
Western University Western University 

Scholarship@Western Scholarship@Western 

2022 Undergraduate Awards The Undergraduate Awards 

2022 

Automatic detection of dysplasia on digitized head and neck Automatic detection of dysplasia on digitized head and neck 

pathology slides using convolutional neural networks pathology slides using convolutional neural networks 

Rory Gilliland 
Western University 

Follow this and additional works at: https://ir.lib.uwo.ca/undergradawards_2022 

Citation of this paper: Citation of this paper: 
Gilliland, Rory, "Automatic detection of dysplasia on digitized head and neck pathology slides using 
convolutional neural networks" (2022). 2022 Undergraduate Awards. 8. 
https://ir.lib.uwo.ca/undergradawards_2022/8 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/undergradawards_2022
https://ir.lib.uwo.ca/ungradawards
https://ir.lib.uwo.ca/undergradawards_2022?utm_source=ir.lib.uwo.ca%2Fundergradawards_2022%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/undergradawards_2022/8?utm_source=ir.lib.uwo.ca%2Fundergradawards_2022%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages


 i 

 

Automatic detection of dysplasia on digitized head 

and neck pathology slides using convolutional 

neural networks 
 

 

 

Rory Gilliland 

Western University, Honours Specialization in Medical Biophysics  

Baines Imaging Research Laboratory 

 

 

 

Supervisors: 

 

Dr. Aaron D. Ward 

Western University 

Baines Imaging Research Laboratory 

 

Dr. Matthew Cecchini 

Western University 

London Health Sciences Centre 

 

Salma Dammak 

Western University 

Baines Imaging Research Laboratory 

 

 

 

 

 



 

 i 

Abstract 

 

Introduction: Head and neck squamous cell carcinoma (HNSCC) is primarily treated with 

surgery. This surgery is guided by a pathologist, who intraoperatively scans removed tissue for 

cancer and dysplasia (precancerous epithelial tissue). Dysplasia is sometimes not removed because 

it can be difficult to detect. This may result in HNSCC recurrence, so there is great need to detect 

dysplasia more accurately. Machine learning (ML; the use of algorithms to train mathematical 

models) has been successfully applied to other medical detection problems, making it an attractive 

approach for this task. In this study, we aim to build and evaluate a convolutional neural network 

(CNN; a type of ML model) -based tool to detect dysplasia on HNSCC pathology slides.   

Methods: Pathologist-contoured digitized frozen section slides from seventeen HNSCC surgeries 

were preprocessed and tiled in MATLAB and the Groovy programming language. In Python, the 

slides were used to train, validate, and optimize a VGG16 CNN in a transfer learning approach. 

Model testing was reserved for future work. The tool was evaluated with quantitative performance 

metrics and binary heatmaps integrated into the digital pathology tool, QuPath.  

Results: The model’s accuracy, sensitivity, specificity, and positive predictive value (PPV) in 

validation were 83%, 74%, 83%, and 1.3%, respectively. Validation area under the curve (AUC) 

was 0.84. Qualitative comparison of the validation heatmaps with corresponding pathologist 

annotations revealed correct detection of most dysplasia but abundant false positive detection of 

nondysplastic epithelial tissue.  

Conclusions: Low PPV and frequent false positives on the heatmaps suggest that the current tool 

struggles to discriminate between dysplasia and normal tissue, making it inappropriate for clinical 
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use. The poor model performance may be explained by model limitations, small tile size, and 

substantial class imbalance. Encouragingly, much of the nondysplastic epithelium classified by the 

tool as dysplastic had some dysplasia-like characteristics, suggesting that the model identifies 

some pathologically meaningful features. Future work may seek to improve model performance 

by applying a precursor model to screen out non-epithelial cells, thereby rebalancing the classes. 

This work represents the first steps towards building a novel ML-based model to detect dysplasia 

on HNSCC surgery slides. If a model of this type can be improved, it could be used by pathologists 

to detect dysplasia more easily and accurately during HNSCC surgery, which would in turn 

increase the efficacy of this treatment. 
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1 INTRODUCTION 

 

1.1 Head and Neck Cancer 

Head and neck squamous cell carcinoma (HNSCC) has been identified as the sixth most 

common type of cancer in the world1. In 2020, approximately 55,000 new diagnoses and 11,000 

deaths were reported in the United States alone2. This form of cancer originates in the epithelial 

lining of the mouth, throat, or upper respiratory tract1,3. In this disease, normal epithelial cells 

progress through dysplasia (increased cell count and abnormal cell presence) and then invasive 

carcinoma (Fig. 1)1. Because of its anatomical localization, HNSCC often presents with 

particularly intrusive symptoms such as non-healing mouth sores, ear pain, and difficulty chewing 

and swallowing1.  

During treatment of HNSCC, it is particularly important to balance curative effect with 

function preservation due to the delicate nature of structures in the head and neck. Radiation 

therapy, chemotherapy, surgical resection, and combinations thereof have all been used 

successfully to strike this balance4. However, developments in minimally invasive resection 

techniques are broadening the potential for using surgery as the primary treatment1.  

Surgical resection of HNSCC needs to be extremely precise. All cancerous tissue must be 

removed to prevent re-establishment of the disease, while minimal healthy tissue should be 

removed to preserve function. To achieve this precision, a pathologist intraoperatively examines 

the outside edge – or the margin (Fig. 2) – of resected tissue for the presence of cancerous cells 

via frozen section (FS; a method of quickly cooling tissue for microscopic analysis). If cancerous 

cells are identified in the margins of removed tissue, it is likely that additional cancerous cells 
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remain in the surgical site. In this case, surgery and intraoperative FS will continue until the 

margins of resected tissue are cancer-free5–7. This procedure is designed to maximize the resected 

cancerous tissue while minimizing the removal of healthy tissue.  

 

Figure 1. Examples of (A) normal epithelium, (B) dysplasia, and (C) invasive HNSCC. 
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Figure 2. Illustrations of (A) a negative surgical margin and (B) a positive surgical margin. Note 

that in (B), the margin is positive because there are cancerous cells present at the outer edge of the 

resected tissue. A pathologist examines HNSCC surgical margins to determine if all cancer has 

been removed. A positive margin indicates that more cancer remains in the patient, and in this 

case, the surgeon must continue to remove tissue until a negative margin is achieved. Illustration 

adapted from Lee et al. (2012)8 under the article’s Creative Commons License 

(https://creativecommons.org/licenses/by-nc/3.0/).  

