
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA

CIÊNCIAS DA COMPUTAÇÃO

Gabriel Baiocchi de Sant’Anna

Make UNCOL cool again

Florianópolis

2022

Gabriel Baiocchi de Sant’Anna

Make UNCOL cool again

Trabalho de Conclusão de Curso de Graduação
em Ciências da Computação do Centro Tecno-
lógico da Universidade Federal de Santa Cata-
rina como requisito para obtenção do título de
Bacharel em Ciências da Computação.
Orientador: Prof. Erwan Jahier, Dr.
Coorientadora: Profa. Jerusa Marchi, Dra.

Florianópolis

2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Sant'Anna, Gabriel Baiocchi de
 Make UNCOL cool again / Gabriel Baiocchi de Sant'Anna ;
orientador, Erwan Jahier, coorientadora, Jerusa Marchi,
2022.
 120 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Ciências da Computação, Florianópolis, 2022.

 Inclui referências.

 1. Ciências da Computação. 2. Linguagens de Programação.
3. Compiladores. 4. Representação Intermediária. 5.
Portabilidade. I. Jahier, Erwan. II. Marchi, Jerusa. III.
Universidade Federal de Santa Catarina. Graduação em
Ciências da Computação. IV. Título.

Gabriel Baiocchi de Sant’Anna

Make UNCOL cool again

Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do Título de

“Bacharel em Ciências da Computação” e aprovado em sua forma final pelo curso de

Graduação em Ciências da Computação.

Florianópolis, 31 de Julho de 2022.

Prof. Jean Everson Martina, Dr.

Coordenador do Curso

Banca Examinadora:

Prof. Erwan Jahier, Dr.

Orientador

CNRS - Verimag - Université Grenoble Alpes

Profa. Jerusa Marchi, Dra.

Coorientadora

Universidade Federal de Santa Catarina

Albert Cohen, Dr.

Avaliador

Google

Prof. Pascal Raymond, Dr.

Avaliador

CNRS - Verimag - Université Grenoble Alpes

ACKNOWLEDGEMENTS

First and foremost I wish to thank my family, especially my parents, Helio and Mara,

for the careful development and continuous maintenance of my self over the years. Whatever it

is that I may achieve, it is only be possible because of what they have provided me with.

Thanks are due to my advisors, Erwan Jahier and Jerusa Marchi, for lending me their

time, supporting my ideas for the thesis and reviewing drafts of this document. I must also

mention Luiz Henrique Cancellier and other members of UFSC’s Embedded Computing Lab.,

who taught me the ‘Science’ in Computer Science.

I would like to thank my friends and colleagues (too many to cite by name) for all of

our interesting conversations and for the eventual healthy distraction from work. Lastly, I will

mention a few other people who have contributed to this work in some way. Conversation with

Stavros Macrakis provided some historical perspective on portable program representations,

notably their trade-offs from a business perspective. I would also like to acknowledge Alexan-

dra Elbakyan, for her indirect assistance with the literature review. Finally, the Programming

Language Design community’s subreddit and Discord have been useful channels for discussing

ideas and finding learning resources.

RESUMO

Criar e manter um compilador otimizador requer grandes esforços de desenvolvimento. Ao
mesmo tempo, o número de compiladores necessários para traduzir cada linguagem de alto
nível para várias arquiteturas de hardware cresce de forma multiplicativa. Uma possível abor-
dagem para resolver esse problema envolve adotar uma representação intermediária comum,
também conhecida como Universal Computer Oriented Language (UNCOL). Embora tal solu-
ção tenha sido proposta pela primeira vez em 1958, a tecnologia de compiladores e a teoria de
linguagens de programação muito evoluíram desde então. No contexto destes avanços, o pre-
sente trabalho tem como objetivo reavaliar a ideia de uma representação intermediária universal;
começando por um estudo da literatura e do estado da arte de linguagens de programação, de
forma a elicitar requisitos e identificar princípios de criação para uma UNCOL moderna. Esses
requisitos são a base de uma análise de algumas das representações intermediárias utilizadas
em compiladores existentes. Além disso, os princípios extraídos da revisão sistemática motiva-
ram a criação de uma nova representação intermediária, que combina técnicas de compilação
originárias de diversas fontes na literatura. A nova representação intermediária é descrita em
múltiplos aspectos, incluindo uma definição formal da sua estrutura em multigrafo e uma cor-
respondência informal de sua semântica em termos de um modelo computacional já existente.
Por fim, este trabalho descreve alguns algoritmos de análise e transformação de código custo-
mizados para a nova representação. Entre estes consta uma formulação de eliminação de código
morto (uma otimização global) através de um algoritmo de coleção de lixo.

Palavras-chave: Linguagens de Programação. Compiladores. Representação Intermediária.

Portabilidade.

ABSTRACT

Developing and maintaining an optimizing compiler requires great amounts of effort. At the
same time, the number of compilers needed in order to translate many high-level languages to
every other target architecture grows multiplicatively. One possible approach to solve this prob-
lem is the adoption of a shared intermediate representation, also known as Universal Computer
Oriented Language (UNCOL). While the UNCOL solution was first proposed in 1958, there
have been many developments in compiler technology and programming language theory since
then. This work aims to re-evaluate the idea of a universal intermediate representation in light of
these advances, beginning by surveying the programming language literature and state of the art
in order to identify requirements and design principles for a modern version of UNCOL. Then,
these requirements are used to analyze program representations in existing compiler infrastruc-
tures. Furthermore, the set of principles extracted from the systematic review has motivated
the design of a new intermediate representation, which combines compilation techniques from
various sources in the literature. Multiple aspects of the new intermediate representation are
described, encompassing a formal definition of its multigraph structure, an informal explana-
tion of its semantics in terms of the join calculus, and a few custom optimization algorithms,
including a formulation of global Dead Code Elimination as a garbage collection process.

Keywords: Programming Languages. Compilers. Intermediate Representation. Portability.

LIST OF FIGURES

Figure 1 – Logical structure of a typical optimizing compiler. 16

Figure 2 – The compiler construction problem. 17

Figure 3 – The UNCOL solution. 18

Figure 4 – Example T-diagram, using Mongensen’s notation. 19

Figure 5 – Translating arithmetic to stack-based bytecode. 25

Figure 6 – A simple 3AC program, using LLVM-like syntax. 28

Figure 7 – Quadruples (left), triples (center) and indirect triples (right). 29

Figure 8 – JavaScript’s monopoly and C’s ubiquity. 33

Figure 9 – The λ -calculus (left) and the π-calculus (right). 35

Figure 10 – C program with an input-controlled loop. 38

Figure 11 – A CFG, equivalent to Figure 10. 38

Figure 12 – Acyclic DFG for the looping program of Figure 10. 39

Figure 13 – Imperative φs versus functional blocks. 40

Figure 14 – VSDG equivalent to Figures 10–13. 43

Figure 15 – An RVSDG, equivalent to Figure 14. 43

Figure 16 – Click’s sea of nodes. 44

Figure 17 – A functional program encoded in the new IR. 52

Figure 18 – Merging control flow and data dependencies. 53

Figure 19 – Effectful operations under different scheduling constraints. 54

Figure 20 – Explicit concurrency using FORK and JOIN nodes. 56

Figure 21 – Type dependency edges and type-level operations. 57

Figure 22 – Approximating parametric polymorphism through macro nodes. 58

Figure 23 – The join calculus (left) and an example program (right). 63

Figure 24 – The new IR in join calculus terms. 64

Figure 25 – A type grammar for the new IR. 65

Figure 26 – Combined peephole optimizations, simplified. 67

Figure 27 – Caching structural hashes. 68

Figure 28 – Common Subexpression Elimination via hash consing. 69

Figure 29 – Bump allocation in a node pool. 69

Figure 30 – Dead Code Elimination as Garbage Collection. 70

LIST OF ABBREVIATIONS

3AC Three-Address Code

ANDF Architecture Neutral Distribution Format

ANF Administrative Normal Form

AST Abstract Syntax Tree

CFG Control Flow Graph

CIL Common Intermediate Language

CLI Common Language Infrastructure

CPS Continuation-Passing Style

DAG Directed Acyclic Graph

DFG Data Flow Graph

EM Encoding Machine

HSA Heterogeneous System Architecture

IL Intermediate Language

IR Intermediate Representation

JIT Just-In-Time

JVM Java Virtual Machine

PDG Program Dependence Graph

PDW Program Dependence Web

RTL Register Transfer Language

RVSDG Regionalized VSDG

SSA Static Single Assignment

SSC Strongly Connected Component

SUIF Stanford University Intermediate Format

TCO Tail Call Optimization

UNCOL Universal Computer Oriented Language

VDG Value Dependence Graph

VM Virtual Machine

VSDG Value State Dependence Graph

Wasm WebAssembly

0 Author’s note: Acronyms are commonplace in technical writing. Works on programming languages and com-
pilers, in particular, use abbreviations abundantly. However, it is not rare to have an abbreviation change its
meaning over time (e.g., GCC), or even become a name by itself (a notable example being LLVM). Adding
to the confusion, technology-related names and trademarks are often registered in capital letters (e.g., UNIX),
even if they do not form an abbreviation. Thus, I refrain from providing the full extension of acronyms unless
that definition is relevant to the understanding of the text. Abbreviations not listed here should be treated as
proper names. An index is provided to aid readers in locating contextual information about relevant terms.

CONTENTS

Contents . 11

1 INTRODUCTION . 13

1.1 MACHINES AND LANGUAGES . 13

1.2 OPTIMIZING COMPILERS . 15

1.3 PROGRAM REPRESENTATIONS . 15

1.4 THESIS OUTLINE . 16

2 COMMUNICATION WITH CHANGING MACHINES 17

2.1 THE COMPILER CONSTRUCTION PROBLEM 17

2.2 UNCOL AND OTHER SOLUTIONS . 18

2.3 A NEW GOLDEN AGE . 21

2.4 CHAPTER SUMMARY . 22

3 A SURVEY ON INTERMEDIATE REPRESENTATIONS 23

3.1 LINEAR REPRESENTATIONS . 24

3.1.1 Stack-based Bytecode . 25

3.1.2 Register-based Three-Address Codes . 28

3.2 TREE-STRUCTURED REPRESENTATIONS 31

3.2.1 Generic Tree Encodings . 31

3.2.2 Programming Languages as Compiler ILs 32

3.2.3 Algebraic ILs . 35

3.3 GRAPH-BASED REPRESENTATIONS 37

3.3.1 Control Flow Graphs . 37

3.3.2 Data Flow Graphs . 39

3.3.3 Hybrid Dependence Graphs . 40

3.4 FINDING UNCOL . 45

3.4.1 Design Principles and Requirements . 45

3.4.2 IR Review and Comparison . 48

4 DESIGNING A NEW COMPILER IR 51

4.1 INFORMAL DESCRIPTION . 52

4.1.1 The CPS Soup . 52

4.1.2 State and Concurrency . 54

4.1.3 Types and Macros . 57

4.2 FORMALIZATION . 59

4.2.1 Multigraph Structure . 59

4.2.2 Execution Model . 62

4.2.3 Type System . 64

4.3 PROTOTYPE IMPLEMENTATION . 66

4.3.1 On-the-fly Optimizations . 66

5 CONCLUSION . 71

5.1 SUMMARY . 71

5.2 FUTURE WORK . 71

BIBLIOGRAPHY . 73

Index . 85

APPENDIX A – NODE STRUCTURE 87

APPENDIX B – TYPING RULES . 91

APPENDIX C – PREPRINT ARTICLE 92

13

1 INTRODUCTION

An interpreter raises the machine to the level of the user program;
a compiler lowers the user program to the level of the machine
language. We can regard the Scheme language (or any program-
ming language) as a coherent family of abstractions erected on
the machine language. (ABELSON; SUSSMAN, 1996, ch. 5)

This is a thesis about Intermediate Representations (IRs), which are used in the con-

text of programming languages and compilers. More specifically, the thesis pivots around the

concept of UNCOL: a Universal Computer Oriented Language.

The first “high-level” programming languages were designed in the 1940s, for the

earliest fully-operational digital computers (GILOI, 1997). However, these programming lan-

guages could not be used until the advent of the first compilers, in the early 1950s (BACKUS,

1978). Already by 1958, UNCOL was proposed as a solution to an apparent problem in com-

piler development; it is an old idea which deserves to be re-evaluated in the present day.

Before expanding upon UNCOL, it is necessary to lay down the surrounding context.

The current chapter connects fundamental notions of machines, computers, programming lan-

guages, compilers and IRs. It introduces some of the concepts used throughout the thesis and

describes the organization of the rest of this document.

1.1 MACHINES AND LANGUAGES

Automatic machines or automata are devices, physical or otherwise, which operate

through predefined actions (TURING, 1937). The set of possible actions, properties of these

actions and the rules which govern the machine form a model of computation (SAVAGE, 1997).

Any particular pattern of rules that controls a machine is called procedure or program (ABEL-

SON; SUSSMAN, 1996, ch. 1). Among procedures, those which induce a machine to produce

the result of a precise mathematical function are called algorithms (PERLIS, 1996). Church’s

Law1 states that, for every effectively calculable function, there exists an algorithm to com-

pute its values (CHURCH, 1936). Finally, universal computing machines – whose existence

was shown by Turing (1937) – are those capable of executing any algorithm, and therefore of

computing all effectively calculable functions.

A formal language is a set of strings, each composed of certain symbols of an alpha-

bet according to specific formation rules (HOPCROFT; MOTWANI; ULLMAN, 2006). The

connection between languages and machines can be seen by relating each language to a func-

tion mapping arbitrary strings to Boolean values, such that its output indicates whether or not

each string belongs to the language. Then, classes of languages can be distinguished based on

which machines are able to compute the aforementioned function; it is said that those machines

1 More commonly referred to as Church’s Thesis, Church-Turing Thesis or Church-Turing Conjecture. The term
‘law’ is used here instead of the alternatives, following the argument of Harper (2016, ch. 21).

14

(or, their model of computation) have enough “language-recognizing power” for that language

(HOPCROFT; MOTWANI; ULLMAN, 2006). Notice that this notion of power is associated

with machines and their models of computation, not with the language being recognized.

Another relation between machines and languages is that encodings of machine pro-

grams can be described by (formal) languages. Thus, when a language is used to encode pro-

grams for certain machines, it can be called a machine language, but also a programming lan-

guage or a computer language. Other related concepts are those of high-level language and

low-level language. Although widely used in programming circles and in the literature, these

terms are not well-defined.

According to Franz (1994, ch. 2), programming languages correspond to abstract (“rel-

atively complex”) universal machines, and machine languages characterize specific realizations

of universal machines as digital computers. The same meaning of “machine language” is im-

plied by the term’s usage in Abelson & Sussman (1996) and Strong et al. (1958a). While Perlis

(1982) indicates that “a programming language is low level when its programs require atten-

tion to the irrelevant”, Chisnall (2018) prefers to associate “low-level” with “closer-to-metal”

(that is, close to the language of a physical machine). Chow (2013) seems to agree on that

definition of low-level languages. He also indicates that high-level languages should be easy

for humans (as opposed to machines) to use and understand. Sammet & Hemmendinger (2003)

and Click (1995) associate “high-level” and “low-level” to programming languages and ma-

chine languages, respectively. Throughout this thesis, a programming language is a language

designed for humans to use for the purpose of programming abstract universal computing ma-

chines under the rule of a certain model of computation. Meanwhile, machine languages are

those which control the execution of programs on real machines. The former are considered

high-level; the latter, low-level. Computer language intentionally remains an ambiguous term

and the unqualified ‘language’ refers to some formal (as opposed to a natural) language.

At first glance, it would seem reasonable to extend the notion of power associated with

a machine to the computer language used to program it. However, all programming languages

(under the definition given above, in terms of universal machines) are Turing-complete, that

is, they expose models of computation equivalent to a Turing machine, in the sense that they

can compute exactly the same set of functions. By this equivalence, universal machines are

capable of emulating all other machines, and different universal machines can emulate each

other (HOPCROFT; MOTWANI; ULLMAN, 2006). This has motivated Felleisen (1991) to

formalize the concept of a programming language’s expressive power (or, its expressiveness).

His theory of expressiveness chiefly relies on a program equivalence relation (also called op-

erational equivalence) and equivalence-preserving transformations between programs. In other

words, it assumes the existence of compilers.

15

1.2 OPTIMIZING COMPILERS

Compilers are translators. They transform programs encoded in a source language

into equivalent programs encoded in a target language (AHO et al., 2006, p. 1). While the last

section hinted at how they may also be used from a theoretical perspective, Click (1995) very

succinctly describes why compilers are useful in practice:

Computers are machines; they follow their instructions precisely.
Writing precisely correct instructions is hard. People are falli-
ble; programmers have difficulty understanding large programs;
and computers require a tremendous number of very limited in-
structions. Therefore, programmers write programs in high-level
languages, languages more easily understood by a human. Com-
puters do not understand high-level languages. They require com-
pilers to translate high-level languages down to the very low-level
machine language they do understand. (CLICK, 1995, p. 1)

Thus, compilers are tools which enable the separation of high-level programming languages

from low-level machine languages by providing a bridge between them. The process of trans-

lating a high-level program into a lower-level representation is also known as lowering.

Compilation must preserve the meaning of programs being translated (LAWRENCE,

2007, p. 12). In order to do so, a compiler has to understand all possible programs written in

the source language (as long as they are valid2) and must know how to precisely encode their

semantics in the target language. The semantics of a program are determined by the model

of computation exposed by the computer language it is encoded in. Fortunately, most source-

target pairings of computer languages allow compilers to choose between many possible ways

to carry out a translation (CLICK, 1995, p. 1). In this context, an optimizing compiler performs

semantics-preserving transformations, not only to re-encode a program in another language, but

also to do so while attempting to optimize its usage of machine resources (CLICK, 1995, p. 1).

However, reasoning about programs is not trivial. Indeed, when dealing with universal

models of computation, some properties are impossible to prove in the general case (CHURCH,

1936; TURING, 1937) and a compiler must make conservative decisions, reducing its potential

to apply optimizations (SHIVERS, 1988). Hence, compilers employ many techniques to facil-

itate reasoning about programs, including dividing the process into multiple phases and using

different program representations between each separate phase (AHO et al., 2006, p. 5).

1.3 PROGRAM REPRESENTATIONS

Often, and for a variety of reasons, compilers are structured as a pipeline consisting

of multiple stages, each with a distinct purpose (AHO et al., 2006, p. 5). Figure 1 displays the
2 One does not usually expect a compiler to assign meaning to an invalid program, especially when it can detect

this is the case and report the reason to the programmer. In C, for example, when a program is erroneous, but
this fact is not (or cannot be) signaled by the compiler, program behavior is “undefined” (ISO/IEC 9899, 2017).

20

1993b; FRANZ, 1994; LATTNER, 2002). Kegley (1977) goes as far as saying that the idea

“died a natural death”, albeit Franz (1994) suggests its “spirit” was kept alive. This seems like

an accurate depiction since, years later, Oliva, Nordin & Jones (1997) indicate that the “ghost

of UNCOL” still haunts compiler writers.

Multiple factors have contributed to UNCOL’s downfall. One of the first problems

arises from the fact that not all high-level programs are entirely machine-independent (BAGLEY,

1962). According to Franz (1994, ch. 6), software portability is one of the most elusive con-

cepts in Computer Science, yet much of the value proposition of UNCOL implicitly relied on

it. Moreover, the compiler construction problem was becoming less relevant as the computer

market stabilized: by 2000, over 90% of all workstations, personal computers and servers were

based on the x86 architecture (LIEDTKE et al., 1998). Finally, it could even be said that UN-

COL was an idea too advanced for its time:

A striking feature of the UNCOL papers is the number of innova-
tions that would have been needed to make it work. Since there
was no standard character code, UNCOL would have had to de-
fine one. [...] Bootstrapping was a novel technique. [...] Indeed,
the very notion of an intermediate language for compilers [...]
was rather novel. At the same time, programming language tech-
nology was in its infancy. Concepts that we now take for granted
were novel or even non-existent [...] (MACRAKIS, 1993b)

Indeed, the second half of the UNCOL report was fully dedicated to bootstrapping (STRONG et

al., 1958b) and a good part of Steel’s later articles described character encodings5 and defended

the theoretical existence of a universal computer language (STEEL, 1961a; STEEL, 1961b).

UNCOL was a proposed solution to the compiler construction problem, but not the

only one. Steel (1961b) noted two alternatives, listed below. As shall be explained later, these

have some overlap and do not exclude the UNCOL approach.

1. Making compiler development easier. This solution does not actually handle the N×M

problem, but aims to reduce the cost of each front end and back end by improving methods

of compiler writing. A plausible approach involves reusing compiler components, in a

shared (usually open-source) infrastructure. LLVM is a popular framework which follows

this principle (LATTNER; ADVE, 2004).

2. Developing a compiler-compiler6. Such a program would generate compilers based on

descriptions of source languages and target machines. Steel (1961b) considered this to be

the “more dignified” solution to the compiler construction problem, and hoped that effort

spent on UNCOL would later help develop compiler-compilers.

5 One must keep in mind that UNCOL predates character encoding standards such as Unicode (UNICODE, 1991)
and Latin-1 (ECMA-94, 1985). Even ASCII had not been defined yet (GORN; BEMER; GREEN, 1963).

6 Although the first compiler-compiler was conceived and developed by Brooker et al. (1963) in the 1950s, Steel
(1961b) may have been the first to publish a description of (along with some motivation for) the idea.

21

Full compiler-compilers – as defined by Steel (1961b), or Futamura (1999) – have not seen

much practical usage in the implementation of programming languages (WÜRTHINGER et

al., 2017). On the other hand, restricting automatic programming to specific parts of the com-

pilation pipeline has been more successful: parser generators have become standard compiler

technology (AHO et al., 2006, p. 287) and table-driven back end descriptors are not unusual in

modern compiler infrastructures (GOLDBERG, 2017, p. 28). Thus, it seems that, over time, the

first alternative to UNCOL has been favored, since it encourages the development of reusable

compiler parts and may also profit from advances in compiler-compiler technology.

2.3 A NEW GOLDEN AGE

In theory, UNCOL can be developed, and this is not up for debate (STEEL, 1961b). By

Church’s Law, the mere existence of an algorithm is enough to guarantee that one can produce

a corresponding program for every universal machine (FRANZ, 1994, ch. 2). What remains

are practical considerations such as UNCOL’s impact on the quality and development cost of

compilers and, arguably more importantly, on the efficiency of generated code.

Coincidentally, many properties originally attributed to UNCOL are expected of mod-

ern IRs and ILs: being general enough to represent many high-level languages, translate into

multiple target architectures, represent the essential parts of any algorithm and having features

designed to facilitate its generation and manipulation by compilers – as opposed to human

programmers (CHOW, 2013). Furthermore, even the solutions noted as alternatives to UN-

COL would benefit from its implementation. Compiler-compilers often require common ILs

– more importantly, they rely on a well-known model of computation (LEE; PLEBAN, 1987)

– to express the effects of machine operations (SCHMIDT; VÖLLER, 1984); the code gener-

ation problem then resolves around inverting that mapping (CATTELL, 1980). Additionally,

the shared IR is a central component of modern compiler infrastructures like LLVM, which

use it to communicate program information across separate modules (CHOW, 2013). Finally,

any improvement in methods of compiler writing will also be absorbed by an UNCOL-based

approach (STEEL, 1961b), so it becomes clear that the alternatives listed in Section 2.2 are not

actually mutually exclusive. This is to say that UNCOL is still a viable solution to the com-

piler construction problem. In fact, although a universal IR may sound idealistic, Chow (2013)

argues that the time is ripe to pursue the idea, which “holds promises for the entire computing

industry”.

Truthfully, much of the computing industry has changed since the inception of UN-

COL, back in 1958. The field of programming languages – theory, design, implementation and

application – has been in active research since its origins, motivating advances in compiler tech-

nology from the late 1950s to the present (MACRAKIS, 1993b). It is now common practice to

develop portable software for abstract (as opposed to real) machines, which are usually defined

in a written specification and may exist only as Virtual Machines (VMs) – machine emulation

programs implemented on top of the actual computer (CALVERT, 2015, p. 11). Examples of

22

such abstract machines include the Java Virtual Machine (JVM), the execution system for the

Common Language Infrastructure (CLI) and WebAssembly. Notice that there is no significant

difference between an abstract machine, a model of computation (recall the definition from

Section 1.1) and the specification of a VM. Hence, it often makes sense to complect an abstract

machine with the IL used to program it (GANAPATHI; FISCHER; HENNESSY, 1982). One

might then reinterpret the quest for UNCOL as the search for an abstract machine or model

of computation which, along with a standard encoding, is suitable for tackling the compiler

construction problem.

Meanwhile, the problem which UNCOL was set out to solve has never entirely disap-

peared. Evidence of this is the fact that a great number of programming language implementors

choose to generate C as a portable compiler target, typically as a shortcut to avoid implement-

ing back ends for multiple machines (MACRAKIS, 1993b; OLIVA; NORDIN; JONES, 1997;

CHOW, 2013). Even if it did once disappear, the compiler construction problem seems to be

about to resurge: Hennessy & Patterson (2019) predict a “Cambrian explosion” of domain-

specific computer architectures in the next decade. They point out the need for domain-specific

programming languages and related compiler technology. This was also evident to Lattner et al.

(2021), who developed MLIR as a compiler infrastructure better suited to build domain-specific

compilers in the upcoming “golden age” of computer architecture, hardware accelerators, pro-

gramming languages and optimizing compilers (LATTNER, 2021).

In summary: the compiler construction problem is about to become more relevant

than ever, UNCOL appears to be a viable solution, and, this time around, practitioners in the

field have over 60 years of accumulated design experience and technological advances in pro-

gramming language theory and compiler technology. This motivates taking another look at the

compiler construction problem from an UNCOL perspective.

2.4 CHAPTER SUMMARY

This chapter defined the compiler construction problem and described possible solu-

tions to it, UNCOL in particular. Through a retrospective overview on the history of UNCOL,

its influence on programming languages and compilers has been unearthed. Finally, the moti-

vations for the thesis were given and justified.

The first specific goal of this work is to argumentatively put forward UNCOL as a vi-

able solution to the compiler construction problem, which is what has been done in this chapter.

In addition, the thesis aims to identify requirements and design principles for modern iterations

on UNCOL; and to use said requirements to review existing compiler IRs, looking for suitable

UNCOL candidates. The two latter points are expanded upon in the following chapters.

23

3 A SURVEY ON INTERMEDIATE REPRESENTATIONS

Syntax without representation is tyranny. (SUSSMAN, 2011)7

This chapter presents a survey on portable compiler IRs (and their abstract machines).

The UNCOL theme motivates a relatively wide (for a Bachelor’s thesis) literature review scope,

which has resulted in an extensive and diverse set of references. Thus, for the sake of brevity,

basic familiarity with programming languages and compilers is assumed, although important

concepts related to IRs will be explained throughout the chapter.

An overview on the topic of compiler IRs can be found in the ACM Queue article

written by Chow (2013). Directly related works begin with Stanier & Watson (2013), with a

first survey on IRs used in compilers for imperative languages. Belwal & TSB (2015) later pub-

lished their research on IRs for heterogeneous multi-core computing. More recently, Susungi

& Tadonki (2021) reviewed IRs designed to represent “explicitly parallel” programs. These

previous surveys narrowed their scope to IRs used and designed for certain purposes; this one is

no exception. UNCOL is a universal IR. Hence, special attention is given to portable IRs, that

is, to abstract program representations which may be able to accommodate multiple high-level

languages and target architectures.

Each of the three related works classifies IRs differently. Stanier & Watson (2013) use

three aspects: structure, which can be linear or graph-based; dependency information, including

data flow and control flow; and program content, whether programs can be fully or only partially

encoded in the IR. The classification of Belwal & TSB (2015) is simpler: IRs can be “syntactic”

(represented as trees), graph-based or a mix of the two previous options. Susungi & Tadonki

(2021), on the other hand, consider four IR categories: ILs (recall the distinction described in

Section 1.3), graphs, Static Single Assignment (SSA) form and polyhedral representations.

