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 Abstract 

The considerable variation in the spatial distribution of cortical thickness changes has been 

used to parse heterogeneity in schizophrenia. We aimed to recover a ‘cortical 

impoverishment’ subgroup with widespread cortical thinning. We applied hierarchical cluster 

analysis to cortical thickness data of three datasets in different stages of psychosis and 

studied the cognitive, functional, neurochemical, language and symptom profiles of the 

observed subgroups. Our consensus-based clustering procedure consistently produced a 

subgroup characterized by significantly lower cortical thickness. This ‘cortical 

impoverishment’ subgroup was associated with a higher symptom burden in a clinically 

stable sample and higher glutamate levels with language impairments in the first-episode 

sample. Overall, cortical thinning is more prevalent among patients, especially those with 

glutamate excess and speech dysfunctions in the early stages and higher residual symptom 

burden at later stages. 

Keywords 

Hierarchical cluster analysis, Schizophrenia, Neurocognition, Cortical thickness, Magnetic 

resonance spectroscopy, Heterogeneity, First-episode psychosis, Language impairment 
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Summary for Lay Audience 

Schizophrenia is one of the most disabling and chronic mental illnesses. Patients, despite 

having the same diagnosis, can have very different clinical histories, symptom profiles and 

treatment responses. This has posed challenges for clinicians to provide personalized 

treatment plans. Therefore, researchers have made efforts to classify patients into subtypes, 

so that this illness can be better understood and characterized. The current thesis pursued this 

line of effort and aimed to find patient subtypes based on brain features. Compared to clinical 

features that could be subjective and fluctuate over time, brain features are a more stable and 

objective indicator of cognitive and mental health status. For example, cortical thickness, the 

thickness of the outer layer of the brain, is found to be abnormal in some patients with 

schizophrenia. It may be an important first step to differentiate patients with a healthy 

cortical thickness profile from patients with lower cortical thickness, because these two 

patient subgroups may represent distinct origins of the same illness. 

Cluster analysis is a useful mathematical tool to identify patient subgroup(s) with different 

brain profiles. It can assign patients with similar profiles to the same group, and then we can 

determine when the subgroups are too distant to belong to one. In our study, we found that 

there were two subgroups of patients in both chronic and first-episode schizophrenia. One 

subgroup showed no difference in cortical thickness patterns from healthy controls, while the 

other displayed cortical thinning in multiple regions of the brain. In chronic and stable 

schizophrenia, patients with extensive cortical thinning experienced a higher residual 

symptom burden. In first-episode schizophrenia, this subgroup showed an abnormal level of 

glutamate. Glutamate is a molecule in our brain that sends signals to excite brain cells. This 

subgroup also had impaired speech production such as simplicity in the structures of the 

sentences, and reduced cohesion between sentences.  

To conclude, a patient subgroup with widespread cortical thinning may represent a distinct 

subtype which is stable across various stages of schizophrenia with dysregulated 

neurochemical levels and abnormal language production. It may be important to customize 

mental health care strategies for this subgroup of patients.  
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Chapter 1 Introduction 

Chapter 1 Introduction provides an overview of symptoms, course, outcome, treatment, 

etiology, and neurobiological basis of schizophrenia. This chapter will discuss and 

emphasize schizophrenia as a thought disorder (with language dysfunctions) as well as a 

brain disorder (neuroanatomical and neurochemical abnormality), with a focus on data-

driven approaches to investigate its heterogeneous nature.  

1.1 Symptoms of Schizophrenia  

Schizophrenia is a severe and chronic mental illness that affects the patients’ perception, 

cognition, emotion, language production and thought processes (Ross et al., 2006). 

According to the most recent edition, the 5th edition of the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-5), key symptomatic characteristics of schizophrenia 

include delusions, hallucinations, disorganized speech/behaviours, and negative 

symptoms (Tandon et al., 2013b). Psychotic symptoms such as hallucination (sensations 

without external stimuli), and delusion (false and rigid beliefs), are also described as 

positive symptoms, whereas negative symptoms describe the absence of healthy emotions 

and behaviours, such as lack of emotional expression, social withdrawal, inattention to 

environmental inputs, and poverty of speech (American Psychiatric Association, 2013). 

Furthermore, there is a third group of symptoms, termed cognitive symptoms. Compared 

to healthy populations, patients diagnosed with schizophrenia have impaired cognitive 

abilities in multiple domains including working memory, processing speed, social 

cognition, attention/vigilance and executive functioning (Ross et al., 2006). 

1.2 Treatment, Outcome and Course of Schizophrenia  

Schizophrenia affects around 1% of the population (McGrath et al., 2008) and typically 

develops around late adolescence and early adulthood (Kirkbride et al., 2012). Before 

illness onset, patients in the prodromal phase may start to perform poorly in academic, 

employment or social settings (Møller & Husby, 2000) as well as experiencing brief 

psychotic-like symptoms (Fusar-Poli, Borgwardt, et al., 2013). Psychotic symptoms are 
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often episodic and can be effectively alleviated by antipsychotic medications in around 

70% of patients (Elkis, 2007), but the response to treatment varies greatly (Case et al., 

2011). In contrast, negative symptoms and cognitive impairments tend to persist in 

chronic schizophrenia despite medications (Jauhar et al., 2022). Due to the presence of 

psychotic, negative and cognitive symptoms, patients often have difficulties in 

occupational functioning, personal relationships or self-care (Bowie & Harvey, 2006; 

Tandon et al., 2013b) and only around 15%-40% of patients have good functional 

outcome according to a few meta-analyses (Jauhar et al., 2022). Early intervention has 

been found to be beneficial for both clinical and functional recovery (Correll et al., 2018).  

1.3 Schizophrenia as a Thought Disorder 

Formal Thought Disorder (FTD) describes impairments in organizing thoughts logically 

and purposefully, and expresses frequently in schizophrenia (Ayer et al., 2016; Jerónimo 

et al., 2018). In general, FTD is commonly characterized by impoverishment (e.g., slow 

thinking) and disorganization (e.g., thought interference) of thoughts. FTD can manifest 

itself as overt communication difficulties and language dysfunctions (Kircher et al., 

2018b; Liddle, Ngan, Caissie, et al., 2002a). Impoverishment of speech describes reduced 

quantity in speech contents, conceptualized as negative FTD; while disorganization of 

speech is characterized by incoherence and looseness of language use, conceptualized as 

positive FTD (Kircher et al., 2018b; Palaniyappan, 2021a). The most affected domains of 

linguistic functioning included semantic, syntactic and pragmatic levels of language use 

(Covington et al., 2005; Kircher et al., 2018b).  

Thought disorder and speech production impairment can be measured clinically or 

computationally. Clinical rating scales such as the Thought and Language Disorder scale 

(Kircher et al., 2014) or the Thought and Language Index (Liddle, Ngan, Caissie, et al., 

2002a) capture a variety of FTD symptoms. Additionally, thought and speech production 

deficits can be objectively quantified using novel computational approaches combined 

with linguistic analyses. For example, natural language processing (NLP) uses computer 

algorithms to extract linguistic features (e.g. syntactic complexity, word type usage), and 

has been found to capture subtle language disturbances in schizophrenia (Tang et al., 

2021). Specifically, patients with schizophrenia tend to have lower similarity within 
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neighbouring sentences, reduced semantic density, shorter sentence length and lack of 

referential word use (Corcoran et al., 2020).   

1.4 Schizophrenia as a Brain Disorder  

The etiology of the illness is not yet known, but it is widely agreed that a wide range of 

genetic and environmental factors lead to changes in neurochemistry, structure or 

functions of the brain, which lead to the onset of psychotic symptoms (Tsuang, 2000). 

According to large-scale genome-wide association studies (GWAS), schizophrenia is 

heritable, with hundreds of common genetic variants that increase the risk for psychosis 

by a very small proportion, and a few rare genetic variants that have large effect sizes 

(Smeland et al., 2020). As for environmental vulnerability factors, it has been reported 

that birth complications, immigration, exposure to viruses during the prenatal period, and 

stressful life events can increase the risk for schizophrenia (Tsuang, 2000). The genetic 

and environmental risk factors leading to the condition vary across patients and this has 

complicated etiologic research that aims to pinpoint risk factors and the neurobiological 

causes of the illness.  

As various brain imaging tools and analytic methods become readily available, we are 

now able to measure the molecules, structures, functions, and physiology of the brain, a 

large amount of evidence shows that schizophrenia is associated with abnormality in the 

brain (Ross et al., 2006) and is a biologically based brain disease. One of the brain 

imaging tools used constructs 3-dimensional images of the brain to uncover the brain 

structures including grey matter, white matter, ventricles, and subcortex. For example, 

computerized tomography (CT) and magnetic resonance imaging (MRI) can both inform 

us of neuroanatomical features, including gyrification, cortical thickness and brain 

volumes. Another brain imaging tool is magnetic resonance spectroscopy (MRS) which 

can be used to determine the concentrations of biochemicals in a certain location of the 

brain. 

Although many studies have shown a difference in neurobiology between healthy 

controls and patients diagnosed with schizophrenia, a common biomarker that lies in the 

pathway to schizophrenia has not yet been identified. The lack of clear neuropathogenesis 

of schizophrenia after years of research has prompted many researchers to look for 
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multiple pathophysiological pathways. There have been multiple hypotheses on the 

neurobiological pathogenic pathways to schizophrenia (Smeland et al., 2020). The most 

influential theories postulate that the dysregulation of neurotransmitters including 

dopamine, glutamate and/or GABA in the striatum, hippocampus, prefrontal cortex, and 

midbrain leads to psychosis. Another model describes psychosis as a neurodevelopmental 

disorder (Smeland et al., 2020). The neurodevelopmental model of psychosis theorizes 

that abnormal development of the brain, specifically structure, connectivity and 

physiology, results in aberrant information processing (Smeland et al., 2020). In general, 

patients with schizophrenia, compared to healthy controls, have initial and progressive 

loss of grey and white matter volume and an increase in ventricular volume (Fusar-Poli, 

Smieskova, et al., 2013; Haijma et al., 2013; Olabi et al., 2011; Vita et al., 2012). Patients 

also have widespread cortical thickness reduction that progresses more quickly with age, 

illness duration and higher antipsychotic medication exposure (van Erp et al., 2018). 

1.5 Heterogeneity of Schizophrenia  

The various pathogenic models of schizophrenia further support the polygenetic and 

multifactorial architecture of schizophrenia. These models are not mutually exclusive, but 

instead, they can co-manifest to different degrees in patients. This suggests that patients 

could have divergent abnormalities in multiple neural systems at varied impaired levels 

that contributed to different subtypes of schizophrenia or converged to a dimension that 

cut across the schizophrenia spectrum (Ruan et al., 2020). The wide range and variations 

of brain abnormalities that we observed in schizophrenia are discussed as neurobiological 

heterogeneity. Neurobiological heterogeneity in schizophrenia can be demonstrated by 

the great variations of measurements obtained from patients, and the lack of high effect-

size differences in patients as a single group, compared to the unaffected, apparently 

healthy population.  

It is not surprising to expect heterogeneity in the underlying biological mechanisms of 

schizophrenia, because the diagnosis of schizophrenia itself is solely based on symptoms 

without assisting biological tests, and has naturally brought in a level of clinical 

heterogeneity based on the diagnostic criteria. Based on the DSM-5 (American 

Psychiatric Association, 2013), out of the five major symptom categories (e.g. 
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hallucinations, delusions, disorganized speaking, disorganized movements and negative 

symptoms), the presence of two symptoms meets the diagnostic criteria, alongside social 

or occupational dysfunctions. In other words, two patients with the same diagnosis can 

share no symptoms in common.  

Heterogeneity of schizophrenia can become problematic when we try to discover 

biologically guided treatment options in relation to disease mechanisms, because great 

variances can produce inconsistent results with small effect sizes which masks us from 

identifying meaningful biomarkers that can be used for diagnosis, prognosis, and 

outcome prediction (Marquand et al., 2016).  

1.6 Parsing Heterogeneity of Schizophrenia 

Research into the diagnosis, prognosis and treatment of schizophrenia could be better 

informed if the heterogeneity of schizophrenia can be parsed to identify meaningful 

subgroups of patients. One way to achieve this is by applying typologies to organize 

patients with unsupervised machine learning approaches (Jablensky, 2010). Such 

subtyping strategies have been summarized in a systematic review (Habtewold et al., 

2020), based on symptoms and cognitive performance. The data analyzed were generally 

collected from patient self-reports, clinical interviews or observations of symptoms, or 

scores from psychiatric rating scales or neuropsychological tests, but this approach has 

three major problems: (I) patients’ symptoms are rated via subjective clinical judgments; 

these are prone to multiple sources of measurement bias (Everitt et al., 1971; Tandon et 

al., 2013a); (II) the assumption that patients with similar clinical or cognitive profiles 

share common underlying pathophysiological mechanisms is an untested one. In other 

words, symptoms- or cognitive ability-based patient subtypes may not be biologically 

homogeneous; this will continue to impede our ability to develop mechanistically 

informed diagnosis, treatment and prediction; (III) Symptom severity and cognitive 

performance measurements are time-varying parameters; they change throughout the 

course of the illness (Dollfus & Petit, 1995; Miles et al., 2014), which may lead to 

temporal instability in symptom- or cognition-based subtypes. Stable and accurate 

classification systems are important because they would help explain disease mechanisms 

and inform clinical decisions, especially the development of tailored treatment. 



6 

 

1.7 Project Overview 

Data-driven subtypes of schizophrenia have focused primarily on symptoms and 

cognitive performance (Habtewold et al., 2020; Schnack, 2019) and Clementz et al. were 

one of the research groups to investigate biotypes in schizophrenia (Clementz et al., 2016, 

2020, 2021), and also multiple other studies make efforts in discovering neuroanatomical 

or physiological subtypes of schizophrenia (Dwyer et al., 2018a; Honnorat et al., 2019a; 

Pan et al., 2020a; Sugihara et al., 2017a). Brain-based patient subtyping may facilitate the 

transition from subjective clinical judgment to objective biology-grounded clinical 

practice, which aligns with the goals of The National Institute of Mental Health's 

Research Domain Criteria (RDoC) (Insel et al., 2010). This study continued the efforts of 

brain-based patient subtyping and was conducted with three schizophrenia patient 

samples of different clinical statuses, which were independently recruited across different 

geographical locations, and scanned with different MRI scanners.  

Our primary aim was to confirm the existence of a cortical impoverishment subgroup of 

schizophrenia by capturing the variation in cortical thickness across patients and healthy 

controls matched for IQ. Second, we aimed to test the validity of cortical thickness-based 

subtypes across various clinical stages, antipsychotic exposure rates, and functional 

stability in 2 other samples with patients at different stages of schizophrenia. We 

predicted that a constant ‘cortical impoverishment’ subgroup would emerge irrespective 

of early vs. late stages of schizophrenia, acute vs. chronic symptom status, and minimal 

vs. chronic exposure to antipsychotics. Third, we leveraged the multimodal ultra-high 

field MRS and MRI data available from one of the 3 samples to investigate if patients 

with pronounced cortical impoverishment also showed glutamatergic excess. Given that 

the spectral resolution for precise quantification of glutamate in vivo is currently only 

feasible at ultra-high field strengths, this method provides robust evidence linking 

glutamatergic excess to cortical impoverishment in schizophrenia. 
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Chapter 2 Cortical Impoverishment Subgroup in Chronic 

Schizophrenia 

Cortical thinning is a well-known feature in schizophrenia. The considerable variation in 

the spatial distribution of thickness changes has been used to parse heterogeneity. A 

‘cortical impoverishment’ subgroup with a generalized reduction in thickness has been 

reported. However, it is unclear if this subgroup is recoverable in chronic schizophrenia. 

