
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA

CIÊNCIAS DA COMPUTAÇÃO

João Vicente Souto

An Inter-Cluster Communication Facility for Lightweight Manycore

Processors in the Nanvix OS

Florianópolis

6 de dezembro de 2019

João Vicente Souto

An Inter-Cluster Communication Facility for Lightweight
Manycore Processors in the Nanvix OS

Trabalho de Conclusão do Curso do Curso de
Graduação em Ciências da Computação do
Centro Tecnológico da Universidade Federal
de Santa Catarina como requisito para ob-
tenção do título de Bacharel em Ciências da
Computação.
Orientador: Prof. Márcio Bastos Castro, Dr.
Coorientador: Pedro Henrique Penna, Me.

Florianópolis

6 de dezembro de 2019

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Souto, João Vicente
 An Inter-Cluster Communication Facility for Lightweight
Manycore Processors in the Nanvix OS / João Vicente Souto
; orientador, Márcio Bastos Castro , coorientador, Pedro
Henrique Penna , 2019.
 92 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Ciências da Computação, Florianópolis, 2019.

 Inclui referências.

 1. Ciências da Computação. 2. Sistema Operacional
Distribuído. 3. Camada de Abstração de Hardware. 4.
Processador Lightweight Manycore. 5. Kalray MPPA-256. I. ,
Márcio Bastos Castro. II. , Pedro Henrique Penna. III.
Universidade Federal de Santa Catarina. Graduação em
Ciências da Computação. IV. Título.

João Vicente Souto

An Inter-Cluster Communication Facility for Lightweight Manycore

Processors in the Nanvix OS

Este Trabalho de Conclusão do Curso foi julgado adequado para obtenção do Título de

Bacharel em Ciências da Computação e aprovado em sua forma final pelo curso de

Graduação em Ciências da Computação.

Florianópolis, 6 de dezembro de 2019.

Prof. José Francisco Danilo De Guadalupe Correa Fletes, Me.

Coordenador do Curso

Banca Examinadora:

Prof. Márcio Bastos Castro, Dr.

Orientador

Universidade Federal de Santa Catarina

Pedro Henrique Penna, Me.

Coorientador

Université de Grenoble Alpes

Prof. Rômulo Silva de Oliveira, Dr.

Avaliador

Universidade Federal de Santa Catarina

Prof. Odorico Machado Mendizabal, Dr.

Avaliador

Universidade Federal de Santa Catarina

This work is dedicated to my colleagues, my siblings, and

my dear parents.

ACKNOWLEDGEMENTS

I thank all who contributed in any way to the accomplishment of this undergrad-

uate dissertation. In particular, I thank my advisor, Márcio Bastos Castro, my co-advisor,

Pedro Henrique Penna, and the colleagues of the research group who were directly involved

in the present work. I also thank the National Council for Scientific and Technological

Development (CNPq) for granting the Scientific Initiation Scholarship (PIBIC), whose

related activities fostered the development of this work.

If you wish to make an apple pie from scratch,
you must first invent the universe.

(SAGAN, C., 1980)

RESUMO

Em conjunto com a maior escalabilidade e eficiência energética, os processadores lightweight
manycores trouxeram um novo conjunto de desafios no desenvolvimento de software pro-
venientes de suas particularidades arquiteturais. Neste contexto, sistemas operacionais
tornam o desenvolvimento de aplicações menos onerosos, menos suscetíveis a erros e mais
eficientes. A camada de abstração provida pelos sistemas operacionais suprime as carac-
terísticas do hardware sob uma perspectiva simplificada e eficaz. No entanto, parte dos
desafios de desenvolvimento encontrados em lightweight manycores deriva diretamente de
runtimes e sistemas operacionais existentes, que não lidam completamente com a com-
plexidade arquitetural desses processadores. Acreditamos que sistemas operacionais para
a próxima geração de lightweight manycores necessitam ser repensados a partir de seus
conceitos básicos considerando as severas restrições arquiteturais. Em particular, as abs-
trações de comunicação desempenham um papel crucial na escalabilidade e desempenho
das aplicações devido à natureza distribuída dos manycores. O objetivo deste traba-
lho é propor mecanismos de comunicação entre clusters para o processador manycore
emergente MPPA-256. Estes mecanismos fazem parte de uma Camada de Abstração de
Hardware (HAL) genérica e flexível para lightweight manycores que lida diretamente com
os principais problemas encontrados no projeto de um sistema operacional para esses pro-
cessadores. Sob estes mecanismos, serviços de comunicação também serão propostos para
um sistema operacional baseado no modelo microkernel, que busca fornecer um esqueleto
básico para as abstrações de comunicação. As contribuições deste trabalho estão inseridas
em um contexto de pesquisa mais amplo, que procura investigar a criação de um sistema
operacional distribuído baseado em uma abordagem multikernel, denominado Nanvix OS.
O Nanvix OS se concentrará em questões de programabilidade e portabilidade através de
um sistema operacional compatível com o padrão POSIX para lightweight manycore. Os
resultados mostram como algoritmos distribuídos conhecidos podem ser eficientemente
suportados pelo Nanvix OS e incentivam melhorias providas pelo uso adequado dos ace-
leradores de Acesso Direto à Memória (DMA).

Palavras-chave: HAL. Sistema Operacional Distribuído. Lightweight Manycore. Kalray

MPPA-256.

ABSTRACT

Jointly with further scalability and energy efficiency, lightweight manycores brought a
new set of challenges in software development coming from their architectural particular-
ities. In this context, Operating Systems (OSs) make application development less costly,
less error-prone, and more efficient. The abstraction layer provided by OSs suppresses
hardware characteristics from a simplified and productive perspective. However, part of
the development challenges encountered in lightweight manycores stems from the existing
runtimes and OSs, which do not entirely address the complexity of these processors. We
believe that OSs for the next generation of lightweight manycores must be redesigned
from scratch to cope with their tight architectural constraints. In particular, commu-
nication abstractions play a crucial role in application scalability and performance due
to the distributed nature of manycores. The purpose of this undergraduate dissertation
is to propose an inter-cluster communication facility for the emerging manycore MPPA-
256 processor. This facility is part of a generic and flexible Hardware Abstraction Layer
(HAL) that deals directly with the key issues encountered in designing an OS for these
processors. Above this facility, communication services will also be proposed for an OS
based on the microkernel model, which seeks to provide a basic framework for communi-
cation abstractions. The contributions of this undergraduate dissertation are embedded
in a broader research context that aims to investigate the creation of a distributed OS
based on a multikernel approach, called Nanvix OS. Nanvix OS focuses on programma-
bility and portability issues for manycores through a POSIX-compliant OS. The results
present how well known distributed algorithms can be efficiently supported by Nanvix
OS and encourage improvements provided by the proper use of Direct Memory Access
(DMA) accelerators.

Keywords: HAL. Distributed Operating System. Lightweight Manycore. Kalray MPPA-

256.

LIST OF FIGURES

Figure 1 – Multiprocessor evolution. 28

Figure 2 – Von Neumann architecture model. 31

Figure 3 – Two bus-based UMA multiprocessor examples. 32

Figure 4 – NUMA multiprocessor example. 33

Figure 5 – Flynn’s taxonomy. 34

Figure 6 – Replicated OS model. 35

Figure 7 – Master-Slave OS model. 35

Figure 8 – Symmetric OS model. 36

Figure 9 – Network topologies examples. 37

Figure 10 – Simple Multicomputer Example. 38

Figure 11 – Synchronous and asynchronous calls. 39

Figure 12 – Architectural overview of the Kalray MPPA-256 processor. 40

Figure 13 – Conceptual goals of the Nanvix OS. 42

Figure 14 – Structural overview of the Nanvix HAL. 43

Figure 15 – Concept Structural overview of the Nanvix Microkernel. 44

Figure 16 – Execution example of the Nanvix Microkernel. 45

Figure 17 – Possible configurations on Nanvix Multikernel. 46

Figure 18 – POSIX Compliance example of Nanvix Multikernel. 47

Figure 19 – Synchronization abstraction example. 57

Figure 20 – Mailbox abstraction concept. 60

Figure 21 – Portal abstraction concept. 62

Figure 22 – Collective Communication Routines. 70

Figure 23 – Throughput of the Portal. 72

Figure 24 – Latency of the Mailbox. 73

Figure B-1–Directory tree with developed source codes in Microkernel-Benchmarks

repository. 88

Figure B-2–Directory tree with developed source codes in LibNanvix repository. . . 89

Figure B-3–Directory tree with developed source codes in Microkernel repository. . 90

Figure B-4–Directory tree with developed source codes in HAL repository. 91

LIST OF TABLES

Table 1 – NoC Interface Identification. 55

Table 2 – Partitions of NoC resources by abstraction. 55

Table 3 – Micro-benchmark parameters for experiments. 71

LIST OF LISTINGS

Listing 1 – Nanvix HAL: Sync interface for receiver node. 58

Listing 2 – Nanvix HAL: Sync interface for sender node. 59

Listing 3 – Nanvix HAL: mailbox interface for receiver node. 61

Listing 4 – Nanvix HAL: Mailbox interface for sender node. 62

Listing 5 – Nanvix HAL: Portal interface for receiver node. 63

Listing 6 – Nanvix HAL: Portal interface for sender node. 64

Listing B-1–Bash script for regression testing on the MPPA-256 platform. 92

LIST OF ALGORITHMS

Algorithm 1 – Simplified NoC handler algorithm. 54

Algorithm 2 – Simplified lazy transfer algorithm. 57

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface. 50

C-NoC Control Network-on-Chip. 41, 53, 54, 55, 58, 59, 60, 62, 63, 64

CMP Chip Multiprocessor. 33

COW Copy-On-Write. 39

CPU Central Processing Unit. 31, 32, 33, 34, 35, 37, 38, 39, 49

D-NoC Data Network-on-Chip. 41, 53, 54, 55, 60, 61, 62, 63, 64

DMA Direct Memory Access. 13, 38, 41, 43, 49, 53, 54, 55, 56, 58, 63, 73, 75

DRAM Dynamic Random Access Memory. 41

FLOPS Floating-point Operations per Second.. .27

FPGA Field Programmable Gate Array. 49

GPU Graphics Processing Unit. 33

HAL Hardware Abstraction Layer.13, 29, 30, 42, 43, 44, 51, 53, 54, 55, 56, 58, 60,

65, 66, 75, 89, 90

HPC High-Performance Computing. 50

IEEE Institute of Electrical and Electronics Engineers. 41

IO Input/Output. 31, 35, 36, 43

IOCTL Input/Output Control. 66, 69

IPC Inter-Process Communication. .64

MIMD Multiple Instruction Multiple Data. 27, 33, 40

MISD Multiple Instruction Single Data. 33

MMIO Memory-Mapped I/O.. .43

MMU Memory Management Unit. 31, 40, 43, 49

MOOSCA Manycore Operating System for Safety-Critical Application. 50

mOS multi Operating System. 50

MPI Message Passing Interface. 30, 69, 70, 75

MPSoC Multiprocessor System-on-Chip. 33

NoC Network-on-Chip. 27, 28, 34, 41, 43, 49, 50, 51, 53, 54, 55, 60, 62, 90

NUMA Non-Uniform Memory Access. 32, 33, 50, 51

OS Operating System. . . 13, 29, 30, 31, 32, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45,

46, 49, 50, 51, 53, 54, 56, 64, 65, 66, 72, 75, 87, 90

PE Processing Element. 40, 41, 69

PMCA Programmable Manycore Accelerator. 49

PMIO Port-Mapped I/O. 43

POSIX Portable Operating System Interface. 41, 42, 46, 47, 51, 53, 56, 59, 62

PUC Minas Pontifical Catholic University of Minas Gerais. 29

QoS Quality of Service. .53, 75

RAB Remapping Address Block. 49

RAM Random Access Memory. 31, 33, 36, 37

RISC Reduced Instruction Set Computer. 49

RM Resource Manager.. .40, 41, 53

RMem Remote Memory. 47, 53

SHM POSIX Shared Memory. 46, 47, 53

SIMD Single Instruction Multiple Data. 33

SISD Single Instruction Single Data. 33

SMP Symmetric Multi-Processing. 35

SPM Software-managed Scratchpad Memory. 49

SRAM Static Random Access Memory. 41

TLB Translation Lookaside Buffer. 38, 40, 43

UFSC Federal University of Santa Catarina.. .29

UGA University of Grenoble Alpes. 29

UMA Uniform Memory Access. 32, 33

W Watts. 27

CONTENTS

1 INTRODUCTION . 27

1.1 GOALS . 29

1.1.1 Main Goal . 29

1.1.2 Specific Goals . 29

1.2 ORGANIZATION OF THE WORK 30

2 BACKGROUND . 31

2.1 MULTIPROCESSORS . 31

2.1.1 Multiprocessor Hardware . 32

2.1.2 Multiprocessor Operating Systems 34

2.2 MULTICOMPUTERS . 36

2.2.1 Multicomputer Hardware . 36

2.2.2 Low-Level Communication Software 37

2.2.3 User-Level Communication Software 38

2.3 MPPA-256 LIGHTWEIGHT MANYCORE PROCESSOR 40

2.4 NANVIX: AN OPERATING SYSTEM FOR LIGHTWEIGHT MANY-

CORES . 41

2.4.1 Nanvix Hardware Abstract Layer (HAL) 42

2.4.2 Nanvix Microkernel . 44

2.4.3 Nanvix Multikernel . 45

3 RELATED WORK . 49

3.1 LIGHTWEIGHT MANYCORE PROCESSORS 49

3.2 OPERATING SYSTEMS FOR MANYCORES 50

3.3 DISCUSSION . 51

4 DEVELOPMENT . 53

4.1 LOW-LEVEL COMMUNICATION 53

4.1.1 Kalray MPPA-256 Hardware Resources 53

4.1.2 General Concepts of Communication Abstractions 56

4.1.3 Sync Abstraction . 56

4.1.4 Mailbox Abstraction . 59

4.1.5 Portal Abstraction . 62

4.2 USER-LEVEL COMMUNICATION 64

4.2.1 Impacts of the Master-Slave Model 65

4.2.2 Protection and Management . 66

4.2.3 Multiplexing . 66

4.2.4 Input/Output Control . 66

26

4.2.5 Validation and Correctness Tests 67

5 EXPERIMENTS . 69

5.1 EVALUATION METHODOLOGY . 69

5.1.1 Micro-benchmarks . 69

5.1.2 Experimental Design . 71

5.2 EXPERIMENTAL RESULTS . 71

5.2.1 Portal Throughput Analysis . 71

5.2.2 Mailbox Latency Analysis . 72

6 CONCLUSIONS . 75

BIBLIOGRAPHY . 77

APPENDIX A – SCIENTIFIC ARTICLE 81

APPENDIX B – SOURCE CODE 87

B.1 NANVIX PROJECT STRUCTURE 87

B.1.1 Microkernel-Benchmarks Repository 87

B.1.2 LibNanvix Repository . 88

B.1.3 Microkernel Repository . 89

B.1.4 Hardware Abstraction Layer (HAL) Repository 89

B.2 REGRESSION TESTING EXAMPLE 92

27

1 INTRODUCTION

For several years, the increase in the frequency of processors was employed as the

main technique for achieving performance improvements. However, as a side effect, the

temperature of processors started rising to high values, thus imposing a physical limit to

the aforementioned technique. Alternatively, the constant improvement of semiconductor

technology helped to mitigate the impact of this problem, allowing the industry to build

more powerful processors with the same frequency. Therefore, knowing the frequency

barrier and the imminent end of Moore’s Law (MOORE, 1965), the academy and industry

began to research and invest in alternatives to keep increasing the processing power of

computer systems.

Figure 1 illustrates the paradigm shift that processors have gone through to

the present day. From mid-2000, the frequency of processors tended to stagnate. The

steady increase in transistors in the same chip area and the vast diversity of trade-offs

to improve single-thread performance has softened the frequency impact on processors.

Some significant trade-offs are different types of instruction sets, instruction parallelism,

out-of-order processing techniques, branch prediction techniques, and various memory

hierarchies. Then, in mid-2005, the performance of computer systems was pushed even

further by increasing the number of processing cores in a single die. These architectures,

called multicores, allowed the continuous rise of the computing performance.

The ever-increasing number of transistors and cores in a chip quickly led to the

advent of manycores. Notwithstanding, the line between multicores and manycores is very

tenuous. Some researchers argue that in the latter architectures, losing a core it will not

significantly impact the performance of the platform. A system is classified as manycore

when there is a need for distributed memory and on-chip networking (FREITAS, 2009).