Meanwhile, this survey groups IRs solely by their structure: Sections 3.1, 3.2 and

3.3 respectively describe linear, tree-structured and graph-based IRs. Despite being separately

classified, these kinds of IRs are frequently used together in modern compilers, albeit at dif-

ferent stages of the translation pipeline (refer to Figure 1). Stanier & Watson (2013) identify a

tendency towards: (a) parse trees and Abstract Syntax Trees (ASTs) in the front end; (b) graph-

based IRs to represent whole functions; and (c) linear IRs (usually put in SSA form during

optimizations) used for local “low-level” transformations. Additionally, they notice the trend of

using linear ILs as a human-readable format when parts of the compilers themselves are being

developed and debugged.

Section 3.4 distills the requirements and design principles, identified during the liter-

ature review, which could be applied to a modern version of UNCOL. Some existing compiler

infrastructures and their IRs are then reviewed in light of these requirements. Those are the

main contributions of this survey, but one may consider yet another to be its consideration of

functional and algebraic IRs, since these are generally not covered by related works.

7 Pronounced by Gerald J. Sussman at the 2011 Strange Loop Conference, Language Panel; St. Louis, USA.

24

3.1 LINEAR REPRESENTATIONS

Linear IRs represent programs as sequences of instructions for an abstract machine.

Imagining an IL in this format is particularly straightforward when the abstract machine re-

sembles a simple stored-program computer. Thus, most ILs, including the first UNCOL ever

proposed (CONWAY, 1958), follow this pattern (FRANZ, 1994, ch. 2). It is also the preferred

IR type of VMs, since a baseline implementation can operate by interpreting an individual in-

struction, moving to the next one in the sequence and repeating this process in a loop, essentially

emulating a sequential computer. This is why linear IRs are said to be “low-level” (LATTNER;

ADVE, 2004). When interpreted by a VM, linear ILs are called bytecode formats, since each

instruction can often be encoded in a single byte (NYSTROM, 2021, ch. 14). They are also

known as P-code (portable or pseudo code), in praise of the VM-based implementation of the

Pascal programming language (WIRTH, 1993).

Despite their simplicity, linear IRs are not without disadvantages. Haddon & Waite

(1978) illustrate the challenge of choosing a minimal set of portable instructions. Their example

shows how a “low-level” IL may introduce multiple levels of inefficiency during compilation:

For some time, we included in the definition of Janus two inte-
ger division operators: DIVN (Result truncated towards Negative
infinity) and DIVZ (Result truncated towards Zero). We reasoned
that both were necessary, as it is expensive to synthesize one from
the other. The argument went that if a high-level language spec-
ified one of these operations for its integer division, e.g. DIVN,
and Janus contained only DIVZ, then a compiler would have to
generate Janus code to simulate the effect of DIVN. But a given
target machine may in fact have only a DIVN instruction. But the
translator seeing only the DIVZ in the Janus text must generate
code using the DIVN of the target machine to simulate the effect
of the DIVZ. (HADDON; WAITE, 1978)

Recovering the original intent of high-level code after it has been lowered to a linear IR is

not trivial, especially after multiple rounds of program transformations (LOGOZZO; FAHN-

DRICH, 2008). Furthermore, this “primitive mismatch” problem (which also extends to data

types, number of available registers and properties of memory operations, among other aspects)

is unavoidable: unless the IR is to expand uncontrollably, there will always be programming

language operations and machine instructions without a one-to-one mapping in the IR (GANA-

PATHI; FISCHER; HENNESSY, 1982).

Similar to instruction formats of real computers, linear compiler ILs have a simple,

regular structure. Also like the instructions of real machines, the biggest difference between

them lies in what the instructions themselves do: what sort of data they operate on, how they

access memory and what effects are caused by their execution (STANIER; WATSON, 2013).

Despite the great variety of possible instructions, linear compiler IRs can be categorized as

either stack-based or register-based (IERUSALIMSCHY; FIGUEIREDO; CELES, 2005).

26

stacks. Later, the SECD machine was used as a central component of the LispKit com-

piler (HENDERSON, 1980) and there was an effort to implement it directly on hardware

(GRAHAM, 1989).

• Janus. Janus was an IL which shared most of UNCOL’s goals. Coleman, Poole &

Waite (1974) describe the system as a family of abstract machines with a common ba-

sic structure (a 1-operand stack-based architecture) and a universal IL. They achieved

portability through the abstraction of high-level operations as macros, which are called

in the IL and expanded in a target-specific manner when lowering to machine language

(NEWEY; POOLE; WAITE, 1972). This technique was rediscovered some years later,

in the “Universal Compiling System” proposed by Gyllstrom et al. (1979), although they

do not describe their IR in much detail. Janus was used in the implementation of a Pascal

compiler and in the design of an Algol 68 compiler (HADDON; WAITE, 1978).

• U-code. A variant of P-code designed by Perkins & Sites (1979) to enable compiler op-

timizations across a wide variety of machines and languages. The 1-operand stack-based

IL was used to compile both Pascal and Fortran programs and had some degree of back-

wards compatibility with P-code–based compilers (PERKINS; SITES, 1979). U-code had

dedicated metadata instructions for the purposes of debugging, guiding optimizations and

stating program requirements (e.g., defining memory alignment restrictions).

• The Amsterdam Compiler Kit IL. The Amsterdam Compiler Kit was a collection of

compiler modules created by Tanenbaum et al. (1983), based on the UNCOL idea. Their

main IR, Encoding Machine (EM) language, is linear, but the tool kit also included graph-

based global optimizations. As its name suggests, the stack-based IL was used mainly as

an encoding mechanism, where the back end maintained a simulated stack and generated

code with the aid of a target-specific “driving table”, which described how to translate

certain stack configurations into machine language. Lacking an entry in the driving table,

the compiler would inject IL instructions into the program with the purpose of coerc-

ing the stack into a known configuration. Tanenbaum et al. (1983) describe this method

as being analogous to a chess-playing artificial intelligence program, since it searches

through many possible sequences of “moves”. There were also meta-linguistic declara-

tions, not unlike those previously suggested by Steel (1961a), which helped guide the

“chess-playing” procedure. The Amsterdam Compiler Kit, originally a commercial prod-

uct, was used for many years as the native compiler toolchain in Tanembaum’s Minix

operating system (GIVEN, 2005), with support for C, Plain, Pascal, Algol 68 and more

than a dozen different hardware architectures. According to (TANENBAUM et al., 1983),

it showed that “the old UNCOL idea is a sound way to produce compilers”. The toolkit

has since been released under an open-source license, but has not received much attention.

• The Categorical Abstract Machine. The Categorical Abstract Machine was created

as a mathematically well-founded method of functional programming language imple-

27

mentation (COUSINEAU; CURIEN; MAUNY, 1987). The core stack-based architecture

was formally described by Cousineau, Curien & Mauny (1987), who claimed the small

changes proposed over the SECD machine enabled much simpler correctness proofs. It

was used in an ML implementation which eventually originated the OCaml programming

language (MACQUEEN; HARPER; REPPY, 2020).

• JVM bytecode. Many qualities associated with the Java programming language, such as

machine-independence and memory safety, stem from its VM (LINDHOLM et al., 2015,

ch. 1). The JVM is a portable stack-based and object-oriented architecture specifically de-

signed for Java. Nonetheless, compilers for other programming languages (Kotlin, Scala

and Clojure, to cite a few) frequently target JVM bytecode in order to profit from the ma-

ture platform. Since most JVM implementations employ Just-In-Time (JIT) compilers,

which translate bytecode to machine language at run-time, JVM bytecode can be consid-

ered an IL. Still, compilers often convert the stack-based IR into a format better suited for

transformations before lowering it to machine code (LATTNER; ADVE, 2004).

• Microsoft’s Common Intermediate Language (CIL). An Ecma International standard

defines the CLI (ECMA-335, 2012), which includes a common type system, a stack-based

virtual execution system and an accompanying IL, the CIL. The machine-independent

infrastructure was built with maximum portability in mind; in order to integrate multi-

ple programming languages in the same platform, it was “designed to be large enough

that it is properly expressive yet small enough that all languages can reasonably accom-

modate it” (ECMA-335, 2012, p. 14). One way the CLI attempts to deliver practical

language interoperability is by providing abstract operations (such as a “virtual call-

ing convention”) and extensible IL metadata that let compiler front ends communicate

optimization-relevant information all the way to the execution engine, which can then

tailor code generation decisions to the user’s machine. In general, such on-the-fly code

generation methods aim to counteract the efficiency losses which tend to arise when using

machine-independent IRs (FRANZ, 1994, ch. 7). The standard also defines a subset of

the CLI which is verifiable with respect to memory safety (ECMA-335, 2012, p. 14).

• WebAssembly. WebAssembly is a VM-bytecode pair for the Web platform. Despite

currently being in a minimum-viable-product state, it was collaboratively designed by

engineers from major browser vendors (HAAS et al., 2017) and therefore boasts wide

availability on consumer devices. The stack-based architecture is explicitly noted by

Haas et al. (2017) as merely a mechanism to easily achieve a formalization of the abstract

machine and provide a compact program representation. Hence, many design decisions

– notably, prohibiting irreducible control flow – aim to enable quick conversion into IRs

better suited for program transformations and compiler optimizations, such as a register-

based SSA (HAAS et al., 2017).

28

3.1.2 Register-based Three-Address Codes

Register-based compiler IRs are often synonymous with Three-Address Codes (3ACs),

although alternative architectures exist (and are mentioned below). In a typical 3AC, each

instruction performs a single operation, having at most two inputs and one output (AHO et al.,

2006, ch. 6). An example is shown in Figure 6, which displays the small program from Figure 5

encoded in a 3AC IL.

Figure 6 – A simple 3AC program, using LLVM-like syntax.

%t1 = i32 1

%t3 = i32 3

%t7 = i32 7

%tm = mul %t3, %t7

%ta = add %tm, %t1

%_ = call @print(%ta)

Source: Gabriel B. Sant’Anna, 2022.

In most register-based IRs, the compiler assigns a named register to all intermediate

results. This has the advantage of facilitating the reuse of previously computed values: one

simply needs to refer to the name associated with it, as opposed to having to perform a series of

memory and stack manipulation operations (KOOPMAN, 1989, ch. 3). A disadvantage lies in

the fact that the compiler needs to allocate a register for every single intermediate value in the

program: if the abstract machine has a limited number of registers, this becomes a non-trivial

problem (AHO et al., 2006, p. 505). According to Aho et al. (2006, p. 363), the use of names in

3ACs allows programs to be transformed and rearranged much more easily than would be the

case with stack-based bytecodes, since the latter requires the insertion of instructions in a very

specific order to achieve the effects described by the original high-level program.

There are many ways for a compiler to implement 3ACs. The most straightforward

representation consists of quadruples: sequences of four-field records containing the instruction

code, (up to) two argument registers and a named result (AHO et al., 2006, p. 366). Triples

are a close alternative, where the result’s “name” is implicitly defined by the position of the

instruction in the containing sequence. The triple scheme requires less space and lets the com-

piler use numbers (which are faster indexes and easier to generate) instead of arbitrary names

(STANIER; WATSON, 2013). Since triples associate instruction indexes with their produced

results, reordering operations requires the compiler to update all uses of the result of a relo-

cated triple. Indirect triples offer a solution to that problem by uncoupling program order from

result handles, such that a reference to a triple is kept stable even when the program is being

transformed (AHO et al., 2006, p. 368). Figure 7 shows a single program (the same one from

Figure 6) represented as quadruples, triples and indirect triples. In the last representation, the

program was reordered so as to load the constant 1 after the mul instruction.

29

Figure 7 – Quadruples (left), triples (center) and indirect triples (right).

PROGRAM:

<const, i32, 1, %t1>

<const, i32, 3, %t3>

<const, i32, 7, %t7>

<mul, %t3, %t7, %tm>

<add, %tm, %t1, %ta>

<print, %ta, _, _>

PROGRAM:

[0: const, i32, 1]

[1: const, i32, 3]

[2: const, i32, 7]

[3: mul, (1), (2)]

[4: add, (3), (0)]

[5: print, (4), _]

0: <const, i32, 1>

1: <const, i32, 3>

2: <const, i32, 7>

3: <mul, (1), (2)>

4: <add, (3), (0)>

5: <print, (4), _>

PROG': [1; 2; 3; 0; 4; 5]

Source: Gabriel B. Sant’Anna, 2022.

Register-based compiler IRs include, but are not limited to:

• Conway’s UNCOL. In the first proposed UNCOL design, Conway (1958) partially de-

scribes a register-based IR. He believed that minimalistic abstract machines, with fewer

registers and instructions, would provide greater opportunity for code optimization. Thus,

his IR follows a single-address architecture, where operations specify only their output

locations, and operands are always read from predefined “argument-storage” registers.

• Steel’s UNCOL. As one of the authors of the UNCOL report, Steel (1961a) provides

further detail on how a universal IR could be envisioned. Like Conway, Steel points

towards a single-address machine. He indicates the need to describe, for every item of

data expressed in the IL, properties such as type, numerical range, precision and storage

allocation, arguing that (at least some of) these could be achieved with a mechanism to

define the lexical and syntactical structure of language elements8. Steel also suggests that

some instructions should aid compiler optimizations through meta-linguistic declarations

such as “the next 20 statements form a loop”. Finally, a striking feature of Steel’s UNCOL

was that commands could have different behavior based on the data types being operated

on. This type-based instruction overloading, not unlike the one used in the CIL, results

in a smaller IR: a single addition command, for example, would work with both integers

and floating-point numbers. Like Conway’s UNCOL, this IL was never implemented.

• IBM’s PL.8 compiler. The PL.8 project was a compiler which could accept multiple

source languages (Pascal and a variant of PL/I) and produce optimized code for several

different machines, notably by the means of a common IR “closely matching the compu-

tational semantics of the target machines” (AUSLANDER; HOPKINS, 1982). Its IR was

a 3AC with an unlimited number of virtual registers. This is a notable feature of the IR’s

design because it may have prompted the invention of SSA form, especially since Rosen,

Wegman & Zadeck (1988) were familiar with IBM’s PL.8 infrastructure.

8 Classic formal language techniques were relatively novel at the time (MACRAKIS, 1993b), so Steel (1961a)
proposed using first-order logic – and not grammars or regular expressions – to describe syntax.

30

• The Stanford University Intermediate Format (SUIF). SUIF was a compiler frame-

work heavily influenced by the concept of a universal IR. It is divided into a “kernel”,

which consists of IR generation and manipulation procedures, and a “toolkit” with front

end and back end modules using the IR as a common interface (WILSON et al., 1994).

SUIF’s IR is described as a “mixed-level” program representation, being for the most part

a 3AC, but also including tree-like constructs for loops, conditionals and array accesses

(WILSON et al., 1994). The infrastructure was released for free as an attempt to solve

the compiler construction problem in research. It succeeded to some degree: there were

multiple research projects based on SUIF, with front ends implemented for C, Fortran,

Java and C++ (SUIF, 2005). However, its place in research has since been occupied by

LLVM (FARVARDIN; REPPY, 2020).

• GCC’s Register Transfer Language (RTL). GCC is another well known compiler col-

lection and infrastructure, notable for being used in the Linux kernel (FSF, 2022). Ac-

cording to Lattner (2021), GCC’s open-source nature created a turning point in the com-

piler industry around the 1990s (back in a time when most compilers where commercial

products, all mutually incompatible), enabling collaboration from academia and industry,

reducing language community fragmentation and to a great extent achieving the N +M

scaling of multiple front ends and back ends. GCC officially supports C, C++, Objective-

C, Fortran, Ada, Go and D, for countless back ends (FSF, 2022). Still, modern compilers

tend to gravitate towards the LLVM infrastructure, mainly due to its modular architecture

and better-specified (even if slightly unstable) IL. GCC has multiple IRs (MERRILL,

2003), the oldest one being RTL, a 3AC with an infinite number of virtual registers. Un-

like LLVM IR, RTL’s SSA form is optional (FSF, 2022, ch. 14).

• The LLVM Project (and derivatives). LLVM is a modern compiler framework origi-

nally designed by Lattner (2002) to tackle the challenges originated by recently developed

programming practices, namely the support for dynamic extensions to long-running pro-

grams and multi-language software development. A solution is envisioned as the combi-

nation of capabilities previously considered to be mutually exclusive: while classic com-

pilers provide ahead-of-time code optimization and a language-agnostic runtime model,

VM-based approaches such as the JVM or the CLI can implement profile-guided JIT

transformations by preserving program information until run-time (LATTNER; ADVE,

2004). Providing all of these features is LLVM’s goal, which, according to Lattner &

Adve (2004), is achieved through its innovative IR design and the open-source compiler

infrastructure built around it. LLVM’s IR can be described as a register-based 3AC (al-

though the implementation places the linear IR inside Control Flow Graph (CFG) nodes)

in SSA form, extended with “high-level” type information. The LLVM infrastructure has

been successfully applied in academia and in the industry, with countless programming

languages implemented on it due to its maturity and ability to emit optimized code for

many target architectures (LLVM, 2022). Although earlier versions of LLVM were quite

31

minimalistic, with only 31 opcodes (LATTNER; ADVE, 2004), it has been in a constant

state of change and expansion: the current version (LLVM 13) of the IL reference docu-

mentation (LLVM, 2022) can fill over 300 printed pages. This instability and constantly

increasing complexity has led some groups to create similar IRs, isolated on purpose from

the main LLVM infrastructure. Examples include Khronos’ SPIR-V (KHRONOS, 2020),

which can be described as a fork of LLVM IR specialized for parallel computation and

graphics processing, and Cranelift, which has been considered as a faster (in terms of

compile time) alternative to LLVM for debug builds (LARABEL, 2020).

• The Join Calculus Abstract Machine. Calvert (2015) proposes using the join calcu-

lus as the foundation for a parallel abstract machine and LLVM-like linear compiler IR.

He argues that the resulting design could be used as a universal IR, especially since,

among other members of the process calculi family, the join calculus seems to be partic-

ularly suitable for the efficient implementation of programming languages (FESSANT;

MARANGET, 1998; FOURNET; GONTHIER, 2000).

• Heterogeneous System Architecture (HSA) IL . HSA IL is described as a low-level vir-

tual instruction set for the architectures supported by the HSA Foundation (HSA, 2018).

According to Chow (2013), although the register-based IL’s extensive specification could

be a step forward in what concerns universal IRs, the complexity of the HSA program-

ming model makes it unlikely that compilers will use it as anything other than a target

for HSA-compatible devices. For instance, a limited number of registers (HSA, 2018)

implies that most program transformations may need to invoke a register allocator.

3.2 TREE-STRUCTURED REPRESENTATIONS

Trees are probably the single most common compiler data structure. Although mainly

utilized to represent the syntactic structure of high-level languages, tree-based IRs are also used

for macro expansion, type checking and some program transformations (AHO et al., 2006,

ch. 6). A simple high-level program represented as an AST has been shown in Figure 5.

3.2.1 Generic Tree Encodings

Trees are generally considered language-dependent compiler IRs, since each node in

the tree normally corresponds to a specific programming language construct (AHO et al., 2006,

sec. 2.5.1). Still, a few works propose language-independent tree-structured ILs:

• Architecture Neutral Distribution Format (ANDF). ANDF has been described as

an “architecture- and language-neutral distribution format resembling a compiler inter-

mediate language”, aiming to succeed where UNCOL proposals had previously failed

(MACRAKIS, 1993b). ANDF was essentially a compact binary format used to encode

32

program trees in a standard manner. Defined by the Open Software Foundation, the sys-

tem took a very pragmatic position on the problem of portability: “ANDF is not a tool for

making non-portable software into portable software [an unsolvable problem], but a tool

for distributing portable software” (MACRAKIS, 1993b). The major mechanism used to

achieve practical language and machine independence was a macro system reminiscent

of Lisp’s syntax macros. In ANDF, static conditional branches, identifier references, con-

stant literals, type layout and even other macros could be identified and stored separately

from the main program. This allowed the system to retain portability and preserve the

potential for both language- and machine-specific optimizations, since such delayed defi-

nitions could be “linked in” and expanded only when appropriate, up until the moment the

program was loaded (MACRAKIS, 1993c). ANDF was only ever implemented in UNIX

systems, and for the C programming language (MACRAKIS, 1993a). The implementa-

tion, documented as TenDRA, was later released as an open-source compiler framework

(TenDRA, 2022). Stavros Macrakis (personal communication, 2021) suggests ANDF

was not widely adopted mainly because of: (a) lack of interest from UNIX vendors; and

(b) the compiler construction problem becoming less relevant as the computer market was

dominated by specific (software and hardware) systems.

• Semantic Dictionary Encoding. Proposed by Franz (1994), “semantic dictionaries” can

encode general ASTs in a compact tabular form. It was used as Oberon’s module in-

terchange format, also known as “slim binaries”. It achieved portability by distributing

high-level source programs, while the “fat binary” alternative was to package multiple

machine-specific objects in the same executable file (FRANZ; KISTLER, 1997).

• The ROSE compiler. ROSE is an open compiler infrastructure for the development of

program analysis tools and source-to-source transformations. Given its goals, a generic

tree-based IR is a natural fit. The framework has been used to develop tools and research

projects for C, C++, Fortran, Java, Python and PHP, among others (LLNL, 2022).

3.2.2 Programming Languages as Compiler ILs

Some high-level programming languages have been used as compiler ILs. Instead of

generating machine code (or VM bytecode) directly, compilers can emit a program encoded in

another high-level language9 and then call one of its existing back ends (or use an existing VM

implementation). Typically, this is done to avoid re-implementing architecture-specific trans-

formations and code generation (OLIVA; NORDIN; JONES, 1997), but also provides a way

to reuse developer tools (debuggers, for instance) in a newly-created programming language.

This approach is hereby grouped with other tree-structured IRs, since trees are the standard

computer-oriented representation of high-level languages.

9 Compilers translating one high-level language into another are also called “transpilers” (POUNTAIN, 1989).

34

often than not incompatible with those of other “source” programming languages. This last

point has been noted as the main reason not to use C as a compiler IL.

Oliva, Nordin & Jones (1997) argue that C is not suitable to represent functional lan-

guages, mainly because C compilers do not ensure Tail Call Optimization (TCO) (BAKER,

1995), lack precise garbage collection and cannot encode – neither discover by themselves –

some of the program properties guaranteed by functional languages (such as data immutabil-

ity or pointer aliasing restrictions) which would otherwise enable more optimizations during

code generation. Furthermore, Macrakis (1993b) considers C to be under-specified: aspects

which would be relevant to an optimizing compiler, such as supported integer ranges or the be-

havior of out-of-bounds array accesses, are either implementation-defined or not defined at all.

Of course, Turing-completeness means that none of this prevents a transpiler from generating

portable C programs which emulate the abstract machine exposed by other languages. This,

however, would introduce unacceptable performance degradation when the models of compu-

tation do not match (HADDON; WAITE, 1978). According to Macrakis (1993b), emulating

another high-level language requires C generators to commit to a concrete implementation of

every single construct in the source language; whichever strategy is chosen will almost certainly

not be appropriate for all target architectures and cannot be adapted by the C compiler being

used as a back end, since it knows nothing about the higher-level source language.

In this category of compiler ILs, a final candidate is Lisp:

A carefully chosen small dialect of LISP would be a good UN-
COL, that is, a good intermediate compilation language. [...] Up
to now, the UNCOL idea has failed; the usual problem is that
proposed UNCOLs are not sufficiently general. I suspect that this
is because they tend to be too low-level, too much like machine
language. I believe that LAMBDA expressions, combining the most
primitive control operator (GOTO) with the most primitive envi-
ronment operator (renaming) put LISP at a low enough level to
make a good UNCOL, yet at a high enough level to be completely
machine independent. (STEELE, 1976)

Steele (1978) implemented this idea in his Scheme compiler, Rabbit, a seminal work present-

ing the first use of Continuation-Passing Style (CPS) in a compiler. CPS is a representation in

which control points are explicitly named, manipulated and invoked (STEELE, 1976). Steele’s

proposal relies on Scheme’s guaranteed TCO and its strong proximity to the lexical-scoped

applicative-order λ -calculus. These qualities, combined with Lisp macros and an imperative

assignment operator, allow for a straightforward implementation of most programming lan-

guage constructs; thus, Scheme was its own IL (STEELE, 1976).

The Rabbit compiler operated through source-to-source transformations, lowering high-

level functional Scheme code into an imperative-style CPS IL, which happened to be a subset of

Scheme itself. Further research on the topic of compiling with continuations adopted the same

source-to-source explanation of CPS (FLANAGAN et al., 1993; KENNEDY, 2007; MAURER

35

et al., 2017; CONG et al., 2019). Although Steele’s work was primarily research-oriented,

Adams et al. (1986) used its design as a base for their optimizing Scheme compiler, Orbit. This

later work proved that CPS transformations could be an effective tool in optimizing compilers,

since Orbit was used to produce code competitive with C, Pascal, Modula-3 and Lisp systems

of the time (ADAMS et al., 1986).

At last, it should be noted that Lisp’s syntax appears to be more suitable for a compiler

IL than that of most other programming languages, since it trivially maps to ASTs10. Regard-

less, Macrakis (1993b) points out that Scheme as a compiler IL shares some flaws with other

high-level language options, notably due to Lisp systems’ reliance on garbage collection and

lack of concrete data definition facilities – both properties shared by the untyped λ -calculus.

3.2.3 Algebraic ILs

Another class of representations whose use in compilers has been proposed consists

of “algebraic” ILs. These are formal languages from the lineage of term rewriting systems

(e.g., mathematical logic), which have become foundational for programming language and

type theory (PIERCE, 2002, ch. 5). While there have been operational machine-like approaches

(such as the SECD machine, mentioned in Section 3.1) to defining these models of computation,

the usual method is more syntax-directed, with ASTs used to express programs, as well as their

execution (HARPER, 2016, sec. 5.5). Manipulating code through an algebraic representation

has the advantage of enabling the application of well-known mathematical proof methods to

programming languages (PIERCE, 2002). The λ -calculus is one such algebraic language; its

syntax is displayed in Figure 9. It could also be considered a family of languages (or calculi),

due to its many different extensions and typed variants (PIERCE, 2002).

Figure 9 – The λ -calculus (left) and the π-calculus (right).

M, N ::= terms
x variable
λx.M abstraction
M N application

P, Q ::= processes
0 null process
νx.P new local channel x

x〈y〉.P receive message y on x

x〈y〉.P send message y on x

τ.P silent action
P | Q parallel composition
P + Q choice operator
!P replication

Source: Gabriel B. Sant’Anna, 2022.

Milner (1993) has claimed that, although λ -functions are “an essential ingredient” of

sequential program semantics, handling concurrency requires a different framework. Albeit
10 As explained by McCarthy (1978), this is by design. The infamous S-expression notation, which ended up

becoming Lisp’s standard programming syntax, was originally created as a computer-oriented representation.

36

notoriously hard for humans to reason about, concurrent programs are an important part of

modern computing (PESCHANSKI, 2011). This had already been predicted in the 1950s:

Everyone looks with dread at the possible computers of the next
decade, which will be simultaneously executing multiple asyn-
chronous stored programs. There is little reason to expect a re-
versal of this trend. (STRONG et al., 1958a)

The need for mechanisms to formally reason about concurrent processes has fostered the family

of process algebras (or, process calculi), notably including Milner’s π-calculus (also shown in

Figure 9) and its many variations (PALAMIDESSI, 1997). According to Fournet & Gonthier

(2000), calling these formal systems calculi implies in the possibility of using them for equa-

tional reasoning (i.e., to calculate). This requires a notion of “equality”, an operational equiv-

alence relation between programs, and many such relations have been proposed for process

calculi (FOURNET; GONTHIER, 2000). These are particularly interesting to compiler writers,

who must ensure that transformations and optimizations preserve program equivalences.

Algebraic ILs are usually associated with compilers of functional programming lan-

guages, possibly due to their strong relation with the λ -calculus. Examples include:

• π-threads. Peschanski (2011) proposes a variation of the π-calculus as a parallel abstract

machine model and compiler IL. He provides some safety proof outlines in the resulting

model, but no benchmarks are shown.

• Haskell Core. Haskell’s main IL, Core, is based on System Fω , a typed variant of the

λ -calculus (DOWNEN et al., 2016). The compiler maintains this functional IL in Ad-

ministrative Normal Form (ANF), an alternative to CPS which admits many of the same

transformations (MAURER et al., 2017).

