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Abstract. An integrated strategy is proposed for the simulation of damage development
and crack propagation in concrete structures. In the initial stage of damage growth, the
concrete is considered to be macroscopically integer and is modeled by a non-symmetric
isotropic nonlocal damage model. The transition to the discrete cohesive crack model
depends on the local mesh size and is driven by an analytical estimate of the current
bandwidth. When a crack is introduced in the model an extended finite element strategy is
used to follow the propagation without modification of the background mesh. The proposed
methodology is tested on a notched tension specimen and then applied to the analysis of a
concrete gravity dam.
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1 INTRODUCTION

Existing large concrete dams often exhibit visible cracks which may be caused by
several circumstances, such as: alcali-aggregate reaction or other reactions with chemicals
contained in the basin water, pressurized water infiltrations, thermal effects either due
to the concrete maturing process or seasonal oscillations [1, 2, 3]. On the other hand,
exceptional loading conditions like, e.g., earthquakes, overtopping waves produced by
sudden floods, landslides or ground motions beneath the dam, may induce catastrophic
propagation of pre-existing cracks or may lead to the growth of damage in the concrete
body of the dam, with final nucleation of new cracks.

The current state-of-the-art in finite element technology envisages two approaches for
structural simulation of fracture processes: a continuum approach, where fracture is seen
as the end of a process of localization and accumulation of damage in a continuum,
without creating a real discontinuity in the material (see e.g. [4, 5, 6]); a discrete approach,
where a displacement discontinuity with an interface endowed with a cohesive constitutive
behaviour is artificially introduced in the model at a loading level, in a direction, with a
length and at a position which have to be determined according to physically motivated
criteria [7, 8, 9, 10].

Continuum approaches are based on the definition of a material model with softening
post-peak behaviour and therefore require a regularization to avoid pathological mesh de-
pendence. Among several alternatives, the nonlocal continuum approach can effectively
reproduce the damage process and its localization within a mesh-independent band, pro-
vided that the element size is small enough to resolve the band (at least three constant
strain elements within the band). Therefore, for a given mesh it is in principle possible to
define the minimum bandwidth which can be resolved with that mesh. When, due to the
development of damage, the bandwidth reduces below this threshold, the finite element
simulation becomes unreliable unless the mesh is refined. However, for real structures as
large concrete dams, the computational cost becomes soon unacceptable. Furthermore,
the discontinuous approach based on a cohesive crack model, which is certainly more con-
venient from a computational point of view, is unable to describe the first phase of diffused
structural damage. The alternative approach here followed consists of carrying out first a
continuum damage analysis until the bandwidth becomes smaller than the critical value
associated to the used mesh and then, only at that point, of introducing a discrete co-
hesive crack [11, 12]. An estimate of the localization bandwidth and conditions for the
transition from the continuum damage analysis to a damage analysis with a propagating
displacement discontinuity are proposed on the basis of an energy conservation criterion.
Numerical tests, including an application to a benchmark exercise recently proposed by
ICOLD, show the promising performances of the proposed methodology.
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2 PROBLEM FORMULATION

2.1 Bulk constitutive model

The material behavior of the bulk is described by a nonlocal isotropic damage model.
The model is based on the simplifying assumption, reasonable for quasi-brittle materials

under stress states of prevailing tension, that the only dissipation mechanism be tension
damage. The model can be enhanced by adding a compression damage mechanism as
proposed e.g. in [6]. The local format of the constitutive relations reads:

σ = (1 −D)E : ε (1)

f = 2µ2e : e−9K2a ε2
v + 3Kb ln

n

2

(
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εv − k lnn

(

c

1−D

)

≤ 0 (2)

Ḋ ≥ 0, fḊ = 0 (3)

where σ is the stress tensor, ε is the small strain tensor, E is the elasticity tensor, D
is the isotropic damage variable, µ and K are the elastic shear and bulk moduli of the
virgin material, e is the deviator of ε, εv is the volumetric strain, a, b, c, k and n are
material parameters defining the initial elastic domain f = 0 and its evolution. The
meridian section of the loading function f in the stress space is a hyperbola, with vertex
on the hydrostatic axis for b2 > 4ak and asintotes inclined of