 

1.2 Challenges in the HNSCC Resection Procedure 

The pathologist’s role in the HNSCC resection procedure is extremely important. Failing 

to correctly identify disease in resected tissue margins is strongly associated with recurrence and 

mortality7,9,10. However, two factors complicate the pathologist’s job.  

First, the assessment of resected tissue margins must be performed quickly to minimize the 

time the patient spends in the operating room. It has been shown that longer surgical procedures 

tend to result in a higher frequency of complications such as infection11. This time constraint 

https://creativecommons.org/licenses/by-nc/3.0/
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combined with the demand for accurate classifications can place considerable stress on the 

pathologist6. 

The second complication for the pathologist is identifying dysplastic tissue. Dysplasia is 

an intermediate state between normal epithelium and invasive carcinoma1,12. It is a known risk 

factor for the development of invasive carcinoma, and its presence in the margin of a resection 

may be a predictor of local recurrence1,12–15. Thus, HNSCC resection procedures must aim to 

remove all cancerous and dysplastic tissue. Unfortunately, dysplastic cells can be difficult to 

identify. The differences between dysplastic and normal cells – especially normal cells which are 

inflamed or physically stressed – can be slight. This can make recognition challenging, especially 

for pathologists who are not specialized in HNSCC16. On top of this, the grading of dysplasia 

severity (which informs whether the tissue needs to be removed) is subject to substantial intra- and 

inter-observer variability17. 

Time constraints and dysplastic tissue identification are significant difficulties for 

pathologists assisting in HNSCC resection procedures. These challenges, as well as the lack of 

solutions to them in the literature, are the motivation for this study. There is a need for developing 

methods to help pathologists detect dysplastic cells on FS slides quickly and accurately. This 

would (1) minimize the amount of healthy tissue removed, (2) maximize the amount of cancerous 

and dysplastic tissue removed, and (3) reduce the duration of the operation. We aim to leverage 

recent advancements in digital pathology and machine learning to assist in this detection task.  
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1.3 Digital Pathology  

Digital pathology uses imaging technology to view and analyze pathology slides on 

computers. Glass pathology slides are digitized by scanning them with a camera onto a computer 

in small tiles, which are then stitched together into whole slide images. Its popularization in the 

last two decades has fundamentally modernized clinical pathology. Digitized slides can be shared 

across multiple clinics for consultation, vast amounts of pathological data can be stored efficiently, 

and everyday pathology can be performed remotely18. Perhaps the most interesting opportunity 

afforded by digital pathology is the application of artificial intelligence. Digitization allows for 

quantitative analysis, and data can be extracted and used to build machine learning (ML) models18–

20. 

 

1.4 Machine Learning 

ML is a subfield of artificial intelligence that uses algorithms to train models to perform 

tasks based on input data. In the supervised approach to ML, many samples of features (input data) 

and their corresponding labels (desired output data) are presented to the model. During the training 

process, the model is tuned to recognize patterns in the features that are associated with the labels. 

When the trained model is subsequently presented with unlabeled features of new samples, it 

attempts to predict the label on its own based on the previously learned patterns21. The applications 

of ML are nearly limitless. Its use in the field of medicine has facilitated early prediction of 

diabetes mellitus, automatic detection of intracranial hemorrhages, and prediction of recurrence in 

non-small cell lung cancer22–24.  
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The building of ML models can generally be split into three steps. The first step is data 

preparation, which involves the collection of features and labels for many samples of data. Features 

are chosen and input based on knowledge of factors that may have some predictive value for the 

label21,25. For example, to build a classical ML model to predict the diabetes status of a patient (the 

label), it might be valuable to use blood sugar concentration as a feature. Feature selection is then 

used to systematically limit the final number of features given to the model based on their 

predictive value. This is usually performed to simplify the model or avoid overfitting21,26. 

The second step in building ML models is training the algorithm. Training is performed on 

a distinct subset of the full dataset, called the training data. This subset is kept separate from the 

testing data21. During training, the algorithm is fit to the features and labels of the training data. A 

third subset of data, called validation data, is sometimes used after training to choose from a set of 

possible models or hyperparameter (pre-set values that change the behaviour of the model) 

combinations being considered for the task21. 

The final step in building a ML model is testing the model using the testing data. This step 

is designed to evaluate the model’s performance on unseen data, as would be expected in a real-

life application21. The model is given only the features of the testing data and must predict the 

labels itself. The predicted labels can then be compared to the actual labels of the testing data to 

calculate performance metrics. For a classification task, several performance metrics exist, such 

as accuracy, sensitivity, specificity, positive predictive value (PPV), and area under the receiver 

operating characteristic curve (AUC). An in-depth description of these metrics is given by 

Fawcett27.  

The choice of algorithm used in the model is worth some discussion. Many kinds of 

algorithms exist, and they vary drastically in both complexity and the types of problems they are 
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best suited for. Classical algorithms such as linear regression, support vector machines, and 

decision trees tend to be simpler21,28,29. They are therefore computationally cheap and better suited 

for smaller datasets. Deep learning algorithms, on the other hand, tend to be much more complex 

and computationally expensive. However, these algorithms are capable of handling complex 

problems with large datasets, and indeed they have consistently performed well on other digital 

pathology problems30. This strong performance makes deep learning algorithms particularly 

attractive as candidates to help pathologists detect dysplasia on digitized HNSCC FS slides21. 