• Sequent Core. Under the Curry-Howard correspondence, the classic λ -calculus is equiv-

alent to Gentzen’s natural deduction logic (WADLER, 2015). However, natural deduc-

tion was defined along with another reduction system, the sequent calculus (GENTZEN,

1964). Downen et al. (2016) describe Sequent Core as an experimental Haskell IL based

on sequent calculi. The result, as Cong et al. (2019) observe, comes closer to CPS form

than to Core’s traditional ANF, enabling more optimizations (DOWNEN et al., 2016).

37

3.3 GRAPH-BASED REPRESENTATIONS

Directed graphs (or, just graphs) are one of the most pervasive structures in Discrete

Mathematics and Computer Science (CORMEN et al., 2009, ch. VI). A graph can be defined

as a pair (N,E), where N is a set of nodes (or, vertices) and E ⊆ (N×N) a set of edges (alter-

natively, arcs), consisting in ordered pairs of nodes. A path in a graph is any sequence of nodes

[v0, ...,vn] such that every consecutive pair (vi,vi+1) is an edge in E. When all paths beginning

at node v0 and eventually reaching node vn pass through an intermediate node vd , it is said that

vd dominates vn with respect to v0. Furthermore, any two nodes (a,b) are said to be strongly

connected if there is a path (however long) from a to b; when such a path can only be formed

by adding reverse edges to the graph (that is, adding edges (v,u) for any subset of (u,v) already

present in E), a and b are said to be weakly connected; otherwise they are disconnected. By

extension, an entire graph can be called strongly (or weakly) connected when all of its nodes

are strongly (resp. weakly) connected to all other nodes in the graph. A Strongly Connected

Component (SSC) in a graph G = (N,E) is any subgraph G′ = (N′ ⊆ N, E ′ ⊆ E) which is it-

self a strongly connected graph. Finally, if a directed graph contains at least one node strongly

connected to itself through a non-trivial (i.e., non-empty) path, the graph is said to be cyclic, as

this implies the existence of a path starting at that node and eventually circling back to it; oth-

erwise, it can be called a Directed Acyclic Graph (DAG). Offner (2013) details the applications

of graphs in optimizing compilers.

Graphs are very general mathematical structures: nodes in a graph may be associated

to objects of any kind, and edges can be used to represent arbitrary relations between such

objects. In the context of compilers, graphs have been used to represent various relations be-

tween parts of programs11, such as “flows to” (control flows from a subroutine to the next),

“depends on” (an instruction’s result depends on its arguments), “calls” (e.g., procedure foo

may call procedure bar), “happens before” (one memory operation happens before the other),

etc (STANIER; WATSON, 2013; SHIVERS, 1988; ADVE; BOEHM, 2010). Each distinct set

of relations being expressed gives rise to a different graph-based IR.

3.3.1 Control Flow Graphs

Control Flow Graphs (CFGs) are classic IRs used in optimizing compilers to partition

procedures into nodes and express control flow between them (AHO et al., 2006, ch. 525).

Nodes in a CFG are “basic blocks”, which, according to Aho et al. (2006, p. 525), consist in

linear instruction sequences with a single entry and no exit points until the very last instruction.

Then, graph edges are used to link basic blocks to every other node the program could branch

off to by the end of that instruction sequence. This leads to the classification of compiler

optimizations as either local (to a basic block) or global (but still within the same procedure)

(AHO et al., 2006, ch. 533). Figures 10 and 11 show a C program and an equivalent CFG.
11 In fact, trees are also a limited kind of graph. Still, this survey treats them as separate IR structures.

40

3.3.3 Hybrid Dependence Graphs

Unfortunately, having both a CFG and a DFG forces compilers to keep the sepa-

rate structures consistent with each other across program transformations, which can be costly

(STANIER; WATSON, 2013). Given the importance of def-use – and its converse, “use-def”

– information for compiler optimizations, this has motivated the creation of alternative IRs and

techniques to combine control and data flow information in a single IR. One such approach is

what Lawrence (2007, p. 16) refers to as an “SSA CFG”, that is, a CFG which respects SSA

form in the contents of its basic blocks. According to Stanier & Watson (2013), maintaining

SSA form within compiler IRs has become standard practice in research and in the industry.

Static Single Assignment (SSA) is a technique invented by Rosen, Wegman & Zadeck

(1988) to enable the efficient representation of use-def and def-use relations. It should be noted

that SSA, by itself, is not an IR, but a program property. Therefore, it can be achieved in

any representation, including linear 3ACs, graphs-based IRs and even high-level programming

languages (STANIER; WATSON, 2013). For example, Figure 13 displays the same program

from Figures 10 and 11, now encoded in LLVM IR (left) and as a Scheme program (right).

These programs are equivalent and respect SSA form, as explained below.

Figure 13 – Imperative φs versus functional blocks.

1 define i32 @f(i32 %n)

2 {

3 INIT:

4 br label %TEST

5

6 TEST:

7 %p1 = phi i32 [1, %INIT], [%c1, %BODY]

8 %c1 = phi i32 [0, %INIT], [%c2, %BODY]

9 %i1 = phi i32 [0, %INIT], [%i2, %BODY]

10 %b0 = icmp slt i32 %i1, %n

11 br i1 %b0, label %BODY, label %END

12

13 BODY:

14 %c2 = add i32 %p1, %c1

15 %i2 = add i32 %i1, 1

16 br label %TEST

17

18 END:

19 ret i32 %c1

20 }

1 (define (f n ret)

2

3 (define (loop p c i)

4 (define (BODY)

5 (let ((p2 c)

6 (c2 (+ p c))

7 (i2 (+ i 1)))

8 (loop p2 c2 i2)))

9

10 (define (END)

11 (ret c))

12

13 (begin ; TEST

14 (if (< i n)

15 (BODY)

16 (END))))

17

18 (begin ; INIT

19 (loop 1 0 0)))

Source: Gabriel B. Sant’Anna, 2022.

As the acronym suggests, a program in SSA form assigns all of its “variables” precisely

once, creating a local mapping from names to program values. Furthermore, no variable may

41

be used without being defined first (in a CFG, this can be rephrased as “every basic block

which uses a value is dominated by the basic block which defines it”). These properties make

it trivial to find the definition of a value when, later in the program, it is being used in some

operation (LATTNER, 2002, p. 16). In order to handle different mutable assignments to the

same variable, SSA uses a special φ operator. φ nodes (when represented in a graph-based

IR) or φ functions (in a register-based IR) use control flow information to resolve the correct

value of variables within their basic blocks (STANIER; WATSON, 2013). Intuitively, φ nodes

extend basic blocks with formal arguments, much like parameters in a procedure. In fact, some

compilers (e.g., MLIR) achieve SSA form through such “extended basic blocks”, instead of

the equivalent φ nodes (LATTNER et al., 2021). Figure 13 (left) displays LLVM syntax for

φ functions: each operand to a phi pairs a value and a block label, and its result depends on

which block preceded the current one during program execution.

Programs expressed in a “purely functional” manner – with no mutable variable assign-

ments – are in SSA form by definition. This similarity has been observed by Kelsey (1995), who

proved that SSA corresponds to a restricted version of CPS by describing conversion methods

between both representations. Appel (1998) states that SSA is functional programming, re-

discovered by developers of imperative language compilers. To illustrate this point, Figure 13

displays two equivalent SSA-form programs; while the LLVM versions requires φ instructions,

the Scheme one uses pure functions as extended basic blocks – notice that it displays the same

number of “block arguments” (three) as there are phi instructions in the LLVM IR program.

This Scheme program was manually produced as an intermediate step when building the acyclic

DFG shown in Figure 12. Basing the DFG on the LLVM version instead would have resulted

in an equivalent, yet cyclic, graph, with a φ node at every cycle, clearly marking a “temporal

dependency”, that is, the influence of control information in the data flow graph.

Maintaining SSA form within a CFG is not the only way to combine control and data

flow information in a single IR. Within this group of hybrid graph-based IRs, it is also possi-

ble to identify a chronological succession of so-called “dependence graph” designs, each one

aiming to improve upon its predecessors:

• The Program Dependence Graph (PDG) – Originally developed by Ferrante, Otten-

stein & Warren (1987), the PDG is a directed multigraph12 combining a CFG and a data

dependency graph. The latter differs from a data flow graph because edges follow the use-

def direction, instead of def-use. The PDG is a useful representation for many compiler

optimizations (LAWRENCE, 2007; STANIER; WATSON, 2013). However, maintain-

ing its invariants across program transformations has a high cost in comparison to the

alternatives, and it complicates other analyses due to aliasing and side-effect problems

(JOHNSON, 2004, sec. 3.1). Stanier & Watson (2013) note that they were not aware of

12 Multigraphs extend graphs with the ability to identify multiple different edges with the same nodes at their
extremities. This is particularly useful for dependency graph IRs, which may attribute different meanings to
two edges leaving a certain node, even if both connect to a common node on the other side.

42

any compiler primarily using the PDG, despite it being the most cited IR in their survey.

A more detailed critique of the PDG is provided in the work of Johnson (2004, sec. 3.1).

• The Program Dependence Web (PDW) – Ottenstein, Ballance & MacCabe (1990) de-

signed the PDW by augmenting the PDG with “gated SSA form”, which (unlike classic

SSA) is a representation that admits direct program interpretation. Unfortunately, the

PDW puts an even higher burden on compilers, since its construction requires five passes

over the PDG and it cannot directly represent irreducible control flow (JOHNSON, 2004;

STANIER; WATSON, 2013; REISSMANN et al., 2020).

• The Value Dependence Graph (VDG) – According to Weise et al. (1994), “dependence

graph” IRs can be viewed as different approaches to removing the limitations of a CFG.

They propose the VDG as a next step in this direction, aiming to represent programs only

with dependency information and a few special operators. The IR was deemed unsuitable

for non-experimental use because it may fail to preserve program termination behavior

(JOHNSON, 2004; STANIER; WATSON, 2013; REISSMANN et al., 2020).

• The Value State Dependence Graph (VSDG) – In order to address the VDG’s termina-

tion problem, Johnson (2004) augmented it with state dependency edges. The resulting

IR is similar to the PDG in the sense that it combines control and data flow information in

a single graph, but without the ordering restrictions of a CFG. Like the VDG, the VSDG

is implicitly in SSA form, which eliminates certain problems found in the PDG (JOHN-

SON, 2004, sec. 3.1). According to Lawrence (2007, sec. 2.2), while SSA CFGs corre-

spond to functional programs under an eager evaluation strategy, VSDGs correspond to

functional programs under a lazy evaluation strategy. While this aids some optimizations,

it makes it hard to efficiently preserve the semantics of effectful computations, which are

not functional in nature (REISSMANN et al., 2020). Figure 14 displays a VSDG.

• The Regionalized Value State Dependence Graph (RVSDG) – Lawrence (2007) ar-

gues that the VSDG’s problem when representing effectful computations can be solved

by augmenting it with the concept of graph “regions”. The RVSDG is a multigraph with a

hierarchical structure; some of its nodes introduce regions, and regions can contain entire

subgraphs. This also leads to an IR which can capture more abstract notions directly in

its structure. For example, θ nodes in an RVSDG explicitly indicate that the subgraph

within their region constitutes the body of a loop (REISSMANN et al., 2020). Mean-

while, detecting the same loop in a CFG would require a graph traversal. Another key

aspect of the RVSDG is that it provides interprocedural constructs in the IR itself: it can

“represent a program as a unified data structure where a def-use dependency of one func-

tion on another is modeled the same way as the def-use dependency of scalar quantities”

(REISSMANN et al., 2020). Despite having been initially described by Lawrence (2007),

it seems that the RVSDG was not implemented and empirically evaluated until the work

45

3.4 FINDING UNCOL

3.4.1 Design Principles and Requirements

Throughout history, many compiler IRs were designed with the goal (or simply ended

up being used for the purpose) of accommodating as many programming languages as possi-

ble, while targeting multiple machine architectures. This survey lists, albeit not exhaustively,

various IRs claiming to be a suitable universal program representation. Evidently, the UNCOL

idea has been very much alive for the past 60 years, even if the term is not always explicitly

mentioned in IR proposals, or if it is merely used to refer to a previous realization of the con-

cept (LATTNER; ADVE, 2004). From Steel (1961a) to Lattner et al. (2021), compiler writers

sometimes state the requirements and design principles applied in the creation of an IR. This

section summarizes those which could be applied to a modern version of UNCOL.

Some requirements are immediately clear. A universal IR must be independent of

any specific machine (CHOW, 2013), although one must remember that “portable” program

representations do not cause software to become portable, but only serve as a medium to repre-

sent programs which, by themselves, may or may not be machine-independent (MACRAKIS,

1993b). In the context of optimizing compilers, a universal IR should permit the efficient im-

plementation of various programming language constructs on a great variety of machines, even

if this may be a non-trivial problem by itself – irrespective of the IR (KESSENICH, 2015).

Designing for these goals is not easy:

An intermediate language is a gate, through which an algorithm
must pass to reach the machine. We found that our major design
problem was to determine the ‘width’ of the gate: How much
information about the source program must be carried in the in-
termediate code to permit efficient implementation on a variety of
hardware. (COLEMAN; POOLE; WAITE, 1974)

According to Bagley (1962), the principle should be that translations using the IR as

an intermediate step must preserve the core invariant aspects of source programs: the “essential

algorithm”, such that no unnecessary restrictions (e.g., a strict ordering of operations which

could otherwise be executed in parallel) are imposed upon the program; the “data forms”, that

is, information about the nature of program data (e.g., types and their relations, units of mea-

sure, range and precision); and “data formats”, which indicate the physical layout of program

data (e.g., byte order in a communication protocol). Steel (1961a) had previously stated that

UNCOL would need both “imperative” and “declarative” sentences, presumably in order to

represent these very same core aspects. Still, expressing essential program information in the

IR is not very helpful if this cannot be effectively used during code generation (FRANZ, 1994).

Thus, retaining this information for as long as possible (up until load-time, or even run-time)

has become an increasingly important concern for compilers aiming to perform both machine-

46

independent and machine-specific optimizations (LATTNER; ADVE, 2004). As summarized

by Lattner et al. (2021), “premature lowering is the root of all evil”.

A major concern of universal compiler IRs is efficiency (BAGLEY, 1962), both in the

manipulation of a program’s representation and in the generated code. A key step to achieving

the first point is remembering that compiler IRs are computer-oriented representations. Unlike

programming languages, which are restricted by human-related (and often subjective) require-

ments such as code readability (CHOW, 2013), IRs can be explicitly designed to support pro-

gram analysis, transformation and optimization in the most efficient way possible (BRAUN;

BUCHWALD; ZWINKAU, 2011; STANIER; WATSON, 2013). In fact, some use cases re-

quire the exact opposite of human readability, worrying instead about the prevention of reverse-

engineering through program obfuscation (MACRAKIS, 1993a; CHOW, 2013). Even then, this

must not make it impossible to provide translation traceability, which is precious for debugging

and compiler diagnostic purposes (LATTNER et al., 2021).

As for the efficiency of generated code, it requires compilers to reason about programs

so as to optimize them more effectively. According to Click & Paleczny (1995), this calls for

the IR to have its own model of execution, which should also define the properties of concurrent

programs – as proven necessary by Boehm (2005) and later discussed by Zhao & Sarkar (2011b)

and Khaldi et al. (2013). Fournet & Gonthier (2000, p. 20) add that algebraic approaches have

their benefits for this purpose, noting many different operational equivalence relations which

could be used to mathematically ensure that some transformations preserve program semantics.

Felleisen (1991) explains how a formal treatment of expressiveness (based on semantics-

preserving transformations) can indicate the “core” of a programming language – a concept

which had been previously discussed by Steele & Sussman (1976) in the context of Lisp and

Scheme. Although no existing work (as far as the author is aware) has applied this theory to

the design of a compiler IR (maybe with the exception of Scheme, which has been used as an

IL), the importance of having a small language core has been noted more than once. Haddon

& Waite (1978) and Lattner et al. (2021) highlight the value of maintaining a sharp Occam’s

razor to cut off redundant IR constructs. Furthermore, having a simple language core does not

exclude the straightforward expression of various complex operations in the IR, if only it can

be made extensible (HADDON; WAITE, 1978; MACRAKIS, 1993c). Extensibility also helps

preserve “high-level” information until as late as possible (ECMA-335, 2012), which enables

more optimizations, as discussed above.

Finally, if any compiler IR really is to become universal and widely adopted in the

computing industry, it needs to be specified in an open and royalty-free standard. Otherwise,

the benefits of a common IL would never be fully realized (CHOW, 2013). One such benefit is

ease of distribution. In some cases, this will also raise the need for IL validation and program

safety verification, which usually implies the existence of a formal specification for the model

of computation exposed by the IR (HAAS et al., 2017).

47

The following list summarizes the UNCOL design principles discussed above:

• Expressivity – The IR must be able to represent, up to some level of detail, the essential

properties of any program. Software which is not portable is also of interest, even if only

to indicate where and how it uses machine-specific constructs and assumptions, or when

compiling it to a compatible architecture (something which ought to be supported).

• Efficiency – The IL format should be fast to decode and validate. At the same time,

the IR itself must not introduce unreasonable costs to code transformations, nor impose

additional restrictions (unnecessary from a logical standpoint) to its programs.

• Progressivity – An optimizing compiler should prefer to retain, rather than recover, in-

formation about a program. Premature lowering decreases optimization potential, so the

IR must be able to preserve “high-level” structure for as long as it is desirable to do so.

• Parsimony – The IR must not expand uncontrollably to accommodate new languages or

machines. Instead, it ought to contain a well-defined core which is simple, yet expressive.

• Extensibility – The IL should be amenable to extensions, both from users and to its own

specification. These must be clearly signaled (possibly at different levels of program

granularity) for the sake of compatibility. This principle complements the previous one.

Other than design principles, concrete requirements have also been identified in the

survey, based on previous works. These can be used to review existing compiler IRs, or guide

the design of new UNCOLs. Briefly, a suitable universal compiler IL must have:

1. A fully machine-independent design, or, at the very least, one which encompasses entire

classes of machine architectures (e.g., stored-program, byte-oriented computers).

2. Independence from any specific high-level programming language.

3. An efficient and transparent model of computation, which does not impose additional

costs (such as a garbage-collected runtime) to programs which do not need them.

4. A structure optimized for program transformations and compiler optimizations.

5. At least one actively-developed compiler making use of it, which is what enables the IL

to be evaluated and experimented with.

6. A free standard, specifying its semantics and possible exchange formats.

*. Optionally: mechanisms for source traceability and obfuscation.

Since source traceability and obfuscation are diametrically opposed to each other, they

are marked as “optional”. This indicates that the IL should, at the very least, not make it

infeasible to provide such mechanisms when they are demanded.

48

3.4.2 IR Review and Comparison

Many compiler infrastructures, old and new, have been analyzed as part of this survey.

Table 1 displays the outcome of reviewing, in light of the design principles and requirements

which were previously described, the IRs used in some of these compilers. Each requirement is

referenced by its respective number in the enumeration above, with markings indicating whether

an IR fulfills it (✓), does not fulfill it (✗), if the result is unclear (?) or if that particular require-

ment is not applicable (–) to the IR in question.

It can be seen that all requirements have been met at some point, although not neces-

sarily by the same IR. For example, LLVM IR has been used to efficiently compile many pro-

gramming languages, but it lacks a stable specification and exposes some architecture-specific

constructs. The CIL, on the other hand, is formally specified but requires a managed runtime.

Other IRs, like SPIR-V, have not yet seen much use outside of a specific problem domain, so it

is hard to evaluate how well they would accommodate various high-level languages.

Table 1 – Comparison of compiler IRs.

Name Structure Additional labels Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Req. 6

ANDF Tree Generic encoding – ? – ✗ ✓ ✓

C (as an IL) Tree High-level language ✓ ✗ ✓ ✗ ✓ ✓

CIL Linear Stack machine ✓ ? ✗ ✗ ✓ ✓

Cranelift IR Linear Register-based, SSA ✗ ? ✓ ✓ ✓ ✗

EM IL Linear Stack machine ? ? ✓ ✗ ✓ ✗

Firm Graph Sea of nodes ? ? ✓ ✓ ✓ ✗

GCC RTL Linear Register-based ? ? ✓ ✓ ✓ ✗

HSA IL Linear Register-based ✗ ? ? ✗ ✓ ✓

Janus Linear Stack machine ? ? ✓ ✗ ✗ ✗

jlm IR Graph RVSDG ? ? ✓ ✓ ✓ ✗

JVM bytecode Linear Stack machine ✓ ✗ ✗ ✗ ✓ ✓

LLVM IR Linear Register-based, SSA ✗ ✓ ✓ ✓ ✓ ✗

MLIR Graph SSA-form graph ? ? ✓ ✓ ✓ ✗

ROSE Tree Generic encoding – ✓ – ? ✓ ✗

Scheme (as an IL) Tree High-level language ✓ ✗ ✗ ✗ ✓ ✓

Semantic Dictionaries Tree Generic encoding – ✓ – ✗ ✗ ✗

SPIR-V Linear Register-based, SSA ? ? ✓ ✓ ✓ ✓

SUIF Linear Register-based ? ? ? ? ✗ ✗

Thorin Graph CPS graph ? ? ✓ ✓ ✓ ✗

WebAssembly Linear Stack machine ✓ ? ✓ ✗ ✓ ✓

Source: Gabriel B. Sant’Anna, 2022.

49

Requirements 5 and 6 are the most straightforward to verify. For nearly all IRs in

Table 1, there is at least one compiler in active development (with publicly-available changes in

the last five years) making use of it. On the other hand, most lack a standard IL specification.

Meanwhile, markings for requirements 3 and 4 are derived from the survey. While

stack-based IRs are more compact than the alternatives and, like few other IRs, can be directly

executed by a VM, compiler optimizations are usually performed over a different program rep-

resentation. Furthermore, tree-structured IRs do not seem to be particularly well-suited for data-

flow analyses, since these require def-use chains; this information is more efficiently maintained

in SSA form, which appears to be rare in tree-structured IRs.

It is unclear how to evaluate requirements 1 and 2 in practical terms. Machine- and

language-independence are often stated as IR design goals, yet there is no known method to

verify or measure these qualities. This appears to be an open problem, which is briefly discussed

as a future line of work in Section 5.2.

Still, there are certain litmus tests which could be applied to an IR in order to argue

that it lacks a fully machine- or language-independent design. One such criterion is the presence

of architecture-specific instructions and data types in the IR – e.g., x86-specific constructs in

LLVM (2022). It also seems reasonable to state that a programming language being used as a

compiler IL cannot be language-independent; and similarly for the bytecode format of a VM

designed for a specific programming language (as is the case of the JVM). Meanwhile, although

generic tree encodings can represent the syntax of most programming languages, they do not

directly specify an execution model, so requirements 1 and 3 are not applicable.

Finally, instead of filling the remainder of Table 1 with inconclusive markings, certain

IRs are hereby considered language- and/or machine-independent in case they have been repeat-

edly used as such in research or in the industry. This means, for example, that in spite of the

various arguments against using C as a portable compiler IL (OLIVA; NORDIN; JONES, 1997;

MACRAKIS, 1993b) or using LLVM IR to represent functional language constructs (LEISSA;

KÖSTER; HACK, 2015), the practical advantages often outweigh the disadvantages.

51

4 DESIGNING A NEW COMPILER IR

The language designer should be familiar with many alternative
features designed by others [...] One thing he should not do is to
include untried ideas of his own. His task is consolidation, not
innovation. (HOARE, 1989)

The goal of this thesis is to identify design principles and requirements which could be

applied to modern iterations on the UNCOL idea. The survey presented in Chapter 3, as well

as the literature review leading up to it, can be seen as a means to that end. While the author’s

initial hypothesis was that one or more suitable UNCOL candidates would be found as part of

the research, that does not seem to be the case. Still, this is not to say that UNCOL would

not be viable in the present day. In fact, Subsection 3.4.2 shows that the evolution of compiler

technology over the last 60 years provides most of the needed tools and techniques to fulfill the

requirements of a practical universal compiler IR.

According to Lattner et al. (2021), IR design is an “art”, not completely understood

even by practitioners in the field of programming languages and compilers. It follows that

it would be hard to judge the design principles previously listed without seeing them being

applied. Therefore, this chapter presents a new compiler IR, which is summarized here and

detailed in the next few sections. Abiding by the words of Hoare (1989), the proposal does

not include any especially innovative ideas, aiming instead for the consolidation of existing

techniques under a unified architecture. It must be emphasized that this should not be interpreted

as an endeavor to develop the Platonic ideal of an UNCOL. Rather, it is an attempt to show that

the requirements and principles identified in this work are sound, and explore one possible path

of the design space.

The new IR is structured as a graph, building mainly upon Click’s sea of nodes and

Thorin; the first provides a good foundation for an SSA graph – as seen in Section 3.3 – and

the second extends it with support for the functional paradigm through CPS. In order to ac-

commodate explicit concurrency, the new IR tentatively adopts C’s memory consistency model

and a message-passing mechanism from the join calculus; the former is all that is needed to

encode typical multi-threaded algorithms (ADVE; BOEHM, 2010) and the latter can be seen as

a concurrent extension to CPS (FOURNET; GONTHIER, 2000, sec. 1.3). The IR also defines

a structural type system and type-level operations which are not unlike those found in LLVM

(LATTNER, 2002, sec. 3.3) or SPIR-V (KESSENICH, 2015, sec. 2.8). Additionally, abstrac-

tion at the IR level is achieved through a macro system with a focus on portability (inspired by

ANDF and Janus). The combination of these last two features leads to a mechanism which ap-

proximates parametric polymorphism – as seen, for example, in Standard ML (MACQUEEN;

HARPER; REPPY, 2020). Finally, macros allow the IR to represent full programs, like the

RVSDG. It does so by implementing an idea from the Standard ML of New Jersey system, in

which compilation units are modeled as compile-time “functions”.

55

While the graph on the left enforces a strict ordering of all memory operations (which could be

required in the case of incomplete aliasing information, or if the pointers were marked with C’s

volatile qualifier), the one on the right allows the compiler to reorder independent loads and

stores. Finally, a FENCE node is used in the second encoding to merge the two symbolic memory

dependencies. This has the effect of ordering future memory operations which depend on m’

against the stores to both variables (even if said stores are not ordered among themselves).

State dependency edges allow the IR to represent the ordering constraints of effectful

computations. Optimizing compilers, however, may still reorder (and, in some cases, add or

remove) memory operations as long as the resulting program has the same semantics as the

original. Unfortunately, the set of optimizations which a compiler can validly apply to effectful

computations shrinks considerably under the possibility that they could execute in parallel (and

while sharing memory) with other effectful subprograms. This is the crux of the argument of

Boehm (2005), who explains why “threads cannot be implemented as a library”. In essence:

assuming that any code could be part of a concurrent execution would lead to significant per-

formance losses, while ignoring that possibility leads to invalid transformations when certain

subprograms are indeed executed in a multi-threaded setting. Accordingly, Zhao & Sarkar

(2011a) indicate that compiler ILs should directly expose a concurrent model of computation.

In this context, the new IR adopts the “release consistency” memory model proposed

by Gharachorloo et al. (1990). This is the same memory model specified for the C programming

language (ADVE; BOEHM, 2010) and, much like C may be considered the lingua franca of

high-level programming languages (FELDMAN, 2004), its memory consistency model has also

become a de facto standard for both software and hardware architectures:

After much debate, the language community and architecture com-
munity appear to have finally settled on release consistency as the
standard memory consistency model [...] (RISC-V, 2019, ch. 8)

Although formal reasoning in the presence of data races remains a though problem (DOLAN;

SIVARAMAKRISHNAN; MADHAVAPEDDY, 2018), adding this memory consistency model

to the IR results only in a few extra bits on memory operations: LOADs and STOREs can be option-

ally labeled as non-synchronizing atomic operations – equivalent to memory_order_relaxed

in C – and FENCE nodes synchronize atomic operations based on memory dependency edges

and a couple of extra bits to indicate “acquire” and/or “release” semantics. In order to support

memory-mapped input and output, LOADs and STOREs additionally carry a “volatile” bit.

