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Abstract: Osteoporosis is characterized by an abnormal bone structure with low bone mass and
degradation of microarchitecture. Oxidative stress induces imbalances in osteoblast and osteoclast
activity, leading to bone degradation, a primary cause of secondary osteoporosis. Doxorubicin (DOX)
is a widely used chemotherapy drug for treating cancer, known to induce secondary osteoporosis.
The mechanism underlying DOX-induced bone loss is still not fully understood, but one of the
relevant mechanisms is through a massive accumulation of reactive oxygen and nitrogen species
(i.e., ROS and NOS) leading to oxidative stress. We investigated the effects of antioxidants Resveratrol
and MitoTEMPO on DOX-induced bone impairment using the zebrafish model. DOX was shown to
increase mortality, promote skeletal deformities, induce alterations on intestinal villi, impair growth
and mineralization and significantly downregulate osteoblast differentiation markers osteocalcin 2 and
osterix/sp7. Lipid peroxidation was significantly increased in DOX-supplemented groups as compared
to control and antioxidants, suggesting ROS formation as one of the key factors for DOX-induced
bone loss. Furthermore, DOX affected mineral contents, suggesting an altered mineral metabolism.
However, upon supplementation with antioxidants, DOX-induced effects on mineral content were
rescued. Our data show that supplementation with antioxidants effectively improves the overall
growth and mineralization in zebrafish and counteracts DOX-induced bone anomalies.
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1. Introduction

Osteoporosis is a common metabolic skeletal disorder characterized by abnormal bone
structure, low bone mass and degradation of skeleton microarchitecture, leading to bone
fragility and increased risk of fracture [1,2]. Oxidative stress induces an imbalance in os-
teoblast and osteoclast activity, leading to imbalances in bone metabolism, a primary cause
of secondary osteoporosis caused by specific medications such as doxorubicin (DOX) [3,4].
Several clinical studies have revealed that antioxidant and/or pro-oxidant mechanisms are
involved in bone pathologies such as osteoporosis [5–8]. DOX has long been recognized
among the most toxic anticancer agents, causing large accumulations of reactive oxygen
and nitrogen species (i.e., ROS and NOS) that negatively impact bone cell metabolism [9].
NADPH-dependent reductases are capable of producing a one-electron reduction of DOX
to DOX-semiquinone free radicals [10,11]. Under aerobic conditions, quinone-semiquinone
derived from adriamycin undergoes redox cycling and generates superoxide radicals [12].
Adriamycin free radicals are formed by a non-enzymatic mechanism involving iron. The
Fe2

+-DOX free radical complex formed by the redox interaction of adriamycin with Fe3
+
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reduces oxygen to hydrogen peroxide and ROS [11,13,14]. This mechanism produces a free
radical that induces DNA damage by oxidative injury [15,16] and causes lipid peroxida-
tion [17–22] upon DOX exposure. Previously, postmenopausal breast cancer patients under
the DOX regimen showed decreased bone mineral density and loss of bone [23]. Similar
effects were also observed in DOX-exposed rats [23,24].

Teleost fish, such as the zebrafish (Danio rerio), are recognized models for biomedical
research, including skeletal development, due to their similarities in molecular mechanisms
and signaling pathways with humans [25,26]. In fish, skeletal anomalies are linked with
oxidative stress, genetics, epigenetics, and nutritional factors, such as vitamins, minerals,
and lipids, which are considered the main influencing nutrients on skeleton development.
Antioxidant defense mechanisms of the cells are constantly counteracting ROS produced
by endogenous or exogenous sources [27,28] with catalase, superoxide dismutase and
glutathione peroxidase acting by scavenging hydrogen peroxide, superoxide and hydroper-
oxides, respectively [29].

Resveratrol (RES) is a naturally occurring polyphenolic (3,4′,5-trihydroxystilbene)
compound found in grapes, cranberries, and nuts [30], with antioxidant, anti-inflammatory,
estrogenic, and proliferative properties, which can influence bone metabolism [31]. Previ-
ously, it has been shown that RES can counteract glucocorticoid-induced bone damage [32]
and zinc oxide-induced oxidative stress [33] in zebrafish. RES has also been shown to im-
prove lipid metabolism homeostasis in zebrafish [34]. MitoTEMPO [MT] is a mitochondria-
targeted antioxidant that scavenges mitochondrial superoxide and alkyl radicals [35,36].
MT was shown to reverse tafazzin knockdown-induced mitochondrial ROS production [37].
This suggests MT is a potential compound for counteracting mitochondrial-induced oxida-
tive stress.

