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"Data are just summaries of thousands of stories – tell a few of those 

stories to help make the data meaningful." 

(Chip & Dan Heath, 2014) 
 



 

 

 

 

ABSTRACT 

 

Epilepsy is a group of neurological diseases that affects up to 1% of the world’s population. 

About a third of the patients diagnosed with epilepsy are considered with difficult treatment 

(refractory), this group of patients can benefit from a resective surgery, that removes the 

epileptogenic tissue of the brain. Nowadays, the exams for the delineation of the areas for 

resection are still imprecise, and one of the techniques for a better definition of these brain areas 

require electrophysiological examination with invasive intracranial long-term 

electroencephalography monitoring (iEEG). One of the strategies for determining the 

epileptogenic zone (EZ) is to analyze the interictal data of patients with favorable outcomes and 

unfavorable outcomes with respect to the surgery resected areas and determine the statistical 

significance between them. A detection, analysis, and clustering data mining algorithm was 

used in order to extract information of 52 patients with focal cortical dysplasia (FCD) epilepsy. 

The detection algorithm identifies the interictal epileptiform discharges (IEDs) and arranges the 

detected activities into clusters given the patterns of spreading. For the statistical analysis, a 

comparison of the clustered data from three different vigilance epochs (sleep, awake and the 

combination of both) identified the most relevant epoch for identifying the epileptogenic areas 

and extract additional parameters. The results showed that the combined epoch of awake and 

sleep showed strong statistical significance in relation to the outcomes, followed by sleep and 

awake, respectively. Furthermore, given the positive results of the first analysis, an additional 

data mining was done in order to utilize the algorithm’s outputs to predict the patient’s FCD 

group, a predictive model was trained and displayed accuracy greater than 80% when tested 

with non-trained data. 

 

Keywords: Data Mining. Epilepsy. Predictive analysis. Electroencephalography. Interictal 

Epileptiform Discharges. 

 

 

  



 

 

 

 

RESUMO 

 

A epilepsia é um grupo de doenças neurológicas que afeta até 1% da população mundial. Cerca 

de um terço dos pacientes diagnosticados com epilepsia são considerados de difícil tratamento 

(refratários); esse grupo de pacientes pode se beneficiar de uma cirurgia ressectiva que remove 

o tecido epileptogênico do cérebro. Atualmente, os exames para o delineamento das áreas de 

ressecção em cirurgias ainda são imprecisos, e uma das técnicas para uma melhor definição 

dessas áreas cerebrais requer exames eletrofisiológicos com monitoração por 

eletroencefalografia intracraniana invasiva de longo prazo (iEEG). Uma das estratégias para 

determinar a zona epileptogênica (EZ) é analisar os dados interictais de pacientes com 

resultados cirúrgicos favoráveis e desfavoráveis em relação às áreas ressecadas da cirurgia e 

determinar a significância estatística entre eles. Um algoritmo de mineração de dados que 

realiza detecção, análise e agrupamento foi utilizado para extrair informações de 52 pacientes 

com epilepsia por displasia cortical focal (FCD). O algoritmo de detecção identifica as 

descargas epileptiformes interictais (IEDs) e organiza as atividades detectadas em grupos, 

dados os padrões de propagação. Para a análise estatística, uma comparação de dados de três 

estados de vigilância (sono, vigília e a combinação de ambos) identificou o período mais 

relevante para identificar as áreas epileptogênicas e extrair parâmetros adicionais. Os resultados 

mostraram que o estado que combina vigília e sono mostrou forte significância estatística em 

relação aos resultados cirúrgicos, seguidos por sono, e depois vigília, respectivamente. Além 

disso, dados os resultados positivos da primeira análise, uma mineração de dados adicional foi 

feita para utilizar as saídas do algoritmo para prever o tipo de displasia cortical focal (FCD) do 

paciente. Um modelo preditivo foi treinado e exibiu precisão superior a 80% quando testado 

com um grupo de dados não treinados. 

 

Palavras-chave: Mineração de dados. Epilepsia. Análise preditiva. Eletroencefalografia. 

Descargas epileptiformes interictais. 
  

  

  



 

 

 

 

RESUMO EXPANDIDO 

 

INTRODUÇÃO 

Epilepsia é considerada um grupo de doenças neurológicas crônicas que afetam entre 0,5% e 

1% da população mundial (BANERJEE; HAUSER, 2008). É caracterizada por convulsões 

recorrentes não provocadas, que podem ser descritas pelo comportamento atípico das funções 

cerebrais causadas por descargas elétricas anômalas no cérebro (FISHER et al., 2005). As 

convulsões variam de lapsos de consciência, movimentos corporais involuntários, distúrbios 

sensoriais até convulsões prolongadas e severas. A doença pode causar diversas consequências 

neurológicas, cognitivas, psicológicas e sociais na vida da pessoa, afetando negativamente sua 

qualidade de vida (FISHER et al., 2014). Tratamentos incluem dietas e fármacos, mas cerca de 

um terço dos pacientes são considerados fármaco-resistentes, também conhecidos como 

refratários. O tratamento para o subgrupo de pacientes refratários inclui procedimentos 

cirúrgicos no cérebro para a retirada do tecido epileptogênico (TANG et al., 2017). A epilepsia 

pode ser congênita ou adquirida, sendo a primeira causada por malformação cerebral durante a 

formação do feto, e a última sendo originada por vários fatores, incluindo lesões na cabeça, 

infecções e tumores cerebrais (SYNAPSE, 2019). As malformações do desenvolvimento do 

córtex cerebral são uma das principais causas de epilepsia do tipo refratário, sendo a Displasia 

Cortical Focal (FCD) uma delas. Para a FCD, as anomalias estruturais no desenvolvimento do 

córtex cerebral são classificadas em três tipos (I, II e III) e podem ser detectadas por técnicas 

de diagnóstico por imagem como a ressonância magnética e o eletroencefalograma (KABAT; 

KRÓL, 2012). Um dos problemas atuais é como definir com precisão as estruturas 

epileptogênicas cerebrais, sendo este um problema multidisciplinar envolvendo áreas da 

medicina e bioinformática. Partindo da área médica, temos a definição da zona epileptogênica 

(EZ) como: “a menor quantidade de tecido cortical que deve ser ressecado (inativado ou 

completamente desconectado) para garantir ausência de convulsões no pós-cirurgia.”, além das 

sub-estruturas que a caracterizam como: a zona de início da convulsão (SOZ), zona irritativa, 

zona sintomatogênica e a lesão epileptogênica. Técnicas de análise de sinais para a correta 

detecção da EZ estão sendo pesquisadas e desenvolvidas nos últimos dez anos. O entendimento 

atual da área, contrariando o antigo entendimento, é de que as atividades epilépticas não são 

focalizadas, mas sim o resultado de uma complexa interação de redes cerebrais 

(BARTOLOMEI et al., 2017). Com o intuito de modelar e entender essa complexa rede 

cerebral, diversos métodos estão sendo propostos, de análise de grafos (WILKE et al., 2011) ao 

uso de algoritmos de aprendizado de máquina (GRINENKO et al., 2018), com resultados 

variados. Recentemente um método de mapeamento da organização cerebral, descrevendo-a de 

uma forma modular, caracterizada por diversas sub-regiões (clusters), demonstrou que para 12 

de 14 pacientes a sub-região de maior atividade cerebral correspondia a SOZ (JANCA et al., 

2018). Considerando o algoritmo proposto por Janca et. al. (2018), e devido a fato que ele 

demonstrou bons resultados e deixa espaço para validações e trabalhos derivados, temos a 

seguinte pergunta de pesquisa: “Como extrair parâmetros representativos dos resultados do 

método escolhido, quando aplicado a dados de pacientes com FCD, de modo a ajudar no melhor 

delineamento da zona epileptogênica?”. 



 

 

 

 

OBJETIVOS 

O objetivo geral deste trabalho é identificar e verificar parâmetros representativos da atividade 

epilética, extraídos de dados de eletroencefalogramas intra-craniais, de modo a ajudar a definir 

a estrutura epilêptogenica crítica no cérebro. Para isso, é preciso verificar a significância 

estatística do algoritmo escolhido para os dados selecionados, comparando-a com resultado da 

cirurgia, com o auxílio de um índice. Também é necessário verificar as diferenças entre as 

épocas de vigilância para os dados obtidos, de modo a definir qual a época mais significativa 

para análise e calcular um limite que melhore a significância estatística do algoritmo. E por 

último, descobrir e testar a efetividade dos dados de saída para detectar o tipo de FCD do 

paciente, utilizando técnicas de aprendizado de máquina. 

 

METODOLOGIA 

A metodologia desse trabalho dá-se da seguinte forma. Os dados coletados no Hospital 

Universitário da Universidade Charles foram disponibilizados para análise pelo grupo de 

pesquisa em análise de sinais da Universidade Tecnológica Tcheca em Praga. Eles são 

compostos de gravações de eletroencefalogramas intra-craniais (iEEG) em conjunto com dados 

médicos do paciente, como definição clínica da zona de início da convulsão e área ressecada 

do cérebro. Os dados brutos são inseridos em um algoritmo de mineração de dados de EEG 

composto de diversas etapas. Dentre elas, a detecção de descargas epileptiformes interictais 

(IED) usando modelos estatísticos de análise de sinais (JANCA et al., 2015), a posterior 

clusterização das IED detectadas de acordo com os padrões de início e propagação no cérebro 

(JANCA et al., 2018), e por fim a seleção manual dos clusters detectados. Com as saídas desse 

algoritmo, dá-se início ao processo de cálculos de índices e verificação estatística utilizando-se 

dos dados médicos de resultado da cirurgia. A análise é repetida para cada período de vigilância, 

de forma a detectar o período que oferece a melhor correlação estatística entre o resultado da 

cirurgia e o índice calculado. Um limite inferior para os clusters selecionados é calculado de 

forma a melhorar a significância estatística obtida. Com o melhor cenário definido, faz-se uma 

nova análise, utilizando técnicas de aprendizado de máquina, objetivando verificar se é possível 

predizer o tipo de displasia cortical focal do paciente, baseando-se nos dados extraídos do 

algoritmo. 

 

RESULTADOS E DISCUSSÃO 

Para os três períodos de vigilância analisados (sono, vigília e a combinação de ambos), tem-se 

que para todos se observa significância estatística entre o índice de resseção e o resultado da 

cirurgia. O melhor resultado dentre todos os cenários analisados foi o período combinado de 

sono e vigília, com um limite inferior de 10% para os clusters, onde se obteve um p-valor de 

.00198, sendo este o período que proporciona maior informação de localização da zona 

epileptogênica. Os resultados alcançados vão ao encontro de outra pesquisa recente (PETR 

KLIMES, et al., 2019), com concordância parcial sobre a ordem de significância dos estados 



 

 

 

 

de vigilância. Para a segunda parte da análise, utilizando-se dos dados do período mais 

significativo para o treinamento de um modelo Ensemble de classificação, obteve-se uma 

precisão da predição do tipo de FCD do paciente maior que 80% para o grupo de teste, e maior 

que 85% quando testado em pacientes com FCD do tipo III. O que demonstra que é possível 

extrair e detectar padrões significativos com os resultados do algoritmo de mineração de dados 

utilizado. No entanto, a amostra de pacientes para essa análise foi menor que a recomendada, o 

que diminui a validade dos resultados da precisão do modelo. 

 

CONCLUSÃO 

Neste trabalho foram realizados dois experimentos, o primeiro apresentou uma análise 

estatística do eletroencefalograma de pacientes com displasia cortical focal, utilizando um 

algoritmo de mineração de dados que detecta, analisa e agrupa IEDs por seus padrões de 

dispersão. O objetivo da análise foi investigar a associação entre os dados analisados e os 

resultados cirúrgicos dos pacientes. O conjunto das saídas do algoritmo com as informações 

médicas permite o cálculo de um índice de resseção e inspeção da correlação estatística entre 

eles. Além disso, examinando os diferentes períodos de vigilância, foi possível identificar os 

mais relevantes para a análise, o que poderia oferecer informações mais pertinentes para um 

melhor delineamento da zona epiléptica, portanto, otimizando a área ressecada da cirurgia. Para 

o segundo experimento, os modelos de classificação treinados revelaram precisão satisfatória 

quando testados em novos dados e em um cenário distinto, demonstrando que é possível utilizar 

os dados de eletroencefalograma para predizer o tipo de displasia cortical focal em pacientes 

com epilepsia. 

 

Palavras-chave: Mineração de dados. Epilepsia. Análise preditiva. Eletroencefalografia. 

Descargas epileptiformes interictais. 
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1 INTRODUCTION 

 

Epilepsy is a group of chronical neurological diseases that affects between 0.5% to 1% 

of the world’s population (BANERJEE; HAUSER, 2008). It is characterized by recurrent 

unprovoked seizures, which can be described as a temporary change in brain functions, 

triggered by abnormal electrical discharges within the human brain (FISHER et al., 2005). The 

seizures can vary from brief lapses of awareness, involuntary muscle movements, which can be 

partial or generalized, sensation disturbances, to severe and prolonged convulsions. Seizures 

also vary in frequency, from once a year to several per day (WHO, 2019). There are a couple 

of definitions of epilepsy, formal or practical (FISHER et al., 2005), the more widespread one 

is that epilepsy is a condition characterized by two or more unprovoked seizures (BANERJEE; 

HAUSER, 2008).  

The disease can cause several consequences, neurobiological, cognitive, psychological 

and social to someone’s life, affecting its quality of life negatively (FISHER et al., 2014). It 

also has social and economic impacts since it can be associated with higher mortality rates, 

cognitive deficits, loss of productivity, and accidents (KERR, 2012). Despite affecting people 

of all ages, approximately 75% of the cases begin during childhood (STAFSTROM; 

CARMANT, 2015).  

According to the World Health Organization (WHO), more than 50 million people 

worldwide have epilepsy, making it one of the most common neurological diseases globally 

(2019). About 80% of them live in low- and middle-income countries. It is estimated that there 

are currently around 8 million people with epilepsy in Latin America alone, and approximately 

2 million in Brazil. About 50% of them do not receive appropriate diagnoses, three-quarters do 

not receive proper treatments and less than 50% have access to anti-seizure medicaments. 

Additionally, two-thirds of the countries in the region do not have a specific program for the 

care of people with epilepsy, and 80% of them do not have proper legislation about the disease 

(PAHO, 2013). 

Brazil follows its Latin American neighbors, with a higher epilepsy rate when 

compared to the developed countries, the phenomenon was researched by several studies, both 

in urban and rural areas (SIQUEIRA et al., 2016). This can be attributed to worse social-

economic conditions in these countries, which leads to inadequate or lack of treatment in the 
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case of neuroinfections (BRUNO et al., 2013), also deficient prenatal care and subpar childbirth 

conditions (NUNES et al., 2011). 