While assigning concurrent semantics to memory operations requires changes to the

IR, certain kinds of data-level parallelism become implicit in the sea-of-nodes-like design: two

nodes with only data dependency edge slots can have their operations computed in parallel

whenever there is no chain of dependencies linking them (as in the case of the two addition

operators in the rightmost graph of Figure 19). Control flow, on the other hand, is inherently

ordered, as in a CFG. In order to overcome this limitation, the new IR also provides mecha-

nisms to relax the strict ordering of operations which require control flow: FORK nodes inform

59

4.2 FORMALIZATION

4.2.1 Multigraph Structure

Formally, programs in the new IR are composed by multigraphs {G1, ..., Gn}, with

1≤ n≤ graphMAX . Let Σ be a finite set of symbols corresponding to slot labels, KN a finite set

of node kinds, and KE a finite set of edge colors. Then, each multigraph Gi is defined by a tuple

in the form (Ni, Ei, targeti, labeli, colori, ri), where:

• Ni is a non-empty finite set of nodes, pairwise disjoint from the nodes of all other multi-

graphs in the program: ∀ j ∈ [1,n] . j = i ∨ Ni∩N j = /0.

• Ei ⊆ (Ni×Σ) is a finite set of edges, identified by a pair of source node and slot label.

• targeti : Ei 7→ (Ni×Σ) is a wiring function mapping each edge in Ei to a target node and

slot, such that the image and domain of this function are disjoint: ∀e∈ Ei . targeti(e) 6∈ Ei.

• labeli : Ni 7→ KN is a labeling function which maps each node in Ni to a node kind.

• colori : Ei 7→ KE is a coloring function which maps each edge in Ei to an edge color.

• ri ∈ Ni is a distinguished node, which is called the root (or, “top-level”) node.

The set of edge kinds KE is defined by the finite list {control, data, memory, type}.

The set of slot labels Σ, on the other hand, is only used to disambiguate different edges coming

from or reaching any given node, so an exhaustive definition is not particularly useful. Finally,

the set of node kinds KN includes:

• Nodes related to control flow: {JOIN, INST, JUMP, FORK, COND}.

• Memory operations: {LOAD, STORE, FENCE}.

• Type nodes M and ρ , respectively for memory and pointer types.

• The family of fixed-width bitvector types: {B1, ..., BwMAX}.

• Type combinators {Π, κ, χ, ψ}.

• Macros {MACROG1 , ..., MACROGgraphMAX
}, corresponding to other multigraphs.

• A set of primitive data operations, with constant values {CONST}, bitwise operations

{AND, OR, XOR, ≪, ≫}, integer arithmetic {+, −, ×, ÷, %}, comparisons {=, 6=, <

, ≥}, bitvector conversions, Π-type value constructors {TUPLE} and Π-type projections

{PROJ0, ..., PROJpro jMAX
}. Although most of these (refer to Appendix A for a full list-

ing) could be derived from a smaller set of primitives, this set roughly corresponds to the

intersection of operations available in modern IRs (including LLVM IR, WebAssembly,

Thorin, SPIR-V and the CIL).

60

Wiring functions targeti are constructed in such a way as to disallow the same node-

slot pair to identify both the source and the target of an edge. Hence, it is possible to define,

for every node v ∈ Ni, two disjoint sets of slot labels: outSlots(v) ⇋ {s ∈ Σ | (v,s) ∈ Ei} and

inSlots(v) ⇋ {t ∈ Σ | ∃e ∈ Ei . targeti(e) = (v, t)}. Then, for any slot t ∈ inSlots(v), define

uses(v, t)⇋ {e∈Ei | targeti(e) = (v, t)}. These sets, along with node labeling and edge coloring

functions labeli and colori, describe the local structure of v, which is said to be well-structured

if and only if it respects some additional local rules:

1. Linked slots have the same color: for every slot t ∈ inSlots(v), the set colori[uses(v, t)]

of colors associated to edges which target (v, t) must have exactly one element, written

color(v, t). In other words, ∀e ∈ uses(v, t) . colori(e) = color(v, t).

2. A node’s kind (partially) defines its structure: labeli(v) determines possible values for

outSlots(v) and inSlots(v), as well as valid colors for each of these slots. This rule actu-

ally consists of several formulas (listed in Appendix A), one example being:

label(v) = JUMP =⇒

outSlots(v)⊆ {type, target, arg0, ..., argargsMAX
}

∧ type ∈ outSlots(v) ∧ color(v, type) = type

∧ target ∈ outSlots(v) ∧ color(v, target) = data

∧ (∀ j . arg j ∈ outSlots(v) =⇒ color(v,arg j) ∈ {data,memory})

∧ inSlots(v)⊆ {ctrl}

∧ (ctrl ∈ inSlots(v) =⇒ color(v,ctrl) = control)

3. Root nodes are labeled as MACROs: v = ri =⇒ labeli(v) = MACROGi
.

For every node v ∈ Ni, define its set of out-neighbor nodes predicated by p to be

outNeighborsp(v)⇋ {w∈Ni | ∃s∈ outSlots(v) . ∃t ∈Σ . targeti(v,s)= (w, t) ∧ p((v,s),(w, t))}.

The relation between v and any one of its out-neighbors w∈ outNeighborsp(v) is written v−→
p

w.

Conversely, the set of in-neighbor nodes of v, as predicated by p, is inNeighborsp(v)⇋ {u ∈

Ni | v ∈ outNeighborsp(u)}; and thus u ∈ inNeighborsp(v) may be written as v←−
p

u. Further-

more, any sequence of (two or more) nodes [v0, ..., vm] is called a (non-trivial) path predicated

by p in Gi when, for every consecutive pair (v j,v j+1) in the sequence, it holds that v j −→
p

v j+1,

in which case one may write v0 −→
p

v1 −→
p
... −→

p
vm or, more succinctly, v0

+
−→
p

vm. Finally, when

there is a path such that v
+
−→
p

v, that path is said to form a cycle (predicated by p) in Gi. When

these notations are used and no predicate is specified, assume the predicate always holds.

Consider δi((u,s),(v, t)) to be a predicate defined by the expression ¬(labeli(v) =

JOIN ∧ t = de f), which holds true for any pair of linked slots in Gi, except when the target is the

definition of a JOIN node. Similarly, define f lowi(f rom, to) := colori(f rom) = control (slots

are linked by a control flow edge) and depi(use,de f) := δi(use,de f) ∧ colori(use) 6= control

61

(slots are linked by a dependency edge). Then, let Dependentsi(f) be the set of nodes which

transitively depend on f ∈ Ni (be it by using a value produced in the set or by receiving control

flow from it). Dependentsi(f) is the smallest set determined by the inference rules:

f ∈ Dependentsi(f)

w ∈ Dependentsi(f) v−−→
depi

w

v ∈ Dependentsi(f)

u ∈ Dependentsi(f) v←−−−
f lowi

u

v ∈ Dependentsi(f)

Within Gi, define the relations “v depends on f ” as v Dependsi f ⇐⇒ v ∈ Dependentsi(f),

and “v is live in f ” as v Livei f ⇐⇒ labeli(f) = JOIN ∧ f
+
−→
δi

v.

It is now possible to formally define the notion of a “scope” in the new IR, which

associates a set of nodes to either the root of a multigraph Gi or to any one of its JOIN nodes.

The “global scope” of Gi is, by definition, the set Ni, which may also be written Scopei(ri). For

all other nodes { f0, ..., fm} such that labeli(f j) = JOIN, the sets {Scopei(f0), ..., Scopei(fm)}

are the smallest which satisfy the set of constraints given by:

v Dependsi f j

v ∈ Scopei(f j)

v Livei f j v ∈ Scopei(g)

Scopei(f j)⊆ Scopei(g)

In other words, a node which (transitively) depends on a JOIN node must be within its scope.

Additionally, if a node belongs to some (including the global) scope and it is live in the body of

a join pattern, then the JOIN node’s scope must be nested within this outer scope.

A multigraph Gi is said to be well-structured if and only if each of its nodes is locally

well structured and the whole respects additional global rules:

1. All internal cycles must go through a join pattern: in a well-structured multigraph, it

holds that ¬∃v ∈ Ni . v
+
−−→
¬ϕi

v, where ϕi((u,s),(v, t)) := labeli(v) = JOIN ∨ v = ri. In

other words, removing all JOIN nodes from a multigraph also breaks its internal cycles.

2. Scope nesting induces an antisymmetric relation: let f ,g denote arbitrary JOIN-labeled

nodes, it must hold that f 6= g =⇒ ¬(Scopei(f)⊆ Scopei(g) ∧ Scopei(g)⊆ Scopei(f)),

that is, different “functions” must have different scopes.

3. Macros are not self-recursive: no nodes other than a graph’s root may correspond to that

graph’s body, ¬∃v ∈ Ni−{ri} . labeli(v) = MACROGi
.

Since their nodes and edges are disjoint by definition, different multigraphs interact

only through IR macros. Define macros(Gi)⇋ {Gm | ∃v ∈ Ni−{ri} . labeli(v) = MACROGm
} to

be the set of other multigraphs Gm used as macros in Gi, which defines the relation Gm ⊏ Gi.

Whenever macros(Gi) is not empty, Gi may be called an abstract multigraph; otherwise it is

said to be concrete. Turning an abstract multigraph into an equivalent concrete one happens

through macro expansion, where a new multigraph G′i is created from Gi by substituting every

node labeled as MACROGm
in Gi for a subgraph equivalent to the body of Gm.

At last, one may define full programs in the IR as tuples (G, I, uid, Gmain), where:

62

• G is a non-empty finite set of multigraphs {G1, ..., Gn}, as defined above.

• I is a set of identifiers.

• uid : G 7→ I is a function mapping each multigraph to its identifier in I.

• Gmain ∈G is a distinguished multigraph in the program.

A program P= (G, I, uid, Gmain) is said to be concrete (resp. abstract) in case Gmain is

concrete (resp. abstract). Hence, the “main program” is defined by Gmain, and other multigraphs

serve as macro definitions. Additionally, P is said to be well-structured if and only if each

multigraph in G is globally well-structured and P respects additional whole-program rules:

1. Each multigraph in a program is uniquely identified: uid must be an injective function.

2. Macros are not recursive: consider a directed graph whose set of nodes is G and whose

edges are defined by the relation Gm ⊏ Gi; this graph must not be cyclic.

As in ANDF, IR macros were devised to enable efficient program portability by pre-

serving “high-level” information until as late as possible, and assigning unique identifiers to

each multigraph also contributes to this purpose. Consider an IR macro being used in a com-

piler front end as a complex operation. In a portable program, this operation would be imple-

mented in a machine-independent manner and encoded in a separate multigraph Gportable. Still,

a special identifier in I may be assigned to that macro. If a compiler back end recognizes the

special identifier, it may swap Gportable for Ge f f icient , an implementation of the macro which is

more efficient but may only result in the same program behavior when compiled to a specific

machine. On the other hand, a back end which does not recognize the special identifier can still

compile the program with the portable implementation. In the context of the new IR, a program

P is portable if it carries a definition for each macro it uses – G ⊇
⋃

Gi∈G macros(Gi) – and

expanding these definitions in Gmain preserves the program’s intended behavior.

4.2.2 Execution Model

Different compiler IRs model program execution in their own ways. While linear

IRs usually mimic the behavior of sequential computers, some algebraic IRs describe program

execution as a series of tree rewrites. In CFGs, a program begins in some initial basic block

and sequentially executes every instruction in that block; the last instruction either terminates

the program or determines another basic block in which to continue this process. In the case of

SSA-form CFGs, these rules are distorted by φ operations, which must execute atomically when

control flow reaches the block containing them – this behavior has confused compiler writers

in the past (BRIGGS et al., 1998). Meanwhile, both Click’s IR and the VSDG use variants of

Petri nets to model control flow (CLICK, 1995; LAWRENCE, 2007).

63

Despite Petri nets being well suited to model both sequential and concurrent processes,

Calvert (2015, sec. 3.1.3) points out that deterministic conditional branches become difficult,

and indirect procedure invocations nigh impossible to express in the static structure of a classic

Petri net. Calvert’s work then explores the join calculus as an alternative. Due to the dynamic

nature of CPS, the new IR also follows this path.

Figure 23 – The join calculus (left) and an example program (right).

x, y variables
M simple expressions

P, Q ::= processes
x〈M0, ..., Mn〉 send message on x

P | Q parallel composition
de f D in P instantiate definition(s)

J, K ::= join patterns
x〈y0, ..., yn〉 receive message on x

J & K synchronization

D, E ::= definitions
J ⊲ P reaction rule
D, E simultaneous definitions

de f k1〈y1〉& k2〈y2〉 ⊲ usey〈y1 + y2〉 ,
usey〈y〉 ⊲ ...

in

f1〈n−1, k1〉 | f2〈n−2, k2〉

Source: Gabriel B. Sant’Anna, 2022.

In summary, programs in the join calculus are represented by multisets of live pro-

cesses and reaction rules. Processes can introduce new reaction rules, fork into two or more

concurrent processes, or terminate after sending a message on a channel. Live reaction rules

trigger when every channel in their join pattern receives a message, in which case a new process

starts with access to these messages’ contents. Fournet & Gonthier (2000) provide a more de-

tailed description of the calculus, whose core syntax is shown in Figure 23. When join patterns

have a single channel, sending a message corresponds to “a GOTO which passes some data”

(STEELE, 1976), also known as a tail call. In this context, sending a channel as part of a mes-

sage is continuation-passing, which explains the join calculus’ proximity to CPS and makes the

example program in Figure 23 roughly equivalent to the multigraph illustrated by Figure 20.

In the new IR, three separate subgraphs can be identified within a well-structured multi-

graph: a control flow graph (through control edge slots), a data dependency graph (using both

data- and memory- colored slots), and a type-level graph (through type slots); the first two

of these drive the execution model. This model is illustrated in Figure 24, which reveals that

non-macro nodes in the IR have been made in the image of the join calculus.

While the join calculus captures the semantics of all control flow edges in a concrete

multigraph, the same does not hold for dependency edges. These represent partial results in a

program, produced by primitive operations which do not directly affect control flow. Following

65

the new IR’s type system is safety. Whereas type-safe ILs can provide more guarantees about

the behavior of well-typed programs, a universal representation must also account for unsafe

programming languages – C being a notable example (LATTNER, 2002, p. 21). Therefore, the

IR’s type system does not have an accompanying soundness proof.

Figure 25 – A type grammar for the new IR.

J ::= join types
ψ(X1, ..., Xm) m-channel join, m≥ 1

X ::= channel types
χ(A0, ..., An) n-parameter channel, n≥ 0

K ::= continuation types
κ(A0, ..., An) n-parameter continuation, n≥ 0

A ::= parameter types
M memory
S sized type
K continuation type

S ::= sized types
B

w bitvector with w bits, w≥ 1
Π(S1, ..., Sn) product type, n≥ 1
ρ pointer type

Source: Gabriel B. Sant’Anna, 2022.

In Figure 25, types are described syntactically, where type constructors receiving other

types as parameters correspond to nodes with outgoing type dependency edges. All other non-

macro nodes (those related to control and data operations) have a single type-colored slot, which

is used to infer the type of each other slot in the node. This inference is guided by a set of typing

rules, which are listed in Appendix B.

It should be noted that, in a well-structured multigraph, the type-level subgraph forms

a DAG. Therefore, recursive types (e.g., binary trees) must be built with pointers. Furthermore,

pointer types are “opaque”, as in the most recent versions of LLVM (BLAIKIE, 2015). In

summary, all dependencies typed as a pointer have the same type, even if memory operations

using these pointers are consistent with respect to the types of values being loaded and stored.

This reflects the fact that the IR is designed to accommodate unsafe languages, where, according

to Blaikie (2015), assigning non-opaque types to pointers (for instance, having ρ(T) instead of

the opaque version, ρ) can be misleading for some compiler analyses and transformations.

66

4.3 PROTOTYPE IMPLEMENTATION

According to Braun, Buchwald & Zwinkau (2011), the main goal of a compiler IR is to

support program optimizations. One way to approach this goal is making these optimizations an

inherent part of the representation (BRAUN; BUCHWALD; ZWINKAU, 2011). This was kept

in mind during the development of a prototype implementation of the new IR14. The prototype

is designed to automatically apply some optimizations as the IR is being built.

4.3.1 On-the-fly Optimizations

In the classic compiler literature (AHO et al., 2006, p. 533), analyses and transfor-

mations are classified as either local or global; where the first kind is limited to a single CFG

basic block. This classification is not applicable in the context of a sea-of-nodes graph, which

does not have basic blocks. Global analyses are also commonly divided into intraprocedural

and interprocedural (TANENBAUM et al., 1983; STANIER; WATSON, 2013), but even this

distinction is not immediately clear in a CPS-based IR (KELSEY, 1995).

An alternative classification scheme considers two distinct groups: peephole analyses

and global analyses; the former are limited to the extent of a fixed-size instruction “window”,

while the latter have access to the whole program (TANENBAUM et al., 1983). Although the

size of a peephole is typically defined as an instruction count within a linear IR, Click (1995)

suggests that the length of def-use chains could be used instead. Hence, in a sea-of-nodes graph,

a peephole is “centered” in a certain node and extends towards its neighbors. The maximum

number of edges traversed from the initial node to any other node in the peephole defines the

extent of the transformation, which is global in case this number is unbounded.

Click (1995) and Braun, Buchwald & Zwinkau (2011) show that some optimizations

(including global ones) can be applied on-the-fly, during the construction of an IR with the

right structure. This work aimed to replicate these optimizations, but, at the time of writing,

the prototype compiler is in a very early stage of development and not yet ready to produce

quantitative results. Hence, this subsection is limited to the description of algorithms which

implement some of those optimizations in the new IR.

The first optimization is Copy Propagation, which removes unnecessary assignments

to local variables (e.g., y = x). Since the IR is in SSA form and has no copy operation, uses

of a variable always point to its definition (in the example, uses of y would point directly to x).

Therefore, this optimization is inherent to the IR (BRAUN; BUCHWALD; ZWINKAU, 2011).

Operations which would effectively implement a copy when given constant arguments (addition

with zero or multiplication by one, for instance) are handled during peephole optimizations.

Constant Propagation, Arithmetic Simplification and Weak Strength Reduction are

combined into a single peephole optimization, which can be applied in constant time to nodes

which do not involve memory- or control- colored edges. The optimization relies on the fact
14 Source code and documentation available at https://github.com/baioc/gyred/

67

that data operations within the scope of a JOIN node form an acyclic subgraph: when nodes rep-

resenting these operations are created in a reverse topological order (i.e., dependencies-first),

each one can be individually optimized. Once a node’s dependencies have been added, a peep-

hole is drawn around it and extended to its immediate neighbors. Analysis then consists of a

pattern matching process, which determines what transformation, if any, to apply.

Figure 26 displays pseudocode for an algorithm which implements this process, con-

sidering a simplified setting where an expression tree (with only unsigned integer constants and

multiplication operations) is being compiled to a multigraph G. Subexpressions are visited in

post-order, which is a valid reverse topological ordering of the data dependency subgraph. Fi-

nally, this algorithm could also be extended to certain control-related nodes – a COND node, for

example, with a constant branch selector, could be constant-folded in a similar way.

Figure 26 – Combined peephole optimizations, simplified.

1 procedure COMPILETO(expr, G)
2 if expr is an integer value then

3 return ADDCONSTNODE(G, expr.value)
4 else if expr is of the form le f t× right then

5 lhs← COMPILETO(expr.le f t, G)
6 rhs← COMPILETO(expr.right, G)
7 node← ADDMULTNODE(G, lhs, rhs)
8 return PEEPHOLE(G, node)
9 end if

10 end procedure

11
12 procedure PEEPHOLE(G, node)
13 if node.kind = MULT then

14 lhs← node.lhs

15 rhs← node.rhs

16 if lhs.kind = rhs.kind = CONST then // propagate constant
17 return ADDCONSTNODE(G, lhs.value× rhs.value)
18 else if rhs.kind = CONST ∧ rhs.value = 0 then // simplify e×0 to 0
19 return rhs

20 else if rhs.kind = CONST ∧ rhs.value = 1 then // simplify e×1 to e

21 return node.lhs

22 else if rhs.kind = CONST ∧ powerO f 2(rhs.value) then // reduce e×2n to e≪ n

23 shi f t← ADDCONSTNODE(G, log2(rhs.value))
24 return ADDSHLNODE(G, lhs, shi f t)
25 else if ... then // other patterns omitted for brevity
26 ...

27 end if

28 end if

29 ...

30 return node // in case no rule applies, node is returned as is
31 end procedure

Source: Gabriel B. Sant’Anna, 2022.

Common Node Elimination has been implemented as an incremental global optimiza-

tion, which avoids building certain subgraphs when an equivalent one already exists. This

68

equivalence check is performed every time a node is added to the IR, but it can be optimized if

nodes are added in a reverse topological order. The implementation is based on hash consing,

a technique used in some Lisp systems (DEUTSCH, 1976) to avoid redundant allocations by

sharing values which are structurally equal.

Figure 27 – Caching structural hashes.

1 procedure ADDCONSTNODE(G, constant)
2 node← NEWNODE(G)
3 node.kind← CONST

4 node.value← constant

5 node.hash← HASH(value)
6 return ADDNODE(G, node)
7 end procedure

8
9 procedure ADDMULTNODE(G, lhs, rhs)

10 if lhs.kind = CONST ∧ rhs.kind 6= CONST then

11 return ADDMULTNODE(G, rhs, lhs) // PEEPHOLE prefers constants in rhs

12 else

13 node← NEWNODE(G)
14 node.kind← MULT

15 LINK(node.lhs, lhs.result)
16 LINK(node.rhs, rhs.result)
17 node.hash← lhs.hash⊕ rhs.hash // where ⊕ is commutative (e.g., bitwise xor)
18 return ADDNODE(G, node)
19 end if

20 end procedure

Source: Gabriel B. Sant’Anna, 2022.

In summary, every node added to the data subgraph caches its own hash code, assuming

its dependencies are in the graph as well. At this point, the node becomes conceptually “frozen”

and is treated as an immutable structure. Later, if an equivalent node would be added to the

graph, an alias to the first one is returned instead. The implementation uses a hash table to check

for duplicates, and the cached hash code avoids as many graph traversals as possible. Even in

the case of hash collisions, comparing two nodes only takes time proportional to their outgoing

edge count: since their dependencies have already been deduplicated by this same process,

structural comparison reduces to a series of pointer (i.e., edge) comparisons. Figures 27 and 28

display pseudocode which implements this optimization. The simplified setting with only data-

colored dependency edges makes this a form of Common Subexpression Elimination, although

a full version could also deduplicate type-level operations and certain control-related nodes (for

instance, JUMP nodes which send the same arguments to the same target continuation).

Another global optimization is Dead Node Elimination, which removes useless sub-

graphs (i.e., dead code) from the program. In summary, it uses a global analysis to determine

a set of “live” nodes {v ∈ Ni | v = ri ∨ ri
+
−→ v}. All nodes which are not in the live set are

considered “dead”. Then, it transforms the multigraph Gi by removing all of its dead nodes and

any edges connected to them; this applies to any kind of node, including memory operations,

control operations, type constructors, and even macros.

69

Figure 28 – Common Subexpression Elimination via hash consing.

1 procedure ADDNODE(G, node)
2 existing← LOOKUP(G.hashTable, node)
3 if existing. f ound then

4 DELETENODE(G, node) // common node eliminated
5 return existing.node

6 else

7 INSERT(G.hashTable, node)
8 return node

9 end if

10 end procedure

11
12 procedure EQVCONSTNODES(u, v) // invoked during hash table lookups
13 return u.value = v.value

14 end procedure

15
16 procedure EQVMULTNODES(u, v)
17 return {u.lhs, u.rhs}= {v.lhs, v.rhs} // order of factors does not alter the product
18 end procedure

Source: Gabriel B. Sant’Anna, 2022.

Due to the way in which edges are directed in the new IR, unreachable nodes corre-

spond to dead code, which allows this optimization to be implemented as a garbage-collection

algorithm. In the prototype implementation, Dead Node Elimination is automatically performed

by a multigraph when it needs to expand its private node pool. Assuming that the reallocation

process is relatively expensive, the garbage collector can turn this into an opportunity to move

live nodes in memory such that def-use chains are packed closely together – this should im-

prove the memory locality of certain graph traversals, in the interest of having a more efficient

compiler. Figures 29 and 30 together implement a node allocator and garbage collector, where

the latter applies Dead Node Elimination and compacts the multigraph at the same time.

Figure 29 – Bump allocation in a node pool.

1 procedure NEWNODE(G)
2 if G.cursor < G.arena.length then // if there are still nodes available, grab the first one
3 node← GET(G.arena, G.cursor)
4 G.cursor← G.cursor+1
5 node.mark← INIT IAL

6 return node

7 else // otherwise, expand the arena, then try again
8 REALLOCATEARENA(G)
9 return NEWNODE(G)

10 end if

11 end procedure

12
13 procedure DELETENODE(G, node)
14 if node = GET(G.arena, G.cursor−1) then

15 G.cursor← G.cursor−1
16 end if // non-LIFO deallocations are deferred to the garbage collector
17 end procedure

Source: Gabriel B. Sant’Anna, 2022.

70

Figure 30 – Dead Code Elimination as Garbage Collection.

1 procedure REALLOCATEARENA(G)
2 newArena← ALLOCATEARENA(2×max(1, G.arena.length))
3 newCursor← 0
4
5 stack←MAKESTACK()
6 for all node ∈ outNeighbors(G.root) do // starting at the root node, mark reachable nodes
7 node.mark← PENDING

8 PUSH(stack, node)
9 end for

10
11 while ¬EMPTY(stack) do // repeat until all nodes have been transferred
12 oldNode← POP(stack)
13
14 for all neighbor ∈ outNeighbors(oldNode) do // mark out-neighbors of a reachable node
15 if neighbor.mark = INIT IAL then

16 neighbor.mark← PENDING

17 PUSH(stack, neighbor)
18 end if

19 end for

20
21 newNode← COPY(newArena, newCursor, oldNode) // transfer the node ...
22 newCursor← newCursor+1
23 oldNode. f orwardingPointer← newNode // ... and set up a forwarding pointer
24 oldNode.mark← RELOCAT ED

25 end while

26 DESTROYSTACK(stack)
27
28 for all n ∈ [0, newCursor−1] do // then, forward all live edges to the new node pool
29 node← GET(newArena, n)
30 node.mark← INIT IAL

31 for all neighbor ∈ outNeighbors(node) do

32 if neighbor.mark = RELOCAT ED then

33 newNeighbor← neighbor. f orwardingPointer

34 REWIRESLOTS(node, neighbor, newNeighbor)
35 end if

36 end for

37 end for

38
39 DEALLOCATEARENA(G.arena) // dead nodes have now been eliminated
40 G.arena← newArena

41 G.cursor← newCursor

42 UPDATEHASHCONSINGTABLE(G)
43 end procedure

Source: Gabriel B. Sant’Anna, 2022.

The pseudocode in Figure 30 implements a copying garbage collector (JONES; HOSK-

ING; MOSS, 2011, ch. 4). Its main deviation from Cheney’s classic algorithm is in the use of

an auxiliary stack to traverse and copy live nodes in depth-first (instead of breadth-first) fashion.

71

5 CONCLUSION

The best way to implement the future is to avoid having to predict it.

(PIUMARTA, 2005)

5.1 SUMMARY

This work is motivated by indications of an upcoming boom in the diversity of hard-

ware architectures (HENNESSY; PATTERSON, 2019) and programming languages (LATTNER,

2021). After a historical retrospective on the concept of UNCOL and its influence in compiler

technology, it is argued that a universal IL may still be a viable solution to the (apparently in-

evitable) compiler construction problem. One of the main arguments for revisiting UNCOL is

that even its proposed alternatives benefit from (and often require) a common IL.

The main contribution of the thesis is a survey on compiler IRs. Unlike related works,

it covers functional and algebraic IRs, while describing techniques used in both modern and

old compilers to increase the efficiency and the portability of programs. Research leading

up to this survey can also be seen as a means to an end: understanding portable compiler

IRs, identifying design principles and eliciting requirements to guide modern iterations on the

UNCOL idea. These principles and requirements, extracted from the literature review, are

described informally, which makes them hard to evaluate in practical terms. Still, a rationale

for these exploratory results is communicated in the text to the best of the author’s capabilities.

