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Abstract: Energy-saving schemes are nowadays a major worldwide concern. As the building sector
is a major energy consumer, and hence greenhouse gas emitter, research in home energy management
systems (HEMS) has increased substantially during the last years. One of the primary purposes
of HEMS is monitoring electric consumption and disaggregating this consumption across different
electric appliances. Non-intrusive load monitoring (NILM) enables this disaggregation without
having to resort in the profusion of specific meters associated with each device. This paper proposes
a low-complexity and low-cost NILM framework based on radial basis function neural networks de-
signed by a multi-objective genetic algorithm (MOGA), with design data selected by an approximate
convex hull algorithm. Results of the proposed framework on residential house data demonstrate
the designed models’ ability to disaggregate the house devices with excellent performance, which
was consistently better than using other machine learning algorithms, obtaining F1 values between
68% and 100% and estimation accuracy values ranging from 75% to 99%. The proposed NILM
approach enabled us to identify the operation of electric appliances accounting for 66% of the total
consumption and to recognize that 60% of the total consumption could be schedulable, allowing
additional flexibility for the HEMS operation. Despite reducing the data sampling from one second
to one minute, to allow for low-cost meters and the employment of low complexity models and
to enable its real-time implementation without having to resort to specific hardware, the proposed
technique presented an excellent ability to disaggregate the usage of devices.

Keywords: non-intrusive load monitoring (NILM); energy disaggregation; neural networks;
multi-objective genetic algorithm; low frequency power data; convex hull algorithms

1. Introduction

Since the start of the energy crisis, energy-saving problems have risen in popularity
among the general public [1]. According to the study reported in [2], the global energy
problem is driven by global population increase, rising demand, and continuous reliance on
fossil fuels for production. Moreover, global energy consumption influences greenhouse gas
emissions and, thus, climate change [3]. As a result of this situation, several governments
have acted and set CO2 emission reduction objectives. For instance, China, one of the
world’s major consumers of fossil fuels and major CO2 emitter [2], promised to reach peak
CO2 emissions and carbon neutrality by 2030 and 2060, respectively [4]. Likewise, the
European Union (EU) made a significant effort to combat global warming by implementing
a variety of strategic policies [5,6].
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The building sector is a prominent energy consumer and greenhouse gas emitter. For
instance, it accounts for 27.5% of the overall final energy use in EU [5]. Therefore, there is a
pressing need to halt the rising trend in building energy consumption. Energy management
through adequate saving energy mechanisms has been the focus in recent years as a key
strategy for conserving energy [1].

Home energy management systems (HEMS) are an efficient way to minimize energy
consumption in a home while preserving occupant comfort [7,8]. The development of an
effective HEMS system requires the implementation of a process to identify and monitor
the principal loads in the household [9], thus allowing the HEMS to efficiently control
the operation of (some) electric devices [10]. It also enables consumers to have a better
awareness of their electricity usage patterns, potentially leading to more energy-conscious
behavior and decreasing operating and electrical costs for grid operators and end users [11].

One of the techniques for monitoring appliances is to install measuring devices or
sensors for each load of interest. This is known as intrusive load monitoring (ILM) in the
literature and can properly estimate the operating condition of devices [12–14]. However,
some disadvantages limit its practical application, such as the difficulties of deploying and
configuring many sensors, its high cost, and its intrusive nature, which raises privacy and
security concerns [15]. Non-intrusive load monitoring (NILM), on the other hand, aims to
estimate the energy consumption of individual devices from a single meter that monitors
the aggregated demand across many appliances [10]. It is one of the most effective energy
disaggregation approaches since it enables users to disaggregate the power consumption
of specific appliances in the household while maintaining user privacy and using smart
meters that are already installed at the house entrance [15].

George Hart pioneered the use of NILM in [16,17]. He presented NILM as a monitoring
system for appliances in an electrical circuit that turns ON and OFF independently. He
showed that devices generate unique power consumption signatures. Therefore, the NILM
techniques enable the recognition of these signatures from the total aggregated power
consumption.

NILM algorithms are often classified into event-based algorithms [16–19] that relate
signal state changes to device state changes and eventless algorithms that estimate a
global system state using statistical and machine learning approaches [20]. Event-based
approaches seek to detect and classify ON/OFF events of electrical devices. In Hart’s
approach, the ON/OFF events were used to detect the operation of specific appliances
using the aggregated active and reactive powers. However, the technique struggled to
identify certain types of appliances (multistate appliances, continuously variable consumer
appliances, and permanent consumer devices).

Subsequently, several other techniques have been explored to solve the problem of
energy disaggregation. Initially, researchers were drawn to the approaches of hidden
Markov models (HMM) and their extensions [21–27]. However, as the number of target
appliances increases, the complexity of HMM models and their extensions grow exponen-
tially. Furthermore, difficulties with generalization and scalability were noted for these
approaches, as well as a large sensitivity to current inference techniques for state estimation
to local optima, thus limiting their applicability in the real world [13].

To tackle this NILM challenge, researchers have lately resorted to machine learning
methods. Indeed, both supervised and unsupervised approaches have been explored to
address the challenge of NILM. Support vector machines demonstrated good performance
in [28–31]. K-nearest neighbors were explored in [32,33], decision tree in [34,35], k-means
clustering in [36], and graph signal processing in [37,38]. More recently, deep learning
approaches have prompted an upsurge in NILM research. The studies reported in [39,40]
were among the first to use deep learning-based NILM. In [40], three deep learning models
(long short-term memory, convolutional neural network, and autoencoders) were compared.
The models were trained using a six-second low frequency sampling rate using only the
active power as the input feature. They obtained better performance than the factorial
HMM and combinatorial optimization state of the art models. In [41], the authors presented
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a bidirectional long short-term memory model based on a low frequency sampling rate.
They combined several electrical features to create a multi-feature input. The model
was evaluated on low frequency data from the public datasets UKDALE and ECO. An
approach based on deep convolutional networks was proposed in [42]. They classified the
states of devices using a feature space enriched by the introduction of a temporal pooling
module. The authors tested their model using the UKDALE low frequency dataset and
demonstrated good generalization properties. In [43], a hybrid deep learning architecture
based on a convex hull data selection approach using low frequency power data for
NILM was proposed. They selected the most informative vertices of the real convex hull
using a random approximation algorithm, incorporating them in the training data. They
showed that the proposed framework is effective and performs well compared to existing
approaches.

However, deep learning approaches require a large amount of training data to achieve
satisfactory results [44]. This poses a major challenge for NILM algorithms due to the
scarcity of high-quality datasets, both in terms of duration and label quality [10,45,46].
Additionally, such methods gain greatly from a large number of trainable parameters,
which requires a processing capacity that is neither inexpensive nor cheaply accessible in
most circumstances [44]. A comprehensive literature review of NILM approaches, beyond
the scope of this paper, can be found in [15].

The application of NILM techniques depends strongly on the sampling rate, which
refers to the frequency at which the meter measures the data. The sampling rate defines the
type of information that can be obtained from the electrical signals [47]. There are two basic
approaches for collecting data [13–15]: low frequency sampling rate (1 Hz or less) and high
frequency sampling rate (in the range of kHz).