 

1.5 Deep Learning  

Deep learning is a subset of ML that has gained attention in the last two decades. Neural 

networks, the model type used in deep learning, feeds input data through networks of 

interconnected artificial neurons to make predictions. Each artificial neuron operates on input data 

(𝑥𝑖) using certain weight values (𝑤𝑖), a bias value (𝑏), and an activation function (𝜎) to produce 

an output (𝑦): 

𝑦 = 𝜎 (∑𝑥𝑖𝑤𝑖

𝑛−1

𝑖=0

+ 𝑏) 

The output of each artificial neuron then becomes an input for other artificial neurons in 

the network until the last neuron(s) produce the final output of the model. Training neural networks 

involves iteratively adjusting the weights and biases of the network’s neurons to emphasize or 

mute certain patterns in the input data that are associated with the labels21. The operation and 

training of these algorithms is dictated by several hyperparameters, such as learning rate, batch 

size, and epoch number31–33.  
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A convolutional neural network (CNNs) is a type of neural network that can be applied 

directly to images. Each pixel of an image is an input into the algorithm, and the network of 

neurons works to discern the spatial relationships between pixels that are associated with the labels. 

CNNs use special convolution and pooling layers to extract this spatial information21. A common 

logistical practice in building CNN models is tiling, wherein large images are divided into small 

tiles a few hundred pixels across34. This allows for the adaptation of CNN models to problems 

where the input image size would otherwise be too large to load in random access memory, as is 

often the case in digital pathology. 

Full-scale CNNs can take a great deal of computational power and time to train. One 

successful CNN model designed by the Visual Geometry Group at the University of Oxford, 

VGG16, took more than two weeks to train35. A common approach to reduce computation time is 

to use transfer learning, wherein existing successful CNNs are applied to new problems. In this 

approach, only the last few layers of pre-trained algorithms like VGG16 need to be retrained on 

the new data. Transfer learning leverages the success of well-trained models without the 

computational expense of training them from scratch32,36.  

Deep learning models are largely built in the same way as classical ML models: the 

algorithm is trained and validated to fine-tune the model before testing it and measuring 

performance. One key difference between deep learning and classical ML is the handling of 

features. Where classical ML requires predefined features, deep learning algorithms use raw data 

as input. The deep learning algorithm is free to decide what raw input data to use and how to use 

it21. This allows CNNs to identify visual patterns that may not be obvious to the human eye. This 

can be an important advantage of using CNNs over classical ML algorithms for visual tasks.  
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CNNs such as VGG16 have been successfully applied to numerous medical detection 

tasks37,38. This history of success and the key theoretical advantages of CNNs over classical ML 

algorithms are what motivate the use of CNNs in the present study. We aim to build a CNN-based 

tool to assist pathologists in HNSCC resection procedures. We hypothesize that a CNN-based tool 

can be developed to automatically detect dysplastic cells on digitized HNSCC FS slides. Such a 

tool could assist pathologists in differentiating dysplastic and normal tissue during HNSCC 

resection procedures. This could lead to faster and more accurate decisions by the pathologist, and 

ultimately more successful HNSCC resection operations. CNNs have previously been used to 

detect HNSCC on digital pathology slides39, but to our knowledge, this research has not been 

extended to the more difficult task of detecting dysplasia on digitized HNSCC FS slides. 

Our primary objective is to build this tool and evaluate if CNNs are appropriate for this 

task. We plan to gather pathologist annotated digitized HNSCC FS slides, perform tiling on these 

slides, and split the tiles into training, testing, and validation datasets. Using MATLAB R2020B 

(The MathWorks, Natick, MA) and Python 3.7 (Centrum voor Wiskunde en Informatica, 

Amsterdam), we will train and validate a VGG16 CNN classifier model using transfer learning. 

Finally, we aim to assemble the CNN’s predictions into whole-slide binary heatmaps based on the 

model’s predictions of dysplasia presence. These heatmaps will be callable from the popular open-

source digital pathology tool, QuPath, for pathologist visualization40. Our secondary objective is 

to collaborate with a pathologist to identify opportunities to improve the tool.   
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2 METHODS 

 

2.1 Data Preparation 

FS slides from 17 anonymized HNSCC resection patients between 2018 and 2021 were 

collected from the pathology archives at the London Health Sciences Centre. Examination for 

dysplasia was reported by Dr. Christopher Tran, who was a surgical pathology fellow at the time. 

The accompanying pathology reports were used to identify the slide HNSCC content. Slides 

contained either (1) dysplasia, (2) invasive HNSCC, (3) both dysplasia and invasive HNSCC, or 

(4) neither (the negative case). A total of 258 slides were collected for these patients. Slides were 

digitized using an Aperio AT slide scanner at a pixel-level resolution of 0.4961μm. Those 

containing dysplasia were contoured by Dr. Tran in QuPath and confirmed by a board-certified 

pathologist, Dr. Matthew Cecchini. A sample of the pathologist-contoured digital slides is 

available in Fig. 3. 

Slides were then divided into 224 x 224 pixel (111 x 111 μm) nonoverlapping tiles using 

the Groovy programming language41. Tiles were screened in MATLAB for tissue content using 

thresholding: tiles which had (1) over 85% of their pixels exceeding an intensity value of 232 and 

(2) a pixel intensity variance exceeding 148 were kept and used as data for building the ML model. 

These criteria were determined by inspection of 20 representative tiles from the training dataset. 

A total of 673,344 tiles met these criteria. A sample of these tiles is available in Fig. 4. Tiles were 

then labeled as dysplastic if the tile contained any amount of dysplasia based on the pathologist 

contours. All other tiles were labeled as nondysplastic. 
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Figure 3. A sample digitized HNSCC surgery FS slide with pathologist-contoured dysplasia 

shown in yellow.  

 

 

 

 

 

 =  Pathologist Contour 
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Figure 4. A sample of 224 x 224 pixel tiles taken from digitized HNSCC surgery FS slides. Tiles 

C, D, E, and H contain dysplasia; tiles A, B, and G contain subepithelial connective tissue; and tile 

F contains superficial nondysplastic epithelium.  

 

The tiles were manually split by patient into training, testing, and validation datasets, 

targeting approximately a 50/25/25 split and similar proportions of dysplastic tiles. A breakdown 

of tiles from each patient is included in Table 1, and the resulting composition of each dataset is 

summarized in Table 2. One patient’s tiles included over 75% of the full dataset’s dysplastic tiles; 

this patient was assigned to the training dataset. 

 

 

A. 

F. 

C. B. 

F. H. 

D. 