√
a. Figure 1 shows the

initial loading function in the plane stress case for different values of coefficient a. The
evolution with damage of the elastic domain is governed by parameters c and n and follows
the same law proposed in [13]. Assuming continuous loading, the inelastic stress-strain
relation under uniaxial conditions can be obtained in closed form and reads
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where E is the Young modulus and ε0 is the linear elastic limit strain. The corresponding
stress-strain curves are shown in Figure 2 for different values of parameter n.

Nonlocality is introduced in the model by replacing in the loading function f the strain
invariants e : e and εv by their weighted averages, denoted by a superposed bar, defined
as follows

e : e (x) =

∫

Ω

W (x, s) e (s) : e (s) ds, ε̄v (x) =
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Figure 1: Loading function for different values of a.

where W (x, s) is the weight function, here assumed as the Gauss function, normalized
to be able to reproduce a constant field accounting for the effect of the boundary on the
interaction. In (6) l is a geometric parameter related to the width of the process zone, in
the terms which will be discussed in the next Section.

The nonlocal version of the model described above has the advantage that, despite
the nonlocality of the model, all constitutive calculations can be carried out locally at
each Gauss point separately ([14] and [15]). Other choices are also possible with different
physical and computational implications (see e.g. [16] for a review).

2.2 Critical damage and band direction

An effective indicator of the current bandwidth can be obtained studying the conditions
for the propagation of a harmonic stress wave of wave number q in a uniformly strained bar
of infinite length, with a nonlocal material behavior, as presented in [17]. The conditions
under which the wave can propagate along the bar, i.e. the conditions ensuring a real
phase velocity, are sought. The wave propagation analysis follows exactly the same path
explained in [17] and even though the model here considered is nonsymmetric in tension
and compression, the final estimate of the bandwidth turns out to be the same. The
critical value of q, or equivalently the critical wave length λcr = 2π

qcr
such that only waves

with wavelength λ < λcr do propagate results

λcr =
√

2πl

[

− ln

(

n

2
ln−1 c
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)]−0.5

(7)

4



Claudia Comi, Stefano Mariani and Umberto Perego

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

0.5

1

1.5

2

2.5

3

3.5

n=12

n=6

n=3

σ

ε

Figure 2: Uniaxial stress-strain curves.

Waves with λ > λcr cannot propagate and the strain field remains uniform. Therefore,
the width of the localization band is directly related to the maximum wavelength λcr.
According to equation (7), this internal length is a positive, decreasing function of damage
tending to zero as damage tends to one, as shown in Figure 3.
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Figure 3: Evolution of the bandwidth with damage.

Even though the hypotheses under which the expression (7) has been derived are very
restrictive (one dimensional problem, bar of infinite length, homogeneous initial state) it
provides a rough but useful estimate of the bandwidth, which can be used to assess the
usability of the current mesh in relation to the current value of damage. Defining by se
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the typical size of the finite element in the localization zone, the minimum bandwidth
which can be resolved is given by Le = nese (with ne=3-5, meaning that at least 3-5
elements are needed across the localization band). Imposing that the critical wavelength
(i.e. the bandwidth) be bigger then Le, i.e.

λcr ≥ nese = Le (8)

and solving (7) for D, one can define a critical damage value

Dcr = 1 − c exp

[

−n
2

exp

(

2π2l2

L2
e

)]

(9)

Figure 3 shows schematically the definition of Dcr. This value turns out to depend on
the chosen mesh, through Le, it tends to one as the element size tends to zero and it also
depends on the material internal length l of the non-local model. Dcr is assumed as the
damage value at which the transition has to be triggered: when in an element one has
D > Dcr, a crack is introduced in that element according to the methodology illustrated
in Section 3.

