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CONVEXIFYING OF POLYNOMIALS BY CONVEX FACTOR
ABDULLJABAR NAJI ABDULLAH, KLAUDIA ROSIAK, AND STANISLAW SPODZIEJA

ABSTRACT. Let X C R™ be a convex closed and semialgebraic set and
b:R™ — (0,4+00) be a €2 class positive strongly convex function. Let f be
a polynomial positive on X. If X is compact, we prove that there exists an ex-
ponent N > 1, such that for any £ € X, the function ¢ ¢(z) = b (z —€) f(z)
is strongly convex on X. If X = {& € R™ : f(§) < r} is bounded we define
a mapping Ky : X 3 § — argminy pn ¢ € R", where argminy ¢y ¢ is the
unique point x € X at which ¢ ¢ has a global minimum. We prove that
kN is a mapping of class €1 of X onto Y = rkx(X) C X and that for any
& € X the limit of the iterations lim, o k% (§) exists and belongs to the set
> ¥ of critical points of f. If additionally b is logarithmically strongly convex
then kpy is injective and it is defined on R™, provided f takes only positive
values and the leading form of f is positive except of the origin. In the case
b(z) = exp |z|? and f|x has only one critical value we prove that the map-
ping X 3 & — limy 00 65,(§) € Xy N X is continuous. Moreover, assuming
that lim, — e0 £%;(§) = 0 we study convergence of the sequence of the spherical
parts of k% (£), v € N.

1. INTRODUCTION

The first goal of the paper is to study convexification of polynomial functions by
a positive strongly convex function b : R® — R of class €%, k > 2. More precisely,
we will prove that (see Corollary 5.1): If a polynomial f : R™ — R is positive on
a compact and convex set X C R™, then there exists an effectively calculable positive
integer Ngy such that for any N > Ny the function

o (z) = b(x)" f(x)
is strongly convexr on X. The exponent Ny depend on R = max{|z| : z € X},
S = max{b(z) : * € X}, the size of coefficients of the polynomial f and m > 0
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such that f(x) > m for x € X. In case the polynomial f has integer coefficients
finding N is fully effective (see Section 7).

A stronger version of the above result we give in Corollary 5.2; there exists
an integer Ng, which can be explicitly estimated, such that for any N > Ny the
functions

pne(@) =ble— N f(z), €e€X,
are strongly conver on X.

The second goal of the paper is to construct a mapping xy and investigate its
properties. Namely, in the case when X<, := {& € R" : f(z) < r} C X, where
r € R and X is a closed ball, we prove that the mapping iy : Xr<r — Xy<,
defined by

kn(§) = argminy pn e

is of class €* ! (see Lemma 4.2 and Corollary 5.6). Moreover, it is a diffeo-
morphism of class €%~ provided b is logarithmically strongly convez, i.e., Inb
is strongly convex (see Lemma 4.3 and Corollary 5.6). For a strongly convex
function g : Y — R on a closed and convex set Y the unique point zg € Y at
which g has a global minimum on Y we denote by argminy g. In Theorem 4.8
we give some properties of the iterations x%; of the mapping ~n and prove that:
KN« (&) = lmy o0 K% (§) exists and belongs to the set X<, NXy of critical points
of f in X¢<,. Note that the set of fixed points of kx is equal to X<, N3 (see
Lemma 4.5).

Analogous results for unbounded sets we obtain in Section 6 under assumption
that b is logarithmically strongly convex and that the leading form fq of f (i.e.,
a homogeneous polynomial f; such that deg(f — fq) < deg f) satisfy

(1.1) fa(z) >0 for z € R™\ {0}.

In Section 8 we give some results on the convergence of the sequence x% (§),
provided b(z) = exp |z|2. We prove that there is a neighbourhood U C R™ of the
set of points, where the function f takes the smallest value such that the mapping
assigning to each point & € U the limit point ky .(§) of the proximal algorithm
is continuous (see Proposition 8.17). Moreover, we prove that the sequence k%|v
uniformly converges to kn .|y. Without the assumption on U, the assertion of
Proposition 8.17 does not hold (see Remark 8.18). We also show that the curve
connecting successively the points &% (§), £ € X, defined by the formula (8.19),
shows a number of properties similar to those of the trajectory of the gradient field
7 V(In f) (see Section 8.2). At the end of the paper we consider the problem of
convergence of the sequence of the spherical parts k% (§)/|x% (§)| of the sequence
k% (€), provided k%;(€) — 0 as v — oo (see Fact 8.21).

