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RESUMO

Plataformas de execução em ambientes de alto desempenho estão tornando-se cada vez
mais diversas com o desenvolvimento de novas arquiteturas e ferramentas para se benefi-
ciar do paralelismo inerente das aplicações. Estas novas opções de ferramentas oferecem
possibilidades de melhoria no desempenho de aplicações científicas e de engenharia. A
crescente gama de plataformas torna mais complexa a distribuição das tarefas da aplicação
no ambiente, passo que deve ser gerido pelos sistemas de execução e seus balanceadores de
carga, de modo a não prejudicar a portabilidade da aplicação. No entanto, o desenvolvi-
mento e implantação de novos escalonadores de tarefas em sistemas amplamente utilizados
na indústria como OpenMP e MPI sofrem com a falta de suporte de frameworks. Este
trabalho propõe uma biblioteca, MOGSLib, para auxiliar o desenvolvimento e implan-
tação de escalonadores globais em diferentes sistemas de execução de alto desempenho.
MOGSLib aplica abstrações reutilizáveis, independentes e testáveis na forma de classes
template em C++ para representar as políticas de escalonamento, sua relação com o
sistema de execução e a taxonomia da solução de escalonamento. Nós avaliamos o so-
brecusto de nossas estratégias portáveis em comparação com suas versões nativas nos
sistemas de execução em dois ambientes distintos, os sistemas Charm++ e OpenMP. Em
nosso experimentos, conseguimos dar suporte à definição de estratégias de escalonamento
do usuário e sua implantação como escalonadores de laço na GNU library for OpenMP
(libGOMP) e balanceadores de carga no Charm++ através da seleção de implementação
das abstrações que os compõem. Nós verificamos que nossas versões dos escalonadores
oferecem tempos de execução de aplicação equivalentes aos balanceadores nativos para a
classe de escalonadores centralizados e cientes de carga aplicados em kernels de dinâmica
molecular. Por fim, a flexibilidade de incorporar funcionalidades e políticas de escalona-
mento do usuário em sistemas de execução com modificações limitadas nos códigos de
sistemas de execução mostra que é possível construir balanceadores de carga flexíveis com
pouco sobrecusto até para ambientes de alto desempenho.

Palavras-chave: Escalonamento global. Sistemas de execução. Portabilidade de imple-

mentação. Qualidade de software. Reusabilidade.





RESUMO ESTENDIDO

Introdução

Aplicações científicas e de engenharia destinadas a ambientes de alta performance es-
tão constantemente evoluindo. Os avanços em múltiplas fontes de pesquisa nesta área
possibilitaram que o comportamento destas aplicações seja expressado de maneira pro-
dutiva por via de modelos de programação paralela. Dentre outras características, estes
modelos auxiliam desenvolvedores a atingir aplicações com portabilidade de performance
em diferentes ambientes de execução através da configuração de parâmetros direcionados
para cada cenário de execução (ASTORGA et al., 2018; PENNYCOOK; JARVIS, 2012;
EDWARDS; TROTT; SUNDERLAND, 2014; HORNUNG; KEASLER, 2014).
Uma visão genérica da plataforma de execução e das estratégias usadas para distribuir
as tarefas da aplicação são maneiras eficientes de alcançar aplicações com portabilidade
de performance. De fato, a distribuição dinâmica da carga de uma aplicação é uma
característica com suporte em muitos dos modelos de programação paralela. Este serviço
é prestado pelos escalonadores globais do sistema de execução, componentes que atacam o
problema do desbalanceamento de carga por via da redistribuição das cargas da aplicação
durante a execução da mesma. No entanto, a lógica executada por estes escalonadores é
diretamente relacionada com o modelo de execução empregado pelo sistema de execução.
Por exemplo, no OpenMP, onde um modelo de fork-join é empregado, os escalonadores de
laço são responsáveis por decidir quais threads executarão cada iteração do laço (DAGUM;
MENON, 1998). No sistema de work-pool distribuído do Charm++, balanceadores de
carga devem decidir em qual Processing Unit (PU) os chares (abstração do sistema para a
unidade mínima de paralelismo) serão alocados para serem computados (ACUN; KALE,
2016). Outros sistemas como o StarPU aplicam sistemas de execução baseado em tarefas
em sistemas heterogêneos onde os escalonadores devem alocar as tarefas em unidades de
processamento com base em grafos de dependência (AUGONNET et al., 2011).
Sistemas de execução possuem estratégias de escalonamento capazes de cobrir as deman-
das da maioria das aplicações regulares usando escalonadores estáticos. Adicionalmente,
o suporte para aplicações irregulares é geralmente feito por via de estratégias de roubo
de tarefas ou filas centralizadas (LOPES; MENASCÉ, 2016). Quando estas técnicas ge-
néricas não são suficientes, novas demandas por politicas de escalonamento impulsionam
o desenvolvimento de novas técnicas a serem integradas em sistemas de execução (CI-
ORBA; IWAINSKY; BUDER, 2018). Entretanto, apenas um pequeno grupo de sistemas
possui um framework integrado para a construção de escalonadores definidos pelo usuá-
rio (ACUN et al., 2016; AUGONNET et al., 2011) e, mesmo assim, as implementações são
limitadas a um único sistema de execução. Consequentemente, escalonadores personaliza-
dos são integrados por métodos intrusivos, modificações dos sistemas de execução (KALE;
GROPP, 2017) ou mesmo diretamente ligados à aplicação (MEI et al., 2011). Todavia,
estes processos geram efeitos colaterais indesejados desde a criação de versões não oficiais
destas bibliotecas até a degradação da qualidade de software das soluções.

Objetivos

Este trabalho tem como objetivo promover ferramentas para dar suporte ao desenvolvi-
mento de escalonadores globais que possam aderir a múltiplos sistemas de execução. Para
isto, é necessário analisar o comportamento dos escalonadores globais em diferentes siste-
mas de execução afim de sintetizá-lo em abstrações genéricas. Nossa abordagem envolve



a criação de um conjunto de abstrações e especificações, intitulado de ARTful scheduling,
para representar escalonadores globais de maneira genérica, porém com a capacidade de
se adequar a diferentes contextos de uso em sistemas de execução. Tendo em vista que
nosso foco são ambientes de alta performance, devemos, adicionalmente, garantir que a
proposta não entra em conflito com a principal métrica do escopo, o sobrecusto de perfor-
mance na tomada de decisão do mapeamento de tarefas. Para avaliar nossa abordagem, as
especificações serão implementadas em uma biblioteca e framework de desenvolvimento,
intitulada de Meta-Programming Oriented Global Scheduler Library (MOGSLib), e in-
corporado em dois sistemas de execução utilizados em ambientes de alto desempenho:
libGOMP e Charm++. Sendo assim, nossas contribuições e objetivos são delineados da
seguinte forma:

• Definição das abstrações e especificações ARTful scheduling para escalonadores glo-
bais portáveis;

• Implementação das abstrações na forma de uma biblioteca portável de escalonadores
globais intitulada de MOGSLib;

• Implantação da biblioteca MOGSLib nos sistemas de execução libGOMP e Charm++;
• Análise comparativa dos escalonadores globais da MOGSLib em relação a estratégias

idênticas porém implementadas de maneira nativa nos sistemas de execução.

Método

Escalonamento e portabilidade de implementação são temas presentes em diversas áreas
da computação. Mesmo dentro da área de alta performance, estes temas são recorrentes
e podem aparecer com diferentes conotações e usos. Sendo assim, como parte de nossa
metodologia, nós nos propusemos a estudar as diferentes formas ao qual escalonadores são
empregados em aplicações para alto desempenho assim como as técnicas existentes para
portabilidade de componentes dentro desta área. A partir de uma análise sistemática da
literatura, os seguintes passos serão seguidos para atingir os objetivos:

1. Levantamento do estado da arte nos temas de portabilidade de implementação,
sistemas de execução e bibliotecas de escalonadores globais;

2. Criação de um modelo conceitual para a expressão de escalonadores globais que se
adéque ao ARTful scheduling;

3. Seleção de escalonadores globais implementados diretamente nos sistemas de exe-
cução Charm++ e libGOMP;

4. Re-implementação dos escalonadores do passo 3 através das abstrações encontradas
no passo 2 na nova biblioteca proposta MOGSLib;

5. Desenvolvimento de ferramentas na biblioteca MOGSLib para auxiliar o processo
de teste, composição, especialização e implantação dos escalonadores genéricos nos
sistemas Charm++ e libGOMP;

6. Análise comparativa do sobrecusto de decisão de mapeamento de ambas versões
dos escalonadores em benchmarks sintéticos e kernels de aplicações em ambos os
sistemas.

Resultados e Discussão

Este trabalho atingiu uma definição genérica de escalonadores globais por meio da decom-
posição do domínio de escalonadores em abstrações menores e agrupáveis. Esta aborda-
gem mostrou-se condizente com os trabalhos relacionados encontrados e capaz de prover



descrições genéricas porém passíveis de especialização em diferentes sistemas. As especi-
ficações do ARTful scheduling pode ser implementadas e aplicadas de diferentes formas.
No decorrer deste trabalho, a abordagem selecionada foi usar o suporte da linguagem
C++ à programação genérica para construção da biblioteca MOGSLib. A implementa-
ção das abstrações do ARTful scheduling podem ser integradas aos sistemas de execução
Charm++ e libGOMP. A adequação dos escalonadores ao sistema de execução dá-se
pela abstração da relação entre escalonador e sistema, permitindo a expressão de suas
interações através do uso de uma camada de indireção usada para esconder componentes
especializados atrás de uma interface comum e genérica.
Os escalonadores globais escolhidos para os experimentos são da classe de escalonadores
cientes da carga de trabalho da aplicação. Esta escolha está relacionada com o uso desta
classe de escalonadores em diversos modelos de programação paralela e das diferentes
formas que estes tomam em sistemas distintos. No sistema libGOMP, o escalonador es-
colhido foi o BinLPT (PENNA et al., 2017) enquanto no Charm++ foi selecionado o
balanceador de carga padrão do sistema intitulado de GreedyLB. Em ambos os sistemas,
as versões implementadas a partir das especificações de ARTful scheduling obtiveram per-
formance melhor na tomada de decisão do mapeamento, chegando a um ganho de até 48%
no sistema de execução Charm++ ao executar benchmarks sintéticos. No entanto, estes
ganhos tem pouca significativa em relação aos tempos de execução das aplicações, que
apresentam-se em maiores magnitudes. Em relação a esta métrica, ambas as versões dos
escalonadores obtiveram impactos estatisticamente similares, o que indica a equivalência
entre as duas implementações em quesito ao seu impacto.

Considerações Finais

Quantificar a complexidade e o esforço do desenvolvimento de componentes de gerência
de recursos ainda é um desafio na área de computação de alto desempenho. Alguns fa-
tores como o auxílio de bibliotecas para desenvolvimento e a adequação do problema a
modelos de programação são tidos como fatores de alto impacto para redução do esforço
do desenvolvimento (WIENKE et al., 2016). Nossa implementação de escalonadores glo-
bais independentes de plataforma atingiu o objetivo de prover aos desenvolvedores um
conjunto de abstrações e um processo de desenvolvimento para a criação de escalonadores
globais em sistemas de alto desempenho. Embora as métricas de produtividade e por-
tabilidade não possam ser avaliadas de maneira quantitativa atualmente, os impactos de
nossa abordagem mostram-se adequados para o cenário de aplicações de alto desempenho.
A biblioteca MOGSLib serve como prova de que é possível criar um design orientado ao
re-uso usando diretivas de linguagens modernas de propósito geral mesmo em sistemas
de alto desempenho. Atualmente a biblioteca oferece suporte ao desenvolvimento de
escalonadores globais ciente de carga que podem ser acoplados aos sistemas libGOMP e
Charm++. O design da biblioteca é pensado para ser extensível e módulos desenvolvidos
pelo usuário são a principal característica da biblioteca, permitindo que novas estruturas
sejam adicionadas a sistemas de execução sem que haja a necessidade de alterações no
código destas ferramentas. Como trabalhos futuros, pretendemos estender as abstrações
do ARTful scheduling para acomodar diferentes taxonomias de escalonadores de carga
como: (i) escalonadores distribuídos, (ii) escalonadores baseados em roubo de tarefas e
(ii) políticas orientadas a grafos de dependências. Outras possibilidades de extensão é
a adequação da biblioteca MOGSLib a outros sistemas de execução orientados a tarefas
como StarPU e as versões mais recentes do OpenMP. Por fim, a crescente ênfase na
área de alto desempenho em relação a manycores indica a possibilidade de que bibliotecas
como a MOGSLib possam auxiliar o desenvolvimento de novas políticas de escalonamento



direcionadas a diferentes arquiteturas de aceleradores.

