
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO TECNOLÓGICO

DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA
CIÊNCIA DA COMPUTAÇÃO

João Fellipe Uller

A Simple MPI Library for Lightweight Manycore Processors

Florianópolis
2021

João Fellipe Uller

A Simple MPI Library for Lightweight Manycore Processors

Trabalho de Conclusão do Curso do Curso
de Graduação em Ciência da Computação do
Centro Tecnológico da Universidade Federal
de Santa Catarina como requisito para ob-
tenção do título de Bacharel em Ciência da
Computação.
Orientador: Prof. Márcio Bastos Castro, Dr.
Coorientador: Pedro Henrique Penna, Me.

Florianópolis
2021

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Uller, João Fellipe
 A Simple MPI Library for Lightweight Manycore
Processors / João Fellipe Uller ; orientador, Márcio
Bastos Castro, coorientador, Pedro Henrique Penna, 2021.
 117 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Ciências da Computação, Florianópolis, 2021.

 Inclui referências.

 1. Ciências da Computação. 2. Manycores Leves. 3.
Sistemas de Execução. 4. MPI. 5. Computação de Alto
Desempenho. I. Castro, Márcio Bastos. II. Penna, Pedro
Henrique. III. Universidade Federal de Santa Catarina.
Graduação em Ciências da Computação. IV. Título.

João Fellipe Uller
A Simple MPI Library for Lightweight Manycore Processors

Este Trabalho de Conclusão do Curso foi julgado adequado para obtenção do Título de
Bacharel em Ciência da Computação e aprovado em sua forma final pelo curso de

Graduação em Ciência da Computação.

Florianópolis, 18 de maio de 2021.

Prof. Jean Everson Martina, Dr.
Coordenador do Curso

Banca Examinadora:

Prof. Márcio Bastos Castro, Dr.
Orientador

Universidade Federal de Santa Catarina

Pedro Henrique Penna, Me.
Coorientador

Pontifícia Universidade Católica de Minas Gerais

Prof. Frank Augusto Siqueira, Dr.
Avaliador

Universidade Federal de Santa Catarina

Prof. Odorico Machado Mendizabal, Dr.
Avaliador

Universidade Federal de Santa Catarina

This work is dedicated to my colleagues and siblings, who
accompanied me througout this course, to my parents, who
helped to build the foundation I needed to persevere in life’s

challenges, to Caroline, that always cheered me up when I
needed it most, and finally, to God who made it all possible.

ACKNOWLEDGEMENTS

I would like to thank all those people who helped in any way with the development
of this undergraduate dissertation. First, I thank my both advisors, Márcio Bastos Castro
and Pedro Henrique Penna, who, from the beginning, had all the attention and commit-
ment to make this the best it could be. I thank for João Vicente Souto and the other
colleagues from the research group who also were directly involved in the present work,
being an essential part for its execution. In addition, this work was partially supported by
Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq) and by
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) under
the Capes-PrInt Program (grant number 88881.310783/2018-01), to whom I am grateful
for the incentive given that fostered the development of the present work.

Everything should be made simple as possible, but no simpler.
(Albert Einstein)

RESUMO

Nas últimas décadas, melhorar o desempenho de núcleos individuais e aumentar o nú-
mero de núcleos de alta potência por chip foram as principais tendências na construção
de processadores. No entanto, esta combinação levou não apenas a um aumento no poder
computacional, mas também a um aumento considerável no seu consumo de energia. Há
uma preocupação crescente entre a comunidade científica a respeito da eficiência ener-
gética dos supercomputadores modernos. Nos últimos anos, muitos esforços têm sido
feitos em pesquisas, buscando soluções alternativas capazes de resolver este problema de
escalabilidade e eficiência energética. O desempenho e a eficiência energética providos
pelos manycores leves são inegáveis. Contudo, a falta de suporte avançado e portátil
para esses processadores, como interfaces padrão de alto desempenho para o desenvolvi-
mento de código portável, torna o desenvolvimento de software um desafio. Atualmente,
duas abordagens são empregadas tentando aumentar a programabilidade em manycores
leves: Sistemas operacionais (SOs) e sistemas de execução (runtimes). A primeira fornece
portabilidade mas expõe interfaces de programação complexas no nível do SO aos desen-
volvedores. Já a segunda se concentra em fornecer interfaces ricas e de alto desempenho,
as quais são específicas do fabricante e resultam em software não portável. Portanto, as
soluções existentes forçam os desenvolvedores a escolher entre a portabilidade do software
ou um processo de desenvolvimento mais rápido. Para resolver esse dilema, neste traba-
lho é proposta uma biblioteca MPI leve e portável (LWMPI) projetada do zero para lidar
com as restrições e complexidades dos manycores leves. A LWMPI foi integrada a um
SO direcionado a esses processadores, oferecendo assim uma melhor programabilidade e
portabilidade implícita para manycores leves, sem incorrer em sobrecargas de desempe-
nho excessivas que inviabilizariam o seu uso. Para fornecer uma avaliação abrangente da
LWMPI, foram utilizadas três aplicações de uma suíte de benchmarking representativa,
usada para avaliar o desempenho de manycores leves, além de um benchmark sintético.
Os resultados obtidos no processador Kalray MPPA-256 revelaram que a LWMPI atinge
uma performance e uma escalabilidade de desempenho melhor do que uma solução feita
especificamente para essa análise e que se utiliza puramente das abstrações de IPC do
Nanvix, ao mesmo tempo em que oferece uma interface de programação mais rica.

Palavras-chave: Manycores Leves. Sistemas de Execução. MPI. Computação de Alto
Desempenho.

ABSTRACT

In the last decades, improving the performance of individual cores and increasing the
number of high power cores per chip were the main trends in the construction of proces-
sors. However, this combination led not only to an increase in the computing capacity, but
also to a considerable growth in energy consumption. There is a crescent concern among
the scientific community about the energy efficiency of modern supercomputers. In the
last years, many efforts have been made in research, searching for alternative solutions
capable of solving this problem of scalability and energy efficiency. The performance and
energy efficiency provided by lightweight manycores is undeniable. Although, the lack of
rich and portable support for these processors, such as high-performance standard inter-
faces that deliver portable source codes, makes software development a challenging task.
Currently, two approaches are employed trying to improve programmability in lightweight
manycores: Operating Systems (OSes) and baremetal runtime systems. The former pro-
vides portability but exposes complex OS-level programming interfaces to developers.
The latter focuses on providing rich and high performance interfaces, which are vendor-
specific and yield to non-portable software. Thus, the existing solutions force software
engineers to choose between software portability or a faster development process. To
address this dilemma, we propose a portable and lightweight MPI library (LWMPI) de-
signed from scratch to cope with restrictions and intricacies of lightweight manycores. We
integrated LWMPI into a distributed OS that targets these processors, thus featuring bet-
ter programmability and implicit portability for lightweight manycores, without incurring
excessive performance overheads that could hinder its use. To deliver a comprehensive
evaluation of LWMPI, we relied on three applications from a representative benchmark
suite used to assess the performance of lightweight manycores, and a synthetic benchmark.
Our results obtained on the Kalray MPPA-256 processor unveiled that LWMPI present
better performance and scalability when compared with a specifically made solution that
uses the raw Nanvix Inter-Process Communication (IPC) abstractions, while exposing a
richer programming interface.

Keywords: Lightweight Manycores. Runtime Systems. MPI. High Performance Com-
puting.

LIST OF FIGURES

Figure 1 – Multiprocessor conceptual view. 30
Figure 2 – Multicomputer conceptual view. 31
Figure 3 – Examples of network topologies. 32
Figure 4 – Overview of the Kalray MPPA-256 lightweight manycore processor. . . 33
Figure 5 – The OpenMP fork-join model. 36

Figure 6 – Conceptual view of the Nanvix microkernel. 42
Figure 7 – Portal and Mailbox conceptual views. 44
Figure 8 – Overview of a distributed OS. 45
Figure 9 – Virtualization conceptual view. 46
Figure 10 – Conceptual view of IKC resource multiplexing. 47

Figure 11 – Architectural overview of LWMPI. 51
Figure 12 – Overview Message Passing Interface (MPI) process management in

LWMPI. 60
Figure 13 – Protocol for address lookup and internal structures. 63
Figure 14 – Interactions between LWMPI and Nanvix. 65
Figure 15 – Communication protocol. 67
Figure 16 – Interactions between LWMPI and Nanvix in local communications. . . 68
Figure 17 – Example of compact (left) and scatter (right) policies. 69

Figure 18 – Execution times obtained with different MPI process mapping policies
in a scenario with 12 MPI processes and the optimized version of LWMPI. 75

Figure 19 – FN application results. 76
Figure 20 – GF application results. 77
Figure 21 – KM application results. 78
Figure 22 – Power consumption for K-Means (KM) when varying the number of clus-

ters/problem sizes. 78
Figure 23 – Energy consumption for Friendly Numbers (FN), Gaussian Filter (GF)

and KM when varying the exp. scenarios. 79

LIST OF TABLES

Table 1 – Predefined MPI Groups. 55
Table 2 – Predefined MPI Communicators. 56
Table 3 – Predefined MPI Error Handlers. 57
Table 4 – Predefined C Datatypes. 59

Table 5 – Parameters of synthetic and CAP Bench applications. 73

LIST OF ALGORITHMS

1 MPI_Comm_rank entry point. 112
2 mpi_comm_rank underlying function. 112
3 mpi_group_rank implementation. 113
4 Runtime initialization implementation. 114
5 Synchronous send implementation. 116
6 Receive function implementation. 117

LIST OF ABBREVIATIONS AND ACRONYMS

AOS Asynchronous One-Sided. 35
API Application Programming Interface. 35, 36, 39, 50, 59, 73, 81

C-NoC Control NoC. 33
CPU Central Processing Unit. 29, 30, 31, 80

DMA Direct Memory Access. 33, 42
D-NoC Data NoC. 33
DRAM Dynamic Random Access Memory. 33
DSM Distributed Shared Memory. 32

FN Friendly Numbers. 15, 78, 79, 80

GF Gaussian Filter. 15, 78, 79, 80
GPU Graphics Processing Unit. 29, 34

HAL Hardware Abstraction Layer. 34, 41, 45, 46, 47, 48
HPC High Performance Computing. 29, 35, 37

IKC Inter-Kernel Communication. 42, 45, 81
IPC Inter-Process Communication. . . 13, 27, 39, 41, 45, 46, 51, 61, 65, 67, 68, 73,

75, 79, 81, 111, 115

KM K-Means. 15, 78, 79, 80

MIMD Multiple Instruction Multiple Data. 25, 29, 32, 34, 52, 61
MISD Multiple Instruction Single Data. 29
MPB Message Passing Buffer. 39
MPI Message Passing Interface. . . 15, 23, 26, 27, 37, 39, 40, 49, 50, 51, 52, 53, 54,

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77,
78, 80, 81, 111, 112, 113, 115

MPSoC Multiprocessor System-on-Chip. 25
MW Megawatt. 25

NoC Network-on-Chip. 25, 26, 32, 33, 46, 47, 61, 67, 69, 72, 73, 76
NUMA Non-Uniform Memory Access.. .30, 31, 34

OpenMP ARB OpenMP Architecture Review Board. 36
OS Operating System. . . 13, 26, 27, 34, 35, 40, 41, 43, 44, 45, 46, 49, 50, 51, 53,

61, 62, 69, 81, 111, 113, 115

PE Processing Element. 25, 33, 53, 59, 60, 61, 62, 69, 72, 73
PGAS Partitioned Global Address Space.. .39
POSIX Portable Operating System Interface. . . 26, 34, 35, 39, 41, 43, 44, 45, 49, 59,

69, 81
PUC Minas Pontifícia Universidade Católica de Minas Gerais. 26

RAM Random Access Memory. 30
RM Resource Manager. 33
RPC Remote Procedure Call. 32

SIMD Single Instruction Multiple Data. 29
SISD Single Instruction Single Data. 29
SMP Symmetric Multiprocessing. 34
SPM Scratchpad Memory. 25
SRAM Static Random Access Memory. 33

UFSC Universidade Federal de Santa Catarina. 26
UGA Université Grenoble Alpes. 26
UMA Uniform Memory Access. 30
UPC Unified Parallel C. 39

CONTENTS

1 INTRODUCTION . 25
1.1 RESEARCH GOAL . 26
1.2 CONTRIBUTIONS . 26
1.3 WORK STRUCTURE . 27

2 BACKGROUND . 29
2.1 MULTIPLE PROCESSORS COMPUTER ARCHITECTURES 29
2.1.1 Multiprocessors . 30
2.1.2 Multicomputers . 31
2.2 LIGHTWEIGHT MANYCORE PROCESSORS 32
2.2.1 Software Development Support 34
2.3 PARALLEL PROGRAMMING ENVIRONMENTS 35
2.3.1 OpenMP . 35
2.3.2 MPI . 37

3 RELATED WORK . 39
3.1 DISCUSSION . 40

4 NANVIX OS . 41
4.1 NANVIX MICROKERNEL . 41
4.1.1 IPC Abstractions . 42
4.2 NANVIX MULTIKERNEL . 44
4.3 ENHANCEMENTS IN NANVIX IKC 45
4.3.1 Virtualization . 45
4.3.2 Resource Multiplexing . 47

5 LWMPI: A MPI LIBRARY FOR LIGHTWEIGHT MANY-
CORES . 49

5.1 DESIGN GOALS . 49
5.2 OVERVIEW . 50
5.3 MPIUTIL . 51
5.3.1 Objects . 52
5.3.2 Processes . 52
5.4 LIBMPI . 53
5.4.1 Runtime Management . 54
5.4.2 Communication Groups . 54
5.4.3 Communicators . 55
5.4.4 Error Handlers . 56

5.4.5 Datatypes . 57
5.5 MPI PROCESS MANAGEMENT . 58
5.6 THREAD ADDRESSING SCHEME 61
5.7 POINT-TO-POINT COMMUNICATION 63
5.7.1 Send and Receive Operations . 63
5.7.2 Request Cycle . 65
5.7.3 Communication Protocol . 66
5.7.4 Local Communication Optimization via Shared Memory . . . 67
5.8 PROCESS MAPPING POLICIES . 68
5.9 ADDITIONAL CONSIDERATIONS 69

6 EVALUATION METHODOLOGY 71
6.1 APPLICATIONS . 71
6.2 EXPERIMENTAL DESIGN . 72

7 EXPERIMENTAL RESULTS 75
7.1 IMPACTS OF MPI PROCESS MAPPING POLICIES 75
7.2 PERFORMANCE EVALUATION WITH CAP BENCH APPLICA-

TIONS . 76
7.2.1 FN Application . 76
7.2.2 GF Application . 77
7.2.3 KM Application . 77
7.2.4 Energy Efficiency Evaluation . 78
7.3 ADDITIONAL CONSIDERATIONS 79

8 CONCLUSIONS AND FUTURE WORK 81

BIBLIOGRAPHY . 83

APPENDIX A – SCIENTIFIC ARTICLE 89

APPENDIX B – LIST OF IMPLEMENTED FUNCTIONS . 109

APPENDIX C – LWMPI SOURCE CODE EXAMPLES . . 111
C.1 MPI_COMM_RANK . 111
C.2 MPI_INIT . 113
C.3 MPI_SEND AND MPI_RECV . 115

25

1 INTRODUCTION

For many years, the advances in semiconductors technology and computer ar-
chitecture were enough to meet the growing demands for computational power (LARUS;
KOZYRAKIS, 2008). In the last decades, the increase in clock frequency of individual
cores or, more recently, in the number of high power cores per chip, were the main trends
in the construction of processors. However, the combination of these two approaches led
not only to an increase in the architectural complexity of these processors, but also to a
considerable growth in their power consumption.

There is a crescent concern among the scientific community about the energy
efficiency of modern supercomputers. Kogge et al. (2008) emphasizes that the acceptable
power consumption of a supercomputer to reach the Exascale is around 20 Megawatt
(MW). This would lead to a minimum efficiency of 50 GFlops/W, much more than the
most power-efficient supercomputer currently in use. According to Green500 (2020),
Preferred Networks MN-3 (PFN, 2020) is the number one in this list performing 21.1
GFlops/W.

In the last years, many efforts have been made in order to study, evaluate and
develop different solutions trying to solve this problem of scalability and energy efficiency.
In this context, lightweight manycore processors surged to address demands on high per-
formance and energy efficiency (FRANCESQUINI et al., 2015). Processors belonging to
this class are classified as Multiprocessor System-on-Chips (MPSoCs), as they group all
the components of a computer in a single chip. On the one hand, to deliver high per-
formance and scalability, these processors rely on a distributed memory architecture and
interconnections based on rich Networks-on-Chip (NoCs). On the other hand, to achieve
energy efficiency, they are built with simple low-power Multiple Instruction Multiple
Data (MIMD) cores (ROSSI et al., 2017), also known as Processing Elements (PEs), and
Scratchpad Memories (SPMs) (MELPIGNANO et al., 2012) with no hardware coherency
support. Moreover, these processors may exploit hardware heterogeneity by featuring PEs
(or entire clusters) with different capabilities (DAVIDSON et al., 2018). Some industry-
successful examples of lightweight manycores are the Kalray MPPA-256 (DINECHIN et
al., 2013a), PULP (ROSSI et al., 2017) and the Sunway SW26010 (FU et al., 2016), being
the latter employed in the fourth most powerful commercially available supercomputer to
date according to TOP5001 (Sunway TaihuLight).

While the aforementioned architectural features make lightweight manycores more
scalable than other parallel processors in both performance and energy efficiency, they
introduce several challenges in software programmability. For instance, the distributed
memory architecture requires a non-trivial software design to handle data access across
multiple physical address spaces. Hence, software should explicitly fetch data from remote

1 https://www.top500.org

26

memories to local ones to be manipulated (FRANCESQUINI et al., 2015). Furthermore,
the small amount of on-chip memory demands software to explicitly tile the working
data set into chunks and locally manipulate them one at a time (SOUZA et al., 2017).
Additionally, it is up to the software to take care of data caching and replication to boost
performance. Finally, the rich NoC exposes mechanisms for asynchronous programming
to overlap communication with computation (HASCOËT et al., 2017); and hand-operated
routing to guarantee uniform communication latencies.

Currently, two approaches are employed to address programmability challenges in
lightweight manycores: Operating Systems (KLUGE; GERDES; UNGERER, 2014; AS-
MUSSEN et al., 2016; PENNA et al., 2019) and baremetal runtime systems (DINECHIN
et al., 2013b; VARGHESE et al., 2014; RICHIE; ROSS; INFANTOLINO, 2017). The
former is meant to bridge critical programmability gaps imposed by hardware intricacies.
The latter aims to expose a rich, performance-oriented programming environment, nar-
rowed to the underlying architecture. While these two approaches are effective for some
use cases, they have a significant duality drawback. Application development directly
on top of OS interfaces yields to software portability across architectures, but the actual
programming interface provided is complex and delays the software development process.
In contrast, baremetal and vendor-specific runtime systems expose richer interfaces that
accelerate the development process, but they exclusively concern to the software stack
ecosystem of a specific lightweight manycore. As an immediate consequence, software
written on top of these higher-level interfaces end up to be non-portable. This way, the
software stack for lightweight manycores lacks in programmability, once it fails to provide
support for both fast development process and software portability.

1.1 RESEARCH GOAL

Based on the aforementioned motivations, the main goal of this undergraduate
dissertation is to propose LWMPI: a lightweight and portable MPI library that targets
lightweight manycores. We integrated it on top of Nanvix, a Portable Operating System
Interface (POSIX)-compliant OS that targets these processors. We believe that combin-
ing both of the aforementioned approaches would make possible to our library to provide
better programmability and implicit portability for lightweight manycores, without in-
curring excessive performance overheads that could hinder its use. This work is part
of the Nanvix research project, a collaborative project between Universidade Federal de
Santa Catarina (UFSC), Pontifícia Universidade Católica de Minas Gerais (PUC Minas)
and Université Grenoble Alpes (UGA), that aims at the design and implementation of a
POSIX-compliant OS for lightweight manycore processors.

27

1.2 CONTRIBUTIONS

This work delivers the following contributions to the state of the art in portable
communication libraries for lightweight manycore processors:

1. We propose new enhancements to the Nanvix low-level communication primitives
to better support the proposed library;

2. We propose a simple yet performant lightweight MPI library that leverages the IPC
abstractions of Nanvix and includes some of the optimizations of the underlying
communication system to reduce the overhead imposed by having an additional
software layer;

3. We show that the proposed approach has a very low overhead compared to the low-
level communication primitives when running representative benchmarks on Kalray
MPPA-256.

Part of the contributions presented in this work have been published in Escola
Regional de Alto Desempenho da Região Sul (ERAD/RS) (ULLER et al., 2020b) and in
Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD) (ULLER et al.,
2020a). The authors of the paper published in WSCAD have been invited to submit an
extended version of the paper to the journal Concurrency and Computation: Practice and
Experience.

1.3 WORK STRUCTURE

The remainder of this work is organized as follows. In Chapter 2, we cover the
theoretical background needed for the discussion of the present work. In Chapter 3, we
discuss the related work. In Chapter 4, we present Nanvix, an open-source distributed
OS that targets lightweight manycores, which serves as base for the development of the
proposed library. In Chapter 5, we present the developed library and discuss its design
and implementation details. In Chapter 6, we detail our evaluation method, while in
Section 7 we analyze our experimental results. Finally, we draw our conclusions and
discuss our future work in Chapter 8.

29

2 BACKGROUND

In this chapter, we uncover the fundamental concepts related to the present work.
In Section 2.1, we discuss concepts that are related to parallel architectures. Next, in
Section 2.2, we present the lightweight manycore processors and discuss some of their
architectural features, as well as the software development support currently available for
them. Finally, in Section 2.3, we present some of the runtime systems that are applicable
to lightweight manycores, and that have potential to increase software programmability
for this class of processors.

2.1 MULTIPLE PROCESSORS COMPUTER ARCHITECTURES

The ever increasing necessity for computational power always pushed the tech-
nological advances of modern computers. Nowadays, there are a countless applications
that involve a colossal number of operations to be realized, specially those involved in
High Performance Computing (HPC). For this reason, modern architectures focus not
only on creating faster computers by adding more powerful components, but also on how
to organize these resources to better utilize them. This way, they try to achieve the best
performance with better efficiency. To understand the variety of parallel architectures
available, Flynn (1972) proposed a taxonomy that classifies parallel architectures in four
classes, based in their data and instruction flows.

In the Single Instruction Single Data (SISD) class we have sequential machines
that operate over a single execution flow, executing at most one instruction per clock cycle
and operating over a single data stream. This way, these machines exploit no parallelism
in any of these streams, like single core machines. Next, in the Multiple Instruction Sin-
gle Data (MISD) class we have machines that execute multiple instructions flows over a
single data stream. This is the most uncommon class, and it is difficult to find examples
of real systems that belong to this class, but critical systems that need fault tolerance
may implement this characteristic. The third class is the Single Instruction Multiple Data
(SIMD), that describes computers that are able to apply a single instruction over multiple
data streams simultaneously. These computers use hardware replication to achieve this
characteristic, and a good example of such machines are the Graphics Processing Units
(GPUs). Finally, the MIMD class describes machines that have multiple Central Pro-
cessing Units (CPUs), where each CPU is capable to execute multiple instructions over
multiple data streams, simultaneously, i.e., multiple processes may run on these proces-
sors independently and in parallel. Actually, this is the class where most of the modern
multiprocessors are included, like the CPUs from Intel and AMD.

In the present work, we are particularly interested in architectures that are ca-
pable to support MIMD workloads. There are two main groups that fall into this class,
which we present in the next subsections: multiprocessors and multicomputers.

30

CPU 1 CPU 2

Memory

Bus

... CPU N

Figure 1 – Multiprocessor conceptual view.
Source: Adapted from Tanenbaum & Bos (2014).

2.1.1 Multiprocessors

Shared-memory multiprocessors are computing systems where two or more CPUs
share full access to a common Random Access Memory (RAM) (TANENBAUM; BOS,
2014). Figure 1 illustrates this type of system, in which all CPUs share the same intercon-
nection to access the shared memory module. Additionally to the shared memory, each
CPU may have its local cache to reduce access contention to the main memory.

In general, this type of system takes advantage of high rates of parallelism having
multiple execution streams. However, since this multiple processors may access the same
memory regions, this parallelism may lead to concurrency issues and race conditions, if
no synchronization mechanisms are provided. The communication between the different
processes is achieved using shared memory regions. For that, the communicant sides agree
in a common structure landed in a common memory region, that is read/written when
they want to communicate with one another.

According to memory accesses, multiprocessed architectures can be classified into
two main classes: Uniform Memory Access (UMA) architectures, where all CPUs have
the same latency in memory accesses; and Non-Uniform Memory Access (NUMA) archi-
tectures, at which processors may experience different latencies when accessing memory.

In the case of UMA architectures, the memory is centralized and shared across
all CPUs, with the characteristic of having the same access latencies for all processors,
independently of the interconnection type. The first UMA architectures were bus-based.
However, the bus becomes a bottleneck as the number of interconnected processors grows
up. This way, crossbar switches and multistage switching networks have become other
possibilities for interconnection in these architectures.

Even so, the number of CPUs in UMA multiprocessors is limited to a few dozens.
NUMA multiprocessors, on the other hand, offer much more scalability in terms of the
number of processors in the same architecture. This type of system stills being char-
acterized by a single address space that is common to all CPUs, but these CPUs may

31

CPU 1 CPU 2

Bus

... CPU N

Memory Memory Memory

Figure 2 – Multicomputer conceptual view.
Source: Adapted from Tanenbaum & Bos (2014).

have different access latencies, depending on which memory bank is accessed. NUMA
architectures are constructed on top of an interconnection that connects multiple NUMA
nodes, where each node has its CPUs and close memory bank that is still accessible to
CPUs that are external to the node, at the cost of higher access latencies.

Multiprocessors are popular since they are easier to program. The shared memory
makes communication and synchronization much simpler, since any process may achieve
this functionalities by simply using shared memory regions. However, building large
multiprocessors is difficult and may be very expensive, once the architecture becomes
much more complex (TANENBAUM; BOS, 2014). The alternative to keep increasing the
number of cores of an architecture is to construct it as a multicomputer.

2.1.2 Multicomputers

Multicomputers are computational systems where the basic components are ele-
mentary computers. Each node of this type of system consists in one or more multipro-
cessors, a local memory module and at least one interface that is used to communicate
with the rest of the system. In this type of architecture, a processor has access only
to its local memory. To access data that is not locally present, it needs some message
passing mechanisms to explicitly communicate with the other nodes. Figure 2 illustrates
this type of architecture, in which each CPU has access to its local memory module and
a high-performance network interconnects the CPUs.