Yet another classification for manycores is based on their ratio between processing

speed, measured by the number of Floating-point Operations per Second (FLOPS), and

power consumption, in Watts (W). Figure 1 pictures that even as the number of cores

increasing, typical power has not grown uncontrollably. For instance, to achieve exascale

(1018 FLOPS), the US Department of Defense issued a report stipulating the energy

efficiency of a supercomputer should be around 50 GFLOPS/W (KOGGE et al., 2008).

To cope with this energy constraint, a new class of parallel processors, called lightweight

manycores, emerged to provide high parallelism with low power consumption. Lightweight

manycores differ from traditional large-scale multicores and manycores in several points:

• They integrate thousands of low-power cores in a single die organized in clusters;

• They are designed to cope with Multiple Instruction Multiple Data (MIMD) work-

loads;

• They rely on a high-bandwidth Network-on-Chip (NoC) for fast and reliable message-

passing communication;

28

Figure 1 – Multiprocessor evolution.
M

e
tr

ic

Number of
Transistors
(in thousands)

(in SpecINT x 10³)

(in MHz)

(in Watts)

Source: Adapted from Rupp (2018).

• They have constrained memory systems; and

• They frequently feature a heterogeneous configuration.

Some industry-successful examples of lightweight manycores are the Kalray MPPA-

256 (DINECHIN et al., 2013); the Adapteva Epiphany (OLOFSSON; NORDSTROM;

UL-ABDIN, 2014); and the Sunway SW26010 (ZHENG et al., 2015). Together with su-

perior performance scalability and energy efficiency, lightweight manycores brought a new

set of challenges in software development coming from their architectural particularities.

More precisely, these introduced the following difficulties:

• Hybrid programming model: due to the parallel and distributed nature of the archi-

tecture, engineers are frequently required to adopt a message-passing programming

model to deal with the presence of rich NoCs (KELLY; GARDNER; KYO, 2013)

that interconnects clusters and a shared-memory model inside the cluster;

• Missing hardware support for cache coherency: to reduce power consumption, theses

processors do not feature cache coherency, which in turn forces programmers to

handle it explicitly in software level and frequently calls out for a redesign in their

applications (FRANCESQUINI et al., 2015);

• Constrained memory system: the frequent presence of multiple physical address

spaces and small local memories require data tiling and prefetching to be handled

by the software (CASTRO et al., 2016);

• Heterogeneous configuration: the different programmable components on lightweight

manycores turns the actual deployment of applications in a complex task (BAR-

BALACE et al., 2015).

29

Part of these challenges derives from existing runtimes and Operating Systems

(OSs). On the one hand, runtimes do not hide the characteristics of hardware making

software development more challenging and non-portable, e.g., they neither allow direct

access to non-local data, nor the manipulation of them in a transparent way. Thus, fun-

damental OS mechanisms, such as core multiplexing, core partitioning, and process and

data migration, may not be addressed. On the other hand, the complicated portability

and scalability of traditional OSs with monolithic kernels, which were designed to homo-

geneous hardware, is leading to alternative OS designs (BAUMANN et al., 2009; KLUGE;

GERDES; UNGERER, 2014; NIGHTINGALE et al., 2009; RHODEN et al., 2011).

We believe that OSs for the next-generation of lightweight manycores must be

redesigned from scratch to cope with their tight architectural constraints. Based on this

idea, a new fully-featured distributed OS based on a multikernel approach (BAUMANN

et al., 2009) is under investigations (PENNA et al., 2017; PENNA et al., 2017; PENNA

et al., 2019). The Nanvix Multikernel features a generic and flexible Hardware Abstrac-

tion Layer (HAL) for lightweight manycores that addresses the key issues encountered

in the development for these processors. On top of the Nanvix HAL, a microkernel is

being designed and implemented to provide the bare bones of the most important system

abstractions.

1.1 GOALS

Based on the aforementioned motivations, the primary and specific goals of this

work are detailed next.

1.1.1 Main Goal

The main goal of this undergraduate dissertation is to propose an Inter-Cluster

Communication Module to the Nanvix HAL and port it to the Kalray MPPA-256 many-

core processor (DINECHIN et al., 2013). This module exposes the essential abstractions

that allow overlying layers to create richer communication services. Using this module,

we also propose Inter-Cluster Communication Services to the Nanvix Microkernel. This

work is part of the collaborative project between Federal University of Santa Catarina

(UFSC), Pontifical Catholic University of Minas Gerais (PUC Minas), and University of

Grenoble Alpes (UGA) to develop an OS for lightweight manycore platforms.

1.1.2 Specific Goals

• Definition and proposal of an Inter-Cluster Communication Interface for lightweight

manycores;

30

• Implementation of the proposed interface in the Nanvix HAL for the Kalray MPPA-

256 lightweight manycore processor;

• Integration of the Nanvix HAL interface with the Nanvix Microkernel;

• Performance evaluation of Nanvix Microkernel implementation using synthetic micro-

benchmarks that reproduce the collective communication routines of the Message

Passing Interface (MPI) programming model.

1.2 ORGANIZATION OF THE WORK

The remainder of this work is organized as follows. In Chapter 2, we present

a background on OS and communication design for multicores and multicomputers, the

MPPA-256 lightweight manycore processor and the Nanvix project. In Chapter 3, we

discuss the principal related work. In Chapter 4, we discuss the design and implemen-

tation of the inter-cluster communication facility. In Chapter 5, we detail the evaluation

methodology that we adopted and analyze our experimental results. Finally, in Chapter 6,

we draw our conclusions and future work.

31

2 BACKGROUND

In the early days of electronic digital computing, John Von Neumann proposed

an architectural model for computers to be easily programmable (NEUMANN, 1945).

Figure 2 pictures the model scheme. The Central Processing Unit (CPU), also called

core, loads instructions and data from an Memory Management Unit (MMU), dealing with

inputs and generating outputs from/to Input/Output (IO) devices. Modern processors

still follow this model, but some components and behaviors are specialized or replicated

to increase performance.

According to Tanenbaum & Bos (2014), there are three models of modern multiple

processor architectures. A shared-memory multiprocessor, a message-passing multicom-

puter, and a wide area distributed system. In this chapter, we present the background

of multiple processor systems from a hardware and software perspectives. Specifically,

Section 2.1 and Section 2.2 address details about shared-memory multiprocessors and

message-passing multicomputers, respectively. Then, Section 2.3 presents the Kalray

MPPA-256 processor. Finally, Section 2.4 shows an overview of Nanvix OS and the three

levels of abstraction designed for lightweight manycores processors.

Figure 2 – Von Neumann architecture model.

Memory Unit

Control Unit

Arithmetic/Logic Unit

Central Processing Unit

Input

Device

Output

Device

Source: Adapted from Tanenbaum & Bos (2014).

2.1 MULTIPROCESSORS

A shared-memory multiprocessor is a computer system in which two or more

CPUs share full access to the same Random Access Memory (RAM) (TANENBAUM;

BOS, 2014). The ability to run execution streams in parallel intensifies the concurrency

issues that already existed in multi-tasking single-core processors. The competition of

different cores for shared resources may result in inconsistent outputs or even in an incon-

sistent OS state. For instance, this inconsistency occurs when a thread writes a value to a

global variable and reads a different one. Thus, to solve this problem, special instructions

32

are required to enable synchronization between threads. Moreover, some architectures

integrate heterogeneous cores introducing portability and programmability problems too.

So, low-level software, such as OS kernels and runtimes, needs to handle those issues and

provide management systems to user-level.

2.1.1 Multiprocessor Hardware

Multiprocessors can be usually classified according to memory access and work-

flow properties. In the first place, the access time to different memory addresses split

multiprocessors into two groups. On the one hand, the group of systems that can read

a memory word as fast as every other memory word are called Uniform Memory Ac-

cess (UMA) multiprocessors. On the other hand, Non-Uniform Memory Access (NUMA)

multiprocessors do not have this property.

The first UMA multiprocessors were bus-based architectures where the CPU waits

for the bus channel to become free to perform a memory access, as illustrated in Fig-

ure 3(a). When the number of cores scale, the bus traffic becomes a bottleneck of the

system. To solve this problem, a small but fast memory level, called cache, is added

to each CPU, as depicted in Figure 3(b). The cache allowed successive readings to be

resolved locally, reducing traffic to the main memory. However, many problems of in-

consistency and ordering of operations on memory arose with the advent of caches. For

instance, when a write operation modifies a memory address in a particular cache, this

change must be notified to all other caches. Equally important, it is necessary to en-

sure a specific order in the concurrent operations on a given address through different

caches. The protocols that guarantee these properties are called cache-coherence proto-

cols (TANENBAUM; BOS, 2014).

Nevertheless, the number of cores in UMA multiprocessors are limited to a few

dozens of CPUs. NUMA multiprocessors provide much more scalability by employing a

single address space visible to all CPUs through an interconnection network, as shown

in Figure 4. The network is used to interconnect several memory blocks (also known as

local memories) into a single address space, allowing hundreds of cores to communicate

Figure 3 – Two bus-based UMA multiprocessor examples.

(a) Without caching.

CPU CPU
Shared
Memory

Bus

(b) With caching.

CPU CPU Shared
Memory

Bus

Cache Cache

Source: Adapted from Tanenbaum & Bos (2014).

33

Figure 4 – NUMA multiprocessor example.

CPU CPU Local
Memory

Local Bus

Cache Cache

CPU CPU Local
Memory

Local Bus

Cache Cache

Interconnection Network

...

Node 1 Node N

Source: Adapted from Tanenbaum & Bos (2014).

more efficiently. The side effect is that the interconnection network affects the latency

observed by the processors to access the main memory, because the memory access time

will depend on the memory location relative to the processor, which could be local or

remote. The single address space provided by NUMA multiprocessors allows parallel

programs that were originally developed for UMA processors to run without any source

code changes. However, these applications usually achieve sub-optimal performance on

NUMA multiprocessors, because there were not optimized to take into account local and

remote memory accesses.

In the second place, the workflow classification proposed by Flynn (1972), split

multiprocessors architecture based on the number of concurrent instruction and data

streams available, as depicted in Figure 5. First, the most straightforward class, Single

Instruction Single Data (SISD) describes a sequential machine which exploits no paral-

lelism in either the instruction or data streams, like older uniprocessor machines. Second,

Single Instruction Multiple Data (SIMD) uses multiple functional units to replicate and

operate a single instruction over multiples different data streams, like Graphics Processing

Unit (GPU). Third, the most uncommon class, Multiple Instruction Single Data (MISD)

describe multiprocessors that apply multiple instructions streams over one data stream.

Systems that need fault tolerance use theses multiprocessors, like modern flight control

systems. Finally, a Multiple Instruction Multiple Data (MIMD) architecture has multiple

processors simultaneously executing different instruction on different data, like modern

processors from Intel.

Currently, two categories of multiprocessors attract attention, the Chip Multi-

processor (CMP) and Multiprocessor System-on-Chip (MPSoC). CMPs are commercial

multicores, which follow a symmetric architecture, integrating two or more identical cores

into a single die. They can have private or shared cache levels, and always share access

to the RAM. Alternatively, MPSoCs are designed with an asymmetric architecture, have

in addition to the main cores, specialized CPUs in particular functions, e.g., audio and

video encoders, encryption, becoming truly complete computer systems on a single chip.

All these cores are linked to each other by an on-chip network-based communication sub-

34

Figure 5 – Flynn’s taxonomy.

(a) Single Instruction Single Data.

Instruction Pool

D
a

ta
 P

o
o

l

CPU

SISD

(b) Single Instruction Multiple Data.

Instruction PoolSIMD

D
a

ta
 P

o
o

l

CPU

CPU

(c) Multiple Instruction Single Data.

Instruction PoolMISD

D
a

ta
 P

o
o

l

CPU CPU

(d) Multiple Instruction Multiple Data.

Instruction PoolMIMD

D
a

ta
 P

o
o

l

CPU

CPU CPU

CPU

Source: Adapted from Wikipedia (2019).

system, called NoC. The NoC improves scalability and power consumption compared to

other communication subsystem designs.

2.1.2 Multiprocessor Operating Systems

OSs are a fundamental part of a computer system. They act as an intermediary

between users and hardware, with the purpose to provide an environment in which users

can run programs in a conveniently and efficiently manner (SILBERSCHATZ; GALVIN;

GAGNE, 2012). Many OS approaches exist in multiprocessor systems. In particular, three

of them express accurately the difficulties of developing OSs targeting the concurrency

issues existing in such systems. Those models are called Replicated, Master-Slave, and

Symmetric OS.

The Replicated Model is the simplest way to develop an OS for a parallel archi-

tecture. It only needs to replicate all the internal OS structures for each core. Figure 6

illustrates how this model allocates fixed memory spaces between the cores, giving each

of them its private OS. The system calls are performed by the calling CPU, avoiding

concurrency issues. Also, a producer-consumer model is sufficient for two different CPUs

to communicate.

35

Figure 6 – Replicated OS model.

CPU 1 CPU 2

Data 1

Data 2

Bus

Private
OS

Private
OS

I/O
Devices

Memory

OS Code

Source: Adapted from Tanenbaum & Bos (2014).

Figure 7 – Master-Slave OS model.

CPU 1 CPU 2

User

Bus

I/O
Devices

Memory

Master Slave
runs user

processes OS
runs

OS

Source: Adapted from Tanenbaum & Bos (2014).

This model is still better than having separate computers. Nevertheless, the

application of this model must first assess three aspects (TANENBAUM; BOS, 2014).

First, since each CPU has its own process and page tables, it is impossible to optimize

the use of resources. For instance, if many of processes are waiting for use an overloaded

CPU, it is impossible to migrate them to an available CPU. Second, operations with

IO devices can introduce inconsistency problems such as the same disk block operated

by different CPUs. Finally, replication of the internal OS structures makes this model

impractical for systems with memory constraints.

The Master-Slave model began to attract attention with the return of processors

with no cache coherence. As Figure 7 pictures, there is only one copy of the internal OS

structures, and they all belong to a single CPU, called master. In this way, all system

calls performed by a worker CPU, called slave, are redirected to the master. With these

changes, this model solves the problems of the previous model by using only one copy of

the data structures. For illustration, processes and memory pages can be scheduled and

distributed dynamically to any CPUs. However, when adopting a centralized approach,

the master can become the bottleneck of the system if it can not handle the number of

the incoming requests.

Finally, the Symmetric model, called Symmetric Multi-Processing (SMP), elim-

inates the centralization problem of the foregoing model, as illustrated in Figure 8. So,

there is still only one copy of the OS structures but it is shared in memory. When a

CPU issues a system call, it loads the structures and operates on them. Consequently,

processes and memory pages also continue to be dynamically balanced. The difficulties

introduced by this model lie in concurrency for OS structures. Depending on how the

critical regions are managed, the performance of the system may be equivalent to the

Master-Slave model. So the hardest part is breaking the OS into critical regions that will

run on different CPUs, where one core does not affect the execution of another or fall into

a deadlock (TANENBAUM; BOS, 2014). Besides, if the hardware does not support cache

coherence, the process of invalidating the cache may also introduce serious performance

problems in OSs of this type.

As it can be noted, the software is always lagging behind the constant hardware

36

Figure 8 – Symmetric OS model.

CPU 1 CPU 2

User

Bus

I/O
Devices

Memory

Runs
User and

OS OS

Runs
User and

OS

Locks

Source: Adapted from Tanenbaum & Bos (2014).

advances. Many solutions may work very well in specific contexts but should be chosen

with care. In some cases, in order to extract the maximum performance from a system,

it will be necessary to redesign the whole software stack from scratch.

2.2 MULTICOMPUTERS

Increasing the number of cores and still providing a shared memory in a sin-

gle die is very expensive and challenging. However, it is more simple and cheap to

interconnect more straightforward computers in a high-speed network. The result is a

clustered architecture. Despite the problem of developing networks and high-speed in-

terfaces for communication of the nodes, it is analogous to the problem of providing a

shared memory in multiprocessors. Nevertheless, the expected communication times will

be in the microseconds, as opposed to nanoseconds of the multiprocessors, making things

simpler (TANENBAUM; BOS, 2014).

2.2.1 Multicomputer Hardware

A multicomputer node can be considered as an elementary computer, with one

or more multiprocessors, local RAM and IO devices. In many cases, there is no need for

monitors or keyboards, only the network interface. In this way, it is possible to integrate

hundreds or even thousands of nodes providing the vision of a single computer.

A switch set is organized into different topologies to interconnect the nodes of

a multicomputer. As illustrated in Figure 9, there are a variety of topologies with their

own characteristics. For instance, commercial multicomputer usually uses bi-dimensional

topologies such as grid or mesh because they present regular behavior and can scale easily.

