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  Abstract  

The field of cybersecurity is exploring new ways to defend against cyber-attacks, 

including a technique called continuous user authentication. This method uses keystroke 

(typing) data to continuously match the user's typing pattern with patterns previously 

recorded using artificial intelligence (AI) to identify the user. While this approach has the 

potential to improve security, it also has some challenges, including the time it takes to 

register a user, the performance of machine learning algorithms on real-world data, and 

latency within the system. In this study, the researchers proposed solutions to these issues 

by using transfer learning to reduce user registration time, testing machine learning 

algorithms on real-world data, and developing a universal benchmarking framework to 

evaluate databases in practical situations. The results of the experiments supported the 

researchers' observations and suggestions for improving continuous user authentication. 

Keywords 

Transfer learning, Behavioral biometrics, Cybersecurity, Continuous authentication, 

Ensemble learning, Keystroke data, XGBoost, TabNet, LightGBM, Database 

benchmarking, PostgreSQL, Mysql. 
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Summary for Lay Audience 

Modern systems require robust cybersecurity solutions. Traditional authentication 

methods like passwords, fingerprints, authorization cards, etc. authenticate the user at the 

beginning of the session but there is no validation during the session, which makes the 

system vulnerable. Continuous authentication is the solution to this challenge. In 

continuous authentication, keystroke data is used to extract the behavior patterns of the 

user. The data is then applied to train the machine learning (ML) classification algorithms 

to identify the unique behavioral patterns of each user and classify them accordingly.  

However, using continuous authentication comes with different challenges. First, it 

required a long registration time because ML algorithms require a lot of data to find the 

user's behavioral pattern, and plenty of time is required to gather the data which extends 

the start of continuously authenticating the new user. Therefore, the transfer learning 

technique was used for a feed-forward neural network model to overcome this issue for 

new users. Besides this, the performance of the ML classification algorithm is key in 

continuous user authentication, and it requires diverse and comprehensive data to be 

effective in the production environment. In many cases, the ML algorithm is trained on 

the datasets collected in a controlled lab environment and the model fails or does not 

perform as expected in the production environment. For example, China’s facial 

recognition system recognized the face on a bus advertisement as a jaywalker because the 

model was not trained on real-world data. To overcome this problem, this study uses the 

real-world data of 48 financial organizations’ employees to compare the performance of 

advanced ML algorithms and ensembles of algorithms. Next, data latency is critical in 

continuous authentication as millions of records are required to be managed by the 

database and its performance has a great influence on the continuous authentication 

process. Hence it is necessary to identify the leading database for a continuous 

authentication system. Therefore, to evaluate different databases a universal database 

benchmarking tool is developed, and the performance of MySQL and PostgreSQL is 

evaluated in production-like scenarios to determine the best-suited database for a 

continuous authentication system. 
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Chapter 1  

1 Introduction 

The issue of cybersecurity is growing exponentially with the increasing number of 

devices. These devices have become an inseparable part of our lives, hence, making us 

more vulnerable to cyberattacks. Around 100 billion dollars are lost every year to 

cybercrime, and it is estimated to reach 10.5 trillion by 2025 [1]. 

The most important aspect of cybersecurity is to authenticate the legitimate user. As per 

Netsec News, 67% of breaches are caused by credential theft [2]. One of the recent 

events that happened was with outdoor retailer The North Face, and their customers' 

accounts were hacked to steal their data like credit card details, phone numbers, etc. 

Therefore, it is crucial to restrict access to authorized users only. Different methods like 

biometric authentication using fingerprint/face, password, and authorization cards, etc. 

are currently used to authenticate the user but it is not sufficient to use two-factor or 

multi-factor authentication as it only provides static user authentication. The potential 

solution for this is continuous authentication, which is a method to verify users’ identities 

on an ongoing basis by using behavioral biometrics. Every user has unique behavioral 

patterns, like the way a user handles a mouse, keyboard, and touchscreen device. These 

behavioral patterns can be used to build a user profile and continuously authenticate them 

by using machine learning algorithms. This will not only provide continuous user 

authentication but also allow users to continue their work without disruption.   

1.1  Research Motivation  

Technology affects almost every aspect of 21st-century life, from socialization and 

healthcare to access to food and transport efficiency. Technology and the internet 

revolution have enabled global communities to be connected and share resources more 

easily. Most people on average have at least 2 to 3 devices connected to the internet. It is 

estimated that the total number of connected devices will rise to more than 75 billion by 

the end of 2025 [3]. However, this revolution has made the world more vulnerable to 

cyberattacks and cybercrimes. Many of the cyberattacks are motivated by financial gain, 
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with hackers not only attacking public/private organizations and corporations but also 

individuals. Therefore, it is critical to have security tools for protection against 

cyberattacks.  

Cybersecurity is the application of technologies, processes, and controls to protect 

devices, networks, and data from cyberattacks like malware, ransomware, identity theft, 

etc. The most important aspect of cybersecurity is authenticating legitimate users. Most 

recently, a widespread report of data leaks showed how close to 8.5 billion password 

entries were leaked on an underground hacker forum [4] .Therefore, it is crucial to restrict 

access to authorized users only.  

Authentication is a method for verifying the identity of the user. Different methods like 

passwords, fingerprints, facial recognition, authorization cards, passcodes, etc. are used 

for user verification. All these methods are used to authenticate the user only once to 

unlock the session. After the user is successfully authenticated, there is no further 

validation to check the user’s identity. This creates ample opportunity for hackers to 

hijack the session and steal the data. Additionally, the pandemic has forced employees to 

work from home, and therefore, remote workforces need additional security as they are 

not using their companies’ secured networks. Since the beginning of the pandemic, 

cyberattacks have increased, especially in the banking sector [5] .Therefore, it is vital to 

implement robust security that provides more than static/one-time user authentication. 

We believe that continuous user authentication can solve this problem. Continuous 

authentication is a method for verifying the identity of the user on an ongoing basis until 

the session expires. This method passively authenticates users without interrupting their 

workflow. Continuous authentication operates by analyzing multiple unique user 

behaviors. For instance, the way users handle the keyboard and mouse when typing can 

be examined to determine unique behavioral patterns. Mobile sensor data can be similarly 

analyzed for the same purpose. These different behavioral patterns are continuously 

monitored to verify specific users and to confirm or block their access to an ongoing 

session.  
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Continuous authentication using keystroke (typing) data continuously matches the user's 

typing pattern with patterns previously recorded using artificial intelligence (AI) to 

identify the user. Continuous authentication verify the user for every keystroke, if any 

unusual behavior is observed, the user can be locked out and must reconfirm their 

identity. Different methods like one-time passwords, passcodes, etc. can be used to 

reconfirm identities. 

Government and defense institutions and banking and finance industries with high 

regulations need additional layers of security to ensure only authorized persons can 

access their information. These institutions can establish high-security standards using a 

continuous authentication system. 

However, continuous authentication technology is in the development phase and has 

many research gaps. One of the drawbacks of continues authentication with keystrokes 

has been the enrollment process. AI algorithms require a high amount of data to identify 

unique user behavior patterns. This causes a delay in the registration process of the user 

and hence the start of continues authentication. Another issue is most of the previous 

studies used synthetic data, hence ML algorithms fail or do not perform as expected in 

the production environment. Moreover, it is critical to reducing latency in the continuous 

authentication architecture/system to improve overall performance. The major bottleneck 

could be the database that is used to insert the user data and retrieve it for making 

predictions. The continuous authentication system generates around 50 datapoints per 

second for every user. Hence the database should be able to operate efficiently on 

millions of records with the lowest latency. This research work focuses on solving the 

above-mentioned problem using different machine learning techniques and benchmarking 

frameworks. 

1.2 Goal 

The goal of the research is to reduce the enrollment time for continuous user 

authentication, improve the overall accuracy of the authentication process and identify 

the database with the lowest data latency. 
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1.3 Research objectives  

To achieve the above goal, we have the following research objectives. 

A. Transfer learning to accelerate the enrollment process for new users. 

B. Ensemble learning to enhance continuous user authentication for real-world 

environments. 

C. Database benchmarking to identify the data latency for different databases. 

1.4 Methodologies  

In statistics, classification is the problem of identifying what set of categories an 

observation belongs to. Examples of this, are assigning a given email to the spam or not 

spam class and assigning a diagnosis to a given patient based on observed characteristics 

(Sex, blood pressure, presence, or absence of certain symptoms, etc.). 

In continuous authentication, the classification algorithms can be used to classify the 

users based on their keystroke data. Figure 1.1 shows the continuous authentication flow. 

The classification algorithm is trained using keystroke data, where the user’s new 

keystroke data is given as input to the trained algorithm to classify it. If the classified user 

matches the input user, then authentication is successful. If the user classified by the 

algorithm does not match the input user, then that user is blocked. 

 

Figure 1.1 Continuous Authentication Process Flow 
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For example, if the classification algorithm is trained using the keystroke data of the 

number of users which is collected while they work on the computer, the classification 

algorithm will treat each user as a class and use keystroke data to identify unique 

behavioral patterns. When new data comes into the system, it will be classified using the 

algorithm. If the user is categorized for the right class, then that user would authenticate 

successfully but if the user data is categorized as a different class, then the user should be 

blocked. However, the issue is classification algorithm requires a lot of data to find users' 

behavioral patterns, and plenty of time is required to gather the data which extends the 

start of continuously authenticating the new user. To overcome this issue for new users, a 

transfer learning technique (technique that involves using the knowledge and experience 

gained from solving one problem to help solve a related problem) was used for the feed-

forward neural network model. Experiments were done using only one behavioral pattern 

with a set of 5 users to find the difference in accuracy for the model trained with transfer 

learning and model trained without any previous learning. The results showed that the 

model using transfer learning had more accuracy than the model trained from scratch. 

This implies that using transfer learning improves the accuracy with a small amount of 

data which will help to speed up the onboarding process for new users. This work 

generates new knowledge which will allow the researchers to implement various 

machine-learning techniques with multiple behavioral patterns, thereby providing the best 

model performance for transfer learning.  

Moreover, data quality is important to solving continuous authentication problems. 

Therefore, this study uses the real-world data of 48 financial organization employees to 

compare the performance of advanced ML algorithms, including Light GBM, XGboost, 

TabNet, Neural Network, and 1D Convolutional Neural Network (CNN).Moreover . 

ensemble learning was used to combine the prediction ability of all the models, which 

increased cumulative accuracy.  

Lastly, identifying data latency is critical to reducing the time required for continuous 

user authentication and improving overall performance. Hence, a universal database 

benchmarking framework is developed to determine, evaluate, and report the data latency 

of the databases for different operations in diverse operating conditions.  
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1.5 Thesis Outline 

The thesis structure is ordered as follows. Chapter 2 shows a literature review of relevant 

techniques in continuous user authentication. Chapter 3 describes the feature extraction 

and data-cleaning process. Chapter 4 details the use of transfer learning to reduce 

registration time. Chapter 5 delineates the evaluation of different ML algorithms and the 

results of ensemble learning. Chapter 6 includes the database benchmarking framework 

developed to evaluate databases in production-like scenarios of continuous user 

authentication. 
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Chapter 2  

2 Literature Review  

This chapter reviews current works related to our relevant subjects. Many research 

contributions have been made around behavior biometrics for user authentication. A few 

are briefly discussed below. 

