements are
considered quite significant.
3 For the Tabu Search, we consider Tlist = 1 (Tabu List Size) and the number of iteration (Nit) as

the stop criterion.
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Figure 3.6 – Effect of the power variation (PT) on the capacity of the proposed method
and the one in [23–25], for different values of N , with Nvec = 120,
M = 64, pmut = 5%, and α = 0.

3.4.1.2 Effect of the Codebook Size

Choosing the codebook size is an extremely important part of the IA process.
The designer is faced with the following trade-off. A large codebook size implies a greater
beam refinement during the UE search, increasing the received SNR and reducing the
interference. Thus, performance is improved. On the other hand, small codebook sizes
are desirable to keep the search delay and the storage requirement small.

Figure 3.7 shows the capacity for the two methods as a function of the codebook
size, Nvec, for M = 4, N = 4, PT = 10 dBm, and pmut = 5%. From the results, it
can be seen that the capacity of both methods has a steep growth as the codebook
size increases from a small value, but it quickly saturates. This is because the search
space becomes very large, and the two GAs, not being able to exploit it completely,
converge to a (sub)optimal capacity value. Nonetheless, it is possible to observe that
the proposed algorithm presents a superior performance as compared to the GA in [23–
25], even for a codebook size as low as Nvec = 30. For the proposed method, for
Nvec > 100 it is not possible to verify any performance improvement. So, a good result
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is obtained with a not so large codebook.
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Figure 3.7 – Effect of the codebook size (Nvec) on the capacity of the proposed method
and the one in [23–25], for M = 4, N = 4, PT = 10 dBm, pmut = 5%,
and α = 0.

3.4.1.3 Effect of the GA Mutation Probability

The mutation operator guarantees the genetic diversity of the population, but
it is used with a given probability. For high values of mutation probability, the new indi-
viduals are generated randomly, losing the main characteristics of the fittest individuals
in the population. To verify the influence of this parameter, the capacity as a function
of the number of antennas at the BS for different mutation probabilities is presented
in Figure 3.8.

From Figure 3.8, it can be observed that the greater the mutation probability,
the worse the performance of the proposed algorithm in terms of convergence speed,
and the closer it gets to the performance of the GA in [23–25]. Note that the GA
in [23–25] performs almost completely random operations, slowing convergence. The
same behavior was observed when considering the evaluation of the capacity as a
function of the number of antennas at the UE (not shown here). In addition, it is
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Figure 3.8 – Effect of the GA mutation probability (pmut) on the capacity of the
proposed method and the one in [23–25], as a function of number of
antennas at the BS, for N = 4, Nvec = 120, and PT = 10 dBm.

possible to see the importance of the mutation operator, i.e., the system performance
decreases considerably for pmut = 0% or for an excessive pmut.

Moreover, the impact of the crossover probability was also evaluated. Figure
3.9 shows the impact of the crossover and mutation probabilities. It is possible to
conclude that: 1) For pmut = 0% and/or pc = 0% the system performance decreases
considerably; 2) The higher pmut, the higher pc should be set to compensate the
reduction of system performance due to the increased randomness; 3) For a large
number of antennas at the BS and/or UE, the influence of crossover increases due to
the higher complexity of the problem. Therefore, from the previously conclusions, it
is possible to note that the adequate selection of crossover and mutation operators
are important for improving the system performance and achieving a near-optimum
solution. For instance, if there is no mutation then convergence is very slow, but if
mutation is excessive then performance decreases as well. Thus, we can conclude that
both operators greatly influence the system performance.

Usually, in the literature the value of crossover and mutation probabilities are
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around pc ≥ 50% and pmut ≤ 10%, respectively [27, 41, 65, 66]. This can be better
explained by the fact that, if pmut is too high GA becomes a random search [27], while
if pc = 100% then the old population can not survive for the next generation and the
genetic diversity of the new population decreases [27]. Based on the above, and as in
the numerical evaluations, pmut = 5% yielded a very good performance, as illustrated
in Figure 3.9, and therefore, pc = 50% and pmut = 5% were assumed for all simulation
results.
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Figure 3.9 – Capacity of the proposed method varying the Crossover probability for
different values of mutation probability for Nvec = 120, PT = 10 dBm,
M = 64, N = 4, 16, and α = 0.

3.4.1.4 Outage Probability Analysis

Simulation results for the outage probability in (3.9) are given in Figure 3.10.
The proposed algorithm has lower outage probability than the GA in [23–25], for all
considered values of Γmin. Moreover, it is possible to observe that the outage probability
decreases with the reduction of Γmin, i.e., as the application requires a lower minimum
SNR. Similar behaviour was obtained with N > 1.
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Figure 3.10 – Outage probability of the proposed method and that in [23–25], for
M = 64, N = 1, Nvec = 120, PT = 10 dBm, pmut = 5%, and α = 0.

3.4.1.5 Computational Cost

The proposed method uses some different operators when compared with [23–
25]. However, unlike the method in [23–25], the proposed method does not make
frequent use of a function that generates random numbers. In contrast, the proposed
method uses simple operations that require a lower computation time than that required
to update a random number generator. In order to exemplify this, the software Matlab R⃝

was used to measure the computation time of each function and method. First, it was
concluded that the rand function has a computation time approximately 2 times higher
than the computation time demanded by some simple math operations. Second, the
computation time was measured for each iteration considering both methods, the
proposed method obtained an average time per iteration that is less than the method
in [23–25], e.g., for 104 iterations the average time for the proposed method is 1.8 ms,
and the average time for the method in [23–25] is 3.4 ms.

Although the above example is dependent on the particular software/hardware
architecture and the programming, it illustrates how hard it is to define an appropriate
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and fair measure of complexity and delay. That is the reason why this comparison is
not presented in detail. Nevertheless, please note that the proposed method is able
to achieve the same performance as the scheme in [23–25] with a smaller number of
iterations, i.e., the proposed method can reduce the IA delay. Figure 3.11 shows the
number of iterations for a given performance. From these results, and considering the
average time for each iteration as discussed above, the IA delay of the proposed method
is approximately 261 ms and the IA delay with [23–25] is 680 ms for the same scenario.
However, again, please note that these values depend on the particular implementation,
and therefore should be seen as an illustration only.
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Figure 3.11 – Capacity as a function of the number of iterations for Nvec = 120,
PT = 10 dBm, M = 64, and N = 36.

3.4.2 Results for α ̸= 0

The results discussed in the previous subsection do not consider the execution
cost of each iteration of the algorithm (α = 0). In other words, from the considerations
above, the larger the number of iterations, the better the system performance. Of course,
this is not valid in practice due to the delay in the IA process. As a countermeasure,
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the authors in [23–25] have introduced a delay cost (α) for running each iteration of
the algorithm. This parameter value was arbitrarily chosen in those references. But, as
will be shown next, it can be properly chosen depending on the desirable capacity and
the delay that can be tolerated by the application.