Treatment options include dietary therapies and pharmacotherapy, but approximately 

one-third of the patients can be or become pharmacoresistant, also known as refractory. The 

sub-group of refractory epilepsy represents patients with lesional epilepsy that can profit from 

an epileptosurgery, which is a surgery to remove the epileptogenic brain tissue (TANG et al., 

2017). 

Epilepsy can be either congenital or acquired, with the former being caused due to 

malformation of the brain before birth, and the latter being caused by several factors, including 

head injuries, infections, and brain tumors (WHO, 2019) (SYNAPSE, 2019). It can also be 

classified by its onset as generalized, focal, or unknown. The generalized type is mostly 

genetically determined, and it affects both brain hemispheres. People with this kind of seizure 

display impaired awareness during an episode, in addition to the motor and non-motor 

symptoms. Differently, focal types begin in a localized part of the brain, and its clinical 

manifestations depend on the area of the brain and the propagation of the epileptogenic 

discharges. Usually, people are aware or partially aware during this kind of seizure. Finally, the 

unknown type is used to classify an undefined onset, and it is usually reclassified as generalized 

or focal when further information from exams is provided (FISHER et al., 2017). 

Malformations of cortical development are one of the causes of medically refractory 

epilepsy, the Focal Cortical Dysplasia (FCD) being one of them. These are structural 

abnormalities in the cerebral cortex development during early intrauterine life. Both genetical 

and acquired factors can be involved in the development of FCD, and there are several proposed 

classifications to these structural abnormalities, but in general, three types of cortical dysplasia 

are recognized (BAE et al., 2012). These type differences are characterized by morphological 

and symptomatic variations and can be detected by diagnostic imaging techniques such as 

Magnetic Resonance Imaging (MRI) and Electroencephalography (EEG). (KABAT; KRÓL, 

2012). 

EEG is an electrophysiological test used to evaluate and record electrical activity in 

the brain. This technique usually measures electrical activity using a set of electrodes on the 

head surface (scalp). The standard scalp EEG allows the measurement of brain activity from 

lateral parts of the brain with limited spatial resolution. If the source area of the seizures is 
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unclear by the imaging techniques, the intracranial EEG (iEEG) is required. iEEG measures 

local field potentials, and it is usually used to help the diagnostics on medically intractable 

epilepsy patients as a tool to find and define the epileptogenic zone (KOVAC et al., 2017) 

(LACHAUX et al., 2003). For epilepsy, the epileptiform EEG recordings can be divided into 

two primary time epochs:  during seizures (ictal) and the activity between seizures (interictal) 

(DEWOLFE; MALOW, 2012). 

EEG and iEEG recordings poses a significant challenge to data analysis because of the 

large amount of data generated, as well as its intrinsical characteristics such as the noise, due to 

background brain activity and from other biological signals, spatial and temporal components, 

and the fact that a proper analysis requires a wide range of data mining and statistical techniques 

(FLEXER, 2000). 

Data mining (DM) is the study of gaining useful insights and patterns from data 

(AGGARWAL, 2015). It is an interdisciplinary area closely related to statistics, information 

science, machine learning, among others. Data mining is usually considered a fundamental step 

of the Knowledge Discovery in Databases (KDD). The entire KDD process can be described 

by several steps applied to the data: cleaning, selection, transformation, mining, pattern 

evaluation, and knowledge presentation (HAN et al., 2011). 

In the last decades, companies, public institutions, and laboratories are generating an 

ever-greater amount of data. This data is usually stored in an attempt to discover useful implicit 

information that will help them with planning, decision making, market analysis, or boosting 

their productivity.  

With the advent of the automated systems and sensors, the amount of data generated 

and needed to be stored easily reaches the order of gigabytes, terabytes or petabytes (BERRY; 

LINOFF, 2004). This data is, therefore, available to analysis, and with the computational power 

becoming more affordable and commercial advanced DM software and tools becoming broadly 

available, the field is growing both financially and in importance (LEVENTHAL, 2010). 

 According to a new market research report, the market for DM tools is expected to 

grow from USD 591.2 Million in 2018 to USD 1,039.1 Million by 2023, an 11.9% growth over 

year during the period (MARKETS AND MARKETS, 2018), which represents an increasing 

demand and awareness about the importance of the field. 
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The area of bioinformatics can also beneficiate greatly from DM. Especially after the 

recent progress in biology, medical science, and biotechnology, the bioinformatics has become 

a data-intensive field, producing large amounts of data that require in-depth analysis. The 

efficient and scalable methods for mining interesting patterns, and visualization techniques, 

allied to the complexity of biological data, make the combination of the two fields exciting and 

challenging. 

 

1.1 PROBLEMATICS 

 

The problem of defining the epileptogenic structure in the brain is a complex and 

multidisciplinary challenge involving the understanding of the complexity of the brain 

structures and functioning.  

From the medical-biological area, we have the formal definition of the epileptogenic 

zone (EZ) as “the minimum amount of cortex that must be resected (inactivated or completely 

disconnected) to produce seizure freedom” as well as other important structures that 

characterizes it like the seizure-onset zone (SOZ), irritative zone, symptomatogenic zone, 

epileptogenic lesion and the functional deficit zone (LÜDERS et al., 2006) (ROSENOW; 

LÜDERS, 2001). Even though there are some diagnostic tools, such as MRI and EEG, for 

helping the definition of these cortical zones, for the correct acquisition, pre-processing, and 

analysis of the data from these techniques, the bioinformatics field must be involved. 

Signal analysis techniques for the correct detection of the EZ are being researched and 

developed for at least the last ten years, after all, this is a crucial objective for achieving a high 

success rate in an epileptosurgery. The current understanding of the area, in opposition to the 

old belief, is that the activity is not focalized, but instead, is the interaction of complex brain 

networks (BARTOLOMEI et al., 2017). 

 In order to understand and model these networks, diverse types of approaches are 

being proposed, from graph analysis (WILKE et al., 2011) to machine learning algorithms 

(GRINENKO et al., 2018), with varied results. Recently, an approach of mapping the network 

organization of the brain in a modular way, representing it by multiple sub-regions (clusters) 

with different propagation trajectories, showed that for 12 of 14 cases the most active sub-

region is localized within the seizure onset zone (JANCA et al., 2018). Improving this algorithm 



19 

 

 

 

would prove to be difficult, especially considering its complexity and since it is a result of years 

of development. Although it seems that the clustering process could be tuned, the most critical 

aspect lacking is the validation and test of the algorithm for a higher number of patients 

followed by statistical analysis. 

Knowing that the algorithm proposed by Janca et al. (2018) has promising results, and 

opens space for derived works, the question of this work is defined as the following: “How to 

extract representative parameters from the results of the chosen method, when applied to 

FCD epilepsy patient data, to help the better delineation of the EZ?”. 

 

1.2 OBJECTIVES 

 

This section includes descriptions of the general and the specific objectives of this 

work. 

 

1.2.1 General 

 

Identify and verify representative parameters of epileptic activity in multichannel 

iEEG recordings, using data mining techniques, in order to define the critical brain 

epileptogenic structure. 

 

1.2.2 Specifics 

 

▪ Verify the statistical significance of the chosen algorithm for the selected data, 

comparing its results with the patient’s surgery outcome results, with the help of 

an index. 

▪ Verify the differences between sleep and awake vigilance epochs testing its 

statistical significance for outcome prediction, using an index. 

▪ Find an optimal threshold with the most significant statistical difference between 

groups. 

▪ Discover and test the effectiveness of the chosen algorithm’s outputs for detecting 

the FCD type (I, II), using predictive analysis methods. 
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1.3 JUSTIFICATION 

 

Researching a topic related to the medical area is always a difficult decision, there are 

people involved, and there is a concern about personal data, especially when it is disease-

related. However, it is also quite rewarding, since the smallest effort, alongside efforts from 

others, can benefit a lot of people and make a difference in someone’s life. 

Epilepsy is the kind of disease that most people think they know about, but 

unfortunately, there are a lot of misconceptions coming from the general public. It is also a 

disease that could be easily avoided in a lot of cases, but due to the “treatment gap”, particularly 

in undeveloped countries, people are developing at unusual higher rates. 

On the other hand, refractory epilepsy, also known as uncontrolled or recurring, has a 

difficult treatment. Despite advances both in medicine and imaging tools, the rates of seizure-

free outcomes after surgery have not improved as much, and even after eliminating the 

intractable cases, questions like “How much tissue must be resected to obtain a seizure‐free 

outcome without compromise of memory and other brain functions?” are still to be answered 

(FEINDEL et al., 2009). 

It is also essential to bring that, compared to other neurological conditions, epilepsy is 

lagging in terms of funding and research, and diseases like Alzheimer's and Parkinson have 

higher investment rates given the incidence rates (GRABOWSKI et al., 2018). 

From a technological perspective, the field of data mining is becoming ever more 

critical, mainly due to the flexibility of its uses. Areas with a massive demand for data mining 

include science, business, industry, and web, among others. Almost any field with a good 

amount of data can benefit from it, and with the increasingly higher usage of computers and 

automatization, the demand is also growing rapidly.  

As Frawley (1992) tragicomically presents, "Computers have promised us a fountain 

of wisdom but delivered a flood of data.”. Moreover, to get to this fountain of wisdom, we need 

to go through a non-trivial process that involves a good amount of techniques and diverse types 

of data. This is what makes DM so challenging, but also really satisfying to work with. 
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1.4 METHODOLOGY 

 

This section is written with the purpose of describing and explaining the methodology 

deployed in this study in order to achieve its objectives. 

 

1. Research: Do an exploratory bibliographical research focusing on data science and 

refractory epilepsy. 

2. Data Collection and Selection: iEEG patient data were recorded in Motol 

University Hospital of Charles University in co-operation with CTU in Prague, 

Czech Republic. Data collection was approved by the institutional ethics 

committee, and informed personal or parental consent was obtained. Dataset 

consists of long term iEEG recordings, clinical evaluation of zones and after-

surgery outcome. 

3. Processing: The data was processed using the chosen algorithm. The entire process 

is composed of several steps: 

a. Detection of the interictal epileptical discharges (IED) on the raw iEEG 

data using statistical signal models (JANCA et al., 2015). Followed by 

the calculation of statistics. 

b. Clusterization of the detected IED, according to patterns of onset and 

electrical field of propagation (JANCA et al., 2018). A high separability 

coefficient setting was chosen for all patients due to the better results 

provided in previous tests (INÁCIO; JANCA, 2019). 

c. Manual selection of the clusters discarding the ones with evident 

artifacts or false positives. 

d. Calculation of the cluster statistics. 

4. Statistics: Calculation of indexes and statistical significance in comparison with 

surgery outcome information, the same for “awake” and “sleep” vigilance epochs 

separately and calculation of an optimal threshold. 

5. Exploration: Further analysis using data mining techniques to discover and prove 

the output data effectiveness in predicting the patient’s FCD types. 

6. Results: Evaluation and discussion of the results. 
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Figure 1 details further methodological aspects for the post-processing steps. 

 

Figure 1 – Methodological Guidelines for the steps 4, 5 and 6. 

 

Source: Adapted from Dresch (2015) 

 

1.5 WORK STRUCTURE 

 

This work is structured into five chapters.  

 

▪ Chapter 1 introduces the subject and all the involved topics, explains the problematics 

and describes the work’s methodology. 

▪ Chapter 2 introduces the theoretical foundations necessary for the understanding of this 

study, both for the medical and the technical aspects. 

▪ Chapter 3 describes the methods and execution of the analysis. First for the statistical 

hypothesis evaluation and second for the predictive analysis.  

▪ Chapter 4 presents and discusses the obtained results. It also details similarities and 

differences from related studies. 

▪ Chapter 5 highlights the findings of this work and discusses future opportunities. 
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2 THEORETICAL FOUNDATION 

 

2.1 EPILEPSY 

 

This chapter presents a brief introduction about epilepsy and brings up important 

concepts about the disease that are necessary to the understanding of this work.  

Epilepsy is a group of chronical diseases characterized by recurrent unprovoked 

uncontrolled electrical activity in the brain. An occurrence of abnormally excessive or 

synchronous electrical discharges within the human brain is called “seizure” (FISHER et al., 

2005). 

Seizures trigger temporary changes in the brain functions and may have several effects, 

varying from brief lapses of awareness, involuntary muscle movements, sensation disturbances 

to severe and prolonged convulsions. They are often related to brain injuries or genetic factors, 

such as hereditary predisposition, but also due to unknown factors (WHO, 2019). 

Seizures vary in frequency, from once a year to several per day, and people are 

considered having epilepsy if they have two or more unprovoked seizures more than 24 hours 

apart. 

Epilepsy is not a single disorder but rather a broad group of conditions altering the 

brain functions, causing a variety of pathologic processes (ENGEL; PEDLEY, 2008). As a 

heterogeneous condition multiple and complex interacting factors can contribute to the totality 

of the disease in one patient, as seen in Figure 2. 
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Figure 2 – The multiple factors that contribute to epilepsy. 

 

Source: Extracted from Engel and Pedley (2008). 

 

2.1.1 Refractory Epilepsy 

 

Uncontrolled seizures are a considerable burden and have a negative impact on the 

health, cognitive, psychological, and social aspects of someone’s life. The negative aspects 

include physical injuries, accidents, depression and anxiety, deficits in memory and thinking 

skills, developmental delays in children, and sudden death (SIRVEN; SHAFER, 2014).  

Some patients have a condition where the seizures cannot be controlled with 

anticonvulsant medicaments, also known as anti-epileptic drugs (AED). This condition is often 

called “uncontrolled”, “intractable” or “refractory” epilepsy.  

For these patients, which represent about one-third of the epilepsy cases, seizure 

freedom is very unlikely to be achieved with further manipulation of AED therapy (SIRVEN; 

SHAFER, 2014). 

Although the concept of drug resistance may appear intuitive, a precise definition is 

vital to improve patient care and facilitate clinical research and diagnostics. Like many topics 

in science, achieving a consensus is a hard task, so authors and researchers usually used 

different recommendations.  

In response to this, in 2009, a multidisciplinary task force of the International League 

Against Epilepsy (ILAE) decided to propose a consensus definition of drug-resistant epilepsy. 

The following description was proposed: 
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Drug-resistant epilepsy may be defined as failure of adequate trials of two tolerated 

and appropriately chosen and used AED schedules (whether as monotherapies or in 

combination) to achieve sustained seizure freedom.  

(KWAN et al., 2010) 

 

Patients should only be considered refractory if wrong diagnosis or suboptimal 

treatment trials are out of the question. If the appropriate response is not achieved with the AED 

trials patients often need further diagnostic testing that includes video EEG monitoring or 

additional studies and diagnostic techniques. Patients with refractory epilepsy are the ones most 

likely to be recommended to undergo brain surgery (JEROME ENGEL, 2014). 

