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1. Introduction

Anaerobic digestion (AD) is a promising technology that couples 
wastewater treatment and renewable energy production [1]. 
Microbial reactions are the primary player of AD, and thus, maintain-
ing the stability of the process parameters is essential for its function. 
For example, organic loading rate (OLR) is one of the fundamental 
factors determining AD's biogas productivity and economic 
viability. Another example is hydraulic retention time (HRT), close-
ly related to the microbe-pollutant contact time. Both parameters 
are dependent on bioreactor volume; therefore, the water level 
of the digester is a vital operation parameter [2].

Recent technology developments allow continuous monitoring 
of many key parameters during AD operation [3, 4]. However, some 
parameters, such as the chemical oxygen demand of the digestate, 

are yet to be monitored in real-time due to instrumental limitations 
[5]. It is also challenging to monitor the digester water level con-
tinuously with high accuracy. Radar or ultrasonic level sensors 
can accurately measure water levels in an open system, but they 
can be easily disturbed by the generation of bubbles and scum 
in anaerobic digesters [6]. Due to such limitations on direct measure-
ment, using soft sensors can be an alternative approach to maximize 
estimation accuracy [7]. For example, the liquid level in a black 
box can be estimated if both the pressure and the density of the 
liquid column are known. However, the liquor in the digester (i.e., 
digestate) contains high concentrations of suspended solids, making 
it challenging to keep the digestate homogeneous in the digester. 
Therefore, using pressure sensors with homogeneity assumption 
of the digestate may lead to erroneous estimation of the liquid 
level in AD.
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Our previous study suggested a method to overcome this limi-
tation by predicting the unequal density profiles using multiple 
pressure meters [8]. A pilot-scale digester (0.33m3 working volume, 
1.4 m height, 1.2 m liquid level) was operated to collect data for 
the water level prediction model. By collecting pressure data from 
seven sensors (six in the liquor and one in the headspace), density 
profiles of the liquid columns were derived, and the top layer’s 
density was calculated through prediction models. As a result, 
a cubic model outperformed other polynomial models as well as 
the traditional, two-sensors approach. Although the digestate level 
can be predicted with high accuracy using this method, however, 
the requirement for seven pressure sensors may cause investment 
and maintenance burdens. Because only polynomial models were 
tested in the previous study, there is likely room for improvement 
if we test other modeling approaches using the same or even less 
number of sensors.

Machine learning (ML) is a computational method used for pre-
diction or classification using various algorithms [9, 10]. Recently, 
ML approaches are gaining popularity to generate new models 
for precise prediction in many research areas. For example, ML 
can be used to study nanomaterials for energy and environmental 
applications [11, 12]. Studies were conducted to develop effective 
photocatalysts to treat toxic pollutants such as thymol blue [13, 
14]. ML has been also applied in water and wastewater engineering 
research. Choi et al. [15] estimated the water level of Upo Wetland 
with long-term data with various parameters like temperature, 
precipitation, wind speed, and water level in the nearby area. 
Comparison among four models – artificial neural network (ANN), 
decision tree (DT), random forest (RF), and support vector ma-
chine (SVM) – were conducted, and RF was selected as the best 
model. Granata et al. [16] compared SVM and regression tree 
to estimate water quality using parameters like chemical oxygen 
demand, total suspended solids, biochemical oxygen demand, 
and total dissolved solids. The methane composition of biogas 
in AD was also estimated through ANN with genetic algorithm 
optimization [17]. Talebkeikhah et al. [18] tried to estimate the 
permeability of two carbonate reservoirs with SVM, DT, RF, mul-
ti-layer perceptron, and radial basis function (RBF) neural net-
work and showed that DT and SVM were the best models for 
permeability prediction. Suitability tests of soils for airfield appli-
cation with the fuzzy knowledge-based system were conducted 
and proposed as an accurate tool [19]. Pedro et al. attempted 
to optimize the work conditions like time and the number of 
workers for optimal work of floating caissons [20]. These studies 
suggest that ML can be a helpful tool to generate prediction 
models in various areas.