The initial direction of the crack can be assigned on the basis of the damage field
accumulated in the continuum until that moment, requiring the crack to have the same
direction of the already formed damage band.

2.3 Cohesive law

A second important issue concerning the transition from the continuum to the discrete
approaches to fracture is the definition of the properties of the cohesive crack originating
from the continuum model at the moment of the transition. Restricting for simplicity
to mode I propagation, the constitutive behaviour of a cohesive crack is defined by a
relation between the normal component t of cohesive traction and the normal component
w of displacement discontinuity across the crack.

The strategy here proposed is to define the t vs w law in such a way that, at the mo-
ment of the transition, the residual energy which would be dissipated within the damage
localization band in the continuum approach (denoted by C), with a very fine mesh, is
the same which can be dissipated by a discrete crack introduced at that stage within the
band (approach denoted by C-D). Consider first the C-approach and a localization band
of width λcr (ε) with a local coordinate m in its cross direction. The total energy which
can be dissipated in the band is

GC =

∫ ∞

0

∫
λcr(ε)

2

−
λcr(ε)

2

σ dmdε (10)

Consider now the C-D approach. Since the crack is introduced forD = Dcr, corresponding
to ε = εc, the work density produced by the continuum problem up to this point is

G1 =

∫ εc

0

∫
λcr(ε)

2

−
λcr(ε)

2

σ dmdε (11)
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and the corresponding bandwidth is

λcr (εc) = Le (12)

When the discontinuity is introduced, the material in the surrounding band unloads and
the elastic energy recovered upon complete unloading is given by

G2 = Le

1

2
E (1 −Dcr) ε

2
c

To make the C-approach and the C-D-approach energetically equivalent, the crack model
should be endowed with a fracture energy

G3 = GC − (G1 −G2)

This can be obtained, e.g., by the following definition of the t vs w law under loading
conditions

t (w) =c exp
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(13)

Note that the above analysis holds for mode I only. The procedure can however be
generalized to more complex fracture processes.

3 FINITE ELEMENT IMPLEMENTATION

Let us consider the domain Ω: a mesh of constant strain triangles with nodes (be-
longing to set I) placed only at element vertices is adopted for the entire C-D analysis,
i.e for the continuous nonlocal damage analysis and for the subsequent cohesive crack
propagation analysis. When, according to the proposed transition criterion, a crack Γd

has to be introduced in the finite element model, an extended finite element strategy
(Belytschko and co-workers [18, 19]) is followed in the form developed in [10] for cohesive
crack propagation.

Let φi (x), i ∈ I, x being the position vector, be the usual piecewise linear nodal shape
functions. Discontinuous displacement fields across Γd can be modelled by enriching the
interpolation field as follows:

uh (x) =
∑

i∈I

φi (x)u0
i +

∑

j∈J

∑

h

H (x)φj (x)ψhj (x)uE
hj (14)
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where the set J collects those nodes whose support is cut by Γd. H (x) is the generalized
Heaviside step-function, defined as:

H (x) =

{

+1 if (x − x∗)T
m >0

−1 if (x − x∗)T
m <0

(15)

x∗ being the closest point projection of x onto Γd. The enrichment functions ψhj (x) are
assumed to be polynomial functions (up to order h − 1) of the position vector x. In the
specific applications considered in this paper h = 1, hence ψhj are constant functions. In
Equation (14), u0

i are the basic nodal degrees of freedom, while uE
hj are the enhanced ones.

d
Γ

Γ
d

Figure 4: Sketch of the cohesive-tip region.