Next, it is performed two analyses under these delay constraints. First, Fig-
ure 3.12 presents the convergence of the proposed algorithm and of the GA in [23–25]
for a fixed, nonzero value of α, for a given channel realization. Then, in Figure 3.13, the
system performance for different values of α was evaluated. As can be seen from Fig-
ure 3.12, increasing the number of iterations without limit does not improve the system
performance, since it directly influences the search delay. In addition, the convergence
of the proposed algorithm is verified.
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Figure 3.12 – Convergence analysis of the proposed GA and GA in [23–25] for M = 4,
N = 4, Nvec = 120, PT = 10 dBm and α = 10–3

Figure 3.13 shows the variation of α analysis for M = 64, N = 64, Nvec = 120,
PT = 10 dBm, and pmut = 5%. The values of α are defined, in practical scenarios, by
the application requirements. Thus, in this work, we randomly choose different values
of α to evaluate the performance of the proposed solution. From the results, it is
possible to verify that the proposed algorithm presents initially a slower convergence,
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as compared to the GA in [23–25], but it then reaches maximum capacity values higher
than those achieved by the GA in [23–25] for most of the values of α. This certifies
the proposed algorithm for practical applications, where a trade-off exists between
performance and delay of beam refinement. The results presented in this section show
that it is possible to achieve (sub)optimal performance with a few iterations.
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Figure 3.13 – Variation of α for M = 64, N = 64, Nvec = 120, PT = 10 dBm and
pmut = 5%.

3.5 CONCLUSION

In this chapter, the proposed beam search method based on GA, which aims to
reduce the delay of the directional search in IA, was evaluated considering scenarios
with and without delay constraints. The proposed method was evaluated in different
scenarios, including variable number of antennas at the BS and UE, codebook size, and
power consumption. The simulation results show that the proposed method presents
an excellent performance when compared to the method in [23–25], and can reach the
same results as ES in small scenarios. In addition, the proposed algorithm is generic,
as it can be applied to different scenarios. To finish, it is important to remark that
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the proposed algorithm can reduce the cellular search delay introduced by the use of
beamforming at the BS and UE.
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Chapter 4
IRS Beamforming Design

4.1 INTRODUCTION

B5G wireless systems aim to meet application requirements of verticals like
Industry 4.0, Smart Grids, and Smart Cities [67]. This requires to considerably increase
the network capacity and provide ubiquitous wireless connectivity for a very large
number of devices. To achieve these goals, many technologies have been developed
during the last years, such as mmWave communications, massive MIMO systems, and
ultra-dense networks (UDN) [68]. As presented in the previous chapter, the mmWave
communications allow the use of large active antenna arrays at the BS and UE, i.e.,
narrow beams and flexible antenna configurations can be considered, which enable
spatially dense network layouts by reducing co-channel interference. In addition, the
mmWave communications exhibit a huge available bandwidth that provides multi-Gbps
rates. These advantages notwithstanding, the use of active antenna arrays at the BS
and UE represents a large implementation cost and/or huge energy consumption. To
overcome this problem, recently, an energy-efficient and low-cost technology, IRS, which
is a meta-surface equipped with a large number of low-cost passive elements [11, 12],
was developed to increase the network capacity. This technology is a promising new
paradigm to achieve smart and reconfigurable wireless radio propagation environments
for B5G communication systems.

An IRS is a planar surface comprising a large number of passive reflecting
elements, each of which is able to reflect the incident signal with a given phase or
amplitude shift. By densely deploying IRSs in wireless communication networks and
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intelligently coordinating their phase and amplitude shifts, the reflected and direct
signals can be optimized to add constructively at the UE, and the wireless channels can
be smartly controlled to achieve desired realization and/or distributions, which provides
a new paradigm to tackle the wireless channel fading impairment and interference
issue, potentially improving capacity and reliability [11, 69]. In addition, the main
practical advantages of the employment of IRSs in a wireless communication system
are presented next [69].

1. IRS consists of only passive elements that can reflect the impinging signals
without the need of any RF chain, leading to a great reduction in the energy
consumption and hardware cost when compared to traditional active antenna
arrays [11, 69].

2. Different from the full-duplex (FD) relays, IRSs operate in FD mode but do not
suffer from antenna noise amplification and self interference [11, 69, 70].

3. IRSs usually are low profile, lightweight, and have conformal geometry. They can
be easily mounted or removed from objects [11].

4. The IRSs can be transparently employed in the wireless networks, i.e., they can
be integrated into the existing wireless system without deep modifications in the
UE and BS [69].

Therefore, motivated by the above advantages of IRSs, next, this emerging tech-
nology is considered to assist and wireless communication system and its performance
is evaluated.

4.1.1 Related Work

Some recent works studied the beamforming design at the IRS and/or BS [10,
12, 18, 19, 21, 71–74]. In [12], the beamforming at the IRS and power allocation were
jointly optimized to maximize the energy efficiency of the system. In [19, 71] the authors
designed the beamforming at the BS and IRS aiming to minimize the transmit power
at the BS. In addition, an IRS-enhanced orthogonal frequency division multiplexing
system was proposed in [75] in order to maximize the downlink achievable rate by
optimizing the beamforming at the IRS and power allocation at the BS. The above
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works considered continuous phases at the IRS, while [10, 21, 73, 74] extended the
setups to discrete phases at the IRS. In addition, in [72] the authors take into account
a practical phase shift model that captures the phase-dependent amplitude variation
in the element-wise reflection coefficient.

It is important to underline that all the mentioned works consider the perfect
knowledge of the instantaneous channel state information (I-CSI) at the BS, which is
difficult to obtain in practice due to the large number of elements at the IRS and requires
that each element at the IRS be equipped with an RF chain. However, estimating the
CSI between the IRS and BS or between the IRS and UE is a challenge. Some works
have presented possible solutions for this problem, however, they have the following
possible drawbacks: (i) the IRS needs to be equipped with multiple RF chains [7, 76];
(ii) the IRS needs to implement not only phase control but also amplitude control,
which increases the system complexity [77, 78]; (iii) the channel must be sparse, which
in general is experienced only in mmWave and LOS-dominant sub-6 GHz systems [60,
79]; (iv) the training overhead scales up with the number of elements at the IRS and/or
BS [7, 75–78, 80–82].

In order to overcome these issues, currently, a few works started exploring
the statistical channel state information (S-CSI) [83–85], which is easier to estimate
thanks to its much slower variation in time. Accordingly, in [85], the authors designed
the beamforming only at the IRS in order to verify its effect on the ergodic spectral
efficiency for different propagation scenarios. In [85], the authors proposed an optimal
beamforming design based on the upper bound of the ergodic spectral efficiency and
the S-CSI. In addition, in [83, 84], a new two-timescale transmission protocol was
proposed in order to maximize the achievable average sum-rate for an IRS-aided multi-
user system. Specifically, the IRS phase-shifts are first optimized based on the S-CSI
of all links, while the transmit beamforming vector at the BS is then designed to cater
to the I-CSI of the users effective channels. Finally, in [86], the authors considered
a multi-pair communication system assisted by an IRS, and a method based on GA
was proposed in order to maximize the system achievable rate by solely optimizing the
discrete or continuous phase shifts at the IRS considering S-CSI. From the above, it
can be seen that most part of the literature considers the perfect CSI knowledge at the
BS/IRS and there are a few works exploring the S-CSI in order to reduce the training
overhead required by the beamforming design.
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4.1.2 Contributions

Motivated by the above issues, the communication between a multiple antenna
BS and a single antenna UE, assisted by an IRS, is considered. Then, two different
approaches are proposed in order to solve the beamforming optimization problem at
the IRS and BS without considering any I-SCSI knowledge. The proposed approaches
are described as follows.