When the goal is to provide higher fault tolerance, in addition to the smaller path between

two points, the torus variant implement connections between the extreme points of the

grid. Even multi-dimensional topologies can be used, all depending on the characteristics

expected from the network.

There are two types of switching schemes in the multicomputer network. The

37

Figure 9 – Network topologies examples.

(a) Star. (b) Ring. (c) Grid.

(d) Torus. (e) Grid 3D.

Node Switch

Source: Adapted from Tanenbaum & Bos (2014).

store-and-forward packet switching scheme breaks the message into fixed-size packets.

The packets are copied and moved between the switches following a routing algorithm

until they reach the destination. Although flexible and efficient, this scenario can generate

a variable latency in packet delivery. The other scheme, called circuit switching, performs

a resource allocation protocol through all path from source to the destination. This

protocol ensures a steady communication stream, although the slow start and possible

sub-utilization of the resources.

2.2.2 Low-Level Communication Software

Multicomputer nodes are interconnected to each other through network inter-

faces. Because these boards are built and connected to CPUs and RAM, they have

substantial impacts on system performance and OS design. Virtually, interfaces have

enough RAM space to receive/send packets. If this address space is actually in main

memory, we fall into the same problem of multiprocessors in the struggle for the use of

the bus channel. Thus, in general, network cards have a dedicated memory so as not to

generate bottlenecks in access to main memory, as illustrated in Figure 10.

However, excessive packet copying can degrade the performance of the system.

In an ideal scenario, four end-to-end copies would be needed: (i) from the RAM of the

sender to the interface memory; (ii) from the interface to the network; (iii) from the

network to the memory of the target interface, and, finally, (iv) to the RAM of the

38

Figure 10 – Simple Multicomputer Example.

CPU

Network
InterfaceMain

RAM

RAM

Internal
Switch CPU

Network
Interface Main

RAM

RAM

Internal

Node 1 Node 2

...

Source: Adapted from Tanenbaum & Bos (2014).

recipient. Notwithstanding, the number of copies may increase further, depending on

how the OS implements communication services on available hardware. For instance,

mapping the interface into the kernel address space rather than the user-space, an extra

copy to an internal kernel buffer is required. Thus, for performance reasons, modern

systems already map the interfaces to user-space address even as new concurrency issues

arise over communication resources.

Processors may also have one or more CPUs specialized in communication pro-

cedures, called Direct Memory Access (DMA). DMAs can make copies between system

memories, send/receive packets without the main CPUs intervention. This reduces con-

siderably wasted cycles due to network interfaces communication and/or main memory

access bottlenecks. However, such intermediate copies lead to overhead on system struc-

tures, such as cache, Translation Lookaside Buffer (TLB), or page management. Further-

more, this introduces concurrency issues in the interaction between CPUs and existing

DMA channels.

2.2.3 User-Level Communication Software

The low-level mechanisms discussed above allow cores on different computers to

communicate through the messages exchange by send/receive primitives. However, it

is still the responsibility of the user to define the required parameters to perform such

operations. To send a message, one must inform the localization of the message, its size,

and the identifier of the receiving interface. On the receiver side, the user must configure

the interface with the location of sufficient memory space to receive the incoming message.

Figure 11 illustrates the two approaches to implement these primitives, either

through blocking or non-blocking calls. Blocking calls, called synchronous calls, block the

requesting CPU until complete the procedure. Non-blocking calls, called asynchronous

calls, return control to the CPU while the procedure is still in progress. Although asyn-

chronous calls provide better performance than synchronous ones, they introduce some

disadvantages where the sender/receiver cannot use the message buffer before the opera-

tion is complete. According to Tanenbaum (TANENBAUM; BOS, 2014), there are four

ways to implement a send primitive:

39

Figure 11 – Synchronous and asynchronous calls.

(a) Synchronous call on sender node.

Sender running

Trap to kernel,
sender blocked

Return from kernel,
sender released

Sender running

Transfers
the message

Configures
parameters

(b) Asynchronous call on sender node.

Sender running

Trap to kernel,
sender blocked

Return from kernel,
sender released

Sender running

Transfers
the message

Configures
parameters

Notify completion

Source: Adapted from Tanenbaum & Bos (2014).

• Blocking sending: CPU hibernates or schedules another process, while the message

is transmitted;

• Non-blocking sending with copying: performs an extra copy of the message to a

kernel buffer, degrading performance;

• Non-blocking sending with interrupt: notifies the CPU when the send finishes, where

the buffer must remain untouchable, make more challenging software programming;

• Copy-On-Write (COW): management of buffers to make an extra copy only when

needed, but can copy unnecessarily.

Analogously, there are other four forms to implement a receive primitive:

• Blocking receive: CPU hibernates or schedules another process until a message is

received;

• Non-Blocking receive with messages pool: CPU creates a buffer to store incoming

messages, then consumes from it when there is some message available, requiring

synchronization;

• Non-Blocking receive with Pop-up Threads: creates a specific thread upon receiving

a message to perform the necessary operations, but consumes resource for creating

and destroying the thread;

• Non-Blocking receive with interrupt handlers: the receiver is interrupted to execute

a handler when receiving a message, resulting in a better performance than creating

a thread but makes programming more difficult.

40

Some of the implementation approaches may be hardware dependent. However,

choosing the ideal approach is still the responsibility of the OS designer. Even so, the

distributed nature of multicomputers forces a message-passing strategy regardless of what

the hardware has to offer.

2.3 MPPA-256 LIGHTWEIGHT MANYCORE PROCESSOR

The lightweight manycores class features processors that have a vast number

of cores and endeavor to be energy efficient. In general, they no longer provide global

memory and work with distributed memory, and the communication among cores must

be made explicitly through message exchanges. The Kalray MPPA-256 fits this processor

profile.

Specifically, Kalray MPPA-256 is a high-performance, lightweight multicore pro-

cessor developed by the French company Kalray. Developed to handle MIMD workloads,

Kalray MPPA-256 mixes features of multiprocessors and multicomputers on a single chip.

Precisely, the coordination of cores within a cluster utilizes multiprocessor concepts and

inter-cluster communication employs multicomputer concepts.

Figure 12 illustrates the version of Kalray MPPA-256 architecture used, called

Bostan. It has 256 general-purpose cores and 32 firmware cores, called Processing El-

ements (PEs) and Resource Managers (RMs), respectively. The processor use 28 mm

CMOS technology and all cores run at 500 MHz. Besides, all cores have caches and

MMUs with software-managed TLBs. Finally, the 288 cores are grouped into 16 Compute

Clusters, dedicated to the payload, and 4 I/O Clusters, responsible for communicating

with peripherals.

Figure 12 – Architectural overview of the Kalray MPPA-256 processor.

IO Cluster

NoC NoC NoCNoC

RMRMRMRM

I-Cache

D-Cache

I-Cache I-Cache I-Cache

Interlaken

DDR

PCIe
Ethernet

Compute Cluster

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE RM

D-NoC C-NoC

SRAM

Interleaved

2-D Torus

Source: Penna et al. (2018).

41

Each Compute Cluster features 16 PEs, an RM, an NoC interface and 2 MB of

Static Random Access Memory (SRAM). The hardware does not support cache coherence

to improve energy consumption. In contrast, I/O Clusters have only 4 RMs with cache

coherence support, 4 NoC interfaces, and 4 MB of local SRAM added to 4 GB of Dynamic

Random Access Memory (DRAM). The address space on each cluster is private, forcing

exchange messages by one of two different interleaved 2-D Torus NoCs. On the one hand,

the Control Network-on-Chip (C-NoC) is exclusive to 64-bit control messages, usually used

for synchronization. On the other hand, intense exchange data occurs through the Data

Network-on-Chip (D-NoC). Additionally, all clusters have available DMAs associated with

each NoC interfaces to handle communication issues.

As discussed in Subsection 2.2.3, NoC interfaces expose communication resource

to perform send and receive primitives like network interfaces. Accurately, they summarize

the following resources:

• 128 slots for receiving commands;

• 256 slots for receiving data;

• 4 channels for sending commands;

• 8 channels for sending data, and;

• 8 µthreads for sending asynchronous data (each of which must to be associated with

a data transfer channel).

The configuration of these features is accomplished by a mix between writing

on DMA registers and performing syscalls to a hypervisor that virtualizes the Kalray

MPPA-256 hardware.

2.4 NANVIX: AN OPERATING SYSTEM FOR LIGHTWEIGHT MANYCORES

During the 1970s and 1980s, several OS initiatives began to emerge. To prevent

OSs from being incompatible with each other, the Institute of Electrical and Electronics

Engineers (IEEE) creates the Portable Operating System Interface (POSIX) standard-

ization. POSIX defines interfaces and behaviors expected from an OS, e.g., creation and

control of processes. Many of these systems ceased to exist, and new ones emerged, but

POSIX has consolidated and continues to extend to new concepts.

The vast majority of current OSs are designed to work with a small number of

cores. As the number of cores increases, certain parts of the OS require redesign. At

some point, this rework will be unfeasible. This assertion led researchers to study design

alternatives for the new era of processors (WENTZLAFF; AGARWAL, 2009; BAUMANN

et al., 2009; WISNIEWSKI et al., 2014). However, the focus of these OSs is on improving

performance. Occasionally, aspects of hardware and design interfere with OS interfaces

and behavior. Additionally, a lack of alternative OSs for lightweight manycores that

42

balance the development cost requires from the user a considerable development and

debugging effort.

In this context, current research efforts on Nanvix OS focus on the programmabil-

ity and portability challenges that have arisen with lightweight manycores (CHRISTGAU;

SCHNOR, 2017; GAMELL et al., 2012; SERRES et al., 2011). We believe that significant

barriers will still arise in this scenario, and the solution is to rethink OS design from scratch

without losing back compatibility (PENNA; FRANCIS; SOUTO, 2019; PENNA et al.,

2019). Figure 13 depicts the three main conceptual goals of Nanvix OS . The main efforts

in Nanvix OS are focused on programmability and portability issues of lightweight many-

cores. This can be accomplished through a fully-featured POSIX-compliant OS (PENNA;

FRANCIS; SOUTO, 2019).

Nanvix OS is composed of three distinct kernel layers. In a bottom-up approach

of abstraction level, they are namely Nanvix HAL , Nanvix Microkernel, and Nanvix

Multikernel. The next sections will introduce the concepts and problems addressed by

each layer.

Figure 13 – Conceptual goals of the Nanvix OS.

Performance Portability

Programmability

Source: Adapted from Penna et al. (2019)

2.4.1 Nanvix Hardware Abstract Layer (HAL)

Nanvix OS proposes a generic and flexible HAL around the intrinsic architectural

characteristics of the lightweight manycores. Currently, Nanvix HAL features all the

essential modules to run standalone processes for the Kalray MPPA-256 (DINECHIN

et al., 2013), OpTiMSoC (WALLENTOWITZ et al., 2013), and HERO (KURTH et

al., 2017) platforms. In this work, we focus on proposing an inter-cluster communication

module for the Nanvix HAL , and providing its implementation for the Kalray MPPA-256

processor.

Unlike other approaches that aim to design a fully-featured OS (BAUMANN et

al., 2009; KLUGE; GERDES; UNGERER, 2014; NIGHTINGALE et al., 2009; RHODEN

et al., 2011), the Nanvix HAL belongs to one level below. It is the first layer on top

of the hardware and should provide a standard view of these emerging processors for a

43

client application, e.g., OS. At this level, we do not protect internal structures with locks.

Thus, the upper-level decides how to protect and multiplex HAL access. On the one hand,

a traditional monolithic OS that implements a time-sharing behavior to access internal

structures will need to apply locks manually. On the other hand, a master-slave OS not

require such strict control, improving its performance. Figure 14 pictures the three logic

layers of the Nanvix HAL , which are detailed below:

Core Abstraction Layer encapsulates the management of a single core. It provides a

uniform view and maintenance routines for TLBs, MMU and cache, a rich support

of handling exceptions/traps/interrupts, and access to Port-Mapped I/O (PMIO).

Therefore, some design decisions are made to create interfaces that are not depen-

dent on the underlying hardware. For example, a context switch mechanism was

not provided in the Core Package because this would force the client OS to write

code in assembly, hurting the conceptual idea of the Nanvix HAL .

Cluster Abstraction Layer bundles the resource management that concern all cores

in a cluster. It provides support for virtual memory, cross-core notification through

events, clock counter fetching, and access to IO resources such as Memory-Mapped

I/O (MMIO) and DMA.

Processor Abstraction Layer embraces architectural features related to multiple clus-

ters. The inter-cluster communication module, which is the focus of this under-

graduate dissertation, provides NoC identification routines and exports three main

abstractions to allow synchronization and data exchange among clusters, based on

ideas proposed along with the NodeOS distributed runtime system (DINECHIN et

al., 2013).

Figure 14 – Structural overview of the Nanvix HAL.

MPPA-256
Bostan

OpTiMSoC
 OpenRISC

HERO
RISC-V

Processor AL

Core AL

Cluster AL Cluster Package

Core Package IO

Memory

Memory

IO

COM

Source: Adapted from Penna, Francis & Souto (2019)

44

2.4.2 Nanvix Microkernel

The Nanvix Microkernel, running above the Nanvix HAL , provides bare bones

system abstractions to the client applications (PENNA et al., 2019). Through a rich

system call interface, it follows a Master-Slave OS model to avoid cache coherence issues

present in manycores. The scope of the Nanvix Microkernel is within a single cluster.

System calls and internal subsystems manage local and shared resources available to all

cores to maintain the coherence of the OS. Figure 15 pictures the five logic layers of the

Nanvix Microkernel, which are detailed below:

IPC Facility encapsulates the rest of this undergraduate dissertation, providing manip-

ulation and protection of the inter-cluster communication abstractions.

Thread System implements a rich mechanism for creation, management, and protection

of threads. This system features schedules, sleep, and wake up routines of the user

threads.

Memory System provides a rich memory management and virtual memory support at

cluster level. It is based in a two-level paging scheme, supports pages of heteroge-

neous sizes and uses a capabilities system (BAUMANN et al., 2009) to keep track

of permissions on pages.

Device System controls the access to memory and port mapped devices, and provides

mechanisms to forward the implementation of rich device drivers to user space.

Kernel Call Interface isolates the microkernel internal structures through a rich sys-

tem call interface. This interface implements the Master-Slave OS model and decides

whether or not a kernel call should be executed locally or remotely.

Figure 16 details how thread creation happens on Nanvix Microkernel. When a

user thread makes a kernel call, a set of sanity checks are performed to ensure the integrity

of the operation. After verifying the correctness of the parameters, the user thread notifies

Figure 15 – Concept Structural overview of the Nanvix Microkernel.

Hardware Abastraction Layer

Kernel Call Interface

Thread

System

Memory

System

Device

System

IPC

Facility

OpTiMSoC
OpenRISC

MPPA-256
Bostan

HERO
RISC-V

Source: Adapted from Penna et al. (2019)

45

Figure 16 – Execution example of the Nanvix Microkernel.

Master	Core
Kernel	thread

Slave	Core	1
User	thread

Slave	Core	2
User	thread

return

(HAL)	event_notify

do_kcall

kernel_thread_create

thread_create

return

return

kthread_create

return

HAL Black	Box

Source: Developed by the author.

the kernel thread and waits locked. The kernel thread implements a producer/consumer

policy and executes requests one at a time. When consuming a request, the master

identifies it and performs the necessary operations. In the end, the kernel thread releases

the requesting slave. Note that the master core always performs all operations that

change internal OS structures. Kernel calls that only query static parameters or structures

(performing cache invalidation) are made locally.

2.4.3 Nanvix Multikernel

The Nanvix Multikernel follows a multikernel design, where OS services are scat-

tered across clusters and interact with user processes through a Client-Server model.

Ideally, OS services run in isolation from user processes. Via a message-passing approach,

user processes request such services and cooperate with other processes.

Research that explores the parallel and distributed nature of multicore and many-

core processors inspires the Nanvix Multikernel (WENTZLAFF; AGARWAL, 2009; BAU-

MANN et al., 2009; WISNIEWSKI et al., 2014). By treating the processor as a network

of independent cores, it is possible to cover concepts of modern distributed systems. At

this level of abstraction, the following distributed system concepts can be exploited:

46

Local Automation: Each node can be independent of the other nodes, providing secu-

rity, locking, access, integrity, and failover mechanisms.

Replication Independence: Servers and data can be replicated across multiple nodes,

where servers can service nearby nodes to decrease network traffic and perform a

consistency and synchronization algorithm to ensure access to updated data.

Non-dependency on a central node: When replicating servers, the system no longer

relies on a central node. It eliminates the risk of having a single point of failure that

would affect all other nodes. A central node could also become overloaded, resulting

in loss of system performance.