Palavras-chave: Escalonamento global. Sistemas de execução. Portabilidade de imple-

mentação. Qualidade de software. Reusabilidade.



ABSTRACT

Execution platforms for high performance computing are becoming diverse as a result of
new architectures and tools to benefit from the parallel behavior of applications. These
new options showcase performance enhancing opportunities for scientific and engineering
applications. The execution platform diversity and the mapping of an application’s tasks
must be implicitly handled by runtime systems and their global schedulers as to enable the
application performance and implementation portability. However, the development and
integration of novel global schedulers into industry standards systems like OpenMP and
MPI lack framework support. This work proposes a library, MOGSLib, to support the
development and integration of global schedulers into different high performance runtime
systems. MOGSLib employs reusable, independent and testable abstractions represented
as C++ template structures to express scheduling policies, their relationship to runtime
systems and the scheduling solution taxonomy. This approach allows a bottom-up devel-
opment process based on the incremental composition of abstractions through template
specializations. We evaluate the overhead of employing our portable policies in compari-
son to their system-native counterparts in two environments, the Charm++ and OpenMP
systems. Throughout our experiments we achieved development support for user-defined
scheduling policies that can be implanted both as loop schedulers in libGOMP and load
balancers in Charm++ through the selection of abstraction implementations. We lever-
aged the overhead by employing workload-aware policies on molecular dynamics kernels
which resulted in equivalent application makespan for both native and the MOGSLib
scheduler versions. Ultimately, the flexibility to incorporate user-defined structures and
scheduling policies into runtime systems with limited alterations into runtime system
code bases hint that the definition of flexible global schedulers is available with neglible
overheads even for high performance environments.

Keywords: Global scheduling. Runtime systems. Implementation portability. Code

quality. Reusability





LIST OF FIGURES

Figure 1 – Example of OpenMP parallel loop. . . . . . . . . . . . . . . . . . . . . 32

Figure 2 – Charm++ programming model overview. . . . . . . . . . . . . . . . . . 33

Figure 3 – Template specialization on C++. . . . . . . . . . . . . . . . . . . . . . 39

Figure 4 – Template implementation selection on C++. . . . . . . . . . . . . . . . 40

Figure 5 – The runtime system native scheduling solution anatomy. . . . . . . . . 45

Figure 6 – The ARTful scheduling solution anatomy. . . . . . . . . . . . . . . . . 51

Figure 7 – MOGSLib as a collection of ARTful compliant implementations. . . . . 59

Figure 8 – MOGSLib overview after the pre-compilation phase. . . . . . . . . . . . 60

Figure 9 – Total BinLPT scheduler overhead in LibGOMP. . . . . . . . . . . . . . 66

Figure 10 – GreedyLB schedule decision cost linear regression in Charm++. . . . . 67

Figure 11 – GreedyLB schedule decision cost linear in Charm++. . . . . . . . . . . 68

Figure 12 – LavaMD execution time when balanced by the BinLPT scheduler. . . . 69





LIST OF TABLES

Table 1 – Comparison of related work. . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 2 – BinLPT schedule decision cost in LibGOMP (microseconds). . . . . . . 65

Table 3 – LeanMD execution time. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 4 – Multi-loop support evaluation (microseconds). . . . . . . . . . . . . . . 70





LIST OF ALGORITHMS

Algorithm 1 – Longest Processing Time First scheduling algorithm . . . . . . . . . 35

Algorithm 2 – BinLPT scheduling algorithm . . . . . . . . . . . . . . . . . . . . . 36

Algorithm 3 – The Longest Processing Time (LPT) policy. . . . . . . . . . . . . . 48

Algorithm 4 – The LPT template structure interface in MOGSLib. . . . . . . . . 54

Algorithm 5 – The implementation of a MOGSLib scheduler that employs the

LPT policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Algorithm 6 – The context structure interfaces required by GreedyLB and BinLPT

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Algorithm 7 – The context structure implementation for centralized and workload-

aware load balancers in Charm++. . . . . . . . . . . . . . . . . . . 58

Algorithm 8 – The context structure implementation for workload-aware loop sched-

ulers in OpenMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Algorithm 9 – The Charm++ centralized adapter work function. . . . . . . . . . 61

Algorithm 10 – Application benchmark to calculate schedule decision cost in OpenMP. 64





LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

HPC High Performance Computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

libGOMP GNU library for OpenMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

MOGSLib Meta-Programming Oriented Global Scheduler Library. . . . . . . . . . . . . . . . . . . . . . . 11

PU Processing Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

RTS Runtime System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1 PROBLEM DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 GOALS AND CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . 29

1.4 WORK ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . 30

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1 THE OPENMP PROGRAMMING MODEL . . . . . . . . . . . . . . 31

2.2 THE CHARM++ PROGRAMMING MODEL . . . . . . . . . . . . . 33

2.3 THE EVALUATED GLOBAL SCHEDULING POLICIES . . . . . . . 34

2.4 THE GLOBAL SCHEDULER TAXONOMY . . . . . . . . . . . . . . 37

2.5 C++ GENERIC PROGRAMMING . . . . . . . . . . . . . . . . . . . 38

3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 THE ARTFUL SCHEDULING SPECIFICATIONS . . . . . . . . . . 45

4.1.1 Scheduling Policy Abstraction . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Global Scheduler Abstraction . . . . . . . . . . . . . . . . . . . . 47

4.1.3 Scheduling Context Abstraction . . . . . . . . . . . . . . . . . . . 48

4.1.4 Runtime System Adapter Abstraction . . . . . . . . . . . . . . . 49

4.2 ARTFUL ABSTRACTIONS OVERVIEW . . . . . . . . . . . . . . . . 50

5 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 SCHEDULING POLICIES . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 GLOBAL SCHEDULERS . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 SCHEDULING CONTEXTS . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 MOGSLIB ASSEMBLING TOOLS . . . . . . . . . . . . . . . . . . . 58

5.5 RUNTIME SYSTEM ADAPTERS . . . . . . . . . . . . . . . . . . . . 60

6 EXPERIMENTAL ANALYSIS . . . . . . . . . . . . . . . . . . . 63

6.1 EXECUTION PLATFORM . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 BENCHMARK EXPERIMENTS . . . . . . . . . . . . . . . . . . . . 64

6.3 APPLICATION KERNEL EXPERIMENTS . . . . . . . . . . . . . . 67

6.4 OPENMP MULTI-LOOP SUPPORT . . . . . . . . . . . . . . . . . . 69

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . 73





27

1 INTRODUCTION

Scientific and engineering applications designed for High Performance Comput-

ing (HPC) environments are constantly evolving. Such applications not only demand

increasing levels of parallelism but also a way of reducing the complexity of expressing

their parallel behavior in generic execution platforms. Moreover, a common problem in

this class of applications is dynamic load imbalance originating from unpredictable interac-

tions of an application’s tasks, resulting in computations carried out in parallel to display

irregular execution times. Modern solutions for these problems are reliant on parallel pro-

gramming models and runtime systems to assist developers in creating parallel solutions

and scheduling strategies. It is reasonable that the developer understanding and support

from these tools (programming models and parallel libraries) are ranked as the most im-

pacting features for reducing the development effort of parallel applications (WIENKE

et al., 2016). However, performance portability of parallel components among different

systems is still a problem and current solutions are mainly focused on the fine tuning of

applications into different execution platforms (ASTORGA et al., 2018; PENNYCOOK;

JARVIS, 2012; EDWARDS; TROTT; SUNDERLAND, 2014; HORNUNG; KEASLER,

2014).

A generic view of the underlying execution platform and strategies for distribut-

ing the application’s workload on the platform are efficient ways to achieve application

portability. The dynamic distribution of an application’s tasks is a supported feature in

most, if not all, parallel programming models. This service is performed by the runtime

system’s global schedulers, components that tackle the load imbalance problem by re-

distributing the workload dynamically following a policy. The logic performed by these

schedulers is tightly coupled to the system’s execution model. For instance, OpenMP

applies a fork-join execution model and its loop schedulers are tasked to decide which

threads are to execute each loop iteration (DAGUM; MENON, 1998). In the distributed

work-pool execution model of Charm++, load balancers must decide in which PU the

chares (Charm++’s work unit abstraction) will be allocated to perform their computa-

tion (ACUN; KALE, 2016). Other systems like StarPU apply a task-based and heteroge-

neous execution model where the schedulers allocate the tasks to the available processing

units based on dependency graphs (AUGONNET et al., 2011).

1.1 PROBLEM DEFINITION

Runtime systems are packed with out-of-the-box scheduling strategies to cover the

demands of most applications with regular workloads (static scheduling). The support for

irregular applications is usually delivered through generic work-stealing or a central queue

of tasks (LOPES; MENASCÉ, 2016). When generic techniques are not sufficient, new

demands for scheduling policies drive the development of novel techniques as extensions
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to the runtime system (CIORBA; IWAINSKY; BUDER, 2018). Moreover, only but a few

systems have integrated development tools for user-defined schedulers (ACUN et al., 2016;

AUGONNET et al., 2011) and, even then, the resulting implementations are limited to the

Runtime System (RTS). Consequently, custom schedulers are integrated through runtime

system modifications (KALE; GROPP, 2017) or alongside the application behavior (MEI

et al., 2011). These processes carry out undesirable side effects from the creation of

unofficial system branches to portability degradation.

HPC applications enjoy evolving and long lasting standards such as, but not lim-

ited to, OpenMP (DAGUM; MENON, 1998), MPI (WALKER; DONGARRA, 1996) and

BLAS (BLACKFORD et al., 2002) to ease their development. These tools increase the

applications code quality and allow flexible implementations that can be reused into fu-

ture architectures with limited re-implementation efforts. Moreover, these standards are

implemented by runtime systems responsible for delivering application performance porta-

bility by mapping the application workload to the execution platform. However, resource

managing components for HPC systems lack similar developing support as applications.

This degrades the RTS support for architecture features as they must be manually added

into alternative libraries through intrusive methods (DURAND et al., 2013).

1.2 MOTIVATION

The absence of a standard scheduling framework or library for HPC applications

contrasts with the abstraction of commonly used functionalities into their own compos-

able domain-specific libraries (CHEVALIER; PELLEGRINI, 2008). This topic is hardly

discussed in the literature and we attribute this scenario to the observed differences in the

scheduling taxonomies between runtime systems (THOMAN et al., 2018). Consequently,

a scheduling strategy optimizing a given metric will portray distinct implementations

among runtime systems analogous to how performance portable applications express slight

variations on kernel decomposition for each intended architecture and execution model.

In fact, successful global scheduling strategies are specialized to their context, either by

accommodating application- or system-specific features into their search algorithms (MEI

et al., 2011). For that matter, it makes sense that state-of-the-art policies are developed

alongside runtime systems as they become implicitly available to multiple applications and

can benefit from internal data structures and introspection tools. However, this approach

might become unsustainable as solutions rapidly become unsupported due to the lack of

implementation portability to future versions or even other runtime systems (HARRELL

et al., 2018).

We believe that the lack of a streamlined process for implementing user defined

global schedulers in runtime systems is a problem that must be addressed for the design of

future systems. This topic is currently foreshadowed by the performance-centric research

of the HPC community and the small code size of scheduling policies when compared to
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application’s codes. Nonetheless, other computational research fields are tackling their

version of this problem that manifests as generic scheduling for computer grids (DAIL;

CASANOVA; BERMAN, 2002) and development support for user-defined policies in real-

time operational system kernels (MOLLISON; ANDERSON, 2013). Moreover, applica-

tion implementation portability is gaining momentum in HPC research with solutions be-

ing integrated into industry standards (PENNYCOOK; SEWALL; HAMMOND, 2018),

runtime systems (AUMAGE et al., 2017) and as combination of compiler and high-level

libraries (GROSSMAN et al., 2017). We envision that code quality and reuse is recently

emphasized in HPC research due to systems becoming too complex and bloated with func-

tionalities, optimizations and configuration options to squeeze performance out of modern

architectures. Global schedulers are components that must be aware of the platform in-

tricacies and it is likely that future runtime systems may benefit from readily available

resource management components in the transition to novel architectures and execution

models.