This approach makes it possible to integrate up to thousands of nodes under
the vision of a single clustered architecture. This type of system relieves the burden of
providing a single address space and cache coherency across all CPUs in exchange for the
problem of providing fast networks and high-speed communication interfaces. However,
the goal now is to provide message passing in the microsecond scale, instead of nanosecond
in the case of shared memory, being much simpler and cheaper (TANENBAUM; BOS,
2014).

32

Figure 3 – Examples of network topologies.

(a) Star. (b) Grid. (c) Torus.

Source: Adapted from Tanenbaum & Bos (2014).

To interconnect the nodes of a multicomputer, a switch set of a high-performance
network may be organized into a variety of topologies, according to the intended char-
acteristics. For small systems, a single switch in a star topology may be cheaper to
implement and also fulfill the system necessities. Commercially used multicomputers,
however, generally adopt bi- or even tri-dimensional topologies like mesh, torus or cube
that have better scalability and regular behavior to interconnect multiprocessor systems.
Figure 3 illustrates some examples of traditional network topologies.

In software, there is the necessity of message passing mechanisms to enable ex-
plicit communication between the nodes. There is a variety of options to implement such
mechanisms: a send/receive library that can be synchronous or asynchronous, depending
on the hardware available; Remote Procedure Call (RPC) calls (NELSON, 1981); or even
some mechanism that implements Distributed Shared Memory (DSM) notions (NURN-
BERGER et al., 2014; CHEN et al., 2011), which offers the illusion of shared memory on
top of the distributed memory system implemented by the architecture.

2.2 LIGHTWEIGHT MANYCORE PROCESSORS

Lightweight manycores are a new class of manycore processors that have an en-
deavor to deliver high performance and energy efficiency in a single die. Considering
the aforementioned classification, lightweight manycores can be seen as multicomputer
systems on a chip. To achieve this, they rely on specific architectural features such as:

i thousands of low-power cores;
ii MIMD capability;
iii tightly-coupled groups of cores (aka clusters);
iv distributed memory architecture and small local memories;
v reliable and fast NoCs for message-passing; and
vi heterogeneous processing capabilities in I/O and computing clusters.

33

Figure 4 – Overview of the Kalray MPPA-256 lightweight manycore processor.
Source: (PENNA; FRANCIS; SOUTO, 2019)

To provide substantial insight on lightweight manycores, we consider in the
present work an industry-successful example of such type of processor: the Kalray MPPA-
256 (DINECHIN et al., 2013a). Notwithstanding, the following discussion extends to other
lightweight manycores (ROSSI et al., 2017; FU et al., 2016). Figure 4 presents an overview
of this processor. Overall, Kalray MPPA-256 integrates 256 general-purpose cores and
32 firmware cores, called PEs and Resource Managers (RMs), respectively, totalizing 288
cores. These cores are disposed into 20 clusters, being 16 Compute Clusters, intended
for general-purpose processing, and 4 I/O Clusters, intended for general I/O connectivity,
being two of these clusters connected to the Dynamic Random Access Memory (DRAM),
and two with PCI/Ethernet controllers. Each cluster is composed of heterogeneous and
limited hardware capabilities to perform different roles. For instance, I/O Clusters have
four RMs, four NoC interfaces, and 4 MB local Static Random Access Memory (SRAM)
to exchange data with external resources and internal clusters. Differently, Compute Clus-
ters have one RM, 16 PEs, one NoC interface, and only 2 MB local SRAM to run user
workloads. Cores within the cluster share and have uniform access to hardware resources.

Communication between clusters is exclusively achieved by explicitly exchang-
ing hardware-level messages through two NoCs. Specifically, the Control NoC (C-NoC)
enables synchronization and small control messages handover, whereas the Data NoC
(D-NoC) supports arbitrary-sized data exchanges. At this point, the I/O heterogeneity
among clusters becomes more evident. I/O Clusters have direct access to the attached
DRAM or a device, while Compute Clusters must tile their data into messages and send
them through the NoC using an I/O Cluster as an intermediary to access these resources.
To improve communication performance, Kalray MPPA-256 features a built-in Direct
Memory Access (DMA) engine in its NoC interfaces to enable asynchronous communica-
tions and higher bandwidth for dense data transfers.

To summarize, the aforementioned set of architectural features grants important
distinctions between lightweight manycores and other well-known manycore processors:

34

• Manycore processors such as Intel Xeon Phi, Tilera TILE-Gx100 and Intel Single-
Cloud Computer do not have a constrained memory system, with a distributed
architecture and small local memories;

• Symmetric Multiprocessing (SMP) architectures based on NUMA design are built
with multiple CPU packages interconnected by a dedicated hardware outside of the
processor chips (e.g., NUMAlink); and

• GPUs do not cope efficiently with MIMD workloads.

2.2.1 Software Development Support

The paradigm breakthrough brought by lightweight manycores allows computer
systems to scale their performance and energy efficiency. However, challenges introduced
by their architectural intricacies to software programmability impact from low- to user-
level applications. Examples of these challenges are dark silicon (HAGHBAYAN et al.,
2017), data prefetching and tiling (FRANCESQUINI et al., 2015), asynchronous commu-
nication (HASCOËT et al., 2017), non-coherent caches (DINECHIN et al., 2013a) and
application deployment (SOUZA et al., 2017).

The challenges that arise from the architectural characteristics of lightweight
manycores make better development environments an important requirement to porting
software for these processors. To do that, there are two approaches currently employed to
provide better programmability in lightweight manycores: OSes and baremetal runtime
systems.

OSes are meant to bridge critical programmability gaps in architectures. To this
end, they provide resource sharing and multiplexing mechanisms, as well as they expose
rich abstractions to user-level applications. Inherently due to the architectural features of
lightweight manycores, OSes for these processors embrace a distributed design to achieve
scalability (BOYD-WICKIZER et al., 2010). In this approach, the OS is factored in a set
of services, each of which is deployed on a core of the parallel architecture. Cores that do
not run OS services are made available to user-level applications.

Multiple architectures and implementations for a distributed OS are possible,
each one targeting a specific set of design goals and constraints. However, a three-tier
approach is commonly adopted by distributed OSes for lightweight manycores such as
MOSSCA (KLUGE; GERDES; UNGERER, 2014), M3 (ASMUSSEN et al., 2016) and
Nanvix (PENNA et al., 2019). In the bottom layer, a generic and flexible Hardware
Abstraction Layer (HAL) enables portability across different processor architectures. A
microkernel lies in the middle layer and provides minimum system abstractions, handles
local resource multiplexing and ensures security policies. Finally, in the top layer, runtime
OS libraries expose a standard interface to user-level applications such as POSIX.

In contrast to OSes, baremetal runtime systems aim at exposing a rich program-
ming environment that is narrowed for the underlying architecture. In general, they

35

implement only essential primitives that manage the hardware to avoid unnecessary over-
heads to the application or fit a specific programming model design. Usually, they are
provided on top of the hardware as libraries and are directly linked with applications.
As an immediate consequence, baremetal runtime systems may not hide low-level aspects
of the underlying architecture. Moreover, they do not provide important abstractions
that are usually implemented by OSes, such as virtual memory, resource sharing, core
multiplexing and others. For instance, they do not enable multiple applications to be
concurrently deployed in the processor nor provide mechanisms to time-share the hard-
ware between different applications.

Overall, runtime systems are usually shipped by manufacturers of lightweight
manycore processors as a cutting-edge performant programming environment. Program-
ming models or well-known standards often guide the Application Programming In-
terface (API) of the runtimes to benefit a specific set of applications. For instance,
NodeOS (DINECHIN et al., 2013b) uses the pipe-and-filter programming model to allow
processes to communicate on Kalray MPPA-256. The primitives exported by NodeOS
resemble the classical POSIX pipes interface, but they require specific knowledge from
developers. Differently, libasync (HASCOËT et al., 2017) implements the Asynchronous
One-Sided (AOS) communication and synchronization model for Kalray MPPA-256 in-
spired by libraries used in the HPC domain. The AOS layer defines put/get and atomic
operations over requisition queues, allowing applications to read/write data from/to re-
mote memory segments. This model mitigates the problems derived from small local
memories in Kalray MPPA-256. However, this approach is focused on enhancing the
overall performance of applications, putting aside all programmability and portability
issues in lightweight manycores.

2.3 PARALLEL PROGRAMMING ENVIRONMENTS

As most of the modern parallel architectures have been evolving in recent years,
better programming environments are needed to help the programmer to explore all the
possibilities of parallelism that are offered by these architectures. To ease the software
development and to reduce the time needed to develop parallel programs, an increasing
effort has been made to make available ports of standard APIs for the most varied parallel
architectures.

These programming environments not only make the software development an
easier task, but also help the programmer to extract better performance from the under-
lying hardware. In the next subsections, we describe some of these standard programming
environments that are used in the development of HPC applications.

36

2.3.1 OpenMP

OpenMP is a multi-platform API that intends to provide an easy way to take
advantage of parallelism and multiprocessing in shared memory and distributed shared
memory architectures. It consists in a set of compiler directives, library routines and
environment variables for parallelism in C, C++ and Fortran, that influence the runtime
behavior of an application (BOARD, 2020). Its specification is defined and maintained
by the OpenMP Architecture Review Board (OpenMP ARB), a consortium composed
mostly by hardware and software vendors.

To perform a program parallelization, the OpenMP API implements a fork-join
parallel model. All OpenMP programs start execution with a single thread (the master
thread), which sequentially executes the program flow until the definition of a parallel
region. When a definition of such type of region is encountered, the master thread will
fork and create a team, that includes itself and other worker threads to execute in parallel
the code inside the parallel region. When this team of threads finishes its execution
at the end of the parallel region, all the worker threads are synchronized and rejoined
by the master thread, that continues sequentially its execution. Figure 5 illustrates the
described process, in which the master thread and N-1 other worker threads execute a
parallel region. Then, all worker threads are joined at the end of the parallel region.

To define a parallel region, OpenMP makes use of a set of compiler directives,
where the programmer specifies which regions will be executed in parallel by simply
adding these directives in the sequential code. This way, it is easy to parallelize a sequen-
tial program in an incremental way (CHAPMAN; JOST; PAS, 2007), inserting compiler
directives in small portions of the sequential code, testing if the execution still correct
and repeating this process until the desired performance is achieved. Additionally to the
compiler directives, OpenMP also defines library routines and environment variables that
may be used by the programmer to specify how the parallel execution must behave. This
gives a finer control and a better view to the programmer about the parallelism being
exploited in the parallel execution.

2.3.2 MPI

The MPI is a portable standard specification for libraries that implement the
message passing programming model. It is the de facto standard for message passing in
HPC, and broadly used in supercomputing and parallel programming. The MPI standard
is defined and maintained by the MPI-Forum1, a group of researchers that includes both
people from academia and from industry in its lines. Currently, the most recent official
release of the specification is the 3.1 version2, from June, 2015, with drafts of a possible 4.0
1 MPI-Forum website: https://www.mpi-forum.org
2 MPI 3.1 Spec available at: https://www.mpi-forum.org/mpi-31/

37

...
T1 T2 T3 Tn

Fork

Join

Sequential Region

Parallel Region

Sequential Region

Master Thread

Master Thread

Figure 5 – The OpenMP fork-join model.
Source: Developed by the author.

version being released for discussion in the last few years. Also, there are some open-source
implementations of MPI available in public domains, such as MPICH3 and OpenMPI.4

One of the strong points of MPI is its flexibility. It can be applied to various
supercomputers and parallel architectures, ranging from shared memory multiprocessors
to distributed memory multicomputers (WU et al., 2013). Programs in MPI run as mul-
tiple processes, where each process has its own address space and communication occurs
through an interconnection network. At the same time, it is important to note that it is
flexible enough to be used in shared memory architectures handling the communications
as read/write operations in shared memory. Another strong point from MPI is its stan-
dardization. A programmer that writes an MPI application may run it in any computer
that has the MPI library installed, without making any additional changes to the source
code (MUTTIL; LIONG; NESTEROV, 2007). So, MPI is also a way of providing porta-
bility across architectures, since there have been existing efficient MPI implementations
on a wide range of platforms. Additionally, it presents good scalability in heterogeneous
systems, as the processes offer a standardized and homogeneous view of the nodes in the
system. This way, communication can be handled efficiently, regardless of the underlying
hardware implemented.

The MPI standard includes in its specification functions for point-to-point com-
munication, collective operations that are made on top of groups of processes specified by
the user, communication domains to specify different universes of communication, virtual
topologies to establish different patterns of communication in collective calls, environ-
mental management, a profiling interface and code bindings for Fortran and C.

3 MPICH Website: https://www.mpich.org/
4 OpenMPI Website: https://www.open-mpi.org/

38

Point-to-point communications are made directly between the involved processes.
It can be both synchronous or asynchronous, blocking or non-blocking, and it may use
different communication modes, based on the resources exposed by the underlying hard-
ware. These advanced topics, involving the semantics and configuration of point-to-point
communication in MPI will be discussed in more depth in Section 5.7, when we discuss
the implementation details of point-to-point communication in the proposed library.

39

3 RELATED WORK

Software development for lightweight manycores is challenging because it strives
in finding the balance between performance and programmability. On the one hand, each
new layer inserted in the software stack consumes a small part of the hardware resources
of the architecture. In lightweight manycores, where some of these resources, such as local
memory, are scarce and need to be used wisely, onerous development environments may
result in significant performance degradation. In extreme situations, this degradation
may even lead to the infeasibility of the solution. On the other hand, programmability is
also an important requirement for lightweight manycores, due to all of their intricacies.
Otherwise, porting applications to this class of processors may become a painful task.

In this context, and specifically concerning communication, there are two ap-
proaches currently employed that try to alleviate this problem:

i vendor-specific communication libraries, which expose a performance-oriented in-
terface for the underlying architecture; and

ii industry-standard communication libraries, which provide a richer communication
interface, in exchange for some performance penalty.

Vendor-specific solutions mostly rely on specific features of the underlying hard-
ware to achieve high performance. For instance, synchronous (WIJNGAART; MATT-
SON; HAAS, 2011) and asynchronous (CLAUSS et al., 2011) interfaces are provided on
top of Message Passing Buffer (MPB) for the Intel Single-Cloud Computer. On the other
hand, Kalray MPPA-256 features both a communication library that shares some similar-
ity with POSIX (DINECHIN et al., 2013b) and a specific interface for one-sided commu-
nications (HASCOËT et al., 2017). A high-level message-oriented parallel programming
model is provided for the IMAPCAR (KELLY; GARDNER; KYO, 2013). Finally, a spe-
cific communication API is provided for the Adapteva Epiphany processor (VARGHESE
et al., 2014).

In contrast, standard communication interfaces benefit from extensive improve-
ments and optimizations, making them a solid choice for programming lightweight many-
cores. However, to the best of our knowledge, all standard communication interfaces
ports are built on top of low-level primitives and libraries provided by the vendors of
these processors, making it difficult to adapt them to other manycore processors. Exam-
ples of such solutions are those based on the Partitioned Global Address Space (PGAS)
programming model, such as the Unified Parallel C (UPC) port for the Intel Single-Cloud
Computer (GAMELL et al., 2012) and Tilera TILE64 (SERRES et al., 2011) processors
as well as the OpenSHMEM implementation (ROSS; RICHIE, 2016) for the Adapteva
Epiphany processor. Moreover, there have been some efforts on providing an MPI port
for Kalray MPPA-256 (HO et al., 2015) and Adapteva Epiphany (RICHIE; ROSS; IN-
FANTOLINO, 2017). The former is the closest work to the present one, also presenting

40

an implementation from scratch to cope with the restrictions of lightweight manycores,
having similar concepts to those adopted in the present work. The main difference, how-
ever, is the fact that it is implemented on top of a vendor-specific IPC library, and so,
being not portable to other processors/architectures. The latter, in addition, does not
conform with the MPI standard.

3.1 DISCUSSION

Overall, both of the aforementioned approaches lack application portability. On
the one hand, there are very efficient solutions (i.e., vendor-specific libraries) that per-
fectly adhere to the design purposes of lightweight manycores, but require a greater effort
in learning and software design time. On the other hand, there are well-known and
widely used standards that alleviate portability problems and improve project devel-
opment. However, implementations of these interfaces use baremetal facilities, making
the entire standard stack architecture-dependent and difficult to be adapted to other
lightweight manycores.

For this reason, this work takes a step further on providing a flexible and extend-
able implementation of a well-known parallel programming standard (MPI) on top of an
open-source OS for lightweight manycores (Nanvix). We rely on an OS to provide rich
hardware management, sharing and multiplexing and we implement and deploy a high-
level, industry-standard library on top of this OS. We believe that the proposed solution
brings the best of the aforementioned approaches, since it offers a standard high perfor-
mance solution with implicit portability, that can be used in a broad range of lightweight
manycores or easily adapted to be implemented on top of other runtime systems.

41

4 NANVIX OS

Nanvix1 is an open-source research OS that aims at addressing the intricacies of
lightweight manycores (PENNA et al., 2019). It is a POSIX-compliant OS designed from
scratch to be compatible with this new class of processors, seeking for the balance between
performance, portability and programmability. Nanvix adopts a distributed multikernel
structure that consists in multiple instances of asymmetric microkernels, i.e., each cluster
has a single core dedicated exclusively to executing the kernel, leaving the other cores for
general-purpose computing.

In this chapter, we highlight some concepts and details of the Nanvix structure
that are important to the present work, specially some related to the Nanvix Microkernel
(Section 4.1) and the Multikernel (Section 4.2). Additionally, in Section 4.3 we present
some enhancements that were made by us into Nanvix, in the context of the present work,
in order to make it possible to implement LWMPI on top of the Nanvix IPC module.

4.1 NANVIX MICROKERNEL

The Nanvix OS implements a microkernel design, where a minimal version of a ba-
sic OS kernel provides resource management, sharing and multiplexing, security, minimum
OS services, as well as resource abstractions and primitives at a cluster level (PENNA et
al., 2019). This way, it provides the basic functionality to offer support for the implemen-
tation of more complex OS services in the user-level space, while keeping a small memory
footprint for the kernel itself.

Figure 6 shows an overview of the layers structure adopted by the Nanvix Mi-
crokernel. In the lower level, we have the baremetal architectures supported by Nanvix,
i.e., Kalray MPPA-256 (DINECHIN et al., 2013a), OpTiMSoC (WALLENTOWITZ et
al., 2012), x86 and RISC-V emulated in QEMU, and a special platform for development
that is a virtualization on top of Unix64. On top of them, a HAL is the responsible for
abstracting the underlying hardware and providing an uniform interface for the above
kernel layers. This way, this layer enables portability for the entire kernel, making it com-
patible with all the abstracted architectures. On top of the HAL, we have the Modules
Layer that represents the core of the Nanvix Microkernel, in which are implemented the
kernel functionalities and capabilities. Currently, four modules are implemented in the
Nanvix microkernel:

• Thread System: provides a kernel thread abstraction. Kernel threads run in
uninterruptible mode and have exclusive access to a core. It features scheduling,
multiplexing and management functionalities to cooperative user threads that are
implemented on top of these kernel threads.

1 Publicly Available at: https://github.com/nanvix

42

Hardware Abstraction Layer

Kernel Call Interface

Thread
System

Device
System

MPPA-256
Bostan

OpTiMSoC
 OpenRISC

VIRT
Unix64

QEMU
x86, RISC-V

Memory
System

IKC
Facility

Figure 6 – Conceptual view of the Nanvix microkernel.
Source: (PENNA et al., 2019)

• Memory System: provides rich memory management in a cluster, as well as a vir-
tual memory extension that supports different page sizes and permissions tracking.

• Device System: controls the access permissions to memory and port mapped de-
vices. Moreover, it exports routines for reading/writing data from/to these devices
and for implementing device drivers at user space.

• Inter-Kernel Communication (IKC): provides simple abstractions and primi-
tives to carry out inter-cluster communication. All the abstractions provided op-
erate in a synchronous behavior, but may also include an asynchronous mode in
lightweight manycores that feature a DMA engine.

On top of the Modules Layer, the Kernel Call Interface exposes the functionalities
implemented by each module to the user space. This layer represents the entry point to the
Nanvix kernel from the user perspective, and at this level are performed the verifications
and parameters checking that help to provide security in the kernel space. Also, it is in
this level where the control flow of the system calls is defined, and where the asymmetric
characteristic of the Nanvix kernel is handled: complex routines of the kernel modules
are executed exclusively by the master core, while simpler ones can be handled locally by
the core that called the specific routine.

4.1.1 IPC Abstractions

To enable inter-cluster communication, the Nanvix IKC exposes three basic mes-
sage passing abstractions, to explicitly control the data flow across the kernel: Mailbox,
Portal and Sync. These abstractions are designed to generalize three common behaviors
that are observed in distributed systems: transferring small fixed-size control messages
(Mailbox); handling dense data transfers (Portal) and building synchronization points
(Sync) (SOUTO et al., 2020). Also, they can be used together, as building blocks, to
compose more complex protocols and to construct runtime services. In this section, we
give an overview on these abstractions, since they are the base to implementing the com-
munication protocols on the upper layers, including those used by the proposed library.

43

Mailbox

The Mailbox abstraction (similar to POSIX Message Queue), is intended to en-
able the exchange of small fixed-size control messages with low latency. These messages
have their size fixed, generally, in a few hundreds of bytes, and may be handled asyn-
chronously, depending on the abstraction usage.

To receive incoming messages, the receiver allocates a message queue with suf-
ficient space to receive exactly one message from each possible sender. This way, each
sender have its predefined space to communicate with an input mailbox, as we can see in
Figure 7a. When this buffer is already occupied by a previous message, the sender must
wait for the first one to be consumed by the receiver before transferring the new message,
revealing the synchronous behavior of the abstraction. When the receiver wants to read
a message from its incoming mailbox, it may specify the sender from which it wants to
receive, or read any available message on the allocated buffer. If no message is available,
it blocks waiting for a message to arrive.

In a distributed OS context, this abstraction can be used to implement the agree-
ment phase between client and server of a given OS service, where the client makes a
requisition encoding the desired operation and necessary parameters, for example.

Portal

The Portal abstraction (similar to POSIX Pipe) provides arbitrarily-sized mes-
sages to be transferred with high bandwidth between two nodes. This abstraction is
intended for dense data transfers from one cluster to another in an unidirectional chan-
nel, as we can see in Figure 7b. When a remote process wants to write data to an input
portal, it needs to receive explicit authorization from the receiver. When the receiver
wants to read a message from the channel, it specifies from which node it wants to receive
data, and then, it grants the permission to write to that node using a special kernel call.
If the remote node is not ready to send, the receiver blocks until it starts to receive data
through the channel. The sender, in its side, may block in a write call until it receives the
authorization from the receiver in the form of an allow signal, that signalizes it can start
to send the data. Since this abstraction is totally synchronous, there is no necessity for
intermediary buffering. The communication is configured using memory buffers passed
as parameters by the user, consuming no additional memory to carry out the dense data
transfers.

In the context of a distributed OS, this abstraction may be used as the main
building block to carry out the data transfers across the system, since it is designed to
handle the dense data transfers with the biggest bandwidth.

44

NoC

Master

Mailbox

S1 S2 ... Sn

C1

Slave 1 Slave 2

C2

Slave N

Cn. . .

(a) Mailbox conceptual view.

NoC Portal

C1

ReceptorSender

C0

(b) Portal conceptual view.

Figure 7 – Portal and Mailbox conceptual views.
Source: (SOUTO; PENNA; CASTRO, 2019)

Sync

The Sync abstraction (similar to POSIX Signals) is intended to establish syn-
chronization points among the clusters and to construct distributed barriers. It can be
used in one of the two distinct modes available: ONE_TO_ALL, in which N slaves wait
to be unblocked by a single master node; and ALL_TO_ONE, where the single leader
wait for notifications of the N slaves. This way, different types of barriers may be created,
giving more flexibility to the programmer of the applications.

4.2 NANVIX MULTIKERNEL

The multikernel OS design was introduced to address the intrinsic characteristics
of lightweight manycores (WENTZLAFF; AGARWAL, 2009). The Nanvix Multikernel
adopts this type of design, where it is implemented as a distributed system. In this
model, each cluster of the distributed architecture executes an instance of the microkernel,
and to communicate with one another, these instances use message passing mechanisms.
Additionally, traditional OS services are also implemented in this distributed way. In the
case of Nanvix, the OS services are modeled in a Client-Server fashion, where the servers
are deployed in specific clusters (I/O Clusters), and attend to requisitions that arrive from
the user processes, that are deployed in the general-purpose clusters of the architecture
(Compute Clusters).

Figure 8 shows a snapshot of a distributed system running in a lightweight many-
core in this programming model. The cores of a cluster may be either Idle (black squares),
one core of each cluster will be running the kernel instance (dark grey squares), some cores
will be executing OS services routines (grey squares), and the remaining may be execut-
ing user’s space applications (white squares). To be POSIX-compliant, the Nanvix OS
services implement standardized interfaces, keeping the client-server model transparent

45

Idle Core
Kernel Core
Service Core
Application A
Application B

Figure 8 – Overview of a distributed OS.
Source: (PENNA et al., 2019)

to the user. The functionalities are provided in a transparent way, while the underlying
implementation of these services perform the computing and communications needed.

At this point, we can notice the versatility given by this model, in which any
core of the processor may be used to any of the aforementioned purposes. Also, the set
of available services may be adapted for each use-case scenario. At the startup, the user
may define where and which kernel instances to deploy across the processor, defining only
those services that will be needed, or even defining multiple instances of a single service
to enable higher availability, for example. Some of the services currently supported by the
Nanvix Multikernel are: (i) a Name Service that provides naming linking and resolution,
similar to a DNS service, that translates processes logic names to their logic identifier in
the distributed system; (ii) POSIX-compliant Named Semaphores; (iii) POSIX-compliant
Shared Memory Regions abstraction; and (iv) a Virtual File System service.

4.3 ENHANCEMENTS IN NANVIX IKC

In this section, we discuss some of the improvements that have been made to the
Nanvix IKC subsystem, in order to provide needed features to offer support for LWMPI
and that were not yet available in Nanvix. In the next few sections, we discuss the
proposed enhancements and explain why they were necessary to LWMPI development,
emphasizing their development in the context of the present work.

4.3.1 Virtualization

In computing, the concept of virtualization corresponds to the act of creating a
virtual version of a physical computational resource. This virtual resource may be used
as a simplified form to generalize a complex component, or to permit a component to be
efficiently shared and utilized (LI et al., 2013). In the context of the present work, it is
precisely to permit that scarce hardware resources may be managed by the OS, removing
this responsibility from the programmer.