 

2.1.2 Focal Cortical Dysplasia – FCD 

 

Focal cortical dysplasia (FCD) is a malformation of cortical development. It is 

responsible for a large share of the refractory epilepsy cases being the most common cause in 

the pediatric population and the second or third most common in adults (KABAT; KRÓL, 

2012). 

These malformations are structural abnormalities in the cerebral cortex development 

during early intrauterine life and can be caused by genetic or acquired factors.  

There are several proposed classifications to these structural abnormalities, but in 

general, three types of cortical dysplasia are recognized (I, II, and III) distinguishing the types 

by its form and association with another kind of lesion (BAE et al., 2012). The proposed ILAE 

classification system for focal cortical dysplasia, with the description of the cortex 

abnormalities, can be seen in Table 1. 

 

Table 1 – ILAE classification system for FCDs. 

FCD Type I 

(isolated) 

With abnormal radial 

cortical lamination (FCD 

Ia) 

With abnormal tangential 

cortical lamination (FCD 

Ib) 

With abnormal radial and 

tangential cortical 

lamination (FCD Ic) 

FCD Type II 

(isolated) 

With dysmorphic neurons (FCD IIa) With dysmorphic neurons and balloon 

cells (FCD IIb) 

FCD Type III 

(associated 

with principal 

lesion) 

Associated 

with 

hippocamp

al sclerosis 

(FCD IIIa) 

Adjacent to a 

glial or glio-

neuronal tumor 

(FCD IIIb) 

Adjacent to 

vascular 

malformatio

n (FCD IIIc) 

Adjacent to any 

other lesion 

acquired during 

early life (FCD 

IIId) 
Source: Adapted from Blümcke et al. (2011). 
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For FCD III, distinguishing between dual pathology and type III may be unclear, so 

commonly they might also be classified as FCD I or II with associated pathology (BAE et al., 

2012). 

The seizures in FCD are not easy to control with pharmacological treatment, and thus 

often, patients are classified as refractory. Therefore, the surgical procedure has been a crucial 

alternative treatment for these patients (KABAT; KRÓL, 2012). 

 

2.1.3 Epileptogenic Zone – EZ 

 

The formal definition of the epileptogenic zone (EZ) according to Lüders and Najm 

(2006) reads as “the minimum amount of cortex that must be resected (inactivated or completely 

disconnected) to produce seizure freedom”. In their work, they also describe other important 

structures that characterize it like the seizure-onset zone (SOZ), irritative zone, 

symptomatogenic zone, epileptogenic lesion, and the functional deficit zone. The description 

of the abnormal brain structures and the tools used to diagnose them can be seen in Table 2.  

 

Table 2 – Definition of abnormal brain areas. 

Brain Area Definition Measure 

Irritative Zone (IZ) Area of cortex that generates interictal spikes. EEG 

Seizure Onset Zone 

(SOZ) 

Area of cortex that initiates or generates 

seizures. 

EEG 

Epileptogenic lesion Structural pathology of the brain that is the direct 

cause of seizures. 

CT, MRI, tissue 

pathology 

Symptomatogenic 

zone 

The portion of the brain that produces the first 

clinical symptoms. 

EEG, behavioral 

observation 

Functional deficit 

zone 

Cortical area producing nonepileptic dysfunction. Neurologic exam, 

neuropsychology 

PET, SPECT 

Epileptogenic zone 

(EZ) 

The total area of the brain that is necessary to 

generate seizures and must be removed to abolish 

seizures. 

Unknown 

CT – Computed Tomography; EEG – Electroencephalography; PET – Positron emission tomography;  

SPECT – Single-photon emission computed tomography. 

Source: From Engel and Pedley (2008). 

 

The complex brain epileptic network is simplified to the concept of epileptic zones 

that mutually overlap, which is represented in Figure 3. A part of the lesion that initiates seizures 
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is called the seizure onset zone, together with a highly irritative tissue, represents the 

epileptogenic zone, whose complete removal/disconnection leads to seizure-freedom.  

Surrounding connected structures irritates from the EZ and produce interictal 

epileptiform discharges, that are widely spreading within the irritative zone and often cover the 

whole epileptic network. More detailed stratification of the epileptic network defines 

functionally specific symptomatogenic zones that are responsible for seizure semiology. 

(LÜDERS et al., 2006).  

 

Figure 3 – Concept of the Epileptogenic Zone (EZ). 

 

Source: Translated from JANCA, R. class presentation (2019) 

 

2.1.4 Surgery 

 

Epilepsy surgery is a medical procedure that removes or “disconnects” an area of the 

brain where the seizures originate. It has better results when the seizures always originate in a 

single part of the brain. 

Surgery is hardly the first option of treatment due to its inherent risks, and it is only 

done after a series of procedures and pre-surgical assessments to define whether the patient is 

eligible for the surgery (RYVLIN; RHEIMS, 2008). 
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There are several types of epilepsy surgeries. The type depends mainly on the location 

of the neurons that trigger the seizure and the age of the patient. For the sake of concision and 

objectiveness, only the one relevant to the analyzed patients is going to be described. 

Resective surgery is the most common epilepsy surgery, and it is done by a resection 

(removal) of a small portion of the brain. Brain tissues are removed from the area where seizures 

originate (SOZ) or an area that helps to spread the seizure activity (IZ), usually, the site of a 

tumor, lesion, or malformation. The conjunct of these areas is considered as the epileptogenic 

zone (EZ).  

Before undergoing brain surgery, extensive testing is done to locate the abnormal areas 

in the brain defined by the EZ, and to ensure that removing the region of the brain will not 

impact speech, mobility or quality of life, which are functions of the eloquent cortex. 

Additionally, other treatment options are evaluated, previous treatments are reviewed and social 

and health aspects that impact the patient’s life are determined (KIRIAKOPOULOS, 2018). 

The standard procedures to evaluate the patients and to detect and map the source of 

the abnormal brain activity are described in Table 3. The referred additional tests are 

recommended when the origin of the seizures is still unclear. 

 

Table 3 – Pre-operative diagnostic tools. 

Basic diagnostic tools Description 

Scalp electroencephalogram 

(EEG) 

Electrodes placed on the scalp to measure brain 

activity. Detected patterns can suggest the 

affected brain area. 

Video EEG 

Continuous EEG with a video-monitoring 

test in a hospital. Correlation between EEG 

activity and the symptoms during the seizure 

help to define the area of the bran where the 

seizure starts.  

Magnetic resonance imaging 

(MRI) 

Imaging test used to detect brain abnormalities 

that are causing seizures, such as tumors or 

damaged areas. 

Additional Tests Description 

Invasive EEG monitoring (iEEG) 

If scalp EEG fails to detect the seizure-inducing 

area, surgically placed electrodes are put on the 

brain surface or implanted in the brain. Measures 

are done while the patient is unconscious. 

Video EEG with invasive 

electrodes 

After the implantation surgery, the video and EEG 

data are captured during a defined time, while the 

patient is in hospital and not taking medications. 
Source: Adapted from Mayo Clinic (2019) 
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There are three possible scenarios regarding the surgery resected area and its effects 

on patient’s health (Figure 4). An excessive resection happens when the resected area is larger 

than the EZ, reaching areas of the eloquent cortex; An optimal resection happens when none 

but the areas that comprehend the epileptogenic zone (EZ) are resected; And an insufficient 

resection occurs when the resected area is smaller than the necessary. Each one of these 

scenarios produce impacts on the health and the surgery outcomes of the patient. 

 

Figure 4 – The three possible surgery scenarios. 

 

Source: Translated from JANCA, R. class presentation (2019) 

 

2.1.5 Outcomes 

 

As a system of classification of postoperative outcomes, Jerome Engel proposed the 

following scheme that has become a standard when reporting the results in the epilepsy medical 

literature, it reads as follows (ENGEL, 1993): 

 

Class I: Seizure free or no more than a few early, nondisabling seizures; or seizures 

upon drug withdrawal only. 

Class II: Disabling seizures rarely occur during a period of at least two years; 

nocturnal seizures. 

Class III: Worthwhile improvement; seizure reduction for prolonged periods but less 

than two years. 
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Class IV: No worthwhile improvement; some decrease, no decrease, or worsening are 

possible. 

In 2001 the International League Against Epilepsy (ILAE) also proposed a new 

classification scheme. The goal was to introduce a more objective classification (WIESER et 

al., 2001). In this work, though, the Engel classification system was chosen due to its standard 

status. 

 

Factors that contribute to a favorable seizure-free outcome include: 

▪ Absent or infrequent secondarily generalized convulsions;  

▪ A lesion in a well-delimited area; 

▪ No or minimum overlap with regions of the eloquent cortex; 

▪ The absence of diffuse pathology;  

▪ Complete epileptogenic zone resection;  

▪ Type of pathology.  

 

Additionally, a seizure-free outcome after two years foresees a long-term outcome at 

five years or more (PASSARO; BENBADIS, 2018). 

The seizure-free outcome rates range from 20-90%, depending on the type of lesion, 

with some having higher favorable outcome rates than others (GUAN et al., 2016).  

For focal cortical dysplasia (FCD), several studies show a short-term follow-up with 

seizure-free rates of 40–86%. Long term follow-up studies seem to be a bit rarer, but these show 

a favorable outcome usually greater than 60% (KRAL et al., 2007) (FAUSER et al., 2015). 

The steps of a refractory epilepsy patient from the diagnosis to the definition of the 

surgery outcome are represented by the diagram in Figure 5. 
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Figure 5 – Treatment steps of a refractory epilepsy patient. 

 
Source: Adapted from Aneja and Jain (2014) 
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2.2 ELECTROENCEPHALOGRAPHY – EEG 

 

Electroencephalogram (EEG) is an electrophysiological test that records the electrical 

activity of the brain. It tracks and records the brain waves using metal electrodes placed on the 

scalp (EEG), on the exposed surface of the brain, or using depth probes inserted in the brain 

(iEEG). The electrodes analyze the electrical activity of the area and send the results to a 

computer that records the results. 

The electrical impulses recorded from the electrodes reflect the cortical activity and 

appear in the image activity as wavy lines. These patterns allow doctors to detect abnormal 

activity such as seizures and other brain disorders. It is one of the most important tests to help 

with the correct diagnosis and treatment of epilepsy. Figure 6 shows the examples of the brain 

wave patterns that can be detected with the EEG. 

 

Figure 6 – Brain wave patterns. 

 

Source: From Vallat (2018) 

 

The electrodes in the standard EEG are placed according to a standard known as 10/20 

system, and in the intracranial EEG (iEEG), the placement of the electrodes depends on the 

affected brain region and is defined after exams using diagnostic tools to calculate the precise 
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locations. The scheme of arrangement of the electrodes is referred to as “montage” and can be 

either a bipolar montage of a referential one. The bipolar uses two electrodes for one channel, 

having a reference electrode for each channel. As for the referential montage, just one common 

reference electrode serves to all channels. 

It is essential to differentiate the electrodes from the channels. The electrodes are a 

single point of contact between the acquisition system and the brain area. They are labeled with 

a letter and a number that refer to its placement on the brain, and they can also be organized as 

arrays, grids, strips, and probes. The channels, however, are the regular measurements of the 

potential difference between two electrodes, after an analog-to-digital conversion, which results 

in a signal represented as a time series in the data. The channels can be changed to represent 

different types of montages (THE MCGILL PHYSIOLOGY VIRTUAL LABORATORY, 

2005). 

The detected brain waves are analyzed into two components, amplitude, and 

frequency. The amplitude represents its electrical strength; they are quite small and are 

measured in µV. As for the frequencies, it depends on the detected brain waves. 

The brain waves can be categorized into four primary groups: alpha, beta, theta, and 

delta, and each one has specific frequencies and characteristics (Table 4). 

 

Table 4 – Brain waves (EEG bands). 

Wave Group Frequency Characteristics 

Beta > 12 Hz It is generally regarded as a normal rhythm. They are closely 

linked to motor behavior and are predominant during states of 

alertness, anxiety, or with eyes open. 

Alpha 8 – 12 Hz They are predominant during wakeful relaxation with closed eyes 

and are reduced with open eyes, drowsiness, and sleep. 

Theta 4 – 8 Hz Cortical theta is observed frequently in young children. In adults, 

it tends to appear during meditative, drowsy, hypnotic, or sleeping 

states, but not during the deepest stages of sleep. 

Delta 0.5 – 4 Hz They are usually associated with deep sleep stages. 
Source: Adapted from The Mcgill Physiology Virtual Laboratory (2005) 

 

2.2.1 Sleep and Awake Vigilance Epochs 

 

EEG is sensitive to a continuum of states ranging from stress, alertness, resting state, 

hypnosis, and sleep (TEPLAN, 2002). These are caused by changes in the dominant brain 
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waves in action. Epileptic seizures are also strongly influenced by the sleep-wake cycle, as 

evidenced by the occurrence of the seizures. In as many as one-third of patients with partial 

epilepsy, seizures may not be present during wakefulness, but only during sleep, despite that, 

most have both daytime and night-time seizures. 

During sleep, there are many shifts of states within the brain, the so-called sleep stages. 

These changes of state are thought to influence the brain's epileptic activity in people with 

epilepsy. Some seizures occur predominantly at a particular stage of sleep (EPILEPSY 

ACTION AUSTRALIA, 2017). These variations of activity in the brain when moving between 

the different stages of sleep, and between sleep and awakening states may show more unusual 

electrical activity or activations in different regions and can be essential for the detection of 

interictal activity helping the diagnosis, particularly, if the waking recording was normal. 

Awake recordings are often obscured by muscle and movement artifacts, particularly in 

children and adults who are unable to cooperate or relax during the recordings. Thus, EEGs in 

patients with suspected seizures should always include sleep, although the actual sleep 

recording generally does not have to exceed 30 minutes (SHAMSAEI, 2014). 

 

2.2.2 Artifacts 

 

When dealing with EEG data, there are signal distortions that can be observed and are 

typical among the recorded data that are not generated by the brain; these are called artifacts. 

An artifact is usually a sequence with higher amplitude and different shape in 

comparison to signal sequences. Some artifacts may mimic actual epileptiform abnormalities 

or seizures and may cause confusion even to experts (SAZGAR; YOUNG, 2019).  

The artifacts in the recorded EEG can be classified as patient-related (physiologic) or 

technical (non-physiologic). The patient-related artifacts are unwanted physiological 

(biological) signals that can disturb the EEG significantly. Technical artifacts are usually from 

electrical phenomena or devices in the recording environment.  