1.3 GOALS AND CONTRIBUTIONS

We draw inspiration from frameworks aiming to support the development of

single-source applications in HPC environments to propose an implementation model for

modular and system-independent global schedulers. We leverage the global schedulers’

development and integration process within different runtime systems. Our proposal is

the creation of a bottom-up approach for developing system-independent global sched-

ulers based on the decomposition of its logic into specialized and composable structures.

Therefore, this work delivers the following contributions to the state-of-the-art:

• A novel set of abstractions and specifications to develop implementation portable

global schedulers. The ARTful specifications stands for Abstract, Re-usable and

Testable scheduling components, which represent the core design pillars of our ap-

proach. We study the relationship between state-of-the-art runtime systems and

their schedulers to configure this relationship as an abstraction we call Scheduling

Context. This abstraction is used to decouple the global scheduler policy from fea-

tures imposed by the runtime system, allowing for policies unbounded by external

dependencies. This isolation enables the unitary tests of scheduling components to

be performed prior to their integration on the system. Moreover, the construction

of the global scheduler is obtained by the composition of its components adapted

to the target context. Consequently, with a finer abstraction granularity, it is pos-

sible to reuse the scheduling elements into solutions targeting the same context or

applying policies with similar taxonomy.

• A novel framework for developing ARTful global schedulers through a bottom-up

approach entitled MOGSLib. The Metaprogrammed-Oriented Global Scheduler Li-
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brary (MOGSLib) stands as our technical contribution to the state of the art. It

provides necessary tools to develop, test, compose and later adapt global schedulers

into runtime systems. This process is absent in state-of-the-art scheduling frame-

works which mainly focus on the development of schedulers for a single runtime

system based on top-down approaches. MOGSLib is a C++ 14 header-only library

of templated structures that support the expression of global schedulers compo-

nents through generic meta-programming. This approach enables the composition

of schedulers to be expressed as static rules, mitigating runtime overheads and al-

lowing loose datatype definitions during development without sacrificing strong type

check at compilation.

• The integration of MOGSLib into the LibGOMP and Charm++ runtime systems.

We integrate MOGSLib into two distinct runtime systems with different scheduler

taxonomies. Our goal is to evaluate the scheduling overheads of a portable global

scheduler when compared to native scheduling solutions. We experiment our ap-

proach by re-implementing native workload-aware strategies through MOGSLib and

evaluate their performance when balancing synthetic benchmarks and application

kernels. The portability of single-source schedulers into different runtime systems

is unprecedented and our work aims to study its benefits and drawbacks.

It is worth mentioning that our work refrains from introducing new scheduling

techniques into the evaluated runtime systems. Our goal is rather to provide development

support for new strategies in both systems. As such, our evaluation process quantitatively

compares existing strategies already implemented on the runtime system against a re-

implementation outside of the system’s library scope in regards to schedule overhead. A

brief discussion about portability, code quality is also present but, due to the lack of

interesting metrics for HPC internal components (WIENKE et al., 2016), it is focused

on a qualitative analysis. This work has been presented in the WSCAD-2018 Brazilian

national conference (SANTANA et al., 2018) for introducing the MOGSLib library and

new contributions are being developed to generate a new publication.

1.4 WORK ORGANIZATION

The remainder of this paper is organized as follows: Chapter 2 presents the

necessary background for our problem. Chapter 3 discusses the related work. Next, in

Chapter 4 we expose our approach. We present our implementation in the target systems

in Chapter 5. In Chapter 6 we explain our experimental method and results. Finally, we

conclude this work in Chapter 7.
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2 BACKGROUND

In this chapter we discuss the background on which this work relies. First, we

present a definition of the global scheduling problem. Next, we introduce the basic con-

cepts of the two programming models this work encompasses, OpenMP and Charm++.

The global schedulers used in our experiments are discussed afterwards. Then, we briefly

discuss how global scheduling solutions are classified in parallel and distributed systems

through their topology. Finally, some basic notion of C++ template meta-programming

is presented as to aid the understanding of the techniques applied into MOGSLib to

implement the ARTful scheduling model in C++.

Global scheduling is described by Casavant and Kuhl as the problem of defin-

ing where to run a task (consumer), leaving the decision of when to run a task to local

scheduling (CASAVANT; KUHL, 1988). The generic scheduling problem is known to be

NP-Hard (GRAHAM et al., 1979) and solutions often rely in heuristics and approxima-

tions. Moreover, the practical definition of global schedulers differs from system to system

due to differences on the parallel decomposition of applications. The following sections

further detail the specific scheduling problems on the programming models evaluated in

this work. Overall, this work targets the application level distribution of parallel units

of work, often referred as tasks, into the execution platform generic resources (processing

elements).

2.1 THE OPENMP PROGRAMMING MODEL

OpenMP is an industry standard Application Programming Interface (API) for

parallel programming on single node shared-memory architectures. It is available for the

Fortran and C family languages through annotations in the application code to declare

parallel zones and loops. The standard employs a fork-join execution model with threads

managed by the runtime system as the default form of processing parallel loops. The user

can configure some runtime parameters through annotations and system variables such as

the selection of the scheduling policy, through the OMP_SCHEDULE system variable.

Recent versions of OpenMP allow the definition of independent tasks to be executed in

parallel and also support directives to offload tasks and loop iterations to manycore and

GPU devices (SUPINSKI et al., 2018). In this work, we focus on the parallel loop interface

of OpenMP solely targeting the CPU cores and how the runtime system deals with the

distribution of its work units (loop iterations) among the processing units (processor’s

cores).

Figure 1 displays a fragment of C++ code with OpenMP annotations. This

example showcases the multiplication of two arrays by their indices as executed in parallel

by OpenMP. The code takes two array parameters, b and c, with size N and multiplies

their values by their index storing the result in a. OpenMP eases the creation of parallel
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1 i n t * vector_mul ( i n t *b , i n t * c , i n t N ) {
2 i n t *a = new in t [N ] ( ) ;
3
4 #pragma omp p a r a l l e l f o r schedu le ( s t a t i c )
5 f o r ( i n t i = 0 ; i < N; ++i )
6 a [ i ] = b [ i ] * c [ i ] ;
7 re turn a ;
8 }

Figure 1 – Example of OpenMP parallel loop.

behavior, as seen on line 4, through the use of annotation. Specifically, the parallel for

directive informs the runtime that the next for loop is to be executed in parallel and the

iterations must be distributed by the static scheduling policy. Despite the lack of user-

defined policy support, there are a few configurable native policies in OpenMP which are

briefly described as follows:

• Static Loop Scheduler: this policy partitions the loop into evenly sized chunks

(sets of continuous loop iterations) and assigns them in a round-robin fashion to

each processor. This strategy incurs in little overhead but fails to provide irregular

applications with a balanced distribution.

• Dynamic Loop Scheduler: this policy assigns chunks of iterations to each pro-

cessor on demand until there are no more chunks left to be processed. This strategy

incurs in high overhead as threads must constantly call the runtime to request work.

However, the distribution is capable of considering the application irregularity as

well as other sources of load imbalance implicitly.

• Guided Loop Scheduler: this policy behaves similarly to the dynamic policy.

However, it dynamically adjusts the chunk size, starting with large chunks of itera-

tions and slowly decreasing the size. This approach aims to find a balance between

the scheduling overhead and load imbalance by assigning more chunks by request

and performing a fine tune in the last loop iterations.

The loop schedulers in OpenMP are tasked with providing a mapping function

M : L → T which maps the set of loop iterations L to the set of OpenMP threads T .

Developers aiming to expand OpenMP’s policy set must alter the inner structures of a

runtime system providing the backend for OpenMP pragmas to the compiler. One ex-

ample of such runtime is the GNU library for OpenMP (libGOMP) that provides the

default OpenMP annotations for the gcc compiler1. In libGOMP, threads and loop iter-

ations are indexed by increasing unsigned integers ranging from 0 to |T | − 1 and |L| − 1

respectively. Iterations can be assigned to OpenMP threads by associating their ids in an

array structure that represents the thread team workload. The addition of new policies in

such way requires developer knowledge of the library internal mechanisms. Additionally,

1 Available in https://github.com/gcc-mirror/gcc/tree/master/libgomp
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which directs messages to the correct chare through a local scheduler present in each

processing element (inner white boxes).

Charm++ portrays a mature framework for the development and integration

of load balancers comprised of distributed and centralized policies. One of its main

characteristics is that Charm++ automatically instruments the application in order to

obtain relevant metrics for scheduling the chares. Moreover, this and other platform

information can be used by the system’s global schedulers to make an informed decision

based on the recent past of chares.

Global scheduler developers in Charm++ must understand the system’s Load

Balancing Database (LBDB) and the execution flow of both application and load bal-

ancing. The former is a C++ language-level structure comprised of the aforementioned

instrumented application and platform data. The structure doubles as a communica-

tion layer between the system and the load balancers, allowing one to be apart from the

other’s internal routines. The execution flow of load balancing starts when a chare calls

the runtime API AtSync method and start a synchronization process among the chares.

Next, the control is passed onto the global scheduler which analyzes the execution plat-

form state through LBDB and decides the new application chare mapping. Finally, the

system automatically migrates the chares based on the scheduler decision and resumes

the application.

Charm++ support global schedulers with different taxonomy features. These

include but are not limited to workload-aware centralized policies and distributed poli-

cies that evaluate communication over the platform topology (FREITAS et al., 2018).

Regardless of the strategy, load balancers in Charm++ act as an implementation of a

mapping function M : C → P where C is the set of application chares and P is the

set of processing units within the distributed platform. Charm++ implements this de-

cision at language level through the association of every chare and processing unit to an

integer id ranging from zero up to |C| − 1 and |P | − 1, respectively. The system then

provides an assign function encapsulated in the LBDB structure that registers a chare

migration to a processing unit. This function must be called once for every migrating

chare c ∈ C and its parameters are the chare and its new target processing element ids,

respectively. Despite the generic approach, Charm++ load balancers have proven to be

successfully applied even on large class of applications such as NAMD (MEI et al., 2011)

and ChaNGa (JETLEY et al., 2008).

2.3 THE EVALUATED GLOBAL SCHEDULING POLICIES

We set out to evaluate scheduling policies that can be employed on different

parallel programming models as to tackle realistic use cases for implementation portability.

With that in mind, we explore the workload-aware class of global schedulers as they

can be applied to imbalanced scenarios such as molecular dynamics applications found
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Algorithm 1 – Longest Processing Time First scheduling algorithm

Require: T , P and ω

Ensure: S

1: S ⇐ ∅
2: T ⇐ max_heap(T )
3: P ⇐ min_heap(P )

4: while T is not ∅ do
5: ti ← pop(T )
6: pj ← top(P )
7: S ← S ∪ {ti → pj}
8: w(pj)← w(pj) + w(ti)
9: update(P )

throughout multiple programming models (SEDOVA et al., 2018). This class of scheduler

can use input data from several sources from static and dynamic performance models to

user informed data. As such, it stands out as an initial study for leveraging portable

implementations of global schedulers.

Workload-aware strategies for global scheduling rely on the explicit knowledge

over the cost of processing each work unit. This means that there must be a function ω

that takes a work unit ui from the set of application’s work units U as parameter and

outputs a processing cost ci ∈ N
+ such that the total application processing cost C is

calculated as:

C =
∑

ui∈U

ω(ui)

The objective of this class of schedulers is to attempt an even distribution of

workload among processing units. Note that the workload is associated to arbitrary

metric units and their values may represent any metric that is meaningful to the problem

(e.g. walltime, computations or application-specific abstractions). Moreover, there are no

restrictions imposed regarding the origin of the workload data. This means that the cost

function ω can be defined by the user’s knowledge over the application or carried out by

dynamic observations as in Charm++.