1. A joint beamforming optimization at the BS and IRS based on PSO is introduced.
This approach is not dependent on CSI acquisition. In addition, the proposed
solution aims to minimize the transmit power at the BS while meeting a minimum
received SNR requirement through beamforming optimization. In this approach,
continuous phase shifts at the IRS elements are considered.

2. Considering discrete phase shifts at the IRS, in order to solve the beamforming
optimization problem at the IRS and the BS, two different solutions based on GA
are proposed. In the first, it was not considered any CSI knowledge at the IRS
and/or BS. Then, in the second approach, only the S-CSI knowledge is assumed.
The main goal of this approach is to maximize the system achievable rate while
meeting a maximum transmit power requirement at the BS through beamforming
optimization at the IRS and BS.

This chapter is split into two parts. First, the approach based on PSO is detailed
in Section 4.2, named "Novel Approach Considering Continuous Phases at the IRS",
and its system model and simulation results are presented. Next, the approach based on
GA is presented in detail in Section 4.3, named "Novel Approach Considering Discrete
Phases at the IRS".

4.2 NOVEL APPROACH CONSIDERING CONTINUOUS PHASES AT THE IRS

In this approach, the communication between a multiple antenna BS and a
single antenna user, assisted by an IRS, is considered. The main goal of the proposed
approach is to optimize the beamforming at the BS and IRS without CSI, by minimizing
the transmit power, subject to a minimum SNR. To solve this problem, a new method
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based on the PSO technique is proposed. The system model considered and the results
obtained for this approach are presented in this section.

4.2.1 System Model

BS UE

IRS

G

hr
hd

H

H

IRS Controller

.........

IRS Control Link

Figure 4.1 – An IRS-assisted single-user communication system.

In Figure 4.1, we consider a downlink system including a BS equipped with a
Uniform Linear Array (ULA) with M transmit antennas, an IRS equipped with an UPA
with K reflecting elements, and a single antenna UE. It is assumed that mobility is
limited or very limited, so that the channels change slowly. This is a valid premise as
IRS is employed in practice mainly to support low-mobility scenarios [75]. In addition,
no CSI knowledge at the BS and/or the IRS is assumed.

The received signal at the UE can be written as [19]

y = (hrHΘG + hd
H)ws + n, (4.1)

where hH
r ∈ C1×K denotes the channel vector from the IRS to the UE (IRS-UE),

G ∈ CK×M is the channel matrix from the BS to the IRS (BS-IRS), hH
d ∈ C1×M is

the channel vector from the BS to the UE (BS-UE), w ∈ CM ×1 is the beamforming
vector at the BS, s is the transmitted data, an independent random variable with
zero mean and unit variance, while n denotes the additive white Gaussian noise at the
user with power σ2. Moreover, Θ = diag(ξ1ejθ1 , ..., ξK ejθK ) where θ = [θ1, ..., θK ]
denotes the phase shift vector with θk ∈ [0, 2π), and ξk ∈ [0, 1] for (k = 1, . . . ,K )
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is the amplitude reflection coefficient. For simplicity, it is considered ξk = 1, i.e.,
maximum signal reflection for each element of the IRS.

In this thesis, the Rician fading and log-distance path loss for all channels are
considered in accordance to [19]. It is important to note that the signals reflected two
or more times by the IRS are ignored [19]. Thus, the BS-IRS, BS-UE and IRS-UE links
are denoted as

G =
√︂

PBI
L

⎛⎝√︄
βBI

1 + βBI
GLoS

⎞⎠, (4.2)

hd =
√︂

PBU
L

⎛⎝√︄
βBU

1 + βBU
hLoS

d +
√︄

1
1 + βBU

hNLoS
d

⎞⎠, (4.3)

hr =
√︂

P IU
L

⎛⎝√︄
βIU

1 + βIU
hLoS

r +
√︄

1
1 + βIU

hNLoS
r

⎞⎠, (4.4)

where P i
L = C0d–αi for i ∈ {BI ,BU , IU } is the path loss. αi is the path loss

exponent of the BS-IRS, BS-UE, IRS-UE links, respectively. Moreover, GLoS, hLoS
r

and hLoS
d denote the deterministic LoS components. Moreover, hNLoS

d and hNLoS
r are

the Rayleigh fading of the BS-UE and IRS-UE links, respectively, and βBI, βIU and
βBU are the Rician factors. It is important to underline that it is considered a LoS link
between the BS and IRS, which is a reasonable assumption in practical scenarios [75,
87–89]. Finally, the SNR at the UE is given by

Γ =
|(hrHΘG + hd

H)w|2

σ2 (4.5)

The achievable rate at the UE in bps/Hz is given by

R = log2(1 + Γ). (4.6)

4.2.1.1 Optimization Problem

The main goal of this work is to minimize the total transmit power at the
BS by jointly optimizing the beamforming at the BS and the phase shifts at the
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IRS considering a minimum SNR constraint, without CSI estimation. This non-convex
optimization problem can be formulated as [19]

Minimize
w,θ

||w||2

Subject to |(hrHΘG + hd
H)w|2 ≥ Γminσ

2,

0 ≤ θk ≤ 2π, k = 1, ...,K

(4.7)

where Γmin is the minimum SNR constraint. Although the objective function of the
optimization problem in (4.7) is convex, the minimum SNR constraint is non-convex
where the beamforming at the BS and UE are coupled. So, there is not a standard
method to solve it. Therefore, in this thesis, a new method based on the PSO is
proposed and its operation is described next.

4.2.2 Proposed Method based on PSO

In this thesis, a novel method based on PSO was developed in order to solve the
non-convex optimization problem in (4.7), without knowledge of CSI at the IRS and BS.
Although the proposed solution is based on PSO its operation presents some differences
when compared to the basic PSO described in Chapter 2. Specifically, the proposed
method differs from the classic PSO in the way that a new swarm is generated in each
iteration. More precisely, a classic PSO generates a new swarm in each iteration only by
updating the velocity and position of each particle using (2.1) and (2.2), respectively.
However, in the new method, the first L/2 particles are generated by updating the
velocity and position of each particle using (2.1) and (2.2), respectively. The other
L/2 particles are generated in two possible different ways: For a given probability, a
new particle is generated by randomly changing some columns of the best particle(︂
gbest = [xbest, vbest]

)︂
, otherwise a new particle is randomly generated. For a better

understanding the proposed method is presented in Algorithm 4.1 and its steps are
detailed next.

1. Randomly generate L particles, or beamforming vector pairs, (wl , θl ), l =
1, . . . ,L. The beamformings vector pairs are also the “positions” of the particles
in the PSO nomenclature.
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2. For each particle, if the SNR at the UE is larger than Γmin, then the fitness of
that particle is ||w||2.

3. Update pbest and gbest from the fitness computed in the previous step: pbest is
the best fitness obtained for each particle up to the current iteration, and gbest
is the best fitness obtained for all particles up to the current iteration. In our
approach, the fittest particle is the particle with the smallest ||w||2.

4. In this step, L new particles are generated as follows. Generate L/2 particles from
the updating of the velocity and position of each particle using (2.1) and (2.2),
respectively. Generate the L/2 remaining particles by the following steps: (a) With
a given probability p∗

PSO, generate a new particle by operating on each column of
the best particle as follows: With a given probability pPSO randomly change the
column of the best particle (gbest = [xbest, vbest]), otherwise, with probability
(1– pPSO), this column is maintained; (b) With probability (1 – p∗

PSO), randomly
generate a whole new particle. The swarm of the next iteration is formed by the
particles generated in this step, i.e., from this operation, the beamforming at the
BS and the IRS are updated to form the new pairs (or particles).