The high sampling frequencies enable the use of fine-grained characteristics such as
harmonics [48], voltage-current (V-I) trajectory [49], and wavelet coefficients [50,51] from
steady-state and transient. Although these methods may lead to good results in terms of
device identification accuracy, high sampling frequency data have the drawbacks of being
both difficult to transfer and store and very expensive in terms of software and hardware
specificity [14]. Moreover, the current smart meter infrastructure, which typically allows
for low sampling rates of the range of a few seconds, is not generally compatible with high
frequency data collection and, therefore, specific equipment is required [52,53].

Conversely, low frequency methods are the ideal option in NILM applications since
they enable the use of commonly used smart meter resources without requiring extra hard-
ware. In principle, low-frequency data-based approaches perform load disaggregation by
identifying the combination of states that substantially reduce the uncertainty margin [53].
However, the complexity and computational time of these methods may significantly in-
crease with the number of appliances. Additionally, NILM algorithms must fulfill a variety
of criteria, including good precision in recognizing device usage and accurately estimating
their power consumption, using low complex models and low-cost equipment [15,41].

Therefore, there is the need to have an NILM technique available that, besides deliv-
ering very good results both in terms of operation detection and energy estimation, does
not require specific acquisition systems, the existence of large amount of design data, and
expensive processing power to design the classification and estimation models. To address
these challenges, this paper proposes an NILM framework based on a low-frequency sam-
pling rate, allowing the use of low-cost meters and employing low-complexity shallow
neural network models. The following are the key contributions of this paper:

• A low-complexity NILM framework based on a radial basis function neural network
designed by a multi-objective genetic algorithm (MOGA) with data selected by an
approximate convex hull algorithm was proposed. The framework includes residential
house data gathered in a real-life situation, feature extraction, appliance classification,
and energy estimation.

• A comparative analysis of several computational intelligence’s classifiers for non-
intrusive load monitoring using the same data, including support vector machine,
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k-nearest neighbors, decision trees, long short-term memory, and convolutional neural
network, was performed.

• The feasibility of the approach was also validated using the public AMPds (Almanac
of Minutely Power datasets) dataset, and a comparative study with other approaches
was conducted.

• The proposed NILM framework was used to disaggregate one month of consumption
of a case study house, identifying that 60% of the total consumption is related to
schedulable devices, thus enabling a further degree of flexibility to HEMS.

The rest of the paper is structured as follows: Section 2 introduces the problem state-
ment, the methods used, the data acquisition system, and the accuracy metrics employed.
The obtained results are presented in Section 3, and their discussion is in Section 4. Section 5
concludes the paper.

2. Methodology
2.1. Problem Statement

The primary goal of NILM is to estimate the energy consumption of each individual
device using aggregate data from the household’s total energy usage. Let x = [x1, x2, . . . ,
xT] be a sequence of aggregated readings from a smart meter in the house. The aim is to
estimate the contribution of each device y(n) = [y(n)1 , y(n)2 , . . . , y(n)T ] in the house from x.
This can be expressed in the following form:

xt =
N

∑
n=1

y(n)t + εt (1)

where εt represents the noise term, N is the known number of appliances, y(n)t is the
contribution of appliance n at time t, and xt is the aggregated data at time t.

The NILM process involves data collection, feature extraction, appliance classification,
and energy estimation [14,15]. Figure 1 depicts the overview of the NLM framework. The
initial step of an energy monitoring system is devoted to collecting aggregate data from the
single meter. Following that, certain appliance features, or signatures, must be chosen and
computed from the collected data. The classification method is carried out to identify which
appliances are active at a given moment, as well as their states. Using this knowledge, the
electric consumption of each device is estimated.
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In the literature, both supervised and unsupervised learning approaches are explored
for appliance classification and energy estimation. However, in terms of accuracy, super-
vised techniques generally outperform unsupervised approaches [54]. In the proposed
approach, appliance models were used in the accomplishment of these tasks.

The proposed NILM approach employed radial basis function neural networks de-
signed by a multi-objective genetic algorithm (RBFNN-MOGA), with design data selected
by an approximate convex hull algorithm. First, the Approxhull algorithm proposed in [55]
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was applied to perform a data selection method based on the determination of the most
informative vertices of the real convex hull. Afterwards, an RBFNN-MOGA classifier was
designed to detect whether a specific device was ON or OFF. If the device was ON, then
its power consumption was estimated using an RBFNN-MOGA estimator, designed in a
similar manner to the RBFNN-MOGA classifier. Then, the models were designed, and the
on-line operation is summarized in the Figure 2 flow chart.
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2.2. Data Collection

This study was based on data collected from a residential house located in Gambelas,
Faro, Portugal. It has two floors and 20 separate spaces (including halls, a garden, rooms,
and so on). A large variety of electrical devices were employed, and a json file was
created using the NILM toolkit format [56]. The electric panel (Schneider) in the house
includes 16 monophasic and 1 triphasic circuit breaker. Four smart plugs (SP), an intelligent
weather station (IWS) [57], a PV installation with an inverter and a battery box [58], and
four self-powered wireless sensors (SPWS) [59] are also available in the house. Using
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this equipment, a data acquisition system was designed to keep track of several electric
variables. A Carlo Gavazzi (EM340) [60] three-phase energy meter was used to collect the
data needed for NILM algorithms. It monitored 45 different electric variables, which were
all sampled at 1 Hz. Circutor Wibeees (CW) [61] were also employed to measure additional
electric variables for every circuit breaker and to generate an approximate ground truth for
NILM detection. Each one includes a hotspot for performing the first configuration via a
manufacturer-supplied mobile app, and WB’s data were sent to a free manufacturer web
service by default. This procedure can be turned off, and the data collected can be accessed
via an internal web interface, implementing the Modbus IP protocol. It is worth mentioning
that the sampling instants for each breaker differ because the measurement equipment is
not synchronized. The triphasic and the monophasic circuit breakers measure 198 variables
every second, such as current, voltage, frequency, apparent, active, and reactive powers,
the power factor, and capacitive reactive and active inductive energy. The four smart plugs
allow for the measurement of six electric variables every second. The on/off control of
certain equipment was performed using these smart plugs, and they also enabled us to
measure individual sockets in the house. They can be accessed and controlled using a cloud
API or directly through the internal web service. The intelligent weather station measures
atmospheric variables such as air temperature, relative humidity, and global solar radiation.
Data transmission from and to measuring appliances is performed using gateways and
a technical network. The Modbus interface was used for data access using an IP-cabled
and wireless network. An IoT platform was used both in the residence and in the cloud. It
collected data from message queue servers that were configured. For each type of entity
configured on the platform, the data were passed through a set of configured plug-ins. The
system included a web page that allows the user to configure all the systems. Data can
also be visualized using graphs organized by sensor type, and they can be downloaded
in different formats (csv, xlsx, mat, and npz). The full description of the data acquisition
system can be found in [62].

2.3. Data Preprocessing

The next step after data collection is the pre-processing of the datasets. Aggregated
active and reactive powers were extracted from the EM340 meter data. The device’s ground
truth active power sequence was determined manually using CW and SP data. To create the
ON-OFF labels of devices, an approach similar to the one proposed in [43] was used. Briefly,
it was assumed that a device was switched ON when its power consumption exceeded
a specified threshold value for at least a certain period of time. Table 1 summarizes the
characteristics used to create the device labels, as well as basic statistics for each device,
including the number of activations, the maximum and average activation durations, and
the total active energy consumed, during the relevant data period. One dataset was created
for each appliance.