46

Microkernel IKC Facility

Network-On-Chip (NoC)

Buffer Table

TX/RX

HAL Comm
InterfaceVirtual Abstractions

Routing TableActive IKC
1
2

N

.

.

.

Figure 9 – Virtualization conceptual view.
Source: Developed by the author.

The Nanvix HAL exposes a standard interface of IPC abstractions that enable
communication between distinct processes. The number of available abstractions that are
exported by the HAL, however, is architecture-dependent, and is limited by the underlying
hardware. In the case of lightweight manycores, where most of these hardware resources
are scarce, the number of available abstractions is very limited. To cite an example, the
Nanvix HAL permits the user in the Kalray MPPA-256 to create a single input portal and
a single input mailbox, using the available NoC interfaces in a regular Compute Cluster.
This means that there is a single resource abstraction that needs to be shared by the OS
and by all user applications that run in a specific cluster.

Because of that, the implementation of mechanisms that enable the virtualization
of the IPC abstractions exported by the HAL becomes an important requirement before
providing a communication library on top of the Nanvix IKC facility. Not only to make
the resource management easier and to permit more peers to keep an active connection
simultaneously, but also to permit a finer extraction of statistics related to communica-
tion of the kernel. The existence of virtual abstractions, in this case, would permit the
programmer and system developers to distinguish communication statistics that are re-
lated to kernel communications and those that are respective to the user. Additionally, to
LWMPI, it permits the library implementation to establish multiple universes of commu-
nication, since different contexts are allowed to use distinct virtual abstractions to carry
out the communications, giving much more flexibility for the programmer.

Figure 9 illustrates the virtualization scheme adopted in Nanvix that was imple-
mented as part of the present work. In this implementation, the Nanvix kernel stores
two control tables for each IPC abstraction: the first, the Active IKC Table, is directly
mapped to the hardware resources exposed by the HAL and keeps track of the active
connections configured in the underlying interfaces; the second, the Virtual Abstractions
Table, keeps a mapping scheme of the virtual abstractions exposed by the kernel to their
respective active connection. An N:1 communication pattern is adopted, in which a max-
imum number of virtual abstractions (N) is allowed to be mapped to the same physical
abstraction, representing the logic ports controlled by the kernel.

47

Microkernel IKC Facility

Network-On-Chip (NoC)

TX/RX

HAL
Comm

Interface

Virtual Abs. Virtual Abs.

Active IPC

Hardware IPC

Write

Microkernel IKC Facility

TX/RX

HAL
Comm

Interface

Virtual Abs. Virtual Abs.

Active IPC

Hardware IPC

Write

Microkernel IKC Facility

TX/RX

HAL
Comm

Interface

Virtual Abs. Virtual Abs.

Active IPC

Hardware IPC

Write

Microkernel IKC Facility

TX/RX

HAL
Comm

Interface

Virtual Abs.

Active IPC

Hardware IPC

Read

Virtual Abs.

Figure 10 – Conceptual view of IKC resource multiplexing.
Source: Developed by the author.

4.3.2 Resource Multiplexing

The concept of multiplexing consists in combining multiple signals into a single
one over a shared medium. In the present work, this concept is adapted and put alto-
gether with the virtualization idea, in which multiple virtual abstractions are multiplexed
over a single hardware resource. The importance of this feature is analogous to the vir-
tualization one. In fact, these concepts are tightly linked in the context in which they
are employed in this work. Virtualizing hardware resources is not sufficient to provide
the intended functionality for the user. It is also necessary to provide means of resource
sharing, in which multiple virtual abstractions are capable of using the hardware resources
concurrently.

In Nanvix, we implemented a logic port-based scheme in which a limited number
of virtual abstractions are mapped to abstractions that represent the hardware resources
exposed by the HAL. After that, all of these mapped virtual abstractions may be capable
of using the underlying resource, one at a time, while the others wait for it to become free.
Figure 10 illustrates the expected data flow when one output abstraction (left) writes a
simple message to be read by an input abstraction (right). When an abstraction receives
a request from the user space to execute a communication call, it first looks to the lock
of the active connection which it is mapped. If the underlying resource is already in
use attending another request, it blocks waiting for an opportunity to handle its request.
Otherwise, it acquires the lock and proceeds with the request to be processed by the HAL
and transmitted through the NoC.

48

Originally, the communication calls in the Nanvix microkernel did not use any
type of intermediary buffering. The input/output buffers used to carry on the communi-
cation operations simply came from the user space and were directly transmitted by the
HAL routines. However, intermediary buffering schemes must be implemented to allow
resource multiplexing, since the kernel needs to have means of storing messages that are
read by a virtual abstraction and that are not addressed to it. More than specifying
the remote node when writing a message, it is now necessary to address the target port
which we want to communicate. This way, an additional Buffers Table was added to the
kernel to permit this temporary storage of messages. When reading a message, a virtual
abstraction may identify that the message that arrived through the interconnection is not
addressed to it. This way, it reserves an entry in the Buffers Table and stores the arriving
message there, while it keeps monitoring the hardware interface waiting for a message
containing its logic address. Similarly, when a virtual abstraction wants to read an input
message, it first traverses the Buffers Table to see if previous messages already arrived for
it before trying to obtain access to the underlying hardware interfaces.

49

5 LWMPI: A MPI LIBRARY FOR LIGHTWEIGHT MANYCORES

In order to improve programmability and portability in lightweight manycores, we
propose the Lightweight Message Passing Interface library (LWMPI). In contrast to al-
ternative solutions (HO et al., 2015; RICHIE; ROSS; INFANTOLINO, 2017; DINECHIN
et al., 2013b), more than developing an efficient solution in terms of performance and
programmability, we intended to make LWMPI portable across different architectures,
and achieved this thanks to a design and implementation that relies on top of a POSIX-
compliant distributed OS for lightweight manycores. Before presenting the details and
the internals of our solution, we first elucidate the reasons behind some of the design
decisions that guided our library implementation and give the reasons why we believe
that these decisions are important to achieve our main goal of providing a lightweight
MPI-compliant library for lightweight manycores.

5.1 DESIGN GOALS

Lightweight manycores bring several challenges to software development, thereby
making easy-to-use interfaces an important requirement for this class of processors. These
challenges are not restricted to user-level programming, but also to basic software devel-
opment. Thus, solutions must meet users demands while dealing with strict architectural
constraints, especially memory issues. Hence, the main design goals of LWMPI are:

1. Portability The library should be portable and applicable to various lightweight
manycores.

2. Compatibility The implementation must comply with the MPI specification.
3. Extendability It should be possible to add new functions or submodules to the

implementation with little effort.
4. Lightness The implementation should be simple and lightweight to cope with re-

strictive resources of lightweight manycores.

To achieve these goals, we rely on important design decisions to cope with the
aforementioned challenges:

(i) design our library on top of an OS to enable portability across different architectures;
(ii) adhere to the MPI standard to deliver compatibility;
(iii) follow a tier-based approach to keep encapsulation and maintain the top-level library

isolated from OS-dependent code, thereby enabling extendability without incurring
excessive overheads that can arise from using more complex software patterns; and

(iv) implement the library from scratch, rather than adapting an existing heavy-weight
solution like OpenMPI (SPI, 2020) or MPICH (MPICH, 2020) to keep our solution
light and suitable for lightweight manycores (HO et al., 2015).

50

The reason behind the choice of Nanvix to be the base OS for our library is that, to
the best of our knowledge, it is the only open-source distributed OS that runs on commer-
cially available baremetal lightweight manycores, like the Kalray MPPA-256 (DINECHIN
et al., 2013a) and OpTiMSoC (WALLENTOWITZ et al., 2012). This way, it permits us
to develop and test our solution directly on top of a real lightweight manycore, instead of
an emulated machine or some other option based in virtualization, as it would have been
if we had chosen another candidate OS like M3 or MOSSCA.

Currently, LWMPI implements an initial subset of the MPI specification and the
reason behind this partial support is twofold: first, fully implementing the entire standard
would demand much more time to be implemented and tested satisfactorily than the time
available for the current work; and second, the complete implementation of the standard
would also result in a much larger memory footprint, what violates our fourth design goal
(lightness).

At this moment, an attentive reader may notice how difficult it is to find a balance
between the four proposed design goals, especially considering the lightness goal, which
may be the most difficult to achieve, while being one of the most important for lightweight
manycores. It limits how much we can make the library extensible and how far we can
go in the compliance with the full standard. Therefore, we give ourselves a concession
in the second goal (compatibility) of understanding it in the sense of not diverting our
implementation from what is specified by the standard, rather than completely supporting
it. This way, we change our commitment from implementing the complete standard to
implementing its essential parts, which are applicable for lightweight manycores, as they
are specified.

5.2 OVERVIEW

As already mentioned, LWMPI implements an initial subset of the MPI speci-
fication (version 3.1), as we can see in Appendix B. Our library is open-source and its
source code is available in Github.1 Figure 11 presents an architectural overview of Nanvix
and how LWMPI was introduced in this design. In this figure, we consider a conceptual
lightweight manycore composed of one I/O Cluster and two Compute Clusters. Although
Nanvix has several OS services and modules, we only present those that are used by
our LWMPI implementation. LWMPI has two logical tiers to isolate the MPI API from
OS-dependent software: LibMPI and MPIUtil. In the next sections, we detail the im-
plementation and the functionalities exposed by each one of these tiers. In Section 5.3,
we present the concepts and abstractions provided by MPIUtil. Next, in Section 5.4, we
show the actual interface and the implemented subset of functions exposed by LWMPI.
In Section 5.5, we present how LWMPI manages its communicating processes. In Sec-

1 LWMPI is available at: https://github.com/nanvix/libmpi

51

Interconnect

I/O Cluster

Microkernel

Compute Cluster

Microkernel

Compute Cluster

Microkernel

Spawn
Server

Name
Server

IPC
Name
Client

POSIX

LibMPI

MPIUtil

MPI Application

Runtime Library

User Libraries

Runtime Library

User Libraries

LWMPI

Hardware

OS Kernel

System Service

User Software

User-level Library

Figure 11 – Architectural overview of LWMPI.
Source: Developed by the author.

tion 5.6, we detail the thread addressing scheme adopted by LWMPI to address multiple
MPI processes per cluster. In Section 5.7, we present some internal details about the
point-to-point communication implementation in LWMPI, revealing some of its internal
structures and the employed protocols. Finally, in Section 5.8, we present the mapping
policies available in LWMPI.

5.3 MPIUTIL

The MPIUtil tier is the middle layer between the overlying library and the base
OS. Precisely, it is responsible for translating the requests from LibMPI to the Nanvix
interface. MPIUtil exposes elementary abstractions that support the top-level imple-
mentation of MPI, aiming at keeping the library implementation decoupled from the OS
interface. In other words, MPIUtil aggregates all OS dependent code, keeping the top
tier totally independent of the base OS interface. This enables better extendability to
our library, since extensions can be made in the upper layer entirely apart from the OS,
if the needed support is already implemented in MPIUtil. Additionally, it gives the pos-
sibility of easily porting LWMPI to a new OS, or to use another runtime system as base,
just adapting this underlying layer to the new candidate interface. Although MPIUtil

was developed specifically to offer support to LibMPI, these layers are designed to be
loosely coupled, reinforcing the idea of keeping the top-level library portable and easily
extensible.

The MPIUtil layer also implements the communication protocols employed by
the LibMPI calls, e.g., synchronous point-to-point sends and receives. To perform these
protocols, MPIUtil relies on some important components of Nanvix. Specifically, LWMPI
uses the Spawn Server to spawn a system process on each Compute Cluster. As we show
later in Section 5.5, this process may spawn user-level threads within the Compute Cluster.
The Name Service, composed of a Name Server and Name Clients, is used by MPIUtil to
address MPI processes. Finally, it relies on the IPC abstractions to implement the adopted
protocols. The IPC abstractions exposed by the Nanvix multikernel, that are the base
to compose the communication protocols, are those presented in the Section 4.1.1, i.e.,

52

mailbox for fine-grain fixed-size transfers, portal for coarse-grain fixed-size transfers, and
sync for building synchronization points and distributed barriers (SOUTO et al., 2020).

In the next sections, we give more details about the main concepts and abstrac-
tions implemented in this layer that give support to the LibMPI layer. Some of these
abstractions are: (i) Objects applied in all MPI structures (Section 5.3.1), and (ii) Pro-
cesses for establishing communication groups (Section 5.3.2).

5.3.1 Objects

The first basic abstraction provided by MPIUtil is the Object abstraction. The
standard specification defines that MPI manages the system memory and stores the inter-
nal structures representations as opaque pointers. They are so-called because the memory
is not directly accessible to the user. However, they may exist in the user space and may
be used via specific handles. This way, the MPIUtil exposes a generic object abstrac-
tion, which defines basic operations such as allocation, deallocation, management and
a reference counter to control multiple references, in a common structure that is then
implemented by all MPI objects in the above layer.

The idea behind this concept is that one object is separated from another and can
be manipulated individually. In our implementation, we use referencing schemes instead
of copying these objects. This way, we reduce the amount of instantiated objects and
the memory footprint of our library. To efficiently handle deallocations and verifications
about a handle validity, each class of complex objects defined in the LibMPI tier includes
an opaque object that represents a null instance. This way, when an object is freed, if it
is the last reference for a specific object, it is marked for deallocation and the user opaque
pointer references this null instance, signalizing that this pointer is no more valid to be
used in subsequent MPI operations.

5.3.2 Processes

An MPI application consists in a group of autonomous processes executing in a
MIMD style, each one having its own execution flow, that does not need to be identical
between distinct processes, and having its own address space (MPI-FORUM, 2020). This
way, MPIUtil exposes a Process abstraction, that represents a simple process from the
perspective of the MPI runtime system. Processes in LWMPI are nothing more than an
opaque object with a process name, a pid and the associated thread id (tid) attributes,
and represent a communicant entity inside the MPI environment.

Using the processes names to represent the entities together with the Nanvix
Name Service, allows the system to be more flexible. Moreover, this approach allows
a process to migrate from one node to another, while being addressable in the MPI
environment. At the same time, the usage of opaque pointers and a pid facilitates the

53

internal management of the active processes, since internal structures may use these
friendlier representations instead of using the processes names to manipulate them over
the system.

In the current version of LWMPI, MPI processes are single threaded from the run-
time perspective. However, they may be multithreaded by using solutions like OpenMP
or by managing themselves their own threads. However, MPI functions in our current
implementation of the LWMPI library are not thread safe. Thus, LWMPI currently ex-
pects only one thread per MPI process doing MPI calls to the runtime system. We intend
to bring thread safeness to LWMPI in the future. An easier and securer way of using
more PEs in LWMPI is to use the scheme of emulated MPI processes that we present in
Section 5.5.

5.4 LIBMPI

The LibMPI tier is the top-level library and represents the entry point for user
applications, encapsulating the MPI standard specification. This layer exposes the library
interface and implements the back-end functions on top of the MPIUtil tier. This way,
its implementation is totally independent from the base OS interface, since all functions
are implemented on top of the MPIUtil exposed abstractions. At this level, we focus on
filtering the input parameters given by the user, performing the runtime management and
correctly choosing the protocols employed by each MPI call in the underlying layer. In
fact, this layer acts just like a shell that exposes the MPI interface to the user, while it
encapsulates and acts as a wrapper for the underlying implementations exposed by the
MPIUtil.

In this section, we look into the details of the interface exposed by LWMPI, i.e.,
the currently supported subset of the MPI specification implemented by LWMPI. In the
current version, our library implements:

(i) functions for runtime management, such as MPI_Init and MPI_Finalize;
(ii) support for communicators and information retrieving, such as MPI_Comm_rank

and MPI_Comm_size;
(iii) support for groups of communications with functions that are similar to those related

with communicators;
(iv) error handlers; and
(v) point-to-point communication viaMPI_Send andMPI_Recv using the synchronous

mode and carrying any of the predefined data types for the C language.

Due to the complexity involved in the implementation of point-to-point com-
munication functions (MPI_Send and MPI_Recv), they will be presented later on in
Section 5.7.

54

5.4.1 Runtime Management

One of the goals of MPI is source code portability, which means that a program
written using MPI must not require any source code change when moved from one system
to another (MPI-FORUM, 2020). However, an implementation may require an additional
setup to be performed before the MPI environment becomes ready. For this, theMPI_Init

routine is meant to be the responsible for this initialization of the runtime. In the same
way, the MPI_Finalize is intended to perform all the routines that are necessary for the
runtime clean-up, and all processes must call MPI_Finalize before finishing. This means
that an MPI application must call MPI_Init and MPI_Finalize once and no other MPI
call can be made before MPI_Init or after MPI_Finalize.

LWMPI implements both MPI_Init and MPI_Finalize, and these functions are
enough to setup and to clean-up the MPI runtime, respectively. Additionally to these
functions, LWMPI also implements the functions MPI_Initialized and MPI_Finalized,
which are exceptions to the last mentioned rule and may be called anytime in the execution
flow, since they return to the user the current state of the runtime life cycle.

5.4.2 Communication Groups

Communication groups are defined in MPI by a special datatype MPI_Group,
which defines ordered collections of processes and is the basic structure that defines the
scope of the communicators (MPI-FORUM, 2020). The groups define which processes
are involved in the context of a communicator, and consequently, the available scope for
point-to-point communication and collective operations. The rank of a process inside a
communicator is given by its order number inside the group associated to the respec-
tive communicator, and the groups may be manipulated separately from communicators.
However, only communicators can be used in communication operations.

In LWMPI, groups are implemented as a fixed size array of processes, in which
the group size is defined during the group instantiation, as specified by the MPI spec-
ification. An example of an important group is the MPI_COMM_WORLD associated
group. It is not directly accessible to the user as a predefined group, but it is the one
that contains all active MPI processes connected with the MPI_COMM_WORLD com-
municator, and may be accessed by using the MPI_Comm_group function, passing
MPI_COMM_WORLD as the communicator input parameter.

Table 1 presents the predefined groups described in the MPI standard. Next, we
present the MPI_GROUP_EMPTY and the MPI_GROUP_NULL handles, and what
they represent inside the LWMPI.

MPI_GROUP_EMPTY This is a special predefined MPI_Group that is character-
ized by representing an empty group, i.e., with no processes associated to it. It is

55

Table 1 – Predefined MPI Groups.

Group
MPI_GROUP_EMPTY
MPI_GROUP_NULL

Source: Adapted from MPI-Forum (2020).

important to note that this constant is different from the MPI_GROUP_NULL
pointer. The former is a valid pointer for a group of size zero, and consequently
may be passed as a valid argument for any function that requires an MPI_Group

handle. The latter is an invalid handle that is returned when a valid group is freed.
MPI_GROUP_NULL This is not a valid group pointer. It is the null handler asso-

ciated to the MPI_Group class, and may be used only to evaluate whether or not a
MPI_Group object is valid. Passing MPI_GROUP_NULL as a parameter for any
function that needs a valid MPI_Group will raise an MPI_ERR_GROUP error.

5.4.3 Communicators

Communicators are defined in MPI by a special datatype called MPI_Comm.
They encapsulate all of the previously mentioned ideas, in order to define the scope of all
communication operations in MPI. They aggregate the concepts of group and communi-
cation contexts in a single structure. Every process associated to a communicator is able
to communicate with the other processes that lay in the same communicator group, which
always includes the local process in it. The communication is made using the processes
ranks inside the communicator.

Communicators can be of two different types: (i) intracommunicators, that are
the most common type, which are composed by a single communication group, and dis-
tinct contexts for point-to-point and collective communications; and (ii) intercommuni-
cators, that are composed by a single communication context and two non-overlapping
groups, in which the communications are made from one group to another, i.e., a send in
the local group is always a receive in the remote group. In the current version of LWMPI,
only intracommunicators are implemented, since they are the most commonly used com-
municators in most MPI applications. However, as there is no additional complexity
in the implementation of intercommunicators other than preparing the environment to
support this functionality, we intend to include it in LWMPI in the future.

Besides the communicators themselves, there are also some functions already im-
plemented in LWMPI that manage and retrieve information from them. For instance,
LWMPI provides MPI_Comm_rank to extract the local process rank in the given com-
municator, MPI_Comm_size to retrieve the number of processes involved in the given
communicator and MPI_Comm_group to retrieve the MPI_Group associated with the
given communicator. All these functions, and some more, are listed and detailed in the

56

Appendix B. Table 2 also presents the predefined communicators described in the MPI
standard and implemented in LWMPI, which we describe next.

Table 2 – Predefined MPI Communicators.

Communicator
MPI_COMM_WORLD
MPI_COMM_SELF
MPI_COMM_NULL

Source: Adapted from MPI-Forum (2020).

MPI_COMM_WORLD This special communicator contains all the connected pro-
cesses, in the case of a static-processes model, which is the case for LWMPI. This
means that the processes that are initialized in the startup of the runtime system
are all the available processes during the life cycle of the runtime, with no processes
dynamically joining the execution. This communicator cannot be deallocated by
the user, and it may be the only communicator used by an application during its
lifetime, once it is capable of providing communication between all the available
processes.

MPI_COMM_SELF This special communicator contains only the local process itself.
It is a valid communicator, liable to be passed as an argument in functions that
require a valid MPI_Comm. Its importance, however, resides in the fact that it is
the default communicator in which errors are raised when an error occurs without
having a communicator, window or file associated. The only exception is when an
error occurs before MPI_Init or after MPI_Finalize, in which cases the default
error handler is raised with no object associated.

MPI_COMM_NULL This is not a valid MPI_Communicator. It is the null handler
associated to the MPI_Comm class, and may be used only to evaluate whether or
not a MPI_Comm object is valid. Passing MPI_COMM_NULL as a parameter
for any function that needs a valid MPI_Comm will raise an MPI_ERR_COMM
error.

5.4.4 Error Handlers

MPI applications are so susceptible to runtime errors during MPI calls as any
other type of runtime systems. These errors may generate exceptions that need to be
treated, and an MPI implementation may choose which errors it handles and which not.
In the case where some errors are not treated, at least they need to be handled by generic
error handlers, or even better, permit the user to define personalized error handlers. MPI
defines mechanisms for both of these solutions. In the case of LWMPI, we implemented

57

the three predefined error handlers defined in the specification, which we present next,
and that can be seen in Table 3.

Table 3 – Predefined MPI Error Handlers.

Error handlers
MPI_ERRORS_ARE_FATAL
MPI_ERRORS_ABORT
MPI_ERRORS_RETURN
MPI_ERRHANDLER_NULL

Source: Adapted from MPI-Forum (2020).

MPI_ERRORS_ARE_FATAL When called, it causes the program to abort all the
connected MPI processes, independently on their execution state. It is the default
error handler associated with the predefined communicators, but may be changed
using the appropriate functions.

MPI_ERRORS_ABORT When called in a communicator, it aborts all processes
associated to that communicator. The difference from this error handler to the
previous one is that it provides a finer control of which processes are aborted. Calling
MPI_ERRORS_ABORT on top of MPI_COMM_WORLD, however, is similar to
calling MPI_ERRORS_ARE_FATAL since MPI_COMM_WORLD aggregates all
active MPI processes in the application.

MPI_ERRORS_RETURN This is the less drastic of the predefined error handlers
specified by the MPI standard. This handler, when called, does nothing more than
simply returning the error code to the user. This error code must, then, represent
a significant value to the user, such as an error class.

MPI_ERRHANDLER_NULL This is not a valid error handler. It is the null han-
dler associated with MPI_Errhandler, and may be used only to evaluate if a
MPI_Errhandler object is valid. Passing MPI_ERRHANDLER_NULL for any
function that needs a valid MPI_Errhandler will raise an MPI_ERR_ARG error.

5.4.5 Datatypes

Datatypes are MPI objects that are included as parameters that specify the data
being transferred in communications, in which a transfer buffer is defined as a count

number of successive entries of a datatype object. It helps the programmer to count the
number of elements transferred in a message, and the runtime to manage if both the sender
and the receiver are transmitting the data in similar formats. Since MPI is designed to
be implemented as a library with no additional needs of preprocessing or compilation, the
datatype of a communication should be explicitly supplied as an argument to be verified
in a send/receive matching (MPI-FORUM, 2020).

58

Datatypes in an MPI application may be of two types: basic predefined datatypes,
that are the most common, or derived datatypes that are combinations of multiple ba-
sic datatypes. Currently, LWMPI implements only the predefined datatypes for the C
language, defined in the 4.0 specification. Table 4 shows the list of supported datatypes
available to the user, and any of these may be used in send/receive operations as opaque
pointers. In the current version of LWMPI, datatypes involved in a communication must
be exactly the same between the sender and the receiver to be considered valid, or involve
MPI_PACKED or MPI_BYTE in either the sender or the receiver process. Next, we
highlight some special datatypes that may not be trivially understood.

MPI_BYTE and MPI_PACKED They can match any byte of data in the MPI
standard. This is why these types are the only ones that can carry any type of
data in a communication and will avoid type matching verifications. As one can
see in Table 4, these types are not defined as a primitive type in C, since they
represent raw bunches of bytes. The difference between these two datatypes is that
MPI_PACKED is used to send data that was explicitly packed, and consequently,
need to be explicitly unpacked, while MPI_BYTE is used to transfer the binary
value of a byte as it was stored in the memory. In the current version of LWMPI,
these types have no difference between them and both are implemented as raw C
void pointers.

MPI_DATATYPE_NULL This is not a valid type to be used for transferring data.
It is the null handler associated withMPI_Datatype, and may be used only to eval-
uate if a MPI_Datatype object is valid or not. Passing MPI_DATATYPE_NULL
as a parameter for any function that needs a valid MPI_Datatype as input will
raise an MPI_ERR_TYPE error.

5.5 MPI PROCESS MANAGEMENT

Even though the MPI standard neither describes the MPI process abstraction in
detail nor how MPI processes are managed, most of current MPI implementations provide
default startup mechanisms that define how the MPI environment should behave. The
idea of separating the program startup from the application itself provides not only more
flexibility for heterogeneous environments but also gives more usability to the implemen-
tation while offering different possibilities for developers (MPI-FORUM, 2020).

In order to provide an easy way for users to exploit all the features of lightweight
manycores, LWMPI takes advantage of this flexibility given by the MPI specification and
implements an MPI process management module. Our module provides a homogeneous
view of the environment while keeping the intrinsic architectural details of the hardware
hidden from users, taking the portability of LWMPI to a new level. Since the Nanvix
microkernel is intended to be lightweight and to consume a minimum amount of resources

59

Table 4 – Predefined C Datatypes.