2.1  Academic Research Review 

Identification of User Behavioural Biometrics for Authentication using Keystroke 

Dynamics and Machine Learning 

Krishnamoorthy, Sowndarya proposed work on the use of user keystrokes dynamics for 

static user authentication [6] .She gathered the data of 94 users over five days. In the 

experiment, users had to type a short passcode (the passcode was ‘.tie5Roanl’) every day 

on the iProfile android app. In total, 155 features were obtained and mRMR(Minimum 

Redundancy Maximum relevance) was used for feature selection. Users were then 

classified using different classification algorithms and the SVM linear model had the 

highest accuracy rate of 0.9727. Accuracy is defined as the number of correct predictions 

divided by the total number of predictions. 

Notably, the same virtual keyboard was used to gather all the data, therefore, using 

different devices/keyboards will affect the accuracy of the model.  Furthermore, the fixed 

short text was used to build the dataset, thus using free text will have an impact on the 

performance of the classifier. Evaluations, datasets size 

A Comparison of Machine Learning Algorithms in Keystroke Dynamics 

There has also been some work done by a researcher from North Carolina University on 

the comparison of machine learning algorithms in keystroke dynamics, they collected 

data from 23 volunteers in the same setting across two days. They used three different 

predefined texts, a strong short password, one sentence, and two sentences to produce 

three different datasets (the three important features of the dataset are Hold time, 
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Downtime, and Uptime). 80% of each dataset was used to train random forest, neural 

network, decision tree, and SVM. The remaining 20% was used to test the models. The 

accuracy of the models was low (between 35% to 68%) for the strong short passwords 

dataset and it was high in the case of two sentence dataset for the random forest model 

(100%), where 20 samples of each user were used [7]. 

The same devices were used to enter the fixed text in this study as well. There are very 

few numbers of features in each dataset, consequently, the increased number of users 

might reduce the accuracy of the model, as the values in each dataset will repeat and 

cause difficulty to distinguish between users. 

Machine Learning Algorithm on Keystroke Dynamics Pattern 

In this research, the researcher used a controlled environment to create their dataset using 

1000 volunteers at the University of Mauritius. A total of 30000 samples were generated 

during this experiment. Different types of passwords like, .tie5Roalnb, .aeihoz246@, 

.nzkla29zah.#, and aeR5t.ilnb were used to measure the variation between the distances 

of keys on a keyboard. The datasets were categorized into three types, the first user used 

both hands, the second only used their dominant hand and the third only used their weak 

hand. Then the datasets were normalized using the Z-score normalization technique. 

These datasets were used to train and evaluate different classifiers like Chaotic neural 

network, SVM, and Neuro Evolution of the Augmenting Topology. The Neuro Evolution 

of the Augmenting Topology gave the highest recognition rate of 99.1, lowest FRR of 

0.25, and lowest FAR of 0.15 for database calculating distance between the key [8]. 

Though this study has shown a higher recognition rate, the length of the text used is short 

and it can only be used for static authentication and not continuous authentication. Since 

the datasets were generated in a controlled environment so it is more consistent but for 

real-world data, the algorithm might not perform as well as it did.  

Multi-Modal Biometric-Based Implicit Authentication of Wearable Device Users 

In 2019, Sudip Vhaduri and Christian Poellabauer implemented biometric and behavioral 

authentication for wearable IOT devices (Fit Bit) using Net Health data. Behavioral data 
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of 400 students were gathered over 17 months with 20 hours of valid data per person per 

day. The Fitbit device collected heart rate, calorie burn, metabolic equivalent of a task 

(MET), physical activity level/intensity, step count, sleep status, and self-recorded 

activity labels. This data was divided into three biometric groups: behavioral (e.g., step 

counts, activity level/intensity), physiological (e.g., heart rate), and hybrid (e.g., calorie 

burn, MET) biometrics, where hybrid biometrics are derived from both behavioral and 

physiological biometrics. As real word data was used, it was cleaned to remove invalid 

periods of activity and segmented into a five-minute non-overlapping window. Multiple 

feature selection techniques like Kolmogorov-Smirnov test-based approach, Pearson 

Correlation Coefficient (PC)-based approach, and Standard Deviation (SD)-based feature 

selection approach were used to obtain different datasets. These datasets are evaluated 

using Quadratic Support Vector Machine and the unary Gaussian Support Vector 

Machine classification techniques.  

For each feature set with N subjects/users, N separate models were built, one for each 

subject. A binary q-SVM classifier was trained with a positive class consisting of one 

subject’s data and a negative class consisting of data from the rest of the N−1 subjects 

and a g-SVM classifier model was trained using a subject’s data with a certain percentage 

of data being considered as outliers. Then models were tested on the 25% data from a 

particular subject as positive class and 25% data from the rest of N−1 subjects as negative 

class. Binary classifier trained with Kolmogorov-Smirnov feature set gave the maximum 

accuracy of 93% [9] . 

The important thing to address is that the behavior data (step count) did not play a 

significant role in authenticating the user. Further, the user is authenticated every 5 

minutes, so the intruder gets an opportunity to hack the device. Lastly, the physical level 

attack can be detected using this method however it cannot detect the communication 

protocol attacks. 
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PersonaIA: A Lightweight Implicit Authentication System Based on Customized 

User Behavior Selection 

This research is focused on the development of a behavior-based user authentication 

system using partially labeled Dirichlet allocation and minimizing battery usage required 

for behavioral user authentication. To achieve it, the researcher-developed a new layer 

called the W layer which helps continuous user authentication even when a mobile device 

is not connected to a network, also this layer helps reduce battery consumption [10]. 

PLDA algorithm was tested for a dataset containing features like GPS, accelerometer, 

SMS messages, call logs, Bluetooth device logs, app installation data, app running data, 

and battery usage information. It gave an accuracy of 93.3% with a battery consumption 

of 14.5% of the device's total battery. 

Performance Analysis of Multi-Motion Sensor Behavior for Active Smartphone 

Authentication 

In this paper, the experiment was carried out to analyze the reliability and applicability of 

multi-motion sensor behavior for continuous smartphone authentication in various 

surroundings. Researchers used an accelerometer, gyroscope, magnetometer, and 

orientation sensors to collect data of 102 subjects. A total of 192 features were extracted 

from the data to characterize the input action. These features were characterized into two 

categories, first is descriptive features defining the motion patterns of touch action and 

intensive features indicate the complexity and intensity of the touch action. Then these 

features were filtered based on how well the feature can discriminate between the users. 

Next, the dataset was used to train the one-class classifier, Hidden Markov model, SVM, 

and neural network. The hidden Markov model gives the lowest FRR(False Rejection 

Rate), FAR(False Acceptance Rate), and EER among all the classifiers. FAR is computed 

as the ratio of the number of false acceptances and the number of test samples from 

impostors, FRR is computed as the ratio of the number of false rejections and the number 

of test samples from legitimate users and equal-error rate (EER) at the sensitivity of the 

classifier where FAR = FRR [11]. 
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During the authentication process, legitimate users’ behavioral profile is built using 

sensor data, and is compared with the current users’ behavior after every N touch actions 

window. Depending upon the value of N intruders might get time to hack the mobile, to 

steal the data whereas, if the value of N is smaller to avoid intrusion, it will lower the 

accuracy as a very small amount of data will be available for authentication. 

On Continuous User Authentication via Typing Behavior 

The researchers proposed a novel biometric authentication method using a computer 

vision algorithm to identify users, based on typing behavior. To implement this system, 

they conducted 2 phase data collection including 63 computer subjects who type static 

text or free text in multiple sessions. In phase 1, under the monitoring of the researcher, 

the subject performed typing with the same chair, fixed keyboard position, lighting, and a 

similar computing environment. And in phase 2, the authors used a shared lab where the 

participant could come multiple times for five months period to write free and static text. 

Using this data, they extracted different features like the shape and motion of the hand, 

color, and texture of hands. Next, these datasets were used to train BoW(Bag of Words), 

BoP(Bag of Phrases) and BoMP(Bags of Multi-Dimensional phrases).  BoMP had the 

highest accuracy of 0.9996 and True Positive Rate (TPR) of 67.8% and False Positive 

Rate (FPR) of 0.73, for the phase 2 sample dataset [12]. 

Though this is a novel authentication method, it requires extra hardware(camera) and 

higher computing power. Also, it is not a robust way of authentication because features 

extracted from the video are highly dependent on the camera angle. Therefore, a lot of 

research is required to be done to implement the proposed system in real-world scenarios. 

Pattern-Growth Based Mining Mouse-Interaction Behavior for an Active User 

Authentication System 

In this paper, the experiment was carried out to analyze mouse-interaction behaviors for 

identifying computer users. This study divided the mouse-interaction behavior patterns 

into two categories, micro-habitual patterns, and task-intended patterns to extract frequent 

mouse behavior patterns from holistic behavior. To implement this system, researchers 
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recruited 159 students and faculty, subjects were asked to use their own devices for data 

collection. And the collected data were periodically sent to the remote server, along with 

the subject ID. Then the features were extracted from the data, which were organized into 

a vector to represent behavior patterns and to construct the feature vectors to train ML 

models. Researchers used KNN, Neural Networks and one class SVM classifier machine 

learning models to perform user authentication. These models were trained using one of 

the subjects as the legitimate user, and the rest as impostors. Later the models were tested 

to identify the legitimate user and the imposters. One class SVM classifier performed the 

best out of the three trained models and had the lowest FAR of 0.09 percent with an FRR 

of 1 percent [13]. 

To test this system in a real-world scenario they used an observation window to make an 

authentication decision, which contained a sequence of N mouse operations. For five 

mouse operations, the EER was approximately 15 percent, but the authentication decision 

was made in 8.77 seconds (on average). As the number of operations increased error rates 

started to reduce. For the operation length of 20, the best EER dropped to 0.75 percent, 

but the corresponding time increased to 47.11 seconds. 

In this study, researchers train the model with predefined imposter data but in the real 

world that will not be available, so the model’s performance might get hampered. 

Continuous authentication on mobile devices using behavioral biometrics 

The authors present two different continuous authentication techniques for mobile 

devices. First is the model-based approach, here the ML models are built, trained, and 

tested for all the users. Second is a template-based approach where the similarity score is 

calculated for the individual user.  

The data of 5 users were gathered around 200 minutes. For the model-based approach, 

the Convolution neural network (CNN) and Multilayer Perceptron (MLP) algorithms 

were trained. CNN outperforms MLP and reaches the Equal Error Rate (ERR) of 8% for 

a 20sec sample size. Whereas the template-based approach uses a Siamese network and 

archives ERR of 10% [14].  
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In this study, federated learning can be used with a template-based approach, it can assist 

to reduce authentication time and improve overall performance. Additionally, one class 

classifier can be used on the device for everyone. 