Table 1. Devices statistics.

Devices Max Power
(W)

Power
Threshold (W)

Time
Threshold (s) Activations ON Duration(s) Energy

(kWh)

Max Average

Fridge 200 50 60 708 7045 2100 36.1
Washing machine 2500 20 3 17 8696 2250 9.5

Electric water heater 1700 1200 3 663 10,169 561 122.9
Swimming pool

pump 1200 500 3600 28 25,202 24,985 159.1

2.4. Data Selection

For data selection, we used ApproxHull. In geometry, the convex hull of a set of data S
can be considered the smallest convex set (region) including S. A set S is convex if, for every
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couple (u, v) ∈ S and any t ∈ [0, 1], the point (1− t)u + tv is in S. Furthermore, if S is a convex

set, for any u1, u2, · · · , uj ∈ S, and any nonnegative numbers
{

β1, β2, · · · , β j
}

:
j

∑
i=1

βi = 1,

the vector
j

∑
i=1

βiui is called a convex combination of u1, u2, · · · , uj. The convex hull can

be expressed as the intersection of all convex sets, including a given subset of Euclidean
space, or similar to the set of all convex combinations of points in Euclidean space. It can be
represented using vertices and facets, with vertices referring to the data set’s border points
and facets referring to the connections between the vertices.

ApproxHull is a data selection algorithm that uses a randomized convex hull approxi-
mation approach to process high-dimensional data in an optimal time and memory manner.
It is an incremental algorithm that starts with an initial convex hull and then iteratively
develops the current convex hull by introducing new vertices. In the approach, the vertices
of the real convex hull were determined based on the hyperplane distance of the samples to
the facets of the actual convex hull. It resulted in obtaining a subset of the most informative
vertices of the real convex hull. For further description about the Approxhull algorithm,
please refer to [55].

This way, using the design data, ApproxHull first removed duplicated samples and
columns, retaining only the informative samples. The convex-hull points of this reduced
set were mandatorily incorporated in the training set. According to user’s specification,
random points were extracted from the remaining design data to be added to the training
set and to the testing and validation sets.

2.5. Proposed Method
2.5.1. Proposed Radial Basis Function Neural Networks Designed by Multi-Objective
Genetic Algorithm (RBFNN-MOGA)

The radial basis function network is an artificial neural network made up of three
fully connected layers: input layer, hidden layer, and output layer. The input layer consists
of a set of inputs. It connects the source nodes to the hidden layer. The latter is made up
of several units known as neurons. It performs a nonlinear transformation on the input
data. Then, a linear combination of the hidden layer outputs is performed to generate the
network’s overall output. Equation (2) describes the output of the model [63,64]:

y(X) =
n

∑
i=1

Wi ϕi(‖X− Ci‖) + b (2)

where Wi and b denote the weights and bias term, n is the number of neurons in the

hidden layer, ‖. ‖ denotes the Euclidean norm, and ϕ{‖X− Ci‖}
n
1

are nonlinear radial

basis activation functions centered at point Ci. The non-linear activation function used was
the Gaussian function of the following Form (3):

ϕ(‖X− Ci‖) = e
− 1

2σ2
i
‖X−Ci‖2

(3)

where σi denotes a spread parameter.
The design of the radial basis function neural network model was performed using

a multi-objective optimization framework called MOGA. The method is a hybrid of a
genetic algorithm and a derivative-based method. Its final result is a set of non-dominated
models, obtained over a user-specified number of iterations. These individuals constitute
the Pareto-optimal solutions and are obtained by minimizing predefined objectives. The
genetic part searches the space of inputs and neurons, while the derivative algorithm
estimates, for each individual model, its parameters.

Each potential neural network topology is expressed as a chromosome. The number
of neurons in the hidden layer is the first element of the chromosome, and the following
elements are the indices of an arbitrary number of features selected.
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Let D = (X, y) be a set consisting of N input-output couples, which is split into three
parts: training set Dtr, test set Dte, and validation set Dva. Let L be a set of all possible input
features. MOGA is supplied with dataset D, with the allowable range of hidden neurons
n ∈ [nm, nM] and the range of input features d ∈ [dm, dM] from L as design parameters. It
then constructs a non-dominated collection of radial basis function neural network models
that minimize [µp, µs], where µp and µs represent a set of objectives associated with the
radial basis function neural network’s parameters p and its structure, respectively. The
model complexity, which is a function of the number of input features and the number of
hidden neurons, is typically the only objective in µs.

µS = [O(µ)] (4)

Equation (5) describes the model complexity (O(µ)):

O(µ) = µ1 × (µ2 + 1) (5)

where µ1 and µ2 denote the number of neurons in the hidden layer and the number of
input features, respectively.

In order to estimate the parameters of each model, a modified version of the Levenberg-
Marquardt (LM) method was employed [65]. It exploits the neural network’s linear/nonlinear
separability property, typically obtaining a high accuracy and fast convergence rate.

As the models to be designed are nonlinear, the final results depend on the initial
values of the parameters (centers and spreads). For this reason, the design framework
allows different initialization methods, and instead of just training one model, a number of
different models were trained for the same chromosome, and different strategies could be
used to determine the best model for the current training trial.

Classification Problems

When used for classification problems, as is the case of the RBFNN-MOGA classifier,
which detects if a device is ON or OFF, the relevant µp MOGA objectives are:

µp = [FPDtr , FNDtr , FPDte , FNDte ] (6)

where [FPDtr , FPDte ] denote the false positives and [FNDtr , FNDte ] the false negatives for
training and testing, respectively.

Estimation Problems

In the case of estimation problems, as is the case of the RBFNN-MOGA estimator that
predicts the device power consumption, a nonlinear autoregressive with exogenous inputs
(NARX) configuration was employed. The specification of µp was based on minimizing the
error between model outputs and target values. The µp objectives were as follows:

µp = [ε(Dtr), ε(Dte), ε(Ds, PH)] (7)

where ε (Dtr) and ε (Dte) represent the root mean square errors (RMSE) of the model,
assuming the training set Dtr and the testing set Dte. ε (Ds, PH) denote the forecasting error.
It is computed by summing the RMSEs along the prediction horizon (PH):

ε(Ds, PH) =
PH

∑
i=1

RMSE(E(Ds, PH), i) (8)
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E is an error matrix defined as:

E(Ds, PH) =


e[1, 1] e[1, 2] · · · e[1, PH]

e[2, 1] e[2, 2]
. . . e[2, PH]

...
... · · ·

...

e[p− PH, 1] e[p− PH, 2]
... e[p− PH, PH]

 (9)

where e[i, j] denotes the model prediction error taken from instant i of Ds at step j within
the prediction horizon PH. Ds is a time series with p data points.