Location Transparency: Users should not need to know where the servers or data are

located. For instance, a name server can control name resolution.

Figure 17 shows a possible configuration of a manycore using the Nanvix Multik-

ernel. Clusters located at the corners of the processor run kernel services to better serve a

nearby subset of clusters. In the other clusters, we can see the distribution of two distinct

applications. An application does not necessarily need to use all cores in a cluster. Now,

looking carefully at a cluster, we can see that Nanvix Microkernel always reserves a single

core for kernel execution, making the other cores available for application execution.

To enable Nanvix OS compliance with POSIX, the Nanvix Multikernel is made

up of high-level OS services that implement standardized interfaces. It exports both the

client and server interfaces developed atop the Nanvix Microkernel services. From this

perspective, user applications are easily ported to run on Nanvix Multikernel, where client-

side interfaces abstract the communication with servers distributed on the processor.

Figure 18 exemplifies the existing layers to provide the POSIX Shared Memory

(SHM) service. When opening an SHM, the client does not have to worry about where

data will be allocated or whether other cores in other clusters are operating over the same

memory region. The SHM is divided into two blocks, the server block (SHM server) and

Figure 17 – Possible configurations on Nanvix Multikernel.

Idle Core

Kernel Core

Service Core

Application A

Application B

Source: Adapted from Penna et al. (2019)

47

Figure 18 – POSIX Compliance example of Nanvix Multikernel.

Microkernel
RMem Cache

RMem Manager

DPS

Client

Application

Microkernel

RMem

Server #1

Microkernel

SHM

Server

Microkernel
RMem Allocator

POSIX

Allocator

POSIX

SHM

Microkernel

RMem

Server #0

Cluster

Interconnect

ClusterClusterClusterCluster

Name

Server

Source: Adapted from Penna et al. (2018) and Penna et al. (2019)

the client block (POSIX SHM). The server block runs in a cluster in isolation, receiv-

ing client requests, and triggering updates to shared regions in the clusters. The client

block contains several interfaces for requesting services. The SHM is developed over the

Remote Memory (RMem) service, which actually performed the memory upgrade. The

name server maintains a mapping of server names to node IDs to provide server location

independence. All servers and clients run on one instance of the Nanvix Microkernel,

e.g., requesting communication services. Client interfaces, following the POSIX standard,

abstract the control, location, and manipulation of distributed memory. Consequently,

we provide greater programmability and software portability for manycores processors.

49

3 RELATED WORK

In this chapter, we discuss research efforts related to this undergraduate disser-

tation. First, we present an overview of the state-of-the-art on lightweight manycores.

Then, due to the lack of OSs focused on lightweight manycores, we will cover different

proposed OSs for manycores in general.

3.1 LIGHTWEIGHT MANYCORE PROCESSORS

Several research initiatives are focused on the design of lightweight manycores,

aside from the Kalray MPPA-256 lightweight manycore. For instance, Olofsson, Nord-

strom & Ul-Abdin (2014) introduce Adapteva Epiphany as a high-performance energy-

efficient manycore architecture suitable for real-time embedded systems. The processor

features multiple nodes interconnected through three 2D mesh NoCs with a distributed

shared-memory model without coherence protocol. Each node has one Reduced Instruc-

tion Set Computer (RISC) CPU, multi-banked local memory, a DMA engine, an event

monitor and a network interface. The three NoCs are independent, scalable, and imple-

ment a packet-switched model with four duplex links at every node.

Wallentowitz et al. (2013) presents the open-source OpTiMSoC framework to aid

manycore processor design. The OpTiMSoC enables the rapid prototyping of a manycore,

either via VHDL simulation or Field Programmable Gate Array (FPGA) synthesis. In this

architecture, several OpenRISC cores1 are bundled into tiles, which in turn communicate

through a packet-switched NoC. The NoC supports various network topologies, depending

only on how the tiles are disposed on chip. Precisely, a network adapter handles the

memory transfers between a tile and its local memory and provides a message-passing

communication model among tiles. Tiles can communicate by using message-exchange,

partitioned global address space without cache coherence, or global memory with cache

coherence via a write-through policy.

Similarly, Kurth et al. (2017) introduces HERO, which groups an ARM Cortex-A

host processor with a fully modifiable RISC-V manycore implemented on an FPGA. The

Programmable Manycore Accelerator (PMCA) uses a multi-cluster design and relies on

multi-banked memory, called Software-managed Scratchpad Memory (SPM). Data trans-

fer occurs between a local SPM and all remote SPMs or with shared global memory.

Communication to main memory passes through software-managed lightweight Remap-

ping Address Block (RAB). The RAB performs the translation of the virtual-to-physical

address, similarly to traditional MMU, allowing clusters to share virtual address pointers.

1 https://opencores.org/openrisc

50

3.2 OPERATING SYSTEMS FOR MANYCORES

Baumann et al. (2009) proposed a new OS design for scalable multicore systems,

called Multikernel. In their perspective, the next-generation of OSs should embrace the

networked nature of the machines, and thus borrow design ideas from large-scale dis-

tributed systems. Assuming that cores are independent nodes of a network, they build

traditional OS functionalities as fully-featured processes on user space. These processes

communicate via message-passing and do not share the internal structures of the OS. The

work showed how expensive it is to maintain a state of the OS through shared-memory

instead of exchanging messages and the subsequent increase of the complexity of cache-

coherence protocols. The Multikernel implementation, named Barelfish, follows three de-

sign principles. The first principle is to make all inter-core communication explicit, which

turns the system amenable to human or automated analysis because processes communi-

cate only through well-defined interfaces. The second principle is to make OS structures

hardware-neutral, so the kernel code can be easy to debug and optimize, facilitating the

deployment of OS for new processor types and avoiding rework. The third principle is to

view OS state as replicated instead of shared, which improves system scalability.

In Wisniewski et al. (2014), the concept of scalability was pushed to the extreme,

towards High-Performance Computing (HPC). The principal motivation is the creation

of an OS that simultaneously supports programmability through support GNU/Linux

Application Programming Interface (API), and provides a lightweight kernel that achieves

performance, scalability, and reliability. The OS, named multi Operating System (mOS),

provides as much of the hardware resources as possible to the HPC applications and the

GNU/Linux kernel component acts as a service that provides GNU/Linux functionalities.

Similarly, Kluge, Gerdes & Ungerer (2014) developed the Manycore Operating

System for Safety-Critical Application (MOOSCA). With MOOSCA, they introduce ab-

stractions that are easily composed, called Nodes, Channels, and Servers. Nodes represent

execution resources, Channels represent communication resources, e.g., NoC resources,

and lastly, Servers are nodes that provide services to client Nodes. To meet safety-critical

requirements, the manycore is partitioned and each partition runs replicas of Servers,

turning the whole system more predictable. However, in order to deal with interferences

in shared resources, usage policies were introduced to make possible the prediction of

system behavior.

Finally, Nightingale et al. (2009) presents Helios, aiming to simplify the task of

writing, deploying, and optimizing an application across heterogeneous cores. They use

the microkernel model, naming satellite kernel, to export a uniform and straightforward

set of OS abstractions. The most important design decisions were to avoid unnecessary

remote communication by thinking about the penalty they have in NUMA domains.

Moreover, it requests a minimum set hardware resources to support architectures with

little computational power or memory constraints.

51

3.3 DISCUSSION

In Section 3.1, we discussed how manycore architectures can be grouped over a

common logic perspective. They all have one or more logical units distributed and in-

corporated on clusters. The clusters, interconnected through a network, communicate by

message-exchange. However, due to the domain for which these processors were designed,

they end up presenting several differences among them at the hardware level.

Additionally, Section 3.2 presented OSs studies that focus on the most efficient

exploration of manycores processor characteristics. Many of them introduce entirely new

concepts, reducing the programmability and portability of development environments.

Some even seek to provide POSIX interfaces by porting an adapted version of known

kernels, but this can lead to optimization losses at near-hardware levels. However, the OS

and communication models presented fit well with the distributed nature of manycores.

Finally, many of these OSs work with NUMA systems, where a complex bus system makes

communication transparent. Therefore, there is, in fact, no network programming.

In this context, Nanvix HAL offers the ground OS abstractions needed to make

lightweight manycores more easy to use and program. The exported interfaces sought to

group lightweight manycores on a common and effective view. Above the Nanvix HAL ,

services will be developed that seek first and foremost to provide greater programmability

and portability through a fully-featured POSIX-compliant OS. Nanvix OS is design

specifically for manycores that require explicit programming of communication through

NoC, have memory constraints and miss support for cache coherency. The combination

of these features makes designing an OS for lightweight manycores challenging.

53

4 DEVELOPMENT

This work delivers two main contributions. Section 4.1 presents the most exten-

sive part of the work and discusses how Kalray MPPA-256 hardware was used to provide

three communication abstractions for Nanvix HAL and the challenges and solutions en-

countered during development. Next, Section 4.2 presents a standard view of the user

services developed for the Nanvix Microkernel that make use of the low-level interface.

4.1 LOW-LEVEL COMMUNICATION

Nanvix HAL provides the inter-cluster communication module to allow separate

clusters to exchange information. This module consists of three abstractions, named Sync,

Mailbox , and Portal. These abstractions provide more precise, easy-to-use, scalable, and

easily portable mechanisms for different architectures (WENTZLAFF et al., 2011). On

top of them, it is possible to create simple facilities, such as those for synchronization

and data exchange, as well as more elaborate services like SHM, POSIX Semaphores, and

RMem (PENNA et al., 2018). These later semantics may be implemented on top of syn-

chronous or asynchronous kernel calls, depending only on hardware support. Motivated

to expose better Quality of Service (QoS) control to the upper layers, we decouple small

data transfers from large ones, i.e., Mailbox and Portal. Note that it would be possible

to use a NoC for each abstraction if the hardware supported it. We did not do this in

Kalray MPPA-256 because C-NoC only provides the transfer of 64-bit values.

This section is organized as follows. Subsection 4.1.1 clarifies the use of Kalray

MPPA-256 hardware resources. Subsection 4.1.2 covers commonalities between all ab-

stractions. Subsection 4.1.3, Subsection 4.1.4, and Subsection 4.1.5 conceptually present

each of the abstractions, encompassed problems, and implementation details.

4.1.1 Kalray MPPA-256 Hardware Resources

The realization of low-level communication mainly depends on two Kalray MPPA-

256 features. First, the interrupt system allows the configuration of handlers for messages

received and sent through NoC. Interrupts enable asynchronous operations, which is an

important point in a microkernel-based OS where the master cannot be blocked waiting

for a single communication to complete. If it were not possible to asynchronously receive

data/signals, upper layers would face severe performance issues. Second, DMA is the

mediator of all communications, either synchronous or asynchronous. At this point, a

hypervisor virtualises the DMA, separating it into two global logical structures, one for

C-NoC and one for D-NoC. Each structure groups registers for the send/receive configu-

ration, and bit fields indicating which slots generated an interrupt. The hypervisor runs

on RMs and asynchronously controls read/write permissions of virtualised registers.

54

The control made by the hypervisor does not include allocation or manipulation

of resources. Consequently, we manually control allocation through bit fields. If an

operation does not comply with this control, a negative value is returned, indicating the

error, e.g., allocation of a resource that is already in use. Thus, we do not inflict undesired

costs by shifting responsibility for handling the error to the upper layer, e.g., waiting for

the release of a resource. Manipulation involves procedures for configuring the DMA with

proper permissions and ensuring cache consistency of operations. Finally, it is noteworthy

that there is no concurrency control over the commented structures so as not to inflict a

cost over the microkernel approach. If the Nanvix HAL is used to develop a monolithic

OS, it should be concerned with ensuring atomic operations.

The DMA coordinates three interruption lines. Two of these are used by D-NoC

to notify the data receipt and completion of an asynchronous data sending. C-NoC only

uses one line for receiving signals because sending a signal (64-bit value) is explicitly

performed by the core. For each interrupt line, there is a specific handler, but they

all execute a similar algorithm. Algorithm 1 outlines the behavior of the NoC handler.

Because the line only notifies what type of interruption, it is responsibility of the handler

to search the resources of each interface looking for who triggered the interrupt. The

handlers are re-entrant to avoid loss of interrupts. Due to the asymmetric microkernel

design, concurrency issues are softened because only the master handles interrupts.

NoC interfaces have two identifiers, one physical (physical ID) and the other logi-

cal (logical ID). The hardware uses the physical IDs in the process of data routing through

NoC. Each physical ID is associated with a Logical ID to enable the identification of NoC

nodes outside the HAL. Logical IDs primarily serve to disassociate the node identification

from the architecture that implements the HAL. Table 1 presents the proposed mapping

for Kalray MPPA-256 clusters. Each row has one of three groups of existing NoC nodes

(first column), grouped by type of the clusters. Within each group, we have a set of

physical identifiers (second column) that are mapped 1 to 1 to logical identifiers (third

column). For example, the I/O Cluster 0 constitutes 4 NoC interfaces, where they are

mapped as follows: 128 → 0, 129 → 1, 130 → 2, and 131 → 3. This mapping is a more

Algorithm 1 – Simplified NoC handler algorithm.

Require: flags[MInterfaces][NResources], Interruption flags of a resource.
Require: handlers[MInterfaces][NResources], Interruption handler of a resource.

1: procedure noc_handler

2: for i ∈ [1, MInterfaces] do
3: for j ∈ [1, NResources] do
4: if flags[i][j] == Interrupt_Triggered then
5: clean_flags(i, j) ⊲ Releases to receive new interrupts.
6: handlers[i][j](i, j) ⊲ Runs the associated handler.

Source: Developed by the author.

55

Table 1 – NoC Interface Identification.

Physical ID Logical ID
I/O Cluster 0 128-131 0-3
I/O Cluster 1 192-195 4-7
Compute Clusters 0-15 8-23

Source: Developed by the author.

Table 2 – Partitions of NoC resources by abstraction.

C-NoC D-NoC
RX Slot ID TX Channel ID RX Slot ID TX Channel ID

Mailbox 0-23 0 0-23 1-3
Portal 24-47 1-2 24-47 4-7
Sync 48-71 3 - -

Source: Developed by the author.

natural form to identify the NoC nodes of different architectures.

The sender needs to know which logical ID the receiver will use to perform a

communication. For instance, if the receiver sets up receiving on one D-NoC resource

and the sender sends it to another, even if the ID is correct, the DMA will not notify

the receiver. For this reason, the receive slots of the C-NoC and D-NoC are partitioned

by abstraction. Within a partition, each slot is statically mapped to a logical ID, e.g., 0

to 23 mappings. In contrast, transfer channels can be dynamically allocated. However,

an essential concept of Nanvix HAL is to provide the resources required for a given

operation without performing additional optimizations. Thus, the transfer channels were

also partitioned by abstraction so that they are reserved for an entire job. Table 2

presents each abstraction, identified by the rows, and the partitioning of the resources

of each NoC, identified by the columns. Since Sync does not exchange arbitrary data, no

resources were reserved in D-NoC. It is worth noting that even without using all existing

slots, improving programmability by not having to specify communication features is a

strength of abstraction design.

Finally, we were able to remove almost all dependency on the software stack pro-

vided by Kalray. However, by eliminating communication libraries, the lack of documen-

tation of hardware virtualisation, and functional examples of communication, limitations

arose in the transfer of data through D-NoC. In summary, it was not possible to correctly

configure existing µthreads in the DMA for asynchronous transfer, thus making it a future

work. However, this limitation did not impact on the design of abstractions, requiring

only that the master core waste time transferring data manually.

56

4.1.2 General Concepts of Communication Abstractions

Technically, Nanvix HAL is not just designed for use by a microkernel OS. Thus,

we must ensure a standard behavior that does not affect the functionality of the upper

layer, whether it is a replicated, microkernel or shared OS. The microkernel specifically

assigns the master core the task of handling requests (i.e., kernel calls) from slave cores.

Therefore, interfaces export only asynchronous calls. This decision forces the upper layer,

if desired, to create synchronous calls that call the wait function right after the asyn-

chronous operation. Thus, at the microkernel level, we can ensure that the master core

sets or executes asynchronous functions and notifies blocked slaves. In Kalray MPPA-256,

spinlocks perform synchronization between the master and the slaves. Upon completion

of an operation, the master releases the lock for the slave to continue its execution.