Secure System of Continuous User Authentication Using Mouse Dynamics 

In this research, authors collected mouse dynamics data and trained a One-class support 

vector machine (SVM) to identify the user. The data from 23 participants were collected 

over 4 weeks however data from only eight participants were used for the experiments. 

Later this data was used to create their profile and train 1-class SVM with five-fold cross-

validation. Afterward, all 8 models were tested, and the training accuracy for all the 

participants is around 90% [15]. 

This study uses data from only eight users also, the approach to using 1-class SVM is not 

practical because the number of models increases with the number of users, and it would 

be difficult to maintain and periodically retrain individual models. Moreover, the test 

accuracy of the models is not mentioned in the result. 

In addition to academic research, some market products were reviewed as well. The 

details are described below. 

2.2 Market Products Review  

There are a few companies that are trying or have already developed an authentication 

service using behavioral biometrics. These organizations are explored below: 

TypingDNA : This New York-based company provides static keystroke authentication 

which works for both desktop and mobile applications. Their service can be used through 

an API or the TypingDNA application. TypingDNA is not continuously authenticating 

the users, instead, they are using behavioral biometrics as an additional layer for 

authenticating the user and providing multi-factor authentication at the time of login [16]. 

However, they have not mentioned their customer roster on the company website, so it is 

difficult to determine the efficiency of their product. 
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PluriLock: It is a North American organization that claims to have developed a 

continuous and static authentication system using machine learning algorithms. They 

have listed two products on their website [17]. 

Plurilock ADAPT: It performs static user authentication, by using information like typing 

biometrics, geolocation & travel, time of day, network & environmental context, device 

id, and fingerprint. 

Plurilock DEFEND: This is used for continuous authentication, using keystrokes, pointer 

movements, and machine learning algorithms, it can predict intruders. If the movement 

seems unusual and of medium risk then it is logged whereas, if the risk threshold is 

crossed, it notifies the security staff. 

Plurilock is currently providing its service to regional American banks. 

Lastly, to compare all the research the below parameters are used. 

Devices used to collect data: The type of device used to collect the data for the 

experiment is important because the user’s behavior might change with the device. Also, 

there can be a difference in the data collected using different devices. Devices like 

keyboards, mouse, IoT devices, and smartphones can be used to collect the data. 

Source of Data: The performance of the model depends on the size of the dataset as 

statistics of the dataset change with the size. For example, Variance decreases as dataset 

size increases. Therefore, it is important to choose the right dataset size. Behavioral 

features are extracted from the inputs; therefore, it is very important to analyze input 

patterns, which can be short text, free text, touch actions, or IoT device sensor data. 

These inputs are used to build the user’s behavioral profile.  

Features Extraction: Feature extraction is an important part because the models used for 

prediction are trained using these features thus, the performance of the model varies with 

features. 
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Proposed Model: Multiple machine learning models can be used to solve a single 

problem. After comparing the performance of multiple models, the best model is 

selected.  

Evaluation Matrix of the Model: The performance of the model can be evaluated using 

different parameters like accuracy, precision, recall, etc. It is crucial to select the right 

parameters for evaluation as only using a few of the parameters can be misleading.  

Environmental Condition: User’s behavior changes with surrounding environmental 

conditions. For example, a person talking with someone and typing using a keyboard will 

have a different behavioral pattern compared to the same person typing without any 

distractions. 

Settings/Utilization: This time is a critical evaluation criterion for continuous 

authentication because if the system authenticates the user after a window of a certain 

time, then the intruders get a chance to attack. 

The Table 1 shows the comparison of literature review using the above parameters. 
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Table 1 Literature Comparison 

Source Study 
Devices used 

to collect data 

Source of data 

Features Extraction 
Proposed 

Model 
Evaluation Matrix  Environmental Condition 

Settings/ 
Utilizations    

No of 
User 

Type of Data 

Identification of User Behavioural 
Biometrics for Authentication using 
Keystroke Dynamics and Machine 
Learning 

Virtual 
Keyboard 

94 
Short and fixed text (E.g: 
'.tie5Roanl’)  

Minimum Redundancy Maximum 
relevance technique used to fetch 155 
features 

SVM Linear 
Model 

Accuracy: 0.9727, 
F1 score: 0.9699 

Variable Env conditions as 
virtual keyboard was used  

Static/one time 
Authentication  

A Comparison of Machine Learning 
Algorithms in Keystroke Dynamics 

Computer 
keyboard 

23 
Strong short text, one 
sentence, two sentence  

Only 3 features were used Random Forest Accuracy: 100  
Controlled Environmental Lab 
setup used  

Static/one time 
Authentication  

Machine Learning Algorithm on 
Keystroke Dynamics Pattern 

Same Device 
(Keyboard) 

1000 Strong short password   
Z-score normalization technique used 
for feature normalization 

Neuro 
Evolution of 
the 
augmenting 
topology 

FAR:0.15, FRR:0.25, 
and Recognition 
Rate:99.1 

Controlled Environmental Lab 
setup used  

Static/one time 
Authentication  

Multi-Modal Biometric-Based Implicit 
Authentication of Wearable Device 
Users 

Same Device 
(Smartwatch) 

400 
Health Data like Calories 
burnt, heart rate etc. 

Kolmogorov-Smirnov, Pearson 
Correlation Coefficient, Standard 
Deviation (SD)-based feature selection 
used 

Quadratic 
Support Vector 
Machine 

 Accuracy:93%, 
FPR:0.10, FNR:0.04 

Variable Env as smartwatches 
were used to collect the of 
users for 17 months 

Continue 
Authentication 
with the window 
of Five Minute  

PersonaIA: A Lightweight Implicit 
Authentication System Based on 
Customized User Behavior Selection 

Mobile device 23 
Mobile device information 
(Battery Usage, GPS etc)  

Topic modeling  

Partially 
labeled 
Dirichlet 
allocation 
(PLDA) 

Accuracy:98.6, 
Precision:93.3 

Variable Env 
Continues 
Authentication  

Performance Analysis of Multi-
Motion Sensor Behavior for Active 
Smartphone Authentication 

Android 
mobiles 

102 

Device information as well as 
users’ behavioral pattern 
(Angle at mobile is hold and 
Touch actions etc.)   

Discriminating power  
Hidden 
Markov Model 

FRR:5.03%, 
FAR3.98%, 
EER:4.71% 

Variable Env 

Continue 
Authentication 
after every N 
touch windows  

On Continuous User Authentication 
via Typing Behavior 

Camera and 
Keyboard 

63 
Video captured to analyse 
Shape, texture of hand   

Feature extraction steps: (a) original 
frames from multiple subjects, (b) 
foreground segmentation with hand 
separation, (c) shape context extraction. 
The top-left image shows four patches 
used in the linear regression 

BoMP(Bags of 
Multi-
Dimensional 
phrases) 

Accuracy: 0.9996 . 
True Positive Rate 
(TPR) : 67.8% and 
False Positive Rate 
(FPR): 0.73 

Step 1: Controlled 
Environmental Lab setup used         
Step 2: Same devices but 
surrounding conditions were 
not controlled     

Continues 
Authentication  

Pattern-Growth Based Mining 
Mouse-Interaction Behavior for an 
Active User Authentication System 

Mouse 159 
Mouse Clicks and 
Movements 

Features selected based on Feature 
Stability in Behavior Pattern, Feature 
Discriminability in Behavior Pattern, 
Statistical Dispersion of Features 

One class SVM 
classifier 

FAR of 0.09 percent 
and FRR of 1 
percent 

Variable Env 

Continues 
Authentication 
after N mouse 
actions  
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Chapter 3  

3 Feature Extraction and Data Preprocessing  

Continuous authentication uses behavioral information to authenticate the users. 

However, the raw data collected from users cannot be directly used for the authentication 

process as it doesn’t provide any details of user behaviors. Therefore, it is needed to 

extract user behavioral features/data from the raw data. This chapter explains the 

behavioral feature extraction and data cleaning process of the raw user data. Later the 

cleaned data is used for experiments described in Chapters 4 and 5. The details of data 

processing are explained below. 

The raw data of the employees from the financial institution was collected during a 

period while they were working. It is crucial to maintain data privacy while collecting 

data from employees. Currently, there is no ISO data privacy standard for continuous 

authentication. However, the sensitive data was identified for the organization and was 

encrypted for data privacy. 

 The raw data included features such as the event that occurred, for example, a key press, 

mouse click, mouse scroll, etc. It also included the x and y coordinates of the mouse 

pointer, the time stamp of the event, and lastly the user Id. Table 2 provides columns for 

all the raw data. 

         Table 2 Raw Dataset Description 

Column Name  Details  

Timestamp Timestamp when any event happened 

Event 
Captures the event like mouse up, mouse down, mouse 

move, key up, and key down  

X X coordinates of the mouse pointer 

Y Y coordinates of the mouse pointer 

Type 
Describes the type of event that occurred such as mouse 

scroll, left click, right-click, key press information  

User Id Unique Id for each user 
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Using this raw data, two behavioral patterns were extracted for the purposes of the 

experiment: First, the mouse click length, the time difference between mouse key press 

and release, and second, the screen location, the area on the screen where the mouse click 

occurred. To extract the screen location, the screen was divided into a grid of 16 using the 

x and y coordinates of the mouse pointer. Figure 3.1 shows the method for dividing the 

screen to determine the screen location based on the x and y coordinates of a mouse click. 

Screen location feature was extracted specifically for the application used by the financial 

organization. 

 

Figure 3.1 Screen Partitioning 

Table 3 illustrate the details of the behavioral information dataset extracted from the raw 

data. 

Table 3 Behavioral Dataset Description 

3.1 Data cleaning for outlier removal 

The behavioral dataset was then cleaned to identify and correct the errors in the dataset 

caused because of different factors like physical or other disturbances to the user. Such 

disturbances can create outliers that are different than the actual behavior of the user. 

Column Name  Details  

Click Button 
What key has been pressed, for example, mouse right or 

left click 

Click Length Time difference between key press and release  

Screen location Part of the screen where the mouse click happened 

User Id Unique Id for each user 
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These outliers can affect the way machine learning models identify the unique behaviors 

of the user. To prevent this, the Interquartile range (IQR) technique was used to clean the 

data and remove the outliers. 

 

Figure 3.2 IQR Diagram 

IQR is a statistical method to calculate the upper bound and lower bound of the dataset to 

set the decision range. Any data point outside of the decision range is considered an 

outlier. Figure 3.2 shows the distribution of the data. To set the decision range, it is 

necessary to find the minimum and the maximum values of the dataset and calculate Q1, 

i.e., the first quartile of the data (25% of the data between minimum and Q1), Q3, i.e., the 

third quartile of the data and lastly the median value (second quartile). These values are 

used to calculate IQR using the below formula. 