Figure 3 depicts a flowchart illustrating the processes involved in the model’s design.
This approach was used in the literature to solve several classification and prediction
problems [64,66,67]. A full description of the MOGA design radial basis function neural
network can be found in [68].
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2.5.2. Other Implemented Classification Methods

To assess the performance of the proposed method, different classification alternatives
were implemented:

Support Vector Machines (SVM)

Support vector machines are a class of supervised learning algorithms used to solve
classification and regression problems. They emerged from Vladimir Vapnik’s theoretical
considerations on the development of a statistical theory of learning in the 1990s [69]. In
the case of a classification problem, the goal of the SVM is to find the maximum margin
hyperplane to separate the positive examples from the negative ones. Given a training set

[xi, yi]
N

i = 1
, where xi ∈ Rd is the ith vector of the input features and yi ∈ R is the target, the

support vector method aims to create a classifier described as follows [70]:

o(xi) = sign

[
n

∑
i=1

αiΨ(x, xi) + b

]
(10)

Ψ(x, xi) = e
− 1

2σ2
i
‖x−xi‖2

(11)

yi

⌈
wTζ(xi) + b

⌉
≥ 1 (12)

ζT(x)ζ(xi) = Ψ(x, xi) (13)

where n is the number of support vectors, ζ(.) is a nonlinear function that maps the input
space into a high-dimensional space. Ψ is the RBF kernel function used, b is a real constant,
αi are positives real constants, and σ is a spread parameter.

K Nearest Neighbors (KNN)

The nearest neighbors’ algorithm is a non-parametric supervised classification algo-
rithm [71]. The approach estimates the output associated with a new input x by considering
the k samples whose input is closest, in a Euclidean sense, to the new input x. The choice of
k can lead to classification issues because the results are sensitive to noise if k is too small,
and the precision is lowered if k is too large. In the classification phase, k is a user-defined
constant, and an unlabeled vector is classified by assigning it the label that appears the
most often among the k training samples. The distance d is determined by using (14) for
any instance xi in a data set of size N [72].

d(xi) = min{d(xi, x1), d (xi, x2), . . . , d(xi, xn)} (14)

Euclidean distance was used in this work. Equation (15) calculates this distance.

dE({x1, x2, · · · , xN}; {y1, y2,··· ,yN}) =

√√√√ N

∑
1
(xi − yi)

2 (15)

where N is the total number of dimensions.

Decision Trees

A decision tree’s structure can be viewed as a tree-like representation of the decision
process [35]. It classifies the data based on the tree structure’s properties, with a leaf
node representing a record set subject to a constraint. Quilan [73] introduced the ID3
algorithm for decision tree classification in 1986. Subsequently, the C4.5 method was
created as a result of the ID3 algorithm’s inability to deal with discrete attributes and its
tendency to over-fit. It was based on the automatic selection of discriminant variables
from unstructured and potentially large data. Decision trees can thereby infer logical
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cause-and-effect principles that did not initially appear in the raw data. The numerous
possible decisions are established at the branches’ ends and are closely aligned with the
decisions taken at each level. As was described in [35], the definition of the C4.5 algorithm
is as follows: A training set is made up of A data points, with the form (V1, V2, · · · , Va,
C), where Vi is the sample’s attribute value and C is the sample’s category. Assuming the
set of samples T is partitioned into subsets T1, T2, · · · , Tk based on the discrete attribute
A’s k distinct values, the information Gain is used to determine the splits and is calculated
as follows:

Gain (A, T) = inf(T)−
k

∑
i=1

|Ti|
|T| × inf (Ti) (16)

Long Short-Term Memory (LSTM)

LSTM is a deep recurrent neural network that processes sequential data and deals
with vanishing gradient problems using a feed-forward variation. It was developed by
Hochreiter [74] in order to learn long short-term dependency information. Its architecture
is based on recursive state calculation using prior states and inputs. An LSTM layer is
made up of memory blocks, which are recurrently connected blocks. There are one or more
recurrently connected memory cells in each block. For the cells, the forget layer, input layer,
and output layer are three multiplicative units that enable the continuous analogues of
write, read, and reset processes [75]. The forget layer decides which information should
be saved and which should be eliminated. Its output is computed utilizing the current
input sample’s weight and bias parameters, as well as data from the previous time step.
The forget gate, input gate, update gate, and output gate are all part of the gate mechanism.
The LSTM model’s mathematical formula is as follows [76]:

zt = ϕ(WZxt+Rzyt−1+bz) (17)

it= σ
(
Wixt +Riyt−1+pi�ct−1+bi) (18)

f t= σ
(

W f xt +R f yt−1 +pi�ct−1+bt) (19)

ct= zt�it +ct−1� f t (20)

ot= σ
(
WOxt +ROyt−1 +po�ct+bo) (21)

yt= ζ
(
ct )� ot (22)

where σ, ϕ, and ζ are point-wise nonlinear activation functions, � denotes the vector
pointwise multiplications, and input, recurrent, peephole, and bias weights are denoted by
W, R, p, and b, respectively. Further information about LSTM models can be found in [74].

Convolutional Neural Network (CNN)

CNN is one of the most widely used deep learning networks in large-scale image
recognition due to its success in classification tasks [77,78]. CNN architecture stems from
the combination of several convolutional layers, pooling layers, and fully connected layers.
The convolutional layer enables the extraction of features from the input; the extracted
features are then selected and filtered by the pooling layer, and the output is generated by
nonlinearly combining the selected features with the fully connected layer [79]. Given a
time-dependent signal x(t) and a kernel (k) of size K, the cross-correlation process generates
another signal y(t), which may be computed as follows [80]:

y(t) =
[ K

2 ]

∑
k=−[ K

2 ]

x(t + k) k(k) + b (23)



Energies 2022, 15, 9073 12 of 29

where b denotes the bias term. Following that, the result is passed to the ReLu activation
function used.

ReLu(x) = max (0, x) (24)

The output of the fully connected layer is defined by:

y = ReLu (wx + b) (25)

where w denotes the layer’s weight matrix, and b denotes the layer’s bias vector.

2.6. Performance Metrics

Several metrics are used in the literature to evaluate NILM algorithms [42,45,81]. To
assess the performance of the proposed models, the most relevant ones were selected with
the goal of capturing the methodology’s efficiency in both identifying the activation state
and estimating the energy usage.

For classification, the recall metric, which assesses the model by scoring particular
predictions about the expected data as positive, the precision, which is defined as the propor-
tion of relevant instances found among the retrieved instances, and F1, i.e., the harmonic
mean of recall and precision, are the criteria employed. The first two criteria depend on the
number of true positives (TP), which denotes the number of properly predicted testing
periods when the target appliance was ON, on the number of false positives (FP), which
is the number of OFF periods for the target appliance that are erroneously identified as
ON, and on false negatives (FN), which is the number of ON periods that were mistakenly
categorized as OFF.

Regarding energy estimation, the mean absolute error (MAE) assesses the accuracy of
the estimate power consumption of device, the signal aggregate energy (SAE) measures
the relative error in estimating the amount of energy consumed during the full assessment
period, and the estimation accuracy (EA) reflects how well the NILM algorithm estimates
power usage in comparison to real consumption.

Recall =
TP

TP + FN
(26)

Precision =
TP

TP + FP
(27)

F1 = 2× Precision× Recall
Precision + Recall

(28)

MAE(k) =
∑N

1

∣∣∣yk
t − pk

t

∣∣∣
N

(29)

SAE(k) =

∣∣∣Ê(k) − E(k)
∣∣∣

E(k)
(30)

EA(k) = 1−
∑N

1

∣∣∣yk
t − pk

t

∣∣∣
2 ∗∑N

1 yk
t

(31)

where N is the number of values that represent the load data, yk
t are the ground truth values,

pk
t are the predicted values, Ê(k) is the total predicted energy, and E(k) is the total ground

truth energy for device k. All these metrics are dimensionless, except MAE, for which the
unit of measurement is Wh.