The author’s initial hypothesis was that one or more suitable UNCOL candidates –

compiler IRs which meet the requirements of a practical universal representation – would have

been found during the systematic review. While that does not seem to be the case, the evolu-

tion of compiler technology over the last 60 years has highlighted some techniques (theoretical

frameworks, data structures, analyses and transformations) which may facilitate the achieve-

ment of these goals. Using some of these techniques, and in an attempt to strengthen the validity

of the aforementioned design principles and requirements, a new compiler IR is presented.

This work formally describes the new IR’s structure. Then, its interpretation – the

model of computation exposed by the IR – is expressed in terms of existing models. The result-

ing design mixes together ideas from many different sources, which leads to certain deviations

from classic (CFG-based) approaches; one notable example is the implementation of global

Dead Code Elimination as a garbage collection algorithm. Finally, the IR began to be imple-

mented in a compiler middle end, of which an early prototype has been made publicly available

as part of this thesis.

5.2 FUTURE WORK

In the author’s opinion, this thesis has uncovered a couple of future work possibilities.

The obvious one is further development of the new IR’s prototype compiler implementation,

72

which is yet to reach a stage mature enough for empirical evaluation. One concern with the

implicitly-optimizing approach is finding a way to expose a programming interface which does

not lead to surprises when, for example, constructing an arithmetic operation node yields back

an alias to an existing constant (supposedly because the requested operation was immediately

constant folded). Another engineering concern lies in how to proceed with the evaluation of an

IR designed to support multiple languages and machine architectures.

Jordan et al. (2013) explain why thorough experimental comparisons of compiler IRs

are impractical: such an endeavor would require, for the complete set of investigated IRs, com-

parable implementations of all possible analyses and transformations – that, as well as an exten-

sive set of benchmark programs to exercise all of these optimizations. Hence, new IR designs

are usually evaluated by the proxy of a compiler middle end, which uses said IR to translate

some high-level language into optimized machine code. Then, the special case of a portable

(would-be universal) IR leads back to the N×M problem: one possible way to evaluate such

an IR would be by reproducing the compiler construction problem at a small scale, choosing a

small, yet diverse, set of languages on both ends. Once N×M translation pathways are made

available through the middle end, empirical results can be obtained by combining standard

benchmark and compiler performance metrics for each source-target pair.

A more pragmatic approach, as seen in the work of Reissmann et al. (2020), would

be to use existing compiler infrastructures to test the effect of optimizations being performed

on the new IR. Following their example, LLVM IR could be used as both input and output to

a prototype compiler, and experimental results measured in terms of the baseline compilation

pipeline. While this is certainly a faster way to evaluate certain optimizations, it does not have

a clear connection to the compiler construction problem.

Another future work possibility is expanding the use of some theoretical frameworks

to guide the design of IR features and transformations. Earlier in the text, the work of Felleisen

(1991) was cited due to its presentation of a theory of expressiveness, which can be used to find

redundancies in programming language constructs. Applying this to a compiler IR would be an

innovative experiment, which in turn would require a precise description of an IR’s model of

computation.

In fact, the IR presented in this thesis could also benefit from a more formal treat-

ment, particularly with respect to multiple uses of instantiated continuations and the semantics

of explicit concurrency in the control-flow subgraph. Only then would it be possible to de-

sign complete algorithms for the construction (i.e., generation) and destruction (i.e., lowering)

of the IR. Additionally, this text is often imprecise in its use of terms such as “equivalent”,

appealing to the reader’s intuition in order to relate IR structure to program behavior. There

are multiple formal alternatives – especially so in the context of process calculi (FOURNET;

GONTHIER, 2000) – which could be used instead. Doing so would enable formal reasoning

about semantics-preserving program transformations, which is precisely what compiler opti-

mizations are supposed to be.

73

BIBLIOGRAPHY

ABELSON, H.; SUSSMAN, G. J. Structure and Interpretation of Computer

Programs. 2nd. ed. MIT Press, 1996. ISBN 0262510871. Disponível em: https:
//mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html.

ADAMS, N. et al. ORBIT: An Optimizing Compiler for Scheme. In: Proceedings of the 1986

SIGPLAN Symposium on Compiler Construction. New York, NY, USA: Association for
Computing Machinery, 1986. (SIGPLAN ’86), p. 219–233. ISBN 0897911970.

ADVE, S. V.; BOEHM, H.-J. Memory Models: A Case for Rethinking Par-
allel Languages and Hardware. Communications of the ACM, Association
for Computing Machinery, New York, NY, USA, v. 53, n. 8, p. 90–101, aug
2010. ISSN 0001-0782. Disponível em: https://cacm.acm.org/magazines/2010/8/
96610-memory-models-a-case-for-rethinking-parallel-languages-and-hardware/fulltext.

AHO, A. et al. Compilers: Principles, Techniques, and Tools. 2nd. ed. Boston, MA, USA:
Addison Wesley, 2006. ISBN 0321486811.

APPEL, A. W. SSA is Functional Programming. SIGPLAN Notices, Association for
Computing Machinery, New York, NY, USA, v. 33, n. 4, p. 17–20, apr 1998. ISSN 0362-1340.

AUSLANDER, M.; HOPKINS, M. An Overview of the PL.8 Compiler. SIGPLAN Notices,
Association for Computing Machinery, New York, NY, USA, v. 17, n. 6, p. 22–31, jun 1982.

BACKUS, J. The History of Fortran I, II, and III. In: History of Programming Languages.
New York, NY, USA: Association for Computing Machinery, 1978. p. 25–74. ISBN
0127450408. Disponível em: https://dl.acm.org/doi/pdf/10.1145/800025.1198345.

BAGLEY, P. R. Principles and Problems of a Universal Computer-Oriented Language. The

Computer Journal, v. 4, n. 4, p. 305–312, 01 1962. ISSN 0010-4620. Disponível em:
https://academic.oup.com/comjnl/article-pdf/4/4/305/8201605/040305.pdf.

BAHMANN, H. et al. Perfect Reconstructability of Control Flow from Demand Dependence
Graphs. ACM Transactions on Architecture and Code Optimization, Association for
Computing Machinery, New York, NY, USA, v. 11, n. 4, jan 2015. ISSN 1544-3566.
Disponível em: https://dl.acm.org/doi/pdf/10.1145/2693261.

BAKER, H. G. CONS Should Not CONS Its Arguments, Part II: Cheney on the M.T.A.
SIGPLAN Notices, Association for Computing Machinery, New York, NY, USA, v. 30, n. 9,
p. 17–20, sep 1995. ISSN 0362-1340.

BELWAL, M.; TSB, S. Intermediate representation for heterogeneous multi-core: A survey. In:
International Conference on VLSI Systems, Architecture, Technology and Applications

(VLSI-SATA). Bengaluru, India: IEEE, 2015. p. 1–6.

BLAIKIE, D. Opaque Pointer Types. San Jose, CA, USA: [s.n.], 2015. LLVM Developers’
Meeting. Disponível em: https://www.youtube.com/watch?v=ePu6c4FLc9I.

BOEHM, H.-J. Threads Cannot Be Implemented as a Library. SIGPLAN Notices, Association
for Computing Machinery, New York, NY, USA, v. 40, n. 6, p. 261–268, jun 2005. ISSN
0362-1340. Disponível em: https://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf.

74

BRATMAN, H. A Alternate Form of the "UNCOL Diagram". Communications of the ACM,
Association for Computing Machinery, New York, NY, USA, v. 4, n. 3, p. 142, mar 1961.

BRAUN, M.; BUCHWALD, S.; ZWINKAU, A. FIRM–A Graph-Based Intermediate

Representation. Chamonix, France, 2011. Workshop on Intermediate Representations.
Disponível em: http://beza1e1.tuxen.de/pdfs/braun11wir.pdf.

BRIGGS, P. et al. Practical Improvements to the Construction and Destruction of
Static Single Assignment Form. Software – Practice & Experience, John Wiley &
Sons, Inc., USA, v. 28, n. 8, p. 859–881, jul 1998. ISSN 0038-0644. Disponível em:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.9683&rep=rep1&type=pdf.

BROOKER, R. et al. The Compiler Compiler. Annual Review in Automatic Programming,
v. 3, p. 229–275, 1963. ISSN 0066-4138. Disponível em: http://curation.cs.manchester.
ac.uk/atlas/elearn.cs.man.ac.uk/_atlas/docs/Compiler%20Compiler%20Paper%201963%
20Annual%20Review%20of%20Auto%20Prog.pdf.

CALVERT, P. R. Architecture-neutral parallelism via the Join Calculus. Cambridge, United
Kingdom, 2015. Disponível em: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-871.
pdf.

CARTER, L.; FERRANTE, J.; THOMBORSON, C. Folklore confirmed: Reducible flow
graphs are exponentially larger. In: Proceedings of the 30th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. New York, NY, USA: Association
for Computing Machinery, 2003. (POPL ’03), p. 106–114. ISBN 1581136285.

CATTELL, R. G. Automatic Derivation of Code Generators from Machine Descriptions.
ACM Transactions on Programming Languages and Systems, Association for Computing
Machinery, New York, NY, USA, v. 2, n. 2, p. 173–190, abr. 1980. ISSN 0164-0925.

CHISNALL, D. C Is Not a Low-Level Language: Your Computer is Not a Fast PDP-11. ACM

Queue, Association for Computing Machinery, New York, NY, USA, v. 16, n. 2, p. 18–30, apr
2018. ISSN 1542-7730. Disponível em: https://dl.acm.org/doi/pdf/10.1145/3212477.3212479.

CHOW, F. Intermediate Representation: The Increasing Significance of Intermediate
Representations in Compilers. ACM Queue, Association for Computing Machinery,
New York, NY, USA, v. 11, n. 10, p. 30–37, oct 2013. ISSN 1542-7730. Disponível em:
https://dl.acm.org/doi/pdf/10.1145/2542661.2544374.

CHURCH, A. An Unsolvable Problem of Elementary Number Theory. American Journal of

Mathematics, Johns Hopkins University Press, v. 58, n. 2, p. 345–363, 1936. ISSN 00029327.
Disponível em: https://doi.org/10.2307/2371045.

CLICK, C.; PALECZNY, M. A Simple Graph-Based Intermediate Representation. In: Papers

from the 1995 ACM SIGPLAN Workshop on Intermediate Representations. New York,
NY, USA: Association for Computing Machinery, 1995. (IR ’95), p. 35–49. ISBN 0897917545.
Disponível em: https://www.oracle.com/technetwork/java/javase/tech/c2-ir95-150110.pdf.

CLICK, C. N. J. Combining Analysis, Combining Optimizations. Houston, TX, USA: Rice
University, 1995. Disponível em: https://scholarship.rice.edu/bitstream/handle/1911/96451/
TR95-252.pdf.

COLEMAN, S. S.; POOLE, P. C.; WAITE, W. M. The Mobile Programming System, Janus.
Software: Practice and Experience, v. 4, n. 1, p. 5–23, 1974.

75

CONG, Y. et al. Compiling with Continuations, or without? Whatever. Proceedings of the

ACM on Programming Languages, Association for Computing Machinery, New York, NY,
USA, v. 3, n. ICFP, jul 2019. Disponível em: https://dl.acm.org/doi/pdf/10.1145/3341643.

CONWAY, M. E. Proposal for an uncol. Communications of the ACM, Association for
Computing Machinery, New York, NY, USA, v. 1, n. 10, p. 5–8, oct 1958. ISSN 0001-0782.

CORMEN, T. H. et al. Introduction to Algorithms. 3rd. ed. USA: The MIT Press, 2009.
ISBN 9780262533058.

COUSINEAU, G.; CURIEN, P.-L.; MAUNY, M. The Categorical Abstract Machine. Science

of Computer Programming, v. 8, n. 2, p. 173–202, 1987. ISSN 0167-6423.

DEUTSCH, P. L. An Interactive Program Verifier. CSL-73-1. Palo Alto, CA, USA, 1976.
Disponível em: https://www.softwarepreservation.org/projects/verification/pivot/Deutsch-An_
Interactive_Theorem_Prover-1973.pdf.

DOLAN, S.; SIVARAMAKRISHNAN, K.; MADHAVAPEDDY, A. Bounding Data Races in
Space and Time. In: Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation. New York, NY, USA: Association for Computing
Machinery, 2018. (PLDI 2018), p. 242–255. ISBN 9781450356985.

DOWNEN, P. et al. Sequent Calculus as a Compiler Intermediate Language. SIGPLAN

Notices, Association for Computing Machinery, New York, NY, USA, v. 51, n. 9, p. 74–88,
sep 2016. ISSN 0362-1340. Disponível em: https://www.microsoft.com/en-us/research/
wp-content/uploads/2016/04/sequent-calculus-icfp16.pdf.

DUBOSCQ, G. et al. An Intermediate Representation for Speculative Optimizations in a
Dynamic Compiler. In: Proceedings of the 7th ACM Workshop on Virtual Machines and

Intermediate Languages. New York, NY, USA: Association for Computing Machinery, 2013.
(VMIL ’13), p. 1–10. ISBN 9781450326018.

ECMA-335. ECMA-335 - Common Language Infrastructure (CLI). 6th. ed. [S.l.], 2012.
Disponível em: https://www.ecma-international.org/publications-and-standards/standards/
ecma-335/.

ECMA-94. ECMA-94 - 8-bit single-byte coded graphic character set. 1st. ed. [S.l.], 1985.
Disponível em: https://www.ecma-international.org/publications-and-standards/standards/
ecma-94/.

FARVARDIN, K.; REPPY, J. A New Backend for Standard ML of New Jersey.
In: IFL 2020: Proceedings of the 32nd Symposium on Implementation and

Application of Functional Languages. New York, NY, USA: Association for Computing
Machinery, 2020. (IFL 2020), p. 55–66. ISBN 9781450389631. Disponível em:
https://dl.acm.org/doi/pdf/10.1145/3462172.3462191.

FELDMAN, S. A Conversation with Alan Kay: Big Talk with the Creator of Smalltalk
- and Much More. ACM Queue, Association for Computing Machinery, New York,
NY, USA, v. 2, n. 9, p. 20–30, dec 2004. ISSN 1542-7730. Disponível em: https:
//queue.acm.org/detail.cfm?id=1039523.

FELLEISEN, M. On the expressive power of programming languages. Science of

Computer Programming, v. 17, n. 1, p. 35–75, 1991. ISSN 0167-6423. Disponível em:
https://doi.org/10.1016/0167-6423(91)90036-W.

76

FERRANTE, J.; OTTENSTEIN, K. J.; WARREN, J. D. The Program Dependence Graph and
Its Use in Optimization. ACM Transactions on Programming Languages and Systems,
Association for Computing Machinery, New York, NY, USA, v. 9, n. 3, p. 319–349, jul 1987.
ISSN 0164-0925. Disponível em: https://doi.org/10.1145/24039.24041.

FESSANT, F. L.; MARANGET, L. Compiling Join-Patterns. Electronic Notes in Theoretical

Computer Science, v. 16, n. 3, p. 205–224, 1998. ISSN 1571-0661. HLCL ’98, 3rd
International Workshop on High-Level Concurrent Languages (Satellite Workshop of
CONCUR ’98). Disponível em: https://doi.org/10.1016/S1571-0661(04)00143-4.

FLANAGAN, C. et al. The Essence of Compiling with Continuations. In: Proceedings

of the ACM SIGPLAN 1993 Conference on Programming Language Design and

Implementation. New York, NY, USA: Association for Computing Machinery, 1993. (PLDI
’93), p. 237–247. ISBN 0897915984.

FORRESTER, J. W. Digital Computers: Present and Future Trends. In: Papers and

Discussions Presented at the Dec. 10-12, 1951, Joint AIEE-IRE Computer Conference:

Review of Electronic Digital Computers. New York, NY, USA: Association for Computing
Machinery, 1951. (AIEE-IRE ’51), p. 109–114. ISBN 9781450378512.

FOURNET, C.; GONTHIER, G. The Join Calculus: a Language for Distributed Mobile
Programming. In: BARTHE, G. et al. (Ed.). Applied Semantics. International Summer

School, APPSEM 2000,. Berlin, Germany: Springer, 2000. p. 268–332. ISBN 978-3-540-
45699-5. Disponível em: https://www.microsoft.com/en-us/research/wp-content/uploads/
2017/01/join-tutorial.pdf.

FRANZ, M. Code-generation On-the-fly: A Key to Portable Software. Zurich: Swiss
Federal Institute of Technology in Zurich, 1994. ISBN 9783728121158.

FRANZ, M.; KISTLER, T. Slim Binaries. Communications of the ACM, Association for
Computing Machinery, New York, NY, USA, v. 40, n. 12, p. 87–94, dec 1997.

FSF. GNU Compiler Collection (GCC) Internals. Free Software Foundation, Inc., 2022.
Disponível em: https://gcc.gnu.org/onlinedocs/gccint/.

FUTAMURA, Y. Partial Evaluation of Computation Process – An Approach to a
Compiler-Compiler. Higher Order and Symbolic Computation, Kluwer Academic
Publishers, USA, v. 12, n. 4, p. 381–391, dec 1999. ISSN 1388-3690. Disponível em:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.2747&rep=rep1&type=pdf.

GANAPATHI, M.; FISCHER, C. N.; HENNESSY, J. L. Retargetable Compiler Code
Generation. ACM Computing Surveys, Association for Computing Machinery, New York,
NY, USA, v. 14, n. 4, p. 573–592, dec 1982. ISSN 0360-0300.

GENTZEN, G. Investigations into Logical Deduction. American Philosophical Quarterly,
North American Philosophical Publications, University of Illinois Press, v. 1, n. 4, p. 288–306,
1964. ISSN 00030481. Disponível em: http://www.jstor.org/stable/20009142.

GHARACHORLOO, K. et al. Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. SIGARCH Computer Architecture News, Association
for Computing Machinery, New York, NY, USA, v. 18, n. 2SI, p. 15–26, may 1990. ISSN
0163-5964. Disponível em: https://doi.org/10.1145/325096.325102.

77

GILOI, W. K. Konrad Zuse’s Plankalkül: The First High-Level, "non von Neumann"
Programming Language. IEEE Annals of the History of Computing, IEEE Computer
Society, Los Alamitos, CA, USA, v. 19, n. 02, p. 17–24, April 1997. ISSN 1934-1547.

GIVEN, D. The Amsterdam Compiler Kit. 2005. Disponível em: http://tack.sourceforge.net/.

GOLDBERG, C. J. The Design of a Custom 32-bit RISC CPU and LLVM Compiler

Backend. Rochester, NY, USA, 2017. Disponível em: https://scholarworks.rit.edu/theses/9550.

GORN, S.; BEMER, R. W.; GREEN, J. American Standard Code for Information Interchange.
Communications of the ACM, Association for Computing Machinery, New York, NY, USA,
v. 6, n. 8, p. 422–426, aug 1963. ISSN 0001-0782.

GRAHAM, B. SECD: Design Issues. Calgary, Canada, 1989. Disponível em: https:
//prism.ucalgary.ca/handle/1880/46590.

GYLLSTROM, H. C. et al. The Universal Compiling System. SIGPLAN Notices, Association
for Computing Machinery, New York, NY, USA, v. 14, n. 12, p. 64–70, dec 1979.

HAAS, A. et al. Bringing the Web up to Speed with WebAssembly. SIGPLAN Notices,
Association for Computing Machinery, New York, NY, USA, v. 52, n. 6, p. 185–200, jun 2017.

HADDON, B. K.; WAITE, W. M. Experience with the Universal Intermediate Language Janus.
Software: Practice and Experience, v. 8, n. 5, p. 601–616, 1978.

HARPER, R. Practical Foundations for Programming Languages. 3rd. ed. Cambridge
University Press, 2016. Disponível em: http://www.cs.cmu.edu/~rwh/pfpl/2nded.pdf.

HENDERSON, P. Functional Programming Application and Implementation. London,
United Kingdom: Prentice Hall, 1980. ISBN 0133315797.

HENNESSY, J. L.; PATTERSON, D. A. A New Golden Age for Computer Architecture.
Communications of the ACM, Association for Computing Machinery, New York, NY, USA,
v. 62, n. 2, p. 48–60, jan. 2019. ISSN 0001-0782. Disponível em: https://cacm.acm.org/
magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext.

HOARE, C. A. R. Hints on Programming-Language Design. In: Essays in Computing

Science. USA: Prentice-Hall, Inc., 1989. ISBN 0132840278. Disponível em: https:
//dl.acm.org/doi/abs/10.5555/63445.C1104368.

HOPCROFT, J.; MOTWANI, R.; ULLMAN, J. Introduction to Automata Theory,

Languages, and Computation. 3rd. ed. USA: Pearson, 2006. ISBN 0321455363.

HSA. HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming

Model, Compiler Writer, and Object Format (BRIG). Version 1.2. [S.l.], 2018. Disponível
em: http://hsa.glossner.org/wp-content/uploads/2021/02/HSA-PRM-1.2.pdf.

IERUSALIMSCHY, R.; FIGUEIREDO, L. H. de; CELES, W. The Implementation of Lua 5.0.
Journal of Universal Computer Science, Rio de Janeiro, Brazil, v. 11, n. 7, 2005.

ISO/IEC 9899. Information technology - Programming languages - C. N2176. [S.l.], 2017.
Disponível em: https://web.archive.org/web/20181230041359/http://www.open-std.org/jtc1/
sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf.

78

JOHNSON, N. E. Code size optimization for embedded processors. Cambridge, United
Kingdom, 2004. Disponível em: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-607.
pdf.

JONES, R.; HOSKING, A.; MOSS, E. The Garbage Collection Handbook: The Art of

Automatic Memory Management. 1st. ed. [S.l.]: Chapman and Hall/CRC, 2011. ISBN
9781420082791.

JORDAN, H. et al. INSPIRE: The Insieme Parallel Intermediate Representation. In:
Proceedings of the 22nd International Conference on Parallel Architectures and

Compilation Techniques. [S.l.]: IEEE Press, 2013. (PACT ’13), p. 7–18.

KEGLEY, R. Software Extensibility and Portability with Macro Processors. In: Proceedings

of the 15th Annual Southeast Regional Conference. New York, NY, USA: Association for
Computing Machinery, 1977. (ACM-SE 15), p. 250–263. ISBN 9781450373029.

KELSEY, R. A. A Correspondence between Continuation Passing Style and Static Single
Assignment Form. In: Papers from the 1995 ACM SIGPLAN Workshop on Intermediate

Representations. New York, NY, USA: Association for Computing Machinery, 1995. (IR
’95), p. 13–22. ISBN 0897917545.

KENNEDY, A. Compiling with Continuations, Continued. SIGPLAN Notices, Association
for Computing Machinery, New York, NY, USA, v. 42, n. 9, p. 177–190, oct 2007.

KESSENICH, J. An Introduction to SPIR-V – A Khronos-Defined Intermediate Language

for Native Representation of Graphical Shaders and Compute Kernels. [S.l.], 2015.
Disponível em: https://www.khronos.org/registry/SPIR-V/papers/WhitePaper.pdf.

KHALDI, D. et al. SPIRE : A Methodology for Sequential to Parallel Intermediate
Representation Extension. In: 6ème rencontre de la communauté française de compilation.
Annecy, France: [s.n.], 2013.

KHRONOS. SPIR Overview. Khronos Group, 2020. Disponível em: https://www.khronos.
org/spir/.

KOOPMAN, P. J. J. Stack Computers: the new wave. Pittsburgh, PA, USA: Ellis Horwood,
1989. Disponível em: https://users.ece.cmu.edu/~koopman/stack_computers/.

LANDIN, P. J. The Mechanical Evaluation of Expressions. The Computer Journal, v. 6, n. 4,
p. 308–320, 01 1964. ISSN 0010-4620. Disponível em: https://dl.acm.org/doi/pdf/10.1145/
3140587.3062363.

LARABEL, M. Rust Lands Experimental Cranelift-Based Code Generator - Much Faster

Debug Build Times. Phoronix, 2020. Disponível em: https://www.phoronix.com/scan.php?
page=news_item&px=Rust-Cranelift-Merged.

LATTNER, C. LLVM: An Infrastructure for Multi-Stage Optimization. Urbana, IL, USA:
Computer Science Dept., University of Illinois at Urbana-Champaign, 2002. Disponível em:
https://llvm.org/pubs/2002-12-LattnerMSThesis.pdf.

LATTNER, C. The Golden Age of Compiler Design in an Era of HW/SW Co-

design. Lausanne, Switzerland: [s.n.], 2021. ASPLOS 2021 Keynote. Disponível em:
https://www.youtube.com/watch?v=4HgShra-KnY.

79

LATTNER, C.; ADVE, V. LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In: Proceedings of the 2004 International Symposium on Code

Generation and Optimization (CGO’04). Palo Alto, CA, USA: [s.n.], 2004. Disponível em:
https://llvm.org/pubs/2004-01-30-CGO-LLVM.pdf.

LATTNER, C. et al. MLIR: Scaling Compiler Infrastructure for Domain Specific Computation.
In: Proceedings of the 2021 IEEE/ACM International Symposium on Code Generation

and Optimization. Korea: IEEE Press, 2021. (CGO ’21), p. 2–14. ISBN 9781728186139.

LAWRENCE, A. C. Optimizing compilation with the Value State Dependence Graph.
Cambridge, United Kingdom, 2007. Disponível em: https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-705.pdf.

LEE, P.; PLEBAN, U. A Realistic Compiler Generator Based on High-Level Semantics:
Another Progress Report. In: Proceedings of the 14th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages. New York, NY, USA: Association
for Computing Machinery, 1987. (POPL ’87), p. 284–295. ISBN 0897912152.

LEISSA, R.; KÖSTER, M.; HACK, S. A Graph-Based Higher-Order Intermediate
Representation. In: Proceedings of the 13th Annual IEEE/ACM International Symposium

on Code Generation and Optimization. San Francisco, CA, USA: IEEE Computer Society,
2015. (CGO ’15), p. 202–212. ISBN 9781479981618.

LIEDTKE, J. et al. An Unconventional Proposal: Using the X86 Architecture as the Ubiquitous
Virtual Standard Architecture. In: Proceedings of the 8th ACM SIGOPS European

Workshop on Support for Composing Distributed Applications. New York, NY, USA:
Association for Computing Machinery, 1998. (EW 8), p. 237–241. ISBN 9781450373173.

LINDHOLM, T. et al. The Java Virtual Machine Specification. Java SE 8 Edition (JSR-337).
Redwood City, CA, USA, 2015. Disponível em: https://docs.oracle.com/javase/specs/jvms/
se8/html/.

LLNL. ROSE Compiler – Program Analysis and Transformation. awrence Livermore
National Laboratory, 2022. Disponível em: http://rosecompiler.org/.

LLVM. The LLVM Compiler Infrastructure – Language Reference Manual. LLVM
Foundation, 2022. Disponível em: https://llvm.org/docs/LangRef.html.

LOGOZZO, F.; FAHNDRICH, M. On the Relative Completeness of Bytecode Analysis versus
Source Code Analysis. In: Proceedings of the International Conference on Compiler Con-

struction. Springer Verlag, 2008. Disponível em: https://www.microsoft.com/en-us/research/
publication/on-the-relative-completeness-of-bytecode-analysis-versus-source-code-analysis/.

MACQUEEN, D.; HARPER, R.; REPPY, J. The History of Standard ML. Proceedings of the

ACM on Programming Languages, Association for Computing Machinery, New York, NY,
USA, v. 4, n. HOPL, jun 2020. Disponível em: https://dl.acm.org/doi/pdf/10.1145/3386336.

MACRAKIS, S. Delivering applications to multiple platforms using ANDF. [S.l.], 1993.
Disponível em: http://www.tendra.org/Macrakis93-platforms.pdf.

MACRAKIS, S. From UNCOL to ANDF: Progress in standard intermediate languages.
USA, 1993. Disponível em: http://www.tendra.org/Macrakis93-uncol.pdf.

80

MACRAKIS, S. The structure of ANDF: Principles and examples. [S.l.], 1993. Disponível
em: http://www.tendra.org/Macrakis93-structure.pdf.