Chapter 2 aimed to replicate the cortical thinning subgroup in chronic schizophrenia and 

validate the finding in a second chronic sample. We found that cortical thinning does not 

vary with functioning or cognitive impairment, but it is more prevalent among patients, 

especially those with higher residual symptom burden at stable stages. This chapter was 

adapted from the manuscript published on Schizophrenia Research 1. 

2.1 Background 

2.1.1 Dissecting Heterogeneity in schizophrenia  

Schizophrenia spectrum disorders are characterized by individual differences in clinical 

trajectory, symptom burden, and cognitive performance (Andreasen, 1999; Carpenter & 

Kirkpatrick, 1988). The source of this heterogeneity is unknown, but suspected to arise 

from etiological and neurobiological variations (Lv et al., 2020; Alnæs et al., 2019; 

Brugger & Howes, 2017), possibly reflecting multiple neuropathological pathways to the 

disorder (Seaton et al., 2001). To dissect this heterogeneity, several attempts have been 

made using cluster analysis, a multivariate technique to discover subgroups with minimal 

within-group variance for a variable of interest (Everitt et al., 2011). Cluster analytic 

strategies have been applied to cognitive (Cobia et al., 2011; Geisler et al., 2015; 

Heinrichs & Awad, 1993; Van Rheenen et al., 2017; Weinberg et al., 2016), clinical 

(Dickinson et al., 2018; Dollfus & Brazo, 1997; Talpalaru et al., 2019), physiological 

(Clementz et al., 2015), and neurobiological (Chand et al., 2020b; Dwyer et al., 2018b; 

 

1
 A version of this chapter has been published on Schizophrenia Research (Liang, Heinrichs, et al., 2022). 
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Honnorat et al., 2019b; Pan et al., 2020b; Planchuelo-Gómez et al., 2020; Sugihara et al., 

2017b) variables to delineate subtypes in schizophrenia. Subgrouping patients based on 

neuroanatomy has a particular appeal. First, it is advantageous to look directly at the 

underlying neurobiological substrate of psychosis instead of the downstream emergent 

clinical features (e.g., symptoms or functioning), as highly similar clinical profiles can 

emerge from varying mechanistic processes. Second, neuroanatomical data are relatively 

stable metrics that are accessible from 7-10 minutes of non-invasive structural magnetic 

resonance imaging (MRI) scanning. Finally, in contrast to the use of symptom measures 

for clustering, neuroanatomical data allow us to pool both patients and healthy controls 

into one sample for analysis. Although differences in multiple neurobiological variables 

between patients with schizophrenia and healthy controls have been reported (Gong et al., 

2020; van Erp et al., 2018), treating patients and controls as completely distinct groups in 

case-control neuroimaging studies ignores the shared variance (Voineskos et al., 2020) 

and also assumes that there is no useful subgrouping information within the healthy 

samples. Deriving neurobiological subgroups without considering diagnostic statuses 

allows us to leverage ‘healthy variations’ in addition to pathological inter-individual 

differences and investigate how patients and controls naturally aggregate and separate in 

the biological feature space.  

2.1.2 Thickness-based Clustering 

Cortical thickness is useful as a variable to aggregate patients in subgroups alongside 

healthy controls. Several studies have documented deviations in cortical thickness 

patterns in patients in relation to symptom severity, but the spatial distribution of 

thickness changes is heterogeneous with effect sizes being small to moderate (Kuperberg 

et al., 2003; Narr et al., 2005; Schultz et al., 2010; van Erp et al., 2018; van Haren et al., 

2011; Goldman et al., 2009), indicating the possible existence of subgroups with varying 

locations and degree of thickness change. Furthermore, region-specific cortical deficits 

associate with more severe positive and negative symptoms (Walton et al., 2018; Xiao et 

al., 2015), cognitive dysfunction (Hartberg et al., 2011), and treatment resistance 

(Zugman et al., 2013). While the mechanistic pathways influencing the diffuse reduction 

in cortical thickness are yet unclear, some studies that combine structural imaging and 
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magnetic resonance spectroscopy (MRS) suggest glutamate-mediated excitotoxicity as 

one of the mechanisms underlying thickness changes in schizophrenia (Plitman et al., 

2016; Shah et al., 2020). These findings highlight the utility of profiling patients based on 

cortical thickness when attempting to uncover mechanistically homogeneous subgroups 

of schizophrenia. 

A distinct subgroup has emerged in previous cortical thickness-based clustering of 

schizophrenia patients and healthy subjects (Pan et al., 2020b; Sugihara et al., 2017b). 

This subgroup predominantly comprised patients with significantly reduced cortical 

thickness compared to other subgroups. It parallels with clustering based on cognitive 

measures (especially IQ) across diagnostic boundaries (Van Rheenen et al., 2017), which 

has also identified a broadly compromised subgroup. Studies have linked cortical 

thickness to IQ in both healthy subjects (Deary et al., 2010) and patients with 

schizophrenia (Cobia et al., 2011). In prior thickness-based clustering studies (Pan et al., 

2020b; Sugihara et al., 2017b), patients had notable cognitive deficits compared to 

healthy subjects; as a result, it is unclear if the patient-dominant ‘cortical 

impoverishment’ subgroup occurs independently of cognitive heterogeneity among the 

individuals under consideration. A recent study (Xiao et al., 2021) reported a subgroup of 

established cases of schizophrenia to have cortical impoverishment and higher cognitive 

deficits. However, this study clustered only patients, without leveraging the variability 

among healthy subjects. Taken together, the evidence does not clearly indicate whether 

cortical impoverishment subgroups are simply patients with general intellectual 

impairment (Carruthers et al., 2019). Furthermore, we do not know whether the presence 

of the cortical impoverishment subgroup is related to ageing effects (Y. Lin et al., 2019) 

or could be the result of exposure to higher doses of antipsychotic medications rather than 

a distinct disease process in a subset of patients (Fusar-Poli, Smieskova, et al., 2013; Ho 

et al., 2011).  

2.1.3 Aims of Study 

Our primary aim was to confirm the existence of a cortical impoverishment subgroup of 

schizophrenia by capturing the variation in cortical thickness across patients and healthy 

controls matched for cognitive ability. To this end, we recruited 136 subjects; 73 with 
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established schizophrenia and 63 with age, sex, years of education, and IQ-matched 

healthy controls. Second, we aimed to test the validity of cortical thickness-based 

subtypes across various clinical stages, and functional stability. We predicted that a 

constant ‘cortical impoverishment’ subgroup would emerge irrespective of illness 

duration and illness stability. To this end, we validated the stability of our clustering 

solution in the IQ-matched ‘discovery’ dataset in another sample with patients (n=41).  

2.2 Material and Methods 

2.2.1 Participants 

Data used in the present study were obtained from two previously reported patient 

samples, with each sample in different clinical stages, antipsychotic exposure rates, and 

functional stability. Written informed consent was obtained from all participants. 

The primary dataset for the ‘discovery’ approach (NeuroCog Dataset) was composed of 

63 healthy controls and 73 patients with a DSM-IV diagnosis (First et al., 1996) of 

schizophrenia or schizoaffective disorder recruited through outpatient programs in 

Hamilton, Ontario, Canada. Most of the patients were taking antipsychotics and had 

chronic schizophrenia. To enable cognitively matching patients and controls, controls 

were oversampled from communities with lower employment and education levels, while 

patients with near-normal cognition were specifically sought, eventually capturing both 

cognitively normal patients and sub-normal healthy controls. Details on participant 

recruitment have been previously reported (Heinrichs et al., 2017; Hanford et al., 2019). 

This study was approved by York University (#2010-107), St. Joseph's Healthcare, 

Hamilton, and McMaster University (#10-3315) review boards.  

The validation dataset (CONN Dataset) was composed of 40 healthy controls (group-

matched for sex, age and parental socioeconomic status measured using National 

Statistics Socio-Economic Classification (NS-SEC; Rose et al., 2005), to reduce 

confounding due to psychosocial differences during early development) and 41 patients 

with a DSM-IV diagnosis (First et al., 1996) of schizophrenia or schizoaffective disorder, 

recruited through community-based services in Nottinghamshire, United Kingdom. 

Unlike the ‘discovery’ sample, CONN patients were recruited only if they satisfied 



11 

 

‘stable illness phase’ criteria, which were that patients needed to have no change in 

medication over the prior 6 weeks and no more than 10 points change in their Global 

Assessment of Function [DSM-IV] score, assessed 6 weeks prior and immediately before 

study participation. Recruitment of participants and data collection has been described 

previously (Palaniyappan & Liddle, 2014) and was approved by National Research Ethics 

Committee, Nottinghamshire (NHS REC Ref: 10/H0406/49). 

2.2.2 Measures 

In the NeuroCog project, the MATRICS (Measurement and Treatment Research to 

Improve Cognition in Schizophrenia) Consensus Cognitive Battery (MCCB) was 

administered to all participants to measure abilities in seven different cognitive domains, 

including working memory, attention or vigilance, verbal memory and learning, 

processing speed, problem-solving, visual learning, and social cognition (Kern et al., 

2008; Nuechterlein et al., 2008).  IQ scores of all participants were measured with the 

Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 1999). The patients’ 

symptom severity was assessed with the 30-item Positive and Negative Syndrome Scale 

(PANSS-30) to index positive, negative, and general psychopathology (Kay et al., 1987). 

The Canadian Objective Assessment of Life Skills (COALS) was administered to index 

functional competence (McDermid Vaz et al., 2013). 

The validation sample was acquired in the CONN studies. In the CONN study, we used 

the Signs and Symptoms of Psychotic Illness (SSPI) (Liddle, Ngan, Duffield, et al., 2002) 

to measure symptom severity and the Social and Occupational Functional Assessment 

Scale (SOFAS) to measure the overall functioning (Morosini et al., 2000a) of patients.  

This sample did not have a detailed cognitive characterization that was available for the 

discovery dataset. 

 

2.2.3 MRI and MRS Data Acquisition and Processing 

The details of data acquisition in the NeuroCog and CONN projects (3.0-Tesla MRI) 

have been reported previously (Heinrichs et al., 2017; Palaniyappan & Liddle, 2014) and 

are summarized here. In the NeuroCog ‘Discovery’ Dataset, a 3.0-Tesla whole-body 

https://www.pearsonclinical.com/education/products/100000593/wechsler-abbreviated-scale-of-intelligence-wasi.html
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short bore General Electric System MRI scanner equipped with an 8-channel parallel 

receiver head coil was used to scan participants at the Imaging Research Centre at St. 

Joseph’s Healthcare Hamilton. Anatomical images of 152 slices (2 mm thick with 1 mm 

overlap) were generated. The scanning parameters of T1-weighted 3-dimensional fast 

spoiled gradient recalled echo sequence with inversion recovery preparation were as 

follows: repetition time (TR)/echo time (TE) = 7.5/2.1 ms, TI = 450 ms, field of view 

(FOV) = 24 cm, matrix = 512 × 512, flip angle = 12°, receiver bandwidth (rBW) = 

+/−62.5 kHz, and number of excitations (NEX) = 1. In the CONN ‘Validation’ Dataset, 

MR scans were collected with Philips 3.0-Tesla imaging systems which were equipped 

with an 8-channel phased array head coil in the University of Nottingham. The scanning 

protocol included a single high-resolution three-dimensional T1-weighted MPRAGE 

volume of isotropic voxel size 1 × 1 × 1 mm3, TR/TE = 8.1/3.7 ms, flip angle 8°, field of 

view 256 × 256 × 160 mm3, 160 slices of 1 mm thickness each were collected in an 

acquisition matrix 256 mm × 256 mm and in-plane resolution 1 × 1 mm2. 

The obtained images underwent FreeSurfer automated image analysis for alignment of 

cortical regions and segmentation of the brain (version 5.1.0; 

http://surfer.nmr.mgh.harvard.edu/) (Fischl et al., 1999). Preprocessing of these images 

included the removal of non-brain tissues as well as spatial and intensity normalizations. 

Cortical thickness was defined as the Euclidean distance between the pial surface to the 

grey/white matter boundary across 160,000 vertices in both cerebral hemispheres. 

Cortical regions were assorted according to the gyral and sulcal structures in both 

hemispheres defined by Destrieux et al. (2010). 

2.2.4 Statistical Analysis  

This study applied agglomerative hierarchical cluster analysis to age-corrected cortical 

thickness values among 148 brain regions with the hclust function in R (R Core Team, 

2020). Thickness values of 148 cortical regions of interest were adjusted for age with 

linear regression, and the residuals were input as variables for clustering. Ward’s method 

with Euclidean distance was used. We visually inspected the dendrogram to determine 

the possible stratification solutions. 

http://surfer.nmr.mgh.harvard.edu/
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The NbClust function in R statistical software was used to determine the optimal number 

of clusters. The NbClust function in R packages (Charrad et al., 2014) offers multiple 

clustering validity indices and outputs the recommended number of clusters for each 

validity index. In the current study, 16 validity indices in the NbClust package were 

selected to evaluate the clustering results ("ch", "cindex", "kl", "hartigan", "db", 

"silhouette", "ratkowsky", "ball", "ptbiserial", "gap", "mcclain", "gamma", "gplus", "tau", 

"dunn", "sdindex"). These validity indices either regard the elbow point as optimal, or 

attempt to reach the maximum ratio of inter-cluster separation over intra-cluster 

compactness. The optimal number of clusters was determined by the consensus of the 16 

validity indices.  

To assess external validity, key characteristics of each cluster were compared across 

clusters, including illness prevalence, antipsychotic exposure, cortical thinning patterns, 

socio-demographic, clinical, and cognitive information as well as neurometabolic levels. 

Clinical information included duration of illness (years) and symptom severity measured 

by PANSS or SSPI. MCCB composite scores were converted into T scores (mean = 50, 

SD = 10). Antipsychotic medication dose equivalents were calculated based on Defined 

Daily Doses (DDDs) according to the World Health Organization (WHO) guidelines 

(http://www.whocc.no). Multiple Student or bootstrapped t-tests (two-tailed, α<0.05) 

were used for comparison of continuous variables, while chi-square tests (two-tailed, 

α<0.05) were used for comparisons of non-categorical variables between participants in 

each cluster. 

In the ‘discovery’ dataset, Pearson correlation coefficients between medication exposure, 

symptom severity, and cognitive performance were calculated tested for significance for 

patients in each subgroup, respectively. The correlation magnitudes retrieved from the 

two subgroups of patients were tested against each other with a two-tailed z-test using 

Fisher’s z transformation of correlations.  

http://www.whocc.no/
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2.3 Results 

2.3.1 Demographic and Clinical Characteristics of Participants 

Demographic and clinical details were summarized in Table 1. The patient sample in 

NeuroCog (average illness duration = ~17 years) and CONN (average illness duration = 

~7 years) consisted of patients with chronic schizophrenia or schizoaffective disorder, 

with 85% of the NeuroCog sample and 88% of the CONN sample taking antipsychotic 

medications at the time of scanning (Table 2).  

Table 1 Demographic, cognitive and clinical information of ‘Discovery’ and 

‘Validation’ dataset. 