3. Results

This section presents the results of tests performed on the data collected in the house
presented in Section 2.4. The data were collected for nearly two years and can be found
in (https://csi.ualg.pt/nilmforihem, accessed on 1 November 2022). The experiments

https://csi.ualg.pt/nilmforihem
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were conducted using data collected over a one-month period, from 1 March 2021 to
28 March 2021 for the washing machine and from 2 June 2021 to 28 June 2021 for the other
devices, totaling approximately 2.4 million samples for each device. Since the original
data were collected with a sampling interval of one second, their size was too large to be
processed by the MOGA framework and was therefore resampled at a 1 min rate. The
proposed framework was evaluated using four popular devices for evaluating NILM
algorithms, namely a fridge, washing machine, electric water heater, and swimming pool
pump. Moreover, these devices are within the range of the main energy consuming devices
in the studied house.

3.1. MOGA Design Radial Basis Function Neural Network Results

The next step is to perform data selection before applying MOGA to design the neural
networks. Indeed, in order to design the suitable final solution, the system must train
a significant number of radial basis function neural network models. On the one hand,
certain constraints should be implemented on the size of the datasets that are supplied
to MOGA to enable the procedure to be completed in an acceptable time period and, on
the other hand, to ensure the quality of the data to be used for the training set. To achieve
this, the Approxhull algorithm described in Section 2.4 was applied. First, the original
dataset containing the target and the features was provided to the algorithm. For the
state classification of the devices, the input features were a sliding window consisting of
20 variables (10 aggregated active and 10 reactive delayed power values). For the power
estimation, lags of two exogenous variables (aggregated active and reactive powers, 10 for
each variable) as well as 10 lags of the modeled variable (appliance active power) were fed
to the ApproxHull algorithm.

Using ApproxHull, the convex hull points of all relevant data samples were generated.
The MOGA training set was then built using the obtained convex points and random data
samples to obtain 60% of the data. MOGA testing sets and validation sets were built using
the reminder random data samples with a proportion of 20% for each part. Moreover, it
should be noted that before computing the convex-hull (CH) vertices, the original data
set went through a cleaning phase. Tables 2 and 3 present the number of CH vertices
found and the size of training, testing, and validation sets generated for each appliance, for
classification and for estimation, respectively.

Table 2. Approxhull results for classification.

Devices CH Vertices Training Testing Validation

Fridge 441 24,493 8164 8166
Washing machine 810 24,185 8061 8063

Electric water heater 731 8212 2737 2739
Swimming pool pump 673 12,655 4218 4220

Table 3. Approxhull results for estimation.

Devices CH Vertices Training Testing Validation

Fridge 842 24,185 8061 8063
Washing machine 753 24,185 8061 8063

Electric water heater 1497 8212 2737 2739
Swimming pool pump 640 12,655 4218 4220

For classification and for each appliance, the MOGA algorithm was executed with the
objective of minimizing the model complexity, the number of false positives and negatives
in the training set, and the number of false positives and negatives in the testing set.

For estimation, MOGA minimized the RMSEs of the training set ε (Dtr) and testing set
ε (Dte), the model complexity, and the forecasting error ε (Ds, PH). The prediction horizon
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(PH) was set to 1, and Ds represents a specific period extracted from the time-series of the
appliance active power (with s consecutive input-output pairs).

According to the author’s experience with using MOGA, the algorithm parametriza-
tion was as follows. For both models, the hidden layer’s number of neurons was set in
the range of [2,30], whereas the number of input features was set in the range of [1,20] for
the classification and in the range of [1,30] for the estimation models. A population size
of 100 was used, with a number of generations fixed at 100. The proportion of random
immigrants was set to 10%. The crossover rate was set to 0.7, with a selective pressure of
2. The maximum number of iterations was set to 50. Each individual in the population
was trained 10 times with different initial conditions, and the best training trial was se-
lected using the nearest to the origin criterion. An early stopping criterion was used as the
termination criterion.

After one run of MOGA, non-dominated sets of models were generated. Table 4
presents the dimensions of the non-dominated sets for classification and estimation for
each appliance.

Table 4. Dimensions of non-dominated sets.

Devices Classification Estimation

Fridge 274 45
Washing machine 89 171

Electric water heater 414 329
Swimming pool pump 153 172

Once the models were designed, the classification model was primarily employed to
detect if the appliance was active or not in the next sample. If the device was active, then the
MOGA-designed estimator model was employed to estimate the power consumption of the
device. Table 5 presents the performance statistics in terms of minimum and average false
positives (FP) and false negatives (FN) in the three sets, as well as the model complexity
obtained in the classification phase for each appliance. As can be seen, the number of errors
was small compared to the dimensions of the sets.

Table 5. Classification performance in the non-dominated sets.

Devices
Training Testing Validation Model

ComplexityFP FN FP FN FP FN

Fridge Min 1722 0 534 0 550 0 6
Mean 2638 295 843 96 836 103 139

Washing machine Min 0 20 0 10 0 7 8
Mean 24 220 4 56 6 55 282

Electric water heater
Min 58 1 24 0 25 0 6

Mean 231 231 79 68 60 71 162

Swimming pool pump Min 6 0 2 0 2 0 6
Mean 84 49 23 14 23 12 143

Performance statistics in terms of the minimum and mean values of the root mean
square errors for the training, testing, and validation sets, evaluated in the non-dominated
sets in the estimation phase, are presented in Table 6.
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Table 6. Estimation performance in the non-dominated sets.

Devices Training Testing Validation

Fridge εmin 0.131 0.124 0.133
ε 0.136 0.129 0.136

Washing machine εmin 0.010 0.018 0.010
ε 0.031 0.032 0.025

Electric water heater
εmin 0.250 0.221 0.239

ε 0.298 0.260 1.710

Swimming pool pump εmin 0.063 0.048 0.057
ε 0.069 0.048 1.790

After some further tests, for each appliance and each model type, the non-dominated
sets’ best model, with high performance and low complexity, was selected. Table 7 presents
the classification results of the validation dataset using the selected model in terms of recall,
precision, F1 score, number of features, number of neurons in the hidden layer, and model
complexity for each device. As can be seen, models with very low complexity obtained
excellent classification results.

Table 7. Classification results.

Devices R P F1 Number of
Features

Number of
Neurons

Model
Complexity

Fridge 0.98 0.91 0.95 7 30 240
Washing machine 0.97 0.97 0.97 4 30 150

Electric water heater 0.99 0.97 0.98 12 29 377
Swimming pool pump 1 1 1 8 25 225

R: Recall, P: Precision.

The estimation results using the selected models in terms of mean absolute error
(MAE), signal aggregate error (SAE), and estimation accuracy (EA) are presented in Table 8.

Table 8. Estimation results.

Devices MAE
(W) SAE EA Number of

Features
Number of

Neurons
Model

Complexity

Fridge 4.00 0.010 0.96 4 6 30
Washing machine 1.1 0.030 0.93 23 20 480

Electric water heater 66.7 0.043 0.95 27 18 504
Swimming pool pump 1.5 0.004 0.99 7 14 112

The results presented in Tables 7 and 8 illustrate the model’s efficiency in detecting
and estimating the energy consumed by each appliance. The detection results of F1 scores
were over 95% for fridge, 97% for washing machine, 98% for electric water heater, and 99%
for swimming pool pump. In terms of estimation accuracy, the washing machine obtained
over 93%, the electric water heater 95%, the fridge 96%, and the swimming pool pump 99%.
The EA results were all above 0.93, again using models of very small complexity.