MAURER, L. et al. Compiling without Continuations. In: Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation. New
York, NY, USA: Association for Computing Machinery, 2017. (PLDI 2017), p. 482–494. ISBN
9781450349888. Disponível em: https://dl.acm.org/doi/pdf/10.1145/3062341.3062380.

MCCARTHY, J. History of LISP. In: . History of Programming Languages. New
York, NY, USA: Association for Computing Machinery, 1978. p. 173–185. ISBN 0127450408.
Disponível em: https://dl.acm.org/doi/pdf/10.1145/800025.1198360.

MERRILL, J. GENERIC and GIMPLE: A New Tree Representation for Entire

Functions. Ottawa, Canada, 2003. GCC Developers Summit. Disponível em: https:
//gcc.gnu.org/pub/gcc/summit/2003/GENERIC%20and%20GIMPLE.pdf.

MILNER, R. Elements of Interaction: Turing Award Lecture. Communications of the ACM,
Association for Computing Machinery, New York, NY, USA, v. 36, n. 1, p. 78–89, jan 1993.
ISSN 0001-0782. Disponível em: https://dl.acm.org/doi/pdf/10.1145/151233.151240.

MOGENSEN, T. Æ. Basics Of Compiler Design). Copenhagen, Denmark: [s.n.], 2010. ISBN
9788799315406. Disponível em: http://hjemmesider.diku.dk/~torbenm/Basics/basics_lulu2.
pdf.

NEWEY, M. C.; POOLE, P. C.; WAITE, W. M. Abstract Machine Modelling to Produce
Portable Software - A Review and Evaluation. Software: Practice and Experience, v. 2, n. 2,
p. 107–136, 1972.

NYSTROM, R. Crafting Interpreters. USA: Genever Benning, 2021. ISBN 9780990582939.
Disponível em: http://craftinginterpreters.com/.

OFFNER, C. D. Notes on Graph Algorithms Used in Optimizing Compilers. Boston, MA,
USA: [s.n.], 2013. Disponível em: https://www.cs.umb.edu/~offner/files/flow_graph.pdf.

OLIVA, D.; NORDIN, T.; JONES, S. P. C--: A Portable Assembly Language. In: Proceedings

of the 1997 Workshop on Implementing Functional Languages. Springer Verlag, 1997.
(LNCS, v. 1467), p. 1–19. Disponível em: https://www.microsoft.com/en-us/research/
publication/c-a-portable-assembly-language/.

OTTENSTEIN, K. J.; BALLANCE, R. A.; MACCABE, A. B. The Program Dependence
Web: A Representation Supporting Control-, Data-, and Demand-Driven Interpretation of
Imperative Languages. SIGPLAN Notices, Association for Computing Machinery, New
York, NY, USA, v. 25, n. 6, p. 257–271, jun 1990. ISSN 0362-1340. Disponível em:
https://doi.org/10.1145/93548.93578.

PALAMIDESSI, C. Comparing the Expressive Power of the Synchronous and the
Asynchronous π-Calculus. In: Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. New York, NY, USA: Association
for Computing Machinery, 1997. (POPL ’97), p. 256–265. ISBN 0897918533. Disponível em:
https://arxiv.org/pdf/1307.2062.pdf.

PALECZNY, M.; VICK, C.; CLICK, C. The Java HotspotT M Server Compiler. In:
Proceedings of the 2001 Symposium on Java Virtual Machine Research and Technology

81

Symposium. Monterey, CA, USA: USENIX Association, 2001. (JVM’01, v. 1). Disponível
em: https://www.usenix.org/legacy/events/jvm01/full_papers/paleczny/paleczny.pdf.

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design: The

Hardware/Software Interface (MIPS Edition). 5th. ed. USA: Morgan Kaufmann, 2013.
ISBN 9780124077263.

PERKINS, D. R.; SITES, R. L. Machine-Independent PASCAL Code Optimization.
SIGPLAN Notices, Association for Computing Machinery, New York, NY, USA, v. 14, n. 8,
p. 201–207, aug 1979. ISSN 0362-1340.

PERLIS, A. J. Special Feature: Epigrams on Programming. SIGPLAN Notices, Association
for Computing Machinery, New York, NY, USA, v. 17, n. 9, p. 7–13, sep 1982.

PERLIS, A. J. Foreword. In: Structure and Interpretation of Computer Programs. 2nd. ed.
Cambridge, MA, USA: MIT Press, 1996. ISBN 0262510871.

PESCHANSKI, F. Parallel Computing with the Pi-Calculus. In: Proceedings of the Sixth

Workshop on Declarative Aspects of Multicore Programming. New York, NY, USA:
Association for Computing Machinery, 2011. (DAMP ’11), p. 45–54. ISBN 9781450304863.
Disponível em: https://hal.archives-ouvertes.fr/hal-00628492/document.

PIERCE, B. C. Types and Programming Languages. 1st. ed. USA: The MIT Press, 2002.
ISBN 0262162091.

PIUMARTA, I. Making COLAs with Pepsi and Coke. [S.l.], 2005. Disponível em:
https://piumarta.com/software/cola/colas-whitepaper.pdf.

POUNTAIN, D. Configuring Parallel Programs – Part 1. Byte Magazine, v. 14, n. 13,
p. 349–352, dez. 1989. ISSN 0360-5280. Disponível em: https://archive.org/details/
byte-magazine-1989-12/page/n382/mode/1up.

REISSMANN, N. et al. RVSDG: An Intermediate Representation for Optimizing Compilers.
ACM Transactions on Embedded Computing Systems, Association for Computing
Machinery, New York, NY, USA, v. 19, n. 6, dec 2020. ISSN 1539-9087.

RISC-V. The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA. Document
version 20191213. [S.l.], 2019. Disponível em: https://github.com/riscv/riscv-isa-manual/
releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf.

ROSEN, B. K.; WEGMAN, M. N.; ZADECK, F. K. Global Value Numbers and Redundant
Computations. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. New York, NY, USA: Association for Computing
Machinery, 1988. (POPL ’88), p. 12–27. ISBN 0897912527.

ROSS, D. T. Gestalt Programming: A New Concept in Automatic Programming. In:
Papers Presented at the February 7-9, 1956, Joint ACM-AIEE-IRE Western Computer

Conference. New York, NY, USA: Association for Computing Machinery, 1956. (AIEE-IRE
’56 (Western)), p. 5–10. ISBN 9781450378581.

SAMMET, J. E.; HEMMENDINGER, D. Programming Languages. In: Encyclopedia of

Computer Science. John Wiley and Sons Ltd., 2003. p. 1470–1475. ISBN 0470864125.
Disponível em: https://dl.acm.org/doi/10.5555/1074100.1074735.

82

SAVAGE, J. E. Models of Computation: Exploring the Power of Computing. 1st. ed. USA:
Addison-Wesley Longman Publishing Co., Inc., 1997. ISBN 0201895390. Disponível em:
https://cs.brown.edu/people/jsavage/book/pdfs/ModelsOfComputation.pdf.

SCHMIDT, U.; VÖLLER, R. A Multi-Language Compiler System with Automatically
Generated Codegenerators. SIGPLAN Notices, Association for Computing Machinery, New
York, NY, USA, v. 19, n. 6, p. 202–212, jun. 1984. ISSN 0362-1340.

SHIVERS, O. Control Flow Analysis in Scheme. In: Proceedings of the ACM SIGPLAN

1988 Conference on Programming Language Design and Implementation. New York, NY,
USA: Association for Computing Machinery, 1988. (PLDI ’88), p. 164–174.

STANIER, J.; WATSON, D. A study of irreducibility in C programs. Software: Practice and

Experience, v. 42, n. 1, p. 117–130, 2012.

STANIER, J.; WATSON, D. Intermediate Representations in Imperative Compilers: A Survey.
ACM Computing Surveys, Association for Computing Machinery, New York, NY, USA,
v. 45, n. 3, jul 2013. ISSN 0360-0300.

STEEL, T. B. A First Version of UNCOL. In: Papers Presented at the May 9-11, 1961,

Western Joint IRE-AIEE-ACM Computer Conference. New York, NY, USA: Association
for Computing Machinery, 1961. (IRE-AIEE-ACM ’61), p. 371–378. ISBN 9781450378727.

STEEL, T. B. UNCOL: The Myth and the Fact. In: GOODMAN, R. (Ed.). Annual Review in

Automatic Programming. [S.l.]: Elsevier, 1961, (International Tracts in Computer Science
and Technology and Their Application, v. 2). p. 325–344.

STEELE, G. L. LAMBDA: The Ultimate Declarative. USA, 1976. AI Memo 379. Disponível
em: https://apps.dtic.mil/sti/pdfs/ADA034090.pdf.

STEELE, G. L. Rabbit: A Compiler for Scheme. USA, 1978. Disponível em:
https://dspace.mit.edu/bitstream/handle/1721.1/6913/AITR-474.pdf.

STEELE, G. L.; SUSSMAN, G. J. Lambda: The Ultimate Imperative. USA, 1976. AI Memo
353. Disponível em: https://dspace.mit.edu/bitstream/handle/1721.1/5790/AIM-353.pdf.

STRONG, J. et al. The Problem of Programming Communication with Changing Machines:
A Proposed Solution. Communications of the ACM, Association for Computing Machinery,
New York, NY, USA, v. 1, n. 8, p. 12–18, ago. 1958. ISSN 0001-0782.

STRONG, J. et al. The Problem of Programming Communication with Changing Machines:
A Proposed Solution - Part 2. Communications of the ACM, Association for Computing
Machinery, New York, NY, USA, v. 1, n. 9, p. 9–16, sep 1958. ISSN 0001-0782.

SUIF. SUIF Compiler System. Stanford SUIF Compiler Group, 2005. Disponível em:
https://suif.stanford.edu/.

SUSUNGI, A.; TADONKI, C. Intermediate Representations for Explicitly Parallel Programs.
ACM Computing Surveys, Association for Computing Machinery, New York, NY, USA,
v. 54, n. 5, may 2021. ISSN 0360-0300.

TANENBAUM, A. S. et al. A Practical Tool Kit for Making Portable Compilers.
Communications of the ACM, Association for Computing Machinery, New York, NY, USA,
v. 26, n. 9, p. 654–660, sep 1983. ISSN 0001-0782.

83

TenDRA. The TenDRA Project. 2022. Disponível em: http://www.tendra.org/
tdf-specification/.

TURING, A. M. On Computable Numbers, with an Application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, s2-42, n. 1, p. 230–265, 1937. Disponível
em: https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/plms/s2-42.1.230.

UNGER, S.; MUELLER, F. Handling Irreducible Loops: Optimized Node Splitting versus
DJ-Graphs. ACM Transactions on Programming Languages and Systems, Association for
Computing Machinery, New York, NY, USA, v. 24, n. 4, p. 299–333, jul 2002.

UNICODE. History of Unicode. The Unicode Consortium, 1991. Disponível em:
https://www.unicode.org/history/.

WADLER, P. Propositions as Types. Communications of the ACM, Association for
Computing Machinery, New York, NY, USA, v. 58, n. 12, p. 75–84, nov 2015. Disponível em:
https://cacm.acm.org/magazines/2015/12/194626-propositions-as-types/fulltext.

WEISE, D. et al. Value Dependence Graphs: Representation without Taxation. In: . New
York, NY, USA: Association for Computing Machinery, 1994. (POPL ’94), p. 297–310. ISBN
0897916360. Disponível em: https://doi.org/10.1145/174675.177907.

WILSON, R. P. et al. SUIF: An Infrastructure for Research on Parallelizing and Optimizing
Compilers. SIGPLAN Notices, Association for Computing Machinery, New York, NY, USA,
v. 29, n. 12, p. 31–37, dec 1994. ISSN 0362-1340.

WINGO, A. Optimizing with Persistent Data Structures. Hebden Bridge, UK: [s.n.],
2016. LLVM Cauldron Conference. Disponível em: https://www.youtube.com/watch?v=
KYoDyM6l_5s.

WIRTH, N. Recollections about the Development of Pascal. SIGPLAN Notices - History of

Programming Languages (HOPL), Association for Computing Machinery, New York, NY,
USA, v. 28, n. 3, p. 333–342, mar 1993. ISSN 0362-1340.

WÜRTHINGER, T. et al. Practical Partial Evaluation for High-Performance Dynamic
Language Runtimes. SIGPLAN Notices, Association for Computing Machinery, New York,
NY, USA, v. 52, n. 6, p. 662–676, jun 2017. ISSN 0362-1340.

ZAKAI, A. Emscripten: An LLVM-to-JavaScript Compiler. In: Proceedings of the ACM

International Conference Companion on Object Oriented Programming Systems

Languages and Applications Companion. New York, NY, USA: Association for Computing
Machinery, 2011. (OOPSLA ’11), p. 301–312. ISBN 9781450309424. Disponível em:
https://github.com/emscripten-core/emscripten/raw/main/docs/paper.pdf.

ZHAO, J.; SARKAR, V. Intermediate Language Extensions for Parallelism. In: Proceedings

of the Compilation of the Co-Located Workshops on DSM’11, TMC’11, AGERE! 2011,

AOOPES’11, NEAT’11, & VMIL’11. New York, NY, USA: Association for Computing
Machinery, 2011. (SPLASH ’11 Workshops), p. 329–340. ISBN 9781450311830.

ZHAO, J.; SARKAR, V. Intermediate Language Extensions for Parallelism. In: Proceedings

of the Compilation of the Co-Located Workshops on DSM’11, TMC’11, AGERE! 2011,

AOOPES’11, NEAT’11, & VMIL’11. New York, NY, USA: Association for Computing
Machinery, 2011. (SPLASH ’11 Workshops), p. 329–340. ISBN 9781450311830.

INDEX

λ -calculus, 35

φ node / φ function, 41

π-threads (IL), 36

π-calculus, 36

3AC - three-address code, 28

abstract machine, 21

algebraic IL, 35

algorithm, 13

Amsterdam Compiler Kit, 26

ANDF, 31

ANF - administrative normal form, 36

AST - abstract syntax tree, 23, 25

automaton, 13

back end, 16

basic block, 37

bootstrapping, 19

bytecode, 24

C, 33

Categorical Abstract Machine - CAM, 26

CFG - control flow graph, 37

Church’s Law, 13

Church-Turing Thesis, 13

CIL / MSIL, 27

CLI, 22, 27

Click’s IR, 43

compilation, 15

compiler, 14, 15

compiler construction problem, 17

compiler infrastructure / framework, 20

compiler-compiler, 20

computer language, 14

computer-oriented language, 18

Core (Haskell IL), 36

CPS - continuation-passing style, 34, 41

Cranelift (IR), 31

Curry-Howard correspondence, 36

cyclic graph, 37

DAG - directed acyclic graph, 37

data dependency graph, 41

def-use (chains / relations), 39

DFG - data flow graph, 39

domination, 37

EM - Encoding Machine, 26

expressive power, 14

expressiveness, 14

extended basic block, 41

formal language, 13

front end, 16

GCC, 30

graph / directed graph, 37

graph-based IR, 37

high-level language, 14

HSA (IL), 31

IL - intermediate language, 16

indirect triples, 28

IR - intermediate representation, 16

irreducible control flow, 38

Janus, 26

JavaScript, 33

jlm (compiler), 43

join calculus, 31, 63

Join Calculus Abstract Machine, 31

join pattern, 56

Just-In-Time (JIT) compiler, 27

JVM - Java Virtual Machine, 27

language, 14

language-recognizing power, 14

libFirm, 43

linear IR, 24

85

86

Lisp (programming language family), 34

LLVM, 20, 30

local optimization, 37

low-level language, 14

lowering, 15

machine, 13

machine language, 14

macro, 26, 32, 34

memory (consistency) model, 55

middle end, 16

MLIR, 22, 44

model of computation, 13, 22

Moore’s Law, 17

multigraph, 41

operational equivalence, 14, 36

optimizing compiler, 15

Orbit (compiler), 35

P-code, 24

PDG - program dependence graph, 41

PDW - program dependence web, 42

Petri net, 63

PL.8 compiler, 29

portability, 20, 23

postfix Polish notation, 25

procedure, 13

process calculus, 36

program, 13

program equivalence, 14, 36

programming, 14

programming language, 14

quadruples, 28

Rabbit (compiler), 34

register-based (machine / IL), 28

reverse Polish notation - RPN, 25

ROSE, 32

RTL - register transfer language, 30

RVSDG - regionalized VSDG, 42

S-expression, 35

SCC - strongly connected component, 37

Scheme, 34

sea of nodes, 43

SECD machine, 25

semantic dictionary encoding, 32

Sequent Core (IL), 36

single-address machine, 25, 29

source language, 15

SPIR-V, 31

SSA - static single assignment, 29, 40

stack-based (machine / IL), 25

strongly connected graph / nodes, 37

SUIF, 30

T-diagram, 19

tail call, 63

target language, 15

TCO - tail call optimization, 34

TenDRA, 32

term rewriting system, 35

Thorin, 44

transformation, 15

transpiler, 32

tree-structured IR, 31

triples, 28

Turing-completeness, 14

U-code, 26

UNCOL, 13, 18, 22

universal (computing) machine, 13

use-def (chains / relations), 40

VDG - value dependence graph, 42

VM - virtual machine, 21

VSDG - value state dependence graph, 42

weakly connected graph / nodes, 37

WebAssembly / Wasm, 19, 27

87

APPENDIX A – NODE STRUCTURE

Every node v in the new IR has an associated “label”, drawn from a finite set KN . The

following equations describe how the label of a well-structured node partially determines its

shape: what edge slots it may have and the color associated to each of these (if present).

label(v) = JOIN =⇒

outSlots(v) = {type, body}

∧ color(v, type) = type ∧ color(v,body) = control

∧ inSlots(v) ⊆
chanMAX⋃

i=1

argsMAX⋃

j=0

parami j ∪ {de f}

∧ (de f ∈ inSlots(v) =⇒ color(v,de f) = data)

∧ (∀i, j . parami j ∈ inSlots(v) =⇒ color(v, parami j) ∈ {data,memory})

label(v) = INST =⇒

outSlots(v) = {type, de f}

∧ color(v, type) = type ∧ color(v,de f) = data

∧ inSlots(v) ⊆
chanMAX⋃

i=1

conti

∧ (∀i . conti ∈ inSlots(v) =⇒ color(v,conti) = data)

label(v) = JUMP =⇒

outSlots(v)⊆ {type, target, arg0, ..., argargsMAX
}

∧ type ∈ outSlots(v) ∧ color(v, type) = type

∧ target ∈ outSlots(v) ∧ color(v, target) = data

∧ (∀ j . arg j ∈ outSlots(v) =⇒ color(v,arg j) ∈ {data,memory})

∧ inSlots(v)⊆ {ctrl}

∧ (ctrl ∈ inSlots(v) =⇒ color(v,ctrl) = control)

label(v) = FORK =⇒

outSlots(v)⊆ {thread0, ..., thread f orkMAX
}

∧ |outSlots(v)| ≥ 2

∧ (∀i . threadi ∈ outSlots(v) =⇒ color(v, threadi) = control)

∧ inSlots(v)⊆ {ctrl}

∧ (ctrl ∈ inSlots(v) =⇒ color(v,ctrl) = control)

88

label(v) = COND =⇒

outSlots(v)⊆ {type, sel, br0, ..., br2Wmax−1}

∧ type ∈ outSlots(v) ∧ color(v, type) = type

∧ sel ∈ outSlots(v) ∧ color(v,sel) = data

∧ (∀i . bri ∈ outSlots(v) =⇒ color(v,bri) = control)

∧ inSlots(v)⊆ {ctrl}

∧ (ctrl ∈ inSlots(v) =⇒ color(v,ctrl) = control)

label(v) ∈ {MACROG1 , ..., MACROGgraphMAX
} =⇒

outSlots(v)⊆ {out0, ..., outmacroMAX
}

∧ inSlots(v)⊆ {in0, ..., inmacroMAX
}

label(v) = CONST =⇒

outSlots(v) = {type} ∧ color(v, type) = type

∧ inSlots(v)⊆ {value}

∧ (value ∈ inSlots(v) =⇒ color(v,value) = data)

label(v) ∈ {AND, OR, XOR, ‘≪ ’, ‘≫ ’, ‘+ ’, ‘− ’, ‘× ’, ‘÷ ’, ‘%’, ‘ = ’, ‘ 6= ’, ‘ < ’, ‘≥ ’} =⇒

outSlots(v) = {type, lhs, rhs}

∧ color(v, type) = type

∧ color(v, lhs) = data ∧ color(v,rhs) = data

∧ inSlots(v)⊆ {result}

∧ (result ∈ inSlots(v) =⇒ color(v,result) = data)

label(v) = BITCAST =⇒

outSlots(v) = {type, input}

∧ color(v, type) = type

∧ color(v, input) = data

∧ inSlots(v)⊆ {out put}

∧ (out put ∈ inSlots(v) =⇒ color(v,out put) = data)

89

label(v) = MUX =⇒

outSlots(v)⊆ {type, sel, input0, ..., input2Wmax−1}

∧ type ∈ outSlots(v) ∧ color(v, type) = type

∧ sel ∈ outSlots(v) ∧ color(v,sel) = data

∧ (∀i . inputi ∈ outSlots(v) =⇒ color(v, inputi) = data)

∧ inSlots(v)⊆ {out put}

∧ (out put ∈ inSlots(v) =⇒ color(v,out put) = data)

label(v) = TUPLE =⇒

outSlots(v)⊆ {type, f ield0, ..., f ieldpro jMAX
}

∧ type ∈ outSlots(v) ∧ color(v, type) = type

∧ (∀i . f ieldi ∈ outSlots(v) =⇒ color(v, f ieldi) = data)

∧ inSlots(v)⊆ {tuple}

∧ (tuple ∈ inSlots(v) =⇒ color(v, tuple) = data)

label(v) ∈ {PROJ0, ..., PROJpro jMAX
} =⇒

outSlots(v) = {type, tuple}

∧ color(v, type) = type

∧ color(v, tuple) = data

∧ inSlots(v)⊆ { f ield}

∧ (f ield ∈ inSlots(v) =⇒ color(v, f ield) = data)

label(v) ∈ {M, ρ, B1, ..., BwMAX} =⇒

inSlots(v)⊆ {type}

∧ (type ∈ inSlots(v) =⇒ color(v, type) = type)

label(v) = Π =⇒

outSlots(v)⊆ {T0, ..., Tpro jMAX
}

∧ (∀i . Ti ∈ outSlots(v) =⇒ color(v,Ti) = type)

∧ inSlots(v)⊆ {type}

∧ (type ∈ inSlots(v) =⇒ color(v, type) = type)

90

label(v) ∈ {κ, χ} =⇒

outSlots(v)⊆ {T0, ..., TargsMAX
}

∧ (∀i . Ti ∈ outSlots(v) =⇒ color(v,Ti) = type)

∧ inSlots(v)⊆ {type}

∧ (type ∈ inSlots(v) =⇒ color(v, type) = type)

label(v) = ψ =⇒

outSlots(v)⊆ {T0, ..., TchanMAX
}

∧ (∀i . Ti ∈ outSlots(v) =⇒ color(v,Ti) = type)

∧ inSlots(v)⊆ {type}

∧ (type ∈ inSlots(v) =⇒ color(v, type) = type)

label(v) = LOAD =⇒

outSlots(v) = {type, mem, ptr}

∧ color(v, type) = type

∧ color(v,mem) = memory

∧ color(v, ptr) = data

∧ inSlots(v)⊆ {mem′,val}

∧ (mem′ ∈ inSlots(v) =⇒ color(v,mem′) = memory)

∧ (val ∈ inSlots(v) =⇒ color(v,val) = data)

label(v) = STORE =⇒

outSlots(v) = {type, mem, ptr, val}

∧ color(v, type) = type ∧ color(v,mem) = memory

∧ color(v, ptr) = data ∧ color(v,val) = data

∧ inSlots(v)⊆ {mem′}

∧ (mem′ ∈ inSlots(v) =⇒ color(v,mem′) = memory)

label(v) = FENCE =⇒

outSlots(v)⊆ {mem0, ..., mem f enceMAX
}

∧ (∀i . memi ∈ outSlots(v) =⇒ color(v,memi) = memory)

∧ inSlots(v)⊆ {mem′}

∧ (mem′ ∈ inSlots(v) =⇒ color(v,mem′) = memory)

91

APPENDIX B – TYPING RULES

In a multigraph Gi, let v range over nodes in Ni and let T stand for any type produced

by the grammar shown in Figure 25. For the sake of brevity, ⋄ stands for any kind of binary

operation in KN with operand slots {lhs, rhs} and result slot result. Similarly, let � range

over binary predicates, that is, integer comparison operators. Additionally, τ(v) = T indicates

that the type dependency edge of a node v is wired to a type-level operator producing type

T ; this does not lead to ambiguities because primitive nodes in the IR which are not type op-

erators themselves have at most one type dependency edge. Finally, v.x : T denotes that slot

x ∈ (inSlots(v) ∪ outSlots(v)) has been assigned type T by one of the inference rules below.

label(v) = JOIN τ(v) = J = ψ(χ(T10, ..., T1n1), ..., χ(Tm0, ..., Tmnm
))

v.de f : J ∧ ∀1≤ i≤ m . ∀0≤ j ≤ nm . (v.parami j : Ti j)

label(v) = INST τ(v) = J = ψ(χ(T10, ..., T1n1), ..., χ(Tm0, ..., Tmnm
))

v.de f : J ∧ ∀1≤ i≤ m . (v.conti : κ(Ti0, ..., Tini
))

label(v) = JUMP τ(v) = κ(T0, ..., Tn)

v.target : κ(T0, ..., Tn) ∧ ∀0≤ j ≤ n . (v.arg j : Tj)

label(v) = COND τ(v) = B
w

v.sel : Bw

label(v) = CONST τ(v) = T

v.value : T color(v,x) = memory ⇐⇒ v.x : M

label(v) = ⋄ τ(v) = T

v.lhs : T ∧ v.rhs : T ∧ v.result : T

label(v) = � τ(v) = T

v.lhs : T ∧ v.rhs : T ∧ v.result : B1

label(v) = BITCAST v.input : Ta τ(v) = Tb

v.out put : Tb

label(v) = MUX v.sel : Bw τ(v) = T

v.out put : T ∧ ∀0≤ n < 2w . (v.inputn : T)

label(v) = TUPLE τ(v) = Π(T1, ..., Tn)

v.tuple : Π(T1, ..., Tn) ∧ ∀1≤ i≤ n . v. f ieldi : Ti

label(v) = PROJi τ(v) = Π(T1, ..., Tn) 1≤ i≤ n

v.tuple : Π(T1, ..., Tn) ∧ v. f ield : Ti

label(v) ∈ {LOAD, STORE} τ(v) = T

v.mem : M ∧ v.ptr : ρ ∧ v.mem′ : M ∧ v.val : T

label(v) = FENCE τ(v) = T

mem′ : M ∧ ∀i . (v.memi : M)

Appendix C – Preprint Article

A Survey on Intermediate Representations

Gabriel B. Sant’Anna1

1 Federal University of Santa Catarina (UFSC) – Florianópolis – Brazil

baiocchi.gabriel@gmail.com

Abstract. Developing and maintaining an optimizing compiler is far from triv-

ial. Modern compiler infrastructures attempt to reduce that development cost

by sharing the same “middle end“ across various combinations of language-

specific front ends and target-specific back ends. Shared Intermediate Repre-

sentations (IRs) play a major role in these architectures, but their design is still

not fully understood, even by practitioners in the field. This work attempts to

increase that understanding by surveying various compilers and their respec-

tive IRs. Unlike related works, we cover some functional and algebraic IRs,

study the use of high-level programming-languages as an intermediate transla-

tion step, and include more recently developed compiler IRs in our research.

1. Introduction

Computer languages are means of communication between humans and machines. The
communication is generally considered more effective when programs are written in a
high-level programming language [Click 1995], and programs more efficient when an
optimizing compiler performs the translation to machine code [Johnson 2004]. Unfortu-
nately, developing and maintaining an optimizing compiler is, and has always been, far
from trivial [Steel 1961a, Oliva et al. 1997, Chow 2013, Susungi and Tadonki 2021].