During crack propagation, the element ahead the current crack-tip, marked by a yellow
square in Figure 4, is modified to avoid spurious locking response in the tip region. It
is necessary that the kinematics of this element allows a stress free (rigid body) opening
of the crack thus allowing for unloading of the material in the elements crossed by the
crack and loading of the cohesive process zone. The kinematic modification of the tip
element is based on a sub-triangularization, as shown in Figure 4. In the sub-elements,
only the two nodes shared by the adjacent element containing the crack tip are enhanced
(nodes marked with circles in the right close-up in the figure). In this way, a continuous
displacement field is obtained ahead of the crack tip while strain discontinuity is allowed.
Besides avoiding mesh locking, this method allows to unambiguously identify the regions
where H (x) = +1 (with blu nodes in Figure 4) and where H (x) = −1 (with red nodes
in Figure 4).
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4 NUMERICAL RESULTS

4.1 Tension test on a double-edge-notched specimen

The first example concerns the simulation of a direct tension test on a double-edge
notched specimen (DENT test). The two-dimensional geometry shown in Figure 5 has
been considered. A non-structured mesh of plane strain finite elements has been adopted
with a characteristic element dimension se = 2 mm, see Figure 5. According to the pro-
posed continuous-discontinuous strategy, several analyses have been carried out assuming
different values of ne, namely ne = 3, 5, 7, in the transition criterion, Eq. (8).

The global responses of the specimen in terms of vertical reaction versus imposed ver-
tical displacement for different ne (continuous curves) are compared in Figure 6 with the
results obtained with a continuum approach, without crack propagation (dotted curve).
Thanks to the energy equivalence imposed for the transition, good agreement is obtained.
Since the mesh used for this problem is very fine compared to the material internal length,
when ne = 3 is chosen, transition occurs very late in the analysis and the same response
of the continuum approach is obtained.

The distribution of the tension damage variable D and the crack evolution for the
different analyses (constant element size se and varying minimum number ne of elements
required across the band) is shown in Figure 7 at four increasing values of imposed dis-
placement. Damage starts to grow at the notch and then develops in a horizontal band.
When damage reaches the critical value given by Eq. (9), a cohesive crack is introduced;
this crack propagates in the ligament until complete failure of the specimen. As expected
when ne increases, transition to a cohesive crack model is anticipated and final damage
values in the cracked band are smaller.
Figure 8 shows, at an enlarged scale, the pattern of damage evolution and crack propaga-
tion for ne = 5. It can be noted that the transition to a cohesive crack and the subsequent
propagation occur in the region and in the direction of the highest damage localization.
The direction of propagation is not affected by the layout of the background mesh.

u

30

70

u

12
30

Figure 5: Geometry of the double-notched specimen (measures in mm).
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Figure 6: DENT test. Effect of ne on the load vs imposed displacement plot at fixed se = 2 (mm).

4.2 Failure analysis of a concrete gravity dam

The proposed methodology has been applied to the benchmark exercise A2 proposed
by ICOLD in 1999 [20]. The benchmark consists of the evaluation of the IFF (Imminent
Failure Flood) as a consequence of an overtopping wave acting on a concrete gravity dam
whose geometry is specified in Figure 9. The dam lays on a rock bed.

The loading condition analysed consists of the constant dam self-weight and of the
hydrostatic pressure due to a water level in the reservoir growing from zero to the over-
topping level (which can be higher than the dam) which causes the failure of the dam. A
portion of the rock foundation has also been included in the mesh.

The material data for concrete and rock used for the identification of the model pa-
rameters are those assigned in [20]; an internal length l = 250 mm has been assumed,
corresponding to about 2 times the maximum aggregate size expected to be present in a
dam. The analysis has been performed using both the continuous approach up to failure
and the continuous-discontinuous approach. The results are shown in Figure 10 in terms
of the overtopping coefficient (defined as water level divided by dam height) versus hor-
izontal crest displacement. Structural failure corresponds to lack of convergence in the
performed load-controlled analyses. The same failure prediction is obtained by the two
approaches. Figure 11a shows the damage pattern at failure obtained by the nonlocal
damage model in the region at the dam foot enclosed in the square in Figure 9b. Figure
11b refers to the analysis with crack propagation: similar damage patterns are obtained
in the two analyses because of the fine mesh adopted and the ensuing high value of critical
damage governing the transition.
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Figure 7: DENT test. Effect of ne (se = 2 mm) on damage pattern and crack evolution up to u = 0.01
(mm).
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