Figures 4–7 depict examples of disaggregation outputs in terms of active power. For
all figures, the blue line denotes the ground truth values, and the red line denotes the
estimated ones.
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As can be observed, there was a consistent agreement between the measured and
the predicted active power for the devices considered in the study. The predicted power
consumption signals were highly reliable. From these results, we concluded that the
proposed method achieved a very satisfactory performance, with models of very low
complexity operating on one-minute data.

3.2. Results of Other Implemented Classification Methods

Utilizing the same 1 month of data, five experiments were conducted using different
classification methods such as support vector machines, k-nearest neighbors, decision
trees, LSTM, and CNN. The first step was to standardize the data to accelerate the training
process and to make the training procedure more robust. The standardization of aggregated
data was conducted in a way similar to the one reported in [40]. First, each sequence’s
mean and standard deviation were determined. The normalized sequence was then created
by subtracting the mean from the input sequence and dividing it by the standard deviation.
The goal was to have a normalized sequence with a standard deviation of one and a mean
of zero. Equation (32) describes the procedure:

X normalized =
(X− µ)

σ
∼ N (0, 1) (32)

where X is the input sequence, µ is the mean of the input sequence, and σ is the standard
deviation of the input sequence.

The dataset was split into a training set (80%) and testing set (20%). As in the proposed
framework, a sliding window of 20 variables (10 aggregated active and 10 aggregated
reactive power values) was used.

3.2.1. Support Vector Machines Results

The model was trained to classify the state of the device. The purpose was to determine
whether or not the appliance was active. One model was trained for each device. The
gaussian radial basis function kernel was used. The penalty C and spread parameters σ
were adjusted to train the model by minimizing the error function [69] defined in (33):

error (xi, yi) =
1
2

w′w + C
N

∑
i=1

ξi (33)

where C denotes the penalty parameter, w represents the weights vector, and ξi denotes the
slack variables. Automatic hyperparameter optimization was used to find hyperparameters
that minimized the five-fold cross-validation loss. The results obtained in the test dataset
in terms of recall, precision, and F1-score are presented in Table 9.

Table 9. SVM results.

Devices Recall Precision F1

Fridge 0.91 0.90 0.91
Washing machine 0.91 0.75 0.82

Electric water heater 0.98 0.96 0.97
Swimming pool pump 0.98 0.99 0.98

3.2.2. K Nearest Neighbors (KNN) Results

As for SVM, the model was trained to classify the state of the device. One model was
trained for each appliance. Since k is a user-defined parameter, a trial-and-error procedure
was conducted to choose the optimal k that fit the data. The best value found was k =
5. The results obtained in the test dataset in terms of recall, precision, and F1-score are
presented in Table 10.
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Table 10. KNN results.

Devices Recall Precision F1

Fridge 0.90 0.92 0.91
Washing machine 0.91 0.73 0.81

Electric water heater 0.98 0.95 0.97
Swimming pool pump 0.99 0.99 0.99

3.2.3. Decision Tree Results

Such as SVM and KNN, the decision tree classifier was trained to classify the state
of the devices. One model was trained for each device. A cross-validation method was
applied, consisting of randomly dividing the training data into ten subsets. On each of
the nine subsets of the data, ten new trees were trained. The predictive performance of
each new tree was then evaluated using data that were not used for its training. A good
estimate of the predictive accuracy of the resulting tree was thus obtained. The automatic
optimization of hyperparameters was used to find the optimal value for the minimum
number of observations of leaf nodes (MinLeafSize) that minimized the cross-validation
loss. Table 11 presents the results obtained in the test dataset in terms of recall, precision,
and F1-score.

Table 11. Decision tree results.

Devices Recall Precision F1

Fridge 0.87 0.93 0.90
Washing machine 0.94 0.73 0.82

Electric water heater 0.98 0.93 0.95
Swimming pool pump 0.98 0.99 0.98

3.2.4. Long Short-Term Memory (LSTM) Results

An LSTM classifier was built to classify the state of the devices. An Adam optimizer
and binary cross entropy loss function were used for training the model. The best fitting
set of parameters was found by minimizing the loss function through a trial-and-error
procedure. Hyperparameter optimization was used to find the hyperparameters that
minimized the five-fold cross-validation loss. Table 12 summarizes the architecture used
with the optimal hyperparameter values. One model was trained for each device.

Table 12. LSTM structure.

Layer Number of Hidden Units Activation

Input
LSTM 32 ReLu

Dropout (dropout = 0.3)
LSTM 64 ReLu

Dropout (dropout = 0.3)
LSTM 128 ReLu

Dropout (dropout = 0.3)
Fully connected dense 1024 ReLu
Fully connected dense 1 sigmoid

The results obtained in the test dataset in terms of recall, precision, and F1 score are
presented in Table 13.
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Table 13. LSTM results.

Devices Recall Precision F1

Fridge 0.89 0.83 0.86
Washing machine 0.82 0.96 0.88

Electric water heater 0.98 0.94 0.96
Swimming pool pump 0.97 0.99 0.98

3.2.5. Convolutional Neural Network (CNN) Results

As for LSTM, a CNN classifier was built. The model was trained using an Adam
optimizer and binary cross entropy loss function. A trial-and-error procedure was used to
find the best-fitting set of parameters by minimizing the loss function. The hyperparame-
ters that minimized the five-fold cross-validation loss were found using hyperparameter
optimization. The architecture employed with the optimal hyperparameter settings is
summarized in Table 14. One model was trained for each device.

Table 14. CNN structure.

Layer Filters Kernels Activation

Input
Conv1D 32 3 ReLu
Conv1D 64 3 ReLu
Conv1D 128 3 ReLu

Max pooling1D
dense (1024) ReLu

dense (1) sigmoid

Table 15 presents the results of the tests performed on the test dataset in terms of recall,
precision, and F1 score.

Table 15. CNN results.

Devices Recall Precision F1

Fridge 0.92 0.91 0.91
Washing machine 0.96 0.90 0.93

Electric water heater 0.95 0.98 0.96
Swimming pool pump 0.99 0.99 0.99

4. Discussion

By analyzing the results presented in Tables 7, 9–11, 13 and 15, we observed that all
the models explored can detect the operating states of the different devices with good
performance. To illustrate the effectiveness of the proposed method, the F1-score value
achieved with the proposed method was compared with the other state-of-the-art clas-
sification methods. Figure 8 presents a comparative histogram of the different methods
implemented.

For fridge, the best F1 score of 95% was achieved by the proposed technique, while
LSTM achieved the worst F1 score of 86%. The other models classified the fridge with a
similar F1 score of 91% for SVM, KNN, and CNN and 90% for DT.

For washing machine, the proposed model obtained the best F1 score of 97%, while the
SVM and decision tree models obtained similar F1 scores of 82%. Similarly, the two deep
learning models obtained slightly better results than the SVM and decision tree models,
with the CNN obtaining an F1 score of 93% and the LSTM an F1 score of 88%. The KNN
model achieved the worst F1 score of 81%.

For the electric water heater, the proposed approach obtained an F1 score of 98%
slightly higher than the F1 score of 97% obtained by the SVM and KNN models. The LSTM
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and CNN models had a comparable F1 score of 96%, and the decision tree model had the
lowest F1 score of 95%.
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Figure 8. F1 comparison.