The default workload-aware policy in the Charm++ system is similar to the

Longest Processing Time First (LPTF) scheduling policy in CPU scheduling. Its behavior

in Charm++ is depicted in Algorithm 1. The policy takes as parameters: (i) a set of

tasks T ; (ii) a set of processing elements P and (iii) a function ω to obtain the workload

of the processing units and tasks. The policy organizes the set of tasks in a max-heap

(highest value first) and the set of processing elements in a min-heap (lowest values first)

in regards to their workloads. Then, the algorithm iteratively assigns the heaviest task to

the least loaded processing element. The assigned processor’s workload is incremented in
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Algorithm 2 – BinLPT scheduling algorithm

Require: A, k and n

Ensure: P

1: C ← compute-chunks(A, k)
2: sort(C, descending order)
3: P ⇐ min_heap(P )

4: for i← 0 to N do
5: Ti ← 0
6: PTi

← ∅

7: for i← 0 to |C| do
8: Tj ← min T

9: PTj
← PTj

∪ {Ci}
10: Tj ← Tj + ω{Ci}

the same amount of the tasks’ load and the heap is updated to re-organize its elements.

The LPTF scheduler in Charm++ is known as the GreedyLB load balancer. It is

the default load balancer in the system and it is specially useful due to its use of the dy-

namic observations made by the runtime system. The policy itself is not configurable and

portrays a static behavior although the runtime system allows the definition of scheduling

parameters like the load balancer invocation frequency.

OpenMP has no native workload-aware schedulers. The system relies on its

guided and dynamic loop schedulers to tackle load imbalance. However, these strate-

gies may incur in scheduling overheads and might be hard to fine-tune for portable ap-

plications. These characteristics led to independent approaches for tackling imbalanced

applications with predictable workloads. In this work we study one of such approaches,

the BinLPT loop scheduler evaluated in (PENNA et al., 2017). This policy is implanted

on a publicly available custom version of libGOMP 2 through hacks and additions to the

OpenMP standard functions.

Similarly to the LPTF scheduler, BinLPT employs a greedy approach to dis-

tribute the application’s workload among the processing elements. The BinLPT behavior

is summarized in Algorithm 2. It uses a function, compute-chunks, to calculate the aver-

age weight of the application when divided in up to k chunks. This function also creates

the chunks by packaging contiguous iterations until their combined workload is greater

than the calculated average weight per chunk. The policy sorts the chunks in descending

order (line 2) and iteratively assigns all iterations in the largest chunk to the least loaded

thread (lines 7 to 10). BinLPT outputs a multiset that enumerates which chunks were

attributed to which threads.

The policy requires access to the workload estimations for each loop iteration.
2 www.github.com/lapesd/libgomp
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This data must be forwarded to the policy which is implemented within the libGOMP

library. To achieve this, new functions needed to be added into the library by the policy

developers. Namely, a new procedure called omp_set_workload was added to the library

to reference the workload data (an array of integers) from the user space from within the

library space. As such, this enhanced library is capable of achieving workload-aware load

balancing using user-informed workloads. Unfortunately, new policies capable of making

use of these additions would require further alterations to the library, a process that would

not scale well with novel strategies requirements.

2.4 THE GLOBAL SCHEDULER TAXONOMY

The categorization of scheduling solutions aids the understanding of how parallel

systems deal with the task distribution problem. Moreover, the scheduler taxonomy

analysis helps to understand the differences and similarities between schedulers in different

programming models. In this work, we refer to the scheduling solution taxonomy proposed

in (LOPES; MENASCÉ, 2016) originating from the analysis of schedulers for distributed

systems.

The aforementioned work proposes two taxonomies, one for scheduling problems

and another for scheduling solutions. The scheduling problem taxonomy is related to the

characteristics of the parallel context environment. its features leverage the application,

execution platform and other scheduling constraints in the definition of three categories:

(i) workload; (ii) resources and (iii) scheduling requirements. The scheduling solution

taxonomy categorizes schedulers through how the scheduling problem is addressed. Its

characteristics are also organized in the definition of three categories: (i) optimality; (ii)

operation and (iii) topology distribution.

Parallel programming models are designed to serve as specialized tools for solv-

ing a specific set of problems. As such, runtime systems implementing the model’s API

are designed around these problems which influence the execution model. Consequently,

global schedulers are tied to the system’s definition of workload, resources and require-

ments. On the other hand, scheduling solutions in a system can display a different set of

configurations regarding its taxonomy (optimality, operation and topology distribution).

As an example to the aforementioned definitions, Charm++ is designed for a

distributed computation scenario where nodes are possibly irregular in regard to process-

ing power. Consequently, its schedulers are also designed to solve a problem with these

scheduling problem characteristics. Indeed, the system offers native support for load bal-

ancers to make both distributed and centralized decisions (topology distribution). More-

over, when creating centralized policies for clusters with identical machines, Charm++

dynamic load balancers have similar taxonomies to OpenMP loop schedulers (online,

non-optimal and centralized). These overlapping scheduling topologies create room for a

generic global scheduler definition that functions in a subset of problems in both systems.
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We attribute the scheduling solution taxonomy features to the capabilities of

the global scheduler’s policy (the schedule search routine). These policies frequently

tolerate flexible definitions of problem taxonomies and may be specialized to perform

on different concrete definitions (e.g. dynamic vs user-informed workload, heterogeneous

vs homogeneous architectures). On the other hand, the problem taxonomy influences

the runtime system scheduling API and consequently how the policy is implanted. We

envision that it is possible to dissociate both taxonomies in a scheduler implementation,

in practice, by abstracting the relationship between the runtime requirements and the

scheduler. As such, our goal is to create scheduling policies that may be unaware of the

system characteristics. Ultimately leading to a policy that is defined in generic terms and

specialized when implanted in a runtime system that requires a slightly different behavior

(e.g. testing for irregular machines instead of assuming that all nodes are equal).

2.5 C++ GENERIC PROGRAMMING

The C language family is commonly used for developing high performance code

due to its adherence in most parallel programming models. We chose to implement

our global scheduler library, MOGSLib, in C++ as both the OpenMP and Charm++

programming models are based on the C language family. Moreover, C++ has a robust

and growing set of directives to address the generic programming style of development.

Although the ARTful scheduling model is not limited to this style of programming, similar

approaches for the generic expression of behavior in HPC components are observed in

other works (AUMAGE et al., 2017; MOLLISON; ANDERSON, 2013).

Generic programming in C++ is often referred as meta-programming. This pro-

gramming style is based around the declaration of templates for functions and data struc-

tures that support multiple definitions for different data types. Templates are generic

definitions of behavior represented as flexible-typed algorithms that are translated to ac-

tual code by the compiler when the latter identifies its usage in the source code. This

means that even though C++ is a statically typed language, it is possible to write generic

code through a template definition of functions and structures.

Template functions and structures can be specialized to work with a set of data-

types through the explicit definition of the template code when given a specific type

parameter. This process is called template specialization and is widely used in the stan-

dard template library of the C++ language (STL). Through these language directives it

is possible to express a default generic behavior for functions addressing different data-

types and specialized behavior when necessary. The actual code associated to the function

call or structure usage is defined during compilation when the compiler analyzes the data

types in the expression and chooses the most fitting implementation for the template.

Figure 3 displays a generic code that computes the distance between 2 points in a

2D plane. The template procedure with generic code to express the calculation is depicted
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1 template<typename T>
2 in t d i s t anc e (T a , T b) {
3 re turn abs (b - a ) ;
4 }
5
6 s t r u c t Point2D {
7 i n t x , y ;
8 } ;
9

10 template<>
11 in t d i s tance<Point2d >(Point2d a , Point2d b) {
12 i n t dx = pow(b . x - a . x ) ;
13 i n t dy = pow(b . y - a . y ) ;
14 re turn sq r t ( dx + dy ) ;
15 }
16
17 i n t d = d i s t anc e ( param1 , param2 ) ;

Figure 3 – Template specialization on C++.

in lines 1 through 4, indicated by the expression in line 1. The distance procedure may take

any data type T and the result of the distance is carried out by the absolute difference

of its parameters a and b using the arithmetic operator for operands of type T . This

is the expected behavior when calculating the distance between two numbers, integers,

16/32/64 bit precision floating points and so on. Lines 10 to 14 showcase how the distance

procedure can be specialized to work under a data-type, Point2D, that represents a bi-

dimensional point given its definition in lines 6 to 8. The function is defined with the same

signature but this time without the generic notation on the template expression (line 10).

This last routine calculates the Euclidian distance between the two points maintaining the

same semantics and syntax of the original distance routine. As a consequence of template

specialization, the expression portrayed in line 17 yields a computation that is dependent

of the data-types of the parameters param1 and param2. If the compiler evaluates their

types and detects that they are Point2D objects, the specialized function is translated

into the code, otherwise the generic function is selected.

Template meta-programming in C++ is specially useful when combined with

constant expressions. These expressions use static operands that are evaluated during

compilation time and thus can be used to employ boolean logic to the template type-

resolution step of compilation. This allows extra semantics for the selection and special-

ization of template functions and structures.

Figure 4 displays an example of template selection through constant expressions.

This segment of code displays a structure to represent the workload data of a set of n work

units in lines 1 to 4. Runtime systems like Charm++ can supplement global schedulers

with workload data by instrumenting the application, however, systems like OpenMP

have no native runtime support for evaluating the application workload. As such, the

definition of the workload in OpenMP must be informed by the user and forwarded to the

global scheduler as in the original BinLPT implementation. There is no generic definition

on how to fetch the workload input of global schedulers in generic programming models.
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1 s t r u c t Workload {
2 i n t n ;
3 i n t *data ;
4 } ;
5
6 template<bool U>
7 Workload workloads ( ) {
8 re turn User : : getWorkloads ( ) ;
9 }

10
11 template<>
12 Workload workloads<f a l s e >() {
13 re turn RuntimeSystem : : getWorkloads ( ) ;
14 }
15
16 constexpr bool usr_def ined = usr_workloads | | rts_no_support ;
17 workloads<usr_defined >() ;

Figure 4 – Template implementation selection on C++.

Instead, the function defined in lines 6 to 9 portrays a default approach of querying such

data where the template parameter (line 6) is associated to a boolean value rather than

a data-type. The default operation is to access the User namespace and call the get-

Workloads function. However, a specialized function for when the template parameter

is statically evaluated as false (user is not supplying the data) is available throughout

lines 11 to 14, where the RuntimeSystem namespace is accessed instead. This behav-

ior enables the definition of static rules for expressing which implementation should be

picked by the compiler given static constants. As an example, in lines 16 and 17, the

workloads function is called and the informed template parameter is a constant expres-

sion composed of two static values usr_workloads and rts_no_support. Ultimately, this

can be used to select the workloads informed by the user whenever the user explicitly

informs the scheduler to do so (usr_workloads) or when the runtime system has no sup-

port for this feature (rts_no_support). Although this is a simplification of the problem,

template meta-programming is a powerful tool that allows the definition and selection

of code fragments that will compose the final global scheduler implementation. Through

this language mechanism, developers can express generic scheduler behavior that can be

adapted to multiple runtime systems through constant rules evaluated during compilation

which ultimately incurs in little runtime overhead.
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3 RELATED WORK

Our work is focused on the development support and implementation portability

of scheduling components for different contexts and runtime systems. As far as we know,

through our research efforts, no other work for high performance environments share

a similar goal. However, the search for an expressive way of developing modular and

less complex HPC software components is manifested in similar work that target other

components and characteristics. We consider as related work any research efforts, in HPC,

that enables the user to define and aggregate their own software components through the

use of abstraction over the application or runtime system domain. Despite the differences

in goals and solutions, these techniques are subject to the same constraints of the high

performance environments which often must abdicate from classic solutions in software

engineering due to performance overheads.

Application portability in HPC environments is a research topic that study ap-

proaches for enabling application implementations to target multiple platforms. These

studies do not address the development and/or portability of runtime system internal

components and thus are not directly comparable to our work. Indeed, most portability

efforts in HPC are based on performance portability which is achieved by the expression

of generic application behavior that can be interpreted in other execution models or archi-

tectures. Examples of such work are programming models like OpenACC (COMMITTEE

et al., 2015), OpenCL (STONE; GOHARA; SHI, 2010) and performance portability li-

braries such as Raja (HORNUNG; KEASLER, 2014) and Kokkos (EDWARDS; TROTT;

SUNDERLAND, 2014). These tools target the application behavior portion of the HPC

software and are mostly directed to provide a single algorithm implementation that can

be adjusted to function in different runtime systems while preserving its performance.