Datatype Name C Type
MPI_CHAR char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long

MPI_LONG_LONG_INT signed long long

MPI_LONG_LONG signed long long

MPI_SIGNED_CHAR signed char

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long

MPI_UNSIGNED_LONG_LONG unsigned long long

MPI_FLOAT �oat

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t

MPI_C_BOOL _Bool

MPI_INT8_T int8_t

MPI_INT16_T int16_t

MPI_INT32_T int32_t

MPI_INT64_T int64_t

MPI_UINT8_T uint8_t

MPI_UINT16_T uint16_t

MPI_UINT32_T uint32_t

MPI_UINT64_T uint64_t

MPI_C_COMPLEX �oat _Complex

MPI_C_FLOAT_COMPLEX �oat _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_LONG_DOUBLE_COMPLEX long double _Complex

MPI_BYTE (any C type)
MPI_PACKED (any C type)
MPI_AINT MPI_Aint

MPI_OFFSET MPI_O�set

MPI_COUNT MPI_Count

MPI_DATATYPE_NULL (no type defined)
Source: Adapted from MPI-Forum (2020).

of the Compute Clusters, it was designed to allow a single system process per Compute
Cluster to be spawned. To use the remaining PEs, applications must employ threads.
Fortunately, Nanvix implements POSIX Threads (pthreads), which is a well-known API
defined by the standard POSIX.1c.

LWMPI leverages the thread abstraction implemented by pthreads in Nanvix to
allow MPI applications to make use of all PEs available in a Compute Cluster. For that,

60

MKND 0

1
OS Microkernel

Local Name DaemonND

MK

n MPI Process (rank = n)
POSIX Process

I/O Cluster

4 5

2 3
Spawn

n MPI Process (rank = n)
POSIX Thread

Idle PE

6

MKND 7

8 Compute
Cluster 1

11 12

9 10
Spawn

NS Name Server
13

Compute
Cluster 0

Compute
Cluster 2

NS
MKND 14

15

18

16 17
Spawn MK

Figure 12 – Overview MPI process management in LWMPI.

LWMPI spawns and manages its own user-level threads, exposing them to the user as MPI
processes with distinct MPI ranks. This allows developers to use more PEs of the archi-
tecture in a transparent way and avoids the need of a hybrid programming model (shared-
memory + distributed memory). A similar approach was also successfully employed in
other MPI implementations such as Adaptive MPI (AMPI) (HUANG; LAWLOR; KALÉ,
2004) and MPC (PÉRACHE; JOURDREN; NAMYST, 2008). From now onward, we will
use the term MPI process to refer to an MPI flow of execution that has its own MPI rank,
which can either be a system process or a user-level thread in LWMPI.

Figure 12 pictures how LWMPI manages MPI processes. For the sake of sim-
plicity, let us consider a conceptual lightweight manycore that features three Compute
Clusters (composed of nine PEs each) and one I/O Cluster (composed of four PEs). In
this example, a PE in each cluster is reserved for the Nanvix microkernel (black box).
Moreover, a PE in each Compute Cluster is reserved for the Local Name Daemon (gray
box), which will be further be discussed in Section 5.6.

Let us now consider an MPI application composed of 19 MPI processes running
with LWMPI on top of Nanvix. The first MPI process in each Compute Cluster is a system
process (green box), which may spawn multiple user-level threads, each one representing
a new MPI process with its own MPI rank 2 (blue boxes). In this specific scenario, there
are seven MPI processes in Compute Clusters 0–1 and five MPI processes in Compute
Cluster 2. In the I/O Cluster, however, there is a Name Service that resolves logical
process names into logical Compute Cluster identifiers (more details in Section 5.6).

From the MPI application point of view, there is no distinction between a real
system process (POSIX Process) and user-level threads (POSIX threads) in LWMPI, i.e.,

2 Since threads cannot share the same PE in the current version of Nanvix, we can only spawn one MPI
process per PE.

61

they are all exposed as MPI processes to developers. Naturally, each MPI process has its
own MPI rank and all MPI processes execute the same application code in a MIMD style.
Overall, this approach brings the following advantages to lightweight manycores:

Scalability The possibility of using more MPI processes per Compute Cluster allows
developers to make use of all PEs of a lightweight manycore.

Lightness Using pthreads to implement MPI processes improves the memory consump-
tion in Compute Clusters and allows optimizations in communications between MPI
processes that run in the same Compute Cluster via shared memory.

Programmability It improves programmability, since LWMPI manages system pro-
cesses and user-level threads transparently. As a result, developers do not need to
explicitly employ a hybrid programming model such as MPI + pthreads to use all
PEs of the lightweight manycore.

Although not specified by the MPI standard, many actual MPI applications as-
sume that global variables can be used independently in each MPI process. This is
especially true for most of the existing MPI implementations since they leverage the
OS process abstraction to implement MPI processes (i.e., each MPI process has its own
address space). Implementing MPI processes with user-level threads allows LWMPI to
exploit all PEs in a Compute Cluster with a lower memory footprint. However, this
approach prevents MPI processes that are running within the same Compute Cluster to
be completely isolated from one another. This means that all MPI processes in a Com-
pute Cluster will inevitably share the same address space. Similarly to AMPI (HUANG;
LAWLOR; KALÉ, 2004), MPC (PÉRACHE; JOURDREN; NAMYST, 2008), and other
MPI implementations that leverage user-level threads to implement MPI processes, having
global variables in MPI applications is disallowed in LWMPI.

5.6 THREAD ADDRESSING SCHEME

In Nanvix, the Name Service is responsible for linking a logical system process
name to the logical Compute Cluster identifier where it is running. Since the OS was
designed to allow a single system process per Compute Cluster, any means of intra-
cluster addressing was unnecessary. However, we had to overcome this limitation when
designing LWMPI, since each MPI process must be addressed individually.

Fortunately, the design of Nanvix IPC abstractions already supports thread ad-
dressing. Essentially, virtual communicators are linked to physical NoC connectors through
logical port identifiers. Then, each thread in a Compute Cluster can reserve a port iden-
tifier that, when used in conjunction with its Compute Cluster identifier, represents its
logical address within the system. Therefore, peers may use this address to communicate
with a specific thread by sending messages to its respective virtual communicator.

62

Since we attach virtual OS-level communicators to distinct threads, the Name
Service had to reflect this identification mapping. Specifically, this service must recognize
several process names per Compute Cluster with different addresses among them instead
of resolving to an unique Compute Cluster identifier. A possible solution to address MPI
processes individually would be to simply add the logical port that corresponds to the
inbox of a given MPI process rank in the same name entry that already stores its associated
Compute Cluster identifier. However, modifying a consolidated OS service would either
break its entire interface or overload it with features that only concern LWMPI.

To overcome this problem, we designed an extension to the traditional Name
Service that can be enabled when using LWMPI. To do so, we kept the original Name
Server centralized to handle name queries while opting for a distributed scheme to resolve
address lookups. When the proposed extension is enabled, a Local Name Daemon is
spawned in each Compute Cluster of the lightweight manycore. In particular, this daemon
uses a Local Name Table that contains the logical addresses of all MPI process names
associated with the Compute Cluster to respond name lookup requests related to local
MPI process names.

Figure 13 illustrates the protocol for an address lookup operation as well as the
internal structures involved in this operation on the aforementioned conceptual lightweight
manycore. To improve visibility, we omitted all PEs that are not relevant for this example.
In this scenario, an MPI process with rank 8 running on Compute Cluster 1 (source MPI
process) wants to send a message via MPI_Send to the MPI process with rank 1 running
on Compute Cluster 0 (destination MPI process). The protocol works as follows. First, the
centralized Name Server is inquired for the number of the Compute Cluster associated
with the destination MPI process (1). When the response arrives in the source MPI
process (2), it discovers that the destination MPI process resides in Compute Cluster 0.
Then, the Local Name Daemon running in Compute Cluster 0 is inquired to determine the
specific logical address of the destination MPI process (3). When the response arrives in
the source MPI process (4), it finally finds the complete logical address of the destination
MPI process and can now send a message to it via MPI_Send (5).

To improve the overall performance of the thread addressing scheme, we imple-
mented in software a small cache of names in each Local Name Daemon. This cache
reduces the volume of address translation requests that need to be resolved in remote
Compute Clusters, especially when multiple MPI processes repeatedly communicate with
the same one (e.g., in master/slave models). This optimization drastically reduces the
intensity of communications and allows for lookups to be resolved very quickly.

While this distributed approach gives more flexibility, it adds more pressure on
the communication subsystem than a centralized approach, since it adds at least an extra
pair of messages exchanged between MPI processes and remote Local Name Daemons.
However, we believe that the benefits of not drastically changing an existing OS service
surpass the small overhead introduced by it.

63

ND

Local Name DaemonND

I/O Cluster

n MPI Process (rank = n)

ND Compute
Cluster 18

NS Name Server

Global Name Table

Compute
Cluster 0

Local Name Table

NS …
12

3

4

…

Compute
Cluster 3

…

…1

ND

Lookup
MPI rank = 1

Lookup Protocol

5

MPI_Send()

Figure 13 – Protocol for address lookup and internal structures.

5.7 POINT-TO-POINT COMMUNICATION

Sending and receiving messages between the processes is the basic mechanism uti-
lized by MPI. Communication operations may be of two distinct types: (i) point-to-point
communication, in which two processes exchange messages directly; and (ii) collective op-
erations, in which a group of processes perform operations together in a coordinated way.
Currently, LWMPI only supports point-to-point communication, although implementing
collective operations is just a question of implementing the protocols employed and pro-
viding optimizations for these collective operations. However, in the present work, we
focused on offering support for the point-to-point communication, letting the collective
operations as a future work. The basic point-to-point operations in MPI are send and
receive, which are represented by theMPI_Send andMPI_Recv functions, respectively.

5.7.1 Send and Receive Operations

To match a send operation with its respective receive, there are some attributes
that need to be matched between the two operations. These attributes are called the
message envelope, which consists in the source, destination, tag and communicator. Ad-
ditionally, the datatypes involved in the communication need to be compatible. In the
case of LWMPI, the datatype must be the same for both sender and receiver. The only
exception is when at least one of the sides uses the MPI_PACKED or the MPI_BYTE
types, that match all the other datatypes defined in the MPI specification.

The MPI standard defines three basic communication modes for the send opera-
tion, which are detailed bellow:

64

Buffered Mode A send operation can be started whether or not a matching receive has
been posted. This mode uses intermediary buffering, in which the MPI runtime
stores the user message in an internal buffer to be sent when a matching receive is
posted. This is a local operation, and the sender may return from the MPI_Send

function as soon as the message was buffered by the runtime. When a matching
receive comes, the runtime transfers the buffered message asynchronously. Although
this mode may be the most efficient by blocking the sender for the minimum amount
of time, it can be very costly from the memory consumption point of view. In
general, only small messages may be buffered to avoid memory exhaustion.

Synchronous Mode A send operation also can be started whether or not a matching
receive has been posted. However, it will only complete successfully when the receive
operation has started to receive the data through the channel. In general, this mode
does not need any type of intermediary buffering, but it may be very “costly”, since
the sender may be blocked for a long time while waiting for a matching receive to
be posted.

Ready Mode The communication can be started only if the matching receive is already
posted. Otherwise, the operation is erroneous and may result in undefined behav-
iors. In general, the idea behind this mode is that it may allow the removal of a
handshake, that otherwise is required, in the beginning of the communication pro-
tocol. Because of that, this mode may significantly improve the performance, as
long as the programmer guarantees program correctness.

It is allowed for the user to specify what mode it wants to use for the send
operation. To specify that, it may use the MPI_Bsend, MPI_Ssend or MPI_Rsend

functions to use buffered, synchronous or ready modes, respectively. If the user does not
want to specify one of these modes, it may use the regular MPI_Send function. In this
case, the runtime system tries to choose the mode that delivers the best results based
on the resource consumption and performance needs. In the current version, LWMPI
only implements the synchronous mode to carry out the communications to avoid extra
memory usage, which is inherent to the buffered mode, and keep the library thin, since
memory is a very scarce resource in lightweight manycores. Additionally, the ready mode
is not implemented because in the case of the Kalray MPPA-256, specifically, both the
sender and the receiver need to know the amount of data that will be transferred, and
both sides need to specify the same amount. This way, the handshake in the beginning of
the communication also serves for this agreement phase, and may not be removed unless
a better protocol becomes available in the Nanvix microkernel. The implementation of
these two additional modes is stated as future work.

65

LibMPI

MPIUtil

Build a request

Send request

1.1

1.3 3.1

Nanvix IPC Facility

Completion ACK
4.2

MPI_Send

Address Lookup
1.2

Receive
confirm

3.2
Send Data

LibMPI

Nanvix IPC Facility

MPIUtil

Build a request
2.1

Returns
4.2

Req Queue

Search &&
Remove

2.2

Send ACKReceive
Data

3.3 4.1

MPI_Recv

Send
Confirmation

2.3

Figure 14 – Interactions between LWMPI and Nanvix.
Source: The author.

5.7.2 Request Cycle

Now, we describe in more details the interactions between LWMPI layers and
Nanvix IPC. Figure 14 illustrates how LibMPI and MPIUtil tiers interact on the sender
(left) and receiver (right) sides.

LibMPI is responsible for checking the input parameters and creating the com-
munication requests that will be used by MPIUtil (steps 1.1 and 2.1). Requests include
the information to be matched between MPI_Send and MPI_Recv, such as communi-
cator, context, tag, source/destination and, the memory address where the IPC call will
use to place/retrieve data to be received/sent. Consequently, this implementation avoids
any temporary buffers.

Proceeding with theMPI_Send operation, the sender inquires an address lookup
to the Nanvix Name Server (step 1.2) if the corresponding translation is not present in
the name cache of the Local Name Daemon as explained in Section 5.6. With the target
MPI process address, the sender submits a request-to-send message to the receiver (step
1.3) through the mailbox abstraction and blocks waiting for a confirmation message to
arrive from the receiver when a matching MPI_Recv is posted. This additional step in
the handshake is required to confirm from which port of the remote Compute Cluster
the acknowledgment message will come in the completion stage, since we may have more
than one MPI process per Compute Cluster.

When an MPI_Recv call is issued, the receiver first constructs the communica-
tion request. Then, it searches in an internal FIFO queue (step 2.2) for a send request
that matches the received request built in step 2.1 . If the queue is empty or no match
is found, the receiver waits for a matching request to arrive from the interconnection.

66

Any other requests that arrive in the meantime are placed at the end of the queue to be
fulfilled later.

In Nanvix, threads allocated in the same Compute Cluster share the same physical
communication resources, which are distinguished only by their logical addresses (PENNA
et al., 2021). Since we do not know in advance which thread will check the underlying
buffers when receiving a requisition, all threads in the same Compute Cluster need to
agree on a common address from which they can all consume and store messages to
unlock the communication mechanisms. Thus, all requests arrive at a common address
that is prefixed and known by all threads in the system, and only from step 2.3 onward
those communications use the specific addresses of the communicating MPI processes
ranks.

When a matching request is found, the receiver consumes and handles it promptly
as follows. First, the receiver identifies the sender logical address that comes in the request-
to-send message, and then sends its own address in the confirmation message (step 2.3).
Along with this confirmation, the receiver grants permission for the data transfer using
the portal abstraction, allowing the sender to proceed with the communication in steps
3.1 and 3.2 . When the receiver starts to receive data through its input portal, it sends
an acknowledge message to the sender via mailbox (step 4.1), indicating to the sender
that it can successfully return. Finally, the sender returns from MPI_Send when it has
sent all of its data and has received the ack from the receiver (step 4.2). The receiver
returns from MPI_Recv when it has read all the data from the channel or when it has
read the amount of data equivalent to the local buffer size.

5.7.3 Communication Protocol

Figure 15 shows the inter-process interaction from the perspective of message
exchanges, and gives a bit more of understanding about the communication protocol
employed in LWMPI.

The first part of the communication corresponds to an agreement phase that is
implemented as a two-step handshake. In the first part of the agreement, the sender
submits the request-to-send message to the receiver using the mailbox abstraction. This
message contains all the information necessary for the receiver to build a complete request,
that will then be compared and matched with the candidate receive requests.

When the receiver makes a total match, it completes the handshake by sending a
confirmation message and emitting an allow to the output portal of the sender, authorizing
it to initiate the transmission through the high bandwidth channel. The receiver will then
wait for the data to start to arrive, and will emit a started-to-receive message, usingmailbox
again, to the sender, signalizing that it started to receive the data. This started-to-receive
message is the acknowledgment message that tells to the sender that it can successfully
return when it has transmitted all the data through the channel.

67

MPI_Send MPI_Recv

time

Wait

Recv

Request-to-Send (Mbx)

Allow (Portal)

Send Data (Portal)

Started-to-recv (M
bx)

Confirmation (Mbx)

Figure 15 – Communication protocol.
Source: The author.

5.7.4 Local Communication Optimization via Shared Memory

It is important to note that the protocol presented in Figures 14 and 15 is generic
enough to carry out both local and remote communications by taking advantage of the
transparency given by the Nanvix IPC abstractions on handling specificities of each type of
communication. The Nanvix IPC module itself leverages the shared memory in a Compute
Cluster to provide faster local communications that do not use the NoC. However, the
IPC module still interacts with the Nanvix asymmetric microkernel, resulting in undesired
overheads when several MPI processes are running in parallel.

To avoid the aforementioned problem, and trying to handle local communica-
tions even faster, we propose a new communication protocol in LWMPI that is especially
designed to handle local communications almost completely in user space. The main
advantages of this new communication protocol are the following:

(i) it considerably reduces the number of system calls invocations, thus minimizing the
pressure over the Nanvix asymmetric microkernel; and

(ii) it reduces the number of intermediate copies of internal buffers, thereby enabling
much faster communications for all MPI processes within the Compute Cluster.

Figure 16 presents the new protocol to handle intra-cluster communications. Sim-
ilar to the non-optimized version, sender and receiver peers first build requests that will
be matched to establish the communication (steps 1.1 and 2.1). The difference for this
new version is that when the sender dispatches an address lookup request (step 1.2),
it will receive a local address as a response and will proceed with the new part of the
protocol. First, it reserves a buffer slot (step 1.3) in a new data structure that associates
a pointer in the local memory of the Compute Cluster (i.e., the pointer to the user-level

68

LibMPI

MPIUtil

Build a request

Send request

1.1

1.4

1.3

Nanvix IPC Facility

3.1

MPI_Send

Addr. Lookup
1.2

1.5

LibMPI

MPIUtil

Build a request

2.1

Returns
2.6

Req Queue

Search &&
Remove

2.2

Signalize
Sender

Copy
Data

2.4 2.5

MPI_Recv

Retrieve
Slot ID

2.3

Return

Compute Cluster

Reserve
Buffer
Slot

Buffer Slots
Table

Wait for
Reader Signal

Figure 16 – Interactions between LWMPI and Nanvix in local communications.

buffer), with an identifier that represents the buffer slot inside this structure. The sender
then adds the reserved buffer identifier in its request and sends it to the receiver using
the mailbox abstraction (step 1.4). After that, it blocks waiting for a signal from the
receiver to indicate that the buffer slot is free (step 1.5).

At the receiver side, after having its request built, it searches for an already
received request in the requisitions queue (step 2.2), or waits for a new request to arrive
like in the original protocol. When a matching request is found and the communication is
local, it retrieves the buffer slot identifier (step 2.3) associated with the received request
and copies the data directly from the memory address linked in the respective buffer slot
(step 2.4). When all data were copied from the sender’s buffer to the receiver’s buffer,
the receiver sends a signal to the sender, allowing the sender to safely reuse that buffer
(step 2.5). At this point, both receiver and sender are ready to return (steps 2.6 and
3.1 , respectively).

Overall, with this new protocol we reduce the number of messages exchanged
using the IPC module (from 5 messages to a single message), significantly reducing the
protocol complexity and the quantity of system calls invoked to carry out the communi-
cation. In Chapter 7, we evaluate the benefits of this new optimization when compared
to the standard non-optimized communication.

5.8 PROCESS MAPPING POLICIES

Finally, another important feature of LWMPI is the process mapping policies,
which define how MPI processes with consecutive MPI ranks are assigned to Compute
Clusters of a lightweight manycore. Currently, LWMPI supports the following policies:

69

Idle PE

MPI Process Rank

CC 0 CC 1 CC 2

CC 5CC 4CC 3

0 6 1 7 2 8

1312

3 9 4 10 5 11

CC 0 CC 1 CC 2

CC 5CC 4CC 3

0 1 4 5 8 9

62

12 13

3 7 10 11

MPI Process Rank

Idle PE

Figure 17 – Example of compact (left) and scatter (right) policies.

Compact Policy Each MPI process is assigned to a free PE within the same Compute
Cluster c. When there is no more free PEs in c, the remaining MPI processes are
assigned to a neighbor Compute Cluster according to the NoC topology (c + 1).
This procedure is repeated until all MPI processes are assigned to PEs. Overall,
this policy concentrates MPI processes in less Compute Clusters, improving resource
sharing.

Scatter Policy Each MPI process is assigned to a different Compute Cluster in a round-
robin fashion. Overall, this policy distributes MPI processes across the Compute
Clusters, reducing local resource contention. Moreover, this policy allows MPI pro-
cesses to allocate more memory in Compute Clusters, since the number of MPI
processes per Compute Cluster is reduced.

Figure 17 illustrates how 14 MPI processes (ranks 0 to 13) are assigned to PEs
in a conceptual lightweight manycore with six Compute Clusters (0 to 5) and four PEs
per Compute Cluster. As it can be noticed, the compact policy assigns all MPI processes
to Compute Clusters 0–3, whereas the scatter policy spreads MPI processes across all
Compute Clusters in a balanced way.

5.9 ADDITIONAL CONSIDERATIONS

In this chapter, we saw the implementation details of LWMPI and how it lever-
ages from an underlying POSIX-compliant OS to deliver programmability and an implicit
portability for lightweight manycores. More than that, we saw that LWMPI not only focus
in exposing a richer programming interface, but also on extracting the best performance
by providing feasible optimizations in its communication protocols and implemented func-
tionalities. One may reason that exploiting these optimizations in user-made solutions is
also possible, but, here we argue that it is much more simple to provide these optimiza-

70

tions and rely in a solidified library rather than reimplementing them each time a new
solution is needed.

This way, with LWMPI we take a step ahead when talking about programmabil-
ity in lightweight manycores. More than a standard and portable interface for message
passing communications, we also deliver an easy way for the user to better use the re-
sources of a lightweight manycore, abstracting the majority of the hardware intricacies of
these processors, offering them in a transparent way in the application level.

71

6 EVALUATION METHODOLOGY

In this chapter, we first give a brief description of the applications that we used
to evaluate LWMPI. Then, we describe the experimental design employed in this under-
graduation dissertation.

6.1 APPLICATIONS

To deliver a comprehensive assessment of LWMPI, we relied on two distinct types
of applications:

(i) a synthetic application that stresses the all-to-all communication pattern; and
(ii) three applications extracted from CAP Bench (SOUZA et al., 2017), a benchmark

suite designed to assess the performance of lightweight manycores.

All applications were implemented in C language with MPI.1 An overview of each appli-
cation is given bellow.

All-to-All (A2A) is a synthetic application that executes a sequence of supersteps
s = 0, 1, . . . , n in a Bulk Synchronous Parallel (BSP) scheme but with no actual
computation. In a superstep s, each MPI process sends a fixed number of messages
carrying a payload of size p bytes to all other MPI processes (N:N communication
pattern) and blocks on a global barrier. Then, p is exponentially increased before
the next superstep (p = 2s+7 bytes). The application stops when the last super-
step is finished. This application is communication-bound and is employed to stress
intra-and inter-cluster communications.

Friendly Numbers (FN) is an application that finds all subsets of numbers in a range
[n, m] that share the same abundance. The abundance of n is the ratio between the
sum of divisors of n by n itself. FN implements the MapReduce parallel pattern and
has tasks with regular loads. The problem is predominantly CPU-bound.

Gaussian Filter (GF) is a filter that reduces the noise of an image by applying a matrix
convolution operation with a special two-dimensional Gaussian mask to the image
pixels. GF performs the Stencil parallel pattern to equal-sized parts of the image,
thus being CPU-intensive and having a medium communication intensity.

K-Means (KM) is a clustering technique employed in data analysis. KM gets a set of n

points in real d-dimensional space and randomly split them into k partitions. Then,
it applies the Map parallel pattern to distribute points and replicate data centroids
between the Compute Clusters. The irregular workload is both CPU- and memory-
bound. Since each iteration must update data centroids, this kernel operates with
high communication intensity.

1 Publicly available at: https://github.com/nanvix/benchmarks.

72

The standard CAP Bench applications follow a master/slave model, where a
global master distributes tasks to slaves to be computed. We kept the same approach
when implementing the MPI versions of FN, GF and GM applications in our previous
work (ULLER et al., 2020a), since we were restricted to a single MPI process per Compute
Cluster (maximum of 15 workers on Kalray MPPA-256) due to the limitations of both
Nanvix and LWMPI. However, this simple model clearly prevents applications to scale
to hundreds of workers. Since now LWMPI can exploit all PEs in Compute Clusters, we
modified the applications to include a local master on each Compute Cluster, which is
responsible for making the bridge between the global master and slaves. This modification
greatly improved the overall scalability of the applications, since slaves running on the
same Compute Cluster can communicate locally with their corresponding local master,
thus reducing the amount of messages transferred through the NoC. Because of that, we
adopted this new version in all experiments discussed in this undergraduation dissertation.

6.2 EXPERIMENTAL DESIGN

We carried out all experiments on the baremetal lightweight manycore presented
in Section 2.2 (Kalray MPPA-256). In all experiments, we were restricted to 12 MPI
processes per Compute Cluster on Kalray MPPA-256 (192 MPI processes when using all
Compute Clusters), because:

(i) Nanvix can only spawn a single thread per PE to keep the system simple and to
avoid managing thread preemption and scheduling at kernel level;

(ii) one PE is reserved for the Nanvix asymmetric microkernel;
(iii) two PEs are reserved for Nanvix services; and
(iv) one PE is reserved for the Local Name Daemon proposed in this paper (Section 5.6).

We conducted two sets of experiments to asses LWMPI. First, we employed the
synthetic application (A2A) to evaluate the impacts of the local communication optimiza-
tion via shared memory presented in Section 5.7.4. In this experiment, we considered
scenarios with 12 MPI processes running with different MPI process mapping policies
(compact and scatter) presented in Section 5.8. We employed the optimized version of
LWMPI (LWMPI-opt) in these experiments.