The most common EEG artifact sources can be classified in the following way 

(TEPLAN, 2002): 
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Physiologic: 

▪ Any minor body movements (such as tongue movement, or swallowing) 

▪ Muscular contractions  

▪ Cardiac rhythm (EKG) 

▪ Eye movements 

▪ Sweating 

 

Non-physiologic: 

▪ 50/60 Hz 

▪ Impedance fluctuation 

▪ Cable movements 

▪ Broken wire contacts 

▪ Electrode popping 

▪ Too much electrode paste/jelly or dried pieces 

▪ Low battery 

 

Filtering out the artifact segments from the EEG traces can be managed by the trained 

experts or automatically. For better discrimination of different physiological artifacts, 

additional electrodes for monitoring eye movement, electrocardiogram (EKG), and muscle 

activity may be necessary. 

 

2.3 EPILEPTIFORM DISCHARGES 

 

Epileptiform discharges are the intense electrical activity that is generated during 

(ictal) or in between seizures (interictal). They have attributes and patterns that permit their 

detection among the EEG data. The seizures are infrequent events in most patients, despite 

some strategies to stimulate seizures, like medication or sleep deprivation, making the recording 

of ictal EEG time-consuming, labor-intensive, and luck dependent. The pillar of diagnosis, 

therefore, lies in the detection of the interictal epileptiform discharges (IEDs), the “in-between” 

seizures activities. The epileptiform discharges are transients with a characteristic "spiky" 
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morphology and are commonly referred as spikes. In the diagnosis of epilepsy and localization 

of the seizure onset zone, both the interictal and ictal recordings are extremely informative. 

 

2.3.1 Interictal Epileptiform Discharges - IED 

 

The International Federation of Societies for Electroencephalography and Clinical 

Neurophysiology describes interictal discharges as a subcategory of "epileptiform pattern" 

which is defined as "distinctive waves or complexes, distinguished from background activity, 

and resembling those recorded in a proportion of human subjects suffering from epileptic 

disorders…." (NOACHTAR et al., 1999). This definition is somewhat circular and unclear, 

meaning the description is based on experience and also can explain the difficulty of agreement 

between specialists when identifying IEDs. 

 

Figure 7 – IED Characteristics. 

 

Source: From Bagheri et al. (2017) 

 

Interictal discharges show a large pattern variability and may be divided 

morphologically into sharp waves, spikes, spike-wave complexes, polyspike-wave complexes, 

and sequences of fast oscillation. This diverse morphology may represent that they are 

generated by different neurobiological mechanisms and play different roles in the seizure 

generation. They are characterized by a large-amplitude rapid transient lasting 50–100 ms and 

are usually followed by a slow wave, 200–500 ms in duration, as shown in Figure 7. IEDs may 
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occur in isolation or brief bursts. Figure 8 shows several distinct possible patterns for the 

interictal discharges (IEDs). 

 

 

Figure 8 – Interictal epileptic discharge (IED) patterns recorded with intracranial electrodes. 

 

Source: From Curtis et al. (2012) 
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2.4 DATA MINING 

 

Data mining (DM) is considered a fundamental part of a more extensive process called 

Knowledge Discovery in Databases (KDD) currently also called Data Science. Data Mining 

relates to the methods (algorithms, statistical tools, visualization techniques) to extract implicit, 

previously unknown, and potentially useful knowledge from data according to specifications or 

strategies, and to present them in an accessible and understandable form. Therefore, it is heavily 

dependent, for its correct application, on the previous steps of KDD. KDD and DM are also 

closely related to the fields of machine learning, statistics, pattern recognition, artificial 

intelligence, data visualization, among others (PACKT, 2016). 

The KDD process is iterative and can contain loops between any two steps. It consists 

of the selection, cleaning, and transformation of data not only from databases but also from 

heterogeneous sources, applying to it data mining algorithms in order to discover valid, novel, 

potentially useful, and understandable hidden patterns (FUNES; DASSO, 2018). 

It is possible to outline the basic steps of KDD as the following (Figure 9) (FAYYAD 

et al., 1996) (PACKT, 2016): 

 

Figure 9 – Steps of KDD. 

 

Source: Adapted from Fayyad et al. (1996). 
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1. Understanding – Developing an understanding of the application domain and 

the prior knowledge that is relevant to the defined goals. 

2. Data Selection – Selecting the data from the available dataset, focusing on the 

subset of variables or samples that are appropriate for the analysis. 

3. Data Cleaning – Applying basic techniques to remove noise, defining 

strategies to handle missing fields or changes. 

4. Data Transformation – Defining useful features and fields that represent the 

data — applying dimensionality reduction or transformation. 

5. Data Mining – Finding the appropriate data-mining method that matches the 

goals — searching for patterns using methods such as classification, 

regression, and clustering. 

6. Interpretation – Understanding and interpreting the mined patterns, this can 

also involve the use of visualization techniques use of statistics and models and 

acting on the discovered knowledge.  

 

These steps are the basis of the standardized DM methodology perspectives used by 

the industry like the Cross-Industry Standard Process for Data Mining - CRISP-DM  

(CHAPMAN et al., 2000) and Sample, Explore, Modify, Model, Assess - SEMMA (SAS, 

2017), they all follow these same base steps but with different subdivisions or names 

(AZEVEDO; SANTOS, 2008) (SHAFIQUE; QAISER, 2014). 

As stated before, the data mining process relates directly to the methods of extracting 

information rather than the entire process of dealing with data and the results.  

The algorithms to mine the data tend to have two distinct goals, description and 

prediction.  

The description focuses on finding new human-interpretable patterns to describe the 

data based on the available data set; the goals are to gain a more in-depth and non-trivial 

understanding of the analyzed data. On the other hand, the prediction involves using variables 

or fields from a database to build a model to predict unknown future values; they can be used 

to perform classification, prediction, estimation, among others. (AZEVEDO, 2017). 
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Some of the common tasks of data mining are: 

 

▪ Classification – Using a function that maps the data into different predefined 

classes. The target variable should be of the nominal type. 

▪ Regression – Finding a function that predicts some future numerical values using 

independent variables. 

▪ Clustering – Using algorithms to identify finite sets of categories to describe the 

data grouping elements with high similarity. 

 

Data mining methods can also be separated into three categories, according to the 

learning type: unsupervised learning, supervised learning, and semisupervised learning 

methods (KIM; SUKCHOTRAT, 2012). 

 

▪ Unsupervised learning methods – These methods depend solely on the input 

variables and do not take into account the output information. Unsupervised 

learning aims to extract implicit patterns and elicit the natural groupings without 

using any information from the outputs. Examples of this category include k-means 

and principal component analysis (PCA). 

▪ Supervised learning methods – These methods analyze the data using both the 

input and output variables to create the models that classify or predict the output 

values of future observations. Examples of this category include regression 

methods, decision trees, Support vector machines (SVMs), and artificial neural 

networks (ANNs). 

▪ Semisupervised learning methods – These methods use a mixture of both 

unsupervised and supervised methods to generate an appropriate classification or 

prediction model. Examples of this category include support vector data 

description (SVDD). 

 

The next subsections will explore the main tools used either by the data mining 

algorithm and by the analysis and mining of its results. 
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2.4.1 Principal Component Analysis - PCA 

 

Principal component analysis (PCA) is a technique used for identifying principal 

components, which are a smaller set of uncorrelated variables, from a dataset that nonetheless 

preserves most of the sample’s information. The technique emphasizes variation and captures 

strong patterns among the data, and it is used for dimensionality reduction. It is an unsupervised 

learning method similar to clustering, finding patterns without reference to prior knowledge 

about whether the samples come from different treatment groups or have phenotypic differences 

(LEVER et al., 2017).  PCA is an important technique for a variety of fields, from image 

compression and face recognition to genetic analysis of populations (PENTAHO, 2019).  

At first, it is essential to understand the concepts of eigenvectors and eigenvalues. An 

eigenvector is a direction of a new axis, the direction of the line can be vertical, horizontal, 45 

degrees, and so on. An eigenvalue is a number, telling you how much variance there is in the 

data in that direction, telling us how spread out the data is on the new axis. The eigenvectors 

with the highest eigenvalues are, therefore, the principal components. 

PCA is related to the covariance matrix of original variables, and the eigenvalues and 

eigenvectors are acquired from the covariance matrix. The product of the eigenvector 

corresponding to the largest eigenvalue and the source data matrix leads to the first principal 

component (PC), which expresses the maximum variance of the data set. The second PC is then 

obtained using the eigenvector corresponding to the second largest eigenvalue; this procedure 

is repeated n times to obtain n PCs, where n is the number of variables in the dataset. The PCs 

are uncorrelated to each other, and usually, the first few PCs are sufficient to account for most 

of the variations. Therefore, the PCA plot of observations using these first few PC axes 

facilitates the visualization of high-dimensional data sets (KIM; SUKCHOTRAT, 2012). 
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Figure 10 – PCA projections and PC calculations. 

 

Source: From Lever et al. (2017) 

 

Figure 10 represents 3 steps of PCA. In a) the axis v and u are defined. In b) all points 

are projected int onto the lines, line u maximizes the variance (σ2) and it is, therefore, PC1. PC2 

is the line perpendicular to PC1, in this case, line v. 

 

2.4.2 k-Means 

 

The k-means algorithm is the most widely used clustering algorithm that uses an 

explicit distance measure to partition the data set into clusters. It is one of the unsupervised 

learning algorithms that solve clustering problems using a quantitative method. For a given a 

predefined number of clusters, it employs a simple algorithm to sort the data into groups. 

The algorithm operates by doing several iterations of the same basic procedures. 

It starts with initial estimates for the k centroids, which can either be randomly 

generated or selected from the data set. Each centroid is associated to one of the clusters. In this 

step, each data point is assigned to its nearest centroid, based on the squared Euclidean distance 

(TREVINO, 2016). All cluster centroids are then recalculated as the mean values of the 

instances that are assigned to specific clusters.  

If the cluster assignments do not change at all, or if they have sufficiently few changes, 

the iterative process stops. 
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It is formally defined by the following objective function which minimizes the within-

cluster sum of squares: 

 

𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑‖𝑥𝑖 −  𝑐𝑖‖
2

𝑛

𝑖=1

𝑘

𝑗=1

 

 

Where xi represents a point on the data set of size n, ci is the centroid of cluster Cj and 

k is the number of clusters. 

 

2.4.3 Maximal Likelihood Estimation 

 

Maximum likelihood estimation involves computing the likelihood of the observed 

data as a function of the unknown parameters, based on the model to be fitted, and then 

determining the parameter values that maximize the likelihood. 

The method of maximum likelihood is the most popular technique for deriving 

estimators. Considered for fixed x = (x1; x2;...;xn) as a function of θ, the joint probability density 

(or probability) pθ(x) = pθ(x1;...; xn) is called the likelihood of θ, and the value θ̂ = θ̂(𝑋) of θ 

that maximizes pθ(x) constitutes the maximum likelihood estimator (MLE) of θ. The MLE of a 

function τ(θ) is defined to be τ(θ̂) (BESBEAS, 2012). 

It solves the problem of modeling data distributions with several distributions to 

estimate the distribution that best describes the data. The actual formula of calculation depends 

on the selected probability function. 

 

2.4.4 p-Value 

 

The p-values are calculated as a part of hypothesis testing, helping to define the 

statistical significance of the studied results. 

Hypothesis testing is one of the most common methods for statistical inference. For a 

test of hypothesis, researchers define a hypothesis about population parameters and, based 

extracted samples, verify its validity. The tested hypothesis is called the null hypothesis and is 

represented by H0. The alternative hypotheses are commonly represented as Ha or H1. The tested 
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hypothesis is always the null (H0) and not Ha. It is, therefore, a form of indirect proof, indicating 

its contradiction.  

The testing process starts with the assumption that H0 is true for the population. If the 

magnitude of the difference between the obtained statistic and the population parameter is 

highly unlikely to be observed in a sample, then H0 is rejected in favor of Ha. If the observed 

difference is not sufficiently unlikely, then H0 is considered to be plausible for the population, 

so the rejection of H0 fails. Researchers either reject or fail to reject H0; The null hypothesis is 

never accepted because it is never proved, but rather the evidence may be insufficient to 

disprove it (CAPRARO; YETKINER, 2012).  

After the definition of the tested hypothesis and the alpha level (α), the p-value is 

calculated using the appropriate test, according to population characteristics, between one of 

the many statistical hypothesis tests available. 

The alpha level is related to the defined research significance levels, and it is written 

in percentages. Typically used alpha levels are 0.05 (5%), 95% significance, and 0.01 (1%) 

with 99% significance (GLEN, 2014). 

 

The interpretation guide to a given p-value reads as follows: 

▪ A small p-value (typically ≤ α) indicates strong evidence against the null 

hypothesis, so H0 is rejected. 

▪ A large p-value (> α) indicates weak evidence against the null hypothesis, so 

H0 fails be rejected. 

▪ p-values very close to the cutoff (α) are considered to be marginal. Therefore, 

nothing should be inferred. 

 

One of the criticisms about p-values is that they are substantively affected by sample 

sizes. With large sample sizes, even very small differences or effects become statistically 

significant. By contrast, sometimes a statistical significance cannot be obtained because of the 

small sample size, although the effect might be present in the population (CAPRARO; 

YETKINER, 2012). Even though p-values can indicate which choice is more effective, it is 

fundamental that researchers provide an estimate of practical significance (i.e., effect size) when 

reporting p-values. 
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Figure 11 – Graphic representation of the p-Value. 

 

Source: From Georgiev (2018) 

 

Figure 11 shows that the p-value represents the area in the tail of a probability 

distribution, for this example the alpha was defined as 0.05. 

 

2.4.5 Wilcoxon rank-sum test 

 

Wilcoxon rank-sum is a statistical hypothesis test that is often described as the non-

parametric version of the two-sample t-test (WILD, 1997). Developed by Frank Wilcoxon in 

1945, the test, instead of considering the direct values of the variables, replaces them with the 

rank scores. Since it is non-parametric, the test does not use group means and standard 

deviations as estimations of population parameters, therefore not assuming the normal 

distribution of the data (FAY; GEROW, 2013). It is applied when the populations might not be 

normally distributed, and the sample sizes of each group are small, on group sizes with fewer 

than 30 samples (FORD, 2017) (LAMORTE, 2017). 

The test makes its inferences by determining the probability that two independently 

obtained groups are sampled from the same population. Considering two groups from a 

population that does not vary across the independent variable, there should be an equal 

probability that any score obtained will fall into either experimental group (PRATT, 2012). The 
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null hypothesis is, therefore, that data of two groups are samples from continuous distributions 

with equal medians, confronting the alternative that they are not. 

In the process of calculation, the obtained values are ranked in order from smallest to 

largest, with the smallest value having rank 1, the 2nd smallest having rank 2, and so on. Given 

the hypothesis, each rank should have an equal chance of belonging to either one of the groups.  