                        IQR = Q3 – Q1                               ( 1 )             

The value of IQR is used to calculate the lower and upper bounds of the decision range 

using the below formula: 

     Lower bound: Q1 - 1.5 * IQR                   ( 2 )                 

Upper bound: Q3 + 1.5 * IQR                 ( 3 )               

Using this technique, mouse click length data were cleaned to remove outliers. Figure 3.3 

shows the box plot for click length data before applying IQR, with a few outliers/ data 

points not indicative of the normal behavior of the user. By comparison, Figure 3.4 shows 

the box plot of the dataset after removing outliers using the IQR technique. Removing the 

outliers will help in determining the real behavioral patterns for all the users. 
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Figure 3.3 Data Distribution before IQR 

 

Figure 3.4 Data Distribution after IQR 

The Figure 3.5 displays the data distribution of the click length for all the 48 users. 

Almost 80% of the click length values are between 50ms to 180ms for all the users which 

shows that it is overlapping data and makes it hard to find unique behavioral patterns for 

the users 
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Figure 3.5 Click length data distribution for all the users 
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Chapter 4  

4 Transfer Learning to Reduce Enrollment Time 

Continuous authentication requires a lot of data to find the user's behavioral pattern and 

plenty of time is required to gather the data which extends the start of continuously 

authenticating the new user. In this study, the transfer learning technique was used for a 

feed-forward neural network model to overcome this issue for new users. Experiments 

were done using only one behavioral pattern with a set of 5 users to find the difference in 

accuracy between the model trained with transfer learning and the model trained without 

any previous learning. The results showed that the model using transfer learning had 

9.76% more accuracy than the model trained from scratch. This implies that using 

transfer learning improves the accuracy with a small amount of data which will help to 

speed up the onboarding process for new users. This work generates new knowledge 

which will allow the researchers to implement various machine learning techniques with 

multiple behavioral patterns, thereby providing the best model performance for transfer 

learning. The details of the experiments are explained below. 

4.1  Transfer Learning 

The human brain can transfer the knowledge of one task to solve another similar task. 

The more related tasks, the easier it is to transfer knowledge. For the related tasks, 

humans don’t learn everything from scratch, they transfer past knowledge to learn new 

tasks.  

In deep learning, models need a lot of labeled data to solve complex problems. It is hard 

to give a large amount of data to the model for training because the data-gathering 

process is costly, also, the model requires high-end computational resources to work on a 

large amount of data. Data gathering and model training are time-consuming processes. 

For example, continuous authentication requires a lot of data to recognize the unique 

behavioral pattern and collecting that much data is time-consuming and costly. To 

overcome this concept of transfer learning can be used in deep learning. 
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Figure 4.1 Transfer Learning  

Figure 4.1 shows the workflow of transfer learning. The deep learning model learns one 

task and adjusts the network parameters to get the optimal result. These network 

parameters can be transferred for the model to learn the task from the same domain. As 

the model optimize parameter for other tasks, it doesn’t start learning from scratch, but it 

uses previous knowledge and use that to learn a new task [18] .This helps the network 

learn faster with a small amount of data. 

The same technique was used, where the network was trained using 48 users with 48000 

data points (1000 for each user) to have a base model. The dataset was divided into 80% 

for training and 20% for testing. And network parameters were optimized to find the best 

model. This was the base model for the experiments.  

The base model was then used for a new task where it classifies 5 new users from the 

same dataset with 245 records each. The output layer of the base model was changed 

because different users were classified, and all the hidden layers were frozen to use the 

same parameters. Parameters were not fine-tunned because the number of users is scarce 

and to avoid overfitting same network parameters were used by freezing the hidden 

layers.  
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4.2 Neural Networks 

A neural network consists of an artificial network of functions, called parameters, which 

allows the computer to learn, and fine-tune itself, by analyzing new data. Each parameter, 

sometimes also referred to as neurons, is a function that produces an output, after 

receiving one or multiple inputs. Those outputs are then passed to the next layer of 

neurons, which use them as inputs for their function and produce further outputs. Those 

outputs are then passed on to the next layer of neurons, and so it continues until every 

layer of neurons has been considered, and the terminal neurons have received their input. 

Those terminal neurons then output the result for the model. 

Neural networks can detect the complex nonlinear relationship between the variables 

which can help to solve our classification problem. Also, great computational power is 

available to us which is required for neural networks [19]. 

Neural networks may have three layers input layer, an output layer, hidden layer. 

Input layer: It depends on the shape of the data, and the number of neurons in the input 

layer is equal to the number of features in the data. 

Output layer: The number of neurons in this layer depends on the activation function 

used. If using the SoftMax function, then one neuron per class label is required and for 

other activation functions like Sigmoid, we can use one output node. 

Hidden layer: Hidden layer is a layer between the input layer and the output layer in 

which the function applies weight to inputs and directs them through an activation 

function as the output. It does the nonlinear transform of the inputs entered into the 

network. 

Figure 4.2 shows the neural network architecture used for the experiments. It has an input 

layer, three hidden layers, and an output layer. The input layer has 3 neurons, one for 

each attribute. The output layer has a neuron for each user (class) and several neurons in 

the hidden layer are tuned to get optimized results. 
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Figure 4.2 Neural Network Architecture  

4.3 Hyperparameter tunning 

In machine learning, a hyperparameter is a parameter whose value is used to control the 

learning process and find out the value of model parameters. Hyperparameter tuning is 

the process of choosing a set of optimal hyperparameters for a learning algorithm [20]. 

All the machine learning models require tuning the hyperparameters to get optimal results 

for different types of problems. 

There are three commonly used hyperparameter tunning methods: 

Grid Search: This is the basic method to tune the hyperparameter. In this method, the grid 

of hyperparameters is provided and the algorithm is trained using all the possible 

combinations of it to find the best values combination among the given hyperparameter. 

This method is very inefficient as the number of models to train increases exponentially 

with an increase in the number of hyperparameters. 
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Random Search: In this method, it is not required to provide a set of values instead it 

takes the statistical distribution/ range of each hyperparameter. Then the values are 

sampled from the given range of parameters. Unlike grid search, this method doesn’t try 

all possible combinations, but it can be specified how many combinations to try. 

Bayesian Search: In both above methods all the experiments are independent of each 

other. However, the Bayesian optimizer is a sequential model-based optimization 

technique that uses previous results of the model training and decides the next 

hyperparameters candidates. This method chooses the hyperparameters in an informed 

manner and can find the best parameters in less time. 

After comparing all the methods Bayesian search was used for tuning the neural network. 

A total of four parameters were tuned including the number of neurons, learning rate, 

activation function, and loss function. 

The below set of parameters was used for the tuning process. 

 1. Number of neurons: 256, 1500 

 2. Learning Rate:0.001, 0.01, 0.1 

 3. Activation function: SoftMax, Sigmoid, Relu 

 4. Loss Function: sparse categorical cross entropy, hinge 

4.4 Experiments And Results 

This section describes the results of hyperparameters optimization, classification 

accuracies, and a comparison of the transfer learning technique to the regular method. 
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4.4.1 Hyperparameter optimization 

The feed-forward neural network was tuned using a set of hyperparameters mentioned in 

chapter 4.2. Table 4 shows the best values of the parameters.    

Table 4 Hyperparameter Details 

Hyperparameter Value 

Number of                    
neurons 

Hidden layer 1: 1472 
Hidden layer 2: 704 

Hidden layer 3: 1472 

Activation Function 
Hidden layers: Relu              

Output Layer: Sigmoid  

 

Learning rate 0.001  

Loss Function sparse categorical cross-entropy 
 

Using these hyperparameters neural network was trained on the data of 48 users. This 

helped to create the base model which is trained on a large amount of data and a greater 

number of users. Figure 4.3 shows the model summary, all the model parameters are 

transferable 

 

Figure 4.3 Optimized Neural Network Model Summery 
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4.4.2 Model Training 

The learning from the base model was then transferred to train the model to perform the 

new task to classify 5 different users. All the layers shown in Figure 4.2 were frozen 

except the output layer. In addition, the model was trained using the click lengths of 5 

new users. A total of 1225 records were used, 245 for each user, 80% was used to train, 

and the remaining 20% for testing the model. Figure 4.4 shows the accuracy of the model 

during the training process. The training accuracy of the model was 54.55%. 

 

Figure 4.4 Model Training with Transfer Learning 

To compare the performance of transfer learning, the neural network model was trained 

from scratch using the same 5 user data and hyperparameters represented in Table 5. 

Figure 4.5 shows the model training process. The training accuracy of the model was 

42.61%. 
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Figure 4.5 Model Training from Scratch 

For the fair evaluation, the neural network hyperparameters were optimized for the new 

task as well, where 5 users were classified. The same range of hyperparameters was used 

from Section 4.3 with a Bayesian search to tune the hyperparameters. Table 5 shows the 

hyperparameters after the tunning process and Figure 4.6 shows the model training 

history. The training accuracy of the model was 40.56%. 

             Table 5 Optimized Model Hyperparameters for a new task 

Hyperparameter Value 

Number of                    
neurons 

Hidden layer 1: 640 
  Hidden layer 2: 1120 

Hidden layer 3: 480 

Activation Function 
Hidden layer1: Relu    

             Hidden layer 2&3: Sigmoid           
     Output Layer: SoftMax 

 

 

Learning rate 0.001  

Loss Function sparse categorical cross-entropy 
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     Figure 4.6 Model Training with optimized hyperparameter 

4.4.3 Model Testing 

The 20% data which was held out to test the models gave the below results. The model 

with transferred learning had 9.76% more accuracy than the model trained from the 

scratch. 

Table 6 Results Comparison 

Model Test accuracy F1 Score 

Transfer Learning model 50.61% 0.5031 

Model with hyperparameter 
optimization  

40.82% 0.3869 

Model trained with same 
hyperparameters 

39.59% 0.3693 
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4.5 Conclusion 

Similar studies (Chapter 2) conducted were not focused on reducing the time required for 

data collection as it can be a very long and time-consuming process. Whereas this 

research presents a novel approach to reducing the data collection time and hence the 

registration time. This will make the system ready to be used early when compared to 

others. It can help in commercialization of the continuous authentication. Once the base 

model is ready then it will be easy to onboard new clients/organizations in less amount of 

time. Transferring the learning from the base model will help to get better accuracy with 

a small amount of data gathered in less time duration. 

For the experiment purpose, only one behavioral pattern was used to train the models. 

The results with it show that using transfer learning for a new set of users gives better 

accuracy than the model trained from scratch. Also, when the same technique is used 

with multiple patterns combined, it is expected that accuracy would increase 

exponentially. This is because the model will have more features to learn under laying 

behavioral patterns. Also, this would help to get better classification accuracy for a small 

amount of data. Hence, the time required for data gathering would reduce and a 

continuous authentication system could be implemented in less amount of time for new 

users. 
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Chapter 5  

5 Ensemble Learning to Enhance Continuous User 
Authentication for Real World Environments  

The performance of the ML classification algorithm is key in continuous user 

authentication, and it requires diverse and comprehensive data to be effective in the 

production environment. In many cases, the ML algorithm is trained on the datasets 

collected in a controlled lab environment and the model fails or does not perform as 

expected in the production environment. For example, China’s facial recognition system 

recognized the face on a bus ad as a jaywalker because the model was not trained on real-

world data. To overcome this problem, the real-world data of 48 of a financial 

organization’s employees was used to compare the performance of advanced ML 

algorithms, including Light GBM, XGboost, TabNet, Neural Network, and 1D CNN. 

