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ABSTRACT

The paper deals with the design of suboptimal re-
ceivers for data transmission over frequency selective
channels. The complexity of Maximum Likelihood
Sequence Estimation (MLSE) turns out be exponen-
tial in the channel memory. Hence, when dealing
with channels with long memory, suboptimal recep-
tion must be considered. Among suboptimal meth-
ods, the Delayed Decision Feedback Sequence Esti-
mation (DDFSE) plays an important role. This re-
ceiver is based on a Viterbi processor where the chan-
nel memory is truncated. The memory truncation
is compensated by a per-survivor decision feedback
equalizer. The DDFSE was originally proposed in [1],
where the whitened matched filter was considered as
a front-end. Our contribution is to extend the prin-
ciples of MLSE and DDFSE to the case where the
mean-square whitened matched filter is adopted as a
front-end. Simulation results show that our proposed
design of the DDFSE gives substantial benefits when
a severe frequency selective channel is considered.

1. INTRODUCTION

The increasing demand for wideband communication
services has lead to the development of broadband
transmission systems. Both in the fixed and in the
mobile scenario, radio systems are subject to propa-
gation over multipath channels. The effect of multi-
path is severe in broadband systems, where the sym-
bol repetition interval may be shorter than the de-
lay between the paths. In this case, one or more
deep notches affect the spectrum of the received sig-
nal. Equalization attempts to recover the transmit-
ted data from the received waveform by suitable pro-
cessing of the received signal. The receiver that guar-
antees minimum Bit Error Rate (BER) is the maxi-
mum a posteriori probability receiver. However, one
often renounces to this receiver, because it is too com-
plex. A simpler receiver is obtained if the probabil-
ity of sequence error is considered. This approach

leads to MLSE [2, 3, 4]. Unfortunately, even MLSE
is often too complex. Actually, the MLSE receiver
is realized by a Viterbi algorithm with a number of
states that is exponential in the channel memory.
Hence, when dealing with channels with long mem-
ory, one is forced to consider suboptimal receivers.
A popular one is based on the Decision Feedback
Equalizer (DFE) [5]. The complexity of the DFE
is much lower than the complexity of MLSE. Unfor-
tunately, the gap between the performances of the
two detectors is huge when a severe frequency selec-
tive channel is considered. A technique that allows
for a trade off between complexity and performance
is the DDFSE proposed in [1]. The DDFSE is based
on a Viterbi algorithm where the channel memory
is truncated. The performance loss due to memory
truncation is mitigated by a per-survivor processing
[6], where the past history of each survivor is used
in a DFE scheme. In the DDFSE originally pro-
posed in [1], the Whitened Matched Filter (WMF)
was considered as a front-end. Our contribution is
to extend MLSE and DDFSE to the case where the
Mean-Square Whitened Matched Filter (MSWMF)
is adopted as a front-end. The outline of the paper
is as follows. In Section 2 MLSE based on the WMF
and on the MSWMF is reported, and in the Ap-
pendix it is proved that the MSWMEF leads to MLSE
with minimum number of states. Section 3 describes
the WMF-DDFSE and the MSWMF-DDFSE. Sim-
ulation results, reported in section 4, show that the
MSWMF-DDFSE outperforms the WMF-DDFSE at
low-to-intermediate SNR when a severe frequency se-
lective channel is considered. In section 5 the sum-
mary of the results is presented.

2. TWO MLSE METHODS

We consider the model of a binary uncoded data se-
quence transmitted over a baseband linear channel
corrupted by additive white Gaussian noise. It is
well known that MLSE can be performed by a sam-
pled matched filter, a prefilter, and Viterbi algorithm,
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Figure 1: Channel and receiver block diagram.

and that the branch metric to be used in the algo-
rithm can be calculated in several ways, depending
on the prefilter. Examples are the receivers described
in [2, 3, 4]. We consider two receivers that allow for
MLSE with minimum number of states making use of
the familiar squared Euclidean distance as a branch
metric. The block diagram of the system is reported
in figure 1. Let 2¥ be the number of states and 2!
the number of transitions. The metric of the transi-
tion that diverges from state (ax—,,...,ar—1) at time
k — 1 and merges in state (ag—_,+1,-.-.,ar) at time k
is

bk(ak,y,...,ak) = (-Tk —Zdjak,j)27 (1)
7=0

where xj is the kth sample at the output of the
prefilter, and ar € {—1,1}. The impulse response
d = (do,d1,...,d,) and the prefilter are hereafter
discussed for the two receivers.