Compilers must be able to reason about non-trivial programs, to combine various
analyses in order to determine whether or not to apply certain transformations, and to
ensure that optimizations preserve program semantics [Reissmann et al. 2020]. Among
other reasons, the complexity of the translation process leads to a multi-stage pipeline de-
sign (refer to Figure 1), in which the same program can take multiple different forms, also
known as Intermediate Representations (IRs). At a higher level, it is possible to group
translation stages [Aho et al. 2006] into three categories: the front end is responsible for
enforcing the invariants of the source language; the back end handles the idiosyncrasies
of the target encoding; and the oxymoronic “middle end” performs IR analyses and trans-
formations which are often independent of both source language and target machine. IRs
play a major role in modern compiler infrastructures, warranting the rise of the middle
end as one of the most important parts of an optimizing compiler [Chow 2013].

Until relatively recently, most IRs were unspecified proprietary formats which
could not be used between different compilers, and in some cases not even across dif-
ferent versions of the same compiler [Lattner 2002]. In contrast, the LLVM project
[Lattner and Adve 2004] has shown that a well-known IR, with open-source tools built
around it, facilitates the development of new compiler technology, to the benefit of the
computing industry as well as of programming language research. Hence, pursuing a

Despite being separately classified, these kinds of IRs are frequently used
together in modern compilers, albeit at different stages of the translation pipeline.
[Stanier and Watson 2013] identify a tendency towards: (a) parse trees and Abstract Syn-
tax Trees (ASTs) in the front end; (b) graph-based IRs to represent whole functions; and
(c) linear IRs – usually put in SSA form for the purpose of optimization – used for local
“low-level” transformations.

3. Linear Representations

Linear IRs represent programs as sequences of instructions for an abstract machine. Imag-
ining an IL in this format is particularly straightforward when the abstract machine resem-
bles a simple stored-program computer. Thus, most ILs, including the first UNCOL ever
proposed [Conway 1958], follow this pattern [Franz 1994]. It is also the preferred IR type
of Virtual Machines (VMs), since a baseline implementation can operate by interpreting
an individual instruction, moving to the next one in the sequence and repeating this pro-
cess in a loop, essentially emulating a sequential computer. This is why linear IRs are
said to be “low-level” [Lattner and Adve 2004]. When interpreted by a VM, linear ILs
are called bytecode formats, since each instruction can often be encoded in a single byte
[Nystrom 2021]. They are also known as P-code (portable or pseudo code), in praise of
the VM-based implementation of the Pascal programming language [Wirth 1993].

Despite their simplicity, linear IRs are not without disadvantages.
[Haddon and Waite 1978] describe the challenge of choosing a minimal set of portable
instructions. In short, recovering the original intent of high-level code after it has
been lowered to a linear IR is not trivial, especially after multiple rounds of program
transformations [Logozzo and Fahndrich 2008]. Furthermore, this “primitive mismatch”
problem (which also extends to data types, number of available registers and properties
of memory operations, among other aspects) is unavoidable: unless the IR is to expand
uncontrollably, there will always be programming language operations and machine
instructions without a one-to-one mapping in the IR [Ganapathi et al. 1982].

Similar to instruction formats of real computers, linear compiler ILs have a sim-
ple, regular structure. Also like the instructions of real machines, the biggest differ-
ence between them lies in what the instructions themselves do: what sort of data they
operate on, how they access memory and what effects are caused by their execution
[Stanier and Watson 2013]. Despite the great variety of possible instructions, linear com-
piler IRs can be categorized as either stack-based or register-based.

3.1. Stack-based Bytecode

Another way to conceive linear IRs is by attempting to serialize syntax trees into a more
densely packed format. For example, a simple compiler for arithmetic expressions – such
as the one described by [Aho et al. 2006] – can traverse ASTs in post-order and emit
bytecode at each visited node; the resulting program would be ready to be executed by
a stack-based VM – like the one described by [Nystrom 2021]. Figure 2 illustrates how
this process can be applied to a short program, which is parsed into an AST and serialized
as a sequence of stack-based bytecode instructions. [Stanier and Watson 2013] would
designate such an IL as an extension of postfix Polish (or, reverse Polish) notation. These
IRs are very compact, but become difficult to optimize [Stanier and Watson 2013].

operand stack-based IL was used to compile both Pascal and Fortran programs
and had some degree of backwards compatibility with P-code–based compilers
[Perkins and Sites 1979]. U-code had dedicated metadata instructions for the pur-
poses of debugging, guiding optimizations and stating program requirements (e.g.,
defining memory alignment restrictions).

• The Amsterdam Compiler Kit IL. The Amsterdam Compiler Kit was a collec-
tion of compiler modules created by [Tanenbaum et al. 1983], based on the UN-
COL idea. Their main IR, Encoding Machine (EM) language, is linear, but the
tool kit also included graph-based global optimizations. As its name suggests, the
stack-based IL was used mainly as an encoding mechanism, where the back end
maintained a simulated stack and generated code with the aid of a target-specific
“driving table”, which described how to translate certain stack configurations into
machine language. Lacking an entry in the driving table, the compiler would in-
ject IL instructions into the program with the purpose of coercing the stack into a
known configuration. [Tanenbaum et al. 1983] describe this method as being anal-
ogous to a chess-playing artificial intelligence program, since it searches through
many possible sequences of “moves”. There were also meta-linguistic declara-
tions, not unlike those previously suggested by [Steel 1961a], which helped guide
the “chess-playing” procedure. The Amsterdam Compiler Kit, originally a com-
mercial product, was used for many years as the native compiler toolchain in
Tanembaum’s Minix operating system [Given 2005], with support for C, Plain,
Pascal, Algol 68 and more than a dozen different hardware architectures. Accord-
ing to [Tanenbaum et al. 1983], it showed that “the old UNCOL idea is a sound
way to produce compilers”. The toolkit has since been released under an open-
source license, but has not received much attention.

• The Categorical Abstract Machine. The Categorical Abstract Machine was cre-
ated as a mathematically well-founded method of functional programming lan-
guage implementation [Cousineau et al. 1987]. The core stack-based architec-
ture was formally described by [Cousineau et al. 1987], who claimed the small
changes proposed over the SECD machine enabled much simpler correctness
proofs.

• Java Virtual Machine (JVM) bytecode. Many qualities associated with the
Java programming language, such as machine-independence and memory safety,
stem from its VM [Lindholm et al. 2015]. The JVM is a portable stack-based and
object-oriented architecture specifically designed for Java. Nonetheless, compil-
ers for other programming languages (Kotlin, Scala and Clojure, to cite a few)
frequently target JVM bytecode in order to profit from the mature platform. Since
most JVM implementations employ Just-In-Time (JIT) compilers, which translate
bytecode to machine language at run-time, JVM bytecode can be considered an
IL. Still, compilers often convert the stack-based IR into a format better suited for
transformations before lowering it to machine code [Lattner and Adve 2004].

• Microsoft’s Common Intermediate Language (CIL). An Ecma International
standard defines the Common Language Infrastructure (CLI) [ECMA-335 2012],
which includes a common type system, a stack-based virtual execution system
and an accompanying IL, the CIL. The machine-independent infrastructure was

built with maximum portability in mind; in order to integrate multiple program-
ming languages in the same platform, it was “designed to be large enough that
it is properly expressive yet small enough that all languages can reasonably ac-
commodate it” [ECMA-335 2012]. One way the CLI attempts to deliver practical
language interoperability is by providing abstract operations (such as a “virtual
calling convention”) and extensible IL metadata that let compiler front ends com-
municate optimization-relevant information all the way to the execution engine,
which can then tailor code generation decisions to the user’s machine. In general,
such on-the-fly code generation methods aim to counteract the efficiency losses
which tend to arise when using machine-independent IRs [Franz 1994].

• WebAssembly. WebAssembly is a VM-bytecode pair for the Web platform. De-
spite currently being in a minimum-viable-product state, it was collaboratively
designed by engineers from major browser vendors [Haas et al. 2017] and there-
fore boasts wide availability on consumer devices. The stack-based architecture is
explicitly noted by [Haas et al. 2017] as merely a mechanism to easily achieve a
formalization of the abstract machine and provide a compact program representa-
tion. Hence, many design decisions – notably, prohibiting irreducible control flow
– aim to enable quick conversion into IRs better suited for program transforma-
tions and compiler optimizations, such as a register-based SSA [Haas et al. 2017].

3.2. Register-based Three-Address Codes

Register-based compiler IRs are often synonymous with Three-Address Codes (3ACs),
although alternative architectures exist (and are mentioned below). In a typical 3AC,
each instruction performs a single operation, having at most two inputs and one output
[Aho et al. 2006]. An example is shown in Figure 3, which displays the small program
from Figure 2 encoded in a 3AC IL.

%t1 = i32 1

%t3 = i32 3

%t7 = i32 7

%tm = mul %t3, %t7

%ta = add %tm, %t1

%_ = call @print(%ta)

Figure 3: A simple 3AC program, using LLVM-like syntax.

In most register-based IRs, the compiler assigns a named register to all intermedi-
ate results. This has the advantage of facilitating the reuse of previously computed values:
one simply needs to refer to the name associated with it, as opposed to having to perform
a series of memory and stack manipulation operations [Koopman 1989]. A disadvantage
lies in the fact that the compiler needs to allocate a register for every single intermedi-
ate value in the program: if the abstract machine has a limited number of registers, this
becomes a non-trivial problem [Aho et al. 2006]. According to [Aho et al. 2006], 3ACs
allow programs to be transformed and rearranged much more easily than stack-based
bytecodes, since the latter requires the insertion of instructions in a very specific order to
achieve the effects described by the original high-level program.

There are many ways for a compiler to implement 3ACs. The most straightfor-
ward representation consists of quadruples: sequences of four-field records containing
the instruction code, (up to) two argument registers and a named result [Aho et al. 2006].
Triples are a close alternative, where the result’s “name” is implicitly defined by the po-
sition of the instruction in the containing sequence. The triple scheme requires less space
and lets the compiler use numbers (which are faster indexes and easier to generate) in-
stead of arbitrary names [Stanier and Watson 2013]. Since triples associate instruction
indexes with their produced results, reordering operations requires the compiler to update
all uses of the result of a relocated triple. Indirect triples offer a solution to that prob-
lem by uncoupling program order from result handles, such that a reference to a triple
is kept stable even when the program is being transformed [Aho et al. 2006]. Figure 4
shows a single program (the same one from Figure 3) represented as quadruples, triples
and indirect triples. In the last representation, the program was slightly reordered.

PROGRAM:

<const, i32, 1, %t1>

<const, i32, 3, %t3>

<const, i32, 7, %t7>

<mul, %t3, %t7, %tm>

<add, %tm, %t1, %ta>

<print, %ta, _, _>

PROGRAM:

[0: const, i32, 1]

[1: const, i32, 3]

[2: const, i32, 7]

[3: mul, (1), (2)]

[4: add, (3), (0)]

[5: print, (4), _]

0: <const, i32, 1>

1: <const, i32, 3>

2: <const, i32, 7>

3: <mul, (1), (2)>

4: <add, (3), (0)>

5: <print, (4), _>

PROG': [1;2;3;0;4;5]

Figure 4: Quadruples (left), triples (center) and indirect triples (right).

Register-based compiler IRs include, but are not limited to:

• Conway’s UNCOL. In the first proposed UNCOL design, [Conway 1958] par-
tially describes a register-based IR. He believed that minimalistic abstract ma-
chines, with fewer registers and instructions, would provide greater opportunity
for code optimization. Thus, his IR follows a single-address architecture, where
operations specify only their output locations, and operands are always read from
predefined “argument-storage” registers.

• Steel’s UNCOL. As one of the authors of the UNCOL report, [Steel 1961a] pro-
vides further detail on how a universal IR could be envisioned. Like Conway,
Steel points towards a single-address machine. He indicates the need to describe,
for every item of data expressed in the IL, properties such as type, numerical
range, precision and storage allocation, arguing that (at least some of) these could
be achieved with a mechanism to define the lexical and syntactical structure of
language elements. Steel also suggests that some instructions should aid compiler
optimizations through meta-linguistic declarations such as “the next 20 statements
form a loop”. Finally, a striking feature of Steel’s UNCOL was that commands
could have different behavior based on the data types being operated on. This
type-based instruction overloading results in a smaller IR: a single addition com-
mand, for example, would work with both integers and floating-point numbers.
Like Conway’s UNCOL, this IL was never implemented.

• IBM’s PL.8 compiler. The PL.8 project was a compiler which could ac-
cept multiple source languages (Pascal and a variant of PL/I) and produce op-

timized code for several different machines, notably by the means of a com-
mon IR “closely matching the computational semantics of the target machines”
[Auslander and Hopkins 1982]. Its IR was a 3AC with an unlimited number of
virtual registers. This is a notable feature of the IR’s design because it may have
prompted the invention of SSA form, especially since [Rosen et al. 1988] were
familiar with IBM’s PL.8 infrastructure.

• The Stanford University Intermediate Format (SUIF). SUIF was a compiler
framework heavily influenced by the concept of a universal IR. It is divided into
a “kernel”, which consists of IR generation and manipulation procedures, and a
“toolkit” with front end and back end modules using the IR as a common in-
terface [Wilson et al. 1994]. SUIF’s IR is described as a “mixed-level” program
representation, being for the most part a 3AC, but also including tree-like con-
structs for loops, conditionals and array accesses [Wilson et al. 1994]. The in-
frastructure was released for free as an attempt to solve the compiler construction
problem in research. It succeeded only to some degree: there were multiple re-
search projects based on SUIF, with front ends implemented for C, Fortran, Java
and C++ [SUIF 2005]. However, its place in research has since been occupied by
the LLVM project [Farvardin and Reppy 2020].

• GCC’s Register Transfer Language (RTL). GCC is another well known com-
piler collection and infrastructure, notable for being used in the Linux kernel
[FSF 2022]. According to [Lattner 2021], GCC’s open-source nature created a
turning point in the compiler industry around the 1990s (back in a time when most
compilers where commercial products, all mutually incompatible), enabling col-
laboration from academia and industry, reducing language community fragmenta-
tion and to a great extent achieving the N +M scaling of multiple front ends and
back ends. GCC officially supports C, C++, Objective-C, Fortran, Ada, Go and D,
for countless back ends [FSF 2022]. Still, modern compilers tend to gravitate to-
wards the LLVM infrastructure, mainly due to its modular architecture and better-
specified (even if slightly unstable) IL. GCC has multiple IRs [Merrill 2003], the
oldest one being RTL, a 3AC with an infinite number of virtual registers. Unlike
LLVM IR, RTL’s SSA form is optional [FSF 2022].

• The LLVM Project (and derivatives). LLVM is a modern compiler framework
originally designed by [Lattner 2002] to tackle the challenges originated by re-
cently developed programming practices, namely the support for dynamic exten-
sions to long-running programs and multi-language software development. A so-
lution is envisioned as the combination of capabilities previously considered to
be mutually exclusive: while classic compilers provide ahead-of-time code opti-
mization and a language-agnostic runtime model, VM-based approaches such as
the JVM or the CLI can implement profile-guided JIT transformations by preserv-
ing program information until run-time [Lattner and Adve 2004]. Providing all of
these features is LLVM’s goal, which, according to [Lattner and Adve 2004], is
achieved through its innovative IR design and the open-source compiler infras-
tructure built around it. LLVM’s IR can be described as a register-based 3AC
(although the implementation places the linear IR inside Control Flow Graph
(CFG) nodes) in SSA form, extended with “high-level” type information. The

LLVM infrastructure has been successfully applied in academia and in the indus-
try, with countless programming languages implemented on it due to its maturity
and ability to emit optimized code for many target architectures [LLVM 2022].
Although earlier versions of LLVM were quite minimalistic, with only 31 opcodes
[Lattner and Adve 2004], it has been in a constant state of change and expansion:
the current version (LLVM 13) of the IL reference documentation [LLVM 2022]
can fill over 300 printed pages. This instability and constantly increasing com-
plexity has led some groups to create similar IRs, isolated on purpose from the
main LLVM infrastructure. Examples include Khronos’ SPIR-V [Khronos 2020],
which can be described as a fork of LLVM IR specialized for parallel computation
and graphics processing, and Cranelift, which has been considered as a faster (in
terms of compile time) alternative to LLVM for debug builds [Larabel 2020].

• The Join Calculus Abstract Machine. [Calvert 2015] proposes using the
join calculus as the foundation for a parallel abstract machine and LLVM-
like linear compiler IR. He argues that the resulting design could be used
as a universal IR, especially since, among other members of the process cal-
culi family, the join calculus seems to be particularly suitable for the effi-
cient implementation of programming languages [Le Fessant and Maranget 1998,
Fournet and Gonthier 2000].

• Heterogeneous System Architecture (HSA) IL. HSA IL is described as a low-
level virtual instruction set for the architectures supported by the HSA Foundation
[HSA 2018]. According to [Chow 2013], although the register-based IL’s exten-
sive specification could be a step forward in what concerns universal IRs, the
complexity of the HSA programming model makes it unlikely that compilers will
use it as anything other than a target for HSA-compatible devices. For instance,
a limited number of registers [HSA 2018] implies that most, if not all, program
transformations may need to invoke a register allocator.

4. Tree-structured Representations

Trees are some of the most common compiler data structures. Although mainly utilized to
represent the syntactic structure of high-level languages, tree-based IRs are also used for
macro expansion, type checking and some program transformations [Aho et al. 2006]. A
simple high-level program represented as an AST has been shown in Figure 2.

4.1. Generic Tree Encodings

Trees are generally considered language-dependent compiler IRs, since each node
in the tree normally corresponds to a specific programming language construct
[Aho et al. 2006]. Still, a few works propose language-independent tree-structured ILs:

• Architecture Neutral Distribution Format (ANDF). ANDF has been described
as an “architecture- and language-neutral distribution format resembling a com-
piler intermediate language”, aiming to succeed where UNCOL proposals had
previously failed [Macrakis 1993b]. ANDF was essentially a compact binary for-
mat used to encode program trees in a standard manner. Defined by the Open
Software Foundation, the system took a very pragmatic position on the problem
of portability: “ANDF is not a tool for making non-portable software into portable

software [an unsolvable problem], but a tool for distributing portable software”
[Macrakis 1993b]. The major mechanism used to achieve practical language and
machine independence was a macro system reminiscent of Lisp’s syntax macros.
In ANDF, static conditional branches, identifier references, constant literals, type
layout and even other macros could be identified and stored separately from the
main program. This allowed the system to retain portability and preserve the po-
tential for both language- and machine-specific optimizations, since such delayed
definitions could be “linked in” and expanded only when appropriate, up until the
moment the program was loaded [Macrakis 1993c]. ANDF was only ever imple-
mented in UNIX systems, and for the C programming language [Macrakis 1993a].
The implementation, documented as TenDRA, was later released as an open-
source compiler framework [TenDRA 2022]. Stavros Macrakis (personal com-
munication, 2021) suggests ANDF was not widely adopted mainly because of:
(a) lack of interest from UNIX vendors; and (b) the compiler construction prob-
lem becoming less relevant as the computer market was dominated by specific
(software and hardware) systems.

• Semantic Dictionary Encoding. Proposed by [Franz 1994], “semantic dictionar-
ies” can encode general ASTs in a compact tabular form. It was used as Oberon’s
module interchange format, also known as “slim binaries”. It achieved porta-
bility by distributing high-level source programs, while the “fat binary” alterna-
tive was to package multiple machine-specific objects in the same executable file
[Franz and Kistler 1997].

• The ROSE compiler. ROSE is an open compiler infrastructure for the develop-
ment of program analysis tools and source-to-source transformations. Given its
goals, a generic tree-based IR is a natural fit. The framework has been used to
develop tools and research projects for C, C++, Fortran, Java, Python and PHP,
among others [LLNL 2022].

4.2. Programming Languages as Compiler ILs

Some high-level programming languages have been used as compiler ILs. Instead of gen-
erating machine code (or VM bytecode) directly, compilers can emit a program encoded
in another high-level language and then call one of its existing back ends (or use an exist-
ing VM implementation). Typically, this is done to avoid re-implementing architecture-
specific transformations and code generation [Oliva et al. 1997], but also provides a way
to reuse developer tools (debuggers, for instance) in a newly-created programming lan-
guage. This approach is hereby grouped with other tree-structured IRs, since trees are the
standard computer-oriented representation of high-level languages.

Although not the only programming language to have been repurposed as a com-
piler target, C is the most notorious. It has been used in countless implementations of other
high-level languages, including C++, Ada, Cedar, Eiffel, Modula-3, Pascal, Standard ML
[Macrakis 1993b], Scheme and Haskell [Oliva et al. 1997]. Alan Kay even considers C
to have become a “de facto UNCOL” [Feldman 2004], since the standard is portable and
compilers are available on most platforms. Another programming language being tar-
geted by various compilers is JavaScript. According to [Haas et al. 2017], this is mainly
due to “historical accident”, since JavaScript was (until the very recent advent of We-

be under-specified: aspects which would be relevant to an optimizing compiler, such
as supported integer ranges or the behavior of out-of-bounds array accesses, are either
implementation-defined or not defined at all. Of course, Turing-completeness means
that none of this prevents a transpiler from generating portable C programs which em-
ulate the abstract machine exposed by other languages. This, however, would introduce
unacceptable performance degradation when the models of computation do not match
[Haddon and Waite 1978]. According to [Macrakis 1993b], emulating another high-level
language requires C generators to commit to a concrete implementation of every single
construct in the source language; whichever strategy is chosen will almost certainly not
be appropriate for all target architectures and cannot be adapted by the C compiler being
used as a back end, since it knows nothing about the higher-level source language.

In this category of compiler ILs, a final candidate is Lisp: according to
[Steele 1976], “a carefully chosen small dialect of LISP would be a good UNCOL, that
is, a good intermediate compilation language”. [Steele 1978] implemented this idea in
his Scheme compiler, Rabbit, a seminal work presenting the first use of Continuation-
Passing Style (CPS) in a compiler. CPS is a representation in which control points are
explicitly named, manipulated and invoked [Steele 1976]. Steele’s proposal relies on
Scheme’s guaranteed TCO and its strong proximity to the lexical-scoped applicative-order
λ-calculus. These qualities, combined with Lisp macros and an imperative assignment op-
erator, allow for a straightforward implementation of most programming language con-
structs; thus, Scheme was its own IL [Steele 1976].

The Rabbit compiler operated through source-to-source transformations, lower-
ing high-level functional Scheme code into an imperative-style CPS IL, which happened
to be a subset of Scheme itself. Further research on the topic of compiling with con-
tinuations adopted the same source-to-source explanation of CPS [Flanagan et al. 1993,
Kennedy 2007, Maurer et al. 2017]. Although Steele’s work was primarily research-
oriented, [Adams et al. 1986] used its design as a base for their optimizing Scheme com-
piler, Orbit. This later work proved that CPS transformations could be an effective tool in
optimizing compilers, since Orbit was used to produce code competitive with C, Pascal,
Modula-3 and Lisp systems of the time [Adams et al. 1986].

At last, it should be noted that Lisp’s syntax appears to be more suitable for a
compiler IL than that of most other programming languages, since it trivially maps to
ASTs1. Regardless, [Macrakis 1993b] points out that Scheme as a compiler IL shares
some flaws with other high-level language options, notably due to Lisp systems’ reliance
on garbage collection and lack of concrete data definition facilities.

4.3. Algebraic ILs

Another class of representations whose use in compilers has been proposed consists of
“algebraic” ILs. These are formal languages from the lineage of term rewriting sys-
tems (e.g., mathematical logic), which have become foundational for programming lan-
guage and type theory [Pierce 2002]. While there have been operational machine-like
approaches (such as the SECD machine, mentioned in section 3) to defining these models
of computation, the usual method is more syntax-directed, with ASTs used to express pro-

1In fact, the infamous S-expression notation, which ended up becoming Lisp’s standard programming
syntax, was originally a computer-oriented (i.e., not human-oriented) representation [McCarthy 1978].

grams, as well as their execution [Harper 2016]. Manipulating code through an algebraic
representation has the advantage of enabling the application of well-known mathematical
proof methods to programming languages [Pierce 2002]. The λ-calculus is one such al-
gebraic language; its syntax is displayed in Figure 6. It could also be considered a family
of languages (or calculi), due to its many variants and extensions [Pierce 2002].

M, N ::= terms
x variable
λx.M abstraction
M N application

P, Q ::= processes
0 null process
νx.P new local channel x
x〈y〉.P receive message y on x

x〈y〉.P send message y on x

τ.P silent action
P | Q parallel composition
P + Q choice operator
!P replication

Figure 6: The λ-calculus (left) and the π-calculus (right).

[Milner 1993] has claimed that, although λ-functions are “an essential ingredient”
of sequential program semantics, handling concurrency requires a different framework.
Albeit notoriously hard for humans to reason about, concurrent programs are an impor-
tant part of modern computing [Peschanski 2011]. This had already been predicted in the
1950s, as mentioned by [Strong et al. 1958]: “everyone looks with dread at the possible
computers of the next decade, which will be simultaneously executing multiple asyn-
chronous stored programs”.

The need for mechanisms to formally reason about concurrent processes has fos-
tered the family of process algebras (or, process calculi), notably including Milner’s π-
calculus (also shown in Figure 6) and its many variations [Palamidessi 1997]. According
to [Fournet and Gonthier 2000], calling these formal systems calculi implies in the pos-
sibility of using them for equational reasoning (i.e., to calculate). This requires a notion
of “equality”, an operational equivalence relation between programs, and many such re-
lations have been proposed for process calculi [Fournet and Gonthier 2000]. These are
particularly interesting to compiler writers, who must ensure that transformations and
optimizations preserve program equivalences.

Algebraic ILs are usually associated with compilers of functional programming
languages, possibly due to their strong relation with the λ-calculus. Examples include:

• π-threads. [Peschanski 2011] proposes a variation of the π-calculus as a parallel
abstract machine model and compiler IL. He provides some safety proof outlines
in the resulting model, but no benchmarks are shown.

• Haskell Core. Haskell’s main IL, Core, is based on System Fω, a typed variant of
the λ-calculus [Downen et al. 2016]. The compiler maintains this functional IL in
Administrative Normal Form (ANF), an alternative to CPS which admits many of
the same transformations [Maurer et al. 2017].

• Sequent Core. Under the Curry-Howard correspondence, the classic λ-calculus is
equivalent to Gentzen’s natural deduction logic [Wadler 2015]. However, natural

deduction was defined along with another reduction system, the sequent calculus
[Gentzen 1964]. [Downen et al. 2016] describe Sequent Core as an experimental
Haskell IL based on sequent calculi. The result comes closer to CPS form than to
Core’s traditional ANF, enabling more optimizations [Downen et al. 2016].

5. Graph-based Representations

Directed graphs (or, just graphs) are one of the most pervasive structures in Discrete
Mathematics and Computer Science. A graph can be defined as a pair (N,E), where
N is a set of nodes (or, vertices) and E ⊆ (N × N) a set of edges (alternatively, arcs),
consisting in ordered pairs of nodes. A path in a graph is any sequence of nodes [v0, ..., vn]
such that every consecutive pair (vi, vi+1) is an edge in E. When all paths beginning at
node v0 and eventually reaching node vn pass through an intermediate node vd, it is said
that vd dominates vn with respect to v0. Furthermore, any two nodes (a, b) are said to be
strongly connected if there is a path (however long) from a to b; when such a path can
only be formed by adding reverse edges to the graph (that is, adding edges (v, u) for any
subset of (u, v) already present in E), a and b are said to be weakly connected; otherwise
they are disconnected. By extension, an entire graph can be called strongly (or weakly)
connected when all of its nodes are strongly (resp. weakly) connected to all other nodes
in the graph. A Strongly Connected Component (SSC) in a graph G = (N,E) is any
subgraph G′ = (N ′ ⊆ N, E ′ ⊆ E) which is itself a strongly connected graph. Finally,
if a directed graph contains at least one node strongly connected to itself through a non-
trivial (i.e., non-empty) path, the graph is said to be cyclic, as this implies the existence
of a path starting at that node and eventually circling back to it; otherwise, it can be
called a Directed Acyclic Graph (DAG). [Offner 2013] details the applications of graphs
in optimizing compilers.