This study aimed to improve the liquid level prediction approach 
in AD equipped with multiple pressure sensors and optimize the 
number of sensors by attempting various ML algorithms. Linear 
regression, ANN, random forest (RF), and SVM with RBF kernel 
were compared to each other and with the cubic model from the 
previous study. The pros and cons of using different ML algorithms 
were discussed, and the significance levels of the different pressure 
sensors were compared. This study offers information to decide 
and optimize the method to estimate the water level of an anaerobic 
bioreactor in real-time.

2. Materials and Methods

2.1. Summary of the Research Procedures

This research aimed to predict the liquid level of an anaerobic 
digester equipped with multiple pressure sensors using ML (Fig. 1). 
The experimental system (i.e., the bioreactor and instrumentation), 
data collection, and the development of polynomial models in the 
previous study [8] are summarized in section 2.2. Four widely-applied 
ML methods were utilized to predict the liquid level in this study 
as detailed in section 2.3 (Fig. 1). Models derived from different 
algorithms were evaluated by comparing the error values in the 
forms of root mean square error (RMSE), mean absolute percentage 
error (APE), and maximum APE (described in section 2.4). In addition, 
corrected Akaike Information Criterion (AICc) values were used to 
optimize the number of parameters. Finally, conclusions were made 
on the most desirable algorithm and parameters.

2.2. System Description and Data Collection

The anaerobic bioreactor system and the experimental data were 
published previously [8]. Briefly, a pilot-scale (0.33 m3 working 
volume; 1.4 m height; 1.2 m liquid level) bioreactor was equipped 
with seven pressure sensors at approximately 0.1, 0.3, 0.4, 0.6, 
0.7, 0.9, and 1.25 m from the bottom (Fig. 1). The bioreactor was 
operated for 175 days; the liquid level was maintained stable at 
1.2 m for most of the time, while a short-term level variation (0.8–1.2 
m) was applied at day 99. The bioreactor was placed in a temper-
ature-controlled room (36℃). The anaerobic bioreactor showed 
a stable digestion performance in terms of pH, biogas production, 
and volatile fatty acid accumulation (see Rhee et al. [8] for details). 
All the sensor-derived data (i.e., pressure, temperature, and biogas) 
were recorded at an interval of one min or less.

The pressure readings (P0, P1, ..., Pn) were obtained from the 
pressure meters (h0, h1, ..., hn), of which P0 and h0 refer to the 
top sensor in the headspace. The apparent density of the liquid 
layers (ρ2, ..., ρn), except for the top layer (ρ1; between h1 and h2), 
was determined by gravimetric relationship (Eq. (1)). Once the 
top layer density (ρ1) is estimated, the total liquid level (hliquid) 
can be calculated by Eq. (2).

(1)

(2)

where ρ is the density of the liquid column, P the pressure, g 
the gravitational force, and h the height. In Eq. 2, P0 (headspace 
pressure) is subtracted from P1 as a reference value because the 
anaerobic bioreactor usually keeps positive pressure at the 
headspace. The previous study compared polynomial models (linear 
to quintic) between P and ρ, and concluded that the top layer 
(ρ1) is well depicted by a cubic model [8].

2.3. Modeling

In this study, four new approaches implementing ML were addition-
ally tested if they can improve the accuracy of the model: multiple 
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linear regression, RF, ANN, and support SVM with RBF kernel. 
The following sub-sections (2.1.1 to 2.1.4) summarize the general 
features of the four methods, including their potential limitations. 
Supervised learning was conducted which train model by offering 
an example answer. All data were standardized for smooth model 
fitting. As the model parameters, seven pressure and one temper-
ature readings were used for direct comparison with the previous 
study. The ‘train’ function in the R program’s caret package was 
used to search for proper hyperparameters rapidly.

2.3.1. Multiple linear regression (MLR)
Linear regression algorithm is to fit model with linear function 
between independent and dependent variables. Linear regression 
is the most common approach for modeling numeric data and 
can be adapted to almost all types of data [21]. With accurate 
modeling, this method can give information about contribution 
in form of coefficient. However, linear regression requires assuming 
that the independent and dependent variables have a strong linear 
relationship. Additionally, this method requires a large amount 
of dataset for accurate modeling [22]. The accuracy of the model 
was assessed using a gradient descent algorithm. The gradient de-
scent optimization algorithm is one of the most popular algorithms 
to perform optimization about a model. RMSE was used as the 
cost function while optimizing this model. 