G. E. 

C. 
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Table 1. A breakdown of the post-screening total slide count, total tile count, and positive tile 

count for each patient. Note that slides from patient 3591737 contain most of the full dataset’s 

positive tiles.  

Patient 

Anonymized ID 

Total Slides Total Tiles Positive Tiles 

3496325 15 89,208 973 

3504266 18 67,753 0 

3507259 11 20,458 0 

3587371 18 71,153 0 

3591737 15 95,871 6,375 

8335486 15 131,629 640 

835092 12 19,143 183 

835537 7 21,337 0 

839362 9 7,812 13 

8707630 11 10,966 42 

8717228 8 43,961 0 

871765 11 21,125 209 

8719032 2 7,126 42 

87314 3 11,812 0 

8786897 1 1,793 0 

8787119 13 20,276 0 

8788542 14 31,921 0 
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Table 2. A summary of the training, validation, and testing datasets following manual splitting of 

the tiles by patient. Split refers to the percentage of all tiles apportioned to a dataset, and percentage 

positive is the fraction of tiles in a dataset that contain dysplasia. Observe that the training dataset 

has a substantially higher percentage positive than validation or testing because it includes a patient 

that over 75% of the positive tiles came from.  

Dataset Total Slides Total Tiles 
Positive 

Tiles 
Split (%) 

Percentage 

Positive (%) 

Training 93 376,182 7,348 55.87 1.95 

Validation 63 145,909 476 21.67 0.33 

Testing 27 151,253 653 22.46 0.43 

 

 

2.2 Training and Validation 

The VGG16 CNN model was trained for this problem with a transfer learning approach. 

Only the last layer of neurons in this pre-trained CNN were allowed to be trained. The training and 

validation datasets were used to train and validate the algorithm using in-house scripts in 

MATLAB and Python (Appendix A). The algorithm’s output predictions on validation data (as 

confidence levels of dysplasia presence) were then compared to the actual validation labels to 

quantitatively assess validation performance. A receiver operating characteristic (ROC) curve was 

plotted for the validation dataset, and AUC was calculated. Accuracy, sensitivity, specificity, and 

PPV of the model on this dataset was calculated at the threshold producing the point on the ROC 

curve closest to the top left corner. Accuracy, sensitivity, specificity, and PPV were also calculated 

on a per-slide basis using the same threshold.  
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2.3 Model Optimization and Testing 

The algorithm was alternately trained and validated several more times to search for the 

optimal training parameters. Validation performance metrics were calculated as described above 

after each validation. Performance on each validation was used to systematically adjust the model 

for subsequent runs, with the goal of optimizing validation AUC and accuracy. Adjustments were 

made to algorithm hyperparameters, which include learning rate, epochs, and batch size. In 

general, these hyperparameters were optimized one at a time, with batch size optimized first, 

epochs second, and learning rate last. The hyperparameter values attempted were 50, 100, 200, 

300, and 400 for batch size; 1, 2, and 3 for epochs; and 0.001, 0.002, 0.01, and 0.02 for learning 

rate.  

Once the model with the best performing combination of hyperparameters was identified, 

bootstrapping was used to resample the model confidences on the validation tiles 1,000 times. The 

AUC was calculated for each resampled validation dataset, and a Wilcoxon signed rank test was 

used to compare these AUCs to 0.50 (the AUC of a random guess). A p-value of less than 0.05 

was considered statistically significant. Additionally, the performance of the final model its 

performance on the validation dataset was visualized by comparing binary heatmaps (see section 

2.4) for each validation slide to pathologist contours of dysplasia.  

Testing of the model on the unseen testing dataset was reserved for future work that may 

achieve sufficiently strong validation performance.  
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2.4 Output Visualization in QuPath 

A binary heatmap of the model’s dysplasia detection for a slide was produced by mapping 

the model’s tile predictions to their corresponding locations on the slide. Tiles on each slide 

predicted to be dysplastic by the model were represented by small square annotations on top of the 

slide display in QuPath. The Groovy programming language was used to create the heatmaps. 

Binary heatmaps were produced for the final model’s predictions on the validation dataset as well 

as the testing dataset. Model performance on the validation and testing datasets was assessed 

qualitatively by comparing the binary heatmaps to the pathologist’s dysplasia contours on each 

slide in QuPath.   

 

2.5 Epithelium-Only Exploratory Experiment 

 Trends in the types of tissues classified correctly or incorrectly by the model were 

identified in collaboration with Dr. Cecchini. Based on observed patterns, the general study design 

described up to this point was re-applied to only the epithelial tissue on a small subset of the 

collected FS HNSCC resection slides.  

For this exploratory experiment , a set of 11 slides was randomly selected from the training 

and validation datasets. Epithelium was manually contoured on these slides by the author, and 224 

x 224 pixel (111 x 111 μm) tiles containing any of the epithelium contour were extracted as 

described in Section 2.1. Screening of the tiles for tissue content was not performed. Resulting 

tiles that contained any pathologist-contoured dysplasia were labeled as dysplastic, while all other 

tiles were labeled nondysplastic. Tiles were split by patient into training and validation datasets 

using the approach described in Section 2.1. The breakdown of the epithelium-containing tiles 
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from each patient included in this exploratory experiment is detailed in Table 3, and the resulting 

composition of each dataset is presented in Table 4.  

Training, validation, optimization, and performance assessment of the VGG16 CNN was 

then performed for this exploratory experiment as described in Sections 2.2, 2.3, and 2.4. Testing 

was not performed on the final model from this experiment.  

 

Table 3. A breakdown of the slide count, total tile count, and positive tile count for each patient 

from the epithelium-only exploratory experiment.  

Patient 

Anonymized ID 

Total Slides Total Tiles Positive Tiles 

3496325 2 443 171 

3504266 1 821 0 

3591737 3 1,653 308 

835537 1 885 0 

8707630 1 134 46 

871765 1 191 0 

8719032 1 315 43 

8788542 1 386 0 
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Table 4. A summary of the training and validation datasets following manual splitting of the tiles 

by patient for the epithelium-only exploratory experiment. Split refers to the percentage of all tiles 

apportioned to a dataset, and percentage positive is the fraction of tiles in a dataset that contain 

dysplasia. Note the larger percentages positive in this exploratory experiment compared to those 

in Table 2. 