Second, we carried out weak scaling (GUSTAFSON, 1988) experiments with the
aforementioned CAP Bench applications, in which each time we double the number of
processes involved, we also double the input problem size. We varied the number of
MPI processes from 1 to a maximum of 192, which corresponds to 16 Compute Clusters
running 12 MPI processes each. All applications from CAP Bench were executed with
the compact MPI process mapping policy, since it delivers better performance than scat-
ter. We contrasted the results obtained with the applications running with the optimized
(LWMPI-opt) and unoptimized (LWMPI-unopt) versions of LWMPI with their corre-

73

Type Name Abstractions Parameters Trials
Synthetic A2A LWMPI-opt Payload sizes from 128 B to 32,768 B 10

CAP B.
FN LWMPI-unopt/opt, IPC Numbers in [1000001; 1000001 + N], N = 1536 ∗ nclusters 10
GF LWMPI-unopt/opt, IPC N images, 256× 256 pixels, 7× 7 mask, N = 1200 ∗ nclusters 10
KM LWMPI-unopt/opt, IPC N 2D points, 128 centroids, N = 13440 ∗ nclusters 10

Table 5 – Parameters of synthetic and CAP Bench applications.

sponding implementations using only Nanvix IPC abstractions (IPC). The main goal was
to evaluate the overhead introduced by LWMPI when compared to the Nanvix low-level
programming API for parallel programming.

We collected the following metrics from applications to evaluate LWMPI: ex-
ecution time and energy consumption. All time measurements were performed using
hardware performance counters to enable monitoring with minimum interference. On the
other hand, to retrieve energy consumption statistics, we relied on a device that is ex-
ternally attached to the board of the processor. This device measures power dissipation
on the board and comprises statistics for all PEs, NoCs and other on-chip resources. All
results are based on a confidence interval threshold of 95% (significance of 5%). The
maximum coefficients of variation observed with A2A and CAP Bench applications were
7% and 3%, respectively.

Table 5 presents the parameters used in each application. For CAP Bench ap-
plications, the input problem size (N) increases with respect to the number of Compute
Clusters running MPI processes (nclusters).

75

7 EXPERIMENTAL RESULTS

In this chapter, we present and discuss our experimental results. First, we evalu-
ate the impacts of MPI process mapping policies when running a synthetic communication-
bound application (A2A) with the optimized version of LWMPI (LWMPI-opt). Then,
we examine the performance and energy consumption of MPI-based implementations of
CAP Bench applications when running with the optimized (LWMPI-opt) and unopti-
mized (LWMPI-unopt) versions of LWMPI. A comparison with results obtained from
IPC-based implementations of these applications (IPC) is also presented.

7.1 IMPACTS OF MPI PROCESS MAPPING POLICIES

Figure 18 presents the execution times obtained with the A2A application when
executed with 12 MPI processes and with different MPI process mapping policies (scatter
and compact). As expected, compact delivered the best execution times, since in this
scenario all MPI processes are carrying out local communications. The execution time
was nearly constant, no matter the message size. The rationale behind this result is
that the time spent in synchronizations among communicating peers dominates the time
spent in local data copies from source to destination buffers, making the size of messages
involved in local communications irrelevant for determining the overall transfer time.

Scatter, however, achieved a nearly constant execution time with up to 4096-byte
messages. After that, the execution times increased significantly along with the size of
messages. The nearly constant execution time with up to 4096-byte messages is due to
the granularity of data transfers used by the Nanvix IPC portal abstraction, which is 4096
bytes (one memory page). This means that any message carrying a payload smaller than
4096 bytes will be transferred in a packet of size 4096 bytes, resulting in a constant transfer

 0

 25

 50

 75

100

125

150

256 512 1024 2048 4096 8192 16384 32768

Messages Sizes (B)

T
im

e
(m

s)

Mapping Policy

Compact
Scatter

Figure 18 – Execution times obtained with different MPI process mapping policies in a
scenario with 12 MPI processes and the optimized version of LWMPI.

76

time. Messages carrying payloads greater than 4096 bytes will require more packets to be
transferred through the NoC, resulting in higher transfer times.

This experiment allowed us to conclude that the performance gains obtained with
intra-cluster communications (compact policy) surpass the costs involved in synchroniza-
tions to access shared data structures in local memory. Thus, compact should be used for
communication-bound applications whereas scatter is preferable to CPU-bound applica-
tions (or to those that make a moderate amount of communications), thus allowing MPI
processes to allocate more memory in Compute Clusters.

7.2 PERFORMANCE EVALUATION WITH CAP BENCH APPLICATIONS

7.2.1 FN Application

Figure 19a and Figure 19b present execution times and weak scaling results ob-
tained with FN, respectively. In this application, the global master distributes equal-sized
ranges of numbers to local masters, which in turn divide these ranges equally among its as-
sociated slaves to compute the abundance values. Since FN is a CPU-bound application
and has a low communication demand, the results obtained with IPC, LWMPI-unopt

and LWMPI-opt solutions are fairly similar. This result is expected, since most of the
differences between these solutions come from the way they manage communications.
Moreover, such low communication demand in FN is not sufficient to highlight the bene-
fits of LWMPI-opt over LWMPI-unopt. The efficiency of 77% achieved with 16 Compute
Clusters (192 MPI processes in total) shows that this application is able to scale to hun-
dreds of MPI processes.

959595 959696 979897
10

3
10

3
10

3
12

4
12

3
12

4

FN

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 25

 50

 75

100

125

150

Number of Clusters (MPI Processes)

T
im

e
(s

)

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt

(a) Execution times.

● ● ●

●

●

FN

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Number of Clusters (MPI Processes)

W
ea

k
S

ca
lin

g
E

ffi
ci

en
cy

API Solution
● Nanvix IPC

LWMPI−unopt
LWMPI−opt

(b) Weak scaling efficiency.

Figure 19 – FN application results.

77

15
3

46
660

9

17
7

47
659

7

15
5

49
757

6

34
852

6
86

3

73
689

5

17
68

GF

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 460

 920

1380

1840

2300

Number of Clusters (MPI Processes)

T
im

e
(s

)

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt

(a) Execution times.

● ●
●

●

●

GF

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Number of Clusters (MPI Processes)

W
ea

k
S

ca
lin

g
E

ffi
ci

en
cy

API Solution
● Nanvix IPC

LWMPI−unopt
LWMPI−opt

(b) Weak scaling efficiency.

Figure 20 – GF application results.

7.2.2 GF Application

Figure 20a and Figure 20b present execution times and weak scaling results ob-
tained with GF, respectively. In this application, the global master distributes images to
be processed by local masters. Then, each local master splits the image into equal-sized
chunks and distributes them to its associated slaves to perform matrix computations using
a Gaussian mask. Overall, LWMPI-opt achieved the best execution times, followed by
LWMPI-unopt and IPC. Since GF has a medium communication intensity, LWMPI-opt

clearly presents a significant improvement when compared to LWMPI-unopt, achieving
performance gains of up to 3.2× (1.8× on average). The results show that the perfor-
mance gains achieved by LWMPI-opt in comparison to LWMPI-unopt tend to decrease
as we increase the number of MPI processes. We believe that this performance degra-
dation observed with LWMPI-opt is related to the communications between the global
master and the local masters. This completely synchronous communication tends to hide
the benefits of the optimized local communications in Compute Clusters, resulting in local
masters waiting for their turn to communicate with the global master.

7.2.3 KM Application

Figure 21a and Figure 21b present execution times and weak scaling results ob-
tained with KM, respectively. In this application, the global master iteratively orches-
trates the parallel execution by gathering and broadcasting centroids to local masters,
which then forward the data to slaves to perform the actual computation. Again, LWMPI-

opt achieved the best execution times, followed by LWMPI-unopt and IPC. We observed
a fairly consistent growth in execution times of all solutions as we increased the number of
MPI processes. Since KM is a communication-bound application, it is ideal for evaluating
the performance gains that can be achieved with the local communication optimization
implemented in LWMPI-opt. Overall, the lowest performance improvement achieved by

78

23
9

47
351

1

27
1

52
857

1

31
3

57
362

8

39
3

65
875

0

58
6

85
599

2

KM

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 250

 500

 750

1000

1250

1500

Number of Clusters (MPI Processes)

T
im

e
(s

)

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt

(a) Execution times.

●

●

●

●

●

KM

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Number of Clusters (MPI Processes)

W
ea

k
S

ca
lin

g
E

ffi
ci

en
cy

API Solution
● Nanvix IPC

LWMPI−unopt
LWMPI−opt

(b) Weak scaling efficiency.

Figure 21 – KM application results.

LWMPI-opt was 1.4× (scenario with 192 MPI processes), being up to 2× faster than
LWMPI-unopt in a scenario with 12 MPI processes.

7.2.4 Energy Efficiency Evaluation

Figure 22 shows the power consumption when running KM with 12, 48, and
192 MPI processes. As it can be noticed, the power consumption of Kalray MPPA-256
when running KM with LWMPI-opt is slightly higher than with LWMPI-unopt and
IPC. This increase in power consumption is due to the optimizations in local memory
communications presented in Section 5.7.4. A similar behavior was also observed on
GF. Since execution times of GF and KM are drastically reduced with LWMPI-opt, their
overall energy consumption is also reduced as shown in Figure 23. As expected, the energy
consumption of FN was the same for all solutions because it has very few communications.
Overall, execution times and energy consumption follow the same trend on all applications
considered in this study.

1 Cluster (12 MPI Processes) 4 Clusters (48 MPI Processes) 16 Clusters (192 MPI Processes)

0 125 250 375 500 625 750 875 1000 0 125 250 375 500 625 750 875 1000 0 125 250 375 500 625 750 875 1000
7.25

7.50

7.75

8.00

8.25

8.50

8.75

Time (s)

P
ow

er
 (

W
)

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt

Figure 22 – Power consumption for KM when varying the number of clusters/problem sizes.

79

78
5

78
4

78
2

80
7

80
6

81
0

84
3

84
2

84
4 95

2

94
6

94
8

12
48

12
48

12
38

FN

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 500

1000

1500

2000

Number of Clusters (MPI Processes)

E
ne

rg
y

(J
)

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt

12
68

37
6550

08

14
64

38
6049

33

12
89

40
9147
59

28
9743

55

70
83

60
8272

59

14
21

7

GF

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 5000

10000

15000

20000

Number of Clusters (MPI Processes)

E
ne

rg
y

(J
)

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt

19
75

38
73

42
25

22
55

43
37

47
19

26
31

47
5052
08

33
14

54
6561

93

49
42

70
8981

47

KM

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 3500

 7000

10500

14000

Number of Clusters (MPI Processes)

E
ne

rg
y

(J
)

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt

Figure 23 – Energy consumption for FN, GF and KM when varying the exp. scenarios.

7.3 ADDITIONAL CONSIDERATIONS

Overall, LWMPI presented better results, both in performance and energy effi-
ciency, when compared with the Nanvix IPC abstractions solution, especially when con-
sidering the optimized version of LWMPI for local communications. Despite unexpected,
since an additional overhead instead of direct gains would be natural, this is possible due
to the the efforts of LWMPI to present better optimizations for its protocols, like the op-
timization for local communications discussed in Section 5.7.4. In this case, we saw that
the optimized version of LWMPI presents significant gains in terms of performance when
compared to its non-optimized version, showing the importance of providing optimizations
to extract the better results from both the underlying hardware and software.

Comparing the performance of the optimized LWMPI and the Nanvix IPC solu-
tion, it presented the same results in the FN application, and gains ranging from 4× to
2.4× (3.2× on average) for the GF application, and from 2.1× to 1.7× (2× on average)
for KM. In terms of power and energy consumption, LWMPI presented a slightly higher
power consumption than the Nanvix IPC version, presenting peaks of 8.5 W against 8
W, respectively, exactly because it increases the parallelism in communications. However,
as this increase in parallelism results in shorter execution times, LWMPI drastically re-
duces the final energy consumption of these applications, almost in the same rates that
it reduces the total execution times.

80

At the same time, when we look to the weak scaling speedups obtained with
these three applications, we conclude that CPU-bound applications like FN scale better
for hundreds of processes (77% efficiency for 192 MPI processes) than those that present
more significant communication workloads like GF and KM (52% and 57% efficiency,
respectively). This is a totally expected result since the overheads imposed by additional
communication demmands in these applications tends to be compensated by the gains in
computational power delivered by lightweight manycores.

81

8 CONCLUSIONS AND FUTURE WORK

Lightweight manycores brought together concepts of parallel and distributed sys-
tems into a single die to deliver high performance and energy efficiency. Nevertheless,
architectural intricacies and the absence of APIs that embrace programmability and porta-
bility make software development an arduous task, specifically because current solutions
rely on hardware-dependent and/or vendor-specific APIs.

To unite programmability and portability for lightweight manycores, we proposed
LWMPI, a lightweight and portable MPI implementation on top of a POSIX-compliant
distributed OS that targets this class of processors (Nanvix). LWMPI is designed from
scratch and follows a two-tier approach to separate and self-contain the MPI interface
from the OS-dependent layer.

The results obtained with a subset of the CAP Benchmarks applications on the
Kalray MPPA-256 processor unveil that LWMPI not only delivers a lightweight and richer
programming interface, but also, it presents good performance and scalability for parallel
and distributed problems. Instead of an expected overhead, the optimized version of
LWMPI even achieved better results in the comparison with a baseline solution that uses
the raw Nanvix IPC abstractions.

Overall, LWMPI improved programmability and delivered implicit portability
for lightweight manycores without introducing significant overheads that could hinder its
adoption, posing itself as a good and viable solution for lightweight manycores.

As future work, some improvements in the LWMPI design and implementation
remain as open oportunities:

Adaptative Communications: implementing a mechanism that is capable of dynam-
ically choosing which IPC abstraction fits better the data granularity to be sent,
instead of using fixed portals to handle the data transfers, would make it possi-
ble to send fine-grain messages with low latency and coarse-grain data with high
bandwidth;

Messages Forwarding in Nanvix IKC: implementing a message forwarding scheme
in the Nanvix IKC facility would permit much faster Address Resolutions for the
Nanvix Name Service, and consequently, for LWMPI, since the Name Server would
be capable of forwarding an address query directly to the correct Name Daemon,
which in turn, answers it directly to the requesting process;

Collective Communications: implementing collective communication operations would
not only improve programmability with LWMPI, but also, it would permit better
optimizations to be made for this type of communications, giving even more possi-
bilities of improvement for LWMPI.

83

BIBLIOGRAPHY

ASMUSSEN, N. et al. M3: A hardware/operating-system co-design to tame
heterogeneous manycores. In: International Conference on Architectural
Support for Programming Languages and Operating Systems. Atlanta,
Georgia: ACM, 2016. (ASPLOS ‘16), p. 189–203. ISBN 9781450340915. Disponível em:
http://dl.acm.org/citation.cfm?doid=2954680.2872371.

BOARD, O. A. R. OpenMP Application Program Interface Specification - Ver-
sion 5.1. 2020. Disponível em: https://www.openmp.org/wp-content/uploads/OpenMP-
API-Specification-5-1.pdf.

BOYD-WICKIZER, S. et al. An analysis of linux scalability to many cores. In: USENIX
Conference on Operating Systems Design and Implementation. Vancouver,
Canada: [s.n.], 2010. (OSDI ‘10), p. 1–16.

CHAPMAN, B.; JOST, G.; PAS, R. Using openmp: Portable shared memory parallel
programming (scientific and engineering computation). jan 2007.

CHEN, X. et al. Hybrid distributed shared memory space in multi-core processors.
JSW, v. 6, p. 2369–2378, 12 2011.

CLAUSS, C. et al. Evaluation and improvements of programming models for the Intel
SCC many-core processor. In: International Conference on High Performance
Computing & Simulation (HPCS). IEEE, 2011. p. 525–532. ISBN 978-1-61284-380-3.
Disponível em: http://ieeexplore.ieee.org/document/5999870/.

DAVIDSON, S. et al. The Celerity Open-Source 511-Core RISC-V Tiered
Accelerator Fabric: Fast Architectures and Design Methodologies for Fast
Chips. IEEE Micro, IEEE, v. 38, n. 2, p. 30–41, mar 2018. Disponível em:
https://ieeexplore.ieee.org/document/8344478/.

DINECHIN, B. D. de et al. A Clustered Manycore Processor Architecture for Embedded
and Accelerated Applications. In: IEEE High Performance Extreme Computing
Conference. Waltham, USA: IEEE, 2013. (HPEC ‘13), p. 1–6. ISBN 978-1-4799-1365-7.
Disponível em: http://ieeexplore.ieee.org/document/6670342/.

DINECHIN, B. D. de et al. A distributed run-time environment for
the kalray mppa-256 integrated manycore processor. Procedia Com-
puter Science, Elsevier, v. 18, n. International Conference on Compu-
tational Science, p. 1654–1663, jan 2013. ISSN 1877-0509. Disponível em:
https://www.sciencedirect.com/science/article/pii/S1877050913004766?via%3Dihub.

FLYNN, M. J. Some computer organizations and their effectiveness. IEEE Transactions
on Computers, C-21, n. 9, p. 948–960, 1972.

FRANCESQUINI, E. et al. On the Energy Efficiency and Performance of Irregular
Application Executions on Multicore, NUMA and Manycore Platforms. Journal
of Parallel and Distributed Computing (JPDC), Elsevier - Academic Press,
Orlando, v. 76, n. C, p. 32–48, february 2015. ISSN 0743-7315. Disponível em:
http://linkinghub.elsevier.com/retrieve/pii/S0743731514002093.

84

FU, H. et al. The Sunway TaihuLight Supercomputer: System and Applications. Science
China Information Sciences, Science China Press, v. 59, n. 7, p. 072001–0720016,
jul 2016. ISSN 1674-733X. Disponível em: http://link.springer.com/10.1007/s11432-016-
5588-7.

GAMELL, M. et al. Exploring cross-layer power management for PGAS applications
on the SCC platform. In: International Symposium on High-Performance
Parallel and Distributed Computing (HPDC). New York, USA: ACM Press,
2012. p. 235. ISBN 9781450308052. Disponível em: http://dl.acm.org/citation.cfm?doid
=2287076.2287113.

GREEN500. Green500 Release. 2020. Disponível em:
https://www.top500.org/lists/green500/2020/06/.

GUSTAFSON, J. L. Reevaluating amdahl’s law. Commun. ACM, Association for
Computing Machinery, New York, NY, USA, v. 31, n. 5, p. 532–533, 5 1988. ISSN
0001-0782. Disponível em: https://doi.org/10.1145/42411.42415.

HAGHBAYAN, M.-H. et al. Performance/reliability-aware resource management for
many-cores in dark silicon era. IEEE Transactions on Computers (TC), v. 66, n. 9,
p. 1599–1612, sep 2017. Disponível em: http://ieeexplore.ieee.org/document/7892847/.

HASCOËT, J. et al. Asynchronous One-Sided Communications and Synchronizations
for a Clustered Manycore Processor. In: Symposium on Embedded Systems for
Real-Time Multimedia. Seoul: ACM Press, 2017. (ESTIMedia ‘17), p. 51–60. ISBN
9781450351171. Disponível em: http://dl.acm.org/citation.cfm?doid=3139315.3139318.

HO, M. Q. et al. MPI communication on MPPA many-core NoC: Design, modeling
and performance issues. In: International Conference on Parallel Computing.
Edinburgh, UK: IOS Press, 2015. (ParCo ‘15, v. 27), p. 113–122. Disponível em:
https://doi.org/10.3233/978-1-61499-621-7-113.

HUANG, C.; LAWLOR, O.; KALÉ, L. V. Adaptive mpi. In: RAUCHWERGER, L.
(Ed.). Languages and Compilers for Parallel Computing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004. p. 306–322. ISBN 978-3-540-24644-2.

KELLY, B.; GARDNER, W. B.; KYO, S. Autopilot: Message passing parallel
programming for a cache incoherent embedded manycore processor. In: International
Workshop on Many-Core Embedded Systems. New York, NY, USA: Association
for Computing Machinery, 2013. (MES ’13), p. 62–65. ISBN 9781450320634. Disponível
em: https://doi.org/10.1145/2489068.2491624.

KLUGE, F.; GERDES, M.; UNGERER, T. An Operating System for Safety-
Critical Applications on Manycore Processors. In: International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing.
Reno, Nevada: IEEE, 2014. (ISORC ‘14), p. 238–245. ISBN 978-1-4799-4430-9.
Disponível em: http://ieeexplore.ieee.org/document/6899155/.

KOGGE, P. et al. ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems Peter Kogge, Editor and Study Lead. 2008.

LARUS, J.; KOZYRAKIS, C. Transactional memory. Communications of the ACM,
Association for Computing Machinery, New York, NY, USA, v. 51, n. 7, p. 80–88, jul
2008. ISSN 0001-0782. Disponível em: https://doi.org/10.1145/1364782.1364800.

85

LI, W. et al. Resource virtualization and service selection in cloud
logistics. Journal of Network and Computer Applications,
v. 36, n. 6, p. 1696 – 1704, 2013. ISSN 1084-8045. Disponível em:
http://www.sciencedirect.com/science/article/pii/S108480451300057X.

MELPIGNANO, D. et al. Platform 2012, a many-core computing accelerator
for embedded socs. In: Design Automation Conference. New York, USA:
ACM Press, 2012. (DAC ‘12), p. 1137–1142. ISBN 9781450311991. Disponível em:
http://dl.acm.org/citation.cfm?doid=2228360.2228568.

MPI-FORUM. MPI: A Message-Passing Interface Standard Version 4.0. 2020.
Disponível em: https://www.mpi-forum.org/docs/drafts/mpi-2020-draft-report.pdf.

MPICH. MPICH: High-Performance Portable MPI. 2020. Disponível em:
https://www.mpich.org.

MUTTIL, N.; LIONG, S.-Y.; NESTEROV, O. A parallel shuffled complex evolution
model calibrating algorithm to reduce computational time.MODSIM07 - Land, Water
and Environmental Management: Integrated Systems for Sustainability,
Proceedings, jan 2007.

NELSON, B. Remote procedure call. In: . [S.l.: s.n.], 1981.

NURNBERGER, S. et al. Shared memory in the many-core age. In: LOPES, L. et
al. (Ed.). Euro-Par 2014: Parallel Processing Workshops. Cham: Springer
International Publishing, 2014. p. 351–362. ISBN 978-3-319-14313-2.

PENNA, P. H.; FRANCIS, D.; SOUTO, J. The hardware abstraction layer of nanvix for
the kalray mppa-256 lightweight manycore processor. In: Conférence d’Informatique
en Parallélisme, Architecture et Système. Anglet, France: [s.n.], 2019. p. 1–11.

PENNA, P. H. et al. On the Performance and Isolation of Asymmetric Microkernel
Design for Lightweight Manycores. In: Brazilian Symposium on Computing
Systems Engineering. Natal, Brazil: SBC, 2019. (SBESC ‘19), p. 1–8. ISSN 2324-7894.
Disponível em: https://hal.archives-ouvertes.fr/hal-02297637.

PENNA, P. H. et al. Inter-Kernel Communication Facility of a Distributed Operating
System for NoC-Based Lightweight Manycores. Journal of Parallel and Distributed
Computing (JPDC), 2021.

PÉRACHE, M.; JOURDREN, H.; NAMYST, R. Mpc: A unified parallel runtime
for clusters of numa machines. In: LUQUE, E.; MARGALEF, T.; BENÍTEZ, D.
(Ed.). Euro-Par 2008 – Parallel Processing. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008. p. 78–88. ISBN 978-3-540-85451-7.

PFN, I. MN-3 Supercomputer. 2020. Disponível em:
https://projects.preferred.jp/supercomputers/en/.

RICHIE, D.; ROSS, J.; INFANTOLINO, J. A Distributed Shared Memory Model and
C++ Templated Meta-Programming Interface for the Epiphany RISC Array Processor.
Procedia Computer Science, Elsevier, v. 108, p. 1093–1102, jan 2017. ISSN 1877-0509.
Disponível em: http://www.sciencedirect.com/science/article/pii/S1877050917308293.

86

ROSS, J.; RICHIE, D. Implementing openshmem for the adapteva epiphany risc array
processor. Procedia Computer Science, Elsevier, v. 80, n. C, p. 2353–2356, jan 2016.
Disponível em: http://www.sciencedirect.com/science/article/pii/S1877050916309206.

ROSSI, D. et al. Energy-Efficient Near-Threshold Parallel Computing: The PULPv2
Cluster. IEEE Micro, IEEE, v. 37, n. 5, p. 20–31, sep 2017. Disponível em:
http://ieeexplore.ieee.org/document/8065010/.

SERRES, O. et al. Experiences with UPC on TILE-64 processor. In: Aerospace
Conference. IEEE, 2011. p. 1–9. ISBN 978-1-4244-7350-2. Disponível em:
http://ieeexplore.ieee.org/document/5747452/.

SOUTO, J. V. et al. Mecanismos de comunicação entre clusters para lightweight
manycores no nanvix os. In: Escola Regional de Alto Desempenho da Região
Sul. Porto Alegre, RS, Brasil: SBC, 2020. (ERAD/RS ‘20), p. 1–4. ISSN 2595-4164.
Disponível em: https://sol.sbc.org.br/index.php/eradrs/article/view/10741.

SOUTO, J. V.; PENNA, P. H.; CASTRO, M. An Inter-Cluster Com-
munication Facility for Lightweight Manycore Processors in
the Nanvix OS. 2019. Trabalho de Conclusao, UFSC. Disponível em:
https://repositorio.ufsc.br/bitstream/handle/123456789/202469/joaovicentesouto-
tcc.pdf.

SOUZA, M. et al. Cap bench: A benchmark suite for performance and energy evaluation
of low-power many-core processors. Concurrency and Computation: Practice and
Experience (CCPE), Wiley Online Library, v. 29, n. 4, p. 1–18, february 2017. ISSN
1532-0626. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3892.

SPI. Open MPI: Open Source High Performance Computing. 2020. Disponível
em: https://www.open-mpi.org.

TANENBAUM, A. S.; BOS, H. Modern Operating Systems. 4th. ed. USA: Prentice
Hall Press, 2014. ISBN 013359162X.

ULLER, J. F. et al. Enhancing programmability in noc-based lightweight manycore
processors with a portable mpi library. In: Simpósio em Sistemas Computacionais
de Alto Desempenho. Online: SBC, 2020. (WSCAD ‘20), p. 1–12. ISSN 2358-6613.