DOX treatment has been shown to cause a significant reduction of bone mass in
humans [23], mice [24] and gilthead seabream (Sparus aurata) [38]. Previously, we have
shown the reversal effect of RES and MT over DOX-induced bone impairment on gilthead
seabream [38]. We hypothesized that diets supplemented with antioxidants would coun-
teract DOX-induced effects in zebrafish. In this study, taking advantage of the zebrafish
as an in vivo model with osteocytic bone, we investigated the effects induced by DOX-
on bone and aimed to reverse DOX-induced negative effects by regular supplementation
with antioxidants. To the best of our knowledge, no studies have been performed on
DOX-induced bone loss in this model. Therefore, this study will further strengthen the
previous results obtained in vitro on the effects of DOX, RES and MT on bone development
and mineralization and on the reversal of DOX-induced bone impairment by antioxidants.

2. Materials and Methods
2.1. Housing Conditions

Wild-type zebrafish [AB-strain (ZFIN ID: ZDB-GENO-960809-7)] were maintained at
the zebrafish facility of the Centre of Marine Sciences (CCMAR, Faro, Portugal). Adults
were crossed to obtain the necessary larvae for this study. The photoperiod of the room
was controlled with a 14-h/10-h light/dark cycle, and air humidity was maintained at
60% [39]. Fish were kept in 3.5 L plastic tanks connected to a 980 L recirculating housing
system (ZebTEC; Tecniplast, Buguggiate, VA, Italy). Water quality was ensured by a daily
water renewal of 10% of total volume in recirculation through an automated pump. Wa-
ter quality was ensured through filtration: mechanical (pleated cartridge filters, 50 µm),
biological (ceramic beads), carbon filter (granular activated), and ultraviolet sterilization
(180,000 µWs/cm2). The system water temperature (28 ◦C ± 1 ◦C), pH (7.5 ± 0.2) and
conductivity (750± 30 µS/cm) were controlled through an integrated computerized system,
and pH and conductivity were maintained stable through the addition of a sodium bicarbon-
ate solution (S5761, Sigma Aldrich, Madrid, Spain) and an Instant Ocean salt concentrated
solution (35 g/L; Aquarium systems, Sarrebourg, France), respectively. NO2

− and NH4
+

values were monitored weekly and maintained < 0.1 mg/L and NO3
− < 50 mg/L, [40].
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2.2. Micro Diet Preparation

Microdiets were prepared according to Poudel et al. [38]. Briefly, the microdiets supple-
mented with antioxidants and pro-oxidants were prepared manually by mixing squid flour,
water-soluble components and subsequently with fat and lipid-soluble vitamins, and finally,
on warm water with gelatin dissolved. RES (34 mg/kg) (TCI, Tokyo, Japan) [32,38,41] and
DOX (30 mg/kg) (TCI) [38,41] were dissolved on polar molecules, whereas MT (5 mg/kg)
(Sigma-Aldrich) [38,41,42] was dissolved in water. The dough was first compressed and
then made into pellets using a grinder (Severin ZB 5591 Meat mincer, Suderm, Germany).
Then the pellets were dried for 24 h at 38 ◦C in a drying oven Ako, Barcelona, Spain).
Finally, dried pellets were crushed and placed through sieves (Filtra Vibración, Barcelona,
Spain) in order to obtain varied particle sizes (i.e., 125 µm, 250 µm, and 500 µm) [28].

2.3. Feeding Trial

A zebrafish broodstock group of AB strain with 4–5 months, females (n = 20) and males
(n = 20), was crossed, and 2500 eggs were collected and incubated at 28 ◦C ± 0.5 ◦C in 1 L
tanks (Tecniplast) at a density of 200 eggs/L in E2 (embryo medium) with 50 ppt methylene
blue (Sigma-Aldrich) to reduce bacterial and fungal growth [43,44]. At 5 days post fertiliza-
tion (dpf), 2400 larvae were pooled and divided into quadruplicates (100 larvae/L) for each
treatment group. The rearing density was gradually decreased every 5 days by increas-
ing the volume of water in the tank, i.e., 5–10 dpf: 100 larvae/L, 10–15 dpf: 66 larvae/L,
15–30 dpf: 33 larvae/L. A volume corresponding to 90% of water was renewed every day
with fresh water collected from the zebrafish recirculating system since the trial was con-
ducted in static conditions. The feeding trial was conducted until 30 dpf (post-larvae) when
all skeletal structures were predicted to be completely formed [40].

The zebrafish larvae were fed with microdiets supplemented with antioxidant and
pro-oxidants alone or combined. The fish were fed three times a day with antioxidant
microdiets, whereas pro-oxidant diets were only fed to the fish every 72 h and continued
with a combination of control or antioxidant diets. The microdiet combinations were
performed by mixed feeding with the pro-oxidant and antioxidant diets. The total amount
of diet fed daily per tank was 15 mg and increased 5 mg each week. For the first 2 days,
150 rotifers/mL were added to the experimental tanks during the morning [45]. On
the 5th day, microdiet uptake was checked using microphotographic observation [40].
A spatula was prepared with a 3D printer with capacity of 5 mg per scoop to standardize
the feeding.