5. Check if the stop criterion is met. If so, then return the fittest particle (wbest, θbest).
Otherwise, go to Step 2.

The main parameters used in Algorithm 4.1 are: Nit = 1000, L = 10, ℓ1 =
ℓ2 = 1.2, ωmin = 0.1, ωmax = 0.6, p∗

PSO = 0.2 and pPSO = 0.1. In the proposed
method, the pairs of beamforming vectors at the BS and IRS to be tested are defined
at the BS, while the IRS beamforming are sent by the BS to the controller shown in
Figure 4.1. Then, for each beamforming pair, the feedback of the SNR at the UE is
received at the BS, and the current beamforming pair is evaluated based on ||w||2.
This process is performed for all pairs. Note that the BS/IRS/UE channels are not
explicitly estimated. Therefore, it does not require one RF chain at each IRS element
and do not require any channel estimation process, thus solving the challenges of CSI
estimation of IRS systems, as mentioned in [11].
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Algorithm 4.1: Proposed solution based on PSO.
Input : System parameters: M , K

Main PSO parameters: L, Nit, ℓ1, ℓ2, ωmin, ωmax
Probabilities: pmut1 and pmut2.

Output : wbest, θbest
1 Initialize position [xBS]m = [wBS]m and velocity [vBS]m
2 Initialize position [xIRS]k = θk and velocity [vIRS]k
3 [x]i = ([xBS]m , [xIRS]k ); [v]i = ([vBS]m , [vIRS]k )
4 i = 1, . . . ,L, m = 1, . . . ,M and k = 1, . . . ,K
5 Find the global gbest and local pbest best solutions.
6 for t = 1 : Nit do
7 Calculate ω following (2.3)
8 for i = 1 : L/2 do
9 Update [v]ti based on (2.1).

10 Update [x]ti based on (2.2).
11 Update pbest
12 end
13 for i = L/2 + 1 : L do
14 if (rand( ) < p∗

PSO) then
15 [x]ti = [xbest]t

16 [v]ti = [vbest]t
17 for m = 1:K do
18 if (rand( ) < pPSO) then
19 Generate a new particle from randomly changing the

column of [xIRS]tm,i and [vIRS]tm,i .
20 end
21 end
22 for n = 1:M do
23 if (rand( ) < p∗

PSO) then
24 Generate a new particle from randomly changing the

column of [xBS]tn,i and [vBS]tn,i .
25 end
26 end
27 else
28 Randomly generate a new particle ([x]ti , [v]ti ).
29 end
30 Update pbest
31 end
32 Update gbest = xbest
33 end
34 wbest = gbest, θbest = gbest
35 return wbest, θbest
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4.2.3 Simulation Results

All curves in this section are the average of 103 different realizations. The
simulation setup described in Figure 4.2 is considered, where d is the BS-UE horizontal
distance. Therefore, the BS-UE and IRS-UE link distances are d1 =

√︂
d2 + d2v and

d2 =
√︂

(dh – d)2 + d2v , respectively. The simulation parameters are M = 4 (if not
specified otherwise), βBU = βIU = 0, βBI → ∞, αBI = 3.5, αBI = 2.0, αBI = 2.8,
C0 = –30 dBm, σ2 = –80 dBm, dv = 2 m, dh = 51 m and PT = 10 dBm. In this
section, the following benchmarks are evaluated: i) The optimal beamforming design
with perfect CSI in [19], which is a lower bound for (4.7). This benchmark is obtained
from solving the optimization problem in [19, Eq. (19)] by the CVX technique as
in [19]; ii) Random phase shifts, where θ ∈ [0, 2π] and the beamforming at the BS is
the optimal transmit beamforming; iii) Without IRS, where it does not consider the
IRS and the bemforming at the BS is the optimal transmit beamforming. Moreover, for
the sake of simplicity, in this work, the maximum number of iterations Nit is considered
as the stop criterion.

dh

dv
d

UE

BS IRS

Figure 4.2 – Simulation setup.

First of all, in order to illustrate the performance of the proposed method,
Figure 4.3 presents its convergence considering K ∈ {20, 40, 60} and L = 10. From
the results, it can be verified that the proposed method converges in few iterations
(around 100) for different IRS sizes. It is important to note that the number of iterations
does not noticeably increase with K , which fortunately leads to a relatively low training
overhead for complex scenarios (i.e. for large K ). Figure 4.4 compares the transmit
power at the BS versus the BS-UE distance for the PSO and the lower bound [19]. For
L = 30 particles the proposed method achieves similar performance as that of perfect
CSI case. Moreover, for d = 20 m, i.e., when the UE is near to the BS, the required
transmit power is the least among the considered distances. The power increases with
d till d = 40, then decreases again. From this figure, it is possible to observe the
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importance of the IRS as d increases, i.e., the UE is close to the IRS and far from the
BS. The above results show the importance of the correct design of the beamforming
at the IRS. Well designed beamforming can considerably increase the signal coverage
even without CSI estimation.
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Figure 4.3 – Convergence of the proposed PSO for L = 10 and M = 4

Figure 4.5 shows the transmit power at the BS versus the number of reflecting
elements at the IRS for d ∈ {15, 40, 50} m. It can be seen from the results that: i)
for d = 15 m in Figure 4.5a, in which the UE is close to the BS but far from the
IRS, if increasing K , the transmit power remains almost constant; (ii) for d = 40 m in
Figure 4.5b, when the UE is far from the BS and the IRS, the transmit power slowly
decreases with K ; (iii) for d = 50 m in Figure 4.5c, as the UE is very close to the IRS
but far from the BS, the transmit power greatly decreases with increasing K due to
the IRS; (iv) when it is considered a scenario without the IRS or with random phase
shifts at the IRS the transmit power at the BS remains almost constant with K , since
it does not explore the beamforming gain at the IRS. In addition, in accordance with
[19, Proposition 2], the transmit power scales down with K almost in the order of K 2.
This squared gain can be explained as the IRS leads to a beamforming gain of order
K both at the user link and at the BS-IRS link [19].
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Figure 4.4 – Transmit power at the BS versus BS-UE distance for K = 20.

As the main goal of the proposed method is to design the beamforming at the
BS and at the IRS without any CSI, it is necessary to consider an amount of feedback
from the user, which is given by NitL and adds some training overhead to the system.
It would be of practical importance to have an amount of feedback from the user
that is not larger than the number of pilots that would be necessary to estimate the
channel, i.e., NitL < (MK + 1) [90]. Therefore, in order to prove the efficiency of the
proposed method, Figure 4.6 shows the training overhead considering M = 32 and
d = 50 m. From the results, it can be observed that for large K , the proposed solution
achieves a close to ideal performance with a smaller amount of feedback from the user
(NitL) than the number of pilots necessary to estimate the channel, more specifically,
NitL = 0.7 × (MK + 1). In addition, from the results, it can be seen that for large K
the performance difference between the lower bound and the proposed solution with
NitL = 0.7 × (MK + 1) and even with NitL = 0.5 × (MK + 1) decreases.