In the special case when b(z) = 1 + |z|?, a similar results to Corollary 5.1 and
Theorem 4.8 are known. In [5, Theorem 5.1] there was proved that: If a polynomial
f:R™ = R is positive on a compact and conver set X C R"™, then there exists
an effectively calculable positive integer Ny such that for any integer N > Ny
the function
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on(z) = (1+[2[)N f(2)
is strongly convez on X. Moreover, a stronger version of [5, Theorem 5.1] was given
in [5]; there exists an effectively calculable positive integer Ny such that for any
integer N > Ny the polynomials ¢y ¢(z) = (14 |z —&2)N f(z), £ € X, are strongly
conver on X. This is a crucial fact for a construction of a proximal algorithm
which for a given polynomial f, positive in the convex compact semialgebraic set
X, produces a sequence &, € X starting from an arbitrary point £, € X, defined
by induction: §, = argminy ¢n¢,_,. The sequence &, converges to a lower critical
point of f on X (see [5, Theorem 7.5]), i.e., a point ¢ € X for which there exists
a neighborhood 2 C R™ such that (z —a,Vf(a)) >0 for every x € X N Q, where
V f is the gradient of f in the Euclidean norm. In the case of non-compact closed
convex set X, under the assumption (1.1) we have that: if the polynomial f is
positive on X then for any R > 0 there exists Ng such that for any £ € X,
€] < R, N > Ng the polynomial ¢n ¢ is strongly convex on X. Similar results
to the above were obtained in [7] for the functions ¢y ¢(x) := eNle=€P £(z) and

Unele) =" f(a).

2. AUXILIARY RESULTS

2.1. Convex functions. Let f: X — R, where X C R™. The function f is called
convez if the set X is convex and for any z,y € X and 0 <t < 1,

[tz + (1 —t)y) <tf(x)+ (1 —1)f(y).
If the above inequality holds with < for x # y, the function is called strictly convez.
Let f be a real function of class 42 defined on a neighbourhood of a convex set
X CR".

Denote by 9, f(x) the directional derivative of the function f in the direction of
a vector v € R™ at a point € R", and by 02 f(z) the second order derivative of f
in the direction v at z. If v = (0,...,0,1,0,...,0), where 1 is on the ith place, we
write traditionally 9, f = ng Then the gradient Vf : X — R™ of f is of the form

Vi(z) = (gi@),...,;i;@)) .

For any a € X and v € R" we put I, , = {t € R: a+tv € X}. Obviously, the
set I, , is an interval or a single point. Recall some known facts (cf. [11]).
Fact 2.1. The following conditions are equivalent:

(a) The function f is convex.

(b) For any vector v € R™ and any a € X the function I, 3t — 0, f(a+tv) € R
1S INCreasing.

(c) For any vector v € R"™ and any a € X we have 92 f(a) > 0.
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Fact 2.2. The following conditions are equivalent:
(a) The function f is strictly convex.

(b) For any vector v € R™ of positive length and any a € X the function I, , >
t— Oy f(a+tv) € R is strictly increasing.

(¢c) The function f is convex and for any vector v € R™ of positive length and
any a € X the set {t € I, : 92f(a + tv) = 0} is novhere dense in I, ,, provided
1o, 1s an interval.

A function g : X — R is called strongly convex or p-strongly convex, pu > 0, if
X CR" is a convex set and for any z,y € X and 0 <t < 1,

glta + (1 - t)y) < tg(a) + (1 = gly) — t(1 ~ 5w~ yP,
If additionally g is of class €' then the above condition is equivalent to
1
9(y) = g(z) + {y — v, Vg(@)) + Sly —af* forz,y € X,

where (-,-) is the standard scalar product in R™. Obviously, any strongly convex
function is strictly convex and consequently, it is also convex.

Denote by S™~1 the unit sphere in R", i.e., "1 = {z € R" : |z| = 1}.
Fact 2.3. Let pu > 0. The following conditions are equivalent:

(a) The function f is p-strongly convez.