The primary strength of the Wilcoxon rank-sum test is that it does not require normal 

distribution for small sample sizes. The transformation of observations into rank scores 

attenuates the impact of outliers on the statistics. For normally distributed data, the Wilcoxon 

statistic shows the same power as the t-test. 

The determination of the p-value for the Wilcoxon rank-sum statistic involves 

calculating the probability of obtaining a given rank-sum score by chance from the null 

population, out of all possible combinations of summed rank scores gathered from the two 

groups (PRATT, 2012). For larger sample sizes, the calculation is done using z-scores. 

 

2.4.6 Effect size statistics 

 

The effect size statistics quantify the relationship between groups. They are especially 

significant in the medical field since it explains how substantial an effect of the analyzed 

variable is.  

An effect size is a specific numerical nonzero value that is used to represent the degree 

of difference between the two populations in those occurrences for which the null hypothesis 

was estimated false. In the cases in which the null hypothesis is false (rejected), the results of a 

test of statistical significance indicate that consistent differences exist between two populations 

on the phenomenon of interest, but test outcomes do not provide any value regarding the extent 

of that difference (PIASTA; JUSTICE, 2012). 

 

Cohen’s U3 

 

As an effect size, Cohen’s indexes are typically used to represent the magnitude of 

differences between two (or more) groups on a given variable. When comparing means in a 

scientific study, the reporting of an effect size such as Cohen’s are considered complementary 
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to the reporting of results from a test of statistical significance. The calculation of Cohen’s 

indexes and their interpretation provides a way to estimate the actual size of observed 

differences between two groups, explicitly, whether the differences are small, medium, or large 

(PIASTA; JUSTICE, 2012). 

There are several versions of Cohen’s indexes. In this work, Cohen’s U3 was chosen 

because it has been rated as the most informative one (HANEL; MEHLER, 2018). 

It is calculated by the given formula: 

 

𝑈3 =
𝑛𝑋<𝑚𝑒𝑑𝑖𝑎𝑛(𝑌) + 0.5 𝑛𝑋=𝑚𝑒𝑑𝑖𝑎𝑛(𝑌)

𝑛𝑋
 

 

Where nX<median(Y) is the number of elements in group X that are exceeded by the 

median value of group Y, nX=median(Y) is the number of elements in group X that are equal to the 

median, and nX is the total number of elements in group X. 

 

Interpretation guide: 

The ranges of Cohen’s U3 vary from 0 to 1, with 0.5 describing “no effect”. Cohen’s 

U3 gives the proportion of scores in one group that are smaller than the typical value (i.e., the 

median) of the other group. 

Figure 12 – Illustration of Cohen's U3 

 

Source: From Hentschke (2018) 
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Figure 12 displays an example of the interpretation of Cohen’s U3. Two standard 

normal distributions are shown. The gray shaded area marks the proportion of distribution 1 

that is exceeded by the median of distribution 2. 

 

Hedges’ g 

 

Hedges’ g is another measure of effect size. It usually expresses the difference 

between an experimental group and a control group. It is similar to Cohen’s d, except that it 

outperforms Cohen’s d in smaller sample sizes (< 20) (GLEN, 2016). 

 

It is calculated by the given formula: 

 

𝑔 =  
𝑚1 −  𝑚2

𝑆𝑤𝑖𝑡ℎ𝑖𝑛
 

 

Where m1 is the mean of the first group, m2 is the mean of the second group, and 

Swithin is the pooled standard deviation, which is the square root of the pooled within-groups 

variance, weighted by the degrees of freedom in each group, as seen below: 

 

𝑆𝑤𝑖𝑡ℎ𝑖𝑛 =  √
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2

𝑛1 + 𝑛2 − 2
 

 

Hedges’ g is known to show biased results, about 4% overestimate, for small group 

samples (< 50) (GLEN, 2016). Hedges (1981) described an approximate bias correction 

formula: 

 

𝑔𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 = 𝑔𝑏𝑖𝑎𝑠𝑒𝑑𝑐(𝑑𝑓𝑤𝑖𝑡ℎ𝑖𝑛) 

Where: 

𝑐(𝑑𝑓𝑤𝑖𝑡ℎ𝑖𝑛) =  [1 −
3

4𝑑𝑓𝑤𝑖𝑡ℎ𝑖𝑛 − 1
] 
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And dfwithin are the degrees of freedom used to compute swithin, namely n1 + n2 – 2, and  

n1 and n2 are the sizes of each group. 

Interpretation guide: 

The g value indicates how many standard deviations one group differ from another. 

Standard deviations are equivalent to z-scores (1 standard deviation = 1 z-score) 

(HENTSCHKE, 2018). 

 

• Small effect (cannot be perceived by just looking at the data) ~= 0.2 

• Medium Effect ~= 0.5 

• Large Effect (can be perceived by just looking at the data) ~= 0.8 

 

Figure 13 – Illustration of Hedges’ g. 

 

Source: From Hentschke (2018) 

 

Figure 13 illustrates the meaning of Hedges’ g. Two standard normal distributions are 

shown, with means m1 of 0 and m2 of 2.2, and a standard deviation (SD) of 1 (identical for both 

distributions). According to this example, Hedges’ g = (2.2–0)/1 = 2.2. 
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Omega Squared (ω2) 

 

Omega squared (ω2) is a descriptive statistic used to measure the strength of the 

relationship between a qualitative variable and a quantitative variable, estimating how much 

variance in the quantitative variables are accounted for by the qualitative variables. It 

complements the results of hypothesis tests comparing two or more population means 

(OLEJNIK, 2012). It is viewed as a lesser biased alternative to eta-squared when given small 

sample sizes. 

 

It is calculated by the given formula: 

 

𝜔2 =  
𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡 − ( 𝐽 − 1) 𝑀𝑆𝑒𝑟𝑟𝑜𝑟

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 + 𝑀𝑆𝑒𝑟𝑟𝑜𝑟
 

 

Where SSeffect is the sum of squares between groups, SStotal is the overall sum of 

squares, J is the number of levels of the factor (groups), and MSerror is the mean squared error 

within groups (HENTSCHKE, 2018). 

 

Interpretation guide: 

Omega squared (ω2) value clarifies how much variance in the metric variable is 

explained by group membership. It varies between 0 and +1; with 0 meaning “no effect”. 

 

2.4.7 Classification Models 

 

k-nearest neighbors (kNN) 

 

The k-nearest neighbors (kNN) is a non-parametric, lazy-learning (instance-based 

learning) technique, and it is one of the simplest and most commonly used learning algorithms. 

It is employed for credit ratings, political science, image and video recognition, among others. 

kNNs do not have an explicit training phase; it collects data from a training data set and uses 

this data later to make predictions for new records. The algorithm is based on feature similarity, 
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using a majority voting mechanism (IBM, 2018); a point is classified by a majority vote of its 

neighbors, therefore being assigned to the most common class among its k nearest neighbors.  

This technique is also useful for regression (prediction of values); in this case, the new 

value is the average (or median) of the values of its k nearest neighbors.  

The algorithm works as the following, given a query point, the k closest points are 

determined. A variety of distance measures can be applied to determine how close each point 

is to the checked point. Then, the k nearest points are analyzed to find which of the categories 

they belong to. Finally, this category is assigned to the checked point of the time. This procedure 

repeats for all points that require classification (KIM; SUKCHOTRAT, 2012). 

 

Figure 14 – Example of kNN classification. 

 

Source: From ACM (2016) 

 

Figure 14 represents an example of kNN classification. The test point (star) should be 

classified either to the class B or to the class A. If k = 3 (inner circle), it is assigned to the class 

B because there are 2 class B and only 1 class A inside the inner circle. If k = 6, it is assigned 

to the class A (4 class A vs. 2 class B in the outer circle). 

 

 

 

 



52 

 

 

 

Ensemble 

 

Ensemble learning model is a well-established set of machine learning and statistical 

techniques for improving predictive performance through the combination of different learning 

algorithms. The combination of the predictions from different models can generally increase 

the accuracy strengthening the performance of the ensemble model. Ensemble methods come 

in different flavours and levels of complexity, depending on the combination of multiple deep 

learning networks (PINGEL, 2019). Additional applications of ensemble include assigning a 

confidence to the decision made by the model, selecting optimal (or near optimal) features, data 

fusion, incremental learning, nonstationary learning and error-correcting (ILIADIS; JAYNE, 

2015). 

The functioning of model can be based on averages, weighted averages or voting 

process, and varies greatly depending on the combination of the support models. 

Although not so popular in the deep learning literature as it is for more traditional 

machine learning research, the ensemble models produce impressive results, which can be 

attested by the winning of popular machine learning competitions, such as ImageNet and 

Kaggle challenges.  

 

2.4.8 Descriptive Statistics 

 

Descriptive statistics include measures of central tendency, dispersion, shape, 

correlation, and covariance of giving data. Since some of them are well known and trivial (i.e. 

mean, median, standard deviation…), the focus will be to offer a brief introduction to some 

more unfamiliar statistics. 

 

Skewness 

 

Skewness is a measure of symmetry, more precisely, the lack of symmetry. Negative 

values of skewness indicate that the data is skewed left, and positive values for the skewness 

indicate that data is skewed right (NIST/SEMATECH, 2012). 
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Figure 15 – Example of distributions with different skewness. 

 

Source: From Mihaescu (2012) 

 

 

Kurtosis 

 

Kurtosis is a statistical measure of shape that defines how strongly the extremes of a 

distribution differ relative to a normal distribution. A set with high kurtosis represents that the 

extremes of a given distribution contain extreme values (NIST/SEMATECH, 2012). Along 

with skewness, kurtosis is an essential descriptive statistic of data distribution. 

 

2.4.9 Statistical Visualization 

 

Statistical visualization is the use of graphs, plots, and infographics to represent data 

clearly and efficiently. Many types of graphs are well known such as histograms and 

scatterplots. Below there is a brief description of a specific version of the box plot diagram as 

well as some graphs used to display the performance of prediction models. 

 

Notched Box Plot 

 

A Notched Box Plots are a handy graphic way to display many relevant characteristics 

of the data. It displays the interquartile ranges, turning it possible to visually inspect the outliers, 
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the median, and also contains a notch that facilitates comparison between two groups, showing 

with 95% confidence if their medians differ (DOYLE, 2016). 

 

Figure 16 – Notched box plot characteristics. 

 

Source: From Doyle (2016) 

 

 

Confusion Matrix 

 

It is a performance measurement for machine learning classification problem where 

output can be two or more classes. For two classes (i.e. 1 and 2), it is represented as a table with 

4 different combinations of predicted and actual values (Figure 17), the values can show the 

number or the percentages of predictions. Measures of accuracy, recall, and precision can be 

calculated using a confusion matrix (NARKHEDE, 2018). 

 

Figure 17 – Example of a confusion matrix for two classes. 

 

Source: From Sharma (2019) 
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Each position of the matrix represents one of the scenarios of prediction. For the 

example of classes 1 and 2, the interpretation of each position is described below: 

 

▪ True Positive (TP): Predicted class 1 and it is right; 

▪ True Negative (TN): Predicted class 2 and it is right; 

▪ False Positive (FP) - Type 1 Error: Predicted class 1 and it is wrong; 

▪ False Negative (FN) - Type 2 Error: Predicted class 2 and it is wrong. 

 

ROC Curve 

 

The ROC (Receiver Operating Characteristics) curve is a performance measurement 

for classification problems at various threshold settings. It is one of the most important 

evaluation metrics for checking any classification model’s performance and it is usually used 

in conjunct with the area under curve (AUC) (NARKHEDE, 2018). The ROC is a probability 

curve and the AUC represents a degree or measure of separability. It tells how much model is 

capable of distinguishing between classes. The AUC index varies between 0 and 1, where a 

higher value means a better prediction model. 

The ROC curve is plotted with the true positive rate (TPR) against the false positive 

rate (FPR) where TPR is on y-axis and FPR is on the x-axis as seen in Figure 18. 
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Figure 18 – Representation of a ROC curve. 

 

Source: From Narkhede (2018) 

 

2.5 EEG ANALYSIS TECHNIQUE 

 

The chosen EEG data mining algorithm is composed of six parts: spike (IEDs) 

detection and extraction of spatial profiles, hypnogram, calculation of overall statistics, 

clustering, calculation of clustering statistics and average patterns, and cluster selection (Figure 

19). The inputs of the algorithm are the raw interictal EEG recording data, stored in MATLAB® 

matrices after the selection and cleaning process. The outputs given are the cluster statistics, 

overall EEG statistics, and visual representation of the detected cluster activity. 

 

Figure 19 – Scheme of the data mining algorithm. 

 

Source: From the author. 
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The spike detection is done by a robust detection algorithm that adaptively models 

statistical distributions of signal envelopes allowing a reliable distinction between the IEDs and 

the background data (Figure 20). The detection captures even low-amplitude IEDs that are often 

subject to oversight. It also proved to have a better performance when compared to both human 

readers and reputable detection software (JANCA et al., 2015).  

Since spikes are characterized by a large-amplitude rapid transient lasting 20–70 ms, 

they are, in the frequency spectrum, characterized by a local increase, particularly in the 10–60 

Hz frequency bands (given that f = T-1). Signals with higher frequency are resampled to 200 Hz 

to maintain filter characteristics. They are then subjected to the filtering process, a 10–60 Hz 

pass-band, and another 4 Hz band in order to reduce the noise. 

An instant envelope of each filtered channel is calculated using the absolute value of 

the Hilbert transform (WITTE et al., 1991). Spikes induce an increase in energy, which 

manifests as a peak in the envelope. The algorithm estimates the statistical distribution of the 

envelope and identifies a threshold value, which enables discrimination of spikes from 

background activity (JANCA et al., 2015). 

IEDs are detected sequentially through channels. A detection within 5 ms difference 

from the previous IED detection in a different channel is considered a multichannel IED event 

(JANCA et al., 2018).  

The statistical distribution of the envelope is calculated for each segment and 

approximated with the best-fitting statistical model using a maximal likelihood algorithm 

(MLE). A log-normal model is utilized since it provides the best description of the data 

characteristics. The maximal amplitude in each channel is determined from the signal envelopes 

(JANCA et al., 2013). The spatial profile of the amplitudes within each IED display the relevant 

information on how they spread across the brain.  
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Figure 20 – Spike detection algorithm scheme. 

 

              Source: From Janca et al. (2015) 

 

The data of the IED events are stored in matrices. Each column of the matrix represents 

one event in time, and rows represent bipolar channels.  

A matrix Q stores the binary information about a detected IED: 1 – detected IED, 0 – 

no detection. A Matrix S with the same dimensions stores the values of the maximal amplitude 

of the envelope through the event (JANCA et al., 2013). 