Therefore, from the results, it can be concluded that the proposed solution
achieves a close to ideal performance with a reasonable amount of feedback from the
user in complex scenarios, differently from [7, 75–78, 80] where the training overhead
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(b) d = 40m
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Figure 4.5 – Transmit power at the BS versus the number of reflecting elements (K )
at the IRS

scales up with MK . In addition, the proposed method can be applied in LoS and NLoS
systems because, differently from [60, 79], it does not assume sparse channels. Finally,
it is essential to note that the proposed method does not require either active elements
at the IRS as in [7, 76] or separate amplitude control at each IRS element as in [77,
78].
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Figure 4.6 – Training overhead analysis d = 50 m.

4.3 NOVEL APPROACH CONSIDERING DISCRETE PHASES AT THE IRS

In the previous section, the beamforming design problem is evaluated considering
continuous phase shifts at the IRS, which are practically difficult to achieve for an IRS
with a large number of passive elements, due to the high cost of manufacturing each
reflecting element with high-resolution phase shifts to yield (quasi) continuous phases.
To overcome this problem, in this section, two different approaches considering finite-
resolution discrete phase shifts at the IRS are proposed and presented in detail. The
main goal of the proposed approaches is to maximize the user achievable rate subject
to a maximum transmit power constraint. In addition, in this section, the effect of
the S-CSI knowledge in the system performance is evaluated and new solutions based
on GA are presented. In the rest of this section, the proposed approaches and their
simulation results are described.
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4.3.1 System Model

In this approach, the same IRS-assisted wireless communication system pre-
sented in Figure 4.1 and described in Section 4.2.1 is evaluated. However, different
from the approach in the previous section, where continuous phase shifts at the IRS
are considered, here, discrete phase shifts at the IRS are assumed in the beamforming
design problem. Thus, the set of all possible discrete phases is given by

θk ∈ T =

⎧⎨⎩0,
2π
T

, . . . ,
2π(T – 1)

T

⎫⎬⎭ (4.8)

where T = 2b , and b denotes the number of bits per each element at the IRS. Moreover,
for the sake of simplicity and in accordance to [19, 71], it is considered [ξ]k = 1 for
(k = 1, . . . ,K ), i.e., maximum signal reflection for each element of the IRS.

Furthermore, as previously mentioned, in this section, two different approaches
are presented. First, none CSI prior knowledge is considered in the optimization process
and, second, only the knowledge of S-CSI is evaluated. The S-CSI is defined by the
deterministic LoS components of the channels (GLoS, hLoS

d , hLoS
r ). Since, low-mobility

users are assumed, the S-CSI changes slowly. In addition, different from the previous
section, where the LoS components are given by a complex Gaussian random variable
with zero mean and unit variance, here, in order to improve the system model, the LoS
components of all links are expressed by the antenna array responses at the IRS and
at the BS which are dependent on the array geometry [85]. In this approach, both the
IRS and the BS are equipped with an ULA as in [85, 91]1, thus the LoS components
of the BS-IRS, BS-UE and IRS-UE links are given by

GLoS = aH
IRS(ϕAoA)aBS(ϕAoD), (4.9)

hLoS
d = aBS(φAoD), (4.10)

hLoS
r = aIRS(ψAoD), (4.11)

1 Although it is considered an ULA at the IRS, the proposed solution can be easily extended for
scenarios with an UPA at the IRS.
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where ϕAoA is the AoA to the ULA at the IRS from the BS, ϕAoD is the AoD from
the ULA at the BS towards the IRS, while φAoD and ψAoD are the AoD from the ULA
at the BS and at the IRS towards the UE, respectively. In addition, the ULA responses
at the IRS and BS are given by

aIRS(ϑ) =
1
K

[︂
1, ejπ cos(ϑ), . . . , ejπ(K–1) cos(ϑ)

]︂
, (4.12)

aBS(ϑ) =
1
M

[︂
1, ejπ cos(ϑ), . . . , ejπ(M –1) cos(ϑ)

]︂
, (4.13)

where we consider that the distance between the array elements is λ/2.

4.3.1.1 Optimization Problem

The main goal of the proposed approaches is to maximize the achievable rate
at the UE by jointly optimizing the beamforming at the BS and the phase shifts at the
IRS considering a maximum transmit power constraint. This non-convex optimization
problem can be formulated as

Maximize
w,θ

R = log2(1 + Γ)

Subject to ||w||2 ≤ PT,

[θ]k ∈ T , k = 1, . . . ,K .

(4.14)

where PT is the transmit power at the BS. In this optimization problem, it is important
to underline that although the constraints are convex the optimization problem is non-
convex due to the fact that the beamforming at the BS and IRS are coupled. Thus,
there is not a standard method to solve it. Therefore, a novel solution based on GA is
proposed and described next.

It is important to note that the optimization problem in (4.14) is a discrete
problem and although the proposed PSO presented in Section 4.2 achieves a close-to-
optimum performance, PSO is suited to continuous optimization problems. Moreover,
PSO needs to be deeply modified to solve discrete optimization problems and usually
does not present a great performance for complex problems of such kind. On the
other hand, GA is discrete by nature, i.e., it is preferable to use GA to solve discrete
optimization problems. Therefore, a solution based on GA is more suited to solve
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the optimization problem in (4.14). In addition, it is important to underline that as
Meta-heuristic techniques are generic they present the same efficiency for different
performance metrics.

4.3.2 Proposed Solution

In this section the new proposed method based on GA to solve (4.14) is described.
Two different approaches are followed. First, the CSI knowledge at the IRS and at the
BS are not considered. Then, the knowledge of the S-CSI at the BS is exploited. These
approaches are explained in more details in the following.

4.3.2.1 Beamforming without CSI

In this section, a new method based on GA to solve (4.14) without any prior CSI
knowledge at the BS or at the IRS is presented. In this scenario, the beamforming vectors
at the BS and IRS to be tested are defined at the BS, while the IRS beamformings are
sent by the BS to the controller shown in Figure 4.1. Then, for each beamforming pair,
the feedback of the SNR at the UE is received at the BS, and the current beamforming
pair is evaluated based on (4.6). This process is performed for all pairs. In addition, in
order to speed up convergence of the proposed solution and to reduce the overhead,
since it is assumed a limited mobility scenario, in the process of generating the first
population of the proposed method, it is considered the knowledge of the best pair of
beamformings computed in the previous channel realization. Note that, in this approach,
the BS/IRS/UE channels are not explicitly estimated. Therefore, it is not required one
RF chain at each IRS element and any explicit channel estimation process is needed.
The proposed method is summarized in Algorithm 4.2 and its steps are detailed next.

1. Randomly generate (L – 1) pairs of beamforming (individuals) and generate the
first population. The first population is formed by the (L–1) pairs of beamforming
randomly generated, and the best beamforming pair from the previous channel
realization2.

2 In the first initialization there is no previous beamforming to be used, and therefore L individuals
should be randomly generated.
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2. Compute the fitness of each individual defined by (4.6), where the SNR at UE is
given in (4.5).

3. Select the Nf fittest individuals
(︂
wf , θf | f = 1, . . . ,Nf

)︂
, which are perpetuated

for the next generation.

4. Selection Process: By the Tournament Method, select (L–Nf)/2 parents from
the current generation.

5. Crossover Operator: With crossover probability pc, generate (L–Nf)/2 children
from the crossing of the selected parents. Otherwise, with probability 1 – pc, the
children are the same as the selected parents. The generated individuals are
stored in

(︂
wc , θc | c = 1, . . . , (L – Nf)/2

)︂
.