 

NeuroCog Study 

‘Discovery’ Dataset 

CONN Study 

‘Validation’ Dataset 

Patients Controls Patients Controls 

Demographics 

N 73 63 41 40 

Age 
41.42 ± 

10.48 

38.87 ± 

11.46 

33.63 ± 

9.24 
33.40 ± 9.10 

Female/ma

le 
29/44 24/39 10/31 11/29 

Education, 

years  

12.90 ± 

2.20 
12.48 ± 2.24 - - 

Cognitive 

Measurements 

MCCB 

total T 

score 

29.26 ± 

13.13 

41.38 ± 

14.31 
- - 

WASI 
96.42 ± 

21.16 

101.19 ± 

20.38 
- - 

Functional 

Outcome 

COALS 
35.66 ± 

10.83 
- - - 

SOFAS - - 
54.63 ± 

13.11 
- 

MRI data 
Global CT, 

mm 
2.45 ± 0.37 2.53 ± 0.37 2.43 ± 0.38 2.44 ± 0.38 

  Patients Only Patients Only 

Symptom 

Severity 

PANSS or 

SSPI 

(Median 

[IQR]) 

PANSS-30: 

61[51, 70] 

SSPI: 

11[5, 18] 

Min-max 

normalized 

score 

0.20 ± 0.087 0.15 ± 0.093 
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Clinical 

Information 

Duration 

of Illness 

(Median 

[IQR]) 

17 [9.75, 25], in years 6 [4, 14], in years 

Antipsychotic 

Medication 
DDD 

Median 
Mea

n 
IQR Median 

Mea

n 
IQR 

1.00 1.30 
[0.73, 

1.66] 
1.25 2.03 

[0.42, 

2.84] 

Note: Means and standard deviations are reported unless specified otherwise. IQR: 

interquartile range is the first and third quartile. T scores are standardized scores with a 

mean of 50 and standard deviation of 10. MCCB: MATRICS (Measurement and 

Treatment Research to Improve Cognition in Schizophrenia) Consensus Cognitive 

Battery; WASI: Wechsler Abbreviated Scale of Intelligence; COALS: Canadian 

Objective Assessment of Life Skills; SOFAS: Social and Occupational Functioning 

Assessment Scale; Global CT: average cortical thickness across the whole brain 

(measured in millimetres); PANSS: Positive and Negative Syndrome Scale; SSPI: Signs 

and Symptoms of Psychotic Illness; DDD: defined daily dose calculated according to 

World Health Organization (http://www.whocc.no). Symptom severity scores were 

normalized into values of a range of 0-1 using min-max normalization using equation (1): 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 =  
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
                              (1) 

where 𝑥 is a patient’s total score while min(𝑥)  𝑎𝑛𝑑 max(𝑥) are the minimum and 

maximum scores of the scales. 

Table 2 Medication information of patients in the NeuroCog study 

 Schizophrenia (n = 

44) 

Schizoaffective (n = 

29) 

Patients (n = 73) 

Antipsychotic DDDs 

(mean ± SD) 

1.33 ± 0.92 1.24 ± 0.79 1.30 ± 0.87  

Received 

antipsychotics or not  

Yes: 36 

No: 2 

Yes: 26 

No: 0 

Yes: 62 (85%) 

No: 2 (3%) 

1st Generation 6 5 11 (15%) 

Trifluoperazine 1 1 2 

Zuclopenthixol 1 0 1 

Flupentixol 2 0 2 

Haloperidol 0 1 1 

Fluphenazine 1 1 2 

Perphenazine 1 1 2 

Aripiprazole 0 1 1 

http://www.whocc.no/
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 Schizophrenia (n = 

44) 

Schizoaffective (n = 

29) 

Patients (n = 73) 

2nd Generation 22 14 36 (49%) 

Risperidone  5 4 9 

Olanzapine 4 4 8 

Clozapine 10 4 14 

Quetiapine 2 0 2 

Ziprasidone 1 2 3 

Combination 8 7 15 (21%) 

Received depot 

injection 

5 9 14 (19%) 

Received 

antidepressants 

Yes: 18 

No: 20 

 

Yes: 15 

No: 11 

 

Yes: 33 (45%) 

No: 31 

Received 

Benzodiazepine 

Yes: 15 

No: 23 

Yes: 12 

No: 14 

Yes: 27 (37%) 

No: 37  

Unknown 

medication history 

6 3 9 (12%) 

 

2.3.2 Clustering Solution and Composition 

A visual inspection of the agglomerative hierarchical cluster analysis dendrograms 

(Figures 1A-1B) suggested that subtyping solutions of 2 to 8 clusters could be 

meaningful. Subsequently, the NbClust function in R (Charrad et al., 2014) was used to 

compute 16 external validity indices for two- to eight-cluster solutions, respectively. The 

output showed that a two-cluster consistently received the highest number of votes 

(Neurocog: 10/16; CONN: 6/16; Figures 2A-2B). The same clustering procedure was re-

applied to the patient samples only, and a two-cluster solution was again the most 

favoured solution (Figure 3A-3B). Out of the 53 patients identified as cortically 

impoverished with whole-sample approach, 48 patients were correctly identified with 

patient-only approach, providing a subgroup-level accuracy of 90% (Table 3). A two-

cluster solution was chosen based on the majority consensus. 
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(A) NeuroCog ‘Discovery’ Dataset (B) CONN ‘Validation’ Dataset 

Figure 2 Bar plots of the frequency of proposed cluster solutions, when clustering 

with patients and healthy controls. 

(A) NeuroCog ‘Discovery’ Dataset (B) CONN ‘Validation’ Dataset 

Figure 1 Hierarchical cluster dendrogram of the ‘Discovery’ and ‘Validation’ samples 
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Table 3 ‘Cortical impoverishment’ subgroup membership when clustering is carried 

out with or without the data from healthy controls. 

NeuroCog ‘Discovery’ Dataset 

Patients only 

SCZ-only clustering 

Cortical 

Impoverishment 

Non-impoverished 

Whole sample 

clustering 

Cortical 

Impoverishment 

35 5 

Non-impoverished 3 30 

CONN ‘Validation’ Dataset 

Patients only 

SCZ-only clustering 

Cortical 

Impoverishment 

Non-impoverished 

Whole sample 

clustering 

Cortical 

Impoverishment 

13 0 

Non-impoverished 16 12 

 

(A) NeuroCog ‘Discovery’ Dataset (B) CONN ‘Validation’ Dataset 

Figure 3 Bar plots of the frequency of proposed cluster solutions, when clustering 

with patients only. 
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With a two-cluster solution, the proportion of patients (Figures 4A-4B) varied 

significantly across clusters [NeuroCog: χ² (N = 136) = 15.186, p < 0.0001; CONN: χ² 

(N = 81) = 20.128, p < 0.0001], revealing a subgroup (Cluster 1) with mostly patients. 

The proportion of patients relative to healthy controls within Cluster 1 was 75.5% and 

100% in NeuroCog and CONN samples, respectively. A larger second cluster comprised 

a relatively balanced ratio of patients and controls, with patients accounting for 40% and 

41% in the two datasets.  

 

Figure 4 Distribution of patients and healthy controls in the two thickness-based 

clusters in the two studies. 

 

2.3.3 Neuroanatomical Differences Between Clusters 

Multiple t tests with Bonferroni correction were conducted to examine differences 

between clusters. A consistent pattern of cortical thinning was observed in Cluster 1 (see 

vertex-wise comparison in Figure 5); Number of cortical regions that were significantly 

thinner in Cluster 1 after correction: 100/148 in NeuroCog and 11/148 in CONN). 

When examining patients only, 44/148 regions in NeuroCog and 7/148 regions in CONN 

showed significantly thinner cortex among Cluster 1 patients (p <0.01 after Bonferroni 

correction; See Table 4 for the top 5 cortical regions and cortical thickness maps that 

showed significant differences in each sample), with none of the cortical regions showing 

a significantly higher thickness among cluster 1 patients. To investigate whether patients 
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and controls clustered together indeed had similar thickness patterns, we also compared 

patients and controls in terms of cortical thickness values in Cluster 2 which had a 

relatively balanced patient/control ratio. The results showed no significant differences in 

any of the anatomical regions after multiple-testing corrections across all three samples. 

 

 

 ‘NeuroCog’ Discovery Dataset (Cluster 1 N = 49; Cluster 2 N = 67) 

 Left Hemisphere Right Hemisphere  

Anterior View  

  

Posterior View 

  

Medial View 
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 ‘NeuroCog’ Discovery Dataset (Cluster 1 N = 49; Cluster 2 N = 67) 

Lateral View 

  

Figure 5 Cortical thickness maps of differences between members of the two clusters 

in the discovery dataset. 

Note: The cluster membership is irrespective of diagnostic status (i.e, both patients 

and control subjects are included). Only the cortical surfaces generated by 

FreeSurfer (regressing out age effect with general linear model, uncorrected) 

without any need for manual editing are included in this vertexwise analysis. Scale 

indicates log10 of p-values and cortical regions with p-values > 0.01 were 

highlighted. Blue/cyan colours indicate Cluster 1 < Cluster 2 while red/yellow colour 

indicate Cluster 2 < Cluster 1. Cluster 1 is the ‘cortical impoverishment’ group that 

shows a globally distributed thickness reduction compared to Cluster 2. 

 

Table 4 Top 5 cortical parcellations that showed largest effect sizes in thickness 

between patients of the two clusters. 

NeuroCog sample CONN sample 

R superior frontal gyrus 

R middle posterior cingulate gyrus and 

sulcus 

L superior frontal gyrus 

R paracentral gyrus and sulcus 

R middle frontal gyrus 

R planum temporale or temporal plane of 

the superior temporal gyrus 

L planum temporale or temporal plane of 

the superior temporal gyrus 

L superior temporal sulcus 

L supramarginal gyrus 

L precentral gyrus 

 



22 

 

2.3.4 Characteristics of Participants in Each Cluster 

2.3.4.1 Cognitive Characteristics 

In the NeuroCog Sample, there was no significant difference between patients in the two 

clusters in WASI IQ estimate and MCCB composite scores, but healthy controls of the 

two subgroups differed significantly on these two cognitive measures (Figure 6A-6B). 

Results from examining differences between patients and controls within the clusters 

showed that patients were cognitively indistinguishable from the controls in Cluster 1 

(MCCB: patients M[SD]= 29.18[14.1] vs. controls M[SD]= 33.46[13.3]; p = 0.33), while 

patients in Cluster 2 were more cognitive impaired than controls in the same subgroup 



23 

 

(MCCB: patients M[SD] = 29.36[11.69] vs. controls M [SD]= 43.44[13.95]; p < 0.0001). 

The seven cognitive domains were separately examined (see Figure 6C). 

 

(A) (B) 

(C) Figure 6 Comparisons of cognitive characteristics of members in each cluster in the 

NeuroCog 'Discovery' Sample. 

Note: (A) WASI: Wechsler Abbreviated Scale of Intelligence; (B) MCCB: 

MATRICS (Measurement and Treatment Research to Improve Cognition in 

Schizophrenia) Consensus Cognitive Battery; (C) Seven cognitive domain scores 

from MCCB of patients in each cluster. MCCB Composite and domain scores are 

standardized as T-scores with a mean of 50 and a standard deviation of 10. 
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2.3.4.2 Clinical Characteristics  

Comparison of patients between clusters showed no significant difference in overall 

symptom severity measured by PANSS in the NeuroCog (Figure 7A), but in the CONN 

study, there was a significant difference between the two clusters in the severity of 

symptoms measured by SSPI (Cluster 1 > Cluster 2; p = 0.016; Figure 7B). There was no 

significant difference in antipsychotic medication (Figures 7C-7D) or duration of illness 

(Figures 7E-7F) in both the discovery and the CONN validation dataset. There was no 

significant difference in functioning between patients of the two clusters, which was 

measured by COALS or SOFAS (Figures 7G-7H).  

 NeuroCog ‘Discovery’ Dataset CONN ‘Validation’ Dataset 

Symptom 

Measures 

 

(A) 

 

(B) 

Antipsychotic 

Medication 

Dose 

 

(C) 

 

(D) 

Illness 

Duration 

 

(E) 

 

(F) 
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 NeuroCog ‘Discovery’ Dataset CONN ‘Validation’ Dataset 

Functional 

Outcome 

 

 

(G) 

 

(H) 

Figure 7 Comparisons of clinical characteristics of patients in each cluster. 

Note: (A) 30-items Symptom severity of patients in NeuroCog sample measured by 

Positive and Negative Syndrome Scale (PANSS); (B) Symptom severity of patients 

in CONN sample measured by Signs and Symptoms of Psychotic Illness (SSPI); (C-

D) Antipsychotic medication defined daily dose (DDD) calculated according to 

World Health Organization. (E-F) Duration of illness measured in years. (G) 

Independent living skills measured by Canadian Objective Assessment of Life Skills 

(COALS) in the NeuroCog sample; (H) General functioning measured by SOFAS in 

the CONN sample. 

 

2.3.5 Exploratory Analysis of Symptoms, Cognition and Medication 

In the Discovery Dataset, cognitive deficits did not show a significant relationship with 

positive symptom severity in either subgroup (Figure 8A). However, cognitive 

performance was significantly reduced in patients with more severe negative symptoms 

in Cluster 1 (r = -0.46, p = 0.0032), but not in Cluster 2 (Figure 8B). Negative symptom-

cognition correlation coefficients were significantly different between subgroups (z = -

2.234, p = 0.013).  

Both illness severity and antipsychotic medication dose have been implicated in cortical 

thickness changes in schizophrenia (Andreasen et al., 2013; Lepage et al., 2020). We 

examined whether both thickness-based subgroups of patients had the same relationship 

between higher doses of antipsychotics and higher symptom severity. There was no 
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correlation between antipsychotic exposure and overall or positive symptom burden in 

Cluster 1 or Cluster 2 (Figure 8C-8F), but an increase in antipsychotic exposure was 

associated with different directions of change in negative symptom severity in Cluster 1 

and Cluster 2 (z = -1.987, p = 0.023; Figure 8E).  

Additionally, antipsychotic exposure and cognitive abilities were not significantly 

associated (Figure 8G), and the two subgroups did not show a difference in this 

relationship (z = -0.687, p = 0.246).  

 

 

 

 

(A) (B) 

(C) (D) 
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Figure 8 Relationships between cognitive test scores, symptoms severity 

measurements and antipsychotics defined daily dose in Cluster 1 and Cluster 2 

patients, respectively in the NeuroCog ‘Discovery’ Sample. 

Note: MCCB, MATRICS (Measurement and Treatment Research to Improve 

Cognition in Schizophrenia) Consensus Cognitive Battery; PANSS: Positive 

and Negative Syndrome Scale; DDD, defined daily dose calculated according to 

World Health Organization. 
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2.4 Discussion 

2.4.1 Discovery and Validation of Two thickness-based subgroups 

We identified two subgroups based on cortical thickness profiles across the whole brain. 

The two subgroups differed in the proportion of ‘cortical normality’ indicated by the 

amount of variance shared with healthy controls. One subgroup displayed reduced 

thickness or impoverishment and the majority of the members in this subgroup were 

patients with schizophrenia. The remaining patients had more typical or spared thickness 

patterns. The neuroanatomical differences between the two clusters varied across the two 

samples, possibly due to differences in recruitment criteria as well as the sample size 

differences, which combined with our stringent correction for multiple testing, reduced 

the likelihood of demonstrating significant regional differences in validation sample. 

Furthermore, the presence of stage-specific differences in the location of grey matter 

differences (i.e., the duration of illness effect) from age- and sex-matched healthy cohorts 

is a well-established finding in schizophrenia (M. Li et al., 2022; Palaniyappan, 2017). 