For the extraction of the spatial profiles of the events, the matrices Q and S had to be 

pre-processed in order to reduce dimensionality and to enhance the stability of the sorting 

procedure. To remove high amplitude artifacts, Tukey’s rule (SULLIVAN; LAMORTE, 2016) 

is used discarding the outliers from matrix S. k-means is applied to the IED rates to discard 

false positives and reduce the dimensionality on both matrices.  

The PCA technique is then applied to the pre-processed, non-centered matrix S to 

extract frequently occurring spatial profiles of IED events by the calculation of the principal 

components. 

For real EEG data, a threshold criterion is used to identify and to extract only 

significant (high eigenvalue) components. The threshold is defined after randomizing the 

matrix S 100 times and processing it by PCA. The threshold is composed by the 95% percentile 

of the largest eigenvalues of the randomized matrix S (JANCA et al., 2015). 
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After the detection of IEDs and the definition of their spatial profiles, there is an 

intermediate section called hypnogram. This part separates and labels the data into the two 

vigilance periods, awake and sleep. This separation is necessary given the diverse epileptical 

activity behavior in these two stages, as discussed in subsection 2.2.1. The selection is made 

manually, using MATLAB’s graph tools. The awake patient activity usually consists of 

morning and afternoon recordings. For the sleep data, the detected activities were recorded 

between midnight and 3 AM. 

The third part of the algorithm is the calculation of overall statistics. That means the 

calculation of important metrics about the detected activity, such as the number of detected 

IEDs, and the IED rate (IEDs/min). 

The fourth step is the clustering process. The clustering algorithm uses PCA to identify 

patterns of how the IED spread within the brain; the calculated spatial profiles are assigned to 

a principal component using Pearson’s correlation (SIGMA PLUS STATISTIEK, 2019). 

Each detected event (columns of the S matrix) is correlated with all components and 

assigned through minimal correlation distance to the best fitting spatial profile. Since PCA 

transformations can be rotated, it can generate positive and negative components. Therefore, 

each event can be correlated with both the positive and negative versions of the components, 

and the higher correlation result is accepted. The sorting procedure results in groups of IED 

events with similar spatial profiles. If two groups share a spatial profile with a correlation higher 

than 90%, they are merged into a single group (JANCA et al., 2018).  

The algorithm also supports a coefficient setting for a low (0) or high (1) separability 

approach for the clustering process; the coefficient affects the merging process of the groups 

with a close spatial profile. Previous tests report that the high separability coefficient produces 

an output with considerable higher statistical significance (INÁCIO; JANCA, 2019). 
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Figure 21 – IED sorting according to their spatial profile (clustering process). 

 

Source: From Janca et al. – Supplementary material (2018) 

 

After the clusterization process, represented in Figure 21, where the sub-regions 

correspond to the clusters, the algorithm calculates new statistics such as total activity detected 

per cluster and the percentage of the total activities for each cluster. It also calculates the average 

wave patterns displayed on each sub-region generated from raw iEEG data, preparing it for the 

next step. 

The last step is the visual inspection and selection of clusters. The average waveforms 

for each cluster are plotted using MATLAB graphing tools. Each cluster is then visually 

inspected in order to discard any artifacts or false positives that were still present among the 

analyzed data. The post-processing of the sorted events generates a quantitative description of 

the functional organization of the epileptical networks in the form of clustered activity data. 

The pos-processed data, including previous calculation of statistics, are saved into MATLAB 

matrices. The graphical representation of the selected sub-regions is also created (JANCA et 

al., 2018). These represent the actual outputs of the algorithm. 
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3 METHODS 

 

3.1 PRE-PROCESSING 

 

Even though this work focuses on the DM application, it is important to describe some 

of the previous steps that can be identified as part of KDD, they were, with the exception to the 

last, all done by third parties. These intermediate stages are needed since they serve as 

preparation for the application of algorithms and to make sure that the data is ready for the 

extraction of the information. 

Before starting the analysis, it is also essential to understand the data and the 

application domain, bring all the prior knowledge necessary up, and to set the goals. These were 

either done by the exploratory research (bibliographical), the internship experience and were 

detailed on the previous chapters of this work. 

The first part of the long path of the data analysis begins with the source of raw data. 

The data was recorded in Prague, Czech Republic, at the Motol University Hospital of Charles 

University in a partnership with the Czech Technical University in Prague (CTU). Data 

collection was approved by the institutional ethics committee, and official personal or parental 

consent was obtained. Dataset consists of long term iEEG recordings, clinical evaluation of 

brain epileptogenic zones, and the clinical definition of after-surgery outcome. The datasets are 

made available for studies of the Intracranial Signal Analysis Research Group - ISARG due to 

the partnership. 

The raw data of the iEEG recordings from each patient go through a first procedure, 

to turn the readings into readable MATLAB® matrix files, and to separate the data into ictal and 

interictal, using annotations from the video iEEG monitoring made available from the hospital 

or seizure reporting by clinicians. This treatment of the data can be defined as the first data 

cleaning process these recordings are subject to since it eliminates noise and all irrelevant 

sections of the recordings. The files are, at that point, labeled with patient numbers and time 

and date of the records and stored in a server at CTU. 

With all the available information, the files are ready for the data selection, which is 

the next step of the KDD process. All the files that are relevant for this work were selected and 

retrieved from the data collection server. In this case, the selection consists of awake and sleep 
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vigilance epochs of the interictal recordings of FCD epilepsy patients with available 

postoperative outcome information. These parameters reduced the scope of the analysis from 

about a hundred to 46 patients that have met all the criteria. Another group of 6 patients was 

also selected and put on a waiting list since they only lack surgery outcome data. 

 

3.2 DATA AND PATIENTS 

 

In this section, some characteristics of the data and the patients will be described. 

The MATLAB® files with the raw iEEG recordings from 52 patients take 120 GB of 

hard disk space, and after the data mining process, it increases up to 200 GB.  

Each patient also has a spreadsheet file with medical information provided by the 

hospital. Due to restrictions on the availability of some variables, the sample sizes for each 

analysis differ from the total number of patients.  

Table 5 contains some patient’s information extracted from the spreadsheets provided 

by the hospital. 

 

Table 5 – Patient Characteristics. 

Patient 

Number 
Gender Age at Surgery 

Years of 

Epilepsy 
FCD type 

Follow-Up 

(Years) 
Engel 

P005 M 17 11 2A 7 III 

P012 F 37 23 2B 10 IIIa 

P025 M 4 4 2B 7 I 

P030 F 17 14 2B 7 III 

P033 F 16 6 1B 6 I 

P034 F 9 7 1 8 Ia 

P035 M 41 22 2B 7 I 

P036 F 44 26 2B 8 I 

P038 M 32 0 2B 8 I 

P043 F 6 6 2B 2 Ia 

P045 F 9 7 1 6 I 

P046 M 7 7 2A 6 I 

P048 M 45 18 3(1A) 6 IV 

P060 M 54 28 1B 10 Ia 

P063 F 41 23 1B 9 Ia 

P066 F 35 22 2B 5 I 

P067 M 12 11 2B 5 IV 

P068 M 33 18 1A 2 IVb 

P072 M 17 8 1 5 IV 



63 

 

 

 

P074 M 34 24 2A 4 IIa 

P075 M 16 10 2B 1 III* 

P078 M 34 24 1A 3 IVb 

P079 F 33 18 1A 4 Ia 

P082 F 33 15 2B 3 Ia 

P084 M 4 3 1B 4 Ia 

P085 F 37 32 3(2B) 9 Ia 

P091 F 3 2 2B 3 Ia 

P096 F 30 18 3(1B) 3 Ia 

P097 M 30 29 1B 3 Ia 

P110 F 23 4 1B 3 Ia 

P117 M 9 9 2B 2 Ia 

P119 M 37 32 2B 3 Ia 

P125 M 15 11 2B 1 III 

P126 M 19 10 2B 3 Ia 

P127 M 8 2 1 2 I 

P129 F 30 10 3(1A) 2 IV 

P133 F 10 5 IA 2 I 

P136 M 33 24 3(1B) 1 IVb* 

P142 M 28 8 3(1A) 2 Ia 

P144 M 54 44 2B 2 Ib 

P147 F 29 29 2B 2 Ia 

P155 M 24 9 1A 1 Ib* 

P162 F 43 28 2B 1 Ic* 

P165 M 34 33 2B 1 Ia* 

P170 M 48 28 1 1 IIIa* 

P173 F 38 37 3(1A) 1 IVa* 

P143 M 14 3 1A 1 - 

P150 F 12 2 2B 1 - 

P163 M 2 2 2B 1 - 

P177 M 18 16 1A 0 - 

P179 F 18 2 1A 0 - 

P185 F 33 33 2B 0 - 

Legend: Yellow lines - Surgery outcome still unavailable. * - Preliminary outcome 

Source: From the author. 

 

Table 6 details the sample sizes for each analysis in this work.  
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Table 6 – Number of patients in each analysis. 

Statistical Analysis 

Sleep + Awake 41 

Sleep 42 

Awake 45 

Untested (lack of outcome) 6 

Predictive Analysis 

Training Group 28 

Test Group 11 

Untested (FCD III) 7 

Source: From the author. 

 

3.3 DATA MINING 

 

The chosen algorithm performs multiple tasks and can be described as a detection, 

analysis and clustering data mining algorithm. It detects and groups the IEDs according to the 

onset and spreading characteristics and patterns. All the details about the selected technique are 

were discussed in subsection 2.5 of Chapter 2. 

The execution of the algorithm is straightforward. The inputs are the iEEG matrices. 

Additional settings are necessary to set the separability coefficient (1 – High separability) and 

for the removal of error channels, available in the patient's spreadsheets from the hospital. 

One section of the execution that deserves some attention is the manual selection of 

the clusters. Given the characteristics of the artifacts, some may not be eliminated through the 

detection process, as seen by the false positive rate of the algorithm. Discarding clusters that do 

not display epileptical activities is an important step for the proper analysis of the relevance of 

the algorithm’s outputs.  

The methodology for picking the clusters is to choose the maximal number of valid 

clusters until reaching clusters with around 0.3% of detected activities, or until the very last, if 

the total number of clusters is ten or less. Very small clusters have minimal impact on the 

calculated statistics and would only increase data dimensionality. 
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Figure 22 – Example of cluster selection. 

 

Source: From the author. 

 

Figure 22 shows the selecting interface for a patient. Each column represents a cluster 

and each line represents a channel with its respective name on the left side. At the top, beside 

the cluster number, it shows the contribution of each cluster for the total detected activity as 

percentage. “N” displays the number of detected IEDs for a cluster. Red lines indicate that the 

detected patterns are among the 5% most active, black ones are in the active region but below 

95% percentile. 

Cluster number #1 (first column), with 77.1% of the detected activity, is the only that 

shows the typical spikes that characterize the interictal epileptiform discharges (IEDs). All other 

clusters display signal waves that are typical of artifacts and should be discarded.  

 

After the selection of clusters, the run of the algorithm is over and all the detected IED 

data, the statistics, and the graphs are saved. The outputs of the algorithm, along with the 

medical information of the patients, are the basis for the statistical analysis that composes the 

first investigation. 
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3.4 INTERPRETATION AND EVALUATION 

 

Figure 23 shows the steps of interpretation and evaluation that were applied to the data 

after the data mining step. 

 

Figure 23 – Interpretation and evaluation steps. 

 

Source: From the author. 

 

The algorithm offers a vast number of variables and measures that describe features 

mined from the recordings, most of them related to the detected IEDs.  

Table 7 describes the selected variables that are relevant for achieving the analysis 

goals. 

 

Table 7 – Description of the relevant output variables. 

Output Variable Description 

Number of Clusters Number of detected clusters after manual selection. 

Cluster Total Activity Total number of detected IEDs in each cluster. 

Cluster Activity as % of Total Percentage of the activity present in each cluster. 

Number of Active Region (AR) 

Channels 

Number of channels in each cluster with higher activity (active) 

computed using the k-means method. 

Channel Activity in each Cluster Rate of IED in each channel, by cluster. 

Detected IED Rate (qEEG) Rate of detected IEDs weighted by a factor number (ambiguous = 

0.5, obvious = 1). 

Source: From the author. 
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            Each patient’s spreadsheet also contains a significant amount of information regarding 

the diagnostic iEEG recordings. Table 8 contains a description of the selected variables that are 

relevant to the analysis. 

 

Table 8 – Description of the relevant medical variables. 

Medical Variable Description 

Surgery Outcome (ENGEL) The clinical definition of the patient’s outcome after the surgery. 

Clinical Evaluation Data of SOZ The clinical definition of the brain’s area (electrode placement) 

classified as the seizure onset zone (SOZ). 

Surgery Resection Area Clinical information on the resected brain areas in the surgery. 

Patient’s FCD Type Clinical definition of the Focal Cortical Dysplasia (FCD) types. 

Source: From the author. 

 

Not all data is ready for the analysis by default; in most cases, some treatments are 

needed prior to the calculation of statistics and indexes. 

 

3.4.1 Treatment of Zeros 

 

In the patient’s medical spreadsheet from the hospital, some channels are marked as 

containing errors, usually technical artifacts. These channels have their values zeroed during 

the analysis and exportation of the data and are ignored during the calculation of indexes and 

statistics. Electrocardiogram (EKG) channels must be removed since they are employed to 

detect biological artifacts that contaminate EEG measures. For some patients, the removal of 

this channel was not indicated on the spreadsheet, probably due to overlooking, this was 

corrected before running the algorithm. 

 

3.4.2 Calculation of Outliers 

 

The false-positive rate of the IED detector is 2.4 ± 2.4 IEDs/min (JANCA et al., 2015). 

This can suggest that patients with low detected IED activity may display a large portion of 

false positives among the detected activity. Using a strict rule of mean plus two standard 
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deviations, the base value of detected activity for outliers would be 7.2 IEDs/min. Any patient 

with max qEEG rate less this value was excluded from the analysis. The max qEGG rate for 

each patient was chosen instead of the average rate, given that patients with very focalized 

activities may display a low average, but a high rate of detection on the electrodes positioned 

directly on the epileptogenic areas. Despite that, all statistics were calculated with and without 

the outliers to measure their impact on the results. 

 

3.4.3 Calculation of the Resection Index - RI 

 

In possession of all information, it is possible to calculate the resection index (RI). The 

index provides information about the overall IEDs detected by the channels, weighted by cluster 

activity, included in the resection area (JANCA et al., 2018).  