We refrain from further discussing these approaches as they deviate from our goal of pro-

viding users with the capability of developing components that expose implementation

portability to different environments.

We draw inspiration from work that employ indirection layers and abstractions

to configure solutions in the form of a set of attachable components that can be expanded

by the user. These components are specialized and can be swapped to adapt the solution

into a different set of constraints and tool as the swapped component performs the same

procedure. Aumage et al. (2017) uses this concept to propose a component system called

COMET that abstracts computational steps in parallel applications that can be mapped

to task-based execution systems. The COMET system is used to express the application

behavior as a graph of component interfaces that run atop the StarPU runtime system.

The application segments are represented as meta-tasks and their implementations can be

swapped during runtime by selecting a concrete component that will perform its compu-

tation as a task in the system. Grossman et al. (2017) proposes another work in this line

in the form of HiPER, a description of a modular runtime system for exascale computers.
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HiPER is a highly pluggable system with an unified scheduler capable of balancing the

active modules activity. Modules can be added by registering lambda functions in the

system API, allowing the expression of user modules and functionalities as anonymous

functions in the system that are made available to the remainder of the system through

callbacks. These techniques provide users with a higher degree of customization and

control over the tools, allowing the development of experimental modules faster.

On meta-programming techniques for adapting parallel applications, (MERRILL

et al., 2012) proposed the design methodology of rules (policies) for how to interpret GPU

kernels based on the template library of C++. Their work is motivated by differences

among GPU micro-architectures and fine tuning configurations that cause application

performance variations in different environments. Their approach is directed to making

kernels as template-dependent functions, so that optimizations related to memory or

other sensitive performance traits can be unbounded. The resulting kernels are generic

expressed and specialized by the policy parameter during compilation.

The demand for variety and user-defined scheduling is a research topic in the scope

of real-time operating system (RTOS). Similarly to HPC runtime systems, in RTOS, the

kernel must abstract basic functionalities to applications and scheduling is one of them.

(MOLLISON; ANDERSON, 2013) proposed that user-defined scheduling policies could

be implemented in user-space instead of kernel-space. They developed a library with a

common higher level API the user can manipulate independently of the underlying kernel.

Those higher level directives are translated by a driver they developed and forwarded to

the kernel and C POSIX library function calls. Their solution enables schedulers to be

developed out of the kernel-space with abstract implementations for base functions which

involves thread locking, synchronization and other functionalities. The overhead of the

technique was acceptable even on real-time constraints, which is one of the most critical

metric for schedulers in real-time operating systems.

Table 1 correlates the aforementioned related work to this work. The differences

in scope and objective do not allow a direct comparison among these efforts which makes

a quantitative discussion impossible. As such, we analyse common characteristics of these

works rather than their impact on their respective contexts. Indeed, each effort is based

on reusability and complexity reduction and this is only achieved by the abstraction and

automated management of a subset of a problem characteristics. Ultimately, we compare

the related work to ours through the following three characteristics:

• Abstraction Model: how elements in the solution’s domain are abstracted from

the user.

• Composition: how the work aggregates the abstracted elements and the user-

defined elements to form a complete software component. We identified two main

approaches in the evaluated works. One approach is based around the use of a tool

for assisting the user to explicit an assembly of the relevant abstractions using native
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language-level-directives (LLD). Another approach is to create an abstraction layer

and interface functionalities through a novel library that exposes an API available

to be user segments.

• Extensible: if the work explicitly provides any framework or tool for the user to

extend the proposed solution.

Work Abstraction Model Composition Extensible

Aumage et al. (2017) Component System API Yes
Grossman et al. (2017) Lambda Functions API Yes
Merrill et al. (2012) Generic Programming LLD -
Mollison & Anderson (2013) Indirection Layer API No
This work Generic Components LLD Yes

Table 1 – Comparison of related work.

In regards to the abstraction model, each work implemented its own technique.

This is expected as each work is proposed for a different scenario containing its own

challenges and constraints. Our work employs a mixture of generic programming with an

expandable component system to decompose a global scheduler into smaller abstractions.

In regards to the composition technique, most works employed a solution in the form of

a library accessible through an API. In this category, our work falls in the same class

as the (MERRILL et al., 2012) approach, using language level directives and tools to

assist the compiler to assemble the solution. Indeed, application interfaces offer dynamic

reconfiguration and flexibility but the use of language directives and static techniques

are important to mitigate runtime overheads which are crucial in HPC environments.

Finally, when leveraging the explicit extension support of the aforementioned works, most

do offer some kind of technique or guideline on extending the solution. Both works that

did not offer such support are (MERRILL et al., 2012) and (MOLLISON; ANDERSON,

2013). The former is a design methodology study and thus does not offer a concrete

implementation for users to expand and the latter is a work in development which still has

little support for the integration of user defined abstractions. In summary, our approach

offers a blend of current techniques to experiment in a novel scenario, the global scheduling

of applications in the scope of HPC runtime systems.
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uler implementations into a set of abstractions that can be individually validated through

tests and composed into different global scheduler assemblies. Indeed, the final goal of

the specification is to support the development of scheduling solutions with the same set

of taxonomy features than the existing system-native implementations. Moreover, the

specifications enable the implementation portability of these abstractions allowing for dif-

ferent compositions which generate different scheduling traits. The ARTful specifications

are described in the following sections and are constituted by the following abstractions:

(i) the scheduling policy; (ii) the global scheduler; (iii) the scheduling context and (iv)

the runtime system adapter.

4.1.1 Scheduling Policy Abstraction

At the core of any global scheduler is a set of algorithms to decide the processor

mapping of the application work units. Those algorithms, namely scheduling policies,

take an arbitrary set of input data to calculate a global schedule that fit into its optimiza-

tion objectives (e.g. performance, power consumption, communication). A given policy

might require input data to analyze the platform distributed topology (JEANNOT et

al., 2013), power consumption data from each of its processors (FRASCA; MADDURI;

RAGHAVAN, 2012), the workload of each work unit (PENNA et al., 2017), the mem-

ory architecture of the machine (DURAND et al., 2013) and others. Scheduling policies

are distinct in objective and strategy, making it difficult to describe an unified interface

for this entity without sacrificing simplicity or flexibility. Nonetheless, the scheduling

policy can be described by its common output, the decision of a global schedule of an

application’s tasks.

The ARTful scheduling specifications for the definition of a scheduling policy

takes in account the existing differences among strategies requirements and their common

output. The following are the ARTful specifications for the implementation of a scheduling

policy as a software component in the global scheduler assembly:

1. It must have only one procedure in its public interface;

2. It must not record state;

3. The output of its procedure must be a global schedule;

4. This procedure must not be limited in number nor ordering of input parameters;

5. The input data types must be flexible to account for different language definitions

of what they represent.

The first, second and third specifications characterize the scheduling policy com-

ponent as an entity with a single purpose in the global scheduler assembly. The third and

fourth specification accounts for the well-defined objective of the component and the com-

ponent flexibility to define multiple approaches respectively. Finally, the fifth specification

is a pre-requisite for implementation portability. A concrete data type representation for
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a scheduling input may differ from a system to another. As such, data types to represent

concepts such as workload, communication, work unit identifiers, topology and others

must be flexible as to account the discrepancies among contexts. With this component

specification, it is possible to implement scheduling policies that operate on generic defi-

nitions of input data and can be used in global schedulers as long as the latter is able to

provide the policy with its required set of data type definitions and input.

4.1.2 Global Scheduler Abstraction

The ARTful global scheduler specifications enables a clear distinction between the

entities that represent the scheduling context and the global scheduler. In fact, our main

difference from the native scheduling solution approach, previously depicted in Figure 5, is

the abstraction of the scheduling context from the global scheduler logic. With contextual

functionalities and scheduling policies abstracted, this entity takes the role of expressing

which operations must be provided in any given context for supporting its scheduling

strategy.

The global scheduler abstraction performs the control logic of fetching the input

data through API calls to the scheduling context. If the policies define the algorithmic

approach to solve the mapping problem, the global scheduler abstraction defines the shape

of the scheduling solution. The ARTful specifications for the global scheduler entity is as

follows:

1. It must have only one procedure in its public interface;

2. The procedure must output a global schedule;

3. The procedure must employ at least one scheduling policy;

4. The procedure signature must be syntactically equal for all global schedulers;

5. The global scheduler must depend on the scheduling context to provide any func-

tionality that defines a taxonomy feature unrelated to the policy;

The first and second specifications define the global scheduler abstraction as a

component that has only one responsibility. Moreover, its role is specified by the second

and third specifications as an abstraction layer for interfacing with scheduling policies.

The fourth specification is useful for creating a common syntax for calling global sched-

ulers. Indeed, this feature is necessary for creating a low level collection of such compo-

nents that can expose multiple approaches for a given scheduling problem. Finally, the

fifth specification assures that global schedulers are both dependent and dissociated from

the scheduling context. ARTful enables portability by allowing an implementation to cope

with the context’s scheduling taxonomy features without restricting the implementation

to their semantics. Ultimately, these specifications allows global schedulers to be applied

to different contexts as long as those can provide the scheduler with implementations for

its required functionalities.
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1: procedure LPT(wl, nt, npu)
2: pu_load← Array(npu)
3: map← Array(nt)
4: for i← 0; i < nt; i← i + 1 do
5: tid← Max(wl) ⊲ Find the longest processing time task
6: pid← Min(pu_load) ⊲ Find the least loaded processing unit
7: map[tid]← pid ⊲ Map the task to the processing unit
8: pu_load[pid]← pu_load[pid] + wl[tid] ⊲ Update the processing unit workload
9: wl[tid]← −1

10: return map

Algorithm 3 – The Longest Processing Time (LPT) policy.

As an example, consider the longest processing time (LPT) policy depicted in

Algorithm 3. This is a workload-aware policy that requires, as input, the number of

processing units in the system, npu, the number of tasks in the application, nt, and the

workload of each task, wl (line 1). The policy iteratively finds the heaviest task (line 5)

and the least loaded processing unit (line 6). Then, it associates their identifiers to create

the task mapping (line 7), ignores the mapped task (line 8) and updates the workload of

the processing unit (line 9). An ARTful compliant implementation of this policy should

express the requirements (algorithm parameters) to be fulfilled by the global scheduler

component. Moreover, the processing unit count and the workload of each task must be

retrieved from the context (user, runtime or application) as the global scheduler entity

can not implement these functionalities. Regardless of which data are needed, the global

scheduler is only responsible for requesting this data from an abstract context which, in

turn, will implement how the data is accessed.

4.1.3 Scheduling Context Abstraction

The scheduling context abstraction represents the environment where the schedul-

ing solution will be applied and all its necessary scheduling related functionalities. In

some cases, schedulers may rely on information provided by the user to aid its deci-

sion (BHATELE et al., 2011), extract data directly from the application (FATTEBERT;

RICHARDS; GLOSLI, 2012; MEI et al., 2011) or even start communication with other

scheduling decision entities (FREITAS et al., 2018). These functionalities are provided

by runtime systems through a scheduling API. Indeed, these procedures are not contem-

plated in the other ARTful abstractions despite being important parts of the scheduling

solution taxonomy. However, each runtime system portrays different semantics for these

operations and thus it should be dissociated from the logic portrayed in the policy.