(b) For any vector v € S"~1 we have 02 f(x) > u at any point x € X.

(¢) For any x € X any eigenvalue of the Hessian matrix of f

() - [

x}
6$i81‘j 1<i,j<n

is bounded from below by p.

Fact 2.4. If f: R" — R is a strongly convex function then lim|,|_,o f(x) = +00.

If f(z) > 0 for x € X, the function f we will call logarithmically convez, loga-
rithmically strictly conver and logarithmically p-strongly convex if In f is convex,
strictly convex and u-strongly convex respectively.

Obviously for any p-strongly convex function a : R® — R the function b =
expa is logarithmically strongly convex, for instance b(x) = exp(|z|?), b(z) =
exp(exp(|z|?)),..., are logarithmically strongly convex functions.

Fact 2.5. Ifb: R™ — R is a logarithmically strongly convex function then b is also

a strongly conver function.

Proof. Indeed, for any 8 € §"~!, we have
b()05b(z) — (0b(x))?
b(x)?

ag(lnb(x)) = >p for x e R”,
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S0,

0b(x))?
azb(x) > nb(z) + (lib((fl;)) > ub(xg) >0 for z € R"
x
and some i > 0, where xp = argming» b. (I

2.2. Gradient of convex functions. Let f be a real function of class €2 defined
in a neighbourhood of a convex set X C R".

From Fact 2.2 we immediately obtain
Corollary 2.6. If f is a strictly convez function, then the gradient
Vfi:X3z—Vf(x)eR"
s injective.
Proof. Indeed, by Fact 2.2, for any a,b € X, a # b, the function
©:lgp—adt Op_afla+t(b—a)) eR

is strictly increasing. Moreover, 0,1 € I, p—q, SO

(Vf(a),b—a)=¢(0) <p(l) = (Vf(b),b—a).
Consequently, Vf(a) # Vf(b). O

From Corollary 2.6 we obtain
Corollary 2.7. If f is an logarithmically strictly convex function, then the mapping
1 1

fo:XBfo(x)

Vix)eR"

1s injective.

Proof. Indeed, by definition, In f is strictly convex and V(ln f) = %V f- So, Corol-
lary 2.6 gives the assertion. O

Without assuming logarithmically strict convexity of the function f, the above
corollary does not hold. This is demonstrated by the following example.

Example 2.8. Let f(z) = 1+22. Then fT/(x) = 1%;2 and obviously this function

is mot injective. Moreover, the function f is strongly convex.

Lemma 2.9. Let b : R® — R be a u-strongly convex function of class €2, let
xo = argming. b and let X C R™ be a conver and compact set. If b(x) > 0 for
x € X and xzq is an interior point of the set X then there exists € > 0 such that

(1) the function b is an logarithmically strongly convex in the set X,, . = {z €

X |z —axo| <e}.
(ii) the function Xy, > x — ﬁVb(x) € R"™ is injective.
iii) there exists 6 > 0 such that for any x € X such that @] 5 we have
b(x)
|z — o] < €.
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Proof. Since b(x) > 0 for x € X and b is u-strongly convex function, for any z € X
and 8 € R", |8] =1 we have

) COBb(@)  (3b(@)\P L m (Osb(x))?
OpInb)(e) = =573 ( bz) ) = i) ( b{) ) '

Since b is of class ¥ and 9sb(xp) = 0 then there exists ¢ > 0 fulfilling (i). The
assertion (ii) immediately follows from (i) and Corollary 2.7. Taking

0 = min « €, inf [Vo(z)| x€X, |lr—xol >epy,
b(x)

where inf ) = +o00, we see that ¢ > 0 and deduce the assertion (iii). O

2.3. Convexifying functions on compact sets.

Fact 2.10. Ifb:R™ — R is a function of class €2 such that for any compact and
convex set X C R"™ there exists Ng € N such that for any N > Ny the function
x — bN () is strongly convex on X, then b is positive on R™.