2.4. Whole-Mount Double Staining and Evaluation of Skeletal Anomalies

To assess skeletal abnormalities and vertebral mineralization in the post-larvae, whole-
mount double staining was performed using an acid-free protocol for bone and carti-
lage adapted from Gavaia et al. [46] and Walker and Kimmel [47]. A group of 20 post-
larvae/replicate were processed for whole mount double staining of the skeleton using
alcian blue 8GX (Sigma-Aldrich) for cartilage, and alizarin red S (AR-S) for mineralized
structures (Sigma-Aldrich), as described [47]. Briefly, 30 dpf post-larvae were stained with
alcian blue solution (0.1% w/v) in MgCl2 (60 mM) dissolved in 70% ethanol for 3 h followed
by rehydration steps for 2 h in a decreasing concentration gradient of ethanol (96% to 25%).
Samples were then stained with 0.05% AR-S in 0.5% potassium hydroxide solution (KOH,
Sigma-Aldrich) for 16 h. The clearing was performed with 1% KOH and larvae were con-
secutively transferred through increasing glycerol concentrations (25% to 100%) and stored
in 100% glycerol (Merk Millipore, Massachusetts, USA) until examination. Whole mount
double stained samples were examined under a stereomicroscope (MZ10F Leica, Wetzlar,
Germany). Detection of skeletal anomalies was performed following the nomenclature by
Bird et al. [48]. For assessing the mineralization of vertebrae, 20 individuals per group were
analyzed. The vertebrae were categorized according to the degree of mineralization as:
unmineralized, mineralizing and mineralized according to the intensity of AR-S staining
observed, using ImageJ1.53c (Rockville, MD, USA).
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2.5. Mineral Contents

Samples of zebrafish post-larvae (30 dpf) (N = 8/tank) were dried for 72 h in an oven
at 60 ◦C. Dried and weighted samples were processed with a 65% nitric acid digestion,
and microwave (Discover SP-D 80, CEM, Matthews, NC, USA) with magnetic beads for
9 min was used for extraction of minerals. The samples were then diluted in a 1:5 ratio
with milli-Q water. Calcium standard (Agilent, Santa Clara, CA, USA), which also contains
Fe, Mg, Na and K, and Phosphorus standard (Agilent), were prepared on 5% nitric acid.
The mineral contents were measured by microwave plasma-atomic emission spectrometry
(MP-AES 4200, Agilent, Santa Clara, CA, USA) at 393.366 and 213.318 nm wavelength for
Calcium and Phosphorus, respectively. The intensity values obtained from the samples
were compared with the standard curve.

2.6. Lipid Peroxidation (MDA) Analysis

Lipid peroxidation was measured using the malondialdehyde (MDA) assay kit (Sigma-
Aldrich) by reacting MDA with thiobarbituric acid substance (TBARS). Approximately
25–30 mg of larval sample was homogenized on 20% trichloroacetic acid (w/v) (1.5 mL) with
0.05 mL of 1% BHT in methanol. To the primary solution, 2.95 mL of 50 mM thiobarbituric
acid was added, then mixed and heated for 10 min at 100 ◦C. The protein precipitates
were extracted by centrifugation at 2000× g, and the absorbance was measured using the
Evolution 300 spectrophotometer (Thermo Scientific, Loughborough, UK) at 532 nm. The
MDA standard curve was plotted, and the absorbance of samples was compared against
the standard. TBA-MDA concentration was expressed as nmol MDA/mg of tissue [49].

2.7. RNA Extraction and qPCR

NZYol Reagent (NZYtech, Lisbon, Portugal) was used to extract total RNA from
10 whole specimens at 30 dpf. DNase I treatment (Promega, Madison, WI, USA) was per-
formed with 1 µg RNA for 30 min at 37 ◦C and the RNA was reverse-transcribed at 37 ◦C for
one hour using M-MLV reverse transcriptase (Invitrogen, Waltham, MA, USA), RNaseOUT
(Invitrogen) and oligo-d(T) primer [5′-ACGCGTCGACCTCGAGATCGATG(T)13-3′]. qPCR
assays were carried out using a Bio-Rad CFX thermocycler (Bio-RAD, Hercules, CA, USA).
Gene expression levels were normalized using eef1a1l1 as a housekeeping gene [50], and
the ∆∆Ct method was applied to determine relative quantification [38,51]. The sequence of
primers used in this study is listed in Table 1.

Table 1. Sequences of primers used. All sequences in 5′–3′ orientation.