However, the limitation of the DMA, described in Subsection 4.1.1, adds a chal-

lenge to the transfer operations of the mailbox and portal abstractions. In these ab-

stractions, there is a flow control where the receiver must notify the sender, permitting

him to transfer the data. This behavior can cause the master to lock while waiting for

permission. The concept of lazy sending was introduced to circumvent this problem. Al-

gorithm 2 illustrates the behavior of lazy transfer, the algorithm defines that the master

saves the parameters of transmission if it does not have desired permission and will accom-

plish other requests. Upon receiving permission from the receiver, the interrupt handler

identifies the resource, actually sends the data and releases the slave that requested the

send. This algorithm ensures that the master is always doing useful operations and never

crashes the entire system.

Finally, abstract interfaces follow a convention to distinguish between receiver

and sender roles. Receivers use functions with create, unlink, aread, and wait suffixes.

Senders, in turn, use functions with open, close, awrite/signal, and wait suffixes. Because

the wait function is shared, the abstraction must distinguish the role by the resource

identifier. Discriminating the nature of operations helps both the user, being entirely

intuitive, and implementing HAL by explaining what features will be needed.

4.1.3 Sync Abstraction

Synchronization Abstraction, called Sync, provides the basis for cluster synchro-

nization across distributed barriers. Its behavior is analogous to POSIX Signals ab-

straction, but notifications do not carry information, they are only for synchronization.

Sync defines two synchronization modes, ALL_TO_ONE and ONE_TO_ALL. In both

modes, there is a single master node (ONE) and one or more slave nodes (ALL) involved

in the communication. Figure 19(a) illustrates the ALL_TO_ONE mode, where the

master node waits blocked for the N notifications coming from the slaves. In contrast,

Figure 19(b) pictures the ONE_TO_ALL mode, where the master notifies the N slaves,

57

releasing them from the lock. The sender nodes are responsible for sending a signal and

will never block. Receiver nodes are responsible for waiting for all notifications to arrive.

Algorithm 2 – Simplified lazy transfer algorithm.

Require: resources, Abstraction Resource Table

Configures data transfer.

1: procedure async_write(id, message, size)
2: resources[id].message← message

3: resources[id].size← size

4: if resources[id].has_permission then
5: do_lazy_transfer(id)
6: else
7: resources[id].is_waiting ← True

Receives permission.

8: procedure abstraction_handler(id)
9: if resources[id].is_waiting then

10: do_lazy_transfer(id)
11: else
12: resources[id].has_permission← True

Transfers the data.

13: procedure do_lazy_transfer(id)
14: resources[id].is_waiting ← False

15: resources[id].has_permission← False

16: transfer_data(resources[id].message, resources[id].size)
17: unlock(resources[id].lock) ⊲ Releases slave core.

Source: Developed by the author.

Figure 19 – Synchronization abstraction example.

(a) N slaves notify the master
(ALL_TO_ONE).

Master

sync_create()

sync_wait()

Slave 2

sync_open()

sync_signal()

Slave 1

sync_open()

sync_signal()

(b) The master notifies N slaves
(ONE_TO_ALL).

Master

sync_open()

sync_signal()

Slave 2

sync_create()

sync_wait()

Slave 1

sync_create()

sync_wait()

Source: Developed by the author.

58

4.1.3.1 Receiver-side Implementation

Listing 1 introduces the Sync interface for receiver nodes proposed for the Nanvix

HAL. The parameters required for creating a synchronization point are a list of logical

IDs, list size, and mode of synchronization. The list must always be initialized with the

master node ID, regardless of the mode. The remaining identifiers, provided they have

no repetition, can be in any order. The other functions use the abstraction identifier

returned by the create function. If any parameters are invalid or have wrong semantics,

a negative value is returned indicating the error, e.g., nodes pointer equal to NULL.

Receipt of notifications requires booking one C-NoC receiving slot related to the

Master ID. This relation eliminates the conflict of using the same slot across different

synchronization settings. Consequently, a node cannot be the master in two simultaneous

operations. Thus, the total of Sync operations created simultaneously is equal to the

number of existing nodes, i.e., 24 in Kalray MPPA-256. In I/O Clusters, this total is

multiplied by the number of available NoC interfaces, i.e., 24 per DMA. A 64-bit mask,

created from sender node IDs, configures the receiving slot. Bits positioned on nodes IDs

are 0. When receiving a signal, DMA performs an OR-bitwise with the previous value.

When all bits are set to 1, DMA clears the register and triggers an interrupt.

A vector of internal structures controls the operations. Each structure is reserved

for a physical slot and holds control flags, the initial mask, and a spinlock. HAL checks

for discrepancies in IDs, control flags, or parameters when creating, waiting, or unlinking

a Sync. Finally, the spinlock is used to synchronize the operation with slave cores. On our

microkernel-based system, the master core configures Sync, and the slave waits for the

spinlock release. The interrupt handler of the Sync identifies the structure and releases

the lock. The lack of cache coherence does not affect spinlocks because instructions that

guarantee the atomicity are used to implement the lock.

Listing 1 – Nanvix HAL: Sync interface for receiver node.

1 /**

2 * @brief Allocates and configures the receiving side of

3 * the synchronization point.

4 */

5 int sync_create(const int *nodes, int nnodes, int mode);

6

7 /* @brief Releases and cleans receiver slot. */

8 int sync_unlink(int syncid);

9

10 /* @brief Waits a signal. */

11 int sync_wait(int syncid);

Source: Developed by the author.

59

4.1.3.2 Sender-side Implementation

The Sync interface for sender nodes, presented in Listing 2, uses the same create

parameters for opening a Sync point. The standardization of parameters simplifies the

role of a cluster in a synchronization. However, at both creation and opening, the local ID

must be included in the list. For instance, a problem occurs if a Sync is opened with the

local ID as master and the mode is set to ALL_TO_ONE. This discrepancy will return

an error because the master should be the notification receiver and not the sender. The

rest of the implementation follows what was already explained in the previous section.

Unlike the receiver, the sender needs one C-NoC transfer channel to open a Sync

point. Due to the separation of channels described in the Table 2, a node can only open

one Sync at a time. The node must identify the target ID and receiving slot of the master

to emit a signal. A 64-bit value composes the mask with the sender node bit set to 1. The

sender control structure also has flags to ensure the semantics of the operations. Besides,

the sender stores, in an array of integers, all IDs of the receivers. When performing the

notification, a signal will be sent to each target of this list.

Listing 2 – Nanvix HAL: Sync interface for sender node.

1 /**

2 * @brief Allocates and configures the sending side of

3 * the synchronization point.

4 */

5 int sync_open(const int *nodes, int nnodes, int mode);

6

7 /* @brief Releases the transfer channel. */

8 int sync_close(int syncid);

9

10 /* @brief Sends a signal. */

11 int sync_signal(int syncid);

Source: Developed by the author.

4.1.4 Mailbox Abstraction

Message Queue Abstraction, called Mailbox , allows clusters to exchange fixed-

length messages with each other. The message size is designed to be relatively small,

usually a few hundreds of bytes. The recipient consumes these messages without needing

to know who sent them. Similarly, mailbox operations follow the behavior of the POSIX

message queue. Figure 20(a) conceptually illustrates one of the ways to implement a

Mailbox . The receiver allocates enough space to receive one message from each possible

sender. The sender transfers the message to a predefined location.

60

Figure 20 – Mailbox abstraction concept.

(a) Conceptual overview.

NoC

Master

Mailbox

S1 S2 ... Sn

C1

Slave 1 Slave 2

C2

Slave N

Cn. . .

(b) Flow of execution: the slave sends a message whereas
the master reads and notifies the sender.

Master

mailbox_create()

Slave

mailbox_open()

mailbox_wait() mailbox_wait()

mailbox_awrite()
asynchronous

mailbox_aread()
asynchronous

Source: Developed by the author.

Figure 20(b) outlines the communication flow between a receiver and a sender

node. The receiver creates an empty message queue where senders are free to send the

first message. Subsequently, to avoid overwriting old messages, all transmissions require

the permission of the receiver. For this reason, when the receiver consumes a message, it

copies the message to the user buffer, releases the queue space, and notifies the sender.

In theory, the number of messages allowed per sender can be from 1 to N . How-

ever, Nanvix HAL statically allocates sufficient memory for the message queue inside the

kernel. Therefore, we chose to allow only one message due to memory constraints pre-

sented by lightweight manycores. Furthermore, using one message is sufficient for servers

to handle requests at the Nanvix Multikernel level. For instance, the message can be used

to encode small operations and system control signals.

4.1.4.1 Receiver-side Implementation

Listing 3 presents the Mailbox interface for receiver nodes. Since the I/O Cluster

has multiple nodes, it is necessary to inform the local node ID on the creation of the

Mailbox (mailbox_create). The other operations use the file descriptor returned by

mailbox_create. To consume a message (mailbox_aread function), the application must

inform a buffer and a message size. Although the size is constant, it is used to verify

the integrity of the operation. Successful copying of a message will release the slave that

performs the mailbox_wait function. In the release protocol, the master core flushes

the message to the SRAM so that the slave, when invalidating its cache, can read the

message.

Mailbox is more complicated than Sync, in terms of hardware resources. Specifi-

cally, the receiver requires one D-NoC receiving slot and one C-NoC transfer channel. The

need for one transfer channel for the lifetime of the receiver limits the creation of only one

mailbox per NoC node. The receiving slot is configured using two sizes. One for the size

61

Listing 3 – Nanvix HAL: mailbox interface for receiver node.

1 /* @brief Creates a mailbox. */

2 int mailbox_create(int nodenum);

3

4 /* @brief Destroys a mailbox. */

5 int mailbox_unlink(int mbxid);

6

7 /* @brief Reads data asynchronously from a mailbox. */

8 ssize_t mailbox_aread(int mbxid, void * buffer, size_t size);

9

10 /* @brief Waits for an asynchronous operation to complete. */

11 int mailbox_wait(int mbxid);

Source: Developed by the author.

of a message, which will generate interrupts, and one for the total buffer size allocated for

protection. The buffer is allocated within kernel memory with sufficient space to receive

24 messages. The message itself is composed of a header identifying the sender, a body

containing the useful message, and a footer for handler control. The transfer channel, in

turn, is used after copying the useful message to the user buffer, notifying the header ID.

Parallelism in receiving messages introduced some challenges in the asynchronous

reading of Mailbox because: (i) each message generates an interrupt, (ii) interrupts sus-

pended by new incoming messages may not be able to find the D-NoC resources that

issued the interrupt, and (iii) the hardware does not report the total interrupts generated

by a resource. A behavior similar to lazy transfer was implemented to circumvent these

difficulties. First, a global counter containing the total amount of messages received al-

lows the receiver to copy received messages on the asynchronous read call. Second, if no

messages is available, copying will be performed by the next triggered handler. Third, to

solve the problem of preemptive interrupts, whenever a handler is triggered, it will tra-

verse the message queue checking headers and footers. When identifying a valid message,

the handler increments the counter and changes the footer to a specific code. This way,

no message is lost because a single handler identifies messages not yet counted.

4.1.4.2 Sender-side Implementation

Listing 4 displays the Mailbox interface for sender nodes. Opening a mailbox

requires the application to inform the receiver ID to allocate related resources. The

mailbox_awrite function, in particular, implements the concept of lazy transfer. So,

the master core never blocks if the mailbox is not allowed to transfer the message. The

mailbox_wait function is the same function used by the receiver node where the slave

core waits blocked until receiving the transfer permission.

The sender implementation also requires the allocation of resources from both

62

Listing 4 – Nanvix HAL: Mailbox interface for sender node.

1 /* @brief Opens a mailbox. */

2 int mailbox_open(int nodenum);

3

4 /* @brief Closes a mailbox. */

5 int mailbox_close(int mbxid);

6

7 /* @brief Writes data asynchronously to a mailbox. */

8 ssize_t mailbox_awrite(int mbxid, const void * buffer, size_t size);

9

10 /* @brief Waits for an asynchronous operation to complete. */

11 int mailbox_wait(int mbxid);

Source: Developed by the author.

NoCs. However, the resources are opposite to the receiver, where it allocates one C-NoC

receiving slot and one D-NoC transfer channel. The allocated C-NoC receiving slot is

relative to the receiver ID to prevent conflicts among openings for distinct receivers. The

transfer channel is dynamically allocated. Because it has fewer transfer channels than

receiving slots, transfer channels limit mailbox openings to 4 per node.

4.1.5 Portal Abstraction

Finally, Portal Abstraction allows two nodes to exchange arbitrary amounts of

data. Figure 21(a) presents the conceptual idea of the Portal, which resembles that of

POSIX Pipes with flow control. The cardinality of operations is always 1 : 1, where a pair

of nodes opens a one-way channel for data transfer. However, unlike POSIX Pipes, which

defines that the pipe exists only between two processes, the Portal allows the receiver to

communicate with other nodes through the same channel. The sender, in turn, can only

communicate with one node.

Figure 21 – Portal abstraction concept.

(a) Conceptual Overview.

NoC Portal

C1

ReceptorSender

C0

(b) Receiver creates a portal and notifies Sender to
transfer the data.

Receiver

portal_create()

Sender

portal_open()

portal_aread()
asynchronous

portal_allow()

portal_wait()

mailbox_awrite()
asynchronous

portal_wait()

Source: Developed by the author.

63

Figure 21(b) outlines the flow control of the Portal. When attempting to transmit

data to the receiver, the sender will block until the receiver can accept it. By enabling

one data exchange at a time, the receiver configures the read settings and notifies the

sender. In this way, the flow control ensures that the receiver will not be overloaded,

will not receive data without properly configured DMA, and will not overwrite previous

data. Allowing communication empowers the receiver to choose which communications

to prioritize.

4.1.5.1 Receiver-side Implementation

Listing 5 presents the Portal interface for receiver nodes. Like the Mailbox , the

application must identify the local node to create a Portal. The receiver must always

perform three operations to perform communication, i.e., portal_allow, portal_aread,

and portal_wait. The portal_allow function allocates one receiving slot relative to the

given remote node, limiting one channel per pair of nodes. However, the permission will

only be sent after DMA configuration by the portal_aread function. Finally, the node

will block in the portal_wait function until receiving the informed data size.

A receiver allocates one D-NoC receiving slot and one C-NoC transfer channel.

Unlike Mailbox , the Portal has two transfer channels available, which allows the creation

of two simultaneous portals. Such portals cannot communicate with the same node at

the same time because they use the same physical slot. Read sets the receiving slot to the

buffer and size informed by the application. The DMA eliminates intermediate copies like

Mailbox, because it writes data directly to the application buffer. Consequently, control

structures have also been simplified, containing only control flags and the spinlock for

asynchronous operations.

Listing 5 – Nanvix HAL: Portal interface for receiver node.

1 /* @brief Creates a portal. */

2 int portal_create(int local);

3

4 /* @brief Destroys a portal. */

5 int portal_unlink(int portalid);

6

7 /* @brief Allow sender to transfer data. */

8 int portal_allow(int portalid, int remote);

9

10 /* @brief Reads data asynchronously from a portal. */

11 ssize_t portal_aread(int portalid, void * buffer, size_t size);

12

13 /* @brief Waits for an asynchronous operation to complete. */

14 int portal_wait(int portalid);

Source: Developed by the author.

64

4.1.5.2 Sender-side Implementation

Listing 6 presents the Portal interface for sender nodes. When opening a Portal,

the application is required to inform the local node ID and the receiver node ID. The

local ID serves to distinguish the NoC interface on I/O Clusters. The receiver node ID

identifies the C-NoC receiving slot that will catch the transfer permission. The early

allocation ensures that the permission will not be lost even if the permission arrives

before the sender sets up the transfer. The transfer configuration follows the lazy transfer

algorithm.

The hardware resources required to open a portal are the opposite of resources

to create. Specifically, one C-NoC receiving slot and one D-NoC transfer channel are

required. The transfer channel is reserved but only used when the transfer is allowed.

Due to the limitation of four transfer channels to the portal, a node can open only four

portals at a time. The control structures for the sender portals contain the parameters

needed to perform the lazy transfer and a spinlock to asynchronous operations.

Listing 6 – Nanvix HAL: Portal interface for sender node.

1 /* @brief Opens a portal. */

2 int portal_open(int local, int remote);

3

4 /* @brief Closes a portal. */

5 int portal_close(int portalid);

6

7 /* @brief Writes data asynchronously to a portal. */

8 int portal_awrite(int portalid, const void * buffer, size_t size);

9

10 /* @brief Waits for an asynchronous operation to complete. */

11 int portal_wait(int portalid);

Source: Developed by the author.

4.2 USER-LEVEL COMMUNICATION

The inter-cluster communication module, described in Section 4.1, is designed to

export a standard and straightforward communication primitives to different lightweight

manycores. These primitives can be used by various types of OSs and applications. Thus,

the module is flexible enough not to impact the performance of the upper layers negatively.