Proof. Take any compact and convex set X C R™ and let Ny be such that for any
N > N, the function b (x) is strongly convex on X. Take N > Ny. Since b is of
class €2, from Fact 2.3, for any vector v € S"~! we have

026N () = N(N — 1)bN 72 (2)(0,b(x))? + NbN 1 (2)02b()
= NoN"2(2) [(N — 1)(9,b(2))? + b(z)92b(z)] >0 for z € X.

So, b(x) # 0 for € R™. Hence, in view of continuity of the functions x — b(z),
(x,v) = Oyb(x), (z,v) — 82b(x), the Darboux property gives the assertion. O

Example 2.11. Under assumptions of Fact 2.10 we cannot require that the func-
tion b is convex. For example for b(x) = /1 + |z|2, x € R", the assertion of Fact
2.10 holds (see [5, Theorem 5.1]) but b is not convex. It can not be expected that
lim|| 00 b(z) = +o00. For example, for the function b(x) = expx, v € R, the
assertion of Fact 2.10 holds (see Lemma 3.1 in Section 5.1) but lim,_,_~ b(z) = 0.

Fact 2.12. Ifb: R" — R is a function of class €% such that for any compact and
convex set X C R"™ there exists N9 € N such that for any N > Ny the function
x + bN(z) is logaritmically strongly conver on X, then b is also logarithmically
strongly conver on any compact and conver set X C R™.

Proof. Sine a logarithmically strongly convex function is also strongly convex, by
Fact 2.10, the function b is positive on R™. Take any compact and convex set
X C R™. Let Ny be such that for any N > Ny the function bV (z) is logarithmically
strongly convex on X. Then for N > Ny the function Inb"(z) = NInb(z) is
strongly convex on X. Consquently, b is logarithmically strongly convex on X. O
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2.4. Polynomials. Let f € R[z] be a polynomial in z = (z1,...,2z,) of the form
d

(2.1) f= Z Z a,x”,
j=0|v|=j

where a, € R, ¥ =2 - a¥» and |[v| =11+ v, for v = (v1, -+ ,v,) €EN"

(we assume that 0 € N). Assume that d = deg f. Then f = fo+-- -+ f4, where f;
is a homogeneous polynomial of degree j or zero, i.e.,

(2.2) =Y ar”, 0<j<d

lv|=7

We will call The polynomial fy the leading form of f. Obviously deg(f — fq4) < d

We set
£ =" -

lv|<d
Then || fo]| = |ao| and
A= 11foll + - - + I fall-

Lemma 2.13. Take any B € S" 1. Then for any v € R™ we have

(2.3) |0pf (2 \<ZJ||fJH|1‘|J ' |05 (x \<ZJ i = DlIfl=P .

Jj=1 Jj=1

In particular if |z| > 1 then
(2.4) 10s.f (@) < dlIfI]- [ 105f(2)] < d(d = D)IIF]] - |2]*>

Proof. Let = (f1,-..,08n). We have

0pf(x Z > a0, 03f(x) Z > a0

J=1|v|=j J=2|v|=j

Take any v = (11, ,vp) EN" V| =v1 + -+ v, =j. Then
n

05| < vilatt ool < e

k=1

and consequently,
@M<ZMWa ] < (- D)l

This gives (2.3). Consequently, for |z| > 1 we have

|0p.f ()] < Zj|x|3 P lawl < T A ) < dl2) L

lvl=3j
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and

|05f ()] < Z] (G = DlaP™2 Y o] < d(d—1)[z|"> - || £]l,
lv|=3
which gives (2.4) and ends the proof. O
From Lemma 2.13 we immediately obtain
Corollary 2.14. If Vf(0) = 0 then
IVf(2)] < dvnlf = foll - || for || < 1.

2.5. Estimation of zeros of a polynomial. Let f € R[z] be a polynomial of
form (2.1). Put fg. = min|y— fa(z). Assume that fz. > 0 and set

1/d 11/d
Ky(r) := 2max [ifoll 7 , max [fa—]l for r > 0.
fax 1<j<d—1

fax
We put K(f) := K;(0).
Fact 2.15. For anyr >0,
{zx eR": f(z) <r}C{zeR":|z| < K¢(r)}.