While scanning parameters varied across the two studies, it is important to note that both 

patients and healthy controls were scanned using the same acquisition parameters within 

each study. Further, we did not see any notable variations in the global estimates of 

cortical thickness across the two studies.  

Previous cluster analytic studies based on cortical thickness generally selected one 

clustering validation method to determine the optimal number of clusters (Pan et al., 

2020b; Sugihara et al., 2017b). However, we demonstrated that the number of clusters 

depends on the selection of validity indices. A variety of cluster solutions were deemed 

meaningful in our three datasets, which could partially explain the inconsistency in the 

number of clusters reported in the literature (see Figure 2 and 3). Instead of cluster 

selection based on a single validity measure, the application of multiple validation indices 

allows for convergence to a final and consensual cluster solution. 

Our two-cluster solution resembles Type I and Type II schizophrenia proposed by Crow 

(Crow, 1980). Crow anticipated pronounced brain structural abnormalities in one group 

(in line with our cortical impoverishment subgroup), referred to as Type II of 

schizophrenia, but not the other (Crow, 1980). However, in a later version, Crow 
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admitted the possibility that the two subtypes he proposed may indeed be two 

distinguishable dimensions of illness that might coexist in an individual case (Crow, 

1985). More recently, Chand and colleagues uncovered a strikingly similar two-cluster 

solution by clustering on the grey matter volume of patients. Despite the differences in 

the statistical approach and variable selection (thickness vs. volume), they also reported a 

lack of clinical and demographic differences between the two subgroups (Chand et al., 

2020b).  

2.4.2 Aggregation of patients and controls  

A sizeable number of IQ-matched healthy controls (nearly one-fifth) in the discovery 

dataset were part of the subgroup with thinner cortex. Thus, the differences among 

healthy individuals may contribute, in part, to the reported variability in effect sizes from 

case-control studies, reducing the ability to discriminate a patient from a non-patient 

based on the brain structure (Greenstein et al., 2012; Takayanagi et al., 2011). 

It is worth noting that around half of patients had thickness patterns that were 

indistinguishable from the majority of healthy participants, indicating that processes that 

disrupt cortical morphology do not operate across all patients with schizophrenia. This 

pattern argues against the presence of a detectable anatomical signature across the whole 

brain to describe the neurodevelopmental or neurodegenerative nature of schizophrenia. 

Crow also argued that the lack of structural brain changes in the ‘Type I’ syndrome of 

schizophrenia is reflective of a hyperdopaminergic process, producing reversible features 

of an acute, positive-symptom-dominated profile with intact cognition (Crow, 1985). A 

lack of prominent structural changes in a majority of patients may also result from 

compensatory processes that lead to structural reorganization in the post-onset period 

(Palaniyappan, 2019). If cortical reorganization with time is a relevant process, it raises a 

question regarding the stability of subgroup membership. Longitudinal studies are 

required to parse this issue.  

2.4.3 Similarities between the two thickness-based subgroups 

Irrespective of brain structural differences between the subgroups, a feature that is 

conspicuous by its absence is the lack of significant clinical and cognitive differences 
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between the patients of the two subgroups. This lack of clinical differences among 

structural MRI-based subgroups has been reported in several other studies (Chand et al., 

2020b; Dwyer et al., 2018b; Pan et al., 2020b; Planchuelo-Gómez et al., 2020). Although 

some studies have related a longer illness duration (Dwyer et al., 2018b; Pan et al., 

2020b; Planchuelo-Gómez et al., 2020) and higher medication exposure (Pan et al., 

2020b; Sugihara et al., 2017b) to more extensive cortical thinning, we did not find these 

associations in our data. Age differences between subgroups likely accounted for these 

differences in those previous studies (Dwyer et al., 2018b; Pan et al., 2020b; Planchuelo-

Gómez et al., 2020).  

In our discovery dataset, cognitive differences were found among healthy controls 

between the 2 subgroups, in line with prior data (Deary et al., 2010), but between the two 

subgroups, patients did not differ on their IQ or MCCB test scores. This implies that 

although poor cognitive performance is associated with cortical thinning in healthy 

people, developmental influences that result in impaired cognition in schizophrenia are 

unrelated to processes associated with impoverished cortex. This result is discrepant with 

studies that report cognitive impairment as a correlate of compromised cortical structural 

integrity in schizophrenia (Hartberg et al., 2011; Alkan et al., 2021). Cluster analytics 

studies that dissected heterogeneity in the cognitive feature space generally found 

subtypespecific neuroanatomical signatures (Cobia et al., 2011; Geisler et al., 2015; 

Ivleva et al., 2017; Weinberg et al., 2016). Similarly, in a cluster analysis based on 

cortical thickness, surface area and subcortical volume, Xiao et al. (2021) found that the 

cluster with widespread grey matter and subcortex deficits exhibited a significant 

impairment in cognition compared with patients with minimal or no significant brain 

alterations. The cognitive similarity between the two thickness-based subgroups of 

patients in our study does not negate the discriminative ability of other brain features (for 

example, white matter or subcortical volume, or connectivity (Kelly et al., 2019; Wexler 

et al., 2009) in identifying cognition-based clusters.  However, our finding is in line with 

recent proposals that several disease-associated factors (i.e., psychological, symptomatic 

and social factors) likely contribute to cognitive dysfunction (Moritz et al., 2017, 2020), 

and it is possible that among patients, these factors are not differentially distributed on 

the basis of grey matter thickness alone. 
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Overall, our results suggest that the illness duration and cognitive deficits do not vary 

with cortical thickness across the whole brain in schizophrenia. If cortical 

impoverishment lies on the causal mechanistic pathways to schizophrenia, then the lack 

of notable clinical differences supports the argument that similar ‘phenocopies’ may 

emerge from distinct mechanisms.  

2.4.4 Differences between the two thickness-based subgroups  

The only group-level difference in clinical features between the 2 clusters in our analysis 

came from the CONN ‘Validation’ dataset where patients with ‘cortical impoverishment’ 

displayed a more severe total symptom burden than other patients. In essence, this meant 

that the variation in SSPI total score across the patients in CONN sample represented the 

variability in symptoms that persisted despite treatment that provided a degree of clinical 

stability. Thus, cortical impoverishment may determine symptom persistence, rather than 

the acute severity. This is consistent with indistinguishable acute presentations, despite 

diverging inter-episode clinical patterns in schizophrenia (Jablensky, 2006a). Other 

phenotypic information such as the degree of treatment resistance and the time taken to 

respond to the treatment were not available to us, but these may be of interest in future 

studies of thickness.  

Another difference between the two patient subgroups involved the correlations between 

negative symptom severity, cognitive deficits, and medication dosage. The relationship 

between cognitive deficits and negative symptoms is considered a central feature of 

schizophrenia that influences poor long-term functioning (Strassnig et al., 2015; Ventura 

et al., 2009). Our results indicated a relationship between negative symptom severity and 

cognitive impairment in patients with cortical thinning, but not in patients with near-

normal thickness. Patients with cortical impoverishment displayed a co-occurring pattern 

of cognitive deficits and negative symptoms. In contrast, the cortically spared group had 

a notable dissociation between cognitive deficits and negative symptoms. The shared 

variance between negative symptoms and cognitive deficits is a well-established feature 

of schizophrenia (Harvey et al., 2006); our findings indicate that structural deficits may 

influence this reported relationship. Thus, structural heterogeneity may affect the 

covariance among symptom domains (negative/cognitive), rather than simply changing 
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the overall severity of clinical features. We also noted a dissociation between negative 

symptom severity and the prescribed doses of antipsychotics in the 2 clusters, although 

the antipsychotic dose had no significant relationship with symptoms or cognitive deficits 

in either cluster. To ascertain if the treatment response of the 2 subgroups differs, 

especially in the domain of negative symptom severity, larger samples with data on 

cumulative antipsychotic exposure are required. 

 

2.4.5 Limitations  

Our study has several strengths, including the recruitment of an IQ-matched patient and 

control group, and validation of the initial cluster solution in a validation sample with 

different illness duration. While the healthy subjects in our discovery sample (group 

matched for IQ with patients) likely differed from their peers in the validation sample, 

majority of healthy controls in each of the 2 samples aggregated within the structurally 

unimpaired subgroup. This indicates that over-sampling cognitively underperforming 

healthy subjects has not introduced systematic errors in the retrieved cluster structure and 

composition. Some limitations also require consideration. First, the multivariate patterns 

that separated the two subgroups in one dataset cannot be re-applied to other samples. 

Second, we lacked prospective data to confirm the stability of the reported clusters. 

Third, we are not able to conclude with certainty that the number of thickness-based 

clusters is limited to two, as increasing the sample size may capture more sources of 

variance that are missing in our current sample, but may yield further partitions within 

the patient group. Finally, despite our best efforts, the proportion of female participants 

remained lower than optimal. We urge caution when readers attempt to generalize our 

findings to mixed samples. 

  



33 

 

Chapter 3 Cortical Impoverishment Subgroup in First-

episode Psychosis 

Symptoms of schizophrenia are closely related to aberrant language comprehension and 

production. In this Chapter, we aimed to first seek patient subgroups with different 

neurobiological signatures and then quantify linguistic indices that capture the symptoms 

of “negative formal thought disorder” (i.e., fluency, cohesion, and complexity of 

language production). We characterized a patient subgroup with thinner cortex in first-

episode psychosis. This subgroup, identifiable through macroscopic changes, is also 

distinguishable in terms of neurochemistry (frontal glutamate) and language behavior 

(complexity and cohesion of speech). This study supports the hypothesis that glutamate-

mediated cortical thinning may contribute to a phenotype that is detectable using the tools 

of computational linguistics in schizophrenia. This chapter was adapted from the 

manuscript published on Frontiers in Human Neuroscience 2. 

3.1 Introduction 

3.1.1 Language Deficits in Schizophrenia  

Schizophrenia is a disorder that affects how language is employed in everyday use during 

social interactions (Covington et al., 2005; Kuperberg, 2010; Wible, 2012). Based on the 

Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-5) (American 

Psychiatric Association, 2013), all of the 5 symptom criteria for diagnosing schizophrenia 

involve speech and language in one form or another (American Psychiatric Association, 

2013). For example, hallucinations are often voices that speak (Alderson-Day et al., 

2021); negative symptoms are characterized by ‘alogia’ or reduced speech fluency; 

thought disorder is expressed as deviations in speech; catatonic features often include 

mutism (lack of speech production) (Sims’ Symptoms in the Mind: Textbook of 

 

2
 A version of this chapter has been published on Frontiers in Human Neuroscience (Liang, Silva, et al., 

2022) 
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Descriptive Psychopathology - 7th Edition, n.d.); delusions often include an element of 

misinterpretation of social conversations or deficits in the use of propositional language 

(Zimmerer et al., 2017). Despite this strong linguistic dependency of the construct of 

schizophrenia, not every patient diagnosed with this illness displays a detectable speech 

disturbance (Kircher et al., 2018a; Oomen et al., 2022; Roche et al., 2015). It is important 

to identify patients who are most likely to be afflicted in the language domain, as speech 

disturbances directly affect the educational and occupational success (Palaniyappan et al., 

2019), interpersonal (Tan et al., 2014) and social functioning (Marggraf et al., 2020) and 

endured stigma (Penn et al., 2000). Identification of this subgroup may assist in 

prognostication in schizophrenia, as well as making early and targeted interventions for a 

group that may have higher educational and vocational needs possible, before they 

manifest significant deficits in these domains.  

3.1.1.1 Computational Measures of Language Deficits 

The heterogeneity of linguistic deficits may stem from the presence of a subgroup of 

patients who do not display the expected language anomalies (Oomen et al., 2022). 

Alternatively, conventional measures of ‘formal thought disorder (FTD)’ that seek to 

examine overt communication difficulties may miss the subtle aspects of this deficit, thus 

introducing an apparent heterogeneity (Mikesell & Bromley, 2016). We need sensitive and 

objective measures of language indices to study this issue in detail (See Elvevag et al. 

(Elvevåg et al., 2010; Holmlund et al., 2020) and Foltz et al. (Foltz et al., 2016) for more 

explanations). One of these tools is natural language processing (NLP) in computational 

linguistics (Corcoran et al., 2020; Corcoran & Cecchi, 2020; Hitczenko et al., 2021; 

Ratana et al., 2019). NLP tools use computer algorithms to understand and analyze 

written text or speech. NLP is a branch of artificial intelligence that uses real-world 

language as input, processes it using linguistic rules or patterns identified through 

statistics, to allow machines to make sense of our language. Such NLP tools do not rely 

on a clinician’s inferential skill to assess the cognitive-linguistic health status (Voleti et 

al., 2020) of patients from early stages of psychosis (Delvecchio et al., 2019) and are able 

to predict psychosis onset in individuals at clinical high-risk (CHR) (Bedi et al., 2015). 
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These approaches have broadly focused on syntactic (Covington et al., 2005; Delvecchio 

et al., 2019; Thomas, 1996; Thomas et al., 1990) and semantic indices (Alonso-Sánchez 

et al., 2022; Bar et al., 2019; Corcoran et al., 2018; Parola et al., 2022) as the affected 

domains in psychosis.  

Prior studies that focused on quantitative analysis of language have established the 

following dysfunctions in patients with schizophrenia. First, patients display syntactic 

simplification (Bilgrami et al., 2022; DeLisi, 2001; Fraser et al., 1986; King et al., 1990; R. 

D. Morice & Ingram, 1982, 1983; R. Morice & McNicol, 1986) i.e., they use simple 

constructions with minimal clause dependencies and also with a limited richness of 

content. Secondly, patients show patterns of reduced cohesion (Crider, 1997), for 

example, lacking prior reference when invoking a description (Chaika & Lambe, 1989) or 

insufficient lexical repetitions (Gupta et al., 2018) needed to generate cohesion during a 

discursive discourse (Crossley et al., 2016).  Reduced syntactic complexity and cohesion 

can lead to aberrant word graphs (Mota et al., 2012) and a reduction in number of words 

spoken (reduced fluency) (Allen et al., 1993; DeLisi, 2001; Morgan et al., 2021).  

3.1.2 Detecting Subgroups with Language Dysfunctions 

While some of these features have been linked to the presence of clinically detected FTD, 

the rating-scale measures of FTD have been poor predictors of linguistic dysfunction per 

se (Mackinley et al., 2021; Tang et al., 2021). Furthermore, as symptom measures 

fluctuate over time (state-like), they have limited utility in identifying stable subgroups 

(Jablensky, 2006b). Even among speech characteristics, those that relate to ‘positive 

symptoms’ appear to be more state-related, while those relating to negative symptoms (or 

Impoverishment of Thinking (Liddle, Ngan, Caissie, et al., 2002b)) appear to be more 

pervasive. More trait-like measures, e.g., those derived from brain anatomy or genetic 

composition, that map on to emerging biological insights (e.g., implicating the 

glutamatergic synapses (Iyegbe & O’Reilly, 2022; Trubetskoy et al., 2022)), may be 

required to see if specific subgroups of patients have linguistic deficits. Furthermore, as 

antipsychotics themselves can induce language impairment (de Boer et al., 2020), 

recruitment of patients with first-episode psychosis with minimal exposure to 
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antipsychotic medications is necessary to identify subgroups with language dysfunction 

from illness onset. 

3.1.2.1 Cortical thickness-based Subgroups 

In the current study, we first identify subgroups of patients with first-episode 

schizophrenia using the neuroanatomical measure of MRI-derived cortical thickness. 