Dataset Total Slides Total Tiles 
Positive 

Tiles 
Split (%) 

Percentage 

Positive (%) 

Training 6 3,493 354 72.35 10.14 

Validation 5 1,335 214 27.65 16.03 

 

 

 

3 RESULTS 

 

3.1 Quantitative Validation Performance  

 The batch size, epochs, and learning rate values that resulted in the best model validation 

performance are 300, 1, and 0.002, respectively. The accuracy, sensitivity, and specificity of this 

model on the whole validation dataset are 83%, 74%, and 83%, respectively. Notably, the model’s 

PPV on this dataset is relatively low at 1.4%, meaning that only around 1 in 100 tiles predicted to 

be positive by the model truly contained dysplasia. Fig. 5 presents the model’s ROC curve for the 

validation dataset. The model’s AUC for this dataset is 0.84. The mean AUC for the 1,000 

bootstrapped validation datasets is 0.84. This value is significantly different from the theoretical 
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AUC of 0.50 that represents random guesses by a Wilcoxon signed rank test with alpha=0.05 

(p<0.0001). 

Histograms of the model’s validation accuracy, sensitivity, specificity, and PPV by slide 

are reported in Fig. 6. In general, the performance metrics on the slide level are similar in trend to 

those on the whole dataset: PPV is low, while accuracy, sensitivity, and specificity are relatively 

high. Two exceptions are the validation slides 835092 A1FS 1 and 871765 C1FS 1, on both of 

which the model has PPV values above 0.75 (note the outliers in Fig. 6d).  

 

 

Figure 5. The ROC curve and AUC of the final model on the entire validation dataset. The dashed 

black line corresponds to the ROC curve of a random guess.   
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Figure 6. Frequency histograms of the final model’s accuracy (A), sensitivity (B), specificity (C), 

and PPV (D) on each validation slide. Only six slides are represented in B, as only this number of 

validation slides contained dysplasia.  

 

3.2 Qualitative Validation Performance 

 Figs. 7 and 8 present the heatmaps and pathologist contours for two slides representative 

of the model’s validation performance. In general, the validation slide heatmaps reveal that most 

regions of dysplasia are detected by the model. However, the model also produces substantial false 
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positive detection, which varies in amount from a few dozen tiles to nearly entire slices of tissue. 

Considerable false positive detection tends to occur whether dysplasia is present on the slide or 

not. However, on slides where dysplasia is present, the area of the slide covered by the model’s 

positive detections is often much larger than the dysplasia contour.  

 

 

Figure 7. A sample HNSCC FS slide from the validation dataset.  
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Figure 8. A sample HNSCC FS slide from the validation dataset. Note that this slide contains no 

pathologist-contoured dysplasia. 

 

A collection of validation tiles exemplifying tissue on which the model produced true 

positives, true negatives, false positives, and false negatives is given in Fig. 9. Most false positives 

produced by the model are on nondysplastic epithelial tissue (Fig. 9b). Epithelial tissue on which 

the model produced false positive detection tends to be darker in colour, less organized in cell 

arrangement, and more densely packed with cells. Other false positive detections by the model 

sometimes involves neutrophil-infiltration (Fig. 9b). Dysplastic tiles that are not detected by the 

model (false negative tiles) tend to contain white regions (Fig. 9c). Nondysplastic tissue types that 

are usually classified correctly by the model include stroma and muscle (Fig. 9d).  
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Figure 9. A collection of validation tiles representing tissue types on which the final model tended 

to produce true positives (row A), false positives (row B), false negatives (row C), and true 

negatives (row D). Tiles B-I and B-II contain nondysplastic epithelial tissue, tile B-III contains 

neutrophil-infiltrated stroma, and tile B-IV contains stroma. Tiles D-I and D-II contain stroma, tile 

D-III contains muscle tissue, and tile D-IV contains epithelial tissue. Tiles in rows A and C contain 

dysplasia.  

A. 

D. 

C. 

B. 

I II III IV 



 

 24 

The heatmaps and pathologist contours for the two slides on which the model achieved 

notably high PPV values (835092 A1FS 1 and 871765 C1FS 1) are presented in Figs. 10 and 11. 

The model identifies nearly all the epithelial tissue in these slides as dysplastic, and most of the 

non-epithelial tissue as nondysplastic. Unlike most other slides, though, most of the epithelial cells 

on these slides are dysplastic. Non-epithelial tissue on these slides tends to be tissue that is visually 

distinct from epithelium, such as stroma.  

 

 

Figure 10. Slide 871765 C1FS 1, one of two slides on which the model produced a PPV greater 

than 0.75 (PPV=0.85 for this slide). Observe that nearly all epithelial tissue present is dysplastic.  
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Figure 11. Slide 835092 A1FS 1, one of two slides on which the model produced a PPV greater 

than 0.75 (PPV=0.76 for this slide). Observe that nearly all epithelial tissue present is dysplastic. 

 

3.3 Epithelium-Only Exploratory Experiment 

 Batch size, epochs, and learning rate values of 300, 2, and 0.002 (respectively) resulted in 

the best model validation performance in detecting dysplasia on the epithelium-containing tiles. 

Accuracy, sensitivity, and specificity of this model on the validation dataset are 84%, 86%, and 

84%, respectively. The PPV of the model is 48%. Fig. 12 presents the model’s ROC curve for the 
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validation dataset of this exploratory experiment. The model’s AUC for this dataset is 0.92. The 

model’s heatmap, the pathologist-contoured dysplasia, and the epithelium contour for a sample 

validation slide is presented in Fig. 13a. 

 

 

Figure 12. The ROC curve and AUC of the model on the validation dataset from the epithelium-

only exploratory experiment. The dashed black line corresponds to the ROC curve of a random 

guess.   
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Figure 13. A sample validation HNSCC FS slide with the model predictions. The model was 

trained and validated on (A) epithelium-containing tiles only or (B) all tiles. Observe that the 

epithelium-only model correctly identified most of the top-left portion of the tissue slice (black 

arrow on A) as nondysplastic, while the original model incorrectly classified most of it as 

dysplastic. Also note the tissue folding artifact (blue arrow on A), on which the original model 

produced several false positive predictions.  