Proof. Under notations of Section 2.4,
1f; O] <Ifll for 6esS"

Take any € R™\ {0} and put r = |z| and 6 = I—i‘x Thenz =10, r > 0,0 € S"!
and f(x) can be written in the form

d
fla) =" fi(0)n.
=0
Since the number "
fa—g(0)|"
1r£J<d foz 0)

estimate from above the modul of any zero 7 of the polynomial f4(0)r¢ +
fa1(@)r?=t + ...+ f5(6) in 7, where f4(0) > f4. > 0, then the polynomial f — r
have no zeros & € R™ such that |z| > K(r). Since f have positive values for
x € R™ such that |x| tends to infinity, then we obtain the assertion. (]

3. CONVEXIFYING FUNCTIONS ON COMPACT SETS
3.1. Strongly convex functions. Let b: R” — R be a function of class 4> which
is p-strongly convex, p > 0, and takes only positive values.

Take any convex and compact set X C R". Let

S :=max{b(zr) : x € X}.
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Obviously S > 0. Take any function f : R® — R of class ¥? which is positive on
X. Let m, D € R be a positive numbers such that

fx)>=m, |0sf(x)| <D, [03f(x)| <D forzeXandpeS
Let

D D?
N(u,S,m,D) := § (—i—) + 1.
1

The following lemma is a version of Lemma 49 from [13] by Klaudia Rosiak.
Lemma 3.1. For any N > N(u,S,m, D) the function on(z) = b™(2)f(z) is
strongly convex on the set X.

Proof. Take any N > N(u, S, m,D) and x,5 € R", |3| = 1. Then

Dgpn(x) = N(N = )b 2(x) f(2) (9pb(x))* + 2NN~ (2)5b(2) s f ()

+ NbN () f(2)03b(x) + b ()03 f ().
Since b(x) > 0 for € R™, we have
8290]\7(55) = bN(x)A(m),

where
T x 02b(x
- () v

Since f and b are functions of class €2, then ¢ is also class €2 and it suffices to
prove that
(3.1) A(z) >0 for z € X.

9pb(x)
b(x)

s f () + O f(x) + N f(x)

2
) o

Let now x € X and put t = . From the assumptions on f and b,

A(z) > N(N — Dmlt|> — 2NDJt| — D + Nm%.

The discriminant of the quadratic function in |¢| on the right hand of the above

inequality is of the form

A = 4N2D? — 4N(N — D)m (—D + Nm%)

2 2
 ANwu[y(y_, SD_SD*\ SD
S wm  pum? wm

So, for N > N(u, S, m, D) we have A < 0 and consequently
N(N — )mlt|> — 2ND|t| - D + Nm% >0 for teR.

This gives (3.1) and ends the proof. O

Let
S":=max{b(x — &) : 2,6 € X }.
From Lemma 3.1 we immediately obtain



30 A. N. ABDULLAH, K. ROSIAK, AND S. SPODZIEJA

Corollary 3.2. For any N > N(u,S’,m,D) and any £ € X the function
(32) pne(x) = b (@ =€) f(x)

is strongly convex on the set X.
Remark 3.3. Let b : R” — R be a p-strongly convexr function, p > 0, and let
X C R"™ be a compact and convex set. Let f : R™ — R be a function of class €
and let D € R be a positive number such that

105f(x)| <D forxz€X and BER™, |B]=1.

Then for any £ € R™ and
D
N> —,
]
the function ¥y e : R™ — R defined by Uy e(x) = Nb(x — &) + f(z), z € R, is

strongly convex on X (more precisely (Nu — D)-strongly convez).
Indeed, take any £ € R™. Since Ny > D then for any 5 € R", |3] = 1 we have
3UNe(r) =NOZb(x — &) +95f(2) >Nn—D>D—-D=0 forzeX.
This gives the assertion.
3.2. Logarithmically convex functions. Let b: R™ — R be a function of class
%2 which is logarithmically p-strongly convex, p > 0.

Let f: R™ — R be a function of class €2 taking only positive values. Take any
convex and compact set X C R™. Let m, D € R be a positive numbers such that

fl@)=m, |0sf(x)| <D, [03f(x)|<D forze X andpeS .

1 /D D?
Nexp(ﬂ7m7D) == ( + > .

p\m  m2
Lemma 3.4. For any N > Nexp(pt,m, D) and any £ € R™ the function oy ¢(z) =
bN (z — &) f(x) is logarithmically strongly convex on the set X .