Structural neuroanatomical features are considered to be more stable than symptom rating 

and physiological recordings, which can vary on a day-to-day basis. In addition, MRI-

derived thickness is quantified objectively in an automatized manner with minimal 

manual intervention in the quantification process. Thus, brain structure can provide more 

stable and reliable clustering solutions. Further, aberrant cortical thickness has been 

reported in various illness stages of schizophrenia (Zhao et al., 2022), and has been also 

found to relate to track the inter-individual differences in psychotic symptoms (Oertel-

Knöchel et al., 2013) and Thought and Language Disorder scores in schizophrenia 

(Palaniyappan et al., 2020). Prior cluster analytic studies have uncovered a consistent 

cluster of patients with generalised reduction in cortical thickness (Chand et al., 2020a; 

Dwyer et al., 2018a; Liang, Heinrichs, et al., 2022). We use similar methods in this study. 

3.1.3 Cortical thickness and Glutamate 

After deriving thickness-based subgroups, we examined if these subgroups have a 

meaningful neurochemical basis for their differences, by examining the MRS-derived 

glutamate levels measured from their frontal cortex, extending our recent work (Liang, 

Heinrichs, et al., 2022) to a larger sample. 

Abnormal cortical thickness in schizophrenia has been previously linked to dysregulated 

glutamate levels (Plitman et al., 2014, 2016; Shah et al., 2020) and glutamatergic 

dysfunction had been considered to contribute to the ‘formal thought disorder’ burden in 

schizophrenia (Kircher et al., 2018a). We select dACC as our region of interest for 

glutamate measurement as it constitutes the core hub of the large-scale brain network 

called the Salience Network that appears to play a key role in the neurocognitive 

dysfunction in schizophrenia (Palaniyappan, 2021b). 
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3.1.4 Negative FTD-related Language Features  

Finally, we used a picture description task to study computational linguistic measures that 

are reflective of a “negative” formal thought disorder, first described by Fish (Casey & 

Kelly, 2019) and later reported by Andreasen (Andreasen, 1979) and others (Kircher et al., 

2018a) as being more characteristic of established schizophrenia. Negative FTD is 

characterized by reduced quantity and quality of speech output; in a linguistically 

impoverished subgroup, this will be reflected in (i) reduced fluency (number of words 

spoken), (ii) reduced cohesion (measured by counting instances of content with prior 

reference, i.e. repeat content lemmas, e.g., run, running and ran), and (iii) reduced 

syntactic complexity (mean length of sentences, clauses and minimal terminable units [T-

units, the smallest word group that could be considered a grammatical sentence, often 

composed of a main clause and subordinate clauses attached to it (Hunt, 1970)]).  

While there are numerous quantitative linguistic measures reported to be different in 

case-control comparisons, we chose items that predominantly map onto the negative 

symptom domain of schizophrenia (Bilgrami et al., 2022; Tan et al., 2021), independent of 

corpus-based distributional probabilities (which has limitations in understanding 

compositionality (Lenci, 2018) - a crucial locus of dysfunction in schizophrenia (Chaika, 

1974)) and are readily interpretable (e.g. we did not use referential cohesion measure 

which is conflated in the presence of perseveration (Lundin et al., 2020)). The features we 

selected are also intuitive in their link to known clinical features (reduce word count 

relates to alogia; lack of cohesion and simplified syntax relates to the poverty of content 

(Bedi et al., 2015; Corcoran et al., 2018; Minor et al., 2019)). Furthermore, compared to 

other aspects of communication disturbances, the features of reduced fluency and 

richness of content (negative factor) selectively relate to poor response to treatment 

(Peralta et al., 1992). A neuroanatomically-defined subgroup high in these ‘negative FTD 

type’ linguistic features can be expected to be of prognostic relevance in schizophrenia.  

3.1.5 Hypotheses  

Considering previous structural imaging-based cluster analytic studies, our primary 

hypothesis is that patient subgroups with distinct cortical thickness patterns can be 
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identified in first-episode schizophrenia. In particular, a subgroup with widespread 

cortical thinning would emerge. Considering the association between cortical thinning, 

dysregulated glutamate levels and formal thought disorder burden, our secondary 

hypotheses are as follows: (i) The subgroup with deviant cortical thickness patterns also 

has abnormal glutamate levels measured in dACC; (ii) This subgroup displays 

impairments (negative FTD-type) in language production features, such as syntactic 

simplicity, reduced speech output and lower speech cohesion. 

3.2 Methods 

3.2.1 Participants  

We recruited 76 patients with first-episode psychosis from the Prevention and Early 

Intervention for Psychosis Program at the London Health Sciences Centre in London, 

Ontario, Canada from 2017 to 2021. Since 10 patients were unable to go through 

magnetic resonance imaging (MRI) scanning, we included data collected for 66 patients 

in this study. Inclusion criteria for patients include (1) having less than 14 days of 

lifetime exposure to antipsychotic medications, and (2) being at their first clinical 

presentation of psychotic symptoms. We followed up with patients for over 6 months to 

determine the validity of a diagnosis of first-episode schizophrenia prospectively. We 

also recruited 36 healthy volunteers, group-matched for age, sex, and parental 

socioeconomic status, who had no personal history of mental illnesses and no family 

history of psychotic disorders. All participants had no significant head injury, 

drug/alcohol dependence or major medical illnesses, were fluent in English, and provided 

written informed consent to participate in the study. The work reported here is part of a 

longitudinal study registered on clinicaltrials.gov (Identifier: NCT02882204) and 

approved by the Western University Health Sciences Research Ethics Board, London, 

Ontario, Canada.  

https://uwoca-my.sharepoint.com/personal/asilva43_uwo_ca/Documents/RESEARCH%20ASOCIATE%20UWO/charlotte%20new%20work/clinicaltrials.gov
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3.2.2 Measures and instruments 

3.2.2.1 Psychiatric Symptoms 

Symptom severity was measured by the 8-item Positive and Negative Syndrome Scale 

(PANSS) (C.-H. Lin et al., 2018) through interviews conducted by two research 

psychiatrists. Functional outcome was indexed by the Social and Occupational Functional 

Assessment Scale (SOFAS) (Morosini et al., 2000b). The duration of untreated psychosis 

was calculated using the first report of positive symptoms as the starting point. We also 

obtained patients’ NEET (Not in Education, Employment and Training) status. We 

converted participants’ level of education into an ordinal scale (1: incomplete high school 

diploma; 2: completed high school diploma; 3: some post-secondary study; 4: completed 

post-secondary study or higher). Lifetime antipsychotic medication exposure was 

calculated by multiplying the number of days taking antipsychotics and prescribed 

Defined Daily Dose (DDD) values according to the World Health Organization (Defined 

Daily Dose (DDD), n.d.).  

3.2.2.2 Thought and Language Index (TLI)  

Data was collected using TLI (Liddle, Ngan, Caissie, et al., 2002b) to reflect the two 

dimensions of language disorders in schizophrenia, impoverishment and disorganization. 

We used a picture-speech task that induced participants to elaborate 1-min spontaneous 

speech (oral soliloquies) in response to three images from the Thematic Apperception 

Test (Murray, 1943) after hearing specific instructions: “I am going to show you some 

pictures, one at a time. When I put each picture in front of you, I want you to describe the 

picture to me, as fully as you can. Tell me what you see in the picture, describe what you 

see in this image, and what you think might be happening.” Responses were recorded, 

transcribed, and scored. Impoverishment score was the sum of scores for these 3 

dimensions: poverty of speech, weakening of goal and preservation of ideas, while 

disorganization score was indexed by 5 dimensions: looseness, peculiar use of words, 

peculiar sentences, peculiar logic, and distractibility.  
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3.2.2.3 Language assessment  

The same transcribed speech samples also underwent automatic analysis to measure both 

syntactic complexity and cohesion at the semantic level. 

3.2.2.3.1 Tool for the automatic analysis of syntactic complexity 

and sophistication (TAASSC)   

TAASSC is an open-source (https://www.linguisticanalysistools.org/taassc.html) used in 

wide-ranging languages and grammatical frameworks with recent improvements in 

machine-learning approaches and Natural Language Processing (NLP). This tool is 

complemented by a syntactic complexity analyzer (SCA)—a package with an accuracy of 

around 90% in part of speech (POS) tagging. The package includes a traditional and large 

measure of syntactic complexity following the taxonomy in Lu (2010) (Lu, 2010): mean 

length of sentences (MLS), mean length of T-units (MLT) and mean length of clauses 

(MLC), word counts, and Terminal Units (T-unit) defined as the main clause with its 

attached subordinate clause(s) indicating speech cohesion as well as logical flow in the 

given information (See Supplementary Material for more detailed descriptions). 

3.2.2.3.2 Tool for the Automatic Analysis of Cohesion (TAACO 2.0) 

TAACO 2.0 (https://www.linguisticanalysistools.org/taaco.html) (Crossley et al., 2016)  

is a freely available text analysis tool which incorporates a wide-ranging of global 

indices— over 150 classic and recently developed indices related to text cohesion—local, 

global, and overall text cohesion can significantly predict both text cohesion and 

speaking quality whether the speaking samples show greater semantic overlap 

incorporating automated semantic analysis (Crossley et al., 2019). TAACO includes 194 

indices of cohesion in seven main categories: Type token ratio (TTR) and density, lexical 

overlap (sentences), lexical overlap (paragraphs), semantic overlap, connectives, 

givenness, and source text similarity. Of this, we focus on the givenness index as we 

analyze speech rather than written text. Givenness, as opposed to newness in a discourse 

transcript, indicates whether information occurring in a segment has already occurred in 

an earlier segment. Repeat content words or lemmas (e.g., nouns, verbs, adjectives, etc.) 

https://www.linguisticanalysistools.org/taassc.html
https://www.linguisticanalysistools.org/taaco.html


41 

 

are calculated as a proportion of the total number of words spoken within each 1-minute 

picture description. 

3.2.3 MRI and MRS Acquisition and Processing 

A total of 66 participants underwent neuroanatomy and spectroscopy scanning with an 

ultra-high-resolution 7-Tesla MRI scanner (8-channel transmit and 32-channel receive 

head-only coil) at Centre for Functional and Metabolic Mapping (CFMM), Western 

University, London, Canada. Structural images were obtained by a T1-weighted 0.75 mm 

isotropic MP2RAGE sequence with the following parameters: Repetition Time (TR) = 

6000 ms, Time to Echo (TE) = 2.83 ms, Inversion Time (TI)1 = 800 ms, TI2 = 2700 ms, 

flip-angle 1 (α1) = 4°, flip-angle 2 (α2) = 5°, Field of View (FOV) = 350 mm × 263 mm × 

350 mm, Tacq = 9 min 38 s, iPATPE = 3 and 6/8 partial k-space, slice thickness = 0.75mm. 

Freesurfer (version 6.0.0) (FreeSurfer, n.d.) was used to preprocess the obtained T1-

weighted images. FreeSurfer provides automated brain image processing steps including 

intensity normalization, tissue segmentation and cortical parcellation (Recon-All - Free 

Surfer Wiki, n.d.). Visual inspections of errors such as surface location misplacement 

were carried out according to the troubleshooting guide provided by FreeSurfer team 

(FsTutorial/TroubleshootingData - Free Surfer Wiki, n.d.). We acquired the cortical 

thickness values based on the Destrieux parcellation atlas (Destrieux et al., 2010b). 

Magnetic resonance spectroscopy (MRS) signal was measured on a voxel placed in the 

dorsal anterior cingulate cortex (dACC; MNI coordinates: 1, 16, 38). The details of MRS 

acquisition and analysis have been previously described (See Supplementary Material) 

and a subset of this sample has been reported in prior works (Jeon et al., 2021; Liang, 

Heinrichs, et al., 2022).  

3.2.4 Statistical Analyses 

We applied agglomerative hierarchical clustering with Ward’s method and Euclidean 

distance to 148 cortical thickness values (based on Destrieux parcellation atlas (Destrieux 

et al., 2010b) output using FreeSurfer) of all 102 participants including 66 patients and 36 

healthy controls. Agglomerative hierarchical clustering starts with calculating the 

distance (e.g., Euclidean distance) between all pairs of data objects and putting the most 
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similar data objects into the same cluster. The newly formed clusters are then again 

grouped with one another based on a linkage function (e.g., Ward’s method), until all 

data objects merge into one single cluster. The optimal number of clusters was 

determined by the consensus votes from 16 clustering validity indices using NbClust 

(Charrad et al., 2014) in R (version 4.0.3). Pearson’s chi-squared tests (with Yate’s 

continuity correction) were used to compare categorical variables, while Welch t-tests 

were used to compare continuous variables. If the obtained subgroups showed 

difference(s) in confounding variables (e.g., age or gender), ANCOVA was used to show 

effects between subgroups while accounting for effects of the covariates. We used 

FreeSurfer to find (1) between-cluster differences in vertex-by-vertex cortical thickness 

while regressing out the effect of age using a general linear model, and to locate (2) 

cortical regionals that correlated with glutamatergic metabolic levels. The thickness 

values at each vertex were mapped to the surface of an average brain template, and the 

cortical map was smoothed with a Gaussian kernel of 10mm full width at half-maximum. 

We used Monte Carlo simulations with 1000 permutations and a cluster-forming 

threshold of P = 0.05 (two-tailed) to correct for multiple comparisons as implemented in 

FreeSurfer. 

3.2.5 Sensitivity Analyses 

To examine the effects of chosen types of participants, clustering methods and cortical 

parcellations on the findings, we performed the following sensitivity analyses (Parpia et 

al., 2022) and assessed the robustness of the conclusions. 

1) To examine how changing participant type affects the clustering solution: Since 

we included both patients and healthy controls in our clustering procedure, there 

were naturally two categories of participants and hence a 2-cluster solution could 

emerge as a dominant effect. To rule out this possibility, we included only 

patients and performed the same clustering procedure.  

2) To examine how clustering methods affect the clustering solution: We replaced 

the agglomerative hierarchical clustering method with K-means clustering. 

Compared to hierarchical clustering that computes pairwise similarity between 
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datapoints, K-means clustering holds the assumption that each cluster has a 

representative center point, called “centroid”. K-means clustering starts with 

randomly selecting a pre-defined number of centroids, and then assigned every 

datapoint to its nearest centroids to form clusters. New centroids are then re-

calculated for the newly formed clusters. This process is iterated until the 

centroids do not change. While hierarchical clustering assumes a nested tree-like 

data structure, K-means clustering divides datapoints into non-overlapping 

subgroups. Participant subgroup assignments from these two different clustering 

methods were compared to investigate the effects of chosen clustering method on 

results.  

3) To examine how cortical parcellation atlas affects the clustering solution: The 

cortical parcellation system developed by Destrieux at al. was developed based on 

classical neuroanatomical nomenclature (Destrieux et al., 2010b). In contrast to 

this brain atlas based on structurally distinct regions, we selected another brain 

parcellation system based on functionally distinct regions (Schaefer et al., 2018; 

Thomas Yeo et al., 2011). This approach segments the brain into large-scale brain 

networks based on functional MRI resting-state functional connectivity (RSFC) 

and further maps cortical region boundaries based on homogeneous RSFC 

patterns. We used the 7-network (Visual, Somatomotor, Dorsal Attention, Ventral 

Attention, Limbic, Default, Frontoparietal Network) atlas with 200 cortical 

regions of interest (ROIs), compared to 148 ROIs in the Destrieux atlas (See 

Appendix E for cortical parcellation maps).  

 

3.3 Results 

3.3.1 Subgroup Characteristics 

Demographic, clinical, linguistic, and neurobiological measurements of first-episode 

psychosis patients and healthy controls are provided in Table 5.  