Among all the individual models, LightGBM performed best with an accuracy of 

23.58%. However, some ML models were better at predicting particular sets of users than 

others, hence ensemble learning was used to combine the prediction ability of all the 

models, which increased cumulative accuracy to 24.03%. These results suggest that the 

boosting algorithm is effective at classifying users. Additionally, the prediction 

performance can be improved using ensemble learning techniques. 

5.1 Background 

Data quality is vital to solving continuous authentication problems. Data is deemed of 

high quality if it correctly represents the real-world construct to which it refers. To 

properly train a predictive model, data must meet exceptionally broad and high-quality 

standards. The previous research in continuous authentication has used the keystroke data 

collected in a controlled environment like computer labs, to train and test the Machine 

Learning (ML) algorithms [21] [22] [23] [24] [25]. However, because these models 

function differently on real-world datasets where the user has no restrictions, it is crucial 

to assess the performance of ML algorithms on real-world data. In this study, the ML 

models are evaluated using the core features explained below. 

• The performance of ML models was assessed using the data collected from a 
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financial organization’s employees (real-world data).  (Chapter 3).   

• Each model was good at predicting a certain set of users, so ensemble learning 

was used to improve accuracy by merging the prediction potential of the models. 

(Chapter 5.3). 

• Only two behavioral patterns out of hundreds were used for the experiments, and they 

showed good accuracy. Using more patterns would exponentially raise the 

authentication accuracy (Chapter 3). 

The clean data was used to train different classification models and an ensemble of them. 

The details of the algorithm are described below. 

5.1.1 LightGBM 

Light GBM is a high-performance gradient boosting framework based on a decision tree 

algorithm. Boosting models are built sequentially by minimizing errors from previous 

models while increasing the influence of high-performing models. It uses boosting to 

convert weak learners to strong learners by growing vertically i.e., it grows leaf-wise (as 

shown in Figure 5.1). It chooses the leaf with a large loss to grow and therefore reduces 

loss more than a level-wise algorithm when growing the same leaf. The figure shows the 

leaf-wise growth in LightGBM [26]. 

 

Figure 5.1 LighGBM Tree Growth 

LightGBM is a fast, distributed machine learning algorithm used for classification, 

ranking, and other tasks.  It requires less computational power to deal with a large 

amount of data and gives faster results. LightGBM has more than 100 parameters, but it 

is not required to tune all of them. The parameters that more profoundly impact 
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algorithms' performance are the max depth of the tree, minimum data in the leaf, feature 

fraction, bagging fraction, early stopping round, lambda (regularization parameter), and 

minimum gain to split. 

5.1.2 XGBoost  

XGBoost is a decision-tree-based ensemble machine learning algorithm that uses 

a gradient-boosting framework. Gradient boosting is a supervised learning algorithm, 

which attempts to accurately predict a target variable by combining the estimates of a set 

of simpler, weaker models. It grows horizontally (level-wise) to reduce loss as shown in 

Figure 5.2.   

 

Figure 5.2 XGBoost Tree Growth                                     

XGBoost performs well for the well-structured dataset. Also, XGBoost uses parallel 

processing, which makes it faster. It can handle missing values and uses regularization to 

avoid overfitting [27]. 

5.1.3 Neural Networks 

Neural networks are the representation of the human brain, i.e., neurons interconnected to 

other neurons to form a network. They have three layers: the first layer is the input layer 

in which inputs are entered, the next layer is a hidden layer with multiple internal layers 

that perform mathematical operations, and lastly, the output layer gives output. If a 

hidden layer has multiple layers, then it is called a deep learning/ deep neural network 

[28]. 

Each neuron connects to another and has an associated weight and bias. If the output of 

any individual neuron is above the specified threshold value, that node is activated, 
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sending data to the next layer of the network. Otherwise, no data is passed along to the 

next layer of the network. The threshold for each neuron is obtained using the activation 

function. 

Neural networks are powerful tools in machine learning, once they are fine-tuned for 

accuracy because they can be used for classifying and clustering the data at a high 

velocity. 

5.1.4 TabNet 

TabNet was developed at Google to be used specifically for tabular/ structured data. It 

uses a machine learning technique called sequential attention to select which model 

features to reason from at each step in the model. Each step has a block of components 

like an attention transformer, mask, feature transformer, activation function, etc. Each 

step has its vote in the final classification and these votes are equally weighted. The 

number of steps is a hyperparameter option and increasing it will increase learning 

capacity but will increase training time, the chance of overfitting, and memory usage as 

well. TabNet was developed in 2019 and has shown good performance for structured 

data. Therefore, it is used in this research [29].  

5.1.5 1D CNN 

CNN (Convolution Neural Network) is a type of neural network mainly used for image 

classification. It typically has three layers: a convolution layer, a pulling layer, and a fully 

connected layer. Recently, a 1D-convolution neural network (CNN) achieved the best 

single model performance in a Kaggle competition with tabular data. In this model, a 

fully connected layer is used to create a larger set of features with locality characteristics, 

and it is followed by several 1D-Conv layers with shortcut-like connections [30]. 

5.1.6 Ensemble learning 

Ensemble learning is an impressive machine learning technique that has shown 

advantages in many applications. The ensemble method uses multiple learning algorithms 

working in parallel and their outputs are combined using different strategies to achieve 

better prediction results for the given problem. The core idea of ensemble learning is 
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based on the principle that the generalization ability of an ensemble is better than the 

single machine learning model.  Ensemble learning methods are mainly used because the 

dataset cannot give sufficient information to choose the best machine learning model, or 

the search process of the algorithm is not perfect [31]. 

The ensemble method has member learners or component learners who form the group to 

make the prediction. The diversity of component learners is a very important factor in the 

performance of the ensemble. The diversity can be enhanced either by choosing different 

machine learning algorithms or using different parameters for the same machine learning 

algorithm. 

After selecting diverse member learners, it is important to select the right decision fusion 

strategy. There are three strategies used for decision fusion: hard voting, soft voting, and 

stacking. 

• Hard Voting: The prediction made by component learners for each class label is 

added and the class with the highest number of votes is the prediction of the 

ensemble. For example, there are three component learners and two labels/ classes 0 

and 1. Suppose, two-component members predict class 1 as the output, and one 

predicts class 0, then the ensemble’s output will be class 1 given a majority of votes 

[32]. 

• Soft Voting: This technique uses component learners' prediction probability of each 

predicted class. All the prediction probabilities are summed and the class with the 

highest prediction probability is the prediction of the ensemble learning. 

• Stacking: This technique works by adding another layer of a machine learning 

model. This layer will learn and train on the prediction of the component learners 

with the real label from the original data to produce the final predictions [33]. 

5.2 Evaluation matrix 

The below methods are used to evaluate the model performance.  

• FAR (False Acceptance Rate) FAR is the proportion of times a system grants access 

to an unauthorized person. 
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              FAR = FP/ (FP + TN)                          ( 4 ) 

   Where, FP = False Positive, TN = Total Negative  

• FRR (False Rejection Rate) is the proportion of times a biometric system fails to 

grant access to an authorized person. 

FRR = FN/ (FN + TP)                          ( 5 ) 

    Where, FN = False Negative, TP = Total Positive  

• The accuracy of the model is calculated as the number of correct predictions divided 

by the total number of predictions. 

            Accuracy = TP + TN/ (TP + FP + FN +TN)       ( 6 ) 

• Prediction delay is the time required by trained ML algorithms to make predictions. 

Generally, ML algorithms do mathematical operations to give predictions and it 

varies depending upon the complexity of the mathematical operations.  

The prediction delay is calculated by measuring the time difference between the start 

and end of the prediction function. 

5.3 Experiments and Results 

All the experiments are carried out on the laptop with 12 GB memory, 512 GB SDD, 

windows 10 OS, and an intel i5 processor.  Additionally, the tools such as Jupyter 

Notebook and MySQL work bench are utilized along with all the latest versions of ML 

algorithm libraries required for the experiments. The details of the experiments are 

explained below.  

The raw data from 48 users were captured to extract two behavioral features, mouse click 

length, and screen location. This data was then used to train the machine learning models 

described in section III. The dataset was balanced and has a total of 48,000 records, 1000 

records for each user, 800 of them used for training and the remaining 200 for testing the 

model i.e., 80% for training and 20% for testing the machine learning model. 
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                                       Table 7  Individual ML Model Results  

Model Name  
Evaluation Matrix  Prediction Delay 

(sec) 

Accuracy FAR FRR 

Light GBM 23.58% 1.62 76.41 34.42 

XGBoost 22.92% 1.63 77.08 1.67 

Neural Network 15.04% 1.80 84.96 4.20 

TabNet 15.45% 1.79 84.54 1.59 

1D-CNN 12.71% 1.84 87.29 6.78 

 

Table 7 shows the overall accuracy of the models; moreover, the accuracy of the 

individual user was calculated for each model i.e., out of 200 test records how many were 

predicted correctly for each user. Also, the prediction delay for a total of 9600 records 

(48 users with 200 testing records for each) was measured for each model. Through this 

analysis, it was found that some models were better at predicting a set of users than other 

models and vice versa. For example, Figure 5.3 shows the accuracy of the first 25 users 

for TabNet and XGBoost, and here TabNet was better at predicting some users i.e., it had 

higher accuracy for them than XGBoost, and similarly, XGBoost was superior in 

identifying other users. Therefore, to consolidate the prediction power of all the models 

and improve the overall accuracy of the prediction, experiments with different ensemble 

techniques were performed. Additionally, employing ensemble learning will have an 

impact on resource consumption and prediction time will assist to measure it in terms of 

time.   
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Figure 5.3 Accuracy of users for XGBoost and TabNet Models 

Table 8 illustrates the performance of the four voting ensemble models to identify the 

user based on their accuracy. The ensemble of the top four models i.e., Light GBM, 

XGBoost, Neural network, and TabNet, had the highest accuracy of 24.03% with soft 

voting methods. By comparison, the ensemble of the top three (XGB, LGB, and TabNet) 

and gradient boost models (XGB, LGB) gave almost identical results with accuracies of 

23.95% and 23.94% respectively. However, the prediction time required for the ensemble 

of the top four models is 43.51 sec which is the highest across the board. 

       Table 8 Voting Ensemble Result  

Voting Ensemble Name  
Accuracy  Prediction 

Delay(sec) 
Hard 
Voting 

Soft 
Voting 

Ensemble of top four models (based on 
accuracy) 

23.28% 24.03% 
43.51 

Ensemble of gradient boost models 23.58% 23.94% 
37.85 

Ensemble of deep learning models 15.45% 15.67% 
3.03 

Ensemble of top three models 23.12% 23.95% 
38.16 
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The results of the stacking ensemble are shown in Table 9; none of the models was able 

to beat the performance of the best individual model (Light GBM). Also, the prediction 

time is high. 