Gene Primer Sequence GenBank (Accession No.)

oc2/bglapl Fw: CCAACTCCGCATCAGACTCCGCATCA NM_001291889

Rev: AGCAACACTCCGCTTCAGCAGCACAT

sp7 Fw: GCTAAGTCCAGGGCAGGCTCAG NM_212863

Rev: CAATGGCGTGAAATCAGGAGTGTAAC

runx2b Fw: TCAGGAATGCCTCAGGGGTTATG NM_212862

Rev: CTTGCGGTGGGTTTGTGAATACT

eef1a1l1 Fw: TTGAGAAGAAAATCGGTGGTGCTG NM_131263

Rev: GGAACGGTGTGATTGAGGGAAATTC

2.8. Histology

Sample preparation and tissue processing for the histological protocol were performed
as described in Cardif et al. [52]. Prior to paraffin inclusion, decalcification was performed
with 10% EDTA and 1% PFA. 5 µm tissue sections were prepared using rotary microtome
Microm HM 340 (Microm International GmbH, Walldorf, Germany). Slides were then
stained with hematoxylin and eosin, as described by Fischer et al. [53]. Blind evaluation of
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histological parameters was performed to analyze intestinal villi length [54,55]. VisiCam
3 Plus (Avantor VWR, Radnor, PA, USA) was used to capture the images from a standard
light microscope (Zeiss, Dresden, Germany), and length of villi was measured using
ImageJ1.53c software.

2.9. Statistical Analysis

The data obtained from the skeletal anomalies analysis followed the nomenclature
adapted from Gavaia et al. [46] and Walker and Kimmel [47] and was coded according to
the typology of the deformities. The data for the mineralization of the vertebrae were coded
as mineralized, mineralizing, and unmineralized and then the cumulative percentage was
calculated. Partial Least-Squares Discriminant Analysis (PLS-DA) was analyzed using
the MetaboAnalystR 3.0 R package and MetaboAnalyst [56,57]. The significance of class
discrimination was verified by performing a permutation test (p < 0.001; 0/1000), and
the performance was measured using the “B/W ratio” as proposed by Bijlsma et al. [58].
MetaboAnalystR 3.0 R package and MetaboAnalyst 5.0 was used to analyze univariate
and multivariate analysis [56,57]. Normal (Gaussian) distribution of the data was ana-
lyzed using the obtained data by the Anderson–Darling test, D’Agostino and Pearson
test, Shapiro–Wilk test and Kolmogorov–Smirnov test. For the analysis of outliers ROUT
(Q = 1%) test was performed. Level of significance was analyzed using Student’s t-test, One-
way ANOVA and Two-way ANOVA on Graphpad prism 8 and IBM SPSS 16. Bar graphs
are presented as mean ± SEM. Homogeneity of variance was analyzed with Levene’s
test. Differences in p-value ≤ 0.05 were considered significant (ns—p > 0.05, *—p ≤ 0.05,
**—p ≤ 0.01, ***—p ≤ 0.001, ****—p ≤ 0.0001).

3. Results
3.1. Fish Growth and Survival

The antioxidant supplementation (RES, MT) on microdiets showed to significantly
increase the fish standard length at both 15 and 30 dpf, as compared to control and DOX.
However, no significant differences in length were observed between DOX and control
at 15 and 30 dpf (Figure 1a,b). However, while combining DOX with RES or MT, both
antioxidants significantly increased the standard length of the larvae at both time points.
No significant differences were observed in dry weight between the groups supplemented
with RES, MT and DOX alone or in combination. However, a significant increment in
body weight was observed between the control and all other microdiet-supplemented
groups at 30 dpf (RES, MT, DOX, DOX + RES, DOX + MT) (Figure 1c). Although the
DOX diet significantly reduced the survival of larvae at 30 dpf as compared with MT,
the DOX-induced mortality of the larvae was significantly rescued by antioxidant sup-
plementation (Figure 1d). Moreover, the microdiets prepared manually were compared
with the commercially available standard diet for zebrafish (ZEBRAFEED, Sparos Lda,
Olhão, Portugal), and no significant differences were observed in growth performance
(Supplementary Figure S1a).

3.2. Intestinal Villi Morphology on Antioxidant and Pro-Oxidant Supplemented Groups

The histological sections were stained with hematoxylin and eosin (H&E) (Figure 2a),
and villi length was measured (Figure 2b). Histological examination revealed that regular
supplementation of antioxidants RES and MT significantly increased the villi length as
compared to DOX and control. Similarly, supplementation of antioxidants combined
with DOX significantly increased the length of villi compared to DOX alone (Figure 2a,b).
Therefore, supplementation of antioxidants (RES and MT) significantly protects against the
DOX-induced negative effects on the intestinal mucosa of zebrafish.



Nutrients 2022, 14, 4959 6 of 17Nutrients 2022, 14, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 1. Growth and survival. Larvae were fed with resveratrol (RES), MitoTEMPO (MT) and dox-
orubicin (DOX) alone or in combination for 30 days. Total length of zebrafish larvae at 15 days post 
fertilization (dpf) (N = 25 × 4) (a) and 30 dpf (N = 25 × 4) (b), Dry weight at 30 dpf (N = 10 × 4) (c) and 
Survival at 30 dpf (N = 100 × 4) (d). Levels of significance were calculated using Tukey’s multiple 
comparisons (one-way ANOVA) [* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001]. 