The cluster validity procedure of hierarchical clustering of 148 cortical thickness values 

of 66 patients with first-episode psychosis and 36 healthy controls suggested that a two-
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cluster solution is optimal (9/16 cluster validity indices). Proceeding with a two-cluster 

solution, around 70% of patients (n = 46) with first-episode psychosis were clustered 

with the majority of the healthy controls (n = 33) in Cluster 1, while the remaining 30% 

of patients (n = 20) were in Cluster 2 which only included 3 healthy individuals. 

Demographic, clinical, neurometabolite and language functioning information of the 

three subgroups (Cluster 1 patients, Cluster 2 patients and Cluster 1 healthy controls) is 

summarized in Table 6, and patient subgroups comparisons of key variables are shown in 

Figure 9. Overall, compared to Cluster 1 patients, Cluster 2 patients have significantly 

older age, lower mean cortical thickens (non-significant age effect), higher glutamate 

concentration in dACC (non-significant age effect) as well as lower mean length of T-

units (complexity) and repeated contents lemmas (cohesion) despite a preserved number 

of words within the given time frame (fluency). There is no significant difference 

between the two clusters in duration of untreated psychosis, lifetime exposure to 

antipsychotics, PANSS and SOFAS scores.  

Comparisons of cortical thickness between patients from the two subgroups (adjusted for 

age) are shown in Figure 10. After multiple testing corrections, patients in Cluster 1 had 

significantly lower thickness in 8 clusters (average area size = 410.44 mm2) in the left 

hemisphere and right hemisphere respectively (Figure 11 and Table 7). Comparisons of 

cortical thickness between the patients and controls from Cluster 1 (adjusted for age and 

corrected for multiple comparisons) revealed no regional differences in thickness values, 

indicating that this subgroup of patients had a ‘healthy’ cortical morphological pattern.  

Multiple cortical regions were correlated with dACC glutamate levels in patients (Figure 

12), but these correlations were not significant after multiple testing corrections. 

Correlation matrices of other variables of interest are presented in Supplementary 

Material. 

In summary, patients from Cluster 1 had similar neuroanatomical patterns to healthy 

controls, while patients from Cluster 2 were a distinct subgroup with widespread cortical 

thinning, higher glutamate concentration, and exhibited and reduced syntactic complexity 

and cohesion. This subgroup was thus impoverished in cortical structure as well as 

linguistic features.  
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Table 5 Demographic, clinical, neurobiological, and linguistic data of patients with 

first-episode psychosis and healthy controls 

 FEP HC Pearson’s Chi-squared 
test or Welch T-tests 

 

N 66 36 -  

Demographics   

Age (years) 22.82 (4.77) 21.53 (3.32) t (94.043) = 1.6005, p-
value = 0.1128 

 

Female/Male 12/54 12/24 X-squared (1) = 2.1896, p-
value = 0.1389 

 

Education Scale 
(1/2/3/4) 

15/18/20/13 5/3/14/13 X-squared (3) = 8.0131, 
p-value = 0.04574 

* 

Clinical  

PANSS-8 (Total) 25.18 (6.72) - -  

  PANSS-8 Positive 11.62 (3.48) - -  

  PANSS-8 Negative 6.97 (4.41) - -  

  PANSS-8 General 5.18 (2.46)    

DUP (weeks) 
(median [IQR]) 

11.0 [4, 24] - -  

DDD lifetime exposure 
(median [IQR]) 

0.5 [0, 2.99] - -  

Antipsychotic naïve 
(%) 

42%    

Functional     

SOFAS 40.96 (12.40) -   

NEET status: Yes/No 24/29 0/31 X-squared (1) = 17.497, p-
value < 0.0001 

*** 

Neurobiological  

Glutamate (mM) 6.79 (1.16) 6.51 (1.35) t (53.766) = 0.99493, p-
value = 0.3242 

 

Mean cortical 
thickness (mm) 

2.45 (0.12) 2.48 (0.096) t (94) = 1.90350, p-value 
= 0.0600 

 

Language Variables 

TLI (Total) 1.48 (1.41) 0.29 (0.39) t (81.668) = 6.4188, p-
value < 0.00001 

*** 

  TLI Impoverishment  0.57 (0.72) 0.14 (0.25) t (87.397) = 4.3669, p-
value < 0.0001 

*** 

  TLI Disorganization 0.91 (1.21) 0.15 (0.26) t (75.114) = 4.9033, p-
value < 0.00001 

*** 

Average total number 
of words 

119.18 
(38.85) 

141.34 
(29.83) 

t (88.706) = -3.1775, p-
value = 0.002045 

*** 
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MLS 14.37 (4.58) 14.21 (2.74) t (96.753) = 0.20899, p-
value = 0.8349 

 

MLT 12.21 (3.00) 12.49 (2.08) t (93.295) = -0.56025, p-
value = 0.5767 

 

MLC 7.73 (1.20) 8.19 (1.18) t (73.659) = -1.8858, p-
value = 0.06327 

 

Repeated contents 
lemmas 

0.229 (0.047) 0.247 
(0.033) 

t (89.792) = -2.1269, p-
value = 0.03617 

* 

Note: Values are reported as “Mean (SD)” unless specified otherwise. IQR: Interquartile 

range. FEP: first episode psychosis; HC: healthy controls. PANSS: Positive and Negative 

Symptoms Scale; DUP: duration of untreated psychosis; DDD: Defined Daily Dose; 

SOFAS: Social and Occupational Functioning Assessment Scale; NEET: not in 

employment, education and training; TLI: Thought and Language Index; MLS: mean 

length of sentences, MLT: mean length of T-units, MLC: mean length of clauses.  

* p values < 0.05 

** p values < 0.01 

*** p values < 0.001 

 

Table 6 Demographic, clinical, neurobiological, and linguistic data of subgroups. 

 Subgroup 1 
Patients  

Subgroup 2 
Patients 

Patient Subgroup 
Comparison  

Subgroup 1 
Healthy 
Controls 

N 46 20  33 

Demographics   Pearson’s Chi-
squared test or 
Welch T-tests 

 

Age (years) 21.37 (3.72) 26.15 
(5.31) 

t (27.433) = -
3.6527, p-value = 
0.001081 * 

21.15 (3.08) 

Female/Male 10/36 2/18 X-squared (1)  = 
0.62274, p-value = 
0.43 

12/21 

Education Scale 
(1/2/3/4) 

9/14/16/7 6/4/4/6 X-squared (3) = 
3.7761, p-value = 
0.2867 

5/3/14/10 

Clinical   Welch T-tests  

PANSS-8 (Total) 25.76 (7.02) 23.85 
(5.91) 

t (42.677) = 1.1376, 
p-value = 0.2616 

- 

  PANSS-8 Positive 11.67 (3.46) 11.50 
(3.64) 

t (34.519) = 
0.18146, p-value = 
0.8571 

- 



47 

 

  PANSS-8 Negative 7.48 (4.46) 5.80 (4.15) t (38.757) = 1.4755, 
p-value = 0.1481 

- 

  PANSS-8 General 5.22 (2.41) 5.10 (2.63) t (33.503) = 
0.17063, p-value = 
0.8655 

 

DUP (weeks) 
(median [IQR]) 

13 [4, 26] 8.5 [5.75, 
16.5] 

t (23.362) = -
0.53167, p-value = 
0.6027 

- 

DDD lifetime 
exposure 
(median [IQR]) 

0 [0, 2.54] 1.25 [0, 
3.9] 

t (20.156) = -
1.6477, p-value = 
0.1149 

- 

Functional   Welch T-tests  

SOFAS 40.98 
(13.19) 

40.90 
(10.67) 

t (44.354) = 
0.025424, p-value = 
0.9798 

- 

NEET status: 
Yes/No 

19/19 5/10 X-squared (1) = 
0.62686, p-value = 
0.4285 

- 

Neurobiological   ANOVA with age 
as a covariate  

 

Glutamate (mM) 6.57 (1.03) 7.28 (1.30) F(1)=5.10, p = 
0.028 * 
Age effect: p = 0.13 

6.50 (1.40) 

Mean cortical 
thickness (mm) 

2.50 (0.068) 2.32 
(0.057) 

F(1)=126.225, p < 
0.000 *** 
Age effect: p = 0.12 

2.49 (0.061) 

Language 
Variables 

  Welch T-tests  

TLI (Total) 1.28 (1.28) 1.93 (1.64) t (29.517) = -
1.5629, p-value = 
0.1287 

0.28 (0.40) 

  TLI 
Impoverishment  

0.48 (0.61) 0.79 (0.92) t (26.725) = -
1.3843, p-value = 
0.1777 

0.13 (0.23) 

  TLI 
Disorganization 

0.82 (1.14) 1.14 (1.37) t (30.974) = -
0.92366, p-value = 
0.3628 

0.16 (0.26) 

Average total 
number of words 

119.47 
(35.45) 

118.43 
(47.46) 

t (24.954) = 
0.084721, p-value = 
0.9332 

141.53 
(31.15) 

MLS 14.58 (4.01) 13.91 
(5.89) 

t (23.59) = 0.4227, 
p-value = 0.6763 

14.03 (2.67) 
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MLT 12.79 (3.09) 10.75 
(2.20) 

t (43.928) = 2.9509, 
p-value = 0.005066 
** 

12.45 (2.13) 

MLC 7.90 (1.25) 7.30 (0.96) t (40.658) = 2.0284, 
p-value = 0.04911 * 

8.24 (1.21) 

Repeated contents 
lemmas 

0.240 
(0.044) 

0.204 
(0.047) 

t (28.741) = 2.6991, 
p-value = 0.01152 * 

0.249 (0.034) 

   ANOVA with age 
as a covariate 

 

TLI (Total)   F(1)=2.96, p = 0.090 
Age effect: p = 0.39 

  TLI 
Impoverishment  

  F(1)=2.61, p = 0.11 
Age effect: p = 0.29 

  TLI 
Disorganization 

  F(1)=1.00, p = 0.32 
Age effect: p = 0.15 

Average total 
number of words 

  F(1)=0.009, p = 0.92 
Age effect: p = 0.126 

MLS   F(1)=0.25, p = 0.62 
Age effect: p = 0.25 

MLT   F(1)=6.46, p = 0.014 * 
Age effect: p = 0.57 

MLC   F(1)=3.30, p = 0.074 
Age effect: p = 0.126 

Repeated contents 
lemmas  

  F(1)=7.56, p = 0.0081 ** 
Age effect: p = 0.515 

Note: Values are reported as “Mean (SD)” unless specified otherwise. IQR: Interquartile 

range. FEP: first episode psychosis; HC: healthy controls. PANSS: Positive and Negative 

Symptoms Scale; DUP: duration of untreated psychosis; DDD: Defined Daily Dose; 

SOFAS: Social and Occupational Functioning Assessment Scale; NEET: not in 

employment, education and training; TLI: Thought and Language Index; MLS: mean 

length of sentences, MLT: mean length of T-units, MLC: mean length of clauses.  

* p values < 0.05 

** p values < 0.01 

*** p values < 0.001 
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(C) (D) 

(E) 

(A) (B) 

Figure 9 Raincloud plots depicting the comparisons of distributions between the two 

patient subgroups. 
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Figure 10 Cortical thickness map of differences between patients from Subgroup 1 

and Subgroup 2 generated by FreeSurfer (regressing out age effect with a general 

linear model, uncorrected). Left hemisphere and right hemisphere in lateral and 

medial view respectively. 

 

Figure 11 Cortical thickness map of differences between patients from Subgroup 1 

and Subgroup 2 generated by FreeSurfer. 

Note: Regressing out age effect with a general linear model, multiple comparison 

corrections using Monte Carlo simulations of 1000 permutations with 1000 

permutations with a cluster-wise threshold of 0.05). Left hemisphere and right 

hemisphere in lateral and medial view respectively. The scale indicates log10 of p-
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values. Red and yellow represent higher cortical thickness in patients from 

Subgroup 1. 

 

Table 7 Cortical regions with their area size (mm2) showed significant differences 

after Monte Carlo simulation correction between patients from the two subgroups, 

in the left and right hemispheres respectively. 

 Left Hemisphere  Right Hemisphere 

Inferior temporal 1) 1082.27  

Lateral orbitofrontal 2) 579.75 
3) 530.65 

 

Rostral middle frontal 4) 462.95 1)    560.93 
2)    260.59 

Precentral  5) 389.09 3)    420.84 
4)    247.97 

Precuneus 6) 289.00  

Rostral anterior 
cingulate 

7) 234.62  

Postcentral  8) 182.27  

Lateral occipital   5)    437.17 
6)    333.73 
7)    266.67 

Lingual  8)    258.06 
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Figure 12 Cortical regions that are correlated with dACC glutamate levels 

(uncorrected) generated by FreeSurfer. 

Note: Left and right hemispheres in lateral and medial view respectively. Blue/cyan 

colours indicate negative correlations while red/yellow colours indicate positive 

correlations. 

 

3.3.2 Cluster Solution Consistency 

The variations of the same clustering procedure are summarized Table 8. Overall, the 

two-cluster solution was consistently the most favoured. Out of the 66 patients, 37 

patients (56%) were consistently classified in the ‘cortically healthy’ subgroup while 14 

patients (21%) were consistently classified in the ‘cortically impoverished’ subgroup, 

adding up to 77% of patients classified concurrently in all scenarios.  

Table 8. Sensitivity analyses to examine the effects of different methods on findings. 

Variations  1 
2 

(original) 
3 4 5 

(1) Types of 
participants 

Patients only      

Patients and 
healthy controls 

together 
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(2) Clustering 
Methods 

Hierarchical 
clustering      

K-means clustering      

(3) Parcellation 
atlas 

Destrieux      

Schaefer      

Dataset dimension 
66 x 
148 

102 x 148 
102 x 
200 

102 x 
148 

102 x 
200 

Number of validity indices that 
suggested a 2-cluster solution 

9/16 9/16 11/16 9/16 11/16 

Number of patients classified to be 
in the ‘cortical impoverished’ 

subgroup 
27 20 19 27 27 

% Misclassified, referencing to the 
original analysis  

10.6% - 16.7% 13.6% 13.6% 
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3.4 Discussion 

3.4.1 ‘Cortical Impoverishment’ Subgroup 

In the current study, we identified a subgroup of 30% of patients with first-episode 

schizophrenia who are distinguishable on the basis of their MRI-derived cortical 

thickness profiles – displaying a generalized reduction in thickness ( referred to as 

“Subgroup 2”) compared to the other group (70%) who have an unimpaired thickness 

profile similar to most healthy control subjects (referred to as “Subgroup 1”). Subgroup 2 

is older in age at the time of the first presentation, has higher MRS-derived glutamate 

levels in the dorsal ACC and showed a pattern of linguistic impoverishment characterized 

by reduced fluency, syntactic simplicity, and repetitiveness. Taken together, these 

observations indicate a distinct subtype of schizophrenia that shows a pattern of cortical 

impoverishment along with linguistic impoverishment in the presence of higher 

prefrontal (dACC) glutamate levels at first presentation.  

The emergence of a cortical impoverishment group showing a distributed reduction in 

cortical thickness compared to the other subgroup of patients and healthy controls is now 

a well-established feature of cluster analytical studies in schizophrenia. In a prior work 

where we studied two independent groups of patients with established schizophrenia as 

well as a part of the sample reported here, we observed a reliably identifiable subgroup of 

patients with cortical impoverishment (Liang, Heinrichs, et al., 2022), who did not differ 

from other patients in the cognitive or clinical severity. Similar findings also reported a 

‘cortical impoverishment subgroup’ at various illness stages (Chand et al., 2020a; Dwyer 

et al., 2018a; Pan et al., 2020b; Sugihara et al., 2017b), supporting the stability of this 

subtype.  