 

 

 

 

 

= Dysplasia Contour 

= Model Prediction 

= Epithelium Contour 

= Dysplasia Contour 

= Model Prediction 
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4 DISCUSSION 

 

4.1 Overall Performance 

 In this study, we investigated the use of a CNN-based tool to detect dysplasia on HNSCC 

resection FS slides. We found that such a tool had relatively high validation AUC, accuracy, 

sensitivity, and specificity. High values in these metrics are usually an indication that an ML model 

is performing well. However, when one notes the very poor validation PPV, it becomes clear that 

this is not necessarily the case. PPV is a measurement of how likely a model’s positive prediction 

is to be truly positive. Our model’s low validation PPV suggests that the tiles identified by the 

model as dysplastic are only rarely dysplastic in reality. Visualization of the model’s binary 

heatmaps confirms this finding: on most validation slides, false positives produced by the model 

cover large areas of the tissue, effectively ‘drowning out’ any true positive detections. 

 This critical flaw means that the tool, in its current state, is not appropriate for use by a 

pathologist assisting in HNSCC resections. Ideally, this tool would detect potential regions of 

dysplasia for a pathologist to manually review. In this way, it would ‘narrow down’ the slide so 

that, instead of scanning the entire slide manually, the pathologist could analyze high-probability 

areas more carefully. This could allow the pathologist to make quicker and more accurate decisions 

about the slide’s dysplasia content. In this context, the tool does not need to distinguish dysplasia 

from nondysplasia with perfect accuracy. However, for the tool to make a tangible difference in 

how quickly and accurately a pathologist can analyze an HNSCC resection FS slide, it must have 

two general characteristics. First, it must detect dysplasia with high sensitivity such that, if there 

is dysplasia present on the slide, the tool will highlight most of it for the pathologist to review. 
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Second, it should take less time to analyze a slide by reviewing the model’s detections than it 

would to scan the whole slide manually. This means that the model must not produce excessive 

false positives. Our tool appears to satisfy the first characteristic reasonably well, evidenced by a 

validation sensitivity of 74%. In contrast, our tool fails in the second characteristic. Only around 

1 in every 100 of the model’s positive predictions are truly dysplastic, meaning it would be easier 

and faster for a pathologist to ignore the model and scan the whole slide manually. Therefore, our 

current tool is not appropriate for use by pathologists assisting in HNSCC resections.  

 It is crucial to note that the results we present here are on validation data, and not testing 

data. Thus, the model’s observed validation performance is subject to some data leakage. As a 

result, performance metrics such as AUC and sensitivity may be overestimated, so it is important 

to keep this caveat in mind when interpreting our results. An entirely separate testing dataset was 

taken from our original data (Table 2), but it was not used in the present study. Ideally, a testing 

dataset should be used only once so that a realistic and leakage-free model performance assessment 

may be reported. In this light (and given that large volumes of HNSCC resection FS slides are 

relatively rare), we decided to reserve our testing dataset for future work that may achieve 

sufficiently strong validation performance with this model.  

 

4.2 Possible Explanations 

 Halicek and his colleagues recently built a CNN-based tool (using the Inception-v4 

CNN42,43) to automatically detect HNSCC on digitized permanent pathology slides39. In testing, 

they achieved an accuracy, sensitivity, specificity, and tile-level AUC of 85%, 85%, 85%, and 

0.92, respectively. Though PPV is not reported, heatmaps show that the model tends to detect 

HNSCC sensitively and without excessive false positives (Fig. 14). In general, the performance of 
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this tool is substantially stronger than the model we propose here. Two factors may be responsible 

for this difference in performance. The first is that detecting HNSCC is fundamentally a simpler 

visual task than detecting dysplasia16. Second, the use of permanent, paraffin-embedded pathology 

slides rather than FS slides means that the dataset used by Halicek and his colleagues was free of 

FS-related tissue artifacts. These artifacts may compromise analysis by human pathologists44, and 

they sometimes cause false positive detections by our model as well (see the blue arrow in Fig. 

13a). These two methodological differences may explain our model’s poor performance in 

comparison with Halicek and his colleagues’. Nevertheless, it is still worth exploring other 

contributing factors to identify opportunities to improve our model.  

 

 

Figure 14. Sample tissue slides with HNSCC contoured in green and heatmaps corresponding to 

predicted probability of cancer presence by Halicek et al.’s model39. Observe that high predicted 

probability corresponds well to regions of true HNSCC. Adapted from Halicek et al. (2019)39 

under the article’s Creative Commons License (http://creativecommons.org/licenses/by/4.0/).  

 

 

 

http://creativecommons.org/licenses/by/4.0/
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 Diagnosis of where our model is going wrong may be performed directly using activation 

analysis, but this technique can be resource-intensive45. Instead, it may be useful to take a more 

indirect approach by observing trends in tissue types that our model tends to perform well or poorly 

on.  

  One of the strongest trends in the model output is substantial false positive detection of 

normal epithelium. This is unsurprising given the known visual similarities between normal 

epithelium and dysplasia16. Interestingly though, many of the false positive, epithelium-containing 

tiles share some general visual hallmarks of dysplastic tissue, such as relatively dark colour (Figs. 

9b-i and 9b-ii), densely packed cells (Fig. 9b-ii), and disorganized cell distribution (Fig. 9b-ii). 

This pattern is encouraging because it may indicate that these basic features of dysplasia are being 

used by the model to predict dysplasia content.  

 The model produced several false positives on tiles containing neutrophil infiltration (note 

the small dark spots in Fig. 9b-iii) of epithelium and connective tissue. This may be an indication 

that the model mistakes neutrophils for epithelial cell nuclei, and subsequently identifies these tiles 

as dysplastic because of the neutrophils’ disorganized nature.  

 Many of the tiles on which the model produces false negatives include substantial white 

space, which is the background of the slide (Figs. 9c-i and 9c-iv). Ideally, the model would be able 

to detect dysplasia even when it contains white space. However, associating white space with 

nondysplasia might be another sign that the model uses colour or tone as a predictive feature.  