3.2. Intestinal Villi Morphology on Antioxidant and Pro-Oxidant Supplemented Groups 
The histological sections were stained with hematoxylin and eosin (H&E) (Figure 2a), 

and villi length was measured (Figure 2b). Histological examination revealed that regular 
supplementation of antioxidants RES and MT significantly increased the villi length as 
compared to DOX and control. Similarly, supplementation of antioxidants combined with 
DOX significantly increased the length of villi compared to DOX alone (Figure 2a,b). 
Therefore, supplementation of antioxidants (RES and MT) significantly protects against 
the DOX-induced negative effects on the intestinal mucosa of zebrafish. 

 
Figure 2. Histology of zebrafish gut. Total of 30 dpf zebrafish guts sections was stained with H&E 
to observe the villi from the different treatment groups with resveratrol (RES), MitoTEMPO (MT) 
and doxorubicin (DOX) (a). Length of villi (b). Statistical significance was calculated using Tukey’s 
multiple comparison (one-way ANOVA) [*** p ≤ 0.001, **** p ≤ 0.0001] [N = 5 × 4]. 

Figure 1. Growth and survival. Larvae were fed with resveratrol (RES), MitoTEMPO (MT) and
doxorubicin (DOX) alone or in combination for 30 days. Total length of zebrafish larvae at 15 days
post fertilization (dpf) (N = 25 × 4) (a) and 30 dpf (N = 25 × 4) (b), Dry weight at 30 dpf (N = 10 × 4)
(c) and Survival at 30 dpf (N = 100 × 4) (d). Levels of significance were calculated using Tukey’s
multiple comparisons (one-way ANOVA) [* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001].

Nutrients 2022, 14, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 1. Growth and survival. Larvae were fed with resveratrol (RES), MitoTEMPO (MT) and dox-
orubicin (DOX) alone or in combination for 30 days. Total length of zebrafish larvae at 15 days post 
fertilization (dpf) (N = 25 × 4) (a) and 30 dpf (N = 25 × 4) (b), Dry weight at 30 dpf (N = 10 × 4) (c) and 
Survival at 30 dpf (N = 100 × 4) (d). Levels of significance were calculated using Tukey’s multiple 
comparisons (one-way ANOVA) [* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001]. 

3.2. Intestinal Villi Morphology on Antioxidant and Pro-Oxidant Supplemented Groups 
The histological sections were stained with hematoxylin and eosin (H&E) (Figure 2a), 

and villi length was measured (Figure 2b). Histological examination revealed that regular 
supplementation of antioxidants RES and MT significantly increased the villi length as 
compared to DOX and control. Similarly, supplementation of antioxidants combined with 
DOX significantly increased the length of villi compared to DOX alone (Figure 2a,b). 
Therefore, supplementation of antioxidants (RES and MT) significantly protects against 
the DOX-induced negative effects on the intestinal mucosa of zebrafish. 

 
Figure 2. Histology of zebrafish gut. Total of 30 dpf zebrafish guts sections was stained with H&E 
to observe the villi from the different treatment groups with resveratrol (RES), MitoTEMPO (MT) 
and doxorubicin (DOX) (a). Length of villi (b). Statistical significance was calculated using Tukey’s 
multiple comparison (one-way ANOVA) [*** p ≤ 0.001, **** p ≤ 0.0001] [N = 5 × 4]. 

Figure 2. Histology of zebrafish gut. Total of 30 dpf zebrafish guts sections was stained with H&E
to observe the villi from the different treatment groups with resveratrol (RES), MitoTEMPO (MT)
and doxorubicin (DOX) (a). Length of villi (b). Statistical significance was calculated using Tukey’s
multiple comparison (one-way ANOVA) [*** p ≤ 0.001, **** p ≤ 0.0001] [N = 5 × 4].

3.3. Antioxidants Prevent DOX-Induced Skeletal Deformities

Skeletal deformities were analyzed at 30 dpf. RES supplementation significantly
reduced the incidence of skeletal deformities as compared to the control. In contrast, MT did
not show any significant difference in incidence compared to the control. As expected, DOX
showed a significantly increased incidence of skeletal deformities compared to antioxidant-
supplemented groups and control groups. However, in the fish fed a combination of DOX
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with antioxidants (RES or MT), a significant reduction in the incidence of deformities was
observed compared to DOX treatment (Figure 3a).
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zebrafish supplemented with antioxidants, resveratrol (RES), MitoTEMPO (MT), and pro-oxidant,
doxorubicin (DOX) (b). Distribution of skeletal deformities (c) and heatmap of distribution of skeletal
deformities (d). Statistical significances were calculated using Tukey’s multiple comparisons (one-way
ANOVA) [* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001] [N = 20 × 4].