3.4.2 Cortical Thinning and Glutamate Excess  

While the mechanistic processes underlying this structural deviation are still circumspect, 

the finding that the impoverished cortical thickness profile is associated with higher 

glutamate levels in dACC provided robust evidence for the hypothesis that glutamate-

induced toxicity relates to structural compromise in schizophrenia (Kritis et al., 2015; 

Plitman et al., 2014). The relationship between structural impoverishment and glutamate 
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dysregulations is supported by findings reporting that they appear to share similar risk 

gene variants (Schultz et al., 2011), and are both associated with treatment resistance 

(Egerton et al., 2018; J. Li et al., 2020; Shah et al., 2020; Zugman et al., 2013), negative 

symptom severity (Reid et al., 2019; Walton et al., 2018; Wijtenburg et al., 2021) and 

cognitive impairment (Godlewska et al., 2021; Hartberg et al., 2011; Wijtenburg et al., 

2021). According to the NMDA hypofunction or glutamatergic dysregulation models of 

schizophrenia, higher glutamate transmission may relate to excitation-inhibition 

imbalance (Limongi et al., 2020) and if unchecked, may result in synaptic and neuronal 

loss (Wang & Qin, 2010). These cellular mechanisms have been hypothesized to underlie 

structural deficits in schizophrenia (Plitman et al., 2014). Multilevel genetic and 

physiological studies are needed to further pursue this observation. We now provide an 

important lead in this pursuit by identifying language dysfunction in this subgroup of 

schizophrenia. 

However, one caveat to our observation is that we measured glutamate levels only from 

the dACC, while cortical thickness reduction is more generalized. Prior results showing a 

regional correspondence of glutamate levels and structure (Plitman et al., 2016; Shah et 

al., 2020) indicate that this relationship is likely to be generalized across the brain. 

Further, other groups have focused on glutamatergic excitotoxicity in the hippocampal 

circuits (Lieberman et al., 2018). Taken together, our observations indicate that 

glutamatergic dysregulation in one brain region (dorsal ACC in our case) may influence 

the structure of other connected brain regions, either via distributed networks or through a 

generalised glutamatergic dysfunction. This hypothesis can be tested using multi-voxel 

MRS data (for example, see Kumar et al., 2020). 

3.4.3 Cortical Thinning and Language Deficits 

3.4.3.1 Syntactic Simplicity in ‘Cortical Impoverishment’ Subgroup 

Through a parts-of-speech (POS) tagging approach in NLP, we studied “poverty of 

content” at 3 components of grammatical structures: mean length of sentences, clauses 

and T-units. All are large syntactic complexity indices used as a proxy of cognitive 

parameters because producing a T-unit is a more complex process than producing 
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coordinated clauses (Szmrecsanyi, 20040101). T-units serve as an informative index to 

distinguish the amount of independent clausal coordination in the expressed idea. 

Moreover, T-units provided the rule-based identification process considering the 

selecting word for subordination (e.g., using ‘because’) or coordination (e.g., using 

‘and ’) (Beaman, 1984). Therefore, a reduction in coordinated T-units demonstrates 

notable syntactic simplicity in our Subgroup 2. These results are congruent with Bilgrami 

and colleagues’ works (Bilgrami et al., 2022) who also reported lower POS syntactic 

complexity in those patients who had negative symptoms. The authors found that reduced 

sentence length and decreased use of words that introduce dependent clauses (e.g., using 

complementizer or determiner pronouns such as “that” and “which”) are associated with 

negative thought disorder (Bilgrami et al., 2022). Additionally, our observations raise the 

question of whether patients with higher developmental disruption form the subgroup 

with cortical and linguistic impoverishment since syntactic complexity is a phenomenon 

that develops during childhood (Frizelle et al., 2018; Givon, n.d.) and reaches a plateau 

around the age of 20 (Nippold et al., 2014). If developmental disturbances during 

childhood and adolescence lie in the pathogenesis of schizophrenia and can be detected 

using NLP tools (via progressive aberrations in syntactic complexity; see Silva et al. 

(Silva et al., 2022)), this may provide a promising avenue for early identification.  

3.4.3.2 Impaired Cohesion in ‘Cortical Impoverishment’ Subgroup  

We observed a reduction of repeated content lemma (e.g., nouns, verbs, adjectives) in  

our Subgroup 2. This index traditionally characterizes the systematic relationship – 

explicit or implicit – between lexical items, i.e., cohesive cues, placed at the text surface 

(Sanders & Maat, 1976). For example, if two adjacent ideas (sentence-to-sentence, 

clause-to-clause) comprise the same noun (e.g., woman), the lexical repetition will 

explicitly help connect both ideas. However, if the first clause contains the word “bridge” 

and the second contains the word “iron”, the connection weakens even though it is 

logical. Therefore, in this work, we quantify cohesion (Graesser et al., 2004; Halliday & 

Hasan, 1976) through a lexical approach applied to how speech has been produced, 

without any assumption about how it is understood by listeners or readers (i.e., lexical 

cohesion as distinct from semantic coherence) (Just et al., 2020).  
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The linguistic phenomenon of reduced content word-lemmas relating to cortical thinning 

can be understood in several ways (Crossley et al., 2016). Firstly, reduced repetition of 

content-lemmas directly negatively influences the givenness of the generated speech. 

Givenness refers to the distribution of the given/known information or ideas as opposed 

to the new/unknown information. A ‘cortically impoverished’ patient may build ideas as 

small clauses with little relationship between them. Secondly, a decline in the use of 

repeated content lemma makes it difficult to recover the meaningful information from the 

preceding passage, generating a sense of empty speech (i.e., poverty of content) with 

reduced informative value to the listener.  

3.4.4 Strengths 

Our study has several strengths: We were able to overcome the difficulty of collecting 

speech data in an acute, untreated state of psychosis, and determine their diagnosis of 

first-episode schizophrenia. Furthermore, we ensured transcribers, as well as speech 

analysts, were blind to diagnosis. We employed ultra-high field strength MRS whereby 

the glutamate quantification from MS-spectra had a high specificity. Third, we used 

multiple clustering procedures and derived a two-cluster solution based on a majority-

based consensus, adding to the stability of the observed subtype. Finally, in clinical 

settings, linguistic dysfunction in schizophrenia traditionally relies on a standardized 

rating scale (PANSS and TLI) to define speech impairment as one sign of formal thought 

disorder (FTD) (Elvevåg et al., 2007; Iter et al., 2018). Instead, we used automated 

quantitative processes to parse the subtler aspects of language dysfunction, and our 

results speak to the ability of using NLP tools to detect minor language impairments that 

cannot be detected with subjective clinical rating scales (Corcoran & Cecchi, 2020; 

Hitczenko et al., 2021). 

3.4.5 Limitations 

Nevertheless, several limitations need consideration. We had a limited number of female 

participants which limits generalizability; we did not see a statistical effect of sex 

between the groups, but our small numbers preclude a stratified analysis. Second, 

thickness-based clustering resulted in age differences between the subgroups; however, 
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we included age as a covariate in downstream analyses for glutamate and regional 

thickness to ensure this confound did not affect the inferences we make. Nevertheless, the 

non-linear influence of age on these variables cannot be ruled out. Third, we did not 

assess IQ formally. In our recent study where we examined the influence of cognition on 

thickness-based clustering in greater detail, the effect of individual differences in 

cognitive performance in the thickness profile was minimal among patients (Liang, 

Heinrichs, et al., 2022). Thus, while we can be confident that the reported thickness 

reduction and language dysfunction in a subgroup is not due to low extreme distributions 

of IQ as a result, we cannot exclude that an undetermined proportion of variance in these 

variables could be explained by cognitive differences. Finally, our speech samples were 

restricted to one language (English) and were based on a single discursive discourse 

(picture description) and single modality (oral soliloquies-monologue) elicited in the 

context of a research interview. The effect of contextual differences, language as well as 

types and duration of elicitation task on our linguistic observations needs further 

examination. 
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Chapter 4 Conclusions 

Neuroanatomical heterogeneity exists in schizophrenia, but such variations are not 

restricted to the illness per se because we can also see it in healthy populations. 

Leveraging the variances of cortical thickness data of patients and healthy controls, we 

identified two subgroups based on cortical thickness profiles across the whole brain. 

Despite displaying similar symptom severity and social functioning, the two patient 

subgroups have distinct neurobiological underpinnings, and may represent different 

pathophysiological pathways of developing schizophrenia. The cortical thickness-based 

data-driven two-cluster solution presented here emerges as an invariant feature across 

illness stages, acute symptom severity, functional status, and treatment exposure. The 

two-cluster typology remains robust when reproducing it across different patient samples 

and varying the choices of brain parcellation atlases or clustering algorithms. 

A ‘cortical impoverished’ subgroup was consistently seen across the 3 samples 

irrespective of illness duration, stage, or state, and the strength of the scanners used. We 

can link the putative excitotoxicity (glutamate excess) to reduced grey matter thickness 

(cortical impoverishment) and the objectively computed negative phenomenology of 

language (or linguistic impoverishment) in first-episode schizophrenia. Connecting the 

cellular/synaptic processes (glutamate) with objectively quantified language behaviours 

through macroscopic brain changes (thickness) may facilitate more consistent brain-

behaviours mapping in schizophrenia. While cortical thinning is neither necessary nor 

sufficient for clinical expression, a specific mechanistic pathway operating via glutamate 

excess and resulting in language production impairment in the early stage of 

schizophrenia as well as a higher residual symptom burden in chronic schizophrenia may 

present with cortical impoverishment in schizophrenia.  

4.1 Future Directions 

The current study validated and characterized a ‘cortical impoverishment’ subgroup of 

schizophrenia in terms of symptom, cognition, functional outcome, language and 

neurometabolite. Further investigations into the genetic makeup and other biological 
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features (e.g., functional brain activities, inflammatory markers), as well as the 

longitudinal outcome and stability of this subgroup, could be of interest for future studies.  

The ultimate goal of finding meaningful patient subtypes is to assist biomarkers-guided 

clinical decisions and improve treatment outcomes for patients. To find the most 

clinically relevant cluster solutions, future studies that pursue the efforts in uncovering 

patients subtypes in schizophrenia can consider the followings: 

1) Extensive external validation to facilitate brain-behaviours mapping across 

various patient samples. To consider a subgroup generated from cluster analytic 

algorithms to be a meaningful subtype, it is important to externally validate the 

clusters extensively across various features including genetics, symptoms, 

outcome, course, neurobiology, and cognition (Seaton et al., 2001; Tamminga et 

al., 2017). Patient subtypes only become clinically meaningful when they are 

validated, reproducible and carefully characterized.  

2) Investigation of the longitudinal outcome and stability of the subgroups. The 

diagnostic construct of schizophrenia lacks corresponding neurobiological 

features observable in all patients. Instead, multiple abnormalities have been 

reported that nest variably within portions of the patient distribution. In this 

context, one of the key questions in the pursuit of subtypes of this illness is the 

longitudinal stability of any typology identified. 

3) Consistency across various cluster solutions. In the investigation of the 

heterogeneity of schizophrenia, the cluster solutions were highly dependent on the 

choice of variables and clustering algorithms (Marquand et al., 2016). A 

challenging but necessary step before biomarkers-guided clinical decisions is to 

compare and evaluate the different subtyping solutions reported in the cluster 

analytic studies. This effort has been lacking in the literature (Schnack, 2019). 

Evaluations of different subtyping solutions will be informative when we need to 

decide which one is the most clinically relevant. The most ideal theoretical 

framework(s) would be to find consistency between these subtyping solutions, as 

well as use it to predict the course and outcome of schizophrenia [see a model for 
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heterogeneity proposed by Seaton et al. (2001)]. The redundancy, agreement, and 

lack thereof among various data-driven subtyping solutions require further 

examination of multiple biological and symptomatic correlates before clinically 

feasible recommendations can be made.   

4) Parsing heterogeneity in multimodal cross-domain features. Most subtyping 

studies so far account for heterogeneity in only one of these characteristics – 

symptom, cognition, neurobiology or genetics. Very few studies have attempted 

to parse heterogeneity across different feature spaces, for example, by combining 

biological and clinical data (Schnack, 2019).  

Luxburg and colleagues raised the question of whether clustering is an art or science, 

highlighting the difficulty with unsupervised clustering as it throws a huge number of 

possibilities regarding how it is administered and what its implications are (Luxburg et 

al., 2012). Cluster algorithms will always provide us with a cluster solution, and whether 

it is deemed useful or useless depends on how and when it can be used for inference. It is 

sensible to conclude the work presented here with the same sentiment: cortical 

impoverishment cluster, if mapped successfully onto treatment selection, adjustment, or 

tailoring, will be immensely helpful in developing personalized patient care and 

advancing precision psychiatry. With such clinically meaningful utility, morphological 

clustering may advance us beyond the impasse in the treatment of schizophrenia. 
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Appendices 

Appendix A. Language Metrics 

Measures Dimensions  Detailed Descriptions  

Thought and 
Language Index  

  

    
Impoverishment 

Poverty of speech  Speech productions lack details and 
elaboration  

 Weakening of goal Lack of ideas and meaningful information 

 Preservation of ideas Repetitive contents, even if given different 
stimuli  

    
Disorganization  

Looseness Lack of logical flow or connection of ideas 

 Peculiar use of words Invented or rarely used words  

 Peculiar sentences Unusual sentence structures that impede 
speech comprehension 

 Peculiar logic Reaching conclusions without enough 
evidence 

 Distractibility Distracted by external stimulus  

Syntactic 
Complexity 
(Production) 

Mean length of 
sentences (MLS) 

Average number of words per sentence.  

     Mean length of T-
units (MLT) 

Average number of words per T-unit. T-
unit is defined as the main clause with its 
attached subordinate clause(s).  

 Mean length of 
clauses (MLC) 

Average number of words per clause.  

Cohesion Repeated contents 
lemmas 

Average number of content words that are 
repeated at least once divided by the total 
number of words in the text 
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Appendix B. Patient Speech Data Examples 

Example output of syntactic complexity. Traditional indices from Tool for the automatic analysis 

of syntactic complexity and sophistication (TAASSC) 

ID 
Pictur

e  
Transcribe speech MeanMLS MeanMLT MeanMLC 

FEPxx

x 
2 

Uh there is a black and white sun seen in 

all the building all the big painted 

building It is wood there is three 

windows there is a girl that is looking 

down from the balcony there is water 

down on the water there is another an 

abandoned building there is a guy in a 

canoe there is lots of workers maybe 

gathering up some fish and that is it that 

is all I can get uh it is black and white 

pencil sketched  

7.417 7.639 6.078 

Example output of Textual cohesion based upon the givenness index. Tool for the Automatic 

Analysis of Cohesion (TAACO) 2.0.4 

ID 
Pictur

e  
Transcribe speech 

Repeated 

contents 

lemmas 

(Givenness) 

Repeated_content_and_

pronoun_lemmas 

(Givenness) 

FEPxx

x 
1 

Um he is looking at an enemy who is 

done wrong to him and she is trying to 

console him they are both of uh decent 

socioeconomic status they have nice 

clothing nicely cropped hair and uh he is 

probably he is probably under the 

influence of alcohol and uh I think he 

like there is something going on 

underneath the surface for him that she 

does not know about but she is still there 

trying to, trying to face things for him 

there is a woman in the background so 

that probably suggests that um I do not 

know 

0.160 0.320 

Note. MLS: mean length of sentences; MLT: mean length of T-units; MLC: mean length 

of clauses. Givenness: It is an average number of content words that are repeated at least 

once divided by the total number of words in the text. 
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Appendix C. Tissue volume fractions in the voxel placed in dorsal anterior cingulate 

cortex. 