     Table 9 Staking Ensemble Results   

Stacking Ensemble Name 

                         
Accuracy 

Prediction 
Delay (sec) 

Ensemble of top three models and the top model at 
the last layer 

23.28% 
77.58 

Ensemble of top three models and second best 
model at the last layer 

23.58% 
167.3 

Ensemble of top two models and the top model at 
the last layer 

21.47% 
14.27 

 

In addition, an ensemble of three XGBoost models with the top three hyperparameter sets 

determined during hyperparameter tunning was evaluated. XGBoost was selected 

because of the lowest prediction time and higher side accuracy. However, the accuracy of 

this ensemble was 23.040%, that’s lower compared to the soft voting ensemble and the 

prediction time was 3.88 sec. 

To summarize, a voting ensemble of the models does improve the performance, 

especially with the soft voting. Although the prediction time can be a potential problem, 

it can be solved with high-end infrastructure like multiple GPUs and processors that can 

do parallel processing which will assist to reduce the prediction delay. Additionally, the 

accuracy of the models is lower compared to previous research (discussed in chapter 2) 

which shows that it is difficult to find unique behavioral patterns from real-world data 

because it is messy compared to the synthetic datasets or the data collected in the labs or 

controlled environments. The real-world dataset has less variance for individual user, 

whereas data values are overlapping when considering all the users (shown in Figure 

3.5). This makes it difficult to find unique behavioral patterns of the users. Therefore, the 

highest accuracy of 24.03% is very practical. Moreover, only two behavioral patterns 

were used to train the models, an increasing number of behavioral patterns will assist 
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models to find more unique behaviors about users and hence improve the overall 

accuracy. 

5.4 Conclusion  

In this study, the real-world data of office employees was used to compare multiple 

machine learning models on the classifications of users based on their behavioral 

information. Since previous research used controlled environments to collect keystroke 

data, this might have led to ML model failure for a real-world dataset.  

The two behavioral patterns, click length and screen location, were extracted from the 

raw data and cleaned using the Interquartile range technique. Later, the behavioral data 

was used to train different machine learning algorithms. However, it was found from the 

algorithm predictions that each of the models performed differently for different users. 

To achieve optimal performance for all the users, the prediction power of all the models 

was combined using ensemble learning.  

Five advanced ML algorithms, TabNet, Neural Networks, 1D- CNN, Light GBM, and 

XGBoost, were trained using the behavioral data of the user. Light GBM had the best 

prediction accuracy of 23.58% but other models were better at predicting a set of users.  

Therefore, to combine these predictions, three different ensemble methods, hard voting, 

soft voting, and stacking, were used. These ensembles were able to increase prediction 

performance, with the soft voting ensemble of the top four models having the best 

accuracy of 24.03%. This illustrates the benefits of ensemble learning for continuous user 

authentication. However, the prediction time required for the ensemble is higher 

compared to others, but it can be reduced with high end infrastructure. 
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Chapter 6  

6 Database benchmarking to identify the data latency for 
different databases. 

In the digital world, latency is the new outage. In simple words latency means delay. In 

technology terms, it is the time required to perform any action/ operation. For example, 

when the user searches on google, the search engine takes time to showcase all the related 

results. The time difference between entering the query and getting the result is called 

latency. It is essential to study the latency of the system as it has a major impact on 

performance. 

In the case of continuous user authentication reducing latency is critical as the users are 

authenticated on an ongoing basis thus any delay can create an opportunity for hackers. 

Also, as a rule of thumb, the lower the latency, the higher the speed and performance. 

Therefore, it is crucial to identify and reduce delays. One such major factor causing lag is 

the performance of the database. It is also called data latency; it is the time taken to store 

and retrieve the data from the database. In continuous authentication, users' raw data is 

collected and saved in the database (as shown in Figure 6.1). Here the insert operation is 

performed and later this data is fetched for feature extraction.  

 

Figure 6.1 Continuous Authentication Architecture 
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Data latency is key especially when a large amount of data is added or fetched such as 

continuous user authentication wherein around 50 new raw behavioral data records are 

generated and stored in the database every second for each user. Considering there are a 

few hundred users, this would generate millions of records every day. Consequently, it 

would impact database performance. Hence it is essential to select the appropriate 

database.  

There are many research contributions on database benchmarking, however, all of them 

are generic i.e., databases are benchmarked for comparison whereas, this study focuses 

on benchmarking databases, especially on the production-like scenarios of continuous 

user authentication.  

To decide on database selection, a python framework is developed to benchmark 

databases based on different operations. PostgreSQL and MySQL databases were chosen 

for comparison based on the nature of the data collected, as it is structured and tabular 

data. The framework is used to identify the best fit for continuous authentication. 

Moreover, the framework can be used to compare any database with small changes in the 

code. The details of the framework and experiments are explained in this chapter. 
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6.1 Benchmarking Framework 

The benchmarking framework is built to simplify the development environment and 

avoid coding repetitive functions and libraries. This framework can be used to benchmark 

different databases with little modification in a few functions and configuration variables. 

Figure 6.2 gives a brief overview of the framework.  

 

Figure 6.2 Benchmarking framework block diagram 

A detailed description of each component is given below. 

6.1.1 Control Unit  

This unit has the configuration, environment, and stage file necessary to begin the 

benchmarking experiments. Details of each file are described below. 

Configuration file: This is a JSON file where different configuration variables can be set 

based on the experiment. It has a total of 23 properties, which are of String, array, and 

Boolean type. The file’s details are shown below. 
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Figure 6.3 Configuration File Variables 

The configuration file has more than 40 keys, but some import keys are explained below. 
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runs: This is an array that determines how many times the query should run, as for 

instance, if the value of a run is an array of values 10 and 20, then the query would run 10 

times and then 20 times. 

test_cycles: This key has an integer value that defines how many times the test should be 

executed for the runs. For example, if the value of runs is 10 and test_cycles is 5, then 

there will be five cycles with 10 runs in each cycle.   

methods: This key has a nested array of an object that defines the name of the method, 

suffix, and prefix. The suffix and prefix can be used to build the query for the method. 

queries: This is a nested JSON object that has queries used for benchmarking the 

database. Here the method name is used to identify the query. 

Environmental variables (.env file): The file has environment variables required to 

connect to the database such as the database server IP address, port number, username, 

and password. Each database has an individual environment file to store this data, which 

is then used to make the database connection.   

Stage file: This is a python file that fetches all the configuration and environment 

variables from respective files and stores them for use in the next phases. Then, based on 

the configuration variable, all the required operations are performed by calling functions 

from benchmarking and analysis units. 

6.1.2 Benchmarking Unit 

The unit has a main.py file, which contains all the python operations required to perform 

the benchmarking, including functions to connect to the database and perform and save 

the benchmarking results. In addition, the system information, such as RAM, processor, 

database version, CPU threads, etc, is saved in a JSON file for future analysis. All these 

functions are used by the stage.py file for benchmarking. 
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6.1.3 Analysis Unit 

This unit contains all the components required to perform an analysis of the results. The 

analysis.py file fetches all the results to perform different statistical and graphical 

analyses as well as compare the results from both databases. 
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6.2 Benchmarking process flow    

 

Figure 6.4 Database Benchmarking Activity Diagram 
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The activity diagram defines the dynamic behavior of the modeled system and assists in 

understanding program flow at a high level. Figure 6.4 shows the behavior of the 

database benchmarking framework.   

Initially, the configuration variables are set based on the nature of the benchmarking test. 

Along with configuration variables, environment variables are required for the database. 

Once this information is provided, the program fetches and stores it until the end of the 

test and uses the data at different stages. Next, it creates a unique test ID to be used to 

identify the test. Later, the configuration variables are scanned to determine if both 

PostgreSQL and MySQL tests are required or not. If they are required, then to run the 

test, first, a database connection is made and verified, as failure to connect to the database 

would terminate the test. However, if the connection to both databases succeeds, then 

again, the configuration variables are used to build the MySQL and PostgreSQL queries 

for benchmarking. Afterward, the queries are executed on the respective databases. The 

number of times a query should be executed depends on the configuration variables 

‘runs’ and ‘test_cycles’. For example, if the value of ‘runs’ is 100 and ‘test_cycles’ is 5, 

then the query will be executed 100 times for 5 cycles i.e., a total of 500 times a query 

will be executed. Adding cycles assists in determining the database performance patterns 

after executing a set of queries. Simultaneously, the query time/latency (time required by 

the database to return the results i.e., the time difference between query triggered and 

query execution completed) is calculated and the results are saved in the CSV file, which 

is named based on the experiment naming conventions (explained in section 6.1.3 ). 

Thereafter, these results are used to perform different types of analyses. First, statistical 

analysis is used to find the median, min, max, and different percentile values in the 

results. Second, the graphical analysis plots the graph of query time vs the runs for the 

complete test and each cycle. Then, the analyses are saved in JSON and pdf files 

respectively according to experiment naming conventions. These analyses assist in 

finding the patterns in individual MySQL and PostgreSQL results. However, it is vital to 

compare the results and analyses from both to understand and compare the patterns 

throughout the test. The succeeding step creates the comparison pdf, which has plots for 

both MySQL and PostgreSQL query time and moving average plots to obtain smoother 

patterns from the test. After this, the test is completed. 
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On the other hand, if both PostgreSQL and MySQL tests are not required, then the 

program checks if the PostgreSQL test is required. If it is required, then the connection 

with the PostgreSQL database is created and tested. If the connection fails, the test is 

terminated, but otherwise, a query is built using the variables from the configuration file. 

Following that, the query is executed to calculate the query time and the results are then 

saved in the CSV file. Subsequently, these results are used for statistical and graphical 

analyses, which are then saved in JSON and pdf files respectively, marking the end of the 

test. 

Furthermore, if both the PostgreSQL and MySQL tests and PostgreSQL tests are not 

required, the program checks if the MySQL test is required. If it is required, then the 

program performs the same steps mentioned for the PostgreSQL test. And if it is not 

required, then the test will be terminated.  

6.2.1 Experiment naming conventions 

Result file:  Query time/latency results are saved in a CSV file with a name determined 

according to experiment naming conventions i.e., database name _ table name _ query 

type_ number of runs _ test Id.  

For example, the name “postgresql_users_select_r_100_t_1666812060_1.csv” explains 

that the database PostgreSQL was tested for the users table by running a select query 100 

times.  

The below format is used to save the test results. 

Table 10 Result Format 

Column Name Date Table Query  Execution Time (Sec) Cycle No 

Details/example Unix Time 
Stamp 

users Select * 
from 
users; 

0.005880188000446651 1 

Statistical and graphical analysis files: Result data are used to find statistical 

information like median, max, min, etc. This information is then saved in the JSON with 

a name such as “analysis_postgresql_users_select_r_100_t_1666812060_1.json” which 

has a similar meaning to the result file except it has an analysis at the beginning to 
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indicate that it is the analysis file. In the case of graphs, the plots are saved in a pdf file 

with a name. For example, “plots_postgresql_users_select_r_100_t_1666812060_1.pdf”. 