Partial Least-Squares Discriminant Analysis (PLS-DA score) [58] was used to examine
the discriminant and similarities in the incidence of skeletal deformities on zebrafish at
30 dpf treated with RES, MT and DOX alone or in combination (Figure 3b). The cluster anal-
ysis showed that the DOX-supplemented group was distinct and completely separated from
other groups, while [control, antioxidants (RES and MT) and combination of antioxidants
and DOX] formed a grouping cluster (Figure 3b). The region-specific skeletal deformities
between the microdiet-supplemented groups are presented in Figure 3c. A higher incidence
of skeletal anomalies was observed in the caudal fin vertebrae region, followed by the
caudal vertebrae and pre-caudal regions. A low incidence of deformities was observed on
the head as compared to the axial skeleton. DOX supplementation showed a significantly
increased incidence of axial skeleton deformities compared to RES and MT, while combin-
ing DOX with antioxidants RES and MT significantly rescued DOX-induced deformities on
the axial skeleton. The heatmap depicts the distribution of skeletal deformities, where the
DOX-supplemented group was completely different from other groups (Figure 3d). The red
color indicates the high incidence of deformities observed on individuals supplemented
with DOX, whereas zebrafish supplemented with RES and MT showed lower incidence
intensity, as indicated by the blue color. The most common skeletal deformities observed in
this study were vertebral fusions, compressions, lordosis, scoliosis, and shortened vertebrae
(Supplementary Figure S1b).

3.4. Antioxidants Improve Mineralization of the Axial Skeleton

To investigate the effect of the tested antioxidants and pro-oxidant on mineralization
of the axial skeleton, whole-mount double-stained larvae were analyzed for mineralization
patterns and malformations of the skeleton. The mineralization pattern was categorized as
fully mineralized, mineralizing and unmineralized, according to the intensity of the AR-S
stain. The RES-supplemented group showed a significantly increased mineralization of
the vertebrae (fully mineralized—38% and mineralizing—37%) as compared to control
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(fully mineralized—9% and mineralizing—20%) and DOX (fully mineralized—7% and
mineralizing—16%). The MT treatment also significantly increased the mineralization
of vertebrae (fully mineralized—20% and mineralizing—38%) compared to control and
DOX groups (Figure 4a,b). The extent of fully mineralized vertebrae increased significantly
upon RES supplementation compared to MT. Similarly, while combining DOX with an-
tioxidants, the mineralization of the vertebrae was significantly increased [DOX + RES
(fully mineralized—20% and mineralizing—33%), DOX + MT (fully mineralized—15% and
mineralizing—37%)] as compared to DOX alone (Figure 4a,b). The heatmap depicts the
mineralization pattern of the axial skeleton among the microdiets supplemented groups.
The clustering analysis on the heatmap shows that mineralization of the vertebrae is catego-
rized into two distinct groups: control, DOX and RES, MT, DOX + RES, DOX + MT. Control
and DOX groups were different from the remaining, displaying lower mineralization of
vertebral bodies. Similarly, on the second cluster, RES also showed a distinct mineralization
pattern, with stronger mineralization as compared to MT, DOX + RES and DOX + MT
(Figure 4c).
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Figure 4. Mineralization of zebrafish vertebral column. Percentage of mineralized (red), mineralizing
(pink), unmineralized (blue) vertebrae (a) and graphical representation of the mineralization status
of the zebrafish. Mineralization status of the vertebrate (b), (red represents mineralized vertebrae
and pink represents mineralizing vertebrate). Heat map of mineralization of vertebrae of zebrafish
feed with resveratrol (RES), MitoTEMPO (MT) and doxorubicin (DOX) supplemented microdiets
(c). Levels of significance were calculated using Tukey’s multiple comparisons (one-way ANOVA)
[* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001] [N = 20 × 4].

3.5. Doxorubicin Affects Mineral Content

DOX supplementation significantly reduced contents in calcium (Figure 5a), phospho-
rus (Figure 5b), sodium (Figure 5d), potassium (Figure 5e) and magnesium (Figure 5f) com-
pared to the antioxidant (RES and MT) treated groups. However, the calcium/phosphorus
ratio (Figure 5c) was not significantly altered between the groups since both minerals
varied to comparable extents. While combining DOX with antioxidants (DOX + RES and
DOX + MT), the calcium and phosphorus content was increased significantly as compared
to DOX alone. Similarly, sodium (Figure 5d), potassium (Figure 5e) and magnesium
(Figure 5f) contents were significantly increased while co-supplementing DOX and MT.
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3.6. Antioxidants Reverse Doxorubicin-Induced Oxidative Stress

Malondialdehyde (MDA) is the end product of lipid peroxidation, commonly used as
a marker for assessing oxidative damage due to the increase of free radicals. The MDA level
was significantly higher in the DOX-supplemented group compared to RES and control at
15 dpf (Figure 6a). Similarly, at 30 dpf, the lipid peroxidation was significantly increased in
DOX-supplemented groups compared to RES and DOX + RES (Figure 6b).
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3.7. Doxorubicin-Induced Effects on Osteoblast Differentiation Markers

In the group supplemented with DOX, it was observed a significant reduction in os-
teoblastic differentiation marker mRNAs, including the mature osteoblast marker
osteocalcin 2 (oc2) (Figure 7a) and the immature osteoblast marker osterix/sp7 (sp7) (Figure 7b)
as compared to RES and MT. However, no significant differences were observed in the
mRNA expression of early differentiation marker runx2b (Figure 7c).
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4. Discussion