For this, it does not provide rich management of the exposed abstractions.

In this scenario, the communication services of Nanvix Microkernel seek to pro-

vide Inter-Process Communication (IPC) between distinct clusters. Specifically, these

services perform the multiplexing of the hardware resources and the verification of the

parameters that will be passed on the communication primitives. Due to the Master-Slave

65

model, the master core is responsible for protecting, manipulating, and configuring HAL

resources. The slave core will request operations through the kernel call interface, passing

the necessary information to the master.

Considering that the abstractions make up the fundamental elements of the con-

struction of more complex services, the Nanvix Microkernel services were responsible for

the management and multiplexing of the finite resources for the many cores of a cluster. In

total, there are three communication services in the Nanvix Microkernel, each associated

with an abstraction of the communication module, analogously named Sync, Mailbox ,

and Portal services. These services must take into account the memory constraints and

the Master-Slave model chosen for the Nanvix Microkernel.

The impacts of the Master-Slave model, protection, management and manipula-

tion operations are similar to all services. They will be provided through interfaces that

function as wrappers for the HAL abstraction functions. In the implementation of these

interfaces, there will be a mapping between low-level identifiers, associated with HAL

resources, and high-level identifiers, associated with resource protection structures.

The following sections provide an overview of these topics punctuating the dif-

ferences of each service.

4.2.1 Impacts of the Master-Slave Model

Master-Slave OS model defines that the master core must exclusively manipulate

the internal structures of the OS. For this end, each service has generic and simple struc-

tures that hold control flags, parameters for resource identification, and storage of physical

descriptors returned by HAL. Thus, the kernel call interface separates the functions of

the services into two sets of functions. The first set contains the kernel calls that request

a particular operation. The second set contains functions that operate on the internal

structures and communicate with the HAL level. The master executes almost exclusively

the second set, except for the wait functions, which the slave performs entirely.

The kernel call set follows the kernel_abstraction_operation notation. Its

responsibilities are to find out which logical ID is attached to the local node, if there is

more than one, and perform the possible sanity checks on the slave side. The internal set

of functions follows the kabstraction_operation notation. Internally, it is used by the

kernel call engine to perform protection, handling, and multiplexing services.

The requirement of the slave to perform wait functions is because the master

cannot block indefinitely waiting for an operation. At this point, the slave must access

the internal structure of the OS to query the physical descriptor for access to the HAL

spinlock. The spinlock is used to wait for an asynchronous operation to complete. So, the

master updates local memory whenever a modification is made, and the slave invalidates

its cache to ensure structure coherence.

66

4.2.2 Protection and Management

Protection and management operations involve two phases, the slave and the

master phase. The slave phase performs several checks to identify all possible problems

with the arguments before wasting master time with an invalid operation. Examples

of theses verifications are: (i) valid file descriptors, (ii) non-null buffer pointers, (iii)

buffer sizes within the stipulated limit, and (iv) the semantics of the arguments, e.g.,

synchronization with itself.

The master phase performs more robust checks than those performed by the

slave phase, where it is possible to verify the semantics of operations on a given resource.

Specifically, the master: (i) identifies multiple creations/openings (ii) checks for conflicting

operations, e.g., writing to read-only resources, (iii) measures communication time and

total number of bytes transmitted/received, and (iv) interacts with Nanvix HAL detecting

errors.

4.2.3 Multiplexing

The identification of creations/openings with the same arguments allows multiple

slaves to use the same resource at different times. For this, the internal structures of the

OS keep, as simply as possible, the arguments used to create/open a service. When the

same arguments are identified, a reference counter is incremented. The master sets the

resource to busy when prompted for a read/write. A second slave who wants to read/write

will be prevented until the previous operation is completed. The resources of the HAL

will only be released when all references are removed.

4.2.4 Input/Output Control

The Mailbox and Portal services have a particular kernel call named Input/Output

Control (IOCTL). The IOCTL grants the implementation of operations that cannot

be expressed by regular kernel calls. In the case of communication services, we im-

plement two types of operations to query some information about the transmissions

performed. The first operation, named IOCTL_GET_VOLUME, queries the current

number of bytes transmitted/received from a service. The second operation, named

IOCTL_GET_LATENCY, queries the sum of measured communication latencies by

the difference of two clock readings. This kernel call may be extended in the future to

introduce new features without causing changes to current interfaces.

67

4.2.5 Validation and Correctness Tests

Extra effort has been made to ensure that deployment across the multiple sup-

ported architectures exhibits the same expected behavior. To this end, two sets of tests

ensure the validation and correctness of the implementation, named API and FAULT

tests. On the one hand, API tests create, open, and stimulate services with arguments

within valid value ranges and the correct semantics of the operations. On the other hand,

FAULT tests use arguments outside the domain of functions and incorrect semantics of

operations. The failure of an operation also should generate a previously known error

value. These sets of tests sought to cover the most common and predictable errors that

occur when using communication services. However, a robust coverage test should be

performed to ensure that the tests verify all possible errors.

69

5 EXPERIMENTS

This chapter evaluates the performance of communication services of the Nanvix

Microkernel running on the Kalray MPPA-256 processor, i.e., Mailbox and Portal. The

impacts of the synchronization mechanism were not analyzed because it is a simple service

that does not directly influence node communication, depending greatly on the workload of

each cluster. Noteworthy, the Sync was used in all benchmarks to synchronize the nodes

involved due to the different boot times and the distinct node roles. The evaluation

is divided into two sections. First, Section 5.1 describes the micro-benchmarks, their

motivations, and the parameters used. Second, Section 5.2 unveil and discusses our

experimental results.

5.1 EVALUATION METHODOLOGY

To deliver a comprehensive assessment of the communication service, we stimulate

the services with usual collective communication configurations. These configurations

are usually found in distributed systems and present in the high-level services exported

by Nanvix Multikernel, such as message exchanging between servers and clients, work

distribution, and gathering results.

Micro-benchmarks measure the data volume and communication latency through

the IOCTL interface. In manycores, the nodes that communicate with peripherals are

the bridge between the user and applications. Therefore, in our experiments, I/O Cluster

plays the master role when a communication routine requires a master-slave behavior.

I/O Clusters also manages only one of the available interfaces to simplify communication.

In all micro-benchmarks, only one PE was used to request microkernel services.

5.1.1 Micro-benchmarks

To analyze the performance of the communication services, we relied in collective

communication patters of MPI, as well as common behaviors between clients and servers.

The following subsections conceptually introduce each of these routines and behaviors.

5.1.1.1 Broadcast

Broadcast is the most widely used communication pattern in MPI. In this rou-

tine, a node sends the same data to all existing nodes. This process may be implemented

in several ways, such as, Flat Tree, Binary Tree, Double Tree, and Chain (WICKRA-

MASINGHE; LUMSDAINE, 2016). Figure 22(a) presents the Flat Tree algorithm used

in the benchmark. The Flat Tree defines that the root node should send data to everyone

without delegating this function to other nodes. This routine can be used to send user

70

Figure 22 – Collective Communication Routines.

(a) MPI Broadcast.

0

1 2 3 4

(b) MPI Gather

1 2 3 4

0

(c) MPI AllGather.

0 1 2

210

(d) Ping-Pong.

0

1 2 3 4

1

2
4 6

8

3 5
7

Source: Adapted from Kendall, Nath & Bland (2019).

inputs to a parallel program or to send configuration parameters to all nodes (KENDALL;

NATH; BLAND, 2019).

5.1.1.2 Gather

Gather is the inverse operation of a broadcast variant called scatter. Figure 22(b)

illustrates the reverse data flow, where this routine gathers the data distributed on a

single node (KENDALL; NATH; BLAND, 2019). Similarly to broadcast, a Flat Tree was

implemented where all root nodes send their parts directly to the root node.

5.1.1.3 AllGather

AllGather is a routine that does not have a root node, illustrated by Figure 22(c).

As the name suggests, the routine performs several Gather operations so that all partic-

ipating nodes end with all pieces of data gathered. Some possible algorithms are Ring

Algorithm, Recursive Doubling, Gather followed by Broadcast Algorithm. The bench-

mark implements the Bruck Algorithm where each node will send its data to a node with

distance i and receive data from a distance −i until all nodes contain the complete data.

5.1.1.4 Ping-Pong

Ping-Pong is not an MPI collective communication routine but represents com-

munication from a server answering requests from client nodes. Figure 22(d) illustrates

communication by focusing on the master node, where the master receives and answers

one request at a time.

71

5.1.2 Experimental Design

The parameters that we used for each micro-benchmark are detailed in Table 3.

The first set of experiments sought to analyze the throughput provided by the Portal

service. Throughput displays the performance of the Portal in communicating different

amounts of data and thereby highlighting the best amounts. All micro-benchmarks involve

1 I/O Cluster and 16 Compute Clusters, varying the size of the buffer to be transmitted

from 4 KB to 64 KB. Larger values were not studied due to limitation on physical memory

size in Compute Clusters (i.e., 2 MB). For instance, AllGather requires approximately a

total space of 1 MB (17 nodes× 64 KB). The second set aimed to analyze the latency of the

Mailbox service. Latency allows us to analyze the communication time between different

components of a distributed system. The micro-benchmarks executed were practically

the same as the Portal. However, the buffer size to be transmitted became constant,

120 Bytes. The variable parameter of the experiments was the number of Compute

Clusters involved in the routines. Thus, I/O Cluster is always the master of routines, and

the number of Compute Cluster is changed between 1 and 16.

The Kalray MPPA-256 is designed to provide low energy per operation and time

predictability which guarantees low variability between runs (DINECHIN et al., 2013).

Thus, 50 iterations of each benchmark were performed. For each experiment, the first

ten iterations were discarded to eliminate undesired warm-up effects. Finally, all results

discussed bellow present a standard error inferior to 1%.

Table 3 – Micro-benchmark parameters for experiments.

Portal Mailbox
#Clusters Data Size #Clusters Data Size

Broadcast 1 IO, 16 CC 4, 8, 16, 32, 64 KB 1 IO, 1 to 16 CC 120 B
Gather 1 IO, 16 CC 4, 8, 16, 32, 64 KB 1 IO, 1 to 16 CC 120 B
AllGather 1 IO, 16 CC 4, 8, 16, 32, 64 KB 1 IO, 1 to 16 CC 120 B
Ping-Pong 1 IO, 16 CC 4, 8, 16, 32, 64 KB 1 IO, 1 to 16 CC 120 B

Source: Developed by the author.

5.2 EXPERIMENTAL RESULTS

In this section, we present our experimental results. First, we analyze outcomes

for Portal service, and next we move to a discussion on the results for the Mailbox service.

5.2.1 Portal Throughput Analysis

Figure 23 presents the throughput of the Portal in MB/s relative to the different

amounts of data transmitted. Results exhibit three distinct behaviors in the experiments.

72

Figure 23 – Throughput of the Portal.

●

●

●
●

●

4

8

16

32

64

128

256

512

4 8 16 32 64

Buffer Size (KB)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)
● AllGather

Broadcast

Gather

Ping−Pong

Source: Develop by the Author.

First, the Broadcast was expected to have the worst transmission rate due to the use of

a single data transmitter. Since the measurement was done on the receiver side, the last

slave had to wait for the master to transmit data to all other nodes, considerably reducing

the transfer rate in the Broadcast. Second, the Gather and Ping-Pong routines exhibited

similar results, overlapping each other on the chart. This similarity is because the master

node receives multiple requests and handles them serially one by one. The master node

dictated the data flow in both benchmarks because transmission is only performed when

allowed by the receiver. Finally, the AllGather routine exhibited the best results because

of the parallelism of communications. Each communication pair is done in parallel and

multiple read/write requests do not happen at the same time on a node, softening the

interruption of the master core. In the context of OSs, we have subsystems requiring large

data transfers, such as file and paging systems. In this case, observing the slope of the

lines, we can infer that the 8 KB and 16 KB sizes favor Portal throughput. Overall, the

results were as expected, but we believe that solving the problem using DMA accelerators

described in Subsection 4.1.1 could significantly improve Portal throughput.

5.2.2 Mailbox Latency Analysis

Figure 24 presents the latency of the Mailbox in milliseconds relative to the

number of clusters involved. First, Gather routine, one of the essential routines, had the

best results because receiving the messages occurs in parallel. Thus, the cost after the

first message is the overhead of the kernel call itself, not the communication. Second, the

AllGather routine exhibited similar behavior to Gather because sending messages occurs

before the reading begins. So, when the clusters start reading, the latest messages are

already coming. The Broadcast routine also suffers from the same problem as the Portal

routine, because there is only one node sending the messages. Finally, the overload of

73

Figure 24 – Latency of the Mailbox.

● ●
● ●

●
●

● ●
●

●
● ●

●
● ● ●

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Slaves

L
a
te

n
c
y
 (

m
s
)

● AllGather

Broadcast

Gather

Ping−Pong

Source: Develop by the Author.

sending messages to requesters caused the linear behavior of the Ping-Pong routine. In

this case, Ping-Pong has a slightly higher cost than the sum of Gather and Broadcast

costs, because, despite the benefits of receiving requests in parallel, the master spends

most of its time handling requests sequentially. Overall, Broadcast, Gather, and AllGather

showed how message-passing distributed algorithms can be efficiently supported in Nanvix

Multikernel. Ping-Pong, in turn, highlights the latency of communication between Nanvix

subsystems with remote kernels, encouraging the potential for improvement using DMA

accelerators.

75

6 CONCLUSIONS

Initially, this work presented a historical evolution of processors from single core

to manycore. By demonstrating the relationship between the growth of the number of

cores and energy consumption, it was discussed how academia and industry began to de-

velop alternatives to alleviate the technological barriers that have emerged. However, even

new processors that emerge and stand out because of their performance and power con-

sumption lack on programmability and portability, because of their architectural features,

such as hybrid programming model, constrained memory subsystems, no cache coherency,

and heterogeneous configurations. Part of the difficulty stems from the incompleteness of

existing OSs and runtimes in dealing with severe architectural constraints.

In this work, we present an inter-cluster communication facility designed around

the main points in the development of an OS for lightweight manycores. As a basis, we dis-

cussed hardware and software aspects of parallel and distributed architectures. Different

models of OS approaches that can use the communication facility have been presented.

Thus, to provide the essential functionalities for such OSs, three communication abstrac-

tions have been proposed for the Nanvix HAL with the concern of providing QoS: Sync,

useful to create distributed barriers; Mailbox , which provides the exchange of small mes-

sages with flow control; and Portal, which allows the exchange of arbitrary amounts of

data between two clusters.

Another contribution of this work was the communication services for an OS

based on the microkernel approach (Nanvix). These services can multiplex the resources

exposed by HAL and perform the verification of the parameters for each abstraction.

In general, these services securely export the communication abstractions to the user,

benefiting from the non-competition of OS internal structures, because of the separation

of master and slave responsibilities.

The contributions of this dissertation are included in the investment of a dis-

tributed operating system. Several works are underway in this context, including a full

port of the MPI and implementation of a distributed paging system that will rely on the

proposed abstractions. As future work at the HAL level, we will seek to properly utilize ex-

isting DMA µthreads to perform asynchronous submissions and, consequently, to increase

the performance of the abstractions. At the microkernel level, we will study the virtualiza-

tion of the structures of each service, and improve multiplexing algorithms, enriching the

programmability of applications. The results present how well-known distributed algo-

rithms can be efficiently supported by Nanvix OS and encourage improvements provided

by the proper use of DMA accelerators.

77

BIBLIOGRAPHY

BARBALACE, A. et al. Popcorn: Bridging the Programmability Gap in Heterogeneous-
ISA Platforms. In: Proceedings of the 10th European Conference on Computer
Systems. Bordeaux, France: ACM, 2015. (EuroSys ’15), p. 1–16. ISBN 978-1-4503-
3238-5. Disponível em: http://dl.acm.org/citation.cfm?doid=2741948.2741962.

BAUMANN, A. et al. The multikernel: A new OS architecture for scalable multicore
systems. In: SOSP ’09 Proceedings of the 22nd ACM Symposium on Operating
Systems Principles. ACM, 2009. (SOSP ’09), p. 29–44. ISBN 978-1-60558-752-3.
Disponível em: https://dl.acm.org/citation.cfm?doid=1629575.1629579.

CASTRO, M. et al. Seismic wave propagation simulations on low-power and
performance-centric manycores. Parallel Computing, v. 54, p. 108–120, 2016. ISSN
01678191.

CHRISTGAU, S.; SCHNOR, B. Exploring One-Sided Communication and Synchroniza-
tion on a Non-Cache-Coherent Many-Core Architecture. Concurrency and Compu-
tation: Practice and Experience (CCPE), v. 29, n. 15, p. e4113, mar. 2017. ISSN
1532-0626. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4113.