The ARTful scheduling context abstraction role is to encapsulate a set of function

implementations required by a global scheduler to execute its policies. These implementa-

tions may portray a subset of the scheduling solution features of the system. An example
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of such features can be observed in Charm++, where the runtime measures the applica-

tion iterations execution for each task. The system provides the elapsed time of each task

to its load balancers which are expected to use this data when employing workload aware

policies. Only through the system’s exposure of this functionality, and the scheduler’s use

of it, the system may enable adaptive scheduling solutions to its applications. Therefore,

in order to account for these contextual features, the following specifications are designed

for an ARTful context implementation:

1. Every context-sensitive code must be implemented on scheduling context compo-

nents;

2. Each scheduling context must adhere to one or more requirements defined by a

global scheduler;

3. Any context that implements a global scheduler requirements must be attachable

to it;

4. Any context that does not implement a global scheduler requirements must generate

errors if attached to it;

5. A scheduling context must logically represent a single set of compatible features in

an environment;

6. The context implementation entities must not be private to the application code;

The first specification states that the scheduling context is the ARTful component

responsible form encapsulating the global scheduler transformations to a given runtime

system. The second specification reinforces the role of this abstraction as a function-

ality provider for global schedulers. Without following an interface defined by a global

scheduler, a context implementation has no purpose. The third and fourth specifications

are meant to guarantee the correct software relationship between scheduler and context

implementations. Also, the fourth specification states that an error must be issued if an

incorrect composition is made as to avoid implementations that fail silently. The fifth

specification is a statement to avoid the generalization of contexts, which can increase the

code complexity as different configurations of a runtime system are implemented in a sin-

gle instance. Finally, the sixth specification guarantees that users can access the context

instances in the application code. This is a mandatory characteristic to allow schedulers to

access data from different sources without forcing runtime systems to expose an extensible

user API to inform data that is not managed by the system.

4.1.4 Runtime System Adapter Abstraction

The ARTful runtime system adapter is an entity responsible for connecting the

other abstractions to a runtime system. Regardless of the support for extending the set of

policies in a system, there are no existing HPC runtimes without an integrated schedul-

ing module. This abstraction is necessary in this scenario as portable global scheduler
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implementations must be adaptable to different system APIs. An implementation of this

concept is equivalent to a native global scheduler that, instead of making a schedule deci-

sion, forwards its responsibility to a decoupled ARTful global scheduler. Additionally, the

adapter has the role of holding references to the runtime system data structures so that

these are available outside of the runtime system scope (ARTful scheduling contexts).

An ARTful system adapter has no interface specifications as each runtime por-

trays an unique strategy to express its global schedulers. Nonetheless, runtime adapters

must adhere to its system’s routine while portraying the following behavior for an ARTful

scheduling solution:

1. Expand the runtime system global scheduling options to add ARTful schedulers;

2. Initialize references, if necessary, in ARTful scheduling contexts to data structures

within the runtime system;

3. Forward the schedule decision to an ARTful global scheduler when the system selects

such a schedule;

4. Implement the global schedule calculated by the ARTful entities;

In a system where there is a framework for implementing user-defined schedulers,

the ARTful system adapter can be developed as a user-defined scheduler. Other systems,

like OpenMP, must rely on alterations in the runtime library functions for expanding

the system’s global scheduler pool. However, since the adapter yields control to ARTful

global schedulers, a single adapter can be used to extend the runtime system with multiple

scheduling strategies. This is an advantage to the current development process where, for

each new scheduler addition, more code must be added to the runtime system library.

4.2 ARTFUL ABSTRACTIONS OVERVIEW

The abstractions proposed in the ARTful specifications create a different rela-

tionship between a global scheduler and the runtime system. Invariably, this allows the

creation of decoupled modules for global schedulers that, due to compatibility reasons,

must communicate to the current native global schedulers.

The anatomy of an ARTful scheduling solution and its relationship to the runtime

system is presented in Figure 6. The runtime system remains largely unchanged by our

approach and only requires the addition of a new native global scheduler to forward

the schedule decision to the ARTful runtime adapter. The adapter then performs two

operations, it initializes the scheduling contexts in the library for that runtime system

and then calls a global scheduler implementation. The scheduler employs a scheduling

policy indirectly using the functionalities provided by the runtime system through the

scheduling context. The adapter outputs the schedule to the native global scheduler

which then implements the decision in the runtime system.
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5 IMPLEMENTATION

The ARTful specifications allow developers to create scheduling solutions through

a bottom-up process. This implies that global schedulers can be developed starting from

the scheduling policy and leaving the adaptation necessary to cope with the runtime sys-

tem for later, through the development of scheduling contexts and runtime adapters. In

this chapter, we explain our implementation process by presenting the Meta-programmed

Oriented Global Scheduling Library (MOGSLib), a collection of ARTful scheduling ab-

straction for the Charm++ and OpenMP systems.

MOGSLib is a library implemented using the object oriented and template meta-

programming directives of the C++ 14 language. While the object oriented aspects of the

language allow for the encapsulation of behavior in logical units, the templates are used

to generically describe the ARTful abstractions connections. This approach is selected as

it allows the use of recent algorithm implementations from the standard template library

(STL). Additionally, as template classes are generated on demand by the compiler during

the name resolution phase, the ARTful components can be generically defined during

development. The concrete specialized classes are created during compilation and, if

incorrect data types are used, errors do not carry on to the execution. The details about

how each ARTful abstraction is developed in MOGSLib is presented in the remainder of

this section.

5.1 SCHEDULING POLICIES

We chose the class of centralized and workload-aware policies to experiment in

this work. This class of scheduler employs a centralized decision based on the totality

of available application and platform data. These policies achieve quasi-linear mapping

decision times based on the number of the application’s parallel work units. These charac-

teristics and the lack of communication among scheduling entities, present in distributed

strategies, reduce the schedule decision time variance which aids our analysis.

In this work, we analyse two policies: (i) the BinLPT (PENNA et al., 2017) in

OpenMP and (ii) the GreedyLB in Charm++. Both of these policies are implementations

of the generic LPT policy discussed in Algorithm 3. BinLPT partitions the work units in

chunks through a greedy bin packing heuristic. The policy bundles the maximum number

of contiguous iterations whose overall load does not exceed the total average load into

a single chunk. Later, it schedules the chunks into processing units using the LPT rule.

The BinLPT was conceived as a loop scheduling policy for OpenMP and implemented in

an expanded version of libGOMP customized to portray this policy and functions so that

users can register the workload of each iteration. Our version of this policy is developed

in C++ 14 within MOGSLib and the workload can be informed through the context data

structure rather than requiring additional API extensions to libGOMP.
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The GreedyLB policy utilizes a max-heap to order work units by their workload

and a min-heap to order processing units by their current load. The policy iteratively

designates the task atop of the max-heap to the processor atop of the min-heap until the

task heap gets empty. GreedyLB is implemented in Charm++ and uses the system’s load

balancer database (LBDB) to gather dynamic data about the application and processing

unit’s workloads. Our version in MOGSLib preserves every aspect of this policy but the

access to the system’s structures is abstracted by the context data structures to conform

to the ARTful specifications.

In MOGSLib, every policy is implemented as C++ static functions encapsulated

within template structures. The template parameters are used to abstract data-types

during development, allowing the policy to be flexible in regards to the definitions of the

data-types that represent the workload and the task/work unit identifiers. In Charm++,

when using the observed data from runtime, the workload represents the elapsed process-

ing time of the task in the previous iteration in seconds. As such, in Charm++, workload

is defined by a system-specific type, LBRealType, that defaults to double in C++ but can

be tweaked by the user during Charm++ compilation. In libGOMP, the workload data

represents an arbitrary unit as the data is informed by the user due to the lack of runtime

instrumentation. As workloads can not be negative, we configured the default workload

data-type in libGOMP to unsigned integer. By defining the workload as a generic numeric

data-type, the policy can be implemented once and used for both systems and can even

work on user custom numeric data types.

1 template<typename Id , typename WorkLoad>
2 s t r u c t LPT {
3 pub l i c :
4 us ing Out = vector<Id >;
5 s t a t i c void map(Out &map , vector<Workload> tasks , Id npus ) {
6 // c a l c u l a t e the g l oba l s chedu le
7 // Output schedu le in the map va r i a b l e
8 }
9 } ;

Algorithm 4 – The LPT template structure interface in MOGSLib.

Algorithm 4 displays the template structure implementation of the generic LPT

policy in MOGSLib. In MOGSLib, every policy structure must declare its only public pro-

cedure as a static function called map (lines 5–8). The first parameter for this procedure

is actually the return value, the calculated global schedule. This design decision is taken

so that policies do not allocate memory for their output and, instead, receive an allocated

memory to write their output. The remainder arguments are requirements related to the

LPT policy: (i) a collection of workload values for the tasks and (ii) the processing units

count. This implementation design allows for unitary tests to be performed in the policy

at early stages of development while abstracting details in the scheduling context and the

global scheduler overall behavior.
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5.2 GLOBAL SCHEDULERS

The next abstraction to be developed following the ARTful scheduling model

is the global scheduler. In MOGSLib, global scheduler components are implemented as

C++ template classes. A class representation for global schedulers is employed in both

Charm++ and StarPU load balancers due to its versatility to encapsulate data. As

such, global schedulers instances in the ARTful are objects that may register and make

decisions based on its internal state. Moreover, the template parameter is exclusive to the

MOGSLib implementation and is used to both abstract and bind the class to a data-type

that represents the scheduling context. In our scope, the objective of the global scheduler

class is to situate the generically defined scheduling policies into OpenMP loop schedulers

and Charm++ load balancers. Therefore, the workload of each task and the processing

unit count of the platform must be informed by the scheduling context.

1 template<typename Ctx>
2 c l a s s LPTScheduler {
3 us ing Id = typename Ctx : : Id ;
4 us ing Workload = typename Ctx : : Load ;
5
6 us ing P = LPT<Id , Workload>;
7 us ing Out = typename P : : Out ;
8
9 void work (Ctx& ctx ) {

10 auto workloads = ctx . workloads ( ) ;
11 auto npus = ctx . npus ( ) ;
12
13 Out out = Out ( ) ;
14 out . r e s i z e ( s i z e ( workloads ) ) ;
15 P : : map( out , workloads , npus ) ;
16
17 ctx . set_schedule ( out ) ;
18 }
19 } ;

Algorithm 5 – The implementation of a MOGSLib scheduler that employs the LPT policy.

Algorithm 5 showcases the implementation of an ARTful global scheduler ab-

straction that employs the previously described LPT policy. In lines 1 to 2, the template

class is declared with a dependency on a data-type to represent the scheduling context,

Ctx. This generic context is used in lines 3 and 4 to derive the concrete data-types

for the work/processing units identifiers, Id, and the task’s workload data-type, Load.

In MOGSLib, the public procedure to decide a schedule is the map function (lines 9–17)

which always take one reference to an instance of its scheduling context data-type. Despite

the data-type being generically defined, the syntax to call the map function is the same

for any scheduler class. The map function may manipulate the context instance to query

for functionalities that must be present in its implementation. This is observed in lines

10 and 11, where the scheduling context is queried to perform one function to obtain the

task’s workload and the processing unit count respectively. Moreover, the global schedule



56

is forwarded to the ARTful scheduling policy (lines 13–15) and the output is passed on

to the scheduling context in line 17 (the practical output of the function).

In a broad sense, any data-type can be passed as a template parameter for a global

scheduler implementation in MOGSLib. However, the compilation will only succeed as

long as the data-type has a definition for all names required within the global scheduler

class. This creates a binding between the two classes that is expressed through a generic

interface which exposes the scheduler’s requirements to the context. More about the

design of the scheduling context implementation is discussed in Section 5.3.

5.3 SCHEDULING CONTEXTS

In this work, we developed context structures for the Charm++ and libGOMP

systems in order to implant the aforementioned policies into both systems. The GreedyLB

policy requires the following input data: (i) amount of processing units in the platform; (ii)

workload of each work unit in the application. These are the bare minimum requirements

of workload-aware strategies and a context structure interface, developed in MOGSLib,

can be expressed as in lines 1 to 7 in Algorithm 6. The BinLPT also depends on the same

aforementioned input data with the additional information of the maximum number of

chunks to be created. A compliant interface for the BinLPT context can be defined by

extending the default WorkloadCtx as depicted in lines 9 to 12 in Algorithm 6.

1 template<typename tId , typename tLoad>
2 s t r u c t WorkloadCtx {
3 us ing Id = t Id ;
4 us ing Load = tLoad ;
5 Id npus ( ) { /* . . . */ }
6 vector<Load> workloads ( ) ;
7 } ;
8
9 template<typename tId , typename tLoad>

10 s t r u c t BinLPTCtx : pub l i c WorkloadCtx<tId , tLoad> {
11 Id chunks ( ) { /* . . . */ }
12 } ;

Algorithm 6 – The context structure interfaces required by GreedyLB and BinLPT respectively.