All the models performed well in the classification of the swimming pool pump, with
an F1 score of more than 98% for the models SVM, KNN, decision tree, CNN, and LSTM
and 100% for the proposed model. As can be seen, the best performances were obtained for
high consumption devices, while most of the algorithms seemed to have more difficulties
correctly detecting the washing machine and fridge activations. This is due to the complex
architecture of these multi-state appliances, for which detection is a little more challenging
for some models, resulting in a large number of false positives. Overall, it can be seen that
the proposed framework achieved the best performance in terms of F1 score.

The performance of the six methods presented earlier was qualitatively comparable, as
the same data were used for each one of the techniques. This is typically not the case when
comparing the performance of state-of-the-art approaches found in the literature, as the
data used and the context of these works are different. However, for the sake of illustration,
a comparison with state-of-the-art approaches was conducted. It is also worth mentioning
that the work reported in [43] used the same data as the case study described here but with
different sampling periods (1 s in [43] and 1 min here). The washing machine and fridge are
two popular multi-state devices for evaluating state-of-the-art NILM approaches, and they
were used here. Table 16 compares the proposed NILM framework to some state-of-the-art
NILM approaches for the washing machine. The fridge’s performance in comparison with
state-of-the-art approaches is presented in Table 17. In both tables, the column labeled S(s)
denotes the sampling time in seconds.

Table 16. Washing machine performance comparison.

Approach S (s) Recall Precision F1 MAE (Wh) SAE EA

[27] 1 1 0.60 0.70 118.1 - -
[41] 1 - - 0.76 14.42 0.51 0.74
[42] 60 0.86 0.87 0.86 8.31 0.01 -
[43] 1 0.96 0.96 0.96 1.64 0.05 0.93

Proposed 60 0.97 0.97 0.97 1.1 0.03 0.93

S: sampling frequency.
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Table 17. Fridge performance comparison.

Approach S (s) Recall Precision F1 MAE (Wh) SAE EA

[27] 1 0.73 0.87 0.79 4.34 - -
[41] 1 - - 0.87 19.60 0.46 0.76
[42] 60 0.89 0.85 0.87 17.03 0.05 -
[43] 1 0.97 0.92 0.95 12.72 0.09 0.88

Proposed 60 0.98 0.91 0.95 4.00 0.01 0.96

According to the analysis of the comparison results presented in Tables 16 and 17,
the proposed framework designed by MOGA performed better than the NILM method
presented in [43] in terms of estimation accuracy for the fridge (96% versus 88% in [43]).
The mean absolute error of the washing machine was reduced by 32% using the MOGA
framework compared to the work presented in [43]. It should be noted that the proposed
models designed by MOGA and the approach presented in [43] outperformed the other
state-of-the-art methods referenced in Tables 16 and 17.

Since the design of a radial basis function neural network by MOGA does not require
too much training data (around 8212 samples to 24,493 samples) when using a sampling
interval of one minute, while achieving a similar or better performance than approaches
using more training data [43] (around 1.3 million samples to 1.4 million samples), it is
worth noting that resampling the data sampling rate from 1 s to 1 min did not affect the
performance of the MOGA framework and significantly reduced the amount of data to
be processed.

It should be noted that MOGA is a time complex process. Although it runs on a
computer cluster, the training of models with data sampled at 1 min takes several hours.
As the complexity of MOGA is linear with the number of samples, the use of the same
time period, sampled at one second, would translate the execution time to several days. In
practice, MOGA cannot cope with this large number of samples, which would have the
consequence of reducing the design data, diminishing in this way the number of events
that could be used in the design process.

4.1. Test on AMPD Public Dataset

The proposed framework was also evaluated using the public dataset AMPD [82]
(Almanac of Minutely Power datasets). It records a Canadian household’s water, natural
gas, and electricity consumption data for two years, including electrical features such as
voltage, current, active, and reactive power, collected at one-minute intervals. The data
from 1 April 2012 to 30 April 2012 were considered. The models were trained using the
same configuration as the proposed framework. Two appliances (fridge and clothes dryer)
were considered in the experiment. The results of the test performed in the validation
dataset in terms of energy estimation and device classification are presented in Table 18.

Table 18. Results on AMPD public dataset.

Devices MAE (Wh) SAE EA Recall Precision F1

Fridge 9.13 0.10 0.90 0.91 0.93 0.92
Clothes dryer 3.53 0.01 0.94 0.99 1 0.99

From the results in Table 18, it can be seen that the fridge and the clothes dryer were
detected with a high F1 score of 0.92 and 0.99, respectively. Regarding the energy estimation,
the fridge was estimated with an accuracy of more than 90%, while the clothes dryer was
estimated with an accuracy of 94%.

Examples of disaggregation outputs, in terms of active power for the fridge, are
presented in Figure 9. Figure 10 shows the example of disaggregation outputs for the
clothes dryer.
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There is a reasonably consistent agreement between the measured and estimated
active power, as shown in Figures 9 and 10.

The results obtained with this dataset were also compared to the work proposed
in [53,83]. In both works, two weeks of data were used. In [83], the authors proposed a
modified cross-entropy algorithm (MCE) based on a combinatorial optimization method
to classify the load states. The approach consisted of searching for the best combination
of states by iteratively updating the device’s operation probability to generate a load
decomposition while considering the constraint of the penalty function. In [53], the authors
suggested an approach based on the probability of time-segmented states. They used
an affinity propagation clustering approach to extract the load power patterns, which
were then used to count the probabilities of time-segmented states. After generating a
range of appliance state matrices using probabilities, the function selects the most suitable
matrix as the result of the appliance state detection. Table 19 compares the results of the
two appliances (fridge and clothes dryer) in terms of state identification (F1) with the
references [53,83].

Table 19. F1 comparison.

Devices [53] [83] Proposed

Fridge 0.92 0.88 0.92
Clothes dryer 0.23 0.29 0.99

As illustrated in Table 19 for the fridge, the F1 score achieved by the proposed frame-
work (92%) is comparable to the F1 score obtained by the Ref. [53], while the MCE [83]
approach had the lowest score of 88%. For the clothes dryer, the proposed framework
performed the best F1 score of 99%, while the Ref. [53] and MCE methods had the lowest
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scores of 23% and 29%, respectively. We concluded from these results that the proposed
framework allowed us to achieve very satisfactory results.

4.2. Energy Consumption Estimation in the Case Study House

The procedure used to identify the four appliances discussed in Section 4 was extended
to other devices in the case study house that consume the most electricity. One month
of data was considered in the model design. The results generated by the data selection
algorithm and the size of the datasets for each device for classification and estimation are
presented in Tables 20 and 21, respectively.

Table 20. Data selection results for classification models.

Devices CH Vertices Training Testing Validation

AC_1 913 28,777 8925 8927
AC_2 1170 28,505 9501 9503
AC_3 569 26,777 8925 8927
AC_4 799 26,777 8925 8925
BS_1 714 26,777 8925 8927
BS_2 638 26,777 8925 8927
Oven 1164 26,777 8925 8927
DM 993 24,185 8061 8063

EAH_1 900 26,777 8925 8927
EAH_2 1386 26,777 8925 8927
EAH_3 1384 26,777 8925 8927

AC: Air conditioner, BS: Burner stove, DM: Drying machine, EAH: Electric air heater.