DINECHIN, B. D. de et al. A Distributed Run-Time Environment for the Kalray
MPPA-256 Integrated Manycore Processor. In: Procedia Computer Science.
Barcelona, Spain: Elsevier, 2013. (ICCS ‘13, v. 18), p. 1654–1663. ISBN 1877-0509.
Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S1877050913004766.

FLYNN, M. J. Some computer organizations and their effectiveness. IEEE Trans.
Comput., IEEE Computer Society, Washington, DC, USA, v. 21, n. 9, p. 948–960, set.
1972. ISSN 0018-9340. Disponível em: http://dx.doi.org/10.1109/TC.1972.5009071.

FRANCESQUINI, E. et al. On the Energy Efficiency and Performance of Irregular Appli-
cation Executions on Multicore, NUMA and Manycore Platforms. Journal of Parallel
and Distributed Computing (JPDC), v. 76, n. C, p. 32–48, fev. 2015. ISSN 0743-
7315. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0743731514002093.

FREITAS, H. C. de. Arquitetura de NoC Programável Baseada em Múltiplos
Clusters de Cores para Suporte e Padrões de Comunicação Coletiva. Tese
(Doutorado) — Programa de Pós-Graduação em Computação, UFRGS, Porto Alegre, 6
2009. An optional note.

GAMELL, M. et al. Exploring Cross-Layer Power Management for PGAS Applications
on the SCC Platform. In: Proceedings of the 21st international symposium on
High-Performance Parallel and Distributed Computing. Delft, The Netherlands:
ACM, 2012. (HPDC ‘12), p. 235–246. ISBN 978-1-4503-0805-2. Disponível em:
http://dl.acm.org/citation.cfm?doid=2287076.2287113.

KELLY, B.; GARDNER, W.; KYO, S. AutoPilot: Message Passing Parallel
Programming for a Cache Incoherent Embedded Manycore Processor. In: Proceedings
of the 1st International Workshop on Many-core Embedded Systems. Tel-Aviv,
Israel: ACM, 2013. (MES ‘13), p. 62–65. ISBN 978-1-4503-2063-4. Disponível em:
http://dl.acm.org/citation.cfm?doid=2489068.2491624.

78

KENDALL, W.; NATH, D.; BLAND, W. A Comprehensive MPI Tutorial
Resource. 2019. https://mpitutorial.com/, Last accessed on 2019-10-22.

KLUGE, F.; GERDES, M.; UNGERER, T. An Operating System for Safety-Critical
Applications on Manycore Processors. In: 2014 IEEE 17th International
Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing. Reno, Nevada, USA: IEEE, 2014. (ISORC ‘14), p. 238–245. ISBN
978-1-4799-4430-9. Disponível em: http://ieeexplore.ieee.org/document/6899155/.

KOGGE, P. et al. Exascale computing study: Technology challenges in achieving
exascale systems. Defense Advanced Research Projects Agency Information
Processing Techniques Office (DARPA IPTO), Techinal Representative, v. 15,
01 2008.

KURTH, A. et al. Hero: Heterogeneous embedded research platform for exploring
risc-v manycore accelerators on fpga. In: Proceedings of Computer Architecture
Research with RISC-V Workshop (CARRV’ 17). [S.l.: s.n.], 2017. First Workshop
on Computer Architecture Research with RISC-V (CARRV 2017); Conference Location:
Boston, MA, USA; Conference Date: October 14, 2017.

MOORE, G. E. Cramming more components onto integrated circuits. Electronics,
v. 38, n. 8, April 1965.

NEUMANN, J. v. First Draft of a Report on the EDVAC. [S.l.], 1945.

NIGHTINGALE, E. et al. Helios: Heterogeneous Multiprocessing with Satellite Kernels.
In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles. Big Sky, Montana, USA: ACM, 2009. (SOSP ‘09), p. 221–234. ISBN
978-1-60558-752-3. Disponível em: http://doi.acm.org/10.1145/1629575.1629597.

OLOFSSON, A.; NORDSTROM, T.; UL-ABDIN, Z. Kickstarting High-Performance
Energy-Efficient Manycore Architectures with Epiphany. In: 2014 48th Asilomar
Conference on Signals, Systems and Computers. Pacific Grove, California, USA:
IEEE, 2014. (ACSSC ‘14), p. 1719–1726. ISBN 978-1-4799-8297-4. Disponível em:
http://ieeexplore.ieee.org/document/7094761/.

PENNA, P. H. et al. Using the Nanvix Operating System in Undergraduate Operating
System Courses. In: 2017 VII Brazilian Symposium on Computing Systems
Engineering. Curitiba, Brazil: IEEE, 2017. (SBESC ‘17), p. 193–198. ISBN
978-1-5386-3590-2. Disponível em: http://ieeexplore.ieee.org/document/8116579/.

PENNA, P. H.; FRANCIS, D.; SOUTO, J. The Hardware Abstraction Layer of
Nanvix for the Kalray MPPA-256 Lightweight Manycore Processor. In: Conférence
d’Informatique en Parallélisme, Architecture et Système. Anglet, France: [s.n.],
2019. Disponível em: https://hal.archives-ouvertes.fr/hal-02151274.

PENNA, P. H. et al. Using The Nanvix Operating System in Undergraduate Operating
System Courses. In: VII Brazilian Symposium on Computing Systems
Engineering. Curitiba, Brazil: [s.n.], 2017. Disponível em: https://hal.archives-
ouvertes.fr/hal-01635880.

PENNA, P. H. et al. On the Performance and Isolation of Asymmetric Microkernel
Design for Lightweight Manycores. In: SBESC 2019 - IX Brazilian Symposium

79

on Computing Systems Engineering. Natal, Brazil: [s.n.], 2019. Disponível em:
https://hal.archives-ouvertes.fr/hal-02297637.

PENNA, P. H. et al. An Operating System Service for Remote Memory Accesses in
Low-Power NoC-Based Manycores. n. October, 2018.

PENNA, P. H. et al. RMem: An OS Service for Transparent Remote Memory
Access in Lightweight Manycores. In: MultiProg 2019 - 25th International
Workshop on Programmability and Architectures for Heterogeneous
Multicores. Valencia, Spain: [s.n.], 2019. (High-Performance and Embedded
Architectures and Compilers Workshops (HiPEAC Workshops)), p. 1–16. Disponível em:
https://hal.archives-ouvertes.fr/hal-01986366.

PENNA, P. H. et al. An os service for transparent remote memory accesses in noc-based
lightweight manycores. Poster. 2018.

RHODEN, B. et al. Improving Per-Node Efficiency in the Datacenter with New
OS Abstractions. In: Proceedings of the 2nd ACM Symposium on Cloud
Computing. Cascais, Portugal: ACM, 2011. (SoCC ‘11), p. 1–8. ISBN 978-1-4503-0976-
9. Disponível em: https://dl.acm.org/citation.cfm?id=2038941.

RUPP, K. Microprocessor Trend Data. 2018.
https://github.com/karlrupp/microprocessor-trend-data, Last accessed on 2019-
06-26.

SERRES, O. et al. Experiences with UPC on TILE-64 Processor. In: Aerospace
Conference. Big Sky, Montana, USA: IEEE, 2011. (AERO ‘11), p. 1–9. ISBN
978-1-4244-7350-2. Disponível em: http://ieeexplore.ieee.org/document/5747452/.

SILBERSCHATZ, A.; GALVIN, P. B.; GAGNE, G. Operating System Concepts.
9th. ed. [S.l.]: Wiley Publishing, 2012. ISBN 1118063333, 9781118063330.

TANENBAUM, A. S.; BOS, H. Modern Operating Systems. 4th. ed. Upper Saddle
River, NJ, USA: Prentice Hall Press, 2014. ISBN 013359162X, 9780133591620.

WALLENTOWITZ, S. et al. Open Tiled Manycore System-on-Chip. [S.l.], 2013.
1–7 p. Disponível em: http://arxiv.org/abs/1304.5081.

WENTZLAFF, D.; AGARWAL, A. Factored Operating Systems (FOS): The Case
for a Scalable Operating System for Multicores. ACM SIGOPS Operating
Systems Review, v. 43, n. 2, p. 76–85, abr. 2009. ISSN 0163-5980. Disponível em:
https://dl.acm.org/citation.cfm?doid=1531793.1531805.

WENTZLAFF, D. et al. Fleets: Scalable Services in a Factored Operating
System. 2011. 1–13 p. Disponível em: https://dspace.mit.edu/handle/1721.1/61640.

WICKRAMASINGHE, U.; LUMSDAINE, A. A survey of methods for collective
communication optimization and tuning. CoRR, abs/1611.06334, 2016. Disponível em:
http://arxiv.org/abs/1611.06334.

WIKIPEDIA. Flynn’s taxonomy. 2019.
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy, Last accessed on 2019-06-
30.

80

WISNIEWSKI, R. et al. mOS: An Architecture for Extreme-Scale Operating
Systems. In: ROSS ’14 Proceedings of the 4th International Workshop
on Runtime and Operating Systems for Supercomputers. Munich, Ger-
many: ACM, 2014. (ROSS ’14), p. 1–8. ISBN 978-1-4503-2950-7. Disponível em:
http://dl.acm.org/citation.cfm?doid=2612262.2612263.

ZHENG, F. et al. Cooperative Computing Techniques for a Deeply Fused and
Heterogeneous Many-Core Processor Architecture. Journal of Computer Science
and Technology (JCST), v. 30, n. 1, p. 145–162, jan. 2015. ISSN 1000-9000.
Disponível em: https://link.springer.com/article/10.1007%2Fs11390-015-1510-9.

81

APPENDIX A – SCIENTIFIC ARTICLE

Mecanismos de Comunicação entre Clusters para Lightweight

Manycores no Nanvix OS

João Vicente Souto1, Pedro H. Penna2, Márcio Castro1, Henrique Freitas3

1 Laboratório de Pesquisa em Sistemas Distribuı́dos (LaPeSD)
Universidade Federal de Santa Catarina (UFSC) – Florianópolis, Brasil

2Laboratoire d’Informatique de Grenoble (LIG)
Université Grenoble Alpes (UGA) – Grenoble, França

3Grupo de Arquitetura de Computadores e Processamento Paralelo (CArT)
Pontifı́cia Universidade Católica de Minas Gerais (PUC Minas) – Belo Horizonte, Brasil

joao.vicente.souto@grad.ufsc.br,pedro.penna@univ-grenoble-alpes.fr,

marcio.castro@ufsc.br,cota@pucminas.br

Abstract. Development environments for lightweight manycores lack to provide
a good relationship between programmability and portability. In this context,
this work proposes mechanisms of communication between clusters for a dis-
tributed operating system that are accurate, easy-to-use, scalable, and easily
portable. The results show that it is possible to support collective communica-
tion algorithms efficiently.

Resumo. Ambientes de desenvolvimento para lightweight manycores pecam em
prover uma boa relação entre programabilidade e portabilidade. Neste con-
texto, este artigo propõe mecanismos de comunicação entre clusters para um
sistema operacional distribuı́do que sejam precisos, fáceis de usar, escalonáveis
e facilmente portáveis. Os resultados mostram ser possı́vel suportar algoritmos
de comunicação colectiva de forma eficientemente.

1. Introdução

A próxima grande barreira de desempenho dos sistemas computacionais mo-
dernos será proveniente da relação entre poder de processamento e consumo
energético [Kogge et al. 2008]. Neste âmbito, processadores lightweight manycore sur-
giram para prover alto nı́vel de paralelismo com baixo consumo energético. Entretanto,
o desenvolvimento de aplicações para essa classe de processadores exibe diversos desa-
fios [Castro et al. 2016].

A Figura 1 ilustra as particularidades que diferem os lightweight manycores dos
multicores e manycores tradicionais. Especificamente, eles: (i) integram centenas de
núcleos de baixo potência agrupados em clusters, (ii) lidam com cargas de trabalho Mul-
tiple Instruction Multiple Data (MIMD), (iii) apresentam memória distribuı́da através de
restritivas memórias locais e falta de coerência de cache, (iv) dependem de uma Network-
on-Chip (NoC) para comunicação entre clusters, forçando uma programação hı́brida entre
memória compartilhada e troca de mensagens e (v) possuem componentes heterogêneos.

Parte dos desafios encontrados ao se trabalhar com lightweight manycores de-
riva diretamente dos runtimes e Sistemas Operacionais (SOs) existentes que não lidam
corretamente com suas particularidades. Deste modo, eles tornam o ambiente de desen-
volvimento mais oneroso e suscetı́vel a erros. No contexto de comunicações em SOs
para lightweight manycores, Kluge et al. [Kluge et al. 2014] projetaram um SO que provê

82

I/O
 C

lu
ste

r
corecore

SRAM

NoC

core

NoCDMA

D
R
A
M

D
e
v
ice

s

C
o
m
p
u
te
 C

lu
st
e
r

corecore

core core

SRAM

NoC

DMA

Figura 1. Visão geral de um lightweight manycore [Penna et al. 2019b].

canais de comunicação unidirecionais com suporte a configuração de polı́ticas de Quali-
dade de Serviço (QoS). Wentzlaff et al. [Wentzlaff et al. 2011], por sua vez, propuseram
uma abordagem de comunicação entre processos através da troca de mensagens base-
ado na abstração de mailbox. Os trabalhos mostraram que estes mecanismos básicos de
comunicação podem ser facilmente portados para diferentes arquiteturas de lightweight
manycores, além de apresentarem boa escalabilidade.

O presente trabalho se insere neste contexto de comunicação em chip e está incluso
na pesquisa e desenvolvimento de um novo SO distribuı́do para lightweight manycores.
A principal contribuição deste artigo é a proposta de mecanismos de comunicação entre
clusters que buscam ser mais precisos, fáceis de usar, escalonáveis, e facilmente portáveis.

O restante do trabalho está organizado da seguinte maneira. A Seção 2 apresenta o
Nanvix, um SO com foco em lightweight manycores, e o processador Kalray MPPA-256,
o qual foi utilizado como caso de estudo. A Seção 3 e Seção 4 apresentam os mecanismos
propostos e a sua avaliação, respectivamente. Por fim, a Seção 5 apresenta as conclusões.

2. Fundamentação Teórica

Esta seção apresenta uma breve descrição do SO e do lightweight manycore utilizados
neste trabalho.

2.1. O Sistema Operacional Nanvix

O Nanvix1 é um projeto de código aberto e colaborativo que atende a ausência de SOs
que lidem com as particularidades dos lightweight manycores. Ele é um SO de propósito
geral que busca uma boa relação entre programabilidade e portabilidade, além de ser
compatı́vel com o padrão Portable Operating System Interface (POSIX). Ele adota uma
estrutura multikernel, onde os serviços do SO são processos que rodam isoladamente
atendendo requisições de processos de usuário através da troca de mensagens. Dentro
de um cluster é utilizado um microkernel assı́ncrono para amenizar a interferência entre
os núcleos [Penna et al. 2019b]. Na camada mais baixa, o Nanvix exporta uma visão
padronizada e concisa desses processadores através de uma Camada de Abstração de
Hardware (HAL) [Penna et al. 2019a]. O presente trabalho está incluso nas camadas do
microkernel e HAL.

2.2. Processador Lightweight Manycore MPPA-256

O Kalray MPPA-256 [de Dinechin et al. 2013] é uma das arquiteturas suportadas pelo
Nanvix OS e será utilizada neste artigo como caso de estudo. Especificamente, ele integra
288 núcleos de propósito geral, agrupados em 16 Clusters de Computação (CCs), desti-
nados a computação útil, e 4 Clusters de I/O (IOs) responsáveis pela comunicação com

1https://github.com/nanvix/

83

periféricos. Para comunicação entre clusters, o Kalray MPPA-256 apresenta uma NoC
para dados e outra para comandos, denominadas Data Network-on-Chip (D-NoC) e Con-
trol Network-on-Chip (C-NoC), respectivamente. Cada uma das NoCs apresenta carac-
terı́sticas distintas, destacando-se as diferentes quantidades de recursos de comunicação
(RX e TX) e a quantidade de dados transmitidos (apenas 64 bits de cada vez pela C-NoC).

3. Proposta de Mecanismos de Comunicação entre Clusters

Os mecanismos de comunicação entre clusters propostos neste trabalho são constituı́dos
de três abstrações: Sync, Mailbox e Portal. A definição dessas abstrações generali-
zam três comportamentos que frequentemente aparecem em sistemas distribuı́dos, i.e.,
sincronizações, trocas de mensagens de controle e grandes trocas de dados. Desta forma,
é possı́vel exportar uma visão abstrata e padronizada dos recursos de comunicação exis-
tentes nas mais diversas arquiteturas.