2.3.2. Artificial neural network (ANN)
ANN is an algorithm that mimics the structure of human neurons. 
ANN is widely used for non-linear function estimation, data sorting, 
pattern detection, optimization, clustering, and simulation [23]. 
Among different types of ANN, a feed-forward neural network 
with a single hidden layer of five nodes was used in this study. 

Three elements adjust the model’s structure: activation function, 
network topology, and training algorithm [21]. An activation func-
tion is an element that transforms the input signal into the output 
signal. A network topology includes factors like the number of 
nodes, the direction of information travel, and the depth of the 
hidden layer [21]. For example, too many nodes can be led to 

overfitting [24]. A proper combination of these factors can improve 
the accuracy of the model. The model estimates values through 
interaction between interconnected neurons. The algorithm aims 
to find out proper weights used to calculate variables. Although 
ANN is known as one of the most accurate modeling approaches, 
it usually takes a longer time than other algorithms, and the model 
structure is challenging to recognize.

2.3.3. Random forest (RF)
RF is a model that consists of multiple DTs. DT is an algorithm 
for classification and prediction, that is easy to be used because 
of its simplicity. A DT model consists of many logical decisions 
like a flow chart [21]. Starting from the root node, the data are 
split into various nodes to reach the final leaf (or terminal) nodes. 
The DT tries to make an optimal model by searching for the model 
that maximizes the purity of the terminal modes. High purity means 
that it can classify or predict values with high accuracy.

The advantage of using DT lies in its speed, as DT can select 
useful features automatically. DT can describe some datasets more 
accurately than linear regression [21]. However, DT may lead to 
overfitting with complex datasets. To overcome this problem, the 
RF has been developed. The emergence of ensemble trees can improve 
the accuracy of the model. RF calculates value by combining all 
decision tree’s values. With this property, RF can handle massive 
datasets and is resistant to outliers during training. After combining 
all values, a cost function (Eq. (3)) is generated to evaluate the model.

RF uses the bootstrap aggregating (or bagging) method to avoid 
overfitting and correlation of the different trees. Correlation among 
trees disrupts accurate modeling. Bagging is an algorithm that re-
samples data randomly from the dataset to train the data without 
deletion. The data not selected for training a particular tree is 
called ‘out of bag’. The subsequent data subset is used to evaluate 
the error and correlation of the model. With these steps, RF can 
predict a value with high accuracy and have strength when dealing 
with large and noisy data [24]. However, RF cannot predict a value 
that the model has not experienced. For this reason, RF requires 
extensive learning experience.

Fig. 1. Schematic of the research process.
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2.3.4. Support vector machine (SVM)
SVM is a computational learning algorithm based on the statistical 
learning theory [25]. This algorithm predicts values by finding 
a hyperplane that divides data with a maximum margin by convert-
ing original data into high-dimensional data. SVM tries to minimize 
the total cost rather than finding the accurate model for the model’s 
stability. For this reason, SVM is strong against overfitting [21].

Kernel function can be used to modify the dataset’s dimension 
for accurate analysis. There are various types of kernel functions. 
Finding a proper kernel type is an essential step for accurate model 
development. As a result, in this study, the RBF kernel was selected 
after comparing the linear, the polynomial, and the RBF kernels. 
With a proper kernel function, SVM can conduct modeling on 
complex data with high accuracy. However, SVM is not easy to 
deal with a large amount of data, and its model is difficult to 
understand [22]. Therefore, the step to search the proper kernel 
is required for accurate modeling.