6.3 Experiments and Results 

In continuous authentication, the two important database operations are select and insert 

queries. The system needs to insert the new records coming from the user and fetch the 

records from the database for user authentication. Hence, it is important to perform 

benchmarks on these operations in different conditions to identify the database with the 

lowest latency in a production environment. To achieve these outcomes, the below data 

seed is used for the experiment. 

6.3.1 Data seed for the experiment 

For faultless evaluation of databases in production-like cases, the key is to use a dataset 

similar to production data for benchmarking. Therefore, a table with the below columns 

was created that replicates the table from the production environment. 

Table 11 Dataset details 

Field Type 

SessionID bigint 

timestamp int 

type tinyint(1) 

x int 

y int 

Event int 

userId varchar(255) 

  

The table has nine columns, seven of which are of type int or similar and the other two 

are of varchar and DateTime type. To create data similar to production, a SQL procedure 

was developed that would insert the records based on the requirement. For example, if the 

input to the procedure is 1000, then it would add one thousand new records to the table. 
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6.3.2 Experiment setup  

To replicate the production scenario, select and insert queries are executed with different 

conditions. The experiments are divided into two categories, primary experiments, and 

complex experiments. In primary experiments, simple production scenarios are evaluated, 

whereas in complex experiments, production scenarios are intricate. The below table 

explains the details of the same. 

6.3.2.1 Primary Experiments 

In production, a query is not executed only once but multiple times, and hence in the 

experiments, queries are executed multiple times for large datasets to analyze the query 

latency. For primary experiments, select and insert queries are assessed individually. 

Table 12 provides the details of the experiment conditions, number of queries executed, 

and total records in the table. 

Table 12 Primary Experiment Details 

Experiment Condition No of times query executed 
(runs) 

Number of records in the 
table  

Select query to fetch all the 
records from the table 

100 1 million 

Select query with the 
condition to fetch record for 

one user only 

100 1 million 

Insert new records in the 
table 

100  1 million 

 

6.3.2.2 Complex Experiments 

In production, databases do not perform only one operation like select or insert but have 

to do multiple operations simultaneously, which can degrade their performance. 

Therefore, it is critical to analyze each database in certain conditions while executing 

multiple operations simultaneously. For instance, in continuous authentication, the 

database has to insert new records as well as answer any fetch requests. Hence, to study 

the database under these conditions, the below experiments were performed.  
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Table 13 Complex Experiment Details  

Experiment Condition No of times query 
executed (runs) 

Number of records 
in the table  

Select query to fetch all the records from the table 
was evaluated while the database performs insert 
operations simultaneously  

100 1 million 

Select query with the condition to fetch record for 
one user only while database performs insert 
operation parallelly 

100 1 million 

Insert new records in the table while database 
performs select operation simultaneously 

100 1 million 

In complex experiments, the select and insert query will be evaluated while the database 

also performs other operations simultaneously. For example, in the first experiment, data 

latency for the hundred select queries was calculated whilst the database executed the 

insert operation simultaneously. 

 6.3.2.3 Hardware/Software Details 

The experiments were performed on the computer with the below system details. 

Table 14 System Details 

Database Type MySQL and PostgreSQL 

Database Kind SQL 

Database Version MySQL 8.0.20 

Database Version PostgreSQL PostgreSQL 14.6 

Operating System Windows-10-10.0.19041-SP0 

System Memory 11.650901794433594 

CPU Type Intel64 Family 6 Model 140 Stepping 1, 
GenuineIntel 

Total Cores 8 

Total Threads 1 



54 

 

 

6.3.4 Results 

A total of six different experiments (Table 12 and 13) was performed to evaluate the 

databases in different production-like scenarios. The results of both primary experiments 

and complex experiments are discussed below. 

6.3.4.1 Primary Experiments results 

1. Select query to fetch all the records from the table 

To begin, a select query to fetch all the records was executed 100 times and the 

performance was recorded on both PostgreSQL and MySQL databases. 

Figure 6.5 shows the execution time required to fetch 1 million records one hundred 

times on the MySQL database. It can be observed that the execution time i.e., query 

latency varies between 9ms to 12ms, whereas Figure 6.6 shows query latency for select 

queries on PostgreSQL. The execution time was between 0.6ms to 0.8ms, which is very 

low compared to MySQL.  

 

Figure 6.5 Select Query Execution Time MySQL for Primary Experiment One 
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Figure 6.6 Select Query Execution Time PostgreSQL for Primary Experiment One 

Figure 6.7 compares the execution times to retrieve 1 million records from PostgreSQL 

and MySQL. Clearly, PostgreSQL performs way better than MySQL in fetching all the 

records from the table. 

 

Figure 6.7 Select Query Comparison of MySQL and PostgreSQL for Primary 

Experiment One 
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The Table 15 shows the different statistics for the execution times of both databases. The 

table has the median, maximum, minimum, and percentile values of the results. These 

statistics will assist to evaluate the performance of the database.  

For the first experiment, the difference between the median value of MySQL and 

PostgreSQL is huge and clearly, PostgreSQL outperforms MySQL in all the select query 

stats. The performance of PostgreSQL is 13 times better than MySQL. 

Table 15 Statistics MySQL and PostgreSQL for Primary Experiment One 

Execution Time Stats MySQL(ms) PostgreSQL(ms) 

Median 9.610416149999999 0.6922907000000014 

Max 14.653671499999971 0.9570205999999928 

Min 6.749867999999992 0.4895766000000003 

Percentile 25% 9.338115 0.644354 

Percentile 50% 9.610416 0.692291 

Percentile 75% 9.962929 0.743065 

 

 

2. Select query with the condition to fetch records for one user only 

The second experiment was to test the performance of a select statement with a where 

clause because, in production, it is often necessary to fetch data for a specific user based 

on different criteria. Therefore, to benchmark the databases on this condition, the data 

was fetched using a select statement with username in the where condition. For example, 

‘select * from data where uname =’clair’. 

Using the query above, around ten thousand records were fetched from 1 million records 

for the username ‘clair’. To fetch the data, MySQL took between 0.9ms to 1ms while 

PostgreSQL required around 0.09ms to 0.13ms. Again, MySQL does not perform as well 

as PostgreSQL. 
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Figure 6.8 Select with Where Condition Query Execution Time MySQL for Primary 

Experiment Two 

 

Figure 6.9 Select with Where Condition Query Execution Time PostgreSQL for 

Primary Experiment Two 
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Figure 6.10 compares the MySQL and PostgreSQL results for select query with where 

clause, the performance of MySQL is poor compared to PostgreSQL. MySQL is not even 

close to PostgreSQL.  

 

Figure 6.10 Select with Where Condition Query Comparison of MySQL and 

PostgreSQL for Primary Experiment Two 

The Table 16 shows the stats for the experiment. Undoubtedly, PostgreSQL beats 

MySQL at every stage.  The median execution time for PostgreSQL is 0.0726ms, 

whereas for MySQL it is 0.8428ms. Moreover, the difference between the minimum and 

maximum value for PostgreSQL is 0.091 and for MySQL, it is 0.66. It shows that the 

performance of both databases does not change drastically throughout the experiment. 
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Table 16 Statistical Comparison for Primary Experiment Two 

Execution Time Stats MySQL(ms) PostgreSQL(ms) 

Median 0.8438375000000011 0.07268409999999956 

Max 1.3509363000000008 0.1564174999999998 

Min 0.6974038000000036, 0.0596166 

Percentile 25% 0.80234 0.066272 

Percentile 50% 0.843838 0.072684 

Percentile 75% 0.869998 0.078394 

 

3. Insert new records in the table 

The next important operation is data insertion; in continuous authentication, a large 

amount of data is generated every second. Thus, to assess the performance of the 

databases, the experiment with insert query was conducted where the query was executed 

100 times on both databases. 

Figures 6.11 and 6.12 show the results of this experiment, where there is not much 

difference between the performance of MySQL and PostgreSQL. Both databases took 

around the same time to insert the record on the database. The execution time varies 

between 0.0010ms to 0.0030ms for MySQL and 0.0007ms to 0.0014ms for PostgreSQL. 

Additionally, the execution time for the first few records was high for both databases. 

However, after that the performance was stable, and databases took around a similar time 

to add new records.   
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Figure 6.11 Insert Query Execution Time MySQL for Primary Experiment Three 

 

Figure 6.12 Insert Query Execution Time PostgreSQL for Primary Experiment 

Three 
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Figure 6.13 shows the execution time graphs for both databases. The orange line was for 

MySQL and the blue line was for PostgreSQL. The performance of the databases was 

comparable, but PostgreSQL performs slightly better than MySQL. 

 

Figure 6.13 Insert Query Comparison of MySQL & PostgreSQL for Primary 

Experiment Three 

The statistic from Table 17 confirms that the MySQL and PostgreSQL performance 

overlapped. The difference between all the statistical values is very small. Also, the 

performance of MySQL is better compared to the first two experiments i.e., fetching all 

the data and selecting the data based on the where clause. 

Table 17 Statistical Comparison for Primary Experiment Three 

Execution Time Stats MySQL(ms) PostgreSQL(ms) 

Median 0.0002600000000001 0.00012070000000005 

Max 0.0030774 0.0005792 

Min 0.0001705999999999 8.740000000018178e-05 

Percentile 25% 0.000224 0.000107 

Percentile 50% 0.00026 0.000121 

Percentile 75% 0.000305 0.000146 
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6.3.4.2 Complex Experiments Results 

In production, databases are required to handle multiple connections and requests. 

Therefore, to simulate a similar environment, the experiments were performed with the 

below scenarios. 

1. Select query to fetch all the records from the table was evaluated while the 

database performs insert operations simultaneously  

In continuous authentication, insert and select operations are critical. The user’s data is 

continuously added to the databases and at the same time data is fetched for feature 

extraction. The database needs to perform both operations every few seconds. Hence this 

scenario was added to evaluate the select operation performance when insert operations 

were executed simultaneously. 

Figure 6.14 shows the performance of the MySQL select operation while insert queries 

were executed simultaneously. The execution time varied between 7ms to 13ms, whereas, 

for PostgreSQL, it ranged from 0.7ms to 0.9ms. The execution time for both databases is 

increasing after every execution because the new data has been added simultaneously, 

therefore, the databases had to fetch more records every time. 

 
Figure 6.14 Select Query Execution Time MySQL with Insert Operation in Parallel 
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Figure 6.15 Select Query Execution Time PostgreSQL with Insert Operation in 

Parallel 

Figure 6.16shows the comparison of MySQL and PostgreSQL for the select operation 

while the insert queries were executed simultaneously. The performance of PostgreSQL 

had very little impact of the increasing number of records, whereas MySQL performance 

was highly impacted because of the increasing number of records and simultaneous 

operations. 
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Figure 6.16 Select Query Comparison of MySQL & PostgreSQL with Insert 

Operation in Parallel 

The Table 18 shows the statical comparison of PostgreSQL and MySQL. The difference 

between minimum and maximum is very high for MySQL when compared with 

PostgreSQL. This indicates that the MySQL performance would degrade with an 

increasing number of records, whereas the performance of PostgreSQL was stable with 

all the changes. 