Resveratrol (RES) was previously shown to have antioxidant, anti-inflammatory,
estrogenic-like and cell proliferative properties [30,31]. Several in vivo and in vitro studies
have investigated the effect of RES on bone differentiation and remodeling [30–33]. In
the zebrafish model, RES was shown to protect against glucocorticoid-induced bone dam-
age [32] and zinc oxide-induced oxidative stress [33] and also improved lipid metabolism
homeostasis in zebrafish [34]. Previously, doxorubicin (DOX) has also been shown to
increase systematic bone loss and reduce osteoblast differentiation [23,24,59]. Furthermore,
during DOX treatment in patients, an increased risk of bone metastasis and osteolytic injury
has been reported [60,61].

In our study, it was demonstrated that RES positively affected growth, with fish
presenting a significantly increased length as compared to the control and the group sup-
plemented with the pro-oxidant DOX. Dietary RES supplementation also significantly
increased the standard length of zebrafish larvae compared to commercially available
standard diets (ZEBRAFEED, Supplementary Figure S1a). DOX has been known to be
a highly toxic anticancer drug [62]. DOX-induced developmental toxicity has been stud-
ied on various animal models such as dogs [63], rats [64] and zebrafish [65–67]. Chang
et al. [67] previously reported DOX-induced developmental toxicity on zebrafish, where
fish subjected to higher concentrations of DOX (≥25 mg/L) showed acute lethal effects,
while fish on lower concentrations (≤0.1 mg/L) showed sublethal effects as well as multi-
ple malformations [67]. Our results revealed no significant differences in standard length
between the DOX-supplemented group and the control; however, the standard length was
significantly decreased compared to RES and MitoTEMPO (MT). Furthermore, the survival
of the larvae was adversely affected by DOX, whereas co-supplementation of RES and MT
had a protective effect over DOX-induced mortality. Several other studies have also indi-
cated that, in agreement with our observations, the antioxidants RES [32,68,69] and MT [70]
significantly improve overall health and promote the growth of both mammalian and fish
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models. Retardation in growth is also considered a marker of chronic stress [71], where
antioxidants (RES and MT) have been shown to confer protection against these effects.

Metabolism and absorption of dietary nutrients occur in the jejunum. The jejunum
is responsible for absorbing most of the nutrients, such as carbohydrates, fats, minerals,
proteins and vitamins. The intestinal villi increase the surface area for food absorption and
add digestive secretions. In this study, we have shown that antioxidant supplementation
significantly increased the length of intestinal villi, which contributes to higher nutrient
absorption resulting in enhanced fish growth. Several reports have pointed out that DOX
administration caused severe damage to the intestine by increasing apoptosis of jejunal
epithelium [72], increased influx of leukocytes and reduced villi length [73], which was
also observed in our study. In addition to that, in this study, antioxidants (RES and MT)
induced an increase in the villi length and conferred protection against DOX-induced
damage on the intestinal villi of larval and juvenile zebrafish. Zhou et al. [74] have reported
similar findings in pigs, showing that antioxidants protect against free radical-induced
intestinal injury and counteract oxidative stress by modulating p53 mRNA expression. In
our study, the negative effects on intestinal villi are suggested as an explanation for the
growth retardation of the larvae fed with DOX-supplemented microdiets.

As previously described, higher concentrations of DOX showed acute lethal effects,
while lower concentrations (≤0.1 mg/L) showed sublethal effects, such as developing
multiple malformations [75]. The concentration of DOX used in this study was 30 mg/kg
of diet, which is high compared to previous studies performing oral administration of DOX
(10 mg/kg orally) on mice [75]. According to pharmacokinetics analysis, the maximum
concentration (Cmax) and maximum time (Tmax) of plasma DOX concentration were
0.2062 µL/mL and 2 h, respectively [75]. Considering that the leaching of micronutrients
from the diet in the aquatic environment is 30–35 percent [76,77], the amount of DOX
supplemented on the microdiets (30 mg/kg) is sufficient for an effective concentration after
the leaching.

The dietary supplementation with DOX at 30 mg/kg that we have used induced an
increase in larval mortality by 15%, which is significantly different from other groups.
Moreover, this concentration showed a significantly higher incidence of skeletal deformities
as compared to the other experimental groups. In contrast, co-supplementation with the
antioxidants RES and MT was able to rescue the adverse effects of DOX and reduce the
incidence of deformities, increasing survival and mineralization. In this study, the incidence
of skeletal anomalies was more concentrated on caudal vertebrae and on the caudal fin
vertebrae regions, which is in agreement with previous findings in zebrafish [40] and other
aquacultured species (i.e., Sparus aurata) [38,78–83]. The deformities in the caudal region
can lead to secondary vertebral deformities as a result of insipid swimming behavior that
affects the growth and conversion index of the fish [79,84]. Therefore, our data confirm the
hypothesis and indicate that RES and MT supplementation in the diet would be beneficial
for counteracting the DOX-induced bone deformities and for the overall development of
the fish.