Graphs are very general mathematical structures: nodes in a graph may be associ-
ated to objects of any kind, and edges can be used to represent arbitrary relations between
such objects. In the context of compilers, graphs have been used to represent various rela-
tions between parts of programs, such as “flows to” (control flows from a subroutine to the
next), “depends on” (an instruction’s result depends on its arguments), “calls” (e.g., pro-
cedure foo may call procedure bar), “happens before” (one memory operation happens
before the other), etc [Stanier and Watson 2013, Shivers 1988, Adve and Boehm 2010].
Each distinct set of relations being expressed gives rise to a different graph-based IR.

5.1. Control Flow Graphs

Control Flow Graphs (CFGs) are classic IRs used in optimizing compilers to partition
procedures into nodes and express control flow between them [Aho et al. 2006]. Nodes
in a CFG are “basic blocks”, which, according to [Aho et al. 2006], consist in linear in-
struction sequences with a single entry and no exit points until the very last instruction.
Then, graph edges are used to link basic blocks to every other node the program could
branch off to by the end of that instruction sequence. This leads to the classification of
compiler optimizations as either local (to a basic block) or global (but still within the same
procedure) [Aho et al. 2006]. Figures 7 and 8 show a C program and an equivalent CFG.

and techniques to combine control and data flow information in a single IR. One such ap-
proach is what [Lawrence 2007] refers to as an “SSA CFG”, that is, a CFG which respects
SSA form in the contents of its basic blocks. According to [Stanier and Watson 2013],
maintaining IRs in SSA form has become standard practice in modern compilers.

Static Single Assignment (SSA) is a technique invented by [Rosen et al. 1988] to
enable the efficient representation of use-def and def-use relations. It should be noted that
SSA, by itself, is not an IR, but a program property. Therefore, it can be achieved in any
representation, including linear 3ACs, graphs-based IRs and even high-level program-
ming languages [Stanier and Watson 2013]. For example, Figure 10 displays the same
program from Figures 7 and 8, now encoded in LLVM IR (left) and as a Scheme program
(right). These programs are equivalent and respect SSA form, as explained below.

1 define i32 @f(i32 %n) {

2 INIT:

3 br label %TEST

4

5 TEST:

6 %p1 = phi i32 [1, %INIT], [%c1, %BODY]

7 %c1 = phi i32 [0, %INIT], [%c2, %BODY]

8 %i1 = phi i32 [0, %INIT], [%i2, %BODY]

9 %b0 = icmp slt i32 %i1, %n

10 br i1 %b0, label %BODY, label %END

11

12 BODY:

13 %c2 = add i32 %p1, %c1

14 %i2 = add i32 %i1, 1

15 br label %TEST

16

17 END:

18 ret i32 %c1

19 }

1 (define (f n ret)

2

3 (define (loop p c i)

4 (define (BODY)

5 (let ((p2 c)

6 (c2 (+ p c))

7 (i2 (+ i 1)))

8 (loop p2 c2 i2)))

9

10 (define (END)

11 (ret c))

12

13 (begin ; TEST

14 (if (< i n)

15 (BODY)

16 (END))))

17

18 (begin ; INIT

19 (loop 1 0 0)))

Figure 10: Imperative φs versus functional blocks.

As the acronym suggests, a program in SSA form assigns all of its “variables”
precisely once, creating a local mapping from names to program values. Furthermore,
no variable may be used without being defined first (in a CFG, this can be rephrased as
“every basic block which uses a value is dominated by the basic block which defines it”).
These properties make it trivial to find the definition of a value when, later in the program,
it is being used in some operation [Lattner 2002].

In order to handle different mutable assignments to the same variable, SSA uses
a special φ operator. φ nodes (when represented in a graph-based IR) or φ functions (in
a register-based IR) use control flow information to resolve the correct value of variables
within their basic blocks [Stanier and Watson 2013]. Intuitively, φ nodes extend basic
blocks with formal arguments, much like parameters in a procedure. In fact, some com-
pilers (e.g., MLIR) achieve SSA form through such “extended basic blocks”, instead of
the equivalent φ nodes [Lattner et al. 2021]. Figure 10 (left) displays LLVM syntax for φ
functions: each operand to a phi pairs a value and a block label, and its result depends
on which block preceded the current one during program execution.

Programs expressed in a “purely functional” manner – with no mutable variable
assignments – are in SSA form by definition. This similarity has been observed by
[Kelsey 1995], who proved that SSA corresponds to a restricted version of CPS by de-
scribing conversion methods between both representations. [Appel 1998] states that SSA
is functional programming, rediscovered by developers of imperative language compilers.
To illustrate this point, Figure 10 displays two equivalent SSA-form programs; while the
LLVM versions requires φ instructions, the Scheme one uses pure functions as extended
basic blocks – notice that it displays the same number of “block arguments” (three) as
there are phi instructions in the LLVM IR program. This Scheme program was manu-
ally produced as an intermediate step when building the acyclic DFG shown in Figure 9.
Basing the DFG on the LLVM version instead would have resulted in an equivalent, yet
cyclic, graph, with a φ node at every cycle, clearly marking a “temporal dependency”,
that is, the influence of control information in the data flow graph.

Maintaining SSA form within a CFG is not the only way to combine control and
data flow information in a single IR. Within this group of hybrid graph-based IRs, it is also
possible to identify a chronological succession of so-called “dependence graph” designs,
each one aiming to improve upon its predecessors:

• The Program Dependence Graph (PDG) – Originally developed by
[Ferrante et al. 1987], the PDG is a directed multigraph2 combining a CFG and
a data dependency graph. The latter differs from a data flow graph because edges
follow the use-def direction, instead of def-use. The PDG is a useful representa-
tion for many compiler optimizations [Lawrence 2007, Stanier and Watson 2013].
However, maintaining its invariants across program transformations has a high
cost in comparison to the alternatives, and it complicates other analyses due to
aliasing and side-effect problems [Johnson 2004]. [Stanier and Watson 2013] note
that they were not aware of any compiler primarily using the PDG, despite it being
the most cited IR in their survey. A more detailed critique of the PDG is provided
in the work of [Johnson 2004].

• The Program Dependence Web (PDW) – [Ottenstein et al. 1990] designed the
PDW by augmenting the PDG with “gated SSA form”, which (unlike classic SSA)
is a representation that admits direct program interpretation. Unfortunately, the
PDW puts an even higher burden on compilers, since its construction requires
five passes over the PDG and it cannot directly represent irreducible control flow
[Johnson 2004, Stanier and Watson 2013, Reissmann et al. 2020].

• The Value Dependence Graph (VDG) – According to [Weise et al. 1994], “de-
pendence graph” IRs can be viewed as different approaches to removing the limi-
tations of a CFG. They propose the VDG as a next step in this direction, aiming to
represent programs only with dependency information and a few special operators.
The IR was deemed unsuitable for non-experimental use because it may fail to
preserve program termination behavior [Johnson 2004, Stanier and Watson 2013,
Reissmann et al. 2020].

• The Value State Dependence Graph (VSDG) – In order to address the VDG’s
2Multigraphs extend graphs with the ability to identify multiple different edges with the same nodes

at their extremities. This is particularly useful for dependency graph IRs, which may attribute different
meanings to two edges leaving a certain node, even if both connect to a common node on the other side.

the sea of nodes design leads to “implicit” and “inherent” transformations; in other words,
the mere act of representing a program in the IR can lead to optimizations such as Copy
Propagation, Dead Code Elimination and Common Subexpression Elimination. Figure 13
shows the previously discussed C program represented in Click’s IR.

An idea similar to the sea of nodes can be found in Thorin, an IR which aims to
effectively represent and optimize both imperative and functional programs, exploiting
the correspondence between SSA and CPS to model control flow in an uniform manner
[Leißa et al. 2015]. Unlike other functional IRs, Thorin encodes CPS in a graph instead of
the more traditional tree-based approach. According to [Leißa et al. 2015], this avoids the
compile-time and implementation overhead of resolving name conflicts during program
transformations. In fact, the sea-of-nodes-like design completely eliminates the need to
explicitly encode names and scope nesting; the former are substituted by use-def edges in
the SSA graph, and the latter can be found by analyzing the sets of nodes linked by these
edges [Leißa et al. 2015].

The influence of Click’s IR is also noted in MLIR [Lattner et al. 2021], a frame-
work designed for the construction of domain-specific compilers. MLIR can be viewed
as an extremely extensible SSA-form IR, designed to represent and optimize programs at
multiple levels of abstraction. It has a generic textual encoding, but can be grouped with
other graph-based IRs due to its ability to assign custom semantics to “regions” of basic
blocks – the most common one being the semantics of an SSA CFG [Lattner et al. 2021].

6. Conclusion

This work is motivated by indications of an upcoming boom in the diversity of hardware
architectures [Hennessy and Patterson 2019] and programming languages [Lattner 2021].
Its main contribution is a survey on portable compiler IRs, which are increasingly impor-
tant aspects of modern compilers. Unlike related works, this one covers functional and
algebraic IRs, while describing techniques used in both modern and old compilers to in-
crease the efficiency and the portability of program encodings.

Through an extensive literature review, it was possible to identify methodological
gaps related to the design and evaluation of compiler IRs: we lack IR design principles
and evaluation methods, especially in the context of a multi-language, multi-target “uni-
versal IR”. Perhaps related to these issues is the fact that most compiler IRs lack a for-
malization of their structure (including exchange formats) and interpretation (the model
of computation exposed by the IR).

We estimate that modern compiler infrastructures, including but not limited to
LLVM and MLIR, could be improved by applying more principled techniques and guide-
lines to the design of IR features and transformations. One such theoretical framework
can be found in the work of [Felleisen 1991], which presents a theory of expressiveness
that can be used to find redundancies in programming language constructs. Applying this
to compiler IRs would be an innovative experiment by itself.

In summary, future work possibilities include developing better evaluation meth-
ods for compiler IRs, from both empiric and theoretical points of view.

References

[Adams et al. 1986] Adams, N., Kranz, D., Kelsey, R., Rees, J., Hudak, P., and Philbin, J.
(1986). ORBIT: An Optimizing Compiler for Scheme. In Proceedings of the 1986

SIGPLAN Symposium on Compiler Construction, SIGPLAN ’86, page 219–233, New
York, NY, USA. Association for Computing Machinery.

[Adve and Boehm 2010] Adve, S. V. and Boehm, H.-J. (2010). Memory Models: A Case
for Rethinking Parallel Languages and Hardware. Communications of the ACM,
53(8):90–101.

[Aho et al. 2006] Aho, A., Lam, M., Sethi, R., and Ullman, J. (2006). Compilers: Princi-

ples, Techniques, and Tools. Addison Wesley, Boston, MA, USA, 2nd edition.

[Appel 1998] Appel, A. W. (1998). SSA is Functional Programming. SIGPLAN Notices,
33(4):17–20.

[Auslander and Hopkins 1982] Auslander, M. and Hopkins, M. (1982). An Overview of the
PL.8 Compiler. SIGPLAN Notices, 17(6):22–31.

[Bahmann et al. 2015] Bahmann, H., Reissmann, N., Jahre, M., and Meyer, J. C. (2015).
Perfect Reconstructability of Control Flow from Demand Dependence Graphs. ACM

Transactions on Architecture and Code Optimization, 11(4).

[Belwal and TSB 2015] Belwal, M. and TSB, S. (2015). Intermediate representation for
heterogeneous multi-core: A survey. In International Conference on VLSI Systems,

Architecture, Technology and Applications (VLSI-SATA), pages 1–6, Bengaluru, India.
IEEE.

[Braun et al. 2011] Braun, M., Buchwald, S., and Zwinkau, A. (2011). FIRM–A Graph-
Based Intermediate Representation. Technical report, Chamonix, France. Workshop
on Intermediate Representations.

[Calvert 2015] Calvert, P. R. (2015). Architecture-neutral parallelism via the Join Calculus.
Technical Report UCAM-CL-TR-871, University of Cambridge, Computer Labora-
tory, Cambridge, United Kingdom.

[Carter et al. 2003] Carter, L., Ferrante, J., and Thomborson, C. (2003). Folklore confirmed:
Reducible flow graphs are exponentially larger. In Proceedings of the 30th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’03,
page 106–114, New York, NY, USA. Association for Computing Machinery.

[Chow 2013] Chow, F. (2013). Intermediate Representation: The Increasing Significance of
Intermediate Representations in Compilers. ACM Queue, 11(10):30–37.

[Click and Paleczny 1995] Click, C. and Paleczny, M. (1995). A Simple Graph-Based In-
termediate Representation. In Papers from the 1995 ACM SIGPLAN Workshop on

Intermediate Representations, IR ’95, page 35–49, New York, NY, USA. Association
for Computing Machinery.

[Click 1995] Click, C. N. J. (1995). Combining Analysis, Combining Optimizations. Rice
University, Houston, TX, USA.

[Coleman et al. 1974] Coleman, S. S., Poole, P. C., and Waite, W. M. (1974). The Mobile
Programming System, Janus. Software: Practice and Experience, 4(1):5–23.

[Conway 1958] Conway, M. E. (1958). Proposal for an uncol. Communications of the ACM,
1(10):5–8.

[Cousineau et al. 1987] Cousineau, G., Curien, P.-L., and Mauny, M. (1987). The Categori-
cal Abstract Machine. Science of Computer Programming, 8(2):173–202.

[Downen et al. 2016] Downen, P., Maurer, L., Ariola, Z. M., and Peyton Jones, S.
(2016). Sequent Calculus as a Compiler Intermediate Language. SIGPLAN Notices,
51(9):74–88.

[ECMA-335 2012] ECMA-335 (2012). ECMA-335 - Common Language Infrastructure
(CLI). Standard, Ecma International.

[Farvardin and Reppy 2020] Farvardin, K. and Reppy, J. (2020). A New Backend for Stan-
dard ML of New Jersey. In IFL 2020: Proceedings of the 32nd Symposium on Im-

plementation and Application of Functional Languages, IFL 2020, page 55–66, New
York, NY, USA. Association for Computing Machinery.

[Feldman 2004] Feldman, S. (2004). A Conversation with Alan Kay: Big Talk with the
Creator of Smalltalk - and Much More. ACM Queue, 2(9):20–30.

[Felleisen 1991] Felleisen, M. (1991). On the expressive power of programming languages.
Science of Computer Programming, 17(1):35–75.

[Ferrante et al. 1987] Ferrante, J., Ottenstein, K. J., and Warren, J. D. (1987). The Program
Dependence Graph and Its Use in Optimization. ACM Transactions on Programming

Languages and Systems, 9(3):319–349.

[Flanagan et al. 1993] Flanagan, C., Sabry, A., Duba, B. F., and Felleisen, M. (1993). The
Essence of Compiling with Continuations. In Proceedings of the ACM SIGPLAN 1993

Conference on Programming Language Design and Implementation, PLDI ’93, page
237–247, New York, NY, USA. Association for Computing Machinery.

[Fournet and Gonthier 2000] Fournet, C. and Gonthier, G. (2000). The Join Calculus: a
Language for Distributed Mobile Programming. In Barthe, G., Dybjer, P., Pinto, L.,
and Saraiva, J., editors, Applied Semantics. International Summer School, APPSEM

2000,, pages 268–332, Berlin, Germany. Springer.

[Franz 1994] Franz, M. (1994). Code-generation On-the-fly: A Key to Portable Software.
Swiss Federal Institute of Technology in Zurich, Zurich.

[Franz and Kistler 1997] Franz, M. and Kistler, T. (1997). Slim Binaries. Communications

of the ACM, 40(12):87–94.

[FSF 2022] FSF (2022). GNU Compiler Collection (GCC) Internals.

[Ganapathi et al. 1982] Ganapathi, M., Fischer, C. N., and Hennessy, J. L. (1982). Retar-
getable Compiler Code Generation. ACM Computing Surveys, 14(4):573–592.

[Gentzen 1964] Gentzen, G. (1964). Investigations into Logical Deduction. American

Philosophical Quarterly, 1(4):288–306.

[Given 2005] Given, D. (2005). The Amsterdam Compiler Kit.

[Graham 1989] Graham, B. (1989). SECD: Design Issues. Technical report, University of
Calgary, Calgary, Canada.

[Gyllstrom et al. 1979] Gyllstrom, H. C., Knippel, R. C., Ragland, L. C., and Spackman,
K. E. (1979). The Universal Compiling System. SIGPLAN Notices, 14(12):64–70.

[Haas et al. 2017] Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M.,
Gohman, D., Wagner, L., Zakai, A., and Bastien, J. (2017). Bringing the Web up
to Speed with WebAssembly. SIGPLAN Notices, 52(6):185–200.

[Haddon and Waite 1978] Haddon, B. K. and Waite, W. M. (1978). Experience with the
Universal Intermediate Language Janus. Software: Practice and Experience, 8(5):601–
616.

[Harper 2016] Harper, R. (2016). Practical Foundations for Programming Languages.
Cambridge University Press, 3rd edition.

[Henderson 1980] Henderson, P. (1980). Functional Programming Application and Imple-

mentation. Prentice Hall, London, United Kingdom.

[Hennessy and Patterson 2019] Hennessy, J. L. and Patterson, D. A. (2019). A New Golden
Age for Computer Architecture. Communications of the ACM, 62(2):48–60.

[HSA 2018] HSA (2018). HSA Programmer’s Reference Manual: HSAIL Virtual ISA and
Programming Model, Compiler Writer, and Object Format (BRIG). Standard, HSA
Foundation.

[Johnson 2004] Johnson, N. E. (2004). Code size optimization for embedded processors.
Technical Report UCAM-CL-TR-607, University of Cambridge, Computer Labora-
tory, Cambridge, United Kingdom.

[Kelsey 1995] Kelsey, R. A. (1995). A Correspondence between Continuation Passing Style
and Static Single Assignment Form. In Papers from the 1995 ACM SIGPLAN Work-

shop on Intermediate Representations, IR ’95, page 13–22, New York, NY, USA. As-
sociation for Computing Machinery.

[Kennedy 2007] Kennedy, A. (2007). Compiling with Continuations, Continued. SIGPLAN

Notices, 42(9):177–190.

[Khronos 2020] Khronos (2020). SPIR Overview.

[Koopman 1989] Koopman, P. J. J. (1989). Stack Computers: the new wave. Ellis Horwood,
Pittsburgh, PA, USA.

[Landin 1964] Landin, P. J. (1964). The Mechanical Evaluation of Expressions. The Com-

puter Journal, 6(4):308–320.

[Larabel 2020] Larabel, M. (2020). Rust Lands Experimental Cranelift-Based Code Gener-
ator - Much Faster Debug Build Times.

[Lattner 2002] Lattner, C. (2002). LLVM: An Infrastructure for Multi-Stage Optimization.
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL,
USA.

[Lattner 2021] Lattner, C. (2021). The Golden Age of Compiler Design in an Era of
HW/SW Co-design. ASPLOS 2021 Keynote.

[Lattner and Adve 2004] Lattner, C. and Adve, V. (2004). LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings of the 2004

International Symposium on Code Generation and Optimization (CGO’04), Palo Alto,
CA, USA.

[Lattner et al. 2021] Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar,
J., Riddle, R., Shpeisman, T., Vasilache, N., and Zinenko, O. (2021). MLIR: Scaling
Compiler Infrastructure for Domain Specific Computation. In Proceedings of the 2021

IEEE/ACM International Symposium on Code Generation and Optimization, CGO ’21,
page 2–14, Korea. IEEE Press.

[Lawrence 2007] Lawrence, A. C. (2007). Optimizing compilation with the Value State
Dependence Graph. Technical Report UCAM-CL-TR-705, University of Cambridge,
Computer Laboratory, Cambridge, United Kingdom.

[Le Fessant and Maranget 1998] Le Fessant, F. and Maranget, L. (1998). Compiling Join-
Patterns. Electronic Notes in Theoretical Computer Science, 16(3):205–224. HLCL
’98, 3rd International Workshop on High-Level Concurrent Languages (Satellite Work-
shop of CONCUR ’98).

[Leißa et al. 2015] Leißa, R., Köster, M., and Hack, S. (2015). A Graph-Based Higher-
Order Intermediate Representation. In Proceedings of the 13th Annual IEEE/ACM

International Symposium on Code Generation and Optimization, CGO ’15, page
202–212, San Francisco, CA, USA. IEEE Computer Society.

[Lindholm et al. 2015] Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. (2015). The
Java Virtual Machine Specification. Technical report, Oracle, Redwood City, CA,
USA.

[LLNL 2022] LLNL (2022). ROSE Compiler – Program Analysis and Transformation.

[LLVM 2022] LLVM (2022). The LLVM Compiler Infrastructure – Language Reference
Manual.

[Logozzo and Fahndrich 2008] Logozzo, F. and Fahndrich, M. (2008). On the Relative
Completeness of Bytecode Analysis versus Source Code Analysis. In Proceedings

of the International Conference on Compiler Construction. Springer Verlag.

[Macrakis 1993a] Macrakis, S. (1993a). Delivering applications to multiple platforms using
ANDF. Technical report.

[Macrakis 1993b] Macrakis, S. (1993b). From UNCOL to ANDF: Progress in standard
intermediate languages. Technical report, Open Software Foundation, USA.

[Macrakis 1993c] Macrakis, S. (1993c). The structure of ANDF: Principles and examples.
Technical report.

[Maurer et al. 2017] Maurer, L., Downen, P., Ariola, Z. M., and Peyton Jones, S. (2017).
Compiling without Continuations. In Proceedings of the 38th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI 2017, page
482–494, New York, NY, USA. Association for Computing Machinery.

[McCarthy 1978] McCarthy, J. (1978). History of LISP, page 173–185. Association for
Computing Machinery, New York, NY, USA.

[Merrill 2003] Merrill, J. (2003). GENERIC and GIMPLE: A New Tree Representation for
Entire Functions. Technical report, Ottawa, Canada. GCC Developers Summit.

[Milner 1993] Milner, R. (1993). Elements of Interaction: Turing Award Lecture. Commu-

nications of the ACM, 36(1):78–89.

[Newey et al. 1972] Newey, M. C., Poole, P. C., and Waite, W. M. (1972). Abstract Ma-
chine Modelling to Produce Portable Software - A Review and Evaluation. Software:

Practice and Experience, 2(2):107–136.

[Nystrom 2021] Nystrom, R. (2021). Crafting Interpreters. Genever Benning, USA.

[Offner 2013] Offner, C. D. (2013). Notes on Graph Algorithms Used in Optimizing Com-
pilers.

[Oliva et al. 1997] Oliva, D., Nordin, T., and Peyton Jones, S. (1997). C--: A Portable As-
sembly Language. In Proceedings of the 1997 Workshop on Implementing Functional

Languages, volume 1467 of LNCS, page 1–19. Springer Verlag.

[Ottenstein et al. 1990] Ottenstein, K. J., Ballance, R. A., and MacCabe, A. B. (1990).
The Program Dependence Web: A Representation Supporting Control-, Data-,
and Demand-Driven Interpretation of Imperative Languages. SIGPLAN Notices,
25(6):257–271.

[Palamidessi 1997] Palamidessi, C. (1997). Comparing the Expressive Power of the Syn-
chronous and the Asynchronous π-Calculus. In Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’97,
page 256–265, New York, NY, USA. Association for Computing Machinery.

[Paleczny et al. 2001] Paleczny, M., Vick, C., and Click, C. (2001). The Java HotspotTM

Server Compiler. In Proceedings of the 2001 Symposium on Java Virtual Machine

Research and Technology Symposium, volume 1 of JVM’01, Monterey, CA, USA.
USENIX Association.

[Perkins and Sites 1979] Perkins, D. R. and Sites, R. L. (1979). Machine-Independent PAS-
CAL Code Optimization. SIGPLAN Notices, 14(8):201–207.

[Peschanski 2011] Peschanski, F. (2011). Parallel Computing with the Pi-Calculus. In Pro-

ceedings of the Sixth Workshop on Declarative Aspects of Multicore Programming,
DAMP ’11, page 45–54, New York, NY, USA. Association for Computing Machinery.

[Pierce 2002] Pierce, B. C. (2002). Types and Programming Languages. The MIT Press,
USA, 1st edition.

[Reissmann et al. 2020] Reissmann, N., Meyer, J. C., Bahmann, H., and Själander, M.
(2020). RVSDG: An Intermediate Representation for Optimizing Compilers. ACM

Transactions on Embedded Computing Systems, 19(6).

[Rosen et al. 1988] Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1988). Global
Value Numbers and Redundant Computations. In Proceedings of the 15th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88,
page 12–27, New York, NY, USA. Association for Computing Machinery.

[Shivers 1988] Shivers, O. (1988). Control Flow Analysis in Scheme. In Proceedings of

the ACM SIGPLAN 1988 Conference on Programming Language Design and Imple-

mentation, PLDI ’88, page 164–174, New York, NY, USA. Association for Computing
Machinery.

[Stanier and Watson 2012] Stanier, J. and Watson, D. (2012). A study of irreducibility in C
programs. Software: Practice and Experience, 42(1):117–130.

[Stanier and Watson 2013] Stanier, J. and Watson, D. (2013). Intermediate Representations
in Imperative Compilers: A Survey. ACM Computing Surveys, 45(3).

[Steel 1961a] Steel, T. B. (1961a). A First Version of UNCOL. In Papers Presented at

the May 9-11, 1961, Western Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-
ACM ’61, page 371–378, New York, NY, USA. Association for Computing Machinery.

[Steel 1961b] Steel, T. B. (1961b). UNCOL: The Myth and the Fact. In Goodman, R.,
editor, Annual Review in Automatic Programming, volume 2 of International Tracts in

Computer Science and Technology and Their Application, pages 325–344. Elsevier.

[Steele 1976] Steele, G. L. (1976). LAMBDA: The Ultimate Declarative. Technical report,
USA. AI Memo 379.

[Steele 1978] Steele, G. L. (1978). Rabbit: A Compiler for Scheme. Technical report, USA.

[Strong et al. 1958] Strong, J., Wegstein, J., Tritter, A., Olsztyn, J., Mock, O., and Steel, T.
(1958). The Problem of Programming Communication with Changing Machines: A
Proposed Solution. Communications of the ACM, 1(8):12–18.

[SUIF 2005] SUIF (2005). SUIF Compiler System.

[Susungi and Tadonki 2021] Susungi, A. and Tadonki, C. (2021). Intermediate Representa-
tions for Explicitly Parallel Programs. ACM Computing Surveys, 54(5).

[Tanenbaum et al. 1983] Tanenbaum, A. S., van Staveren, H., Keizer, E. G., and Stevenson,
J. W. (1983). A Practical Tool Kit for Making Portable Compilers. Communications

of the ACM, 26(9):654–660.

[TenDRA 2022] TenDRA (2022). The TenDRA Project.

[Unger and Mueller 2002] Unger, S. and Mueller, F. (2002). Handling Irreducible Loops:
Optimized Node Splitting versus DJ-Graphs. ACM Transactions on Programming Lan-

guages and Systems, 24(4):299–333.

[Wadler 2015] Wadler, P. (2015). Propositions as Types. Communications of the ACM,
58(12):75–84.

[Weise et al. 1994] Weise, D., Crew, R. F., Ernst, M., and Steensgaard, B. (1994). Value
Dependence Graphs: Representation without Taxation. POPL ’94, page 297–310,
New York, NY, USA. Association for Computing Machinery.

[Wilson et al. 1994] Wilson, R. P., French, R. S., Wilson, C. S., Amarasinghe, S. P., An-
derson, J. M., Tjiang, S. W. K., Liao, S.-W., Tseng, C.-W., Hall, M. W., Lam, M. S.,
and Hennessy, J. L. (1994). SUIF: An Infrastructure for Research on Parallelizing and
Optimizing Compilers. SIGPLAN Notices, 29(12):31–37.

[Wirth 1993] Wirth, N. (1993). Recollections about the Development of Pascal. SIGPLAN

Notices - History of Programming Languages (HOPL), 28(3):333–342.

[Zakai 2011] Zakai, A. (2011). Emscripten: An LLVM-to-JavaScript Compiler. In Proceed-

ings of the ACM International Conference Companion on Object Oriented Program-

ming Systems Languages and Applications Companion, OOPSLA ’11, page 301–312,
New York, NY, USA. Association for Computing Machinery.