 First-episode 
psychosis 
(N = 66) 

Healthy controls 
(N = 36) 

Total 
(N = 102) 

Grey matter 0.5590 ± 0.0620 0.5911 ± 0.0502 0.5701 ± 0.0599 

White matter 0.2041 ± 0.0706 0.1961 ± 0.0379 0.2014 ± 0.0612 

Cerebrospinal 
fluid 

0.2367 ± 0.0740 0.2128 ± 0.0591 0.2285 ± 0.0698 

Note: Values are reported as mean ± standard deviation of tissue proportion in the voxel.  

 

Appendix D. Description of single voxel 1H-MRS of MRS hardware, data 

acquisition, analysis, and quality assessment details. 

1. Hardware  

a. Field strength [T] 7-Tesla 

b. Manufacturer  Siemens 

c. Model (software version if available) VB17 

d. RF coils: nuclei (transmit/receive), number 

of channels, type, body part 

32 channel head coil (8-channel Tx, 

32-channel Rx) 

e. Additional hardware N/A 

2. Acquisition   

a. Pulse sequence  semi-LASER 

b. Volume of Interest (VOI) locations  Bilateral dorsal anterior cingulate 

cortex 

c. Nominal VOI size [cm3, mm3] 2 x 2 x 2 cm3 

d. Repetition Time (TR), Echo Time (TE) 

[ms,s] 

TR = 7500ms, TE = 100ms 

e. Total number of excitations or acquisitions 

per spectrum 

32 averages, 1 measurement 

f. Additional sequence parameters (spectral 

width in Hz, number of spectral points, 

frequency offsets) 

2048 points 

g. Water Suppression Method VAPOR 

h. Shimming Method, reference peak, and 

thresholds for “acceptance of shim” chosen 

FASTESTMAP 

i. Triggering or motion correction method N/A 

3. Data analysis methods and outputs  

a. Analysis software MATLAB, fitMAN, Barstool 
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b. Processing steps deviating from quoted 

reference or product 

N/A 

c. Output measure 

(e.g. absolute concentration, institutional units, 

ratio) 

Absolute concentration 

d. Quantification references and assumptions, 

fitting model assumptions 

 

Each spectrum was phase and 

frequency corrected to the first 

spectral acquisition before being 

averaged into a single spectrum for 

further post-processing. 17 brain 

metabolites (described in Methods) 

were included our fitting template 

and quantification analysis. 

4. Data Quality   

a. Reported variables  

(SNR, Linewidth (with reference peaks)) 

SNR 

b. Data exclusion criteria No subjects excluded 

c. Quality measures of postprocessing Model 

fitting (e.g. CRLB, goodness of fit, SD of 

residual) 

CRLB 

d. Sample Spectrum See Supplementary Figure 4 

Note: This table was based on a MRS reporting standardized template provided by Lin et 

al. (2021) 
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Appendix E. Two different cortical parcellation maps 

 Lateral View Medial View 

Schaefer Parcellation 
ROI = 200 

  
Destrieux Parcellation 
ROI = 148 
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Appendix F. Bash Scripts and R Codes 

Bash script to 
reconstruct brain 
surfaces and calculate 
vertex-wise thickness 
values in FreeSurfer 

#!/usr/bin/env bash 
export SUBJECTS_DIR=/media/sf_subjects/recon 
 
for subj in `ls ./nifti` 
do 
    recon-all -s $subj -i ./nifti/$subj/*.nii -all -qcache 
done 
 

Bash script to extract 
thickness values 
based on Destrieux 
parcellation 
(Destrieux et al., 
2010b) 

# define subjects data directory path 
export SUBJECTS_DIR=/home/charlotte/Desktop/recon 
 
# output stats from recon-all 
aparcstats2table --hemi lh \ 
    --meas thickness \ 
    --parc aparc.a2009s \ 
    --tablefile 211108_lh_thicknes_destrieux.txt \ 
    --subjects  
 
aparcstats2table --hemi rh \ 
    --meas thickness \ 
    --parc aparc.a2009s \ 
    --tablefile 211108_rh_thicknes_destrieux.txt \ 
--subjects  
 

Bash script to output 
cortical thickness map 
of differences 
between two 
subgroups (regressing 
out age effect with a 
general linear model, 
multiple comparison 
corrections using 
Monte Carlo 
simulations of 1000 
permutations with a 
cluster-wise threshold 
of 0.05) 

export SUBJECTS_DIR=/home/charlotte/Desktop/recon 
cat group_diff.fsgd | sed 's/\r/\n/g' > new.group_diff.fsgd 
 
# Resampling subjects data into a common space; spatial 
soothing 
mris_preproc --fsgd new.group_diff.fsgd --target fsaverage --
hemi lh --meas thickness --out lh_group_diff.mgh 
mris_preproc --fsgd new.group_diff.fsgd --target fsaverage --
hemi rh --meas thickness --out rh_group_diff.mgh 
 
# GLM model fit 
mri_glmfit --y lh_group_diff.mgh --fsgd new.group_diff.fsgd --C 
group_diff.mtx --glmdir group.age_10sm.lh --fwhm 10 --surface 
fsaverage lh --eres-save 
mri_glmfit --y rh_group_diff.mgh --fsgd new.group_diff.fsgd --C 
group_diff.mtx --glmdir group.age_10sm.rh --fwhm 10 --surface 
fsaverage rh --eres-save 
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# Multiple testing correction 
mri_glmfit-sim --glmdir group.age_10sm.lh --2spaces --cwp 0.05 
--perm 1000 3 abs 
mri_glmfit-sim --glmdir group.age_10sm.rh --2spaces --cwp 0.05 
--perm 1000 3 abs 
 

R codes to run 
clustering procedure 
and other statistical 
analyses 

#Import dataset generated by FreeSurfer---- 
TOPSY <- read_excel("E:/subjects/Bash 
Scripts/TOPSY_destrieux_thickness_211108_66FEP36HC.xlsx") 
TOPSY_thickness <- as.data.frame(TOPSY[c(37:184)]) 
rownames(TOPSY_thickness) <- TOPSY$ID 
 
# Use original thickness values for clustering ---- 
# Hierarchical Cluster Analysis 
TOPSY_dist <- dist(TOPSY_thickness, method = "euclidean") 
TOPSY_hc_ward <- hclust(TOPSY_dist, method = "ward.D2") 
TOPSY_cluster_solution <- matrix(rep(0, 
len=length(selected)),nrow = length(selected)) 
for (i in 1:length(selected)){ 
  TOPSY_cluster_solution[i,] <- 
unname(NbClust::NbClust(TOPSY_thickness, min.nc=1, 
max.nc=8, method="ward.D2", index=selected[i])$Best.nc)[1] 
} 
barplot(table(TOPSY_cluster_solution), main = "Barplot of 
Proposed Cluster Solutions",xlab="Number of Clusters") 
plot(TOPSY_hc_ward) 
rect.hclust(TOPSY_hc_ward, k = 2) 
TOPSY_2clusters <- cutree(TOPSY_hc_ward, k=2) 
 
# Subgroups Statistics 
TOPSY$cluster = TOPSY_2clusters 
 
# Explore two-cluster solution 
TOPSY_TypeCluster <- 
table(data.frame(TOPSY$Type,TOPSY$cluster)) 
barplot(TOPSY_TypeCluster,xlab="cluster assignment", 
ylab="patient or control", 
        main="Patient & control in each 
cluster",legend=rownames(TOPSY_TypeCluster)) 
chisq.test(TOPSY_TypeCluster) 
write.csv(TOPSY_FEP,"E:/TOPSY/TOPSY_FEP_FULL.csv") 
 
# Use original thickness and clustering with FEP only ---- 
# Hierarchical Cluster Analysis 
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TOPSY_FEP_thickness <- as.data.frame(TOPSY_FEP[c(37:184)]) 
TOPSY_dist <- dist(TOPSY_FEP_thickness, method = "euclidean") 
TOPSY_hc_ward <- hclust(TOPSY_dist, method = "ward.D2") 
TOPSY_cluster_solution <- matrix(rep(0, 
len=length(selected)),nrow = length(selected)) 
for (i in 1:length(selected)){ 
  TOPSY_cluster_solution[i,] <- 
unname(NbClust::NbClust(TOPSY_thickness, min.nc=1, 
max.nc=8, method="ward.D2", index=selected[i])$Best.nc)[1] 
} 
barplot(table(TOPSY_cluster_solution), main = "Barplot of 
Proposed Cluster Solutions",xlab="Number of Clusters") 
plot(TOPSY_hc_ward) 
rect.hclust(TOPSY_hc_ward, k = 2) 
TOPSY_2clusters <- cutree(TOPSY_hc_ward, k=2) 
 
# Subgroups Statistics 
TOPSY_FEP$cluster_FEP = TOPSY_2clusters 
 
# Check cluster consistency  
cluster_consistency_table <- 
table(data.frame(TOPSY_FEP$cluster,TOPSY_FEP$cluster_FEP)) 
barplot(cluster_consistency_table, xlab="x", ylab="y", 
main="Cluster Consistency") 
 

R codes to run 
correlation matrices 
and draw raincloud 
plots 

# Correlations between symptom and language scores ---- 
TOPSY_Language2$MeanThickness <- TOPSY$meanThickness 
CorMatrix <- TOPSY_Language2[,c(3,7:8,18,24,30,40:43,60,62)] 
#variables of all participants 
 
corrplot.mixed(cor(CorMatrix, method = "pearson", use = 
"pairwise.complete.obs")) 
corrplot(cor(CorMatrix, method = "pearson", use = 
"pairwise.complete.obs"),addCoef.col = 'black',type = 
'lower',diag = FALSE) 
 
CorMatrix_FEP <- subset(TOPSY_Language2, Type 
=="FEP")[,c(3,7:8,18,24,30,40:43,60,62)] #variables of FEP only 
colnames(CorMatrix_FEP) = c("Age", "PANSS Positive", "PANSS 
Negative","SOFAS","Glutamate","TLI","Number of Words", 
                            "MLS","MLT","MLC","Repeated content 
lemmas", "Mean Cortical Thickness") 
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corrplot(cor(CorMatrix_FEP, method = "pearson", use = 
"pairwise.complete.obs"),addCoef.col = 'black',type = 
'lower',diag = FALSE,tl.srt = 30) 
 
CorMatrix_FEP1 <- subset(subset(TOPSY_Language2, Type 
=="FEP"),cluster==1)[c(3,7:8,18,24,30,40:43,60,62)] #variables 
of FEP1 only 
colnames(CorMatrix_FEP1) = c("Age", "PANSS Positive", "PANSS 
Negative","SOFAS","Glutamate","TLI","Number of Words", 
                             "MLS","MLT","MLC","Repeated content 
lemmas", "Mean Cortical Thickness") 
corrplot(cor(CorMatrix_FEP1, method = "pearson", use = 
"pairwise.complete.obs"),addCoef.col = 'black',type = 
'lower',diag = FALSE,tl.srt = 30) 
 
CorMatrix_FEP2 <- subset(subset(TOPSY_Language2, Type 
=="FEP"),cluster==2)[c(3,7:8,18,24,30,40:43,60,62)] #variables 
of FEP2 only 
colnames(CorMatrix_FEP2) = c("Age", "PANSS Positive", "PANSS 
Negative","SOFAS","Glutamate","TLI","Number of Words", 
                             "MLS","MLT","MLC","Repeated content 
lemmas", "Mean Cortical Thickness") 
corrplot(cor(CorMatrix_FEP2, method = "pearson", use = 
"pairwise.complete.obs"),addCoef.col = 'black',type = 
'lower',diag = FALSE,tl.srt = 30) 
 
CorMatrix_HC <- subset(TOPSY_Language2, Type 
=="HC")[c(3,24,30,40:43,60,62)] #variables of HC only 
colnames(CorMatrix_HC) = c("Age", "Glutamate","TLI","Number 
of Words", 
                             "MLS","MLT","MLC","Repeated content 
lemmas", "Mean Cortical Thickness") 
corrplot(cor(CorMatrix_HC, method = "pearson", use = 
"pairwise.complete.obs"),addCoef.col = 'black',type = 
'lower',diag = FALSE,tl.srt = 30) 
 
# Raincloud plots for variables ---- 
remotes::install_github('jorvlan/raincloudplots') 
library(raincloudplots) 
 
#Define plotting raincloud plot function 
Plot_raincloud <- function(variable){ 
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  variable_rain <- data_1x1(array_1 = 
subset(subset(TOPSY_Language2, 
cluster==1),Type=="FEP")[[variable]], 
                            array_2 = subset(subset(TOPSY_Language2, 
cluster==2),Type=="FEP")[[variable]], 
                            jit_distance = 0.2, 
                            jit_seed = 321) 
  variable_raincloud <- raincloud_1x1(data=variable_rain, 
                                      #colors = (c('dodgerblue','darkorange')),  
                                      #fills = (c('dodgerblue','darkorange')),  
                                      size = 1.5,  
                                      alpha = .6,  
                                      ort = 'h') + 
    scale_x_continuous(breaks=c(1,2), labels=c("Subgroup 1", 
"Subgroup 2"), limits=c(0, 3)) + 
    xlab("Patients") + 
    theme_classic() 
  return(variable_raincloud) 
} 
 
#Glutamate raincloud 
Glu_raincloud <- Plot_raincloud(variable = "Rest_Glu") 
Glu_raincloud + ylab("Glutamate Concentrations in dACC") 
#Thickness raincloud 
Thickness_raincloud <- Plot_raincloud(variable = 
"MeanThickness") 
Thickness_raincloud + ylab("Mean Cortical Thickness") 
#Age raincloud 
Age_raincloud <- Plot_raincloud(variable = "Age") 
Age_raincloud + ylab("Age") 
#MLT raincloud 
MLT_raincloud <- Plot_raincloud(variable = "Mean-MLT") 
MLT_raincloud + ylab("Mean length of T-units") 
#repeated contents lemmas raincloud 
RCL_raincloud <- Plot_raincloud(variable = 
"repeated_content_lemmas") 
RCL_raincloud + ylab("Repeated contents lemmas") 
#total words raincloud 
words_raincloud <- Plot_raincloud(variable = "Mean-nwords") 
words_raincloud + ylab("Total number of words per 1-minute 
task") 
#DUP&DDD distribution 
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ggplot(TOPSY_Language2_patient, aes(x=DUP_Weeks, fill = 
cluster)) + geom_density(alpha=.3) + xlim(0,120) + 
xlab("Duration of untreated psychosis in weeks") 
ggplot(TOPSY_Language2_patient, aes(x=DDD_LifeTime, colour 
= cluster)) + geom_density() + xlim(0,25) + xlab("DDD lifetime 
exposure") 

 

Appendix G. Journal Copyright Policies 

 

Note: This screenshot is obtained from the Frontiers webpage on their journal policies on 

reusing text from published manuscript (https://www.frontiersin.org/guidelines/policies-

and-publication-ethics).   

 

https://www.frontiersin.org/guidelines/policies-and-publication-ethics
https://www.frontiersin.org/guidelines/policies-and-publication-ethics
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Note: This screenshot is obtained from the Elsevier (publisher for Schizophrenia 

Research) webpage on their journal policies on reusing text from published manuscript 

(https://www.elsevier.com/about/policies/copyright).  

 

  

https://www.elsevier.com/about/policies/copyright
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