2.4. Model Evaluation and Variable Significance Test

The pressure data from seven pressure sensors (P0, …, P6; from 
top to bottom) and the temperature data (T) were considered to 
be used in modeling to compare directly with the result of the previous 
study. Out of the seven pressure readings, three combinations were 
specifically tested for the models: two (bottom and the headspace 
readings; P6 and P0), three (bottom, top, and the headspace readings; 
P6, P1, and P0), and seven (all seven readings). The data was pre-
processed through standardization for accurate modeling. 
Standardization is preprocessing method which rescales data to have 
one as standard deviation and zero as mean. After standardization, 
747 data points were derived; 521 data points (70% of data) were 
used to train models and 225 data points (remaining 30% of data) 
were used to test the models. This study conducted model evaluation 
by comparing RMSE, mean APE, and maximum APE.

(3)

(4)

The importance of each variable was estimated for each type 
of algorithm (i.e., MLR, RF, ANN, and SVM) through a specific 
method. For MLR, the absolute value of the t -statistic for each 
variable was used. The RF used an out-of-bag score for variable 
importance calculation. Gevrey’s weights method, which combines 
the absolute value of the weights, was used to estimate variable 
importance for ANN [26, 27]. Finally, locally estimated scatterplot 
smoothing (LOESS) R2 was used for SVM models for variable 
importance. All variable importance was estimated using ‘varImp’ 
function of caret package in R.

To evaluate the proper number of parameters for the models, 
AICc was calculated. Akaike information criterion (AIC) is a crite-
rion that can be used to decide on where to stop to input more 
the independent variables [28]. However, AIC has a problem when 
the number of data is not enough. To solve this problem, AICc 
was proposed by Hurvich and Tsai [29].

(5)

where SSE is the sum of squares error, n is the observed data’s 
number, and p is the number of parameters. A model with a smaller 
AICc value was assumed to be more accurate because AICC is 
in proportion to the error.

3. Results and Discussion

3.1. Model Performance

The overall performance of the four models using different datasets 
(i.e., two (Table 1), three (Table S1), or seven (Table 2) pressure 
readings) were compared. Overall, ANN and RF showed lower 
RMSE than MLR and SVM. The mean APE was the lowest for 
RF, while the maximum APE was the lowest for ANN. The higher 
the number of pressure readings used in the models, the lower 
the RMSE and APE values were derived in general.

The MLR model did not perform well compared to ANN and 
RF (Table 1, 2). This result suggests that the liquid level estimation 
of an anaerobic digester involves complex interactions that are 
not able to be explained best by a simple linear combination of 
the variables. Within the model, all RMSE, mean APE, and maximum 
APE decreased with the increasing number of variables (i.e., pres-
sure readings); these results also support that more model complex-
ity can lead to more accurate estimation.

The SVM model showed the poorest performance in terms of 
the mean APE (Table 1, 2). In all cases, the performance parameter 
of APE was among the poor half out of the four models (i.e., 
the first or second highest RMSE or APE). Therefore, it could 
be concluded that SVM was not the best approach for liquid level 
prediction in our configuration. Unlike the MLR model, using more 
pressure data did not improve this model.

The ANN approach used in this study employed a feed-forward 
neural network with a single hidden layer (five nodes included) 
and backpropagation [30, 31]. Due to the randomness of the model 
build-up, ten ANN models were created and the one with the 

Table 1. Performance Indices of the Model Using Two Pressure Readings 
(i.e., bottom and the headspace)

Model RMSE Mean APE (%) Max. APE (%)
MLR 1.416 0.8443 6.211
ANN 0.6611 0.3998 3.216
RF 0.627 0.166 3.532
SVM 1.320 0.873 5.957

Table 2. Performance Indices of the Model Using All Seven Pressure 
Readings

Model RMSE Mean APE (%) Max. APE (%)
MLR 1.094 0.6317 5.305
ANN 0.569 0.302 3.325
RF 0.7894 0.162 7.791
SVM 1.313 0.7967 7.734
Cubic* 1.987 1.306 7.319

*Model described in Rhee et al. [8].
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least RMSE was selected. The ANN showed superior performance 
than other models (Table 1, 2). The RMSE and the maximum APE 
of ANN were the lowest among the models tested. A lower maximum 
APE implies that this model had a more robust resistance to outliers 
than other algorithms.