 A nondysplastic tissue type that the model almost always classifies correctly is stroma 

(Figs. 9d-i and 9d-ii). Stroma tends to be lighter in colour and more sparsely populated with cells, 

so it is encouraging that the model tends not to classify this tissue as dysplastic.  
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 In general, it appears that the model successfully identifies some general characteristics of 

dysplasia, such as dark colour, dense cell population, and cell disorganization. This allows the 

model to distinguish dysplasia from other tissue types that are quite different from dysplasia in 

these regards, such as stroma. However, it seems that the model does not pick up more subtle 

signals that would allow it to better distinguish dysplasia from normal epithelium, for example. 

One such signal that is present in normal epithelium, but not dysplasia, is the gradient of 

enlargement and flattening of cells towards the outer edge of the tissue (partially visible in Fig. 

4f).  

 Some methodological choices and limitations in this study may be responsible for these 

trends, and therefore for the poor overall performance. One potential factor is the use of a transfer 

learning approach. The VGG16 CNN was designed for a very general visual task35. Retraining 

only the last layer of this 16-layer CNN may have been insufficient to adapt this model for our 

problem. Another limitation that may have led to the poor performance of the model was the small 

size of the tiles we used (224 x 224 pixels). These tiles may have been too small to depict high-

level spatial features – such as gradients of cell flattening – thus preventing the model from using 

them to detect dysplasia. Finally, the severe class imbalance in our dataset may explain the poor 

performance of our model. Only 1.3% of the tiles (post-screening) used were positive. This 

limitation might have meant that there simply were not enough positive cases provided to the 

model for it to adequately learn the physical features that make a tissue dysplastic. The imbalance 

may have also meant that too many negative cases and irrelevant tissue types (recall that dysplasia 

occurs primarily in the epithelium) were provided to the model, leading to substantial noise that 

interfered with model training.  
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 A puzzling contradiction in our results is the model’s high validation accuracy, sensitivity, 

and specificity despite its low PPV. It seems paradoxical that these performance metrics could 

simultaneously indicate strong and poor performance, but this discrepancy may be explained by 

the dataset imbalance. CNNs are trained by adjusting the parameters of its constituent artificial 

neurons to minimize a loss function. The loss function quantifies how far the predicted outcomes 

are from the true outcomes. Normally, this means that when a model produces too many false 

positives, it is penalized by the loss function, and consequently the model parameters are adjusted 

to make the model less sensitive. However, when there are many times more negative samples 

than positive ones – as is the case in our imbalanced dataset – poor performance on positive cases 

confers only a small penalty in the loss function. Therefore, as long as the model classifies negative 

cases reasonably well, it can minimize the loss function even if it produces too many false 

positives. In other words, the model can ‘get away with’ having only a vague idea of what the 

positive class looks like because positive cases are so rare. This effect precipitates the low PPV. 

Specificity and accuracy remain high in this situation because the number of false positives, even 

when high enough to be practically unusable, is still relatively small compared to the number of 

correctly classified negative cases.  

  

4.3 Case Studies 

 Slides 871765 C1FS 1 (Fig. 10) and 835092 A1FS 1 (Fig. 11) are worth some discussion. 

While the model produces PPVs of less than 10% on every other validation slide, its PPV exceeds 

75% on these slides (Fig. 6). These two exceptional performances may be explained by the 

composition of the slides. Most of the epithelial tissue on these slides is dysplastic, and most of 

the nondysplastic tissue on these slides are tissues that are very distinct from dysplasia, such as 
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stroma. As established above, the model tends to classify epithelial tissue (dysplastic or not) as 

dysplastic and stromal tissue as nondysplastic (see Section 4.2). Therefore, the model may achieve 

such high PPVs on slides 871765 C1FS 1 and 835092 A1FS 1 simply because (1) most epithelium 

is coincidentally dysplastic and (2) most nondysplastic tissue is coincidentally a tissue type that 

the model handles well.  

 

4.4 Opportunities for Improvement 

 As described above, three factors that may be limiting the tool’s performance are the 

transfer learning approach, the tile size, and the class imbalance. Future work may wish to address 

these three potentially limiting factors to improve the performance of the tool.  

 First, several alternatives to our transfer learning approach may be explored to improve our 

model in the future. By adjusting the transfer learning scheme to allow more layers of the VGG16 

CNN to be trained, it is possible that the model could become more specialized to our problem, 

thus improving performance. The main advantage of transfer learning, however, is that it reduces 

computational expenses. Training more layers of our CNN would compromise some of this 

benefit. It may also be worth applying other pre-trained CNNs, such as AlexNet46 or ResNet47, to 

our existing transfer learning scheme for comparison. These other CNNs may be able to learn the 

characteristics of dysplasia better than VGG16 can. Alternatively, an entirely new CNN could be 

built from scratch. This approach would allow maximal customizability of the model to our 

problem, but it would entail substantially more expensive computations.  

 Future work on this tool could also experiment with the use of different tile sizes and 

techniques. Larger tiles sizes may improve the tool by providing a larger area of tissue to the model 
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for prediction. A larger area may allow the model to identify higher level spatial features, such as 

the gradient of cell flattening that distinguishes dysplasia from normal epithelium. A disadvantage 

of larger tiles is that it there are more pixels, and thus inputs, into the model. More inputs may 

increase the processing time of a tile by a CNN, unless the larger tile is first downsampled. A post-

processing technique that may improve the PPV of the model is applying some criteria about 

adjacent tile predictions that must be satisfied for a positive tile prediction to be displayed. For 

example, one could ignore all positively predicted tiles that are not part of a contiguous, 2 x 2 

square of positively predicted tiles. On slides such as the one shown in Fig. 7, this technique would 

filter out some of the false positive predictions, thereby improving PPV.  