Table 21. Data selection results for estimation models.

Devices CH Vertices Training Testing Validation

AC_1 1993 26,777 8925 8927
AC_2 913 28,505 9501 9503
AC_3 543 26,777 8925 8927
AC_4 565 26,777 8925 8927
BS_1 881 26,777 8925 8927
BS_2 698 26,777 8925 8927
Oven 1249 26,777 8925 8927
DM 835 24,185 8061 8063

EAH_1 1982 26,777 8925 8927
EAH_2 1309 26,777 8925 8927
EAH_3 2180 26,777 8925 8927

After one run of MOGA, the non-dominated sets were generated. The size of the
non-dominated sets for the classification models and energy estimation models are shown
in Table 22 for each device.

Table 22. Dimensions of non-dominated sets.

Devices Classification Estimation

AC_1 444 145
AC_2 281 86
AC_3 663 126
AC_4 131 159
BS_1 827 81
BS_2 256 256
Oven 539 213
DM 561 59

EAH_1 636 80
EAH_2 654 231
EAH_3 768 443
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Suitable models with good performance and low complexity were analyzed in the
non-dominated sets. Two models (a classification and an estimation model) were selected
for each device. Table 23 shows the results of the device state classification using the
selected models in terms of model complexity, number of neurons in the hidden layer,
number of features, recall, precision, and F1 score. The results in terms of device energy
estimation using the selected models are shown in Table 24.

Table 23. Device state classification results.

Devices Recall Precision F1 Nb of
Features

Nb of
Neurons

Model
Complexity

AC_1 0.92 0.94 0.93 13 20 280
AC_2 0.97 0.98 0.97 5 30 180
AC _3 0.94 0.90 0.92 11 28 336
AC_4 1.00 1.00 1.00 9 11 110
BS_1 0.59 0.81 0.68 5 23 138
BS_2 0.86 0.97 0.91 12 29 377
Oven 0.80 0.97 0.88 19 29 580
DM 0.96 0.98 0.97 17 29 522

EAH_1 0.98 0.95 0.96 4 30 150
EAH_2 0.91 0.89 0.90 9 30 300
EAH_3 0.74 0.76 0.75 9 18 180

Table 24. Energy estimation results.

Devices MAE (Wh) SAE EA Nb of
Features

Nb of
Neurons

Model
Complexity

AC_1 191.0 0.011 0.87 14 18 270
AC_2 11.0 0.002 0.97 3 17 68
AC _3 11.0 4 × 10−4 0.98 7 10 80
AC_4 9.0 0.003 0.97 15 18 288
BS_1 90.0 0.004 0.86 3 20 80
BS_2 37.0 0.002 0.90 3 4 16
Oven 43.0 0.005 0.73 22 19 437
DM 0.009 4 × 10−4 0.98 3 9 36

EAH_1 28.0 0.010 0.95 12 13 169
EAH_2 10.0 0.004 0.99 3 12 48
EAH_3 14.0 0.006 0.87 16 6 102

Analyzing the classification results presented in Table 23, we observed an excellent F1
score of 100% for the air conditioner (AC-4), whereas the lowest F1 scores were observed in
the classification of the burner stove (BS-1: 68%) and the electric air heater (EAH-3: 75%).
In the first case, a higher sampling frequency should be used, while in the second case, the
device is rarely activated and there is a lack of identifiable data. The other appliances were
classified with good F1 scores ranging from 88% to 98%. The results reported in Table 24
show that the electric air heater (EAH-2) was estimated with an excellent estimation
accuracy (EA) of 99%. The lowest performance was observed in the disaggregation of the
oven (73%). This is due to the fact that the oven has several different operating modes,
with different consumptions together with a large range of temperatures. The other devices
were estimated with good estimation accuracy ranging from 86% to 98%.

Once the models were designed, the energy consumption of certain appliances in the
case study house was estimated using these models. The aggregated data from January
2022 were considered in the experiment. Table 25 shows the results of the disaggregation
in terms of appliance energy consumption. Since the aggregated data were measured by
the EM340 three-phase smart meter, the distribution of appliance consumption by phase is
presented.
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Table 25. Distribution of energy consumption in the case study house.

Phase Appliances E (kWh)

Air conditioner (AC1) 11.97
Air conditioner (AC2) 91.98

I Burner stove (BS1) 14.42
Electric air heater (EAH1) 24.56
Electric air heater (EAH3) 28.40
Electric air heater (EAH2) 95.52

Drying machine (DM) 13.36
Electric water heater (EWH) 114.54

II Fridge 17.80
Washing machine (WM) 13.73

Swimming pool pump (SPP) 153.14
Oven 19.22

Air conditioner (AC3) 16.32
III Air conditioner (AC4) 71.74

Burner stove (BS2) 19.27

Analyzing the disaggregation results reported in Table 25, it can be seen that the
highest energy consumption in the month of January 2022 was assigned to the swimming
pool pump (153.14 kWh) followed by the electric water heater (114.54 kWh). The electric air
heater (EHA2) and air conditioners (AC2 and AC4) consumed approximately 11.97 kWh,
91.98 kWh, and 71.74 kWh respectively. The consumption of the other appliances was
estimated between 4.22 kWh and 28.40 kWh. Figure 11 presents pie charts summarizing the
distribution of electricity consumption in the case study house in the month of January 2022.
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The total consumption of the house, during the month of January 2022, was 1070 kWh,
divided into 380, 470, and 220 kWh for Phases 1 to 3. The appliances considered in this
section account for 66% of the total monthly consumption. Besides being responsible for
most of the electric energy consumption in the household, most of these appliances are
schedulable, meaning that their operation can be changed without causing much trouble for
the occupants. This is the case with HVAC appliances (AC 1-4, EAH 1-3, WM, DM, SPP, and,
to a less extent, EWH). These appliances account for 60% of the house’s total consumption,
which means that there is considerable flexibility in shaping the house electric profile to
meet energy management goals. As the house in question has PV panels and electric
storage, the online operation of some of these electric appliances is taken into account in
our proposed model-based predictive control of HEMS [84].

5. Conclusions

In this study, a low complexity NILM framework based on radial basis function
neural networks designed by a multi-objective genetic algorithm (MOGA) was proposed
for energy disaggregation. Despite reducing the data sampling from one second to one
minute to allow for the use of low-cost meters, the reduction of design time, and the
employment of low complexity models, the proposed technique presented an excellent
ability to disaggregate the usage of devices.

A comparative analysis of other computational intelligence classifiers for non-intrusive
load monitoring, using the same data, showed that the proposed framework obtained
the best experimental results in terms of appliance identification. The comparison with
other state-of-the-art methods, both using different data and common data, highlighted
the efficiency of the proposed framework in achieving the best estimation of the energy
consumed by each device in the house.

The proposed NILM technique was used to disaggregate one month of consumption of
the house, and it was able to identify the operation of appliances accounting for 2/3 of the
electric consumption. It allowed us also to recognize that around 60% of the consumption
was related to schedulable appliances, therefore allowing an additional flexibility for the
HEMS available in the residence.

Future work will be devoted to the question of the transferability of the proposed
framework to other houses, as well as its integration in the house HEMS. One additional ad-
vantage of using very simple models is that their real time execution is in the order of a few
milliseconds in standard computer architectures, which allows an edge implementation.
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