6. Mutation Operator: With mutation probability pmut, select the fittest individ-
ual. Otherwise, with probability 1 – pmut, randomly select a child generated in
Step 5. In either case, submit the selected individual to the Real Random Mu-
tation Operator with probability pmut. This step must be run (L – Nf)/2 times
and the following individuals are generated

(︂
wp , θp | p = 1, . . . , (L – Nf)/2

)︂
.

7. The population of the next generation is formed by the union of the individuals
generated in Steps 3, 5, and 6,

(︃
wl , θl = (wf , θf ), (wc , θc), (wp , θp) | l =

1, . . . ,L
)︃

.

8. Check if the stop criterion has been satisfied. In this work, it is considered the
maximum number of iterations Nit (generations) as the stop criterion. If so, then
return the fittest individual (wbest, θbest). Otherwise, go to Step 2.
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Algorithm 4.2: Proposed method based on GA for beamforming design
without CSI.

Input : Number of antennas at the BS: M
Number of elements at the IRS: K
Size of the population: L
Maximum number of iterations: Nit
Mutation probabilities: pmut
Crossover probability: pc
Number of users in the elitism process: Nf

Output : wbest, θbest

1 for g = 1 : Nit do
2 if (g = 1) then
3 Generate de first population

(︂
wl , θl | l = 1, . . . ,L

)︂
;

4 end
5 Determine the fitness of each individual based on (4.14).

6 Determine the Nf fittest individuals defined as
(︁
wf , θf | f = 1, . . . ,Nf

)︁
.

7 Select (L – Nf)/2 parents by the Tournament Method.
8 for k = 1 : (L – Nf)/2 do
9 if pc < rand() then

10 Generate two new children by the Discrete Crossover Operator.
11 else
12 The parents selected by the Tournament Method are kept for the next

generation.
13 end
14 end
15 The individuals generated by the Crossover Operator are given by(︂

wc , θc | c = 1, . . . , (L – Nf)/2
)︂

;

16 for k = 1 : (L – Nf)/2 do
17 if (pmut < rand()) then
18 Select the fittest individual (wfittest, θfittest).
19 if (pmut < rand()) then
20 Submit the fittest individual to the Real Mutation Operator.
21 else
22 The fittest individual is kept without changes for the next generation.
23 end
24 else
25 Randomly select a child

(︂
wc , θc | c = 1, . . . , (L – Nf)/2

)︂
.

26 if (pmut < rand()) then
27 Submit the selected child to the Real Mutation Operator.
28 else
29 The selected child is kept without changes for the next generation.
30 end
31 end
32 end
33 The individuals generated by the Mutation Operator are given by(︂

wp , θp | p = 1, . . . , (L – Nf)/2
)︂

;

34 Determine the new population:
35 w = [wf , wc , wp ], θ = [θf , θc , θp ].
36 end
37 Determine wbest and θbest according to (4.14).
38 return wbest, θbest
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Figure 4.7 – Diagram of the proposed solution.

4.3.2.2 Beamforming with S-CSI

In this case, the S-CSI is exploited during the beamforming design process. The
proposed solution is divided into three phases, as illustrated in Figure 4.7. In the first
phase, S-CSI is acquired using standard estimation techniques [92, 93] and fedback
to the BS3. In the second phase, the pairs of beamforming vectors at the BS and
IRS to be tested are defined at the BS and the best beamforming pair is computed
considering only the S-CSI. To finish, in the third phase, the best beamforming pair
computed in the second phase and the best beamforming pair computed in the previous
channel realizations are exploited as an initial position of the proposed method. In order
to improve the understanding about the proposed approach, these main phases are
described next.

1. Estimate the S-CSI: In this phase, it is considered that the IRS is in the
sensing mode and the S-CSI of all links

(︂
GLoS, hLoS

d , hLoS
r

)︂
can be estimated

by considering dedicated sensors/receiving circuits at the IRS and using standard
estimation techniques [92, 93].

2. Compute w and θ: Based on the estimated S-CSI, in this phase Algorithm 4.3
is considered to compute w and θ. To better explain the operation of Algo-
rithm 4.3, its main steps are detailed next.

I. Randomly generate L beamforming vectors at the IRS
(︃
θl , l = 1, . . . ,L

)︃
.

For each θl , compute the Maximum-Ratio Transmission (MRT) beamform-
3 The acquisition of the S-CSI is left for future work. Here the focus is to analyse the influence of

the S-CSI knowledge on the optimization problem.
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ing vector [94] given by,

w l =

√
Pt

[︂(︂
hLoS

r
)︂H
ΘGLoS +

(︂
hLoS

d

)︂H]︂H

⃓⃓⃓⃓⃓⃓(︂
hLoS

r
)︂H
ΘGLoS +

(︂
hLoS

d
)︂H ⃓⃓⃓⃓⃓⃓ . (4.15)

It is important to highlight that, for a given θl , w l is the optimal transmit
beamforming at the BS considering only the S-CSI. Here, each individual
in the proposed GA is defined as a beamforming vector at the IRS

(︂
θ

)︂
.

II. Calculate the fitness defined by (4.6) of each individual, where the SNR at
the UE is given by

SNR =

⃓⃓⃓(︂
hH

r ΘGLoS + hH
d

)︂
w

⃓⃓⃓2
σ2 , (4.16)

where Θ = diag
(︃

ej [θ]1 , . . . , ej [θ]K
)︃

.

III. Select the Nf fittest individuals
(︂
θf | f = 1, . . . ,Nf

)︂
, which are perpetuated

for the next generation.

IV. By the Tournament Method, select (L – Nf) parents from the current
generation.

V. With crossover probability pc, generate (L – Nf) children from the crossing
of the selected parents. Otherwise, with probability 1 – pc, the children are
the same as the selected parents. The following individuals are generated(︂
θc | c = 1, . . . ,L – Nf

)︂
.

VI. With mutation probability pmut select one children generated in Step V and
submit it to the Real Random Mutation Operator. Otherwise, the selected
children is perpetuated for the next generation. This step is run (L – Nf)
times. The following individuals are generated

(︂
θp | p = 1, . . . ,L – Nf

)︂
.

VII. The population of the next generation is formed by the union of the in-
dividuals generated in Steps III and VI

[︃
θf , θp

]︃
. In other words, the L

beamforming vectors,
(︂
θl , l = 1, . . . ,L

)︂
, are updated.

VIII. Check if the stop criterion has been satisfied. In this work, the stop criterion
is defined as the maximum number of iterations Nit (generations). If so,
then return the fittest individual. Otherwise, go to Step II.
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Note that, comparing Algorithm 4.2 and Algorithm 4.3, there is a difference
in the way that a new population is generated in each generation. In Algo-
rithm 4.3 the new population (Step VII) is generated following the basic princi-
ples of GAs [34]. However, in Algorithm 4.2, some modifications are proposed
in the Mutation Operator (Step 6) and consequently in the generation of a new
population (Step 7). These modifications were made after extensive tests for
obtaining maximum performance.

3. Compute w and θ: As illustrated in Figure 4.7, this phase is similar to the
approach without CSI described in the Subsection 4.3.2.1. The Algorithm 4.2
is applied in this phase with the following modification in the generation of the
first population (Step 1 in Algorithm 4.2):

• In this phase, the first population is generated by the following individuals:
(i) (L – 2) pairs of beamforming (individuals) randomly generated; (ii) The
beamforming pair generated in the first phase (w, θ) considering S-CSI;
and (iii) The best beamforming pair from the previous channel realization
(w, θ).