Primeiramente, a abstração Sync provê a criação de barreiras distribuı́das. Seu
comportamento se assemelha ao POSIX Signals. Existem dois modos de sincronização.
Primeiro, o modo ALL TO ONE define que um cluster mestre deve aguardar N

notificações de N escravos. Segundo, no modo ONE TO ALL o mestre notifica N escra-
vos, liberando-os do bloqueio. A implementação no Kalray MPPA-256 utilizou apenas
recursos da C-NoC, onde o principal argumento é a lista dos clusters envolvidos. A pri-
meira posição nesta lista deve ser ocupada obrigatoriamente pelo mestre, a partir do qual
será inferido quais recursos de hardware deverão ser utilizados. Deste modo, é possı́vel
abstrair o conhecimento e manipulação do hardware pelo usuário.

Segundo, a abstração Mailbox provê a troca de mensagens de tamanho fixo. Ela é
similar ao POSIX Message Queue, onde o receptor aloca espaço suficiente para receber N
mensagens. O emissor, por sua vez, envia uma mensagem para um local pré-determinado.
O comportamento da Mailbox define um controle de fluxo permitindo a emissão de apenas
uma mensagem de cada vez. Quando o receptor consumir uma mensagem, ele notificará
o emissor que a enviou. A implementação utilizou recursos da C-NoC e da D-NoC. A
fila de mensagens foi alocada no espaço de memória do kernel para abstrair o controle e
manipulação das mensagens do usuário.

Por fim, a abstração Portal permite a troca de quantidades arbitrárias de dados
entre dois clusters. Similar ao POSIX Pipe, a comunicação é unidirecional. O Portal,
assim como a Mailbox, implementa um controle de fluxo para garantir a QoS. Neste
controle, o emissor só enviará os dados quando o receptor estiver apto a receber. Deste
modo, a implementação do Portal, utilizando recursos da C-NoC e D-NoC, eliminou a
necessidade de cópias intermediárias, onde a comunicação é configurada com endereços
de memória do próprio espaço de usuário.

4. Resultados Experimentais

Para avaliar os serviços de transferência de dados, foram elaboradas quatro rotinas de
comunicação coletiva que reproduzem comportamentos existentes no Nanvix OS, i.e.,
Broadcast, Gather, AllGather e Ping-Pong [Wickramasinghe and Lumsdaine 2016]. Para
garantir 95% de confiança, foram realizadas 50 replicações, descartando-se as primeiras
10 para ignorar o perı́odo de aquecimento e conduzindo a um erro padrão inferior a 1%.

Os experimentos do Portal avaliaram a taxa de transferência da comunicação para
um número constante de clusters envolvidos (1 IO e 16 CCs), variando-se a quantidade
de dados transmitidos (4 KB até 64 KB). Os resultados na Figura 2(a) exibem três com-
portamentos. Primeiro, devido ao gargalo do único emissor, o Broadcast apresentou os

84

●

●
●

● ●

4

8

16

32

64

128

256

512

4 8 16 32 64

● AllGather

Broadcast

Gather

Ping−Pong

T
a
x
a
 d

e
T

ra
n
s
fe

rê
n
c
ia

 (
M

B
/s

)

Tamanho do Buffer (KB)

(a) Portal.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8 9 1011 12 1314 15 16

● AllGather

Broadcast

Gather

Ping−Pong

L
a
tê

n
c
ia

 (
m

s
)

Número de Escravos

(b) Mailbox.

Figura 2. Resultados experimentais.

piores resultados. Segundo, o Gather e Ping-Pong mostram resultados similares porque o
mestre da operação dita o fluxo das comunicações devido ao QoS. Por último, o AllGather
obteve os melhores resultados porque se benificia do paralelismo das comunicações. No
contexto do Nanvix OS, é possı́vel inferir que os tamanhos entre 8 KB e 16 KB favorecem
a taxa de transferência do Portal no uso pelos subsistemas do SO.

Os experimentos da Mailbox avaliaram a latência da comunicação. Foi man-
tido constante o tamanho da mensagem (120 B) e variou-se o número de clusters de
computação envolvidos (de 1 à 16). A Figura 2(b) também apresentaram três compor-
tamentos. Primeiro, o Gather e AllGather se benificiaram do recebimento paralelo das
mensagens e obtiveram as menores latências. Segundo, o comportamento do Broadcast
sofre do mesmo problema do Portal. Por último, apesar do Ping-Pong também se be-
neficiar do recebimento paralelo, o mestre deve atender sequencialmente cada uma das
mensagens, por isso apresentou os piores resultados.

5. Conclusão

Neste trabalho, foi proposto mecanismos de comunicação entre cluster para processa-
dores lightweight manycores no Nanvix OS. Os resultados mostraram como algoritmos
distribuı́dos bem conhecidos podem ser eficientemente suportados pelo Nanvix OS. Como
trabalhos futuros no contexto do Nanvix OS, pretende-se realizar o porte do Message Pas-
sing Interface (MPI) sobre os mecanismos de comunicação propostos.

Referências

Castro, M., Francesquini, E., Dupros, F., Aochi, H., Navaux, P. O., and Méhaut, J.-F.
(2016). Seismic wave propagation simulations on low-power and performance-centric
manycores. Parallel Computing, 54:108–120.

de Dinechin, B. D., de Massas, P. G., Lager, G., Léger, C., Orgogozo, B., Reybert, J., and
Strudel, T. (2013). A Distributed Run-Time Environment for the Kalray MPPA-256
Integrated Manycore Processor. In Procedia Computer Science, volume 18 of ICCS
‘13, pages 1654–1663, Barcelona, Spain. Elsevier.

Kluge, F., Gerdes, M., and Ungerer, T. (2014). An Operating System for Safety-Critical
Applications on Manycore Processors. In 2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC ‘14,
pages 238–245, Reno, Nevada, USA. IEEE.

Kogge, P., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P.,
Harrod, W., Hiller, J., Keckler, S., Klein, D., and Lucas, R. (2008). Exascale compu-
ting study: Technology challenges in achieving exascale systems. Defense Advanced

85

Research Projects Agency Information Processing Techniques Office (DARPA IPTO),
Techinal Representative, 15.

Penna, P. H., Francis, D., and Souto, J. (2019a). The Hardware Abstraction Layer of
Nanvix for the Kalray MPPA-256 Lightweight Manycore Processor. In Conférence
d’Informatique en Parallélisme, Architecture et Système, Anglet, France.

Penna, P. H., Souto, J., Lima, D. F., Castro, M., Broquedis, F., Freitas, H., and Mehaut,
J.-F. (2019b). On the Performance and Isolation of Asymmetric Microkernel Design
for Lightweight Manycores. In SBESC 2019 - IX Brazilian Symposium on Computing
Systems Engineering, Natal, Brazil.

Wentzlaff, D., Gruenwald, C., Beckmann, N., Belay, A., Kasture, H., Modzelewski, K.,
Youseff, L., Miller, J., and Agarwal, A. (2011). Fleets: Scalable services in a factored
operating system.

Wickramasinghe, U. and Lumsdaine, A. (2016). A survey of methods for collective com-
munication optimization and tuning. CoRR, abs/1611.06334.

86

87

APPENDIX B – SOURCE CODE

B.1 NANVIX PROJECT STRUCTURE

The development of a general-purpose distributed operating system for lightweight

manycores processors, called Nanvix OS, includes the source code for this undergradu-

ate dissertation. Nanvix OS is the result of an open-source, collaborative project made

available on the Github platform. Since it is not semantically interesting to have only

part of the source code and it is impossible to insert all OS code into this document, this

appendix details where find and test the developed code. The Nanvix Project is detailed

in Section 2.4.

Specifically, there is a separate Github repository for each abstraction layer that

is maintained and updated by Nanvix contributors. Submodules, supported by the git

tool, create an implicit dependency hierarchy between the Nanvix repositories. Thus,

each layer that depends on another has guarantees of its operation and is exempt from

its implementation. Theses guarantees make the codes better manageable, modular, and

better portable. All repositories contain test sets (validation and fault tests) to ensure

the correct implementation of exported interfaces on the several supported architectures.

All repositories follow a branch naming convention, where only two branches

are, in fact, essential. First, the master branch contains the most stable version of the

system and marks the significant releases of Nanvix versions. Second, the unstable branch

contains the most current version, but there may still exist bugs or required parts missing.

The other branches are intended to implement new features, improve existing ones, or

fix bugs. These other branches are merged into the unstable branch when passing all

regression tests.

The following subsections, ordered by dependency, detail the four repositories

that contain the source code of this undergraduate dissertation.

B.1.1 Microkernel-Benchmarks Repository

The Microkernel-Benchmarks implements the micro-benchmarks that stimulate

communication services. Specifically, there are four micro-benchmarks for each data trans-

fer service, detailed in Section 5.1. In this repository, there are also scripts for compiling

and running experiments on the Kalray MPPA-256 platform.

The developed code version are available at https://github.com/joaovicentesouto/

microkernel-benchmarks, in the collective-comm-routines branch or, specifically, in the

commit aafd9a70f8188105efabd651050bc7cafc39d343. Figure B-1 presents, in the form of

a directory tree, all files that are fully, or partially, developed. The include folder con-

tains only one file with static experiment settings. The src folder is made up of auxiliary

files and the micro-benchmarks themselves.

88

Figure B-1 – Directory tree with developed source codes in Microkernel-Benchmarks repository.

microkernel-benchmarks
include kbench.h

src utils args.c

barrier.c

crt0.c

node.c

results.c

string.c

times.c

mailbox allgather main.c

broadcast main.c

gather main.c

pingpong main.c

portal allgather main.c

broadcast main.c

gather main.c

pingpong main.c

Source: Developed by the author.

B.1.2 LibNanvix Repository

LibNanvix defines and exports user interfaces for Nanvix Microkernel services.

Implementations, in turn, have the responsibility of making requests to the master core

through the kernel call interface exported by the microkernel repository, detailed in Sub-

section 2.4.2. Briefly, this repository is the complement of the Microkernel repository.

Figure B-2 illustrates, as a directory tree, all files developed of the communication

abstraction user interface. First, the files in the include folder define the user interfaces.

Second, files within the ikc folder perform checks to identify potential problems. Finally,

the test folder contains the validation and correctness tests of user abstractions. The

code version is available in commit a9dcb35dd8727aefe41d316ac2609c88073e160e at https:

//github.com/nanvix/libnanvix.

89

Figure B-2 – Directory tree with developed source codes in LibNanvix repository.

libnanvix

include/nanvix/sys mailbox.h

portal.h

sync.h

noc.h

src libnanvix/ikc mailbox.c

portal.c

sync.c

noc.c

test kmailbox.c

kportal.c

ksync.c

knoc.c

Source: Developed by the author.

B.1.3 Microkernel Repository

Microkernel, in the context of the asymmetric microkernel, covers the responsi-

bilities of the master core. This repository contains all internal microkernel structures,

manipulation functions, and master-side kernel calls. In association with LibNanvix, they

provide the skeletons of system abstractions within the cluster of a lightweight manycores.

For more details, see Subsection 2.4.2.

Figure B-3 exemplifies the three developed file sets. First, the include folder

defines static kernel configurations; exports internal call interfaces, i.e., executed by the

master; and external calls, i.e., the kernel call system. Second, the files within the noc

folder integrate the internal structures and proper protection, manipulation, and mul-

tiplexing functions. Finally, the sys folder contains the implementation of kernel calls.

The code version is available in commit a9826dec62baa3fe47ab3a77b15f3ccfdd84b79a at

https://github.com/nanvix/microkernel.

B.1.4 Hardware Abstraction Layer (HAL) Repository

HAL defines and exports the lowest-level abstraction interfaces, detailed in Sub-

section 2.4.1. This repository deals directly with multiple supported architectures, cur-

90

Figure B-3 – Directory tree with developed source codes in Microkernel repository.

microkernel

include/nanvix syscall.h

mailbox.h

portal.h

sync.h

src/kernel noc mailbox.c

portal.c

sync.c

sys syscall.c

mailbox.c

portal.c

sync.c

noc.c

Source: Developed by the author.

rently including Kalray MPPA-256, OpTiMSoC, and HERO. An implementation on a

Unix OS has also been developed to allow easy debugging of the developed systems.

Figure B-4 illustrates the logical structure designed to facilitate HAL portability.

In this framework, there are levels that abstract the hardware layers from the essential ele-

ment (core) to the level that abstracts the architecture as a whole (target). Expressly, this

work was restricted to processor and target levels. The file hierarchy follows what is de-

scribed in the previous subsections, dividing the files into interfaces and implementations.

The code version is available in commit 1e7d3bc64decff023ac91cdecc2e0ac6c53ac946 at

https://github.com/nanvix/hal.

The interfaces are included in the include folder. However, there is a distinction

between exported interfaces and architecture-specific interfaces. The nanvix/hal folder

covers interfaces exported to other repositories, as well as static checking of specific inter-

faces. The hal/arch folder actually exports what architecture has hardware capabilities.

If it does not implement a hardware limitation feature, a default implementation will

be used. For each hardware interface defined in the hal/arch, there is a corresponding

source file (src folder). Specific implementations of Kalray MPPA-256 architecture, for

example, contain implementations of low-level communications, including handling and

manipulation of different existing NoCs. Finally, the test folder constitutes the integration

tests that validate the various implementations.

91

Figure B-4 – Directory tree with developed source codes in HAL repository.

hal

include nanvix/hal processor noc.h

clusters.h

target mailbox.h

portal.h

sync.h

hal/arch processor/bostan noc.h

clusters.h

noc tag.h

ctag.h

dtag.h

dma.h

target/kalray/mppa256 mailbox.h

portal.h

sync.h

src hal/arch processor/bostan dma.c

noc.c

ctag.c

dtag.c

clusters.c

target/mppa256 mailbox.c

portal.c

sync.c

test processor noc.c

cnoc.c

dnoc.c

clusters.c

target mailbox.c

portal.c

sync.c

Source: Developed by the author.

92

B.2 REGRESSION TESTING EXAMPLE

Listing B-1 exemplifies the running of user interfaces regression tests on the

Kalray MPPA-256 platform. A server that contains an installed Kalray MPPA-256 card

compiles and executes the tests remotely. The tests can still run locally using the Docker

tool, where a virtual machine simulates one of the architectures supported by Nanvix OS.

Listing B-1 – Bash script for regression testing on the MPPA-256 platform.

1 #!/bin/bash

2 # A Shell Script To Runs Regression Tests on MPPA-256

3 # Nanvix Project - 2019

4

5 # Defines the target architecture.

6 export TARGET=mppa256

7

8 # Download the LibNanvix repository.

9 git clone https://github.com/nanvix/libnanvix.git

10

11 # Enter the folder containing the source code.

12 cd libnanvix

13

14 # Switch to the version developed in this work.

15 git checkout a9dcb35dd8727aefe41d316ac2609c88073e160e

16

17 # Download submodules recursively.

18 git submodule update --init --recursive

19

20 # Compile the dependencies.

21 make contrib

22

23 # Compile, link to libraries, and create the executable.

24 make all

25

26 # Runs the regression tests.

27 make test

Source: Developed by the author.

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Introduction
	Goals
	Main Goal
	Specific Goals

	Organization Of The Work

	Background
	Multiprocessors
	Multiprocessor Hardware
	Multiprocessor Operating Systems

	Multicomputers
	Multicomputer Hardware
	Low-Level Communication Software
	User-Level Communication Software

	MPPA-256 Lightweight Manycore Processor
	Nanvix: An Operating System for Lightweight Manycores
	Nanvix Hardware Abstract Layer (HAL)
	Nanvix Microkernel
	Nanvix Multikernel

	Related Work
	Lightweight Manycore Processors
	Operating Systems for Manycores
	Discussion

	Development
	Low-Level Communication
	Kalray MPPA-256 Hardware Resources
	General Concepts of Communication Abstractions
	Sync Abstraction
	Mailbox Abstraction
	Portal Abstraction

	User-Level Communication
	Impacts of the Master-Slave Model
	Protection and Management
	Multiplexing
	Input/Output Control
	Validation and Correctness Tests

	Experiments
	Evaluation Methodology
	Micro-benchmarks
	Experimental Design

	Experimental Results
	Portal Throughput Analysis
	Mailbox Latency Analysis

	Conclusions
	Bibliography
	Scientific article
	Source Code
	Nanvix Project Structure
	Microkernel-Benchmarks Repository
	LibNanvix Repository
	Microkernel Repository
	Hardware Abstraction Layer (HAL) Repository

	Regression Testing Example