The choice of the RI to verify a correlation with the surgery outcomes, comes from the 

fact that, given the difficulties to accurately delineate the epileptogenic zone (EZ), one can 

consider that in surgeries with a good outcome, the epileptogenic zone was resected, and on the 

contrary, for a poor outcome the EZ was not completely resected. The RI is defined by the 

formula below: 

 

𝐑𝐈 =  ∑ 𝑊𝑐𝑙𝐴𝑐𝑙

𝑐𝑙

  

 

Where Acl is the weight of a cluster, the number of detected activities in a cluster as a 

percentage of the total detected activity. And Wcl is defined as: 

 

𝐖𝒄𝒍 =  
∑ 𝑄𝑐ℎ𝑐ℎ 𝜖 𝑹𝑬𝑺

∑ 𝑄𝑐ℎ𝑐ℎ
  

 

Wcl represents the sum of the detected activities (Q) of each channel inside the resected 

area (RES), divided by the sum of detected activities of all channels, for a cluster. 
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The index must be calculated for each considered epoch. For this work, three scenarios 

are considered. That is, the awake and sleep activities analyzed together, and awake and sleep 

separately.  

Except for some patients that do not have recordings for one of the epochs, patients 

have three resection indexes (RI). 

 

3.4.4 Statistical Hypothesis 

 

Based on the resection indexes (RI) and the patient surgery outcomes (Engel groups), 

it is possible, using the Wilcoxon rank-sum test, to calculate the statistical significance (p-value) 

and verify whether the RI shows correlation with the outcomes. The tested hypothesis is that 

the RI does have the same median for the surgery outcome groups. The outcomes were divided 

into two groups: Good outcome (Engel I) and poor outcome (Engel II-IV).  

From the 52 patients, 6 of them still do not have outcome information, so the maximal 

amount of patients for this analysis would, theoretically, be 46. However, as mentioned before, 

not all patients have data for all the epochs, so the analysis for sleep and awake combined data 

is composed of 41 patients, for sleep there are 42 patients, and for awake there are 45 patients. 

As a non-parametric test, the rank-sum test does not require a normal distribution of 

the samples but has an excellent performance either way. It also deals with small sample sizes, 

which is the case of this work. The distribution of the samples can be seen in Figure 24. 
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Figure 24 – Distribution of the samples compared to the normal distribution. 

 

Source: From the author. 

 

3.4.5 Definition of a Threshold 

 

As described, the methodology of picking the clusters which show epileptical activities 

comprises choosing the maximal amount of valid ones. However, clusters with very low 

percentages have a minor impact on the resection index (RI). Determining a minimal threshold 

that maximizes the statistical significance (p-value) by sequentially ignoring the lowest activity 

clusters by percentage, will eventually lead to only significant clusters remaining. 

 

3.4.6 Statistics and Graphs 

 

After the calculation of the indexes and the p-value, additional statistics were 

computed to support and better describe the results. The statistics include mean, median, 

standard deviation, as well as effect size statistics that support the understanding of the p-value 
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(i.e., Cohen’s U3, Hedges’ g, and Omega²). Histograms and box plots were also generated to 

facilitate the visualization of results. 

 

3.5 PREDICTIVE ANALYSIS 

 

The development of a second data mining to detect patterns that may predict the Focal 

Cortical Dysplasia (FCD) type of patients is totally reliant on the results on the first analysis, if 

no correlation is detected, the results would suggest that the mined information is not 

meaningful to the conditions of the patients and no relevant information can be extracted. 

However, the first part of the analysis showed that does exist a strong correlation 

among the mined data and patient’s surgery outcome, so it is reasonable to verify whether or 

not it is possible to mine new hidden patterns using the previous data as a baseline. 

The vigilance period with a stronger statistical correlation was chosen for this analysis, 

in this case, the combination of sleep and awake. 

It is essential to notice that this further exploration of the results must be considered 

more of an experimental investigation, given that the classification algorithms require bigger 

sample sizes, usually more than 50, and more samples are not available by the time of this 

writing. Patients with FCD III were dropped from the analysis because the sample size for this 

group is too small, seven patients, reducing the group of study to just 28 people. 

 

The first step of the process is selecting features that may be relevant for the detection 

of the FCD type. The nine selected features are described in Table 9: 
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Table 9 – Selected features for the classification models. 

Selected Features Description 

Cluster 1 Percentage (%) Percentage of detected clustered activity present in the first 

cluster, most significant. 

Cluster 1 Active Region (AR) 

channels 

Number of channels in cluster one with higher activity 

(active) computed using the k-means method. 

Cluster 1 Active Region (AR) 

channels (%) 

Number of channels in cluster one with higher activity 

(active) as a percentage of the total number of channels. 

Cluster Percentages Skewness Calculation of the skewness of the cluster distribution 

percentages. 

Cluster Percentages Kurtosis Calculation of the kurtosis of the cluster distribution 

percentages. 

Cluster 1 Maximal IED Rate Maximal detected IED rate in cluster 1. 

Skewness of Maximal IED Rate Calculation of skewness of the maximal IED rate of all 

clusters. 

Kurtosis of Maximal IED Rate Calculation of kurtosis of the maximal IED rate of all 

clusters. 

Seizure Onset Zone Index – SOZI 

(%) 

Calculation of the percentage of the clustered activity inside 

the clinically defined SOZ region. 

Source: From the author. 

 

In possession of all information, it is possible to calculate the Seizure Onset Zone 

Index (SOZI). The index provides information about the overall IEDs detected by the channels, 

weighted by cluster activity, included in the clinically defined SOZ area. This new index is 

based on the calculus of the resection index and is defined by the formula below: 

 

𝐒𝐎𝐙𝐈 =  ∑ 𝑊𝑐𝑙𝐴𝑐𝑙

𝑐𝑙

  

 

Where Acl is the weight of a cluster, the amount of detected activities in a cluster as a 

percentage of the total detected activity. And Wcl is defined as: 
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𝐖𝒄𝒍 =  
∑ 𝑄𝑐ℎ𝑐ℎ 𝜖 𝑺𝑶𝒁

∑ 𝑄𝑐ℎ𝑐ℎ
  

 

Wcl represents the sum of the detected activities (Q) of each channel inside the seizure 

onset zone area (SOZ), divided by the sum of detected activities of all channels, for a cluster.  

 The next step was to calculate the principal components using PCA. The results 

showed that five PCs can explain 95% of data variance. A biplot graph was used to plot the 3 

PCA coefficients with higher significance (38.0%, 28.3%, and 19%), along with the variables 

as shown in Figure 25. The graphic representation revealed that some variables could be 

considered redundant, while others have a low contribution to the principal components.  

 

Figure 25 – 3D plot showing the contribution of each feature in principal components. 

 

Source: From the author. 

 

Table 10 lists the five most relevant features that are used as the inputs of the 

classification models. 
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Table 10 – Selected features for the predictive analysis. 

Most Relevant Features 

Cluster 1 Percentage (%) 

Cluster 1 Active Region (AR) channels 

Cluster Percentage Skewness 

Cluster 1 Maximal IED Rate 

Seizure Onset Zone Index – SOZI (%) 

Source: From the author. 

 

Moreover, from these five features, plotting the samples of each group showed the two 

most significant for explaining FCD type groups are the “Cluster 1 percentage”, and the 

“seizure onset zone index” (SOZI). This can be easily noticed in a scatterplot (Figure 26).  

 

Figure 26 – Scatterplot of FCD I and II for the two most significant features. 

 

Source: From the author. 

 

From this point on, it is possible to train the classification methods and refine the 

results, if possible. 

Diverse methods were trained and compared, and the ones with consistently higher 

accuracy were the Ensemble and kNN, respectively. The Ensemble models also use kNN for its 
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weak learners. Additionally, tests with a reduced set of predictors were also investigated but 

provided worse results. Increasing the number of learning cycles did not improve the results 

over the accuracy achieved with 30 cycles. 

Due to the low number of samples, the 5-fold cross-validation method was chosen 

instead of the 10-fold. The cross-validation is a process that randomly partitions the data into k 

sets, and for each set, reserve it as the test group and train the model using the other k-1 groups. 

The accuracy is measured by the average of the saved training results. This method of validation 

is the most appropriate for a low number of samples.  

As a form to verify the model’s accuracy, the best approach is to test the model on new 

data that were not used in the test groups. The availability of six patients that were excluded 

from the statistical analysis due to lack of outcome information opened the chance to test the 

models on untested data that was chosen unintentionally. A late new batch of information of 

FCD type for five patients, that were still missing the report, increased the test group to eleven 

patients. This turned possible to refine the models adding the patients with wrong predictions 

and train the models once more with the prospects to increase the accuracy of the models. 

Due to the fact that FCD III may be also classified as a dual pathology (FCD I/II + 

associated pathology), it opens the opportunity to test how the model performs in this state. The 

tests were done, and the results were also reported in the next chapter. 

 

4 RESULTS AND DISCUSSION 

 

The following sub-sections will report the results, followed by a brief description of 

the presented data. In the end, the results will be discussed and confronted with other parts of 

the analysis or similar works. 

 

4.1 AWAKE 

 

Figures 27, 28 and Table 11 display the graphs and the results of the awake data 

analysis in two scenarios, with (left) and without outliers (right).  
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Figure 27 – Histogram of the outcome groups for awake data. 

 

Source: From the author. 

Figure 28 – Box plot of the outcome groups for awake data. 

 

Source: From the author. 

 

Both histogram and boxplot show differences between Engel groups (outcomes), but 

they are moderate. The notches partly overlap, showing that the probability of the groups having 

different medians is less than 95%.  

The group with Engel II-IV (poor outcome) produces a lower resection index median 

than the Engel I group, with good outcomes.  

Graphically, the removal of outliers did not show much effect on the data. 
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Table 11 – Resection index statistics - Awake 

STATISTICS ALL DATA WITHOUT OUTLIERS 

Number of patients 45 39 

Mean 50.3179 53.2554 

Median 52.7198 56.1036 

Std. Deviation 22.3585 22.3015 

Number of Engel I 30 26 

Mean 55.1622 58.5458 

Median 55.7221 57.9369 

Std. Deviation 21.6543 21.1213 

Number of Engel II-IV 15 13 

Mean 40.6293 42.6747 

Median 39.4465 41.2048 

Std. Deviation 20.5205 20.7828 

   

p-Value .04438 .03840 

Mean difference 14.5329 15.8711 

Cohen’s U3 (Conf. 95%) 0.6667 0.7692 

Hedges’ g (Conf. 95%) 0.6558 0.7208 

Omega² (Conf. 95%) 0.0713 0.0865 
Source: From the author. 

 

The p-value results indicate statistical significance (p < .05), rejecting the hypothesis 

that the resection index (RI) does not correlate with the Engel groups. 

These results suggest that the RI correlates with the Engel groups for good and poor 

outcomes when using the awake data for the analysis. The removal of outliers improved the 

statistical significance, also improving the scores of the effect size statistics. 

 

Figures 29, 30 and Table 12 display the graphs and the results of the awake data 

analysis, considering the calculated threshold, in two scenarios, with (left) and without the 

removal of outliers (right).  
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Figure 29 – Histogram of the outcome groups for awake data with threshold. 

 

Source: From the author. 

 

Figure 30 – Box plot of the outcome groups for awake data with threshold. 

 

Source: From the author. 

 

Both histogram and boxplot show differences between Engel groups and they are more 

prominent than the previous one. The notches partly overlap, showing that the probability of 

the groups having different medians is less than 95%.  

The group with Engel II-IV (poor outcome) produces a lower RI median than the Engel 

I group, with good outcomes.  

Visually, the removal of outliers did not show much effect on the data. 
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Table 12 – Resection index statistics with cluster threshold - Awake 

STATISTICS ALL DATA WITHOUT OUTLIERS 

Threshold 16% 5% 

Number of patients 45 39 

Mean 50.2564 52.0694 

Median 54.5344 50.2829 

Std. Deviation 23.0346 23.3625 

Number of Engel I 30 26 

Mean 55.1659 56.7589 

Median 55.9042 56.0350 

Std. Deviation 22.4159 23.2704 

Number of Engel II-IV 15 13 

Mean 40.4374 42.6905 

Median 38.3307 47.3699 

Std. Deviation 21.0288 20.5536 

   

p-Value .03117 .03570 

Mean difference 15.4048 16.0251 

Cohen’s U3 (Conf. 95%) 0.8000 0.6923 

Hedges’ g (Conf. 95%) 0.6454 0.7101 

Omega² (Conf. 95%) 0.0686 0.0835 
Source: From the author. 

 

The p-value results show statistical significance (p < .05), confirming the differences 

between groups. 

These results suggest that the resection index correlates with the Engel groups, for 

poor and good outcomes, using the awake data with a cluster threshold.  

The removal of outliers improved the statistical significance, also improving the scores 

of the effect size statistics, except for Cohen’s U3. The removal of the smallest clusters below 

a calculated threshold (16% and 5%, respectively) also displayed the effect of improving the 

statistical significance of the results. 

 

4.2 SLEEP 

 

Figures 31, 32 and Table 13 display the graphs and data of the sleep data analysis in 

two scenarios, with (left) and without outliers (right).  

 



80 

 

 

 

Figure 31 – Histogram of the outcome groups for sleep data. 

 

Source: From the author. 

 

Figure 32 – Box plot of the outcome groups for sleep data. 

 

Source: From the author. 

 

Both histogram and boxplot show noticeable differences between groups that endorse 

the statistical analysis results. The notches do not overlap, indicating that there is 95% 

confidence that the samples are from groups with different medians, which is easily noticeable. 

The folded bottom of the Engel II-IV groups indicates that the notch is larger than the 

interquartile range (IQR). 

The removal of outliers did not provide noticeable visual variation in the box plots. 
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Table 13 – Resection index statistics – Sleep 

STATISTICS ALL DATA OUTLIERS REMOVED 

Number of patients 42 40 

Mean 53.3463 53.6963 

Median 55.8129 55.9187 

Std. Deviation 20.6013 21.0273 

Number of Engel I 28 26 

Mean 59.2686 60.2627 

Median 58.2983 58.9275 

Std. Deviation 16.4963 16.6680 

Number of Engel II-IV 14 14 

Mean 41.5017 41.5017 

Median 33.2975 33.2975 

Std. Deviation 23.6185 22.0995 

   

p-Value .01575 .01310 

Mean difference 17.7669 18.7610 

Cohen’s U3 (Conf. 95%) 0.7143 0.7143 

Hedges’ g (Conf. 95%) 0.9038 0.9419 

Omega² (Conf. 95%) 0.1415 0.1562 
Source: From the author. 

 

The p-value results show strong statistical significance (p < .05), confirming the 

differences between groups. 

These results suggest that the resection index correlates with the Engel groups, for 

poor and good outcomes, using the sleep data. In comparison to the awake vigilance state, the 

sleep state displays stronger statistical significance. The removal of outliers increased the 

statistical significance marginally, while slightly improving the scores of the effect size 

statistics. 