ULLER, J. F. et al. Proposta de suporte ao padrão mpi sobre infraestrutura de
comunicação de baixo nível no nanvix. In: Escola Regional de Alto Desempenho da
Região Sul. Porto Alegre, RS, Brasil: SBC, 2020. (ERAD/RS ‘20), p. 121–124. ISSN
2595-4164. Disponível em: https://ojs.sbc.org.br/index.php/eradrs/article/view/10771.

VARGHESE, A. et al. Programming the adapteva epiphany 64-core network-on-chip
coprocessor. In: International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). Phoenix, USA: IEEE, 2014. (IPDPSW ‘14), p. 984–992.
ISBN 978-1-4799-4116-2. Disponível em: http://ieeexplore.ieee.org/document/6969488/.

WALLENTOWITZ, S. et al. A Framework for Open Tiled Manycore System-On-Chip.
In: International Conference on Field Programmable Logic and Applications.
Oslo: IEEE, 2012. (FPL ‘2012), p. 535–538. ISBN 978-1-4673-2256-0. Disponível em:
http://ieeexplore.ieee.org/document/6339273/.

87

WENTZLAFF, D.; AGARWAL, A. Factored operating systems (fos): The case for
a scalable operating system for multicores. ACM SIGOPS Operating Systems
Review, ACM, v. 43, n. 2, p. 76–85, apr 2009. ISSN 0163-5980. Disponível em:
http://portal.acm.org/citation.cfm?doid=1531793.1531805.

WIJNGAART, R. F. van der; MATTSON, T. G.; HAAS, W. Light-weight
communications on intel’s single-chip cloud computer processor. SIGOPS Operating
Systems Review (OSR), Association for Computing Machinery, New York,
NY, USA, v. 45, n. 1, p. 73–83, feb 2011. ISSN 0163-5980. Disponível em:
https://doi.org/10.1145/1945023.1945033.

WU, Y. et al. Parallelization of a hydrological model using the message passing interface.
Environmental Modelling and Software, v. 43, p. 124–132, 05 2013.

89

APPENDIX A – SCIENTIFIC ARTICLE

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

LWMPI: An MPI Library for NoC-Based Lightweight Manycore
Processors with On-Chip Memory Constraints
João Fellipe Uller1 | João Vicente Souto1 | Pedro Henrique Penna2,3 | Márcio Castro1 | Henrique
Freitas2 | Jean-François Méhaut3

1Laboratório de Pesquisa em Sistemas
Distribuídos (LaPeSD), Universidade
Federal de Santa Catarina (UFSC), Santa
Catarina, Brazil

2Computer Architecture and Parallel
Processing Team (CArT), Pontifícia
Universidade Católica de Minas Gerais
(PUC Minas), Minas Gerais, Brazil

3Laboratoire d’Informatique de Grenoble
(LIG), Université Grenoble Alpes (UGA),
Auvergne-Rhône-Alpes, France

Correspondence
Email: joao.f.uller@grad.ufsc.br,
joao.vicente.souto@posgrad.ufsc.br,
pedro.penna@sga.pucminas.br,
marcio.castro@ufsc.br, cota@pucminas.br,
jean-francois.mehaut@univ-grenoble-
alpes.fr

Summary
Lightweight manycore processors deliver high performance and energy efficiency
by bundling hundreds of low-power cores, a distributed memory architecture with
small local memories and Networks-on-Chip (NoCs) in a single die. However, the
lack of rich and portable programming models for these processors makes soft-
ware development a challenging task. Currently, two approaches are employed to
address programmability in lightweight manycores: Operating Systems (OSes) and
baremetal runtime libraries. The former provides portability but exposes complex
OS-level programming interfaces to developers. The latter focuses on providing
rich and high performance interfaces, which are vendor-specific and yield to non-
portable software. In this work, we address these programmability and portability
challenges by combining a rich OS with a well-known standard for parallel pro-
gramming. We propose a portable and lightweight Message Passing Interface (MPI)
library (LWMPI) designed from scratch to cope with restrictions and intricacies
of lightweight manycores. We integrated LWMPI into Nanvix, an open-source dis-
tributed OS that runs on silicon lightweight manycores. To deliver a comprehensive
assessment of LWMPI, we relied on a synthetic benchmark and three applications
extracted from a representative benchmark suite specifically designed for this class
of processors. Our results obtained on the Kalray MPPA-256 processor unveiled
that applications running with LWMPI achieve better performance and energy effi-
ciency than those implemented with low-level Inter-Process Communication (IPC)
abstractions of Nanvix.
KEYWORDS:
lightweight manycores, MPI, runtime systems, memory constraints

1 INTRODUCTION

Lightweight manycore processors emerged to address demands on high performance and energy efficiency1. They feature in
a single chip hundreds of low-power Multiple Instruction Multiple Data (MIMD) cores2, also known as Processing Elements
(PEs), and a distributed memory system based on ScratchpadMemories (SPMs)3. Usually, PEs are grouped in so-called clusters,
which are interconnected by rich Networks-on-Chip (NoCs). Moreover, these processors may exploit hardware heterogeneity

2 ULLER ET AL

by featuring PEs (or entire clusters) with different capabilities4. Some industry-successful examples of lightweight manycores
are Kalray MPPA-2565, PULP2, Adapteva Epiphany6 and Sunway SW260107, being the latter employed in the fourth most
powerful commercially available supercomputer to date according to TOP500† (Sunway TaihuLight).
While the aforementioned architectural features make lightweight manycore processors more scalable in both performance

and energy efficiency, they introduce several challenges in software programmability. For instance, their distributed memory
architecture requires a non-trivial software design to handle data accesses across multiple physical address spaces. Hence,
parallel applications should explicitly fetch data from remote memories to local ones to manipulate them1. Furthermore, the
small amount of on-chip memory demands parallel applications to explicitly tile the working data set into chunks and locally
manipulate them8. Additionally, it is up to the application to take care of data caching and replication to boost performance9.
Currently, two approaches are employed to address programmability challenges in lightweight manycores: Operating Sys-

tems (OSes)10,11,12 and baremetal runtime systems13,6,14. The former is meant to bridge critical programmability gaps imposed
by hardware intricacies. The latter, on the other hand, aims at exposing a rich, performance-oriented programming environment
narrowed to the underlying architecture. While these two approaches are effective for some use cases, they have a significant
duality drawback. Application development directly on top of OSes yields to software portability across architectures, but pro-
gramming interfaces provided by existing OSes for lightweight manycores are complex and delay the software development
process. In contrast, baremetal and vendor-specific runtime systems expose richer interfaces that accelerate the development
process, but they exclusively concern to the software stack ecosystem of a specific lightweight manycore. As an immediate
consequence, software written on top of these higher-level interfaces end up to be non-portable.
The software stack for lightweight manycores lacks in programmability, once it fails to provide support for both fast develop-

ment process and software portability. In this work, we address the programmability and portability challenges in lightweight
manycores by combining a rich OS with a well-known standard for parallel programming. We propose a lightweight implemen-
tation of the Message Passing Interface (MPI) standard (named LWMPI) on top of Nanvix, an open-source distributed OS that
targets lightweight manycores12. LWMPI is compatible with the MPI specification v3.1 and can be extended to support new
features and OSes thanks to its multitier-based design that keeps encapsulation and maintains the top-level library isolated from
OS-dependent code. The LWMPI design and implementation proposed in this paper stems from our previous work on improving
the programmability of lightweight manycores15. We extended our previous work by adding the following new contributions:
MPI Process Management Module In the original implementation of LWMPI15, we were restricted to a single MPI process

per Compute Cluster. Indeed, this limitation came from Nanvix, which was designed to allow a single system process to
be spawned per Compute Cluster. To make use of all PEs in a Compute Cluster, developers must rely on the Portable
Operating System Interface (POSIX) for threads (pthreads). To prevent developers from implementing MPI applications
using a hybrid programming model (MPI + pthreads), we designed a new module in LWMPI that leverages the thread
abstraction in Nanvix and exposes a unique “MPI process abstraction” to developers. This allows developers to run
existing parallel applications implemented with MPI on Nanvix using all PEs without any source-code changes.

Thread Addressing Considering that MPI processes can either be system processes or threads, an improved addressing scheme
had to be designed to allow each MPI process to be addressed individually. Our solution relies on a distributed scheme to
resolve address lookups. An LWMPI daemon running in each Compute Cluster is responsible for answering name requests
related to MPI process names associated to the Compute Cluster. The daemon leverages a small cache implemented in
software to make MPI process name resolutions faster, improving the overall performance of the system.

Local Communication Optimization via Shared Memory LWMPI relies on Nanvix Inter-Process Communication (IPC) ab-
stractions to carry out communications. We implemented an optimization that simplifies the communication protocols,
leverages the local memory of Compute Clusters and avoids unnecessary interactions with Nanvix for intra-cluster
communications.

MPI Process Mapping Policies We designed two different mapping policies that define how MPI processes with consecutive
MPI ranks are assigned to Compute Clusters in a lightweight manycore: (i) compact, which concentrates MPI processes
in less Compute Clusters to improve resource sharing; and (ii) scatter, which spreads MPI processes across different
Compute Clusters in a round-robin fashion to allow MPI processes to allocate more memory in Compute Clusters.

†https://www.top500.org

ULLER ET AL 3

To assess LWMPI with representative computing workloads, we carried out experiments with a synthetic application that per-
forms all-to-all communications as well as with three applications extracted from the CAP Bench suite8: a benchmark designed
to evaluate state-of-the-art lightweight manycores. We redesigned the MPI-based implementations of these applications, which
were originally presented in our previous work15, so as to improve their scalability and, ultimately, make stronger performance
evaluations with LWMPI. All experiments were executed on the Kalray MPPA-256 processor, a silicon lightweight manycore
that features 288 cores in a single chip. Our results unveiled that the local communication optimization, combined with the
compact mapping policy, improved the time spent in communications in up to 2.8× on the synthetic communication-bound ap-
plication. Moreover, the results obtained with CAP Bench applications showed that the overhead of LWMPI is negligible when
the application is CPU-bound. Applications that featured moderate to high communication intensities were able to benefit from
LWMPI, achieving up to 4× better performance than those implemented with OS low-level communication primitives.
The remainder of this work is organized as follows. In Section 2, we cover the background on lightweight manycores. In

Section 3, we present our proposal. In Section 4, we detail our evaluation methodology. In Section 5, we discuss our experimental
results. In Section 6 we discuss related works. In Section 7, we draw our conclusions.

2 LIGHTWEIGHT MANYCORE PROCESSORS

In this section, we cover the background on lightweight manycore processors. First, we present an architectural discussion on
these processors and how they differ from other parallel architectures. Then, we discuss about the current support for software
development in lightweight manycores.

2.1 Architectural Overview
Lightweight manycores have an endeavor to deliver high performance and energy efficiency in a single die. To achieve this, these
processors rely on the following architectural features: (i) thousands of low-power cores; (ii) MIMD capability; (iii) tightly-cou-
pled groups of cores (aka clusters); (iv) distributed memory architecture with multiple address spaces and small local memories;
(v) reliable and fast NoCs for message-passing; and (vi) heterogeneous processing capabilities in I/O and computing clusters.
To provide substantial insight on lightweight manycores, we consider in this paper an industry-successful tape out of such

type of processor: the KalrayMPPA-2565. Notwithstanding, the following discussion extends to other lightweight manycores2,7.
Figure 1 presents an overview of this processor. Overall, Kalray MPPA-256 integrates 288 cores disposed into 20 clusters. Each
cluster is composed of heterogeneous and limited hardware capabilities to perform different roles. For instance, I/O Clusters
have four Resource Managers (RMs), four NoC interfaces, and 4MB local Static RandomAccess Memory (SRAM) to exchange
data with external resources and internal clusters. Differently, Compute Clusters have one RM, 16 PEs, one NoC interface, and
only 2 MB local SRAM to run user workloads. Cores within the cluster share and have uniform access to hardware resources.
Communication between clusters is exclusively achieved by explicitly exchanging hardware-level messages through two

NoCs. Specifically, The Control NoC (C-NoC) enables synchronization and small control messages handover, whereas the Data
NoC (D-NoC) supports arbitrary-sized data exchanges. At this point, the I/O heterogeneity among Compute Clusters becomes
more evident. On the one hand, I/O Clusters have direct access to a Dynamic Random Access Memory (DRAM) and external

Figure 1 An overview of the Kalray MPPA-256 lightweight manycore processor.

4 ULLER ET AL

Idle core

OS microkernel

OS service

User thread (application A)

User thread (application B)

Lightweight manycore processor

Figure 2 An example of a distributed OS deployed on a hypothetical lightweight manycore.

devices (e.g., Ethernet interface). On the other hand, Compute Clusters must tile their data into messages and send them through
the NoC using an I/O Cluster as an intermediary to access these external resources.
The paradigm breakthrough brought by lightweight manycores allows computer systems to scale their performance and en-

ergy efficiency. However, challenges introduced by their architectural intricacies to software programmability impact from
low- to user-level applications. Examples of these challenges are dark silicon16, data prefetching and tiling1, asynchronous
communication9, non-coherent caches5 and application deployment8.

2.2 Software Development Support
There are two approaches currently employed to address programmability challenges in lightweight manycores: OSes and
baremetal runtime systems. In the following sections, we examine each of them, and we state where our work is positioned.

2.2.1 Distributed OSes
OSes are meant to bridge critical programmability gaps in architectures. To this end, they expose rich abstractions to user-level
applications, providing resource sharing andmultiplexingmechanisms. Inherently due to the architectural features of lightweight
manycores, OSes for these processors embrace a distributed design to achieve scalability17. In this approach, the OS is factored
in a set of services, each of which is deployed on a core of the parallel architecture. Cores that do not run OS services are made
available to user-level applications.
Multiple architectures and implementations for a distributed OS are possible, each one targeting a specific set of design goals

and constraints. However, a three-tier approach is commonly adopted by distributed OSes for lightweight manycores such as
MOSSCA10, M3 11 and Nanvix12. In the bottom layer, a generic and flexible Hardware Abstraction Layer (HAL) enables porta-
bility across different processor architectures. Amicrokernel lies in the middle layer and provides minimum system abstractions,
handles local resource multiplexing and ensures security policies. Finally, in the top layer, runtime OS libraries expose a standard
interface to user-level applications such as POSIX.
OS kernel instances may run on all cores of the processor or in a selected set of them (symmetric vs. asymmetric design)18.

In this work, we are interested on asymmetric multikernel OSes due to their outstanding performance isolation between kernel
and user spaces19. Figure 2 presents a snapshot of an asymmetric distributed OS running on a lightweight manycore. A unique
OS microkernel instance runs on a dedicated core within each cluster. User threads and OS services run in the remainder cores
and request system calls to the kernel through a client-server interface. In this design, performance isolation is delivered because
the core where the kernel resides is not time-shared between two execution flows (i.e., kernel and user). Moreover, there is no
contention in structures of the OS kernel.

2.2.2 Baremetal Runtime Systems
In contrast to OSes, baremetal runtime systems export a rich and efficient programming environment narrowed to the underlying
architecture. In general, they implement only essential primitives that manage the hardware to avoid unnecessary overheads to
the application or fit a specific programming model design. On the one hand, an application can reach optimum performance
by utilizing these runtime systems. However, a significant design effort and/or knowledge of the target architecture is usually
required. On the other hand, they may not hide low-level aspects of the underlying architecture. Moreover, they do not provide
important abstractions that are usually implemented by OSes, such as virtual memory, resource sharing, core multiplexing and
others.

ULLER ET AL 5

Programming models or well-known standards often guide the Application Programming Interface (API) of the runtimes to
benefit a specific set of applications. For instance, NodeOS13 uses the pipe-and-filter programming model to allow processes
to communicate on Kalray MPPA-256. The primitives exported by NodeOS resemble the classical POSIX pipes interface,
but they require specific knowledge from developers. Differently, libasync9 implements the Asynchronous One-Sided (AOS)
communication and synchronization model for KalrayMPPA-256 inspired by libraries used in the High Performance Computing
(HPC) domain. The AOS layer defines put/get and atomic operations over requisition queues, allowing applications to read/write
data from/to remote memory segments. This model mitigates the problems derived from small local memories in Kalray MPPA-
256. However, this approach is focused on enhancing the overall performance of applications, putting aside all programmability
and portability issues in lightweight manycores.
To support different programmingmodels for the Adapteva Epiphany lightweight manycore, Epiphany Software Development

Kit (eSDK)6 provides only low-level primitives for communication and synchronization between cores. In this sense, it is up
to the developer to manually handle the processor management or resort to external libraries. For instance, CLETE14 combines
meta-programming techniques with data layout and job distribution methodologies to provide a transparent distributed shared
memory. Although this additional layer abstracts the peculiarities of the Adapteva Epiphany, this solution is restricted to the
chosen programming model and the processor architecture.

2.2.3 Discussion
In this paper, we focus on implementing and deploying a high-level runtime system on top of a distributed OS for lightweight
manycores.We highlight two high-level runtime systems that concern distributed programming and consequently are suitable for
lightweight manycores: MPI and Partitioned Global Address Space (PGAS). MPI is an industry-standard interface for message
passing programming that exposes one-sided and two-sided communication functions for sending and receiving arbitrary-sized
messages. Its communicator abstraction allows multiple logical communication flows within a distributed application. PGAS,
on the other hand, is a distributed programming environment that provides a global and shared address spaces over a distributed
memory configuration. It relies on a logical partitioning of the address spaces of several processes and provide primitives for
reading/writing/synchronizing data from/to these logical partitions. In this paper, we focus on MPI, since it has been the de facto
standard for parallel programming for more than two decades. It is provided on a wide range of platforms and has been widely
used by the scientific computing community.

3 LWMPI: A MPI LIBRARY FOR LIGHTWEIGHT MANYCORES

Aiming at better programmability in lightweight manycores, we propose LWMPI: an MPI library designed from scratch for
these processors. In contrast to alternative solutions for lightweight manycore processors, LWMPI is portable across different
architectures, due to its design and implementation on top of a POSIX-compliant distributed OS for lightweight manycores.

3.1 Design Goals
Lightweight manycores bring several challenges to software development, thereby making easy-to-use interfaces a fundamental
requirement for this class of processors. These challenges are not restricted to user-level programming, but also to basic soft-
ware development. Thus, solutions must meet user demands while dealing with strict architectural constraints, especially those
concerning memory-related issues. Hence, we aim at the following requirements for LWMPI:
Portability The library should be portable and applicable to various lightweight manycores.
Compatibility The implementation must comply with the MPI specification.
Extendability It should be possible to add new functions or submodules to the implementation with little effort.
Lightness The implementation should be simple and lightweight to cope with restrictive resources of lightweight manycores.
To satisfy the aforementioned requirements, we rely on important design decisions: (i) design our library on top of an OS to

enable portability across different architectures; (ii) adhere to the MPI standard to deliver compatibility; (iii) follow a tier-based

6 ULLER ET AL

Interconnect

I/O Cluster

Microkernel

Compute Cluster

Microkernel

Compute Cluster

Microkernel

Compute Cluster

Microkernel

Spawn
Server

Name
Server Runtime Library

IPC Name
Client

User Libraries

POSIX

LibMPI

MPIUtil

MPI Application

Runtime Library

User Libraries

Runtime Library

User Libraries LWMPI

Hardware

OS Kernel

System Service

User Software
User-level Library

Figure 3 Architectural overview of LWMPI.

approach to keep encapsulation and to maintain the top-level library isolated from OS-dependent implementation, thereby en-
abling extendability; and (iv) implement the library from scratch, rather than adapting an existing heavy-weight solution like
OpenMPI20 or MPICH21 to keep our solution light and suitable for lightweight manycores22.
We developed our library on top of Nanvix, a POSIX-compliant research OS that targets lightweight manycores12. To the

best of our knowledge, Nanvix is the only open-source distributed OS that runs on commercially available baremetal lightweight
manycores, such as Kalray MPPA-2565, OpTiMSoC23 and PULP2.

3.2 Overview of LWMPI
LWMPI is an open-source ‡ MPI library for lightweight manycores that follows the MPI specification (version 3.1). Since the
implementation of the entire standard would result in a large memory footprint, we decided to implement only a crucial subset
of the MPI functionalities, respecting our most important goals and making it suitable for current lightweight manycores.
Figure 3 presents an architectural overview of Nanvix and how LWMPI was introduced in this design. In this figure, we

consider a conceptual lightweight manycore composed of one I/O Cluster and three Compute Clusters. Although Nanvix has
several OS services and modules, we only present those that are used by our LWMPI implementation.
LWMPI has two logical tiers to isolate the MPI API from OS-dependent software. The LibMPI tier is the top-level library

and represents the entry point for user applications, encapsulating the standard specification. This layer exposes the library
interface and implements the backend functions over the MPIUtil tier. At this level, we focus on filtering the input parameters
given by the user, performing the runtime management and correctly choosing the protocols employed by each MPI call in
the underlying layer. In the current version, our library implements: (i) functions for runtime management, such as MPI_Init
and MPI_Finalize; (ii) support for communicators and information retrieving, such as MPI_Comm_rank and MPI_Comm_size;
(iii) support for groups of communications with functions that are similar to those related with communicators; (iv) error
handlers; and (v) point-to-point communication via MPI_Send and MPI_Recv using the synchronous mode and carrying any of
the predefined data types for the C language.
The MPIUtil tier is themiddle layer between the overlying library and the base OS. It is responsible for translating the requests

from LibMPI to the Nanvix interface. MPIUtil exposes elementary abstractions that support the top-level implementation
of the MPI standard, keeping the library implementation decoupled from the OS interface. Some of these abstractions are:
(i) basic objects applied in all MPI structures; (ii) processes for establishing communication groups; and (iii) communication
contexts that define universes of communication. This layer also implements theMPI communication protocols for point-to-point
communications and collective synchronizations.
MPIUtil relies on some important components of Nanvix. Specifically, LWMPI uses the Spawn Server to spawn a system

process on each Compute Cluster. As we show later in Section 3.3, this process may spawn user-level threads within the Compute
Cluster. The Name Service, composed of a Name Server and Name Clients, is used by MPIUtil to address MPI processes.
Finally, MPIUtil relies on the IPC abstractions to implement all communication protocols. IPC abstractions of Nanvix include
primitives for peer synchronization (sync), fine-grain fixed-size transfers (mailbox) and coarse-grain fixed-size transfers (portal).
In the next paragraphs, we provide an overview of each one of these abstractions§.

‡LWMPI is available at: https://github.com/nanvix/libmpi
§For a more detailed description, please refer to our previous work on Inter-Kernel Communication (IKC) for distributed OSes that target NoC-based lightweight

manycores 24.

ULLER ET AL 7

sync It provides the basis for peer synchronization. It works by having on one side multiple peers (i.e., receivers) to block and
wait for peers on the other side (i.e., senders) to issue a notification. The notification itself does not carry any information
other than the required to wake up the receivers, thus this abstraction works with fine-grain data.

mailbox It enables peers to exchange fixed-size messages with each other. The size of a message is designed to be small (i.e.,
hundreds of bytes), so that communication latency is reduced. This abstraction features an N:1 semantic and works as
follows. On the one hand, a receiver owns a mailbox from which it reads messages. On the other hand, multiple senders
may write messages to this mailbox.

portal It allows two peers to exchange arbitrarily large amounts of data (i.e., thousands of bytes) with each other, with built-in
support for receiver-side control flow. The granularity of the data is 4 kB in KalrayMPPA-256. This abstraction presents an
1:1 semantic: a receiver owns a portal, fromwhich it reads incoming data, and a sender may write data to that portal, once
a connection with the receiver is established. This connection is explicitly established by the receiver itself by allowing a
write on its portal from the sender.

3.3 MPI Process Management
Even though the MPI standard neither describes the MPI process abstraction in detail nor how MPI processes are managed,
most of current MPI implementations provide default startup mechanisms that define how the MPI environment should behave.
The idea of separating the program startup from the application itself provides not only more flexibility for heterogeneous
environments but also gives more usability to the implementation while offering different possibilities for developers25.
In order to provide an easy way for users to exploit all the features of lightweight manycores, LWMPI takes advantage of

this flexibility given by the MPI specification and implements an MPI process management module. Our module provides a
homogeneous view of the environment while keeping the intrinsic architectural details of the hardware hidden from users,
taking the portability of LWMPI to a new level. Since the Nanvix microkernel is intended to be lightweight and to consume a
minimum amount of resources of the Compute Clusters, it was designed to allow a single system process per Compute Cluster
to be spawned. To use the remaining PEs, applications must employ threads. Fortunately, Nanvix implements POSIX Threads
(pthreads), which is a well-known API defined by the standard POSIX.1c.
LWMPI leverages the thread abstraction implemented by pthreads in Nanvix to allow MPI applications to make use of all

PEs available in a Compute Cluster. To do so, LWMPI spawns and manages its own user-level threads, exposing them to the
user as MPI processes with distinct MPI ranks. This allows developers to use more PEs of the architecture in a transparent
way and avoids the need of a hybrid programming model (shared-memory + distributed memory). A similar approach was also
successfully employed in other MPI implementations such as Adaptive MPI (AMPI)26 and MPC27. From now onward, we will
use the term MPI process to refer to an MPI flow of execution that has its own MPI rank, which can either be a system process
or a user-level thread in LWMPI.
Figure 4 pictures how LWMPI manages MPI processes. For the sake of simplicity, let us consider a conceptual lightweight

manycore that features three Compute Clusters (composed of nine PEs each) and one I/O Cluster (composed of four PEs). In
this example, a PE in each cluster is reserved for the Nanvix microkernel (black box). Moreover, a PE in each Compute Cluster
is reserved for the Local Name Daemon (gray box), which will be further be discussed in Section 3.4.
Let us now consider an MPI application composed of 19 MPI processes running with LWMPI on top of Nanvix. The first

MPI process in each Compute Cluster is a system process (green box), which may spawn multiple user-level threads, each one
representing a new MPI process with its own MPI rank ¶ (blue boxes). In this specific scenario, there are seven MPI processes
in Compute Clusters 0–1 and five MPI processes in Compute Cluster 2. In the I/O Cluster, however, there is a Name Service
that resolves logical process names into logical Compute Cluster identifiers (more details in Section 3.4).
From the MPI application point of view, there is no distinction between a real system process (POSIX Process) and user-level

threads (POSIX threads) in LWMPI, i.e., they are all exposed as MPI processes to developers. Naturally, each MPI process has
its own MPI rank and all MPI processes execute the same application code in a MIMD style. Overall, this approach brings the
following advantages to lightweight manycores:
Scalability The possibility of using more MPI processes per Compute Cluster allows developers to make use of all PEs of a

lightweight manycore.
¶Since threads cannot share the same PE in the current version of Nanvix, we can only spawn one MPI process per PE.