On the other hand, the mean APE of the ANN model was about 
half of those of the MLR and SVM models, but double of the RF. 
Like the MLR, both the RMSE and mean APE for the ANN also 
decreased as the number of pressure readings increased. Although 
the higher number of input data (i.e., pressure readings) generally 
increased the accuracy of this model, no clear trend was observed 
for maximum APE.

In the case of RF, 500 trees were grown with a bagging number 
of five. RF showed the lowest mean APE and the second-lowest 
RMSE among the models (Table 1, 2). However, the maximum 
APE of RF was comparable to SVM, especially when a higher 
number of pressure readings were used. It could be concluded 
that the best RF model was achieved using two pressure readings, 
and a higher number of variables did not increase its accuracy. 
This trend was similar to SVM.

Overall, the ML-based models proposed in this study out-

performed the polynomial model derived in the previous study 
[8]. Both the RMSE and the mean APE were the highest for the 
cubic model, and its maximum APE was comparable to SVM and 
RF (Table 2). Fig. 2 shows the observed and estimated water levels 
using different models. The margin between a dot and a red line 
means the error rate. The estimations made by the cubic, MLR, 
and SVM models clearly showed a more inaccurate representation 
of the liquid level. In addition, the cubic and SVM models likely 
had structural underestimation of the liquid level at 1.2 m. To 
summarize, the ANN and RF models showed the most successful 
estimation of the liquid models in our configuration.

Interestingly, RF and SVM showed higher maximum error accord-
ing to the increase of the number of variables (Table 1, 2), while 
MLR and ANN showed better performance with more variables. 
This is probably due to the characteristics of the models. Thus, 
the initial selection of a model could be based on the number 
of variables available.

3.2. Importance of Variables

Variable contribution analysis is essential for accurate analysis 

a b c

d e f

g h i

Fig. 2. Model fitting results using the temperature and the two (a–d) or seven (e–i) pressure readings as variables. The MLR (a), (f), ANN (b), 
(g), RF (c), (h), SVM (d), (i) and cubic (e) models are represented.
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and evaluation of layers. To evaluate the use of different pressure 
readings, the variable contribution was analyzed (Fig. 3). Commonly, 
the temperature (T) shows low or no importance to the modeling 
results. This is reasonable because the temperature within a stable 
range can hardly affect the volume or density of a liquid. Among 
the pressure variables, the headspace reading (P0) and the bottom 
reading (P6) showed high variable importance in most cases. The 
topwater column reading (P1) was also significant in some cases, 
especially when using three pressure variables (Fig. 3b). One of 
the reasons contributed to this observation is that this pressure 
meter was at the headspace (in addition to P0) in some data points 
with lower liquid levels. This reason may lead to another accuracy 
problem in the reactor. The other water column readings (P2–P5) 
generally had low importance on the model (Fig. 3).

One exception to this trend was SVM; this model showed relatively 
equal contribution from the different pressure variables. It is sus-
pected that the SVM was affected by multicollinearity. To confirm 
the correlation, variance inflation factors (VIF) among parameters 
were calculated (Table S2). The VIF values of P2–P6 were over 10,000, 
and only P1 and P0 showed lower VIF values (< 100). This phenomen-
on can be induced by a dataset that contains highly correlated 

variables [32] and negatively affects the results. It was suggested 
that the effects of multicollinearity can be removed by removing 
redundant data or introducing prior information [33], which can 
be the case of SVM models with lower pressure variables in this 
study. For this reason, it is not recommended to utilize SVM with 
RBF kernel for liquid level prediction with multiple pressure sensors.

To determine the importance of each pressure layer in the RF 
and ANN models, the RMSE and APE values for models without 
one pressure layer were compared (Table 3, 4). For both algorithms, 

Table 3. Performance Indices of the RF Models Using Data without 
Specific Pressure Layers

Removed Layer RMSE Mean APE (%) Max. APE (%)
P0 3.9322 1.060 24.835
P1 0.6128 0.164 3.330
P2 0.7913 0.167 7.740
P3 0.7772 0.167 7.480
P4 0.7975 0.172 7.769
P5 0.7788 0.168 7.509
P6 0.7849 0.165 7.624
Full 0.7774 0.162 7.506

a

b

c

Fig. 3. The variable contribution analysis results for the models using the two (a), three (b), or seven (c) pressure readings as variables.