A.  Whitened Matched Filter

Let r = (r_,,...,7r,) be the impulse response of
the system from the source to the output of the
sampled matched filter, that is the sampled auto-
correlation of the channel g(t) in figure 1, and let
r(z) = >0 mz7% be its z-transform (27! repre-
sents the unit delay). In the time discrete white
Gaussian model of [2] d(z) is obtained from the spec-
tral factorization

d(z)d(z"") = r(2) (2)

by taking for dw ps(2) that d(z) being causal and min-
imum phase. It is worth noting that dy s (z), that is
d(z) causal and minimum phase, exists iff the Fourier
transform

S(w) = r(e), 3)

is nonnull over any measurable interval [7]. When
this condition holds true, the roots of dyy pr(2) are on
or inside the unit circle. Note that the case where
some of the roots of dyp(2) are on the unit circle,
that is when S(w) is null in some non measurable in-
terval, is a limiting case. When the roots of dy ps(2)
are inside the unit circle, the prefilter is the noise
whitening filter

ewn(2) = dy (7). (4)

When the roots of dwas(z) are on the unit circle,
the noise whitening filter does not exist, because

dw(z71) is not invertible. However, the existence
of the WMF is still guaranteed [2], and the impulse
response of the system from the source to the input
to the Viterbi detector is d(z).

B.  Mean Square Whitened Matched Filter

In the second receiver that we consider, d(z) is de-
termined from the spectral factorization

d(z)d(z™Y) = r(2) + o2, (5)

by taking for dyrs(2z) that d(z) being causal and min-
imum phase. In (5), 02 is the variance of the noise
at the output of the sampler. Note that for ¢ > 0,
that is when the detection problem is not trivial, the
Fourier transform S(w) + o2 is nonnull everywhere.
As a consequence, the existence of dpsg(z) is guar-
anteed, all its roots are strictly inside the unit circle,
and, in contrast to the WMF, the case where S(w)
is null over some interval is not a limiting case for
the MSWMF. Also note that the time spanning of
r(2) + o2 is the same as that of r(z), hence dyrs(2)
has the same time spanning as dys(2), leading to
a Viterbi algorithm with the same number of states
as for the WMF, that is the minimum number of
states for MLSE [4]. The prefilter is the filter that
minimizes the Mean Square Error (MSE), where the
MSE is defined as

MSE = E{(x) — ZdMS,iak—i)Q}v (6)

1=0

where F{-} denotes the expected value, and ay, is the
kth element of the transmitted sequence. Minimiza-
tion of (6) yields [7]

dyrs(z)

s T o

= dyis(z7h), (7)

provided that ¢ > 0. It can be shown that the error
sequence {x — Y . o das,ar—i} is white [7]. For
this reason, the front-end filter takes the name of
mean-square whitened matched filter. Although (5)
is widely known and used in the theory and in the
practice of DFE, we are unaware of its use in MLSE.
Hence we state the following

Theorem : A Viterbi detector based on (1), (5), and
(7), performs MLSE.

The theorem is proved in the appendix.
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Figure 2: (a) Discrete time channel. (b) Spectrum.

3. TWO DDFSE METHODS

In the DDFSE, d(%) is split in two parts as
'UI .
dl (2) = Z diz*l,
i=0

XV: diz*i,

i=p+1
d(z) = di(z)+ da(2).