8 ULLER ET AL

MKND 0

1 OS Microkernel

Local Name DaemonND

MK

n MPI Process (rank = n)
System Process

I/O Cluster

4 5

2 3
Spawn

n MPI Process (rank = n)
User-level Thread
Idle PE

6

MKND 7

8 Compute
Cluster 1

11 12

9 10
Spawn

NS Name Server
13

Compute
Cluster 0

Compute
Cluster 2

NS
MKND 14

15

18

16 17
Spawn MK

Figure 4 Overview MPI process management in LWMPI.

Lightness Using pthreads to implement MPI processes improves the memory consumption in Compute Clusters and allows
optimizations in communications between MPI processes that run in the same Compute Cluster via shared memory.

Programmability It improves programmability, since LWMPI manages system processes and user-level threads transparently.
As a result, developers do not need to explicitly employ a hybrid programming model such as MPI + pthreads to use all
PEs of the lightweight manycore.

Although not specified by the MPI standard, many actual MPI applications assume that global variables can be used inde-
pendently in each MPI process. This is especially true for most of the existing MPI implementations since they leverage the
OS process abstraction to implement MPI processes (i.e., each MPI process has its own address space). Implementing MPI
processes with user-level threads allows LWMPI to exploit all PEs in a Compute Cluster with a lower memory footprint. How-
ever, this approach prevents MPI processes that are running within the same Compute Cluster to be completely isolated from
one another. This means that all MPI processes in a Compute Cluster will inevitably share the same address space. Similarly to
AMPI26, MPC27, and other MPI implementations that leverage user-level threads to implement MPI processes, having global
variables in MPI applications is disallowed in LWMPI.

3.4 Thread Addressing Scheme
In Nanvix, the Name Service is responsible for linking a logical system process name to the logical Compute Cluster identifier
where it resides. Since the OS was designed to allow a single system process per Compute Cluster, any means of intra-cluster
addressing was unnecessary. However, we had to overcome this limitation when designing LWMPI, since eachMPI process must
be addressed individually. Fortunately, Nanvix IPC abstractions already support thread addressing, where virtual communicators
are linked to physical NoC connectors through logical port identifiers. Since we now attach virtual OS-level communicators to
distinct threads residing in the same Compute Cluster, the Name Service had to reflect this identification mapping. Specifically,
it must now recognize several MPI process names per Compute Cluster with different addresses.
To overcome this problem, we designed an extension to the traditional Name Service that can be enabled when using LWMPI.

To do so, we kept the original Name Server centralized to handle name queries while opting for a distributed scheme to resolve
address lookups. When the proposed extension is enabled, a Local Name Daemon is spawned in each Compute Cluster of the
lightweight manycore. In particular, this daemon uses a Local Name Table that contains the logical addresses of all MPI process
names associated with the Compute Cluster to respond name lookup requests related to local MPI process names.
Figure 5 illustrates the protocol for an address lookup operation as well as the internal structures involved in this operation

on the aforementioned conceptual lightweight manycore. To improve visibility, we omitted all PEs that are not relevant for this
example. In this scenario, an MPI process with rank 8 running on Compute Cluster 1 (source MPI process) wants to send a
message via MPI_Send to the MPI process with rank 1 running on Compute Cluster 0 (destination MPI process). The protocol
works as follows. First, the centralized Name Server is inquired for the number of the Compute Cluster associated with the
destination MPI process (1). When the response arrives in the source MPI process (2), it discovers that the destination MPI
process resides in Compute Cluster 0. Then, the Local Name Daemon running in Compute Cluster 0 is inquired to determine
the specific logical address of the destination MPI process (3). When the response arrives in the source MPI process (4), it
finally finds the complete logical address of the destination MPI process and can now send a message to it via MPI_Send (5).

ULLER ET AL 9

ND

Local Name DaemonND

I/O Cluster

n MPI Process (rank = n)

ND Compute
Cluster 18

NS Name Server

Global Name Table

Compute
Cluster 0

Local Name Table

NS …
12

3

4

…

Compute
Cluster 3

…

…1

ND

Lookup
MPI rank = 1

Lookup Protocol
5

MPI_Send()

Figure 5 Protocol for address lookup and internal structures.

To improve the overall performance of the thread addressing scheme, we implemented in software a small cache of names
in each Local Name Daemon. This cache reduces the volume of address translation requests that need to be resolved in remote
Compute Clusters, especially when multiple MPI processes repeatedly communicate with the same one (e.g., in master/slave
models). This optimization drastically reduces the intensity of communications and allows for lookups to be resolved very
quickly.

3.5 Point-to-Point Communication in LWMPI
In the current implementation of LWMPI, we only use the synchronous mode defined in the MPI specification to perform
MPI_Send and MPI_Recv operations. We decided not to provide the MPI buffered mode because:(i) it would be necessary
to allocate more memory in LWMPI to store internal buffers, reducing the already constrained memory available for MPI
applications; (ii) it would be necessary to introduce an additional daemon to carry out asynchronous operations, since they are
not natively supported by the Nanvix IPC module; and (iii) it would need a strict criterion to decide whether an MPI_Send will
perform a synchronous or a buffered transfer to avoid memory exhaustion in Compute Clusters.
Figure 6a illustrates how LibMPI and MPIUtil tiers interact on the sender (left) and receiver (right) sides, while Figure 6b

pictures the inter-process interaction from the perspective of message exchanges. LibMPI is responsible for checking the input
parameters and creating the communication requests that will be used by MPIUtil (steps 1.1 and 2.1). Requests include the
information to be matched between MPI_Send and MPI_Recv, such as communicator, context, tag, source/destination and, the
memory address where the IPC call will use to place/retrieve data to be received/sent. Consequently, this implementation avoids
any temporary buffers.
Proceeding with the MPI_Send operation, the sender inquires an address lookup to the Nanvix Name Server (step 1.2) if the

corresponding translation is not present in the name cache of the Local NameDaemon as explained in Section 3.4.With the target
MPI process address, the sender submits a request-to-send message to the receiver (step 1.3) through the mailbox abstraction
(Figure 6b) and blocks waiting for a confirmation message to arrive from the receiver when a matching MPI_Recv is posted.
This additional step in the handshake is required to confirm fromwhich port of the remote Compute Cluster the acknowledgment
message will come in the completion stage, since we may have more than one MPI process per Compute Cluster.
When an MPI_Recv call is issued, the receiver first constructs the communication request. Then, it searches in an internal

FIFO queue (step 2.2) for a send request that matches the received request built in step 2.1 . If the queue is empty or no match is
found, the receiver waits for a matching request to arrive from the interconnection. Any other requests that arrive in the meantime
are placed at the end of the queue to be fulfilled later.
In Nanvix, threads allocated in the same Compute Cluster share the same physical communication resources, which are

distinguished only by their logical addresses24. Since we do not know in advance which thread will check the underlying buffers
when receiving a requisition, all threads in the same Compute Cluster need to agree on a common address from which they
can all consume and store messages to unlock the communication mechanisms. Thus, all requests arrive at a common address
that is prefixed and known by all threads in the system, and only from step 2.3 onward those communications use the specific
addresses of the communicating MPI processes ranks.

10 ULLER ET AL

LibMPI

MPIUtil

Build a request

Send request

1.1

1.3 3.1

Nanvix IPC Facility

Completion ACK
4.2

MPI_Send

Address Lookup
1.2

Receive
confirm

3.2
Send Data

LibMPI

Nanvix IPC Facility

MPIUtil

Build a request
2.1

Returns
4.2

Req Queue

Search &&
Remove

2.2

Send ACKReceive
Data

3.3 4.1

MPI_Recv

Send
Confirmation

2.3

(a) Interactions between LWMPI and Nanvix.

MPI_Send MPI_Recv

time

Wait

Recv

Request-to-Send (Mbx)

Allow (Portal)

Send Data (Portal)

Started-to-recv (M
bx)

Confirmation (Mbx)

(b) Communication protocol.

Figure 6 Implementation details of MPI_Send and MPI_Recv in LWMPI.

When a matching request is found, the receiver consumes and handles it promptly as follows. First, the receiver identifies the
sender logical address that comes in the request-to-send message, and then sends its own address in the confirmation message
(step 2.3). Along with this confirmation, the receiver grants permission for the data transfer using the portal abstraction, al-
lowing the sender to proceed with the communication in steps 3.1 and 3.2 . When the receiver starts to receive data through its
input portal, it sends an acknowledge message to the sender via mailbox (step 4.1), indicating to the sender that it can success-
fully return. Finally, the sender returns from MPI_Send when it has sent all of its data and has received the ack from the receiver
(step 4.2). The receiver returns from MPI_Recv when it has read all the data from the channel or when it has read the amount
of data equivalent to the local buffer size.

3.6 Local Communication Optimization via Shared Memory
It is important to note that the protocol presented in Figure 6 is generic enough to carry out both local and remote communi-
cations by taking advantage of the transparency given by the Nanvix IPC abstractions on handling specificities of each type of
communication. The Nanvix IPC module itself leverages the shared memory in a Compute Cluster to provide faster local com-
munications that do not use the NoC. However, the IPCmodule still interacts with the Nanvix asymmetric microkernel, resulting
in undesired overheads when several MPI processes are running in parallel.
To avoid the aforementioned problem, and trying to handle local communications even faster, we propose a new communica-

tion protocol in LWMPI that is especially designed to handle local communications almost completely in user space. The main
advantages of this new communication protocol are the following:(i) it considerably reduces the number of system calls invo-
cations, thus minimizing the pressure over the Nanvix asymmetric microkernel; and (ii) it reduces the number of intermediate
copies of internal buffers, thereby enabling much faster communications for all MPI processes within the Compute Cluster.
Figure 7 presents the new protocol to handle intra-cluster communications. Similar to the non-optimized version, sender and

receiver peers first build requests that will be matched to establish the communication (steps 1.1 and 2.1). The difference for
this new version is that when the sender dispatches an address lookup request (step 1.2), it will receive a local address as a
response and will proceed with the new part of the protocol. First, it reserves a buffer slot (step 1.3) in a new data structure that
associates a pointer in the local memory of the Compute Cluster (i.e., the pointer to the user-level buffer), with an identifier that
represents the buffer slot inside this structure. The sender then adds the reserved buffer identifier in its request and sends it to
the receiver using the mailbox abstraction (step 1.4). After that, it blocks waiting for a signal from the receiver to indicate that
the buffer slot is free (step 1.5).
At the receiver side, after having its request built, it searches for an already received request in the requisitions queue (step

2.2), or waits for a new request to arrive like in the original protocol. When a matching request is found and the communication
is local, it retrieves the buffer slot identifier (step 2.3) associated with the received request and copies the data directly from
the memory address linked in the respective buffer slot (step 2.4). When all data were copied from the sender’s buffer to the
receiver’s buffer, the receiver sends a signal to the sender, allowing the sender to safely reuse that buffer (step 2.5). At this point,
both receiver and sender are ready to return (steps 2.6 and 3.1 , respectively).

ULLER ET AL 11

LibMPI

MPIUtil

Build a request

Send request

1.1

1.4

1.3

Nanvix IPC Facility

3.1

MPI_Send

Addr. Lookup
1.2

1.5

LibMPI

MPIUtil

Build a request

2.1

Returns
2.6

Req Queue

Search &&
Remove

2.2

Signalize
Sender

Copy
Data

2.4 2.5

MPI_Recv

Retrieve
Slot ID

2.3

Return

Compute Cluster

Reserve
Buffer
Slot

Buffer Slots
Table

Wait for
Reader Signal

Figure 7 Interactions between LWMPI and Nanvix in local communications.

Overall, the simplified protocol for local communications educes both the number of messages between peers (from five to
one) and number of system calls invocations. In Section 5, we evaluate the benefits of this new optimization when compared to
the standard non-optimized solution.

3.7 Process Mapping Policies
Finally, another important feature of LWMPI is the process mapping policies, which define howMPI processes with consecutive
MPI ranks are assigned to Compute Clusters of a lightweight manycore. Currently, LWMPI supports the following policies:
Compact Each MPI process is assigned to a free PE within the same Compute Cluster c. When there is no more free PEs in c,

the remaining MPI processes are assigned to a neighbor Compute Cluster according to the NoC topology (c + 1). This
procedure is repeated until all MPI processes are assigned to PEs. Overall, this policy concentrates MPI processes in less
Compute Clusters, improving resource sharing.

Scatter Each MPI process is assigned to a different Compute Cluster in a round-robin fashion. Overall, this policy distributes
MPI processes across Compute Clusters, reducing local resource contention. Moreover, this policy allows MPI processes
to allocate more memory in Compute Clusters, since the number of MPI processes per Compute Cluster is reduced.

Figure 8 illustrates how 14 MPI processes (ranks 0 to 13) are assigned to PEs in a conceptual lightweight manycore with six
Compute Clusters (0 to 5) and four PEs per Compute Cluster. As it can be noticed, the compact policy assigns all MPI processes
to Compute Clusters 0–3, whereas the scatter policy spreads MPI processes across all Compute Clusters in a balanced way.

4 EVALUATION METHODOLOGY

In this section, we first give a brief description of the applications that we used to evaluate LWMPI. Then, we describe the
experimental design employed in this paper.

12 13

0 1

2 3

4 5

6 7

8 9

10 11

CC 0 CC 1 CC 2

CC 3 CC 4 CC 5

(a) Compact policy.

3 9

0 6

12

1 7

13

2 8

4 10 5 11

CC 0 CC 1 CC 2

CC 3 CC 4 CC 5

(b) Scatter policy.

n

CC n

Compute Cluster n

MPI Process Rank n

Idle PE

Figure 8 Example of LWMPI process mapping policies.

12 ULLER ET AL

4.1 Applications
To deliver a comprehensive assessment of LWMPI, we relied on two distinct types of applications: (i) a synthetic application
that stresses the all-to-all communication pattern; and (ii) three applications extracted from CAP Bench8, a benchmark suite
designed to assess the performance of lightweight manycores. All applications were implemented in C language with MPI#. An
overview of each application is given below.
All-to-All (A2A) is a synthetic application that executes a sequence of supersteps s = 0, 1,… , n in a Bulk Synchronous Parallel

(BSP) scheme but with no actual computation. In a superstep s, each MPI process sends a fixed number of messages
carrying a payload of size p bytes to all other MPI processes (N:N communication pattern) and blocks in a global barrier.
Then, p is exponentially increased before the next superstep (p = 2s+7 bytes). The application stops when the last superstep
is finished. This application is communication-bound and is employed to stress intra- and inter-cluster communications.

Friendly Numbers (FN) is an application that finds all subsets of numbers in a range [n, m] that share the same abundance. The
abundance of n is the ratio between the sum of divisors of n by n itself. FN implements the MapReduce parallel pattern
and has tasks with regular loads. The problem is predominantly CPU-bound.

Gaussian Filter (GF) is a filter that reduces the noise of an image by applying a matrix convolution operation with a special
two-dimensional Gaussian mask to the image pixels. GF performs the Stencil parallel pattern to equal-sized parts of the
image, thus being CPU-intensive and having a medium communication intensity.

K-Means (KM) is a clustering technique employed in data analysis. KM gets a set of n points in real d-dimensional space and
randomly split them into k partitions. Then, it applies the Map parallel pattern to distribute points and replicate data
centroids between the Compute Clusters. The irregular workload is both CPU- and memory-bound. Since each iteration
must update data centroids, this kernel operates with high communication intensity.

The standard CAP Bench applications follow a master/slave model, where a global master distributes tasks to slaves to be
computed. We kept the same approach when implementing the MPI versions of FN, GF and GM applications in our previous
work15, since we were restricted to a single MPI process per Compute Cluster (maximum of 15 slaves on Kalray MPPA-256).
However, this simple model clearly prevents applications to scale to hundreds of slaves. Since now LWMPI can exploit all PEs
in Compute Clusters, we modified the applications to include a local master on each Compute Cluster, which is responsible
for making the bridge between the global master and slaves. This modification greatly improved the overall scalability of the
applications because slaves running on the same Compute Cluster can communicate locally with their corresponding local
master. Consequently, we reduce the number of messages transferred through the NoC. Because of that, we adopted this new
version in all experiments discussed in this paper.

4.2 Experimental Design
We carried out all experiments on the baremetal lightweight manycore presented in Section 2.1 (Kalray MPPA-256). In all
experiments, we were restricted to 12 MPI processes per Compute Cluster on Kalray MPPA-256, because: (i) Nanvix can only
spawn a single thread per PE; (ii) one PE is reserved for the Nanvix asymmetric microkernel; (iii) two PEs are reserved for
Nanvix services; and (iv) one PE is reserved for the Local Name Daemon proposed in this paper (Section 3.4).
We conducted two sets of experiments to asses LWMPI. First, we employed the synthetic application (A2A) to evaluate the

impacts of the local communication optimization presented in Section 3.6. In this experiment, we considered scenarios with 12
MPI processes running with different process mapping policies (compact and scatter) presented in Section 3.7. We employed
the optimized version of LWMPI (LWMPI-opt) in these experiments.
Second, we carried out weak scaling experiments with applications from CAP Bench. For that, we varied the number of MPI

processes from 1 to the maximum of 192 (which corresponds to 16 Compute Clusters running 12 MPI processes each) and
increased their input problem sizes (N) with respect to the number of Compute Clusters (nclusters). Applications were executed
with the compact mapping policy and with the two variants of LWMPI (LWMPI-opt and LWMPI-unopt) as well as with their
implementations using only the Nanvix IPC abstractions (IPC). Our goals was to evaluate the overhead introduced by LWMPI
when compared to the low-level Nanvix API.

#Publicly available at: https://github.com/nanvix/benchmarks.

ULLER ET AL 13

Type Name Abstractions Parameters Trials
Synthetic A2A LWMPI-opt, IPC Payload sizes ranging from 128 bytes to 32,768 bytes 30

CAP Bench
FN LWMPI-unopt, LWMPI-opt, IPC Numbers in [1000001; 1000001 +N], N = 1536 ∗ nclusters 10
GF LWMPI-unopt, LWMPI-opt, IPC N images of 256 × 256 pixels, 7 × 7 mask,N = 1200 ∗ nclusters 10
KM LWMPI-unopt, LWMPI-opt, IPC N 2D points, 128 centroids, N = 13440 ∗ nclusters 10

Table 1 Parameters of synthetic and CAP Bench applications.

 0

 25

 50

 75

100

125

150

256 512 1024 2048 4096 8192 16384 32768

Messages Sizes (B)

T
im

e
(m

s)

Mapping Policy

Compact
Scatter

Figure 9 Execution times of A2A with 12 MPI processes and different mapping policies when running with LWMPI-opt.

We collected the following metrics from applications to evaluate LWMPI: execution time, power dissipation and energy
consumption. All time measurements were extracted from hardware performance counters to enable monitoring with minimum
interference. We relied on an external device attached to the Kalray MPPA-256 board to retrieve the power dissipation and
energy consumption (thesemeasurements comprise PEs, NoCs, and other on-chip resources). Table 1 summarizes the parameters
used in each application. All results are based on a confidence interval threshold of 95% (significance of 5%). The maximum
coefficients of the variance observed with A2A and CAP Bench applications 7% and 3%, respectively.

5 EXPERIMENTAL RESULTS

In this section, we present and discuss our experimental results. First, we evaluate the impacts of MPI process mapping policies
when running a synthetic communication-bound application (A2A) with the optimized version of LWMPI (LWMPI-opt). Then,
we examine the performance and energy consumption of MPI-based implementations of CAP Bench applications when running
with the optimized (LWMPI-opt) and unoptimized (LWMPI-unopt) versions of LWMPI. A comparison with results obtained
from IPC-based implementations of these applications (IPC) is also presented.

5.1 Impacts of MPI Process Mapping Policies
Figure 9 presents the execution times obtained with the A2A application when executed with 12MPI processes andwith different
MPI process mapping policies (scatter and compact). As expected, compact delivered the best execution times, since in this
scenario all MPI processes carry out local communications. The execution time was nearly constant, no matter the message
size. The rationale behind this result is that the time spent in synchronizations among communicating peers dominates the time
spent in local data copies from source to destination buffers, making the size of messages involved in local communications not
significant for determining the overall transfer time.
However, scatter achieved a nearly constant execution time with up to 4096-byte messages. After that, the execution times

increased significantly along with the size of messages. The nearly constant execution time with up to 4096-byte messages is due
to the granularity of data transfers used by the Nanvix IPC portal abstraction, which is 4096 bytes long (one memory page). This
means that any message carrying a payload smaller than 4096 bytes will be transferred in a packet of size 4096 bytes, resulting in

14 ULLER ET AL

a constant transfer time. Messages carrying payloads greater than 4096 bytes will require more packets to be transferred through
the NoC, resulting in higher transfer times.
This experiment allowed us to conclude that the performance gains obtained with intra-cluster communications (compact

policy) surpass the costs involved in synchronizations to access shared data structures in local memory. Thus, compact should
be used for communication-bound applications whereas scatter is preferable to CPU-bound applications (or to those that make
a moderate amount of communications), thus allowing MPI processes to allocate more memory in Compute Clusters.

5.2 Weak Scaling Analysis with CAP Bench Applications
Figure 10 presents the weak scaling results for FN, GF, and KM applications based on two metrics: execution times and weak
scaling efficiency. In the following paragraphs, we highlight our main findings.
FN is a CPU-bound application and has a low communication demand. Because of that, results obtained with IPC,

LWMPI-unopt, and LWMPI-opt solutions are fairly similar. This result is expected since most of the differences between these
solutions come from the way they manage communications. Moreover, such low communication demand in FN is not sufficient
to highlight the benefits of LWMPI-opt over LWMPI-unopt. The efficiency of 77% achieved with 16 Compute Clusters (192
MPI processes in total) shows that this application can scale to hundreds of MPI processes.
The time spent in communications is not negligible in GF. We observed that LWMPI-opt achieved the best execution times,

followed by LWMPI-unopt and IPC. LWMPI-opt clearly presents a significant improvement when compared to LWMPI-unopt,
achieving performance gains of up to 3.2× (1.8× on average). The results show that the performance gains achieved by
LWMPI-opt in comparison to LWMPI-unopt tend to decrease as we increase the number of MPI processes. We believe that this
performance degradation observed with LWMPI-opt is related to the communications between the global master and the lo-
cal masters. This completely synchronous communication tends to hide the benefits of the optimized local communications in
Compute Clusters, resulting in local masters waiting for their turn to communicate with the global master.
Similarly, LWMPI-opt achieved the best execution times for KM, followed by LWMPI-unopt and IPC. We observed a

fairly consistent growth in execution times of all solutions as we increased the number of MPI processes. Since KM is a
communication-bound application, it is ideal for evaluating the performance gains that can be achieved with the local commu-
nication optimization implemented in LWMPI-opt. Overall, the lowest performance improvement achieved by LWMPI-opt was
1.4× (scenario with 192 MPI processes), being up to 2× faster than LWMPI-unopt in a scenario with 12 MPI processes.
Figure 11 shows the power consumption when running KM with 12, 48, and 192 MPI processes. As it can be noticed, the

power consumption of Kalray MPPA-256 when running KM with LWMPI-opt is slightly higher than with LWMPI-unopt and
IPC. This increase in power consumption is due to the optimizations in local memory communications discussed in Section 3.6,
which allow on-chip resources to be better exploited. A similar behavior was also observed with GF. Since execution times of

95 95 97
10

3
12

4

95 96 98
10

3
12

3

95 96 97
10

3
12

4

FN

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 25

 50

 75

100

125

150

T
im

e
(s

)

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt 15

3
17

7
15

5 34
8

73
6

46
6

47
6

49
7

52
6

89
5

60
9

59
7

57
6

86
3

17
68

GF

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 460

 920

1380

1840

2300

23
9 27

1 31
3 39

3

58
6

47
3 52

8 57
3 65

8

85
5

51
1 57

1 62
8

75
0

99
2

KM

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 250

 500

 750

1000

1250

FN

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

W
ea

k
S

ca
lin

g
E

ffi
ci

en
cy

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt

GF

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Number of Clusters (MPI Processes)

KM

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Figure 10 Weak scaling results: execution times (top) and efficiencies (bottom) for FN, GF and KM applications.

ULLER ET AL 15

1 Cluster (12 MPI Processes) 4 Clusters (48 MPI Processes) 16 Clusters (192 MPI Processes)

0 125 250 375 500 625 750 875 1000 0 125 250 375 500 625 750 875 1000 0 125 250 375 500 625 750 875 1000
7.25

7.50

7.75

8.00

8.25

8.50

8.75

Time (s)

P
ow

er
 (

W
)

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt

Figure 11 Power consumption (in watts) for KM when varying the number of clusters/problem sizes.

78
2

81
0

84
4 94

8

12
38

78
4

80
6

84
2 94

6

12
48

78
5

80
7

84
3 95

2

12
48

FN

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 500

1000

1500

2000

E
ne

rg
y

(J
)

API Solution

Nanvix IPC
LWMPI−unopt
LWMPI−opt

50
08

49
33

47
59

70
83

14
21

7

37
65

38
60

40
91

43
55

72
59

12
68

14
64

12
89 28

97

60
82

GF

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 5000

10000

15000

20000

Number of Clusters (MPI Processes)

42
25 47
19 52
08 61

93

81
47

38
73 43
37

47
50 54

65

70
89

19
75

22
55

26
31 33

14

49
42

KM

1 (12) 2 (24) 4 (48) 8 (96) 16 (192)
 0

 3500

 7000

10500

14000

Figure 12 Energy consumption (in joules) for FN, GF and KM when varying the number of clusters/problem sizes.

GF and KM are drastically decreased with LWMPI-opt, their overall energy consumption is also reduced as shown in Figure 12.
As expected, the energy consumption of FN was the same for all solutions because it has very few communications. Overall,
execution times and energy consumption follow the same trend on all applications considered in this study.