The other steps remain the same. It is important to note that the proposed
solution exploits the S-CSI knowledge as an initial point of the beamforming
search in order to improve its convergence. With this approach, as will be shown
next, it is possible to achieve a close-to-optimal solution with reasonable overhead.
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Algorithm 4.3: Proposed method based on GA exploiting S-CSI.
Input : Number of antennas at the BS: M

Number of elements at the IRS: K
Size of the population: L
Maximum number of iterations: Nit
Mutation probability: pmut
Crossover probability: pc
Number of users in the elitism process: Nf

Output : wbest, θbest

1 Randomly initialize the first population: (θl | l = 1, . . . ,L).
2 For each θl , compute wl based on (4.15).
3 for g = 1 : Nit do
4 Determine the fitness of each individual based on (4.14).
5 Determine the Nf fittest individuals defined as (θf | f = 1, . . . ,Nf).
6 Select (L – Nf) parents by the Tournament Method.
7 for k = 1 : (L – Nf) do
8 if pc < rand() then
9 Generate two new children by the Discrete Crossover Operator.

10 else
11 The parents selected by the Tournament Method are kept for the next

generation.
12 end
13 end
14 The individuals generated by the Crossover Operator are defined as

(θc | c = 1, . . . ,L – Nf).
15 for k = 1 : (L – Nf) do
16 if pmut < rand() then
17 Submit the child

(︁
[θc ]k

)︁
to the Real Mutation Operator.

18 else
19 The child is kept without changes for the next generation.
20 end
21 end
22 The individuals generated by the Mutation Operator are defined as

(θp | p = 1, . . . ,L – Nf).
23 Determine the new population: θ =

[︁
θf , θp

]︁
.

24 end
25 Determine θbest, the fittest individual, according to (4.14).
26 Compute wbest based on (4.15) for θbest.
27 return „best, wbest
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4.3.3 Simulation Results

In order to show the performance of the proposed solution, this subsection
presents the simulation results obtained considering the simulation setup presented in
Figure 4.2, where d is the BS-UE distance. Therefore, the BS-UE and IRS-UE link
distances are d1 =

√︂
d2 + d2v and d2 =

√︂
(dh – d)2 + d2v , respectively. The simulation

parameters considered in this section are described in Table 4.1, unless specified oth-
erwise, and all curves present the average of 103 different realizations. It is important
to highlight, that the GA parameters were defined after extensive simulations. Numeri-
cal results are shown for three beamforming solutions: (i) Upper Bound, the optimal
beamforming using continuous phase shifts at the IRS and optimal beamforming at
the BS. This benchmark is obtained from solving the optimization problem in ([95],
Eq. 12) using CVX [96], and the resulting achievable rate is an upper bound for the
optimization problem in (4.14); (ii) GA - without CSI, the proposed solution in Sub-
section 4.3.2.1, which does not consider any CSI knowledge; (iii) GA - with S-CSI, the
proposed solution presented in Subsection 4.3.2.2, exploiting the S-CSI knowledge.

Table 4.1 – Simulation parameters.

Parameter Value
M 10
Nit 103

Nf 2
Ntourn 2
pmut 8%
pc 90%

dv [19] 2 m
dh [19] 50 m

β = βBU = βIU 1
αBU [19] 3.5
αBI [19] 2.0
αIU [19] 2.8
C0 [19] -30 dBm
σ2 [19] -80 dBm
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4.3.3.1 Number of Phase Bits

First of all, in this section, it was considered a more practical scenario with
discrete phase shifts at each reflecting element at the IRS. Due to the large number
of elements at the IRS, it is important to achieve a close-to-optimal performance
with a small number of controlling bits b [82]. Therefore, Figure 4.8 presents the
convergence of the proposed solutions for different values of b. From the results, it
can be verified that it is possible to achieve a close-to-optimal performance with only
b = 3 bits when the S-CSI knowledge (Figure 4.8a) is considered. In addition, as the
ideal continuous phase shifts are not energy efficient and are difficult to achieve due
to hardware limitations. Therefore, it can be concluded that the proposed solution can
be applied in practical scenarios with low-resolution phase shifts. In the rest of this
subsection, all results are evaluated considering b = 3 bits.
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Figure 4.8 – Analyse of the number of controlling bits at each element at the IRS with
and without the S-CSI knowledge.

4.3.3.2 Influence of LoS and Topology

Figure 4.9 presents the convergence of the proposed solution with and without
S-CSI considering β ∈ {1, 2}. From the results, it is possible to verify that the proposed
solution considering S-CSI knowledge achieves a better performance with considerably
fewer iterations (at least ∼ 95% less iterations for the same achievable rate). Figure 4.10
compares the system achievable rate versus the BS-UE distance considering K = 80
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reflecting elements at the IRS. From the results, it can be seen that the proposed
solution achieves a close-to-optimal performance and the influence of the knowledge
of the S-CSI increases when d increases.
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Figure 4.9 – Convergence of the proposed solution for d = 40 m, and K = 80.
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Figure 4.11 – Transmit power at the BS versus the number of reflecting elements (K )
at the IRS.

Figure 4.11 shows the achievable rate versus the number of reflecting elements
at the IRS for d ∈ {15, 40, 50} m. It can be seen, from the results, that: i) for d = 15
m in Figure 4.11a, in which the UE is close to the BS but far from the IRS, if increasing
K , the achievable rate remains almost constant. This can be explained due to the fact
that, as the UE is far from to the IRS, increasing K does not increase the achievable
rate at the UE. In this case, the achievable rate is more dependent of the beamforming
at the BS; (ii) for d > 15 m in Figures 4.11b and 4.11c when the UE is far from the
BS, the achievable rate greatly increases with K ; (iii) when the UE is close to the
IRS, the proposed solution achieves a close-to-ideal performance with discrete phases
at each IRS element and only a few number of controlling bits. In addition, from the
results, it is possible to verify that the position of the UE has a considerable influence,
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this can be related to the gain of the beamforming at the BS or at the IRS that the UE
can exploit when it is close to the BS or IRS. This conclusion is ratified in Figure 4.10,
where it is possible to note the importance of the UE position.

4.3.3.3 Amount of Feedback

It is important to measure the amount of feedback required from the user,
which is given by NitL and adds some overhead to the system. It is very desirable
that this amount of feedback is not larger than the number of pilots that would be
required by a solution that explicitly estimates the channel, which is (MK + 1) [90].
Therefore, Figure 4.12 presents the training overhead of the proposed solution in terms
of the number of pilots that would be necessary to estimate the channel. The proposed
solution, even when using only 30% of the training overhead that would be necessary
to estimate the channel, besides do not requiring additional RF chains at the IRS
elements, performs close to the upper bound. Moreover, it is important to emphasize
that the upper bound considers continuous phases at the IRS and the proposed solution
considers a more realistic scenario with discrete phases at the IRS elements. Therefore, it
is possible to conclude that the proposed solution achieves a close-to-ideal performance
with a reasonable amount of feedback from the user.
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Figure 4.12 – Training overhead analysis d = 50 m and M = 10.