Mineralization and differentiation of the bone fully depend upon the osteoblast popu-
lation, which is tightly regulated by osteocytes [85]. In our study, the larvae supplemented
with DOX have shown decreased mineralization of the vertebrae compared to groups fed
antioxidants (RES and MT). Development and mineralization of the axial skeleton on ze-
brafish start from the calcified centra of the Weberian region and are followed by rays of the
caudal fin simultaneously [48,86]. Here, the effect of antioxidants on the mineralization of
the vertebrae is expected to be due to increased osteoblast proliferation and differentiation.

The other factor responsible for the mineralization of bone is mineral metabolism [87].
Bone is the main calcium and phosphate reservoir in higher vertebrates [88]. However,
fish absorb different mineral elements from the medium since water contains abundant
calcium. Therefore, calcium deficiency is uncommon in fish. However, the only source of
phosphorus is food, where a reduction in phosphorus results in low bone mineralization,
development of skeletal abnormalities and reduced growth [89,90]. The significant reduc-
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tion of calcium, phosphorus, sodium potassium and magnesium in the DOX-supplemented
groups indicates that DOX alter overall mineral metabolism. Calcium and phosphorus
are associated with bone mineralization; the inorganic phase of the bone is composed of
calcium phosphates predominantly as hydroxyapatite [Ca10(PO4)6(OH)2] [91]. Calcium
homeostasis maintains the absorption of calcium and phosphorus from the intestine and
maintains levels in bone [91]. In addition to bone metabolism, phosphorus as phosphate
(HPO4

2−) is a crucial signaling molecule, an important component of the cell wall, and is
essential for RNA and DNA structure, and termed as the currency of energy metabolism
as (ATP, ADP and AMP) [87–91]. The lower calcium and phosphorus content suggests
that overall bone metabolism is affected by DOX. Therefore, based on our results, we
hypothesize that reduced capacity for mineral absorption leads to the lower bone mineral
content observed, resulting in lower mineral deposition and contributing to the increased
incidence of skeletal deformities observed in DOX-supplemented zebrafish larvae.

An increase in ROS is one of the working mechanisms of action of DOX-induced toxic-
ity [9,61,62,92]. The increased ROS production results in lipid peroxidation, which is a cru-
cial mechanism for DOX-induced toxicity [17–22]. Under normal conditions, ROS produced
by the cell is balanced by the antioxidant defense mechanism of the cells [29,93]. Here, when
zebrafish was supplemented with DOX alone or in combination for 30 days, MDA concen-
tration was significantly increased on DOX supplementation, but co-supplementation with
RES and MT could prevent this effect on lipid peroxidation, in accordance with previously
reported results [17–22]. This signifies that antioxidant supplementation on feed would
protect against ROS-induced oxidative stress and lipid peroxidase [94,95].

Osteocalcin (Bglap or osteocalcin, Oc2) is a secreted non-collagenous matrix protein
essential in skeletal development and calcium metabolism. Oc2 is a Ca2+-binding vita-
min K-dependent protein produced by osteoblasts, essential for the differentiation and
mineralization of the extracellular matrix [96]. Osterix/Sp7 is a zinc finger transcription
factor crucial for osteoblastogenesis during skeletal development [97]. Similarly to the
mammalian osteoblast differentiation transcription factors, Runx2 and Sp7 were demon-
strated to regulate osteoblastic differentiation during zebrafish bone formation [98]. The
significant decrease in the osteoblast differentiation markers induced in the DOX supple-
mentation groups indicates that DOX impairs bone formation and mineralization processes
in zebrafish. Oc2 plays an essential role in bone mineralization due to its ability to bind
with high-affinity bone hydroxyapatite [99] and Sp7 is essential for early osteoblast differ-
entiation [98]; the mRNA expression of oc2 and sp7 was downregulated by DOX, which
correlates with the lower mineralization of the vertebrae observed in zebrafish at 30 dpf.

Our data provide evidence that regular supplementation with antioxidants could
rescue DOX-induced bone deformities and mineralization in zebrafish. However, some
of the limitations of this study should be considered. Firstly, the concentration provided
on the microdiets has partially leached in the aquatic environment and must be quanti-
fied. The amount of the diet each fish consumed is also unknown; therefore, despite the
effects observed, measuring the DOX concentration in larvae should be considered for
further studies.

5. Conclusions

In conclusion, our data indicate that antioxidant supplementation effectively improves
overall growth, increases mineralization, and rescues pro-oxidant-induced deformities
in zebrafish. Antioxidants (RES, MT) may serve as a supplementation that can prevent
and treat primary or secondary osteoporosis by counteracting pro-oxidant-induced ROS
production and oxidative stress. Thus, the present study indicates the potential to introduce
antioxidants as a candidate drug/supplement for studies in mammalian models to prove
their potential use in osteoporosis treatment.
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