Environmental Engineering Research 28(2) 220037

7

Table 4. Performance Indices of the ANN Models Using Data without 
Specific Pressure Layers

Removed Layer RMSE Mean APE (%) Max. APE (%)
P0 2.3255 0.9318 12.367
P1 0.4609 0.2823 2.673
P2 0.5780 0.3481 2.924
P3 0.5997 0.2734 5.078
P4 0.5533 0.2734 3.315
P5 0.6045 0.253 4.928
P6 0.4351 0.2390 3.046
Full 0.5318 0.3194 3.094

models lacking P0 showed significantly lower performance. It im-
plies that the pressure meter at the headspace is essential to estimate 
the water level. This is reasonable because the headspace pressure 

is linked to all pressure values within the bioreactor. Removing 
some layers, such as P1, lowered the errors, indicating that having 
more parameters does not necessarily improve the model. This 
is probably because P1 experienced both water (liquid) and air 
(headspace) phases depending on the liquid level. Therefore, avoid-
ing a pressure sensor at an amphibious level could be suggested. 
Overall, the absence of a parameter with a higher contribution 
was not critical to the model’s performance, suggesting not as many 
as seven pressure parameters are required for accurate modeling.

3.3. AICc Test

The AICc values were obtained to assess further the importance 
of variables (Fig. 4(a), (b)). For MLR and SVM, models with three 
to six parameters showed similar results. For RF, models with 
three parameters (from top or bottom) had the lowest AICc results. 

a

b

c

Fig. 4. The AICc results when parameters were removed one by one from the bottom layer (a) or the top layer (b); and when an optimized
set of parameters were used (c). The number following ‘remain’ means the number of parameters remaining after removing pressure 
layers. For example, ‘remain: 2’ in (a) has two pressure parameters near the top (i.e., P0 and P1), while ‘remain: 2’ in (b) has two pressure
parameters near the bottom (i.e., P6 and P5). In (c), four pressure parameters (P0, P2, P3, and P5) were ‘selected’ to minimize the AICc
values of the ANN algorithm, and were compared to the models including all seven (‘full’) pressure parameters.
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The ANN model showed the least AICc values compared to the 
other algorithms; the four-parameter models had the lowest, negative 
AICc values. The optimal combination of four parameters was 
searched to minimize the AICc value of the ANN model (Fig. 4(c)). 
The optimal combination for the ANN model was determined as 
P0, P2, P3, and P5: one headspace meter and three liquid-facing meters 
excluding the top and the bottom ones (P1 and P7). The same combina-
tion resulted in a significant decrease of AICc for the RF model, 
but comparable or even higher AICc’s for the other two models. 
These results imply that selecting the parameters is required to opti-
mize the model output for liquid level estimation using the current 
method. To summarize, the pressure data were essential to building 
accurate models to estimate the liquid level, while the temperature 
showed little effect. Among the different levels, the pressure meter 
located in the headspace is crucial, and the number of sensors in 
the liquid can be optimized to increase the model accuracy. 

4. Conclusions

In this study, a comparison among four algorithms and various 
variables was conducted to increase the accuracy of the real-time 
liquid level estimation method. Both the ANN and RF models 
showed plausible accuracy, while the MLR and SVM models had 
higher errors than ANN and RF. ANN and MLR increased their 
accuracy with more pressure variables. In contrast, RF and SVM 
performed worse with the increasing number of variables. Variable 
importance analysis showed that the headspace pressure meter 
was essential, while the temperature sensor contributed little to 
the model. The AICc test suggested that using four sensors, including 
one in the headspace and three in the liquid phase, showed an 
optimal performance from the current dataset. The sensor combina-
tion should be optimized based on the scale and the configuration 
of the system using ML and statistical techniques like AICc. Overall, 
ML techniques could significantly improve the estimation model 
output and optimize the number of pressure sensors. The results 
of this study can give the insight to plant operators for monitoring 
the liquid level accurately and in real-time.
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