The scheduling policy characteristics do not account for all the features present

in the scheduling solution taxonomy. Scheduling context implementations must provide

implementations for the global scheduler requirements that not only comply with the

policy’s semantics but also to the runtime system’s scheduling objectives. Charm++

applications may contain unmigratable tasks (rigid jobs) and the platform may have

unavailable processing units (cannot be marked as a destination for a migration). The

system’s load balancers must filter the related input data to ignore those elements in

the platform to avoid an illegal distribution of work units. Additionally, the workload of

processors in the last application iteration is calculated dynamically by registering the

time it took to process a task in the processor. This measurements are the reason behind
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Charm++ adaptive scheduling solutions, meaning that workload-aware strategies in this

system should employ those metrics as to conform to Charm++’s objectives.

A context structure for centralized workload-aware Charm++ global schedulers,

CharmCentralizedWL, is depicted in Algorithm 7. The context uses the system Load

Balancer Database (LBDB) to query the work/processing units workloads. The database

in Charm++ is a reference to a system-specific data structure that can be accessed in

MOGSLib through an adapter to the runtime system with the syntax depicted in line

2. Moreover, the context is responsible for filtering the unavailable processors (lines 8–

13), unmigratable chares (lines 15–19) and calculate the workload of the tasks (lines

21–31) using the Charm++ semantics (manipulation of the LBDB structure). These

functionalities are implicitly inserted within the implementation of the workload-aware

policy requirements expressed as the npus (lines 34–37) and workloads (lines 39–43)

functions. This context in Charm++ improves the software quality of the workload-

aware global schedulers as common segments of code are no longer replicated in different

policies and is explicitly manifested as a scheduling taxonomy feature of Charm++.

In the original libGOMP, the support for defining the workload of each iteration

of the parallel loop is not present. The authors of BinLPT extended the OpenMP spec-

ifications to portray a new API call, omp_set_workload so that the workload could be

informed by the user to the loop schedulers in the runtime system. We recreated this

feature in MOGSLib within the OpenMP context structure depicted in Algorithm 8. In

the LibGOMPWorkload context structure, the amount of processing units in the environ-

ment is determined by the OpenMP API function omp_max_threads (lines 4–6). The

amount of chunks must be gathered from the runtime system’s internal structure and

must be initialized by the system’s adapter (lines 12–14) defined by exposing a public

workload array variable which the user can manipulate in the application code. Finally,

the workload of each iteration can be informed by the user through the context by manip-

ulating the workloads variable (line 2). This approach achieves the same goal of enabling

workload-aware scheduling policies in OpenMP but does not require additional changes

nor extensions to the libGOMP interface. Indeed, other functionalities not present in the

original OpenMP specifications can fit into the context structure, allowing for the use of

different input data in OpenMP loop schedulers such as the architecture memory layout

in NUMA-aware strategies or the speed of every processor for architectures with uneven

processing power.

In a later work of the BinLPT authors (PENNA et al., 2019), their custom

version of the libGOMP library was once again extended. The new functionality, called

Multi-loop support, enabled BinLPT to reuse a previously calculated iteration mapping by

associating its output to a loop id. This feature required a new addition to the OpenMP

API in the form of the omp_loop_register function to inform the runtime which loop will

have its schedule calculated next. In order to support this feature, we accommodated the

multi-loop logic in a specialized OpenMP context that inherited the capabilities of our
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1 s t r u c t CharmCentralizedWL : pub l i c WorkloadCtx<unsigned , LBRealType> {
2 LDStats * lbdb = RTS : : Charm : : lbdb_ref ;
3
4 p r i v a t e :
5 vector<Id> PUs , chare s ;
6 vector<Load> workloads ;
7
8 void f i l t e rPU s ( ) {
9 PUs . c l e a r ( ) ;

10 f o r ( Id i = 0 ; i < lbdb ->nprocs ( ) ; ++i )
11 i f ( lbdb ->procs [ i ] . a v a i l a b l e )
12 PUs . push_back ( i ) ;
13 }
14
15 void f i l t e rCh a r e s ( ) {
16 f o r ( auto i = 0 ; i < lbdb ->n_objs ; ++i )
17 i f ( lbdb ->objData [ i ] . migratab le )
18 chare s . push_back ( i ) ;
19 }
20
21 void ca l cu la teWork loads ( ) {
22 workloads . r e s i z e ( chare s . s i z e ( ) ) ;
23 auto i = 0 ;
24 f o r ( auto chare : chare s ) {
25 auto &host_pu = lbdb ->from_proc [ chare ] ;
26 auto &pe_speed = lbdb ->procs [ host_pu ] . pe_speed ;
27 auto &wall_time = lbdb ->objData [ chare ] . wallTime ;
28
29 workloads [ i++] = wall_time * pe_speed ;
30 }
31 }
32
33 pub l i c :
34 Id npus ( ) {
35 f i l t e rPU s ( ) ;
36 re turn PUs . s i z e ( ) ;
37 }
38
39 vector<Load> workloads ( ) {
40 f i l t e rCh a r e s ( ) ;
41 ca l cu la teWork loads ( ) ;
42 re turn workloads ;
43 }
44 } ;

Algorithm 7 – The context structure implementation for centralized and workload-aware load balancers
in Charm++.

aforementioned structure. As a result, any scheduler in MOGSLib may benefit from this

feature in libGOMP without the cost of additional changes to the runtime system library.

Indeed, global schedulers aware of this functionality must be tweaked to issue function

calls to the context data structure from the work function in their global scheduler class.

These adaptations situates multi-loop as an user-defined feature in the scheduling solution

accessible to any policy rather than a runtime trait applied to a single policy.

5.4 MOGSLIB ASSEMBLING TOOLS

Before we discuss the ARTful runtime adapters implementation, it is important

to showcase how the individual components are grouped together to build the MOGSLib
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1 void MOGSLibLB : : work ( LDStats* s t a t s ) {
2 MOGSLib : : RTS : : Charm : : s t a t s = s t a t s ;
3
4 std : : s t r i n g s t r a t e gy = MOGSLIB : : API : : s e l e c t ed_schedu l e r ( ) ;
5 auto map = MOGSLib : : API : : work ( s t r a t e gy ) ;
6
7 auto &chare_ids = MOGSLib : : RTS : : Charm : : chare_ids ;
8 auto &pu_ids = MOGSLib : : RTS : : Charm : : pu_ids ;
9

10 auto i = 0 ;
11 f o r ( auto chare : chare_ids )
12 s t a t s -> a s s i gn ( chare , pu_ids [map [ i ++] ]) ;
13 }

Algorithm 9 – The Charm++ centralized adapter work function.

The development of centralized load balancers in Charm++ is supported by the

system’s load balance framework. The development of user-defined load balancers can be

achieved by extending the library’s BaseLB class and implementing the required methods

to interface with the system, namely the work function. Algorithm 9 showcases the work

function of the MOGSLibLB, the native load balancer that acts as the charm central-

ized runtime adapter. The adapter registers a reference to the system’s load balancing

database in line 2, so its functionalities can be accessed in the Charm++ ARTful schedul-

ing contexts. Later, it calls a function pointer in the library’s API, selected_scheduler,

which the user can define. This function outputs the name of a scheduler within the API

that will be called and defaults to the first scheduler passed as parameter in the pre-

compilation tool. In line 5, the control is forwarded to the selected ARTful global sched-

uler and its associated ARTful scheduling context which can already access the Charm++

functionalities (line 2). After calculating the global schedule, the adapter implements the

decision using the Charm++ API (lines 10–12) to assign the work units to the processing

units.

In libGOMP, the development of loop schedulers rely on modifications within the

library’s internal functions that handle scheduling. These functions are responsible for

exposing the policies and managing the control cycle of the runtime when the scheduling

must be performed. The MOGSLib integration to libGOMP is achieved through additions

of two functions, gomp_loop_runtime_start and gomp_loop_init. The first function

is executed when the application reaches an OpenMP parallel for construct and it detects

which policy will be executed. In order to add MOGSLib as a loop scheduler, a new

option is added to the gomp_loop_runtime_start internal decision mechanism, the

mogslib policy. The other function, gomp_loop_init, is called before the parallel loop

starts and it is designed to calculate a static schedule. This function is altered to call

the MOGSLib library API to perform the global schedule decision and apply it statically

to the threads. Another function is also added to the libGOMP implementation, the

gomp_iter_mogslib_next. The gomp_iter_next functions are called when a thread

finishes performing its work pool. The added function in the adapter serves the purpose
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of dynamically stealing chunks from other threads as to minimize the dynamic overhead

of the static scheduling.

The MOGSLib adapter we developed for libGOMP portrays the same logic as

the original BinLPT scheduler (PENNA et al., 2017). It has an initial static schedule

decision and a dynamic phase for stealing iteration chunks from other overloaded threads.

Moreover, our modifications to libGOMP are designed to pass control to MOGSLib sched-

ulers in contrast to calling a policy. The results is an alteration to the runtime library

that can support multiple policies with the same static and dynamic steps but different

decision algorithms. Finally, MOGSLib is compiled alongside libGOMP and requires an

alteration to the build process to include the MOGSLib include folder. Selecting the

MOGSLib schedulers in libGOMP is feasible by passing the runtime parameter to the

schedule OpenMP directive and setting the OMP_SCHEDULE environment variable to

mogslib.
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6 EXPERIMENTAL ANALYSIS

We design our experiments to uncover possible performance discrepancies be-

tween global schedulers implemented in MOGSLib and their RTS-native counterpart.

Global schedulers, regardless of their policy, must display limited mapping decision costs

as to not mitigate its performance gains. Our proposed scheduler model must cope with

this constraint while, at the same time, decouple the implementation from the RTS and

showcase portable implementations. We limit our scope to re-implement the existing poli-

cies discussed in chapter 5 and refrain from proposing novel strategies. Ultimately, the

expected result of our experiments is to achieve equivalent performance between sched-

ulers. This observation might suggest that global scheduler can be developed outside of

runtime systems context and later adjusted into the systems through libraries similar to

MOGSLib.

We validate our policy implementations in MOGSLib through unitary tests de-

veloped in the googletests (SEN, 2010) API. Therefore, both global schedulers implemen-

tations, native and MOGSLib, perform the same logic and the global schedule decisions

are identical when the inputs are the same. Whenever applicable, we employed the C++

Standard Template Library (STL) algorithms and data structures in our implementation,

which configures the sole difference in the scheduling policy design between implemen-

tations. The experiments and their results are detailed in this chapter in the following

sections.

6.1 EXECUTION PLATFORM

The execution platform for all experiments is the Ecotype cluster from the Grid’5000

distributed environment. All Charm++ tests are deployed on four nodes whereas the

OpenMP tests run over a single node. The compiler used throughout all experiments

is g++ version 7.3.0. The Charm++ RTS version is 6.9.01 and the custom libGOMP

version is publicly available on GitHub with both the original BinLPT and MOGSLib

schedulers2. Each computing node, in Ecotype, has the following specifications3:

• Processor: Intel Xeon E5-2630L v4@1.80GHz (2 CPU per node);

• Cores: 2× 10 (10 cores per CPU);

• RAM memory: 128GB DDR3;

• Network: Gigabit Ethernet interconnection @10Gbps;

• Operating System: Debian 9.

1 available at: http://charm.cs.illinois.edu/software
2 Available at: https://github.com/alexandrelimassantana/libgomp
3 Complete Specifications: https://www.grid5000.fr/mediawiki/index.php/
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6.2 BENCHMARK EXPERIMENTS

We evaluate the scheduler implementations in synthetic benchmarks to uncover

performance discrepancies between both implementation approaches. This experimental

step aims to measure the schedule decision time metric of our approach. In other

words, we aim to analyze if MOGSLib incurs in overheads in the decision procedure over

the native approaches in the Charm++ and OpenMP systems.

The libGOMP experiments are performed on a custom synthetic benchmark,

SchedCost, depicted in Algorithm 10. This benchmark performs N parallel loops to

simulate an iterative application with a single loop (starting at line 6). Each parallel

loop execution performs a dummy application behavior, the addition of two arrays and

the result recording in a third (line 8). The walltime prior to the loop execution, PI,

(line 3) and the first instruction within the loop for each thread, FIn, are recorded for

each parallel loop (lines 6 and 7). This data is used to calculate the schedule decision

cost, COST , through the difference between the minimum value among FI and LI (line

10). Finally, the total schedule overhead is achieved through the sum of COST for all N

parallel loop repetitions (line 11).