The Hedges’ g value indicates a large effect, with 0.9 and 0.94 S.D. between groups 

in the two scenarios. 

 

Figures 33, 34 and Table 14 display the graphs and the results of the sleep data 

analysis, considering the calculated threshold, in two scenarios, with (left) and without outliers 

(right).  

 



82 

 

 

 

Figure 33 – Histogram of the outcome groups for sleep data with threshold. 

 

Source: From the author. 

 

Figure 34 – Box plot of the outcome groups for sleep data with threshold. 

 

Source: From the author. 

 

Both histogram and boxplot show noticeable differences between groups that endorse 

the statistical analysis results. The notches do not overlap, indicating that there is 95% 

confidence that the samples are from groups with different medians. 
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Table 14 – Resection index statistics with cluster threshold – Sleep 

STATISTICS ALL DATA OUTLIERS REMOVED 

Threshold 14% 14% 

Number of patients 42 40 

Mean 54.2112 54.8079 

Median 53.0255 54.6250 

Std. Deviation 22.0656 22.3927 

Number of Engel I 28 26 

Mean 60.4241 61.8200 

Median 58.9842 59.5277 

Std. Deviation 18.7312 18.6277 

Number of Engel II-IV 14 14 

Mean 41.7856 41.7856 

Median 35.9971 35.9971 

Std. Deviation 21.3658 19.9339 

   

p-Value .00793 .00621 

Mean difference 18.6385 20.0344 

Cohen’s U3 (Conf. 95%) 0.7857 0.7857 

Hedges’ g (Conf. 95%) 0.8817 0.9451 

Omega² (Conf. 95%) 0.1347 0.1572 
Source: From the author. 

 

The p-value results show statistical significance (p < .05), attesting the existence of 

differences between groups. 

These results suggest that the resection index correlates with the Engel groups, for 

poor and good outcomes, using the sleep data with a 14% threshold. The removal of outliers 

improved the statistical significance, while also improving the scores of the effect size statistics. 

The removal of the smallest clusters below a calculated threshold (14% for both cases) 

drastically improved the statistical significance of the results. 

Hedges’ g values reveal the existence of a large effect, with the groups exhibiting 0.88 

and 0.94 S.D. between them, in each scenario. 

 

4.3 SLEEP AND AWAKE 

 

Figures 35, 36 and Table 15 display the graphs and data of the combination of sleep 

and awake data analysis in two scenarios, with (left) and without (right) of outliers. The 

combination of the epochs is also referred in the results as “Sleep + Awake”. 
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Figure 35 – Histogram of the outcome groups for sleep and awake data. 

 

Source: From the author. 

 

Figure 36 – Box plot of the outcome groups for sleep and awake data. 

  

Source: From the author. 

 

Both histogram and boxplot show noticeable differences between groups that support 

the statistical analysis results. The notches do not overlap, indicating that there is 95% 

confidence that the samples are from groups with different medians. 
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Table 15 – Resection index statistics - Sleep + Awake 

STATISTICS ALL DATA OUTLIERS REMOVED 

Number of patients 41 39 

Mean 53.4214 54.1058 

Median 56.9295 56.9295 

Std. Deviation 19.6799 19.4463 

Number of Engel I 27 27 

Mean 60.1275 60.1275 

Median 59.3657 59.3657 

Std. Deviation 15.6980 15.6980 

Number of Engel II-IV 14 12 

Mean 40.4884 40.5572 

Median 37.8831 37.8831 

Std. Deviation 20.1245 20.2336 

   

p-Value .00312 .00403 

Mean difference 19.6390 19.5703 

Cohen’s U3 (Conf. 95%) 0.8571 0.9167 

Hedges’ g (Conf. 95%) 1.0834 1.0843 

Omega² (Conf. 95%) 0.2001 0.1905 
Source: From the author. 

 

The p-value results represent strong statistical significance (p < .05), indicating the 

existence of differences between groups.  

These results suggest that the resection index shows a strong correlation with the Engel 

groups, for poor and good outcomes, for the combination of sleep and awake data. The removal 

of outliers decreased the statistical significance but improved the results of some effect size 

statistics, especially for the Cohen’s U3, meaning that 91.67% of the samples of Engel II-IV 

(poor outcome) are below the median of the group with Engel I (good outcome). 

Omega² values represent that 20% and 19% of the variance in the resection index is 

explained by the Engel group membership. 

 

Figures 37, 38 and Table 16 display the graphs and data of the sleep and awake with 

the removal of clusters below a determined threshold. Two scenarios are analyzed, with (left) 

and without outliers (right). 
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Figure 37 – Histogram of the outcome groups for sleep and awake data with threshold. 

 

Source: From the author. 

 

Figure 38 – Box plot of the outcome groups for sleep and awake data with threshold. 

 

Source: From the author. 

 

Both histogram and boxplot visually show differences between groups that support the 

statistical analysis results. The notches do not overlap, indicating that there is 95% confidence 

that the samples are from groups with different medians. 
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Table 16 – Resection index statistics with cluster threshold - Sleep + Awake 

STATISTICS ALL DATA OUTLIERS REMOVED 

Threshold 10% 10% 

Number of patients 41 39 

Mean 52.9419 53.8855 

Median 53.2154 53.6025 

Std. Deviation 20.2215 20.0423 

Number of Engel I 27 27 

Mean 60.1706 60.1706 

Median 58.1186 58.1186 

Std. Deviation 16.5409 16.5409 

Number of Engel II-IV 14 12 

Mean 39.0010 39.7440 

Median 34.4482 34.4483 

Std. Deviation 19.3580 20.0260 

   

p-Value .00198 .00488 

Mean difference 21.1696 20.42650 

Cohen’s U3 (Conf. 95%) 0.9286 0.9167 

Hedges’ g (Conf. 95%) 1.1534 1.10200 

Omega² (Conf. 95%) 0.2228 0.19610 
Source: From the author. 

 

The p-value results represent strong statistical significance (p < .05), rejecting the 

hypothesis that the samples are from groups with the same median. 

This means that the resection index, when clusters with activity lower than 10% are 

removed, provided the best correlation with the Engel groups (poor and good outcome groups) 

with a p-value of .00198. This result also showed a stronger correlation compared to any of the 

previous analysis. Indicating that the combined state of sleep and awake vigilance epochs would 

be the most relevant state to extract information. 

Like the previous result, the removal of outliers decreased the statistical significance, 

but this time also decreased the significance of the effect size statistics. 

All the effect size statistics showed strong effects for these scenarios. Cohen’s U3 

indicates that 92.8% and 91.6% of patients in the group with poor outcomes are below the 

median of the group with good outcomes. Hedges’ g reveals that the S.D. between groups is 

1.15 and 1.10 for each scenario, respectively. And the Omega² results represent that 22.2% and 

19.6% of the variance of the RI can be explained by the Engel group membership. 
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4.4 DISCUSSION OF THE STATISTICAL RESULTS 

 

The statistical analysis indicates that the epochs show different significance weights 

with the combined state of sleep and awake, having significantly better correlation than the 

other two states. Additionally, between awake and sleep, the sleep epoch reveals to have more 

relevance than awake; this result is consistent with a brand new related study findings 

(PETR KLIMES et al., 2019). According to this same study, though, the NREM sleep state 

performs better than the combined states, which disagrees with the results of this work. 

However, the studies are not entirely comparable since, in this related research, the sleep epoch 

was split and analyzed by its cycles. 

The fact that the separate awake and sleep vigilance states demonstrate lower 

significance than when combined, suggests that these vigilance periods are complementary, and 

the brain regions generating IEDs in one might be different in the other, which seems to 

corroborate with the theory. The combined state proved to be the most relevant to the extraction 

of information and might be the most appropriate vigilance state to be evaluated in order to 

better delineate the epileptogenic zone prior to the resective surgery. 

The results also demonstrated that the employed data mining algorithm excels in 

extracting relevant information and in grouping the detected activities, however, the fact that a 

definition of a cluster threshold improved the results for all the analysis, indicates that the 

clustering process can be improved. Particularly because the alternative coefficient of 

separability setting (low separability) did not perform well in a previous study (INÁCIO; 

JANCA, 2019). The solution might be finding a consistent approach between these two 

coefficients. 

Finally, due to the significance of the results, the combined awake and sleep vigilance 

periods were taken as the basis for training the classification models. The results of this analysis 

are described in the next subsection. 

 

4.5 CLASSIFICATION RESULTS 

 

The next subsections will describe and present the results of the classification models 

trained to predict the FCD groups of patients, using five features as input. 
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4.5.1 Ensemble (Subspace kNN) 

 

Below are described the parameters of training and the performance indicators. 

  

Model parameters: 

▪ Method: Subspace  

▪ Learning Cycles: 30 

▪ Learners: kNN 

▪ Combination of Predictors: 3 subspace dimensions 

▪ Average accuracy: 78.6% 

▪ Prediction speed: ~40 obs/sec 

▪ Training time: 4.2s 

 

Figures 39 and 40 show the confusion matrices and the ROC curve of the trained model. 

 

Figure 39 – Confusion matrix and ROC plot for the Ensemble model. 

  

Source: From the author. 

 

The ROC curve shows the performance of the model at all thresholds. The AUC of 

0.77 indicates that the chance of the rank of a positive example being greater than a negative 

one is 77%, which is a measure of the quality of the model’s predictions. 
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Figure 40 – Confusion matrix with true positive and false negative rates. 

 

Source: From the author. 

 

Even though the training model offers an average accuracy, the best method for 

verifying the model’s accuracy is testing its results with a test group composed of data that was 

not used for training. 

The group of 11 patients below was chosen by chance. Six of them were not employed 

for the first statistical analysis for lacking outcome data, however, they can be included in the 

test group for this analysis since they have FCD type info. For the other five, the information 

on their FCD types was obtained after the generation of the model, so they were included in the 

test group. The prediction results for this group of patients are presented in Table 17. 

 

Table 17 – Ensemble prediction table for new patients. 

PATIENT FCD TYPE PREDICTED GROUP 

P143 I I 

P150 II II 

P163 II II 

P177 I I 

P179 I I 

P185 II II 

P025 II I 

P034 I II 

P043 II II 

P091 II II 

P117 II II 

Correct Predictions  9 of 11 (81.82%) 

Source: From the author. 
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An additional test with the FCD III patients was done in order to test the model’s 

accuracy further. The predicted group was compared to the dual pathology reclassification of 

FCD III, the results are presented in Table 18. 

 

Table 18 – Ensemble prediction for the FCD III patients, reclassified as dual pathology. 

PATIENT FCD TYPE FCD DUAL PATHOLOGY PREDICTED GROUP 

P048 III I I 

P085 III II II 

P096 III I I 

P129 III I I 

P136 III I I 

P142 III I I 

P173 III I II 

Correct Predictions   6 of 7 (85.71%) 

Source: From the author. 

 

4.5.2 Ensemble (Subspace kNN) - Refined 

 

Below are described the parameters of training and the performance indicators. 

 

Model parameters: 

▪ Method: Subspace 

▪ Learning Cycles: 30 

▪ Learners: kNN 

▪ Combination of Predictors: 3 subspace dimensions 

▪ Average accuracy: 73.3% 

▪ Prediction speed: ~71 obs/sec 

▪ Training time: 3.34s 

 

One of the approaches to refine a classification model is to include new samples that 

had a false prediction for the training group. This is especially true in the case of this work, 

were the number of samples is considered below the ideal. Therefore, P025 and P034 were 

added to the training group and the model was retrained. The average accuracy dropped slightly 

when compared to the previous model, but the new model continued to display precise 

predictions to all the other nine patients (Table 19). 
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Figures 41 and 42 display the confusion matrices and the ROC plot for the refined 

model. 

 

Figure 41 – Confusion matrix and ROC plot for the refined Ensemble model. 

  

Source: From the author. 

 

The AUC of 0.68 indicates that the chance of the rank of a positive example being 

greater than a negative one is 68%, measuring the overall quality of the model’s predictions. 

 

Figure 42 – Confusion matrix with true positive and false negative rates. 

 

Source: From the author. 
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Table 19 – Ensemble prediction table for new patients - Refined model. 

PATIENT FCD TYPE PREDICTED GROUP 

P143 I I 

P150 II II 

P163 II II 

P177 I I 

P179 I I 

P185 II II 

P043 II II 

P091 II II 

P117 II II 

Correct Predictions  9 of 9 (100.0%) 

Source: From the author. 

 

4.6 DISCUSSION OF CLASSIFICATION RESULTS 

 

The trained models demonstrated good and consistent results with all tests on untrained 

data showing accuracy superior to 80%, even for the FCD III type, where the medical 

classification is still imprecise. 

Unfortunately, it is impossible to compare and discuss the results with a related study, 

because this type of approach of using machine learning methods on EEG data to predict the 

FCD types has never been done before. The obstacles and the difficult access to the EEG 

recordings in combination with other necessary medical data of patients are probably one of the 

reasons for the absence of this kind of analysis. As well as the fact that is an area that is still 

developing and being researched with less funding when compared to other diseases. 

Despite the impossibility of comparison with third party results, the results reveal that 

it is possible to extract new patterns on the mined data from the iEEG analysis since these 

patterns extracted exhibited a strong relationship (from the predictions) to the actual medical 

data of the patients. 
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5 CONCLUSION 

 

In this work two types of experiments were conducted, the first one presented a 

statistical analysis of iEEG recordings of patients with focal cortical dysplasia, using a data 

mining algorithm that detects, analyzes and groups IEDs by their spread patterns. The goal of 

the analysis was to investigate the association between the analyzed clustered data and the 

patient’s surgery outcomes.  

The conjunct of the algorithm’s outputs and the medical information enables the 

calculation of a resection index and posterior inspection of statistical correlation. Additionally, 

examining the different vigilance periods, it was possible to identify the most relevant for 

analysis, which might offer more pertinent information for the better delineation of the 

epileptogenic zone, and therefore, optimizing the surgery resected area. These results partially 

come to an agreement, with a brand-new study, over the significance of the vigilance epochs. 

Given the significance of the first results, which showed that the extracted data was 

meaningful, a second data mining was done in order to, using the algorithm’s outputs, define 

parameters that help to predict the patient’s FCD classes. The classification models trained in 

this experiment revealed satisfactory accuracy when tested on new data and in a distinct 

scenario. Given the unprecedented character of the analysis, comparisons with the accuracy of 

related works are unfeasible.  

As future work, it would be reasonable to test if better accuracy is obtained with 

statistical or neural network methods. Besides, further investigation on how to identify the 

epileptogenic area is necessary, since the approach used in this work depends on the surgery 

results, and ideally, the identification of these areas should not be influenced by the surgery or 

clinician’s decisions, which are also subject to errors. 
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