The Viterbi algorithm with 2# states, u < v, treats
in a conventional manner d;(z), while the v — p taps
of the per-survivor DFE are used to cancel the in-
tersymbol interference caused by da(z). The branch
metric in the reduced trellis is

"
bk(ak_u, N ak) = (l‘k — Z djak_j
j=0

v
- Z djdk—j(ak—un s 7ak—1))27

Jj=p+1

where ax_;(ag—p,...,ax—1) is the estimate of the
bit transmitted at time & — 7 which is present in
the survivor that at time k& — 1 merges in the state
(ak—p, - -, ax—1). As mentioned in the introduction,
in the DDFSE introduced in [1] the WMF is con-
sidered as a front-end. Note that, when g = 0, the
DDFSE reduces to a pure DFE. We observe that the
spectral factorization (5), that is called the key equa-
tion in [7], plays a central role in the theory of the
pure DFE, while (2) is less important. This obser-
vation suggests to adopt the MSWMF as a front-end
also for DDFSE.

4. EXPERIMENTAL RESULTS

To obtain substantial difference between the per-
formances of the two methods, a severely distorted

Figure 3: Trade off between complexity and perfor-
mance for the two competitors. SNR=20 dB. u =0
is the pure DFE, p = 6 is MLSE.

channel should be considered. The channels stud-
ied in [8] are actually severe, in the sense that they
give the lower minimum distance for a fixed length
of the impulse response. We focus on the chan-
nel with v = 6. The impulse response of the time
discrete channel at the output of the WMF, de-
picted in figure 2 together with the spectrum S(w), is
dwar(2) = 0.176 +0.316271 +0.476272 4+ 0.532273 +
0.4762=% 4+ 0.3162° 4+ 0.176275. The shape of the
impulse response resembles a bell, a shape that is of-
ten found in channels from the real world. Note that
this channel has three spectral nulls. It is intuitive
that the effect of the spectral nulls is more severe
for the WMF-DDFSE, where the spectral nulls are
treated as a limiting case, than for the MSWMF-
DDFSE. Moreover, it is apparent from (2) and (5)
that dyrs(z) — dwa(z) as SNR — oo. Hence one
expects that the MSWMF-DDFSE outperforms his
competitor only at low-to-intermediate SNR. How-
ever, the important issue of performance evaluation is
left to future investigation, limiting the present con-
tribution to simulation results. In the simulations,
the sequence at the output of the WMF is zyyps(2) =
dwm(z)a(z) + w(z), where the variance of the white
noise w(z) is 0. For the MSWMF, r(z) is calculated
from (2), then is used in (5) to work out dpsg(z).
The sequence at the output of the MSWMEF is then
obtained as zas(2) = zwar(2)eyy (2)ems(z) =
zw o (2)dwar (271 dy g (271, the existence of
d&ls (27 1) being guaranteed for ¢ > 0. The product
dwa (271 )dyjg(271) is truncated to 91 terms. The
BER is measured by a random sequence of 2 - 106
data. Figure 3 reports the BER versus p at SNR
= ro/o? = 20 dB. The figure illustrates the trade
off between performance and complexity offered by
the DDFSE, and shows that the MSWMF-DDFSE
outperforms the WMF-DDFSE. Of course, for u =6
both receivers perform MLSE. Figure 4 shows the



BER of the pure DFE (u = 0) versus SNR, confirm-
ing the observation that leaded us to consider the
MSWMF as a front-end. Figure 5, where p = 4 is
considered, demonstrates the improvement offered by
the MSWMF-DDFSE over his competitor in a real-
istic trade off between complexity and performance.
Figures 4 and 5 also show that, as expected, the im-
provement offered by the MSWMF-DDFSE over his
competitor is higher at low-to-intermediate SNR.

5. SUMMARY

The MSWMF is widely known and studied in the
theory of DFE, but seems to be less considered in
sequence estimation. Moving from this observation,
we have proved that MLSE with minimum number of
states is obtained when the MSWMF is adopted as a
front-end. Further, the MSWMF has been proposed
as a front-end for the suboptimal sequence estima-
tion technique known as DDFSE. The comparison
between the MSWMF-DDFSE and the conventional
WMF-DDFSE shows that the MSWMF-DDFSE out-
performs his rival when a severe frequency selective
channel is considered. This result is intuitive, be-
cause the receiver based on the WMF treats spectral
nulls as a limiting case. In contrast, the case where
the spectrum is null in some interval is not a limit-
ing case for the MSWMF, provided that SNR # oc.
Simulation results also confirm that, since MSWMF
— WMF as SNR — o0, a substantial improvement is
offered by the MSWMF over the WMF only at low-
to-intermediate SNR. In the present paper, the per-
formance is evaluated by computer simulation, while
the analysis is left to further study.