1 void schedcos t ( i n t N) {
2 f o r ( i n t i = 0 ; i < N; i++) {
3 i n t p i = TIME( ) ;
4 #pragma omp p a r a l l e l f o r
5 f o r ( i n t j = 0 ; j < N; j++) {
6 i f ( j < nthreads )
7 f i [ omp_get_thread_num ( ) ] = TIME( ) ;
8 C[ j ] = A[ j ] + B[ j ] ;
9 }

10 co s t [ i ] = MIN( f i ) - p i ;
11 ovh += cos t [ i ] ;
12 }
13 }

Algorithm 10 – Application benchmark to calculate schedule decision cost in OpenMP.

Charm++ is packaged alongside lb_test, a synthetic simulation used to test the

behavior of load balancers in different application configurations. The simulation per-

forms dummy floating point operations for a randomized amount of time on each of the

Charm++ application chares (tasks). lb_test simulates an iterative application where

iterations are interleaved with load balancing steps and every chare can be migrated.

Among other metrics, lb_test outputs the scheduling decision time for each load balanc-

ing call which can be used to calculate the total scheduling overhead in the application

execution.

We selected the parameters to the SchedCost benchmark in order to simulate

the characteristics of the LULESH parallel loops (KARLIN; KEASLER; NEELY, 2013).

LULESH is an iterative proxy hydrodynamics shock application where each iteration

contains multiple parallel loops to calculate various metrics originating from particle in-
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teractions. The application is implemented in OpenMP and MPI but, in its single-node

implementation, it is a balanced application which does not benefit from workload-aware

strategies. LULESH has parallel loops with large iteration counts and the simulation

spans over multiple steps, which causes workload-aware strategies to cause overheads in

the application execution time. As such, we parametrized our benchmark to simulate

two LULESH use cases derived from the application’s tech as worst case scenarios: (i)

937 parallel loop calls with 303 iterations and (ii) 1477 parallel loop calls with 453 itera-

tions. Each experiment is composed of 30 executions for each configuration carried out

in random order.

Experiment Min Mean Max

Small use case

Native 282.91 293.22 1437.87
MOGSLib 207.67 226.58 1404.35

Medium use case

Native 904.35 989.59 2197.92
MOGSLib 650.49 779.98 2312.36

Table 2 – BinLPT schedule decision cost in LibGOMP (microseconds).

The results of the SchedCost benchmark is depicted in the table 2. The arithmetic

mean, min and max values correspond to the time, in microseconds (us), spent by the

scheduler to map the loop iterations to the OpenMP threads in the execution platform.

Each entry in the table accounts for 28110 and 66465 data points for the small and

medium scenarios, respectively.

Figure 9 showcases the arithmetic mean of the accumulated decision time, in

milliseconds (ms), for all loop execution in the simulation. The experiments suggests

that MOGSLib performs the mapping faster, showcasing decision overhead reductions by

up to 22% when compared to the native implementation. Further testing with different

design decision when implementing the scheduler in MOGSLib points out that the use

of the C++ STL algorithms are the reason behind the performance improvements. It is

worth noting that these differences are in the scale of microseconds while the LULESH

application in this environment and same input take dozens of seconds to execute. Further

analysis on these observations are discussed in Chapter 7.

The experiments in Charm++ are carried out in a similar fashion through the

lb_test simulation. Different parameter configurations for the application were evaluated

and it was observed that most parameters could be ignored when solely analyzing the

schedule decision time. The following lb_test parameters were fixed for the experiments

to showcase a scenario where the GreedyLB workload-aware load balancer could be applied

with performance gains for different numbers of chares (work units):
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Figure 9 – Total BinLPT scheduler overhead in LibGOMP.

• min workload: 10µs

• max workload: 3000µs

• topology: Mesh2d

• PU count: 80

• iterations: 151

• lb period: 40

The experiments within the Charm++ context portray various task counts start-

ing at 800 tasks and going up to 3200 in steps of 800 with the additional scenarios of 8000

and 16000 tasks. The resulting scheduling decision cost for this experiment is displayed, in

milliseconds, along the y axis in Figure 11 for the different task count configurations along

the horizontal axis. Additionally, we showcase the linear regression of these scenarions in

Figure 11 to extrapolate the curve in our analyzed range.

Both implementations of the GreedyLB scheduler showcased quasi-linear decision

time as the number of work units increased. The MOGSLib implementation performed the

decision up to 48% faster in the larger experiment, calculating the schedule of 16000 chares

in 6.56 milliseconds. Once again, we tested the schedulers to verify the discrepancies in

the decision time and observed that, when equally implemented, both versions portray

similar decision times. This indicates that the observed discrepancies were also related to

the employment of the STL library algorithms.

In both runtime systems, MOGSLib was able to obtain a better performance
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Figure 11 – GreedyLB schedule decision cost linear in Charm++.

of molten tantalum and uranium atoms. LeanMD5 calculates the force interactions among

particles using the Lennard-Jones potential computation. The source of load imbalance

within these applications originate from neighbor count differences among particles, re-

sulting in variable calculations for each particle.

The application kernels experiments test if the observations found in the synthetic

benchmarks hold true in realistic use cases. We design these experiments to display use

cases where the evaluated schedulers can be successfully applied. For the BinLPT tests,

we recreate a subset of the experiments in (PENNA et al., 2019), a study that evaluates the

BinLPT policy. As for GreedyLB, we configure a small scale LeanMD execution in terms

of platform and input size as larger scale experiments would detriment the centralized

scheduler performance.

The LavaMD experiments are configured to decompose the 3D domain into 113

equally sized boxes. Each box contains a random number of particles generated through

an exponential distribution with γ = 0.2. The BinLPT scheduler is configured to generate

up to 80 task packs in this experiment in order to be aligned with the study we based

our cases on. The results of this experiment are portrayed in Figure 12. We analyzed

the results using parametric statistical tests and could not reject, with an interval of

confidence of 5%, that both observations originate from a normal distributions with the

5 Available at: http://charmplusplus.org/miniApps/
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same parameters. This suggests that the scheduler implementations does not affect the

overall performance of the application.
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Figure 12 – LavaMD execution time when balanced by the BinLPT scheduler.

The LeanMD application comes packed with default parameter values for test-

ing its behavior. Apart from the dimension of each box, the cells generated from the

decomposition of the 3D simulated space, most of the parameters were adjusted. We

simulate 300 discrete steps with load balancing starting at the 20th iteration and then

performing each 100 steps. Two variations for the boxes count (total simulated space) are

used to portray a small and a medium use cases with 83 and 123 boxes, respectively. The

comparison between the GreedyLB load balancer versions is portrayed in Table 3. The

table contains the arithmetic mean of the total application time (app time), the observed

standard deviation (Std) and the scheduler overhead (sched time) in seconds.

6.4 OPENMP MULTI-LOOP SUPPORT

The LibGOMP version we used in this work has the multi-loop feature enabled for

the BinLPT scheduler. The objective of this feature is to reduce the scheduler overhead by

conditionally avoiding new schedule decisions when a previous schedule can be used. We

recreate this feature outside of the runtime scope in a MOGSLib context structure derived

from the LibGOMP default context. We examine the performance costs of implementing
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Experiment App time(s) Std Sched time(s)

83 boxes

Native 32.58 0.954 0.054
MOGSLib 31.93 1.015 0.025

123 boxes

Native 191.63 3.761 0.198
MOGSLib 190.73 3.394 0.088

Table 3 – LeanMD execution time.

this feature outside of the library source code through a direct comparison using the

SchedCost application. We compare our version of the BinLPT scheduler implicitly using

this feature through the context structure with the LibGOMP version. The medium use

case parameters discussed in the schedule cost experiments in the SchedCost benchmark

are re-applied to simulate an iterative application execution. The expected behavior of

both schedulers is to calculate the schedule once and reuse it during the remaining parallel

loop calls.

Experiment Min Mean Max

Native 13.94 18.88 2216.76
MOGSLib 14.24 19.36 1992.87

Table 4 – Multi-loop support evaluation (microseconds).

The results for the multi-loop support experiments are showcased in Table 4. The

table displays the minimum, maximum and arithmetic mean time cost in microseconds

related to the loop scheduler decision making. The maximum value displayed is the first

parallel loop call where no previous schedule was available. It can be noticed that the

native version is consistently faster than the MOGSLib version. However, the time scale

presented is in microseconds and such fluctuations make negligent impact over the total

application time which often tends to be several orders of magnitude higher.
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7 CONCLUSIONS

This work discusses the current techniques for developing scheduling components

integrated to parallel solutions. In HPC environments, portability among systems is

limited to the selection of application code segments and the fine-tuning of runtime pa-

rameter configurations. We propose a discussion about implementation portability on

resource management components, specifically global schedulers integrated to runtime

systems. We leverage the viability of portability by proposing a set of specifications,

ARTful, for building and implanting schedulers in different systems. We implement a

library, MOGSLib, following the specifications using generic and object oriented program-

ming. As of now, the library serves both as a global scheduler library and development

framework focused on a bottom up development process, unitary testing and reusability

through composition.

Our experimental analysis focuses on finding performance discrepancies between

system-native schedulers and our portable version. For that matter, we select the sched-

ulers that apply workload-aware scheduling policies due to their predictable performance,

scalability and use on realistic scenarios. We employ both synthetic benchmarks and

application kernels in our analysis to simulate the scheduler use cases and leverage the

impact of our implementation. Throughout our benchmark tests, we noticed that our

schedulers can obtain up to 48% faster schedule decisions due to the use of standard

algorithm implementations from the C++ STL. Despite the gains being attributed to a

source other than our implementation, the ARTful models enables the use of the afore-

mentioned library in runtime systems without C++ support (libGOMP). However, those

gains are negligible as the application execution time is several orders of magnitude higher,

as observed in the analysis of application kernels.

The experiments suggests that it is possible to design and implement global sched-

ulers focused on portability and the expression of their requirements to the system. We

believe that the definition of abstractions and guidelines might aid developers to im-

plement global schedulers more easily on existing systems. The possibility of reusing

previously developed abstractions may also reduce the development efforts for these com-

ponents. However, we could not find metrics to measure the productivity, complexity and

portability gains, which limits our ability to discuss the benefits of our approach in these

parameters.

We also discuss how MOGSLib can incorporate experimental capabilities into a

runtime system. The design focus on mitigating the amount of alterations to the runtime

system code as to avoid the creation of multiple unofficial versions of these libraries.

Moreover, MOGSLib has proven that certain functionalities can be implemented in user-

space by allowing the use of the C++ language, workload-aware policies and multi-loop

support in libGOMP without modifications to the system other than the necessary for

supporting MOGSLib.
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We envision that in a scenario of programming model transformation and ex-

pansion, new methods to enhance the reusability of control and scheduling components

must be developed. Our technique was able to support the implementation, testing and

integration of scheduling components into runtime systems while also enabling the experi-

mental addition of features into existing industry standards. Overall, MOGSLib is a work

in progress that represents an alternative take on developing global schedulers for HPC

systems without significant overhead penalties. The library is highly modular and can

be expanded in multiple paths, specially in systems where global scheduler development

tools are lacking.

As future work, we intend to experiment with other classes of global schedulers.

Distributed strategies are particular challenging as they may employ different communi-

cation protocols and tools to decide a schedule. These features must be carefully designed

into the ARTful scheduling context and may be evaluated in multiple systems with differ-

ent machine topologies. Additionally, there is the class of dynamic schedulers, present in

OpenMP and StarPU does not directly output a global schedule and rather pushes work

units to processing elements. These schedulers may require adjustments to the ARTful

specifications as the scheduling policy components can no longer be generalized by their

output.

MOGSLib can be extended to expose more adapters to task-based programming

models like StarPU and support the creation of decentralized global schedulers. More

abstractions for incorporating popular libraries and interfaces like HWLoc (BROQUEDIS

et al., 2010) may also be studied for the construction of topology-aware policies. We

envision that our solution is best suited to scenarios where scheduling solutions are not yet

consolidated and portray little to none development support. As such, we also evaluate the

possibility of extending MOGSLib and the ARTful model to incorporate the abstractions

found in the problem of distributing the workload in heterogeneous environments.
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