Table 18 Statistical Comparison for Complex Experiment One 

Execution Time Stats MySQL(ms) PostgreSQL(ms) 

Median 12.228753049999938 0.8172035000000051 

Max 13.367786599999988 1.0093484000000004 

Min 6.454262799999924 0.7369057999999953 

Percentile 25% 8.864012 0.782431 

Percentile 50% 12.228753 0.817204 

Percentile 75% 12.642323 0.858551 
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2. Select query with the condition to fetch records for one user only while 

database performs insert operation parallelly 

In the second case, the select operation with a where the condition was executed with 

insert queries running in parallel. The select query used for the experiment was “select * 

from data where uname =’clair’” but no additional records for username ‘clair’ was 

inserted with insert query because in the previous experiment the performance of the 

select operation was already analyzed for the increasing number of records. Therefore, 

this experiment evaluates the performance of select with the where clause while the insert 

operation is performed parallelly. However, the number of records for select operations 

was the same.  

Figures 6.17 and 6.18 show the performance of MySQL and PostgreSQL respectively. 

PostgreSQL beats MySQL and performs better in fetching records. 

 

Figure 6.17 Select with Where Query Execution Time MySQL  with Insert 

Operation in Parallel 
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Figure 6.18 Select with Where Query Execution Time PostgreSQL with Insert 

Operation in Parallel 

Figure 6.19 shows the performance of both databases in terms of execution time. The 

execution time for MySQL varies between 1 ms to 1.5 ms, whereas for PostgreSQL it is 

between 0.07 ms to 0.13 ms. Additionally, The performance of MySQL is degraded 

compared with the performance of the second primary experiment in which only select 

with where clause was evaluated. The median time for the primary experiment was 

0.84ms but for this experiment, it soared to 1.25ms. Whereas for PostgreSQL the median 

time for the primary experiment was 0.072ms and in this experiment, it rose to 0.09ms. 

This shows that the performance of MySQL degrades faster compared to PostgreSQL 

when select and insert operations are performed parallelly.  
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Figure 6.19 Select with Where Query Comparison of MySQL & PostgreSQL with 

Insert Operation in Parallel 

The table below displays the statistics for MySQL and PostgreSQL. Again, PostgreSQL 

performs around 9 times better than MySQL. 

 

Table 19 Statistical Comparison for Complex Experiment Two 

Execution Time Stats MySQL(ms) PostgreSQL(ms) 

Median 1.253879149999996 0.0929318000000001 

Max 1.7836954999999932 0.1886225999999999 

Min 0.7546789999999994 0.0586152000000002 

Percentile 25% 1.106501 0.086717 

Percentile 50% 1.253879 0.092932 

Percentile 75% 1.439175 0.10246 
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3. Insert new records in the table while database performs select operation 

simultaneously 

The last scenario evaluated the performance of the insert operation when select queries 

were executed parallelly. Figures 6.20 and 6.21 show the performances of both databases. 

The performance of MySQL varies between 0.00020ms to 0.00043ms, whereas for 

PostgreSQL it changes between 0.00010ms to 0.00017ms. Hence, distinctly PostgreSQL 

performs better to insert new data while select queries were executed at the same time. 

 

 

Figure 6.20 Insert Query Execution Time MySQL with Select Operation in Parallel 
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Figure 6.21 Insert Query Execution Time PostgreSQL with Select Operation in 

Parallel 

Figure 6.22 compares the execution time results of both databases. Evidently, 

PostgreSQL performed better. Additionally, if compared with the third primary 

experiment where only the insert operation was analyzed and the results were very 

similar for both the databases, the results of this experiment were different and there was 

a clear winner. This shows that the performance of PostgreSQL is not changed much but 

for MySQL, it was lower. 
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Figure 6.22 Insert Query Comparison of MySQL & PostgreSQL with Select 

Operation in Parallel 

Table 20 shows the statistics for both MySQL and PostgreSQL. The median value for 

MySQL in this experiment was 0.00020ms, whereas for PostgreSQL it was 0.00010ms. 

PostgreSQL performs twice better as that as MySQL. Also, the execution time variation 

was more for MySQL compared to PostgreSQL. 

Table 20 Statistical Comparison for Complex Experiment Three 

Execution Time Stats MySQL(ms) PostgreSQL(ms) 

Median 0.00020265000000005 0.00010899999999995001 

Max 0.001465 0.0005941999999999 

Min 0.0001616000000002 9.090000000000488e-05 

Percentile 25% 0.000187 9.9e-05 

Percentile 50% 0.000203 0.000109 

Percentile 75% 0.000238 0.000121 
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6.4 Conclusion 

To summarise, database latency is very critical in the overall performance of continuous 

authentication because if the database takes a long time to inset or fetch the data, then the 

time required to authenticate the user will increase and create an opportunity for the 

hacker. Therefore, a universal benchmarking framework has been developed to evaluate 

the performance of the databases. PostgreSQL and MySQL databases were selected 

because the data generated for continuous authentication is tabular and hence the two 

databases are best suited for it. These databases are then evaluated using a similar type of 

data and production-like scenario to identify the best database for the system. 

The experiments were carried out for six different cases/operations that are frequently 

used by databases in continuous authentication. To begin, a select all operation was 

evaluated in fetching all the records from the database. Next, the select operation with 

where clause was tested, and lastly the insert operation was investigated. In the later 

stage, more complex operations were performed to evaluate the performance. All the 

above-mentioned operations were executed in parallel with other database operations to 

replicate production scenarios.   

The results of the experiments show that the performance of PostgreSQL is around 9 

times better than MySQL for select operations both with and without a where clause. 

However, the insert operation results were very similar for both databases. Additionally, 

the performance of PostgreSQL is more stable when multiple operations are executed at 

the same time. Whereas the performance of MySQL lowers drastically when evaluated 

for complex experiment conditions. Therefore, based on the results, PostgreSQL is better 

suited for continuous authentication as it has low data latency. 
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Chapter 7  

7 Conclusion and Future Work 

This chapter discusses the research conclusion and future work, including proposals to try 

new but different methods. 

7.1 Conclusion  

In this day and age, most data are stored and accessed online whether social media, 

banking or education. Additionally, COVID has been a catalyst expediting the digital 

transformation. Most businesses have accelerated the digitalization of their customer and 

supply-chain interactions and of their internal operations by three to four years. On the 

other side, consumers have also moved dramatically towards online channels. And the 

largest changes are also the most likely to stick in the long term. However, rushed 

implementation and lack of due diligence will almost certainly expose vulnerabilities in 

systems that were put in place to adapt to remote work. Sectors such as telecom, banks, 

and government are especially at risk as they collect large volumes of customer data. For 

instance, in October 2022 hackers targeted a communications platform in Australia, 

which handles Department of Defence data, in a ransomware attack. The government 

believes hackers breached sensitive government data in this attack. Many such instances 

are occurring around the world and so it is critical to have robust cyber security to protect 

against cyber attacks. 

For any organization, the user identity review is important as it is a critical component of 

Identity and Access management. Only legitimate users should have access to the 

systems and applications. Therefore, companies use authentication methods, such as 

passwords, passcodes, access cards, fingerprints etc. All of these are static authentication 

methods i.e., the identity of the user is verified at the beginning of the session, but there is 

not validation throughout the session. If the user credentials are breaches, then hackers 

can access all the data that the user has access to. To prevent such breaches, an advanced 

solution is to integrate continuous authentication. Continuous authentications utilize 

users’ behavioural information to confirm their identities on an ongoing basis. However, 
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continuous authentication is a new technology and has some gaps. In this study, we have 

proposed potential solutions for the gaps which will help in the commercialization of 

continuous authentication technology.   

To begin, the raw behavioural data of 48 employees of a financial organization were 

collected. This raw data cannot be used directly with classification algorithms as they 

include no specific user behavioural information. Therefore, an algorithm was developed 

to extract two behavioural data points, mouse click length, which is the time difference 

between the mouse key press and release, and screen location, i.e., in what part of the 

screen the click was made. However, both these behavioural pattern data points had some 

irregularities which could have a negative impact on the ML classification algorithms. 

Therefore, the data was cleaned using the Inter-quartile range technique to remove the 

outliers. This cleaned data was then used for all the experiments. 

In this research, a novel approach for reducing the data collection time and hence the 

registration time was proposed. The transfer learning technique was effectively used to 

improve the accuracy of the model for small amounts of data. To do so, the base model 

was trained and optimized using 48,000 records. Afterwards, all the learning from the 

base model was transferred to the new model and the model was trained for five new 

users. The model gave 9.76% higher accuracy than the model trained from scratch 

without transfer learning. This increase will make the system ready for earlier use than 

other systems. It can also help in the commercialization of continuous authentication. 

In the second stage of the research, a real-world dataset was used to evaluate different 

machine learning models. In previous research, synthetic data or data collected in control 

environments was used, which cannot give correct evaluation models because the 

performance of ML models changes with the nature of the data. Therefore, it is important 

to evaluate ML models on real-world datasets. Therefore, in this study, different ML 

algorithms were analyzed on real-world datasets. Through this analysis. it was found that 

each model was better at predicting a set of users; therefore, to merge the prediction 

capability of all the models, ensemble learning was used, which improved the accuracy of 
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the prediction. However, using ensemble learning requires higher processing power; 

hence high infrastructure is required to utilize ensemble learning. 

In the last part of this study, a universal database benchmarking framework is developed 

to analyze the performance of the databases and choose the best performing database for 

continuous authentication systems. PostgreSQL and MySQL databases were selected for 

the evaluation based on the nature of the data generated in continuous authentication 

systems. These two databases were evaluated for different production-like scenarios of 

continuous authentication systems. The results indicate that PostgreSQL is multiple times 

better than MySQL at handling different production-like scenarios of continuous 

authentication. 

7.2 Future Work 

Two behavioral patterns were used in this study, but in the future, more behavioural 

patterns can be extracted from the raw data and used to train the models. Increases in the 

number of behavioural patterns will assist models in learning more precise behaviours of 

the user and hence increase the predictive accuracy. Additionally, using ensemble 

learning will help combine the prediction power of different ML algorithms to further 

enhance accuracy.  

Additionally, to reduce overall latency and improve the performance, federated learning 

can be used. Federated learning is a machine learning technique that trains an algorithm 

across multiple decentralized edge devices holding local samples without exchanging 

them. In many cases, only one user is supposed to access the device, as for example in an 

organization, a laptop or desktop is used by only one employee and no one else should 

access it. Similarly, a personal mobile device is handled only by the owner. In such 

scenarios, federated learning can be used in which the data are collected and processed 

locally on the device and later used to train ML algorithms such as one class classifier or 

anomaly detection. Both these models can be trained on a single user’s behavioural data 

and any other behaviour would be marked as intruder/ attacker. Applying this technique 

would extraordinarily reduce the latency as all the processes will execute on the same 
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device. Additionally, it can solve the data privacy issue as the user data is not shared with 

any other servers, applications, or systems. 
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