 A third approach to improving our tool in the future is addressing the class imbalance. A 

possible solution might be to apply a precursor model that detects epithelial tissue and gives only 

tiles containing this tissue to our existing tool. This technique would screen out irrelevant tissue 

types (recall that dysplasia occurs primarily in epithelial tissue), thereby decreasing the class 

imbalance. It would also mean that our model would only need to distinguish dysplasia from 

normal epithelium. When alone, this might be a simpler task to handle. To explore this approach, 

we applied our model to the epithelium-containing tiles of a small number of slides (see Section 

2.5). The model produced high validation accuracy, sensitivity, specificity, and AUC values on 

these tiles, and notably achieved a validation PPV of 48%. Heatmap visualization corroborates 

these encouraging results (Fig. 13). Though this exploratory experiment was small in scale, the 

strong performance of the model here suggests that applying a precursor model to detect 

epithelium before passing the data over to our existing model may be a viable option for improving 

our tool’s performance. Of course, the success of this approach depends on the performance of this 
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hypothetical precursor model. Indeed, it is possible that detecting epithelium is just as difficult a 

task as detecting dysplasia.   

 In this work, we made some first steps towards building a tool for detecting dysplasia on 

HNSCC resection FS slides. To our knowledge, this tool would be the first of its kind. Currently, 

the tool lacks the performance needed for a clinical translation, as its PPV is simply too low to be 

practically usable. However, if the performance can be improved in the future with one or more of 

the solutions detailed above (and rigorously tested on unseen testing data), it may become suitable 

for use by pathologists. If successfully translated to a clinical context, the tool could be used to 

make faster and more accurate intraoperative decisions about whether to continue HNSCC surgery. 

This would improve the overall efficacy of surgical resection in achieving remission of HNSCC 

and reduce the time that the patient spends in the operating room.  

 

 

5 CONCLUSIONS 

 

 Dysplasia must be removed during HNSCC resections to prevent disease recurrence. 

However, dysplasia can be difficult to detect manually by the pathologists guiding these 

procedures. This work aimed to assist these pathologists by building a tool to automatically detect 

dysplasia on HNSCC resection FS slides. To build this tool, we implemented the VGG16 CNN in 

a transfer learning approach using MATLAB and Python. The tool was evaluated with quantitative 

performance metrics and binary heatmaps integrated into the popular digital pathology tool, 

QuPath. A tool for this problem was successfully built, but its current performance is too poor to 
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be clinically useful. The poor performance may be due to limitations in dataset size or a substantial 

class imbalance.  

Despite the tool’s poor current performance, encouraging trends are present in the tissue 

types that the tool classifies well and poorly. These patterns suggest that our CNN-based tool 

extracts some predictive value from HNSCC resection FS slides, which motivates future work 

aiming to enhance the tool’s detective power. Such future work may wish to apply different CNN 

models, larger tiles, or an epithelium-detecting precursor model to the tool. If the tool could be 

sufficiently improved, it may be used by pathologists assisting in HNSCC resection procedures to 

make faster and more accurate intraoperative decisions to guide the surgery. This would, in turn, 

improve the efficacy of surgical resection as a treatment for HNSCC.  
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7 APPENDIX A 

 

%=========================================================================% 
Experiment.StartNewSection('Set up parameters') 
%=========================================================================% 

  
% Set up parameters as strings. Python will parse to correct type 
chEpochs = '2'; 
chLearningRate = '0.002'; 
chBatchSize = '350'; 
chExperimentFolderName = 'Test 1'; 

  

  
%=========================================================================% 
Experiment.EndCurrentSection() 
Experiment.StartNewSection('In Python') 
%=========================================================================% 

  
% Convert datapaths to the format python uses 
sTrainDataCSVPath = strrep(Experiment.GetDataPath('Training'),'\','\\'); 
sValDataCSVPath = strrep(Experiment.GetDataPath('Validation'),'\','\\'); 
sResultsDir = [strrep(Experiment.GetResultsDirectory,'\','\\'),'\\']; 

  
% Collect all input arguments to be passed to python script 
c1chPythonScriptArguments = {sTrainDataCSVPath, sValDataCSVPath, 

sResultsDir,... 
                            chEpochs, chLearningRate, chBatchSize,... 
                            chExperimentFolderName}; 
% Run the python code 
PythonUtils.ExecutePythonScriptInAnacondaEnvironment(... 
    'main.py', c1chPythonScriptArguments,'C:\Users\rgilliland\miniconda3', 

'keras_env'); 

  
% Load the mat file python drops its MATLAB-compatible variables in 
% This has: viTruth and vsiConfidences where si means single  
load([Experiment.GetResultsDirectory(),'\Workspace_in_python.mat']) 

  
disp("Num epochs completed: " + num2str(dNumEpochs)) 
%=========================================================================% 
Experiment.EndCurrentSection() 
Experiment.StartNewSection('Error metrics') 
%=========================================================================% 
iPositiveLabel = int32(1); 
vdConfidences = double(vsiConfidences); 
viTruth = viTruth'; 

  
dAUC = ErrorMetricsCalculator.CalculateAUC(viTruth, vdConfidences, 

iPositiveLabel); 
disp("MATLAB AUC: " + num2str(dAUC,'%.2f')) 

  
dThreshold = ErrorMetricsCalculator.CalculateOptimalThreshold(... 
    {"upperleft","MCR"}, viTruth, vdConfidences, iPositiveLabel); 
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dAccuracy = 1 - ErrorMetricsCalculator.CalculateMisclassificationRate(... 
    viTruth, vdConfidences, iPositiveLabel,dThreshold); 
disp("MATLAB accuracy is: " + num2str(round(100*(dAccuracy)))+ "%") 

  
dTrueNegativeRate = ErrorMetricsCalculator.CalculateTrueNegativeRate(... 
    viTruth, vdConfidences, iPositiveLabel,dThreshold); 
disp("MATLAB TNR is: " + num2str(round(100*(dTrueNegativeRate)))+ "%") 

  
dTruePositiveRate = ErrorMetricsCalculator.CalculateTruePositiveRate(... 
    viTruth, vdConfidences, iPositiveLabel,dThreshold); 
disp("MATLAB TPR is: " + num2str(round(100*(dTruePositiveRate))) + "%") 

  
dPPVTotal = 

sum((int32(vdConfidences>dThreshold))&(viTruth==1))/sum(vdConfidences>dThresh

old); 
disp("MATLAB PPV is: " + num2str(round(100*(dPPVTotal))) + "%") 
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