6. APPENDIX

Theorem :

A Viterbi detector based on (1), (5), and (7), per-
forms MLSE.

Proof :

Let s be the survivor that merges in state sy =
(Ak—pt1,---,ax) at time k, let a = (ag41,.-.,Cxt1)
be a piece of a generic data sequence that diverges
from state s at time k and merges at time k + [,
I >v+1, in state sg4; = (@k—pi1415-- -, A+1), and
let ¥ = (Yg+1,- -, Yr+i) be the corresponding piece
of sequence of the samples at the output of the sam-
pled matched filter. Manipulating the branch metric
of Ungerboeck’ s MLSE [3], one writes the metric of
(s,a) at time k + 1 as

Ml?—{—f(sv a) = (sk’ a)Rl-H/(Ska a)T

—2yal + MM (s,a) — sy R, s},

where MMF (s, a) is the metric of state s, at time k,
R, is the conventional m x m autocorrelation ma-
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Figure 4: BER versus SNR for the pure DFE.
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Figure 5: BER versus SNR for reduction of the
Viterbi algorithm to 16 states.

trix constructed from r, and the superscript © de-
notes transposition. Note that the term MM (s, a)—
sle,sg is common to all the sequences that diverge
from s;. Consider now the decision between two se-
quences (s,a’) and (s,a’”) that diverge from state sy
at time k and merge at time k + [ in state sg4;. The
test takes the form

>
MY (s,a') < MY (s,a”). (8)
The same decision rule is obtained by considering the
following two iterations. The first iteration is
14
up =0, ujp1 =u; + (Z drs,iaj—it1)?,
i=0
j=k,... k+1-1. (9
Manipulating (9) one finds

U1 = (sk,a)(Rigy + 0°1i4,) (sg, a) "
k+v k

- Z ( Z dMS,n—V—iai)2

n=k+1 i=k—v+1



k+14+v k+l1

-2

n=k+Il+1 i=k+l—v+1

2
drmsn—iti)”,

where I,, is the m x m identity matrix, and the
two double sum and the term (sy,a)o?I;,, (sg,a)T
are common to all the sequences that diverge from
and merge in the two states mentioned above (re-
call binary antipodal transmission and dyss,; = 0 for
1 €4{0,...,v}). The second iteration is based on

ya' = [y(z)a(z"")]o
= [y(z)ems(z)dms(z"")a(z™"]o
= [z(2)dus(z alz" o, (10)

where []; denotes the coefficient of 2%, and
ems(2)dys(271) =1 from (7) has been used. From
(10) one gets

v =0, vjt1 =05 +Tj41 ZdMS,iaj—i—Ha
i=0
j=k,....k+1-1, (11)

whose last term, after some manipulation, can be
written as

k+v

k
v =vyal + > wa( Y dusa-ia)

n=k+1 i=k—v+1

kit ket
— E T ( E drrsn—iti),
n=ktl+1  i=ktl—v+1

where the two double sum are common to all the
sequences that diverge from and merge in the two
mentioned states. Putting together (9), (11), and
adding x? 1, which is common to all the sequences,
one gets

MM (s,8) = MM (s,0) + (2741

- ZdMS,iaj—i-i-l)Qv Jj=k,. .. k+i-1
i=0

Disregarding all the common terms, one realizes that
the test

MM (s,a') < MM (s,a") (12)

produces the same decision as (8). Hence iteration of
(12) will produce the same decision as Ungerboeck’ s
algorithm, that is MLSE. QED

The theorem can be proved by simpler manipulations
by showing that the test (12) produces the same de-
cision as the test of the WMF-MLSE. However, the
matched filter always exists, while the WMF does not
exist when S(w) is null over some measurable inter-
val. Hence the present proof, which is based on the
matched filter, demonstrates that the MSWMEF leads
to MLSE also when the WMF does not exist.
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