Chapter 4. IRS Beamforming Design 90

4.3.3.4 Imperfect S-CSI Knowledge

The previous results consider perfect S-CSI knowledge. Thus, in order to inves-
tigate the robustness of the proposed solution, next the following model for imperfect
S-CSI knowledge [97] is considered, taking the BS-IRS link as an example:

GLoS = (
√

1 – τ)GLoS + (
√
τ)E, (4.17)

where GLoS is the LoS component of the BS-IRS link and GLoS represents the imperfect
estimation of the LoS component of the BS-IRS link, while E represents the estimation
error, whose entries are i.i.d. zero mean circularly symmetric complex Gaussian random
variables with zero mean and unit variance. Moreover, τ ∈ [0, 1] is the estimation
accuracy, i.e., if τ = 1 there is no correlation between GLoS and GLoS, otherwise, if
τ = 0 there is perfect S-CSI estimation. In this work, it is considered that the imperfect
estimation of the LoS components or all links (BS-UE and IRS-UE) are generated in
the same way.

Figure 4.13 presents the convergence of the proposed solution for different
values of τ considering the following schemes: (i) Proposed solution with perfect S-CSI;
(ii) Proposed solution with imperfect S-CSI; and (iii) Proposed solution without any
CSI. In all cases, it is considered β = 1, i.e., both LoS and NLoS components present
the same influence on all links. From the results, it is possible to verify that imperfect
S-CSI knowledge degrades the performance, but the proposed solution with imperfect
S-CSI still achieves a considerably better performance than in the case without S-CSI.

4.4 CONCLUSION

In this chapter, two different scenarios are considered. In the first, a new method
based on PSO to minimize the transmit power at the BS by jointly optimizing the
BS and IRS beamforming, with a minimum SNR constraint, is proposed. The solution
achieves a close-to-ideal performance with a reasonable amount of feedback from the
UE, allowing the use of IRS without the need of one RF chain per reflecting element,
since CSI acquisition is not required, reducing cost and energy consumption. In the
second, two different solutions based on GA are proposed to optimize the beamforming
at the BS and IRS, with a maximum transmit power constraint and discrete phase shifts
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Figure 4.13 – Convergence of the proposed solution with perfect and imperfect S-CSI
for d = 50 m, and K = 20.

at the IRS. First, a novel solution without any knowledge of the CSI at the BS/IRS
is proposed, and a sub-optimum design of the beamforming at the BS and IRS is
performed. Next, another solution to solve the beamforming problem only by exploiting
the S-CSI knowledge is introduced. The novel solutions are evaluated considering
different setups, and from the results it is possible to conclude that they achieve a
close-to-ideal performance considering discrete phases with a few numbers of controlling
bits at each element and with a reasonable amount of feedback from the UE. This
shows that the proposed solutions are very attractive in practice.
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Chapter 5
Conclusions

In this thesis, both the IA in mmWave systems and the beamforming design
in IRS-assisted wireless systems are addressed. One of the main contributions of this
thesis is to show that Evolutionary Computation can be successfully used to solve these
relevant optimization problems in B5G wireless systems.

In Chapters 3 and 4, different B5G-emerging optimization problems have been
presented and successfully solved using Evolutionary Computation. More specifically,
in Chapter 3 a beam refinement method based on GA was proposed in order to reduce
the delay of the directional search in the IA procedure in mmWave systems, considering
scenarios with and without delay constraints. The proposed method was evaluated
in different scenarios. The simulation results have shown that the proposed method
presents an excellent performance when compared to the one in [23–25], and can reach
the same results as ES. In addition, the proposed algorithm is generic, as it can be
applied to different scenarios. The proposed algorithm can reduce the cellular search
delay introduced by the use of beamforming at the BS and UE.

Moreover, in Chapter 4, the deployment of IRSs in a wireless system was studied
and some different approaches were evaluated. First, a new method based on PSO was
implemented in order to minimize the transmit power at the BS by jointly optimizing
the BS and IRS beamforming considering continuous phases at the IRS elements, with
a minimum SNR constraint for the UE. The proposed solution achieved a close-to-ideal
performance with a reasonable amount of feedback from the UE, allowing the use of
IRS without the need of one RF chain per reflecting element, since CSI acquisition is
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not required, reducing cost and energy consumption. Second, a more realistic scenario
was evaluated, with discrete phase shifts at the IRS. Then, two different solutions were
proposed. First, a method based on GA, that does not consider any knowledge of the
CSI at the BS, was proposed. A sub-optimum design of the beamforming at the BS and
IRS, considering discrete phase shifts at the IRS, was presented. Next, another solution
based on GA was proposed in order to solve the beamforming problem by exploiting the
S-CSI knowledge only. The novel solutions were evaluated considering different setups,
and, from the results, it can be concluded that they achieved a great performance
considering discrete phases with a few number of controlling bits at each element and
with a reasonable amount of feedback from the UE. Therefore, the proposed solutions
are very attractive in practice and they can be applied to low-mobility LoS and NLoS
scenarios.

From the results presented in this thesis, it is possible to confirm the efficiency of
the Evolutionary Computation techniques in solving non-convex emerging optimization
problems related to B5G wireless systems.

5.1 FUTURE WORKS

This thesis showed that Evolutionary Computation can be successfully used
to solve the IA problem in mmWave communications and the beamforming design
in an IRS-assisted wireless system. However, some practical scenarios, parameters
optimization, and other emerging optimization problems are not investigated and are
left for the future due to the lack of time.

This thesis has been mainly focused on the Computation Evolutionary, leaving
the study of other methods in the Artificial Intelligence area as potential future works.
Moreover, the development of B5G wireless systems is in its infancy, thus there are
many challenges to overcome and, consequently, many emerging open problems [98–
100] that could be effectively solved using these techniques. Therefore, the following
future works can be addressed:

• With respect to IA in mmWave communications:

– It would be interesting to extend the proposed scenario considering multiple
mobile systems. This extension would considerably increase the complexity
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of the optimization problem and it is a more practical problem. In addition,
the use of different multiple access techniques could be evaluated in order
to improve the system rate [101–103].

– This thesis has considered analog beamforming at the BS and UE and DFT-
codebooks at the BS and UE. However, it could be interesting to investigate
how to design an optimum codebook for the BS and UE. In addition, the
performance of the digital and hybrid beamforming at the BS and UE could
be investigated and the energy consumption evaluated [103–106].

• Regarding IRS-assisted wireless systems:

– An interesting extension is to analyze a more practical scenario considering
multiple UEs and BSs assisted by multiple IRSs and to solve the beamform-
ing design problem for this scenario [107, 108]. This extension increases
considerably the complexity of the optimization problem. In addition, in
order to improve the system performance, the use of different clustering
and multiple access techniques could be investigated [109–111]. To the best
of the author’s knowledge, there is no work in the literature that considers
such broad scenario.

– It would be very relevant to investigate the employment of IRSs in a
mmWave wireless system [112–114]. The beam search problem could be
solved using Evolutionary Computation and the obtained results could be
compared with those in Chapter 3.

– The IRSs are considered an revolutionizing technology that is able to sig-
nificantly improve the performance of wireless networks, to achieve the
stringent requirements of the B5G wireless systems, and consequently to
enable the deployment of demanding applications. For instance, the study
of the employment of IRSs to enable the Internet of Things (IoT) [115] is
a relevant future work.

• Finally, as mentioned in Chapter 1, in this thesis, the detailed optimization of the
parameters involved in PSO and GA has not been done, and therefore it could
be carried out as a future work.
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