6 RELATED WORK

Software development for lightweight manycores is challenging because current solutions do not provide a good balance
between performance and programmability. Currently, the solutions available are either based on vendor-specific communi-
cation libraries, which expose a performance-oriented interface narrowed to the underlying architecture, or industry-standard
communication libraries, which provide a richer communication interface, in exchange for some performance penalty.
Vendor-specific solutions mostly rely on specific architectural features and may fit programming models to achieve high

performance. For instance, Intel Single-Cloud Computer processor supports synchronous28 and asynchronous29 communication
interfaces on top of the Message Passing Buffer (MPB), an architecture-dependent feature. Alternatively, Kalray MPPA-256
features a POSIX-based communication library13 and a particular one-sided communication interface9 on top of it. Conversely,
a distributed shared memory using a distinct development flow14 is provided on top of the low-level communication API6 of
the Adapteva Epiphany processor.
In contrast, industry-standard communication interfaces benefit from the abstraction of hardware aspects to improve pro-

grammability and portability. In particular, some well-known distributed programming models may be suitable for lightweight
manycores. For instance, Unified Parallel C (UPC)30 and OpenSHMEM31 are implementations of the PGAS programming
model for the Intel Single-Cloud Computer and Adapteva Epiphany processors, respectively. Alternatively, MPI ports have
been proposed for Kalray MPPA-25622 and Adapteva Epiphany32. However, these solutions differ from our work mainly be-
cause: (i) they leverage vendor-specific communication libraries narrowed to a particular lightweight manycore; (ii) they do not
conform with the MPI standard; and/or (iii) they require hybrid programming (MPI + OpenMP or pthreads) to use all PEs.
In general, both approaches have their advantages and disadvantages. On the one hand, vendor-specific libraries can provide

optimal application performance but they require significant design efforts and knowledge of the target architecture. On the other

16 ULLER ET AL

hand, industry-standard APIs heavily improve programmability issues but current implementations lack of portability and/or
require hybrid programming. In this context, our work stands out in two main aspects. First, we provide a flexible, extendable
and lightweight MPI implementation designed from scratch on top of an open-source distributed OS for lightweight manycores
(Nanvix) to improve both programmability and portability for lightweightmanycores. Second, our solution provides a transparent
management of MPI processes using user-level threads, which allows for optimizations on intra-cluster communications on
lightweight manycores. Contrary to AMPI26 and MPC27, our solution is lightweight so as to cope with restrictive local memory
resources of lightweight manycores.

7 CONCLUSION

Lightweight manycores bring concepts of parallel and distributed systems into a single die to deliver high performance and
energy efficiency. Nevertheless, the architectural intricacies of lightweight manycores and the absence of APIs that embrace
both programmability and portability aspects make software development an arduous task. Currently solutions to improve pro-
grammability are narrowed to a specific lightweight manycore and/or are based on non-standard and vendor-specific APIs.
Because of that, they are not portable across different lightweight manycore processors.
In order to unite programmability and portability in the context of lightweight manycores, we proposed LWMPI: a lightweight

and portable MPI implementation on top of a POSIX-compliant distributed OS that targets this class of processors. LWMPI was
designed from scratch and follows a two-tier approach to separate (and self-contain) the MPI interface from the OS-dependent
layer. LWMPI manages system processes and user-level threads transparently, exporting to developers a single MPI process ab-
straction. Moreover, it features optimizations to significantly improve intra-cluster communications via shared memory. Finally,
it provides two MPI process mapping policies that define how MPI processes are assigned to Compute Clusters of lightweight
manycores. These policies can either improve resource sharing for communication-bound applications by concentrating MPI
process in less Compute Clusters or allow applications to allocatemorememory in Compute Clusters by spreadingMPI processes
through different Compute Clusters.
The results obtained with a synthetic benchmark and a subset of the CAPBench applications running on the KalrayMPPA-256

lightweight manycore processor unveil that LWMPI not only delivers a lightweight and richer programming interface but also
presents good performance and scalability results for parallel applications. We also showed that the MPI-based implementations
of CAP Bench applications achieved superior performance and energy efficiency when executed with the optimized version of
LWMPI (LWMPI-opt) in comparison to their low-level implementations using Nanvix IPC abstractions.
As future work, we intend to: (i) implement a mechanism to dynamically choose the IPC abstraction that best fits the data

granularity in communications (i.e., mailbox for fine-grain messages to improve latency and portal for coarse-grain transfers to
improve bandwidth); (ii) extend the Nanvix IKC with message forwarding capabilities so that the Name Server could forward
an address lookup directly to the Local Name Daemon residing in the Compute Cluster of the destination MPI process, thus
reducing the overhead of address resolutions; and (iii) design and implement collective communications in LWMPI.

ACKNOWLEDGEMENTS

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq) and
by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) under the Capes-PrInt Program (grant
number 88881.310783/2018-01).

References

1. Francesquini E, Castro M, Penna PH, et al. On the Energy Efficiency and Performance of Irregular Application Executions
onMulticore, NUMAandManycore Platforms. Journal of Parallel andDistributed Computing (JPDC) 2015; 76(C): 32–48.
doi: 10.1016/j.jpdc.2014.11.002

2. Rossi D, Pullini A, Loi I, et al. Energy-Efficient Near-Threshold Parallel Computing: The PULPv2 Cluster. IEEE Micro
2017; 37(5): 20–31. doi: 10.1109/MM.2017.3711645

ULLER ET AL 17

3. Melpignano D, Benini L, Flamand E, et al. Platform 2012, a Many-Core Computing Accelerator for Embedded SoCs. In:
DAC ‘12. ACM Press; 2012; New York, USA: 1137–1142

4. Davidson S, Xie S, Torng C, et al. The Celerity Open-Source 511-Core RISC-V Tiered Accelerator Fabric: Fast Architec-
tures and Design Methodologies for Fast Chips. IEEE Micro 2018; 38(2): 30–41. doi: 10.1109/MM.2018.022071133

5. Dinechin dBD, Ayrignac R, Beaucamps PE, et al. A Clustered Manycore Processor Architecture for Embedded and
Accelerated Applications. In: HPEC ‘13. IEEE; 2013; Waltham, USA: 1–6

6. Varghese A, Edwards B, Mitra G, Rendell AP. Programming the Adapteva Epiphany 64-Core Network-on-Chip Coproces-
sor. In: IPDPSW ‘14. IEEE; 2014; Phoenix, USA: 984–992

7. Fu H, Liao J, Yang J, et al. The Sunway TaihuLight Supercomputer: System and Applications. Science China Information
Sciences 2016; 59(7): 072001–0720016. doi: 10.1007/s11432-016-5588-7

8. Souza M, Penna PH, Queiroz M, et al. CAP Bench: A Benchmark Suite for Performance and Energy Evaluation of Low-
Power Many-Core Processors. Concurrency and Computation: Practice and Experience (CCPE) 2017; 29(4): 1–18. doi:
10.1002/cpe.3892

9. Hascoët J, Dinechin dBD, Massas dPG, Ho MQ. Asynchronous One-Sided Communications and Synchronizations for a
Clustered Manycore Processor. In: ESTIMedia ‘17. ACM Press; 2017; Seoul: 51–60

10. Kluge F, Gerdes M, Ungerer T. An Operating System for Safety-Critical Applications on Manycore Processors. In: ISORC
‘14. IEEE; 2014; Reno, Nevada: 238–245

11. Asmussen N, Völp M, Nöthen B, Härtig H, Fettweis G. M3: A Hardware/Operating-System Co-Design to Tame Heteroge-
neous Manycores. In: ASPLOS ‘16. ACM; 2016; Atlanta, Georgia: 189–203

12. Penna PH, Souto J, Lima DF, et al. On the Performance and Isolation of Asymmetric Microkernel Design for Lightweight
Manycores. In: SBESC ‘19. SBC; 2019; Natal, Brazil: 1-8

13. Dinechin dBD, Massas dPG, Lager G, et al. A Distributed Run-Time Environment for the Kalray MPPA-256 Integrated
Manycore Processor. Procedia Computer Science 2013; 18(International Conference on Computational Science): 1654–
1663. doi: 10.1016/j.procs.2013.05.333

14. Richie D, Ross J, Infantolino J. A Distributed Shared Memory Model and C++ Templated Meta-Programming
Interface for the Epiphany RISC Array Processor. Procedia Computer Science 2017; 108: 1093–1102. doi:
10.1016/J.PROCS.2017.05.221

15. Uller JF, Souto JV, Penna PH, Castro M, Freitas H, Méhaut JF. Enhancing Programmability in NoC-Based Lightweight
Manycore Processors with a Portable MPI Library. In: SBC; 2020; Porto Alegre, RS, Brasil: 155–166.

16. Haghbayan MH, Miele A, Rahmani AM, Liljeberg P, Tenhunen H. Performance/Reliability-Aware Resource Manage-
ment for Many-Cores in Dark Silicon Era. IEEE Transactions on Computers (TC) 2017; 66(9): 1599–1612. doi:
10.1109/TC.2017.2691009

17. Boyd-Wickizer S, Clements A, Mao Y, et al. An Analysis of Linux Scalability to Many Cores. In: OSDI ‘10. ; 2010;
Vancouver, Canada: 1–16.

18. Penna PH,Maciel LA, Souto JV, et al. Co-Designing Clusters of LightweightManycores and Asymmetric Operating System
Kernels. IEEE Embedded Systems Letters 2020: 1–5. doi: 10.1109/LES.2020.3040819

19. Nightingale EB, Hodson O, Mcllroy R, Hawblitzel C, Hunt G. Helios: Heterogeneous Multiprocessing with Satellite
Kernels. In: SOSP ‘09. ACM Press; 2009; Big Sky, Montana: 221–234

20. SPI . Open MPI: Open Source High Performance Computing.; 2020.
21. MPICH . MPICH: High-Performance Portable MPI.; 2020.

18 ULLER ET AL

22. Ho MQ, Tourancheau B, Obrecht C, Dinechin dBD, Reybert J. MPI communication on MPPA Many-Core NoC: Design,
Modeling and performance Issues. In: . 27 of ParCo ‘15. IOS Press; 2015; Edinburgh, UK: 113–122

23. Wallentowitz S, Lankes A, Zaib A, Wild T, Herkersdorf A. A Framework for Open Tiled Manycore System-On-Chip. In:
FPL ‘2012. IEEE; 2012; Oslo: 535–538

24. Penna PH, Souto JV, Uller JF, Castro M, Freitas H, Méhaut JF. Inter-Kernel Communication Facility of a Distributed
Operating System for NoC-Based Lightweight Manycores. Journal of Parallel and Distributed Computing (JPDC) 2021.

25. MPI-Forum . MPI: A Message-Passing Interface Standard Version 4.0.; 2020.
26. Huang C, Lawlor O, Kalé LV. Adaptive MPI. In: Rauchwerger L. , ed. Languages and Compilers for Parallel Comput-

ingSpringer Berlin Heidelberg; 2004; Berlin, Heidelberg: 306–322.
27. Pérache M, Jourdren H, Namyst R. MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. In: Luque E,

Margalef T, Benítez D., eds. Euro-Par 2008 – Parallel ProcessingSpringer Berlin Heidelberg; 2008; Berlin, Heidelberg:
78–88.

28. Wijngaart v. dRF, Mattson TG, Haas W. Light-Weight Communications on Intel’s Single-Chip Cloud Computer Processor.
SIGOPS Operating Systems Review (OSR) 2011; 45(1): 73–83. doi: 10.1145/1945023.1945033

29. Clauss C, Lankes S, Reble P, Bemmerl T. Evaluation and improvements of programmingmodels for the Intel SCCmany-core
processor. In: IEEE; 2011: 525–532

30. Gamell M, Rodero I, Parashar M, Muralidhar R. Exploring cross-layer power management for PGAS applications on the
SCC platform. In: ACM Press; 2012; New York, USA: 235

31. Ross J, Richie D. Implementing OpenSHMEM for the Adapteva Epiphany RISC Array Processor. Procedia Computer
Science 2016; 80(C): 2353–2356. doi: 10.1016/J.PROCS.2016.05.439

32. Richie D, Ross J, Park S, Shires D. Threaded MPI programming model for the Epiphany RISC array proces-
sor. Journal of Computational Science 2015; 9: 94-100. Computational Science at the Gates of Naturedoi:
https://doi.org/10.1016/j.jocs.2015.04.023

109

APPENDIX B – LIST OF IMPLEMENTED FUNCTIONS

MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

MPI_Comm_rank(MPI_Comm comm, int *rank)

MPI_Comm_size(MPI_Comm comm, int *size)

MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhan-
dler)

MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhan-
dler)

MPI_Finalize(void)

MPI_Finalized(int *flag)

MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype, int
*count)

MPI_Group_rank(MPI_Group group, int *rank)

MPI_Group_size(MPI_Group group, int *size)

MPI_Group_free(MPI_Group *group)

MPI_Init(int *argc, char ***argv)

MPI_Initialized(int *flag)

MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Status *status)

MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest, int
tag, MPI_Comm comm)

111

APPENDIX C – LWMPI SOURCE CODE EXAMPLES

The source code producted during the development of this undergraduation con-
clusion work, is part of a bigger project called Nanvix OS, which aims at providing a
general-purpose distributed operating system for lightweight manycores. More specifi-
cally, LWMPI focus on providing a standard communication interface on top of the Nan-
vix IPC module, as a way of offering better programmability for this class of processors.
Since all the project is open-source and collaborative, all of its source code is available on
Github.1 Despite the fact that most of LWMPI source code is concentred at the Libmpi
Nanvix’s repository,2 the contributions made in the present work are spread over all levels
of the Nanvix source tree. Since commenting all the developed code in this dissertation
is impossible, in this appendix we present some small portions that serve as example for
the ideas employed in LWMPI that were exposed in Chapter 5.

It is important to note that the snippets of code that will be presented here are
simplified versions of the original source code available in https://github.com/nanvix/
libmpi. The original source files will always be informed, possibiliting for a curious reader
to compare the original code with the didatic simplifications that we discuss here. In this
dissertation and in this appendix, we are considering the libmpi repository in the commit
3fe79bf0e9fe08cfeba8cad65906ebf01dc7868a (3fe79bf).

First, in Section C.1, we present the layers structure of LWMPI by showing the
execution flow of a common MPI function (MPI_Comm_rank) from its entry point ex-
posed in the mpi.h header, until its underlying implementation over the MPIUtil exposed
abstractions. Next, we present snippets of code for some of the main functions exposed
by LWMPI, namely, MPI_Init, MPI_Send and MPI_Recv.

C.1 MPI_COMM_RANK

Starting with MPI_Comm_rank(MPI_Comm comm, int *rank), accord-
ingly with the MPI specification, this function receives an input parameter comm and
an output parameter rank, that specifies the target communicator in which we want to
discover the rank of the calling process and store it, respectivelly.

Algorithm 1 represents the entry point for the MPI_Comm_rank function in
LWMPI, which can be seen in src/mpi/communicator/comm_rank.c. In this snippet,
the first concept previously presented is the LibMPI tier responsibility in making the first
parameters checking, to ensure their validity before proceeding for the function implemen-
tation itself. This activity of parameters checking can be seen in lines #5, #8 and #12,
where we evaluate if this call is between a MPI_Init and a MPI_Finalize calls, if comm
is a valid MPI_Communicator and if the output rank holder is also valid, respectively.
1 Nanvix is available at: https://github.com/nanvix
2 LWMPI is available at: https://github.com/nanvix/libmpi

112

It is important to note that in each different error case, the runtime tries to return a
significant error code that helps the user to identify what type of error occured. Pro-
ceeding with the routine execution, in line #16 we see the call for an underlying function
that implements the next step in the execution flow, while in line #19 a static routine
evaluates if an error was returned by the underlying function, and raises an error in the
predefined error handler associated with comm, as specified in MPI. If no error occured,
this function returns the MPI_SUCCESS code.

Algorithm 1 MPI_Comm_rank entry point.
Source: Developed by the author.
1: function MPI_Comm_rank(MPI_Comm comm, int *rank)
2: int ret;
3:
4: # Checks if the runtime was correctly initialized.
5: MPI_CHECK_INIT_FINALIZE(void);
6:
7: # Checks if the communicator is valid.
8: if (mpi_comm_is_valid(comm)) then
9: return (MPI_ERR_COMM);
10:
11: # Checks if the rank holder is valid.
12: if (rank = NULL) then
13: return (MPI_ERR_ARG);
14:
15: # Retrieves the current process rank in the given communicator.
16: ret← mpi_comm_rank(comm, rank);
17:
18: # Checks if there was an error in the underlying levels.
19: MPI_ERRHANDLER_CHECK(ret, comm, ret, MPI_Comm_rank);
20:
21: return (MPI_SUCCESS);

In Algorithm 2, we see the implementation of the underlying mpi_comm_rank
function seen in Algorithm 1. This file location is include/mpi/communicator.h. One
interesting point that we see in this function is the fact that is simply a wrapper for
another mpi_group_rank function. The reason for that arises from the fact that the
basis of a communicator is a group of processes. This way, discovering the rank of a given
process in a communicator is nothing more than discovering the rank of this process in
the communicator’s underlying group.

Algorithm 2 mpi_comm_rank underlying function.
Source: Developed by the author.
1: function mpi_comm_rank(mpi_communicator_t *comm, int *rank)
2: return (mpi_group_rank(comm→ group, rank));

113

Finally, in Algorithm 3 we present the implementation of mpi_group_rank,
which is located in src/mpi/group/group.c. In this function, we traverse the list of
processes of a group (line #8 and on) comparing the reference for the current running
process (curr_proc) with all elements in this list of processes. Here, we clearly see how
LibMPI relies in the abstractions exposed by MPIUtil, like the MPI Process abstraction.
The curr_mpi_proc function is a routine exposed by MPIUtil in which the reference
for the MPI Process associated with the running Nanvix thread is returned. By doing
that, functions in the LibMPI tier are completelly isolated from the OS-dependent code,
as exposed in Chapter 5.

Algorithm 3 mpi_group_rank implementation.
Source: Developed by the author.
1: function mpi_group_rank(mpi_group_t comm, int *rank)
2: mpi_process_t *curr_proc;
3:
4: # Retrieves current process reference.
5: curr_proc← curr_mpi_proc(void);
6:
7: # Traverses the group’s processes list looking for current proc.
8: for (i = 0; i < group→ size; i = i + 1) do
9: if (group→ procs[i] = curr_proc) then

10: ∗rank = i;
11:
12: return (MPI_SUCCESS);
13:
14: return (MPI_ERR_UNKNOWN);

C.2 MPI_INIT

The MPI_Init function, which receives two optional input parameters argc and
argv, is the main routine for the runtime initialization. According with the MPI spec-
ification, all MPI programs must contain exactly one call to an MPI initialization rou-
tine (MPI-FORUM, 2020). In the case of LWMPI, we provide MPI_Init for this ini-
tialization setup. Since in the last Section we already presented the layers structure of
LWMPI, from now on, we refrain ourselves from presenting the whole structure again, to
focus exclusively in the underlying implementations.

Algorithm 4 presents the mpi_init routine, which is the implementation of
MPI_Init, found in src/mpi/runtime/runtime.c. As we can see in line #2, the first
thing that we do in LWMPI is to fork the MPI initialization in two distinct execution
flows: one for the MPI process that runs on the system process and acts as a master of
the cluster, and another for the MPI processes that runs on the system threads that were
spawned by the original process, as explained in Section 5.5. The reason for this is that,

114

Algorithm 4 Runtime initialization implementation.
Source: Developed by the author.
1: function mpi_init(int argc, char **argv)
2: if (!curr_proc_is_master(void)) then
3: goto slave;
4:
5: # MPI_Init already called?
6: if (mpi_state! = MPI_STATE_NOT_INITIALIZED) then
7: return (MPI_ERR_OTHER);
8:
9: mpi_state←MPI_STATE_INIT_STARTED;
10:
11: # Local fence to ensure that master already spawned all other processes.
12: mpi_std_fence(void);
13:
14: # Initialize MPI_Process dependant structures.
15: mpi_local_proc_init(void);
16:
17: # Initialize all MPI structures.
18:
19: mpi_comm_request_init(void);
20:
21: mpi_comm_init(void);
22:
23: .
24: .
25: .
26:
27: # Marks the runtime as Initialized.
28: mpi_state←MPI_STATE_INITIALIZED;
29:
30: # Last barrier to ensure that all processes in the environment were initialized.
31: mpi_std_barrier(void);
32:
33: return (MPI_SUCCESS);
34:
35: slave:
36:
37: mpi_std_fence(void);
38:
39: mpi_local_proc_init(void);
40:
41: mpi_std_barrier(void);
42:
43: return (MPI_SUCCESS);

115

despite the MPI processes that are in the same cluster behave as independent entities
during the runtime, internally, they share some common structures to avoid data duplica-
tion and a bigger memory footprint. So, it is necessary for one to initialize these common
structures, which in our case is this special master of the cluster. It is important to note
that this notion of master of the cluster in only internally relevant for the runtime in its
initialization and in the finalization. For all the purposes, or from the user’s perspective,
there is no distinction between this process and the others. The basic structure for these
two execution flows, however, is the same:

(i) a local fence between all MPI processes in the cluster to ensure that the master
already initialized the basic information of all processes that were spawned (lines
#12 and #37);

(ii) the call of the mpi_local_proc_init routine (lines #15 and #39) to initialize the
process-dependent structures, like their inboxes and their inportals that will be used
to communicate with other processes;

(iii) a final barrier (lines #31 and #41) between all MPI processes in the system to
ensure that all of them already finished their initialization and are, consequently,
ready to communicate.

Additionally to the common basic structure, the master process controls the runtime
actual state (lines #6, #9 and #28), and performs the steps involved in the common
structures initialization, which we simplified showing only the mpi_comm_request_init
and mpi_comm_init routines (lines #19 and #21), that initialize the communication
requests queue and the predefined communicators, like MPI_COMM_WORLD, respec-
tively. To check the complete initialization routine, refer to the indicated source file.

C.3 MPI_SEND AND MPI_RECV

The MPI_Send and MPI_Recv functions are the basic routines for sending
receiving data, respectively, in point-to-point communication using MPI. Algorithm 5
presents the implementation of the synchronous send (__ssend) in LWMPI, while Algo-
rithm 6 presents the receive operation implementation (__recv). These routines can be
found in src/mputil/communication.c, and it is important to note that since these oper-
ations use the IPC abstractions exposed by Nanvix, and are, consequently, OS-dependent,
their implementation is made in MPIUtil instead of LibMPI, making the layers separa-
tion previously presented even more clear. Since we already discussed the implementation
details of these two functions and their protocols in Section 5.7, we leave their algorithms
here as an extra visualization, rather than detailing them again.

116

Algorithm 5 Synchronous send implementation.
Source: Developed by the author.
1: function __ssend(int cid, const void *buf, size_t size, int src, int dest

mpi_process_t *dest_proc, int datatype, int tag)
2: int remote;
3: int remote_port;
4: const char *remote_pname;
5: struct comm_message message;
6: struct comm_message reply;
7:
8: # Retrieves target name and looks for its logical address.
9: remote_pname← process_name(dest_proc);
10: remote← nanvix_name_address_lookup(remote_pname, &remote_port);
11:
12: # Builds the request’s that will be sent header.
13: request_header_build(&message, cid, src, dest, datatype, size, tag);
14:
15: # Is it a local communication?
16: if (remote = local_node) then
17: int bufferid = buffer_slot_reserve(buf, size);
18:
19: # Sends reserved bufferid along with the request.
20: message.msg.send.bufferid← bufferid;
21:
22: # Sends request to the receiver using the kernel abstractions.
23: kmailbox_write(outbox, &message, sizeof(struct comm_message));
24:
25: # Waits in the reserved buffer slot for the receiver’s signal.
26: buffer_slot_wait(bufferid);
27:
28: buffer_slot_release(bufferid);
29:
30: return MPI_SUCCESS;
31:
32: # Sends the comm. request to the target process.
33: kmailbox_write(outbox, &message, sizeof(struct comm_message));
34:
35: # Receives confirmation message from the target process.
36: nanvix_mailbox_read(inbox, &confirm, sizeof(struct comm_message));
37:
38: # Sends data to the receiver using the high bandwidth channel.
39: kportal_write(outportal, buf, size);
40:
41: # Waits for the receiver’s ACK message.
42: nanvix_mailbox_read(inbox, &message, sizeof(struct comm_message));
43:
44: return (MPI_SUCCESS);

117

Algorithm 6 Receive function implementation.
Source: Developed by the author.
1: function __recv(int cid, void *buf, size_t size, mpi_process_t *src, int datatype,

struct comm_request *req)
2: int remote_node;
3: struct comm_message message;
4: struct comm_message reply;
5:
6: # Builds request to be matched with a received candidate.
7: comm_request_build(req.cid, req.src, req.target, req.tag, &message.req);
8:
9: # Receives a matching request in address of message.
10: comm_request_receive(&message);
11:
12: # Is this a local communication?
13: remote_node← message.msg.send.nodenum;
14: if (remote_node = local_node) then
15: bufferid← message.msg.send.bufferid;
16:
17: # Directly copies the data from the local sender’s buffer.
18: buffer_slot_read(bufferid, buf, size);
19:
20: return (MPI_SUCCESS);
21:
22: mutex_lock(&recv_lock);
23:
24: # Builds confirmation message.
25:
26: # Writes confirmation message to the sender.
27: kmailbox_write(outbox, &reply, sizeof(struct comm_message));
28:
29: # Authorizes the remote peer to send the data using its portal.
30: nanvix_portal_allow(inportal, remote_node, message.msg.send.portal_port);
31:
32: # Receives the data from the high bandwidth channel.
33: nanvix_portal_read(inportal, buf, req → received_size);
34:
35: # Builds ACK message.
36:
37: # Writes ACK message to the sender.
38: kmailbox_write(outbox, &reply, sizeof(struct comm_message));
39:
40: mutex_unlock(&recv_lock);
41:
42: return (MPI_SUCCESS);

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Introduction
	Research Goal
	Contributions
	Work Structure

	Background
	Multiple Processors Computer Architectures
	Multiprocessors
	Multicomputers

	Lightweight manycore Processors
	Software Development Support

	Parallel Programming Environments
	OpenMP
	mpi

	Related Work
	Discussion

	Nanvix OS
	Nanvix Microkernel
	IPC Abstractions

	Nanvix Multikernel
	Enhancements in Nanvix IKC
	Virtualization
	Resource Multiplexing

	LWMPI: A MPI Library for Lightweight Manycores
	Design Goals
	Overview
	MPIUtil
	Objects
	Processes

	LibMPI
	Runtime Management
	Communication Groups
	Communicators
	Error Handlers
	Datatypes

	MPI Process Management
	Thread Addressing Scheme
	Point-to-point Communication
	Send and Receive Operations
	Request Cycle
	Communication Protocol
	Local Communication Optimization via Shared Memory

	Process Mapping Policies
	Additional Considerations

	Evaluation Methodology
	Applications
	Experimental Design

	Experimental Results
	Impacts of MPI Process Mapping Policies
	Performance Evaluation with CAP Bench Applications
	FN Application
	GF Application
	KM Application
	Energy Efficiency Evaluation

	Additional Considerations

	Conclusions and Future Work
	Bibliography
	Glossary
	Scientific Article
	List of Implemented Functions
	LWMPI Source Code Examples
	MPI_Comm_rank
	MPI_Init
	MPI_Send and MPI_Recv