Let

Proof. Take any { € R". Let ¥y ¢ =Ingpn¢. Then
Yne(x) =Nlnbz — &) +1n f(z), zeR"”

so for any 3 € S"~!, we have

Ipne(x) = NOg(Inb(z — €)) +

and
f(@)05f(x) — (9 f(2))”
fx)? ’
Consequently, for N > Negp (1, m, D) and « € X, we have
2

D D
8§¢N(m)2N’U_E_W>O’ reX.

OGN .e(x) = NOF(Inb(x — £)) + r €R™
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Since 3§¢N is continuous and X is compact, we obtain the assertion. (I

4. ITERATIONS OF THE MAPPING & — argmin @y ¢

Let f : R™ — R be a function of class €%, k > 2. Take any r > 0 and assume
that the set
Xi<r ={zeR": f(z) <r}

is bounded and nonempty. Let Ry<, be the size of X;<,, i.e.,
Ri<, :=sup{|z|: z € Xj<,}.
Take any R > R¢<, and put
Br :={z € R": |z| < R}.

Since X<, # (), we have Rs<, > 0 and so, R > 0.

Let mp, Dr € R be a positive numbers such that
(41)  f(z) >mg, |0pf(x)| < Dg, |05f(z)| < Dg for x € Bg, BeS" .

Let b: R® — R be a function of class €%, k > 2, which is u-strongly convex,
w > 0, and takes only positive values, let (for simplicity of notations),
(4.2) 0 = argming, b,
and let

Sy g = max{b(x — &) : v, € Br}.

Let N be an integer number such that

(4.3) N > N(u, Sy gsmr, Dr).

By Corollary 3.2 for any £ € Bp the function oy ¢(z) = b (z — &) f(2) is strongly
convex on the set Bg. Let kK : B — Br be a mapping defined by
(4.4) kN (§) := argming, on¢ € Br for £ € Bg.

Fact 4.1. K/N(XfST) - XfSr-

Proof. Take any & € By<, and let z = kn(£). Then pne(x) < pne(§) and
consequently, bV (z — &) f(z) < b (0)f(€). Since, by (4.2), b(0) < b(x — ), we have
f(z) < f(&) which gives the assertion. |

Lemma 4.2. The function kn|x,., is of class ¢r1.

Proof. Take any { € Xy<,. Observe that z = k() satisfies the following system
of equations

(4.5) V() =0.

Indeed, by the choice of R we have min{f(z) : |z| = R} > r, so, X<, C Int Bg
and by Fact 4.1, kny(§) € Int Bg. So, x satisfies (4.5). Since the Jacobian (with
respect to x) of the system of equations is equal to the Hessian of ¢n ¢ then the
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Jacobian is nonzero at x, because the Hessian matrix has only positive eigenvalues.
Then the Implicit function theorem gives the assertion. O

Lemma 4.3. Let b be p-logarithmically strongly convex function of class €* and
let N > Nexp(p,mp, Dg). Then the mapping

(4.6) ENIx;e, t Xi<r = in(Xyp<r)

is a diffeomorphism of class €% 1.

Proof. Take any & € X<, and let x = k(). Since b(z — &) > 0, under notations
of the proof of Lemma 4.2 from (4.5) we have

(4.7) NVb(z =€) f(z) + bz =V f(z) = 0,
where Vb(z — &) is the gradient of b(x — &) with respect to x. Then
1 1

So, by Corollary 2.7, the point £ is uniquely determined by x. Consequently, the
mapping (4.6) is bijective and consequently it is a homeomorphism, because X g
is compact anf ky is continuous. To complete the proof it suffices to show that
the mapping (/{N|Xf<r)_1 : kN (Xp<r) — Xj<r is of class €%~ For this it is
enough to show that the Jacobian with respect to £ of the system of equations
(4.8) is nonzero for any (z,§) € Xy<, X kn(Xf<,) such that £ = ky(x). This
is due to the fact that the Jacobian with respect to £ of the system of equations
(4.8) is equal to the Hessian of In(¢n ), so it does not zero anywhere in the set
X <. Consequently (IiN|Xf§T)_1 is a mapping of class €*~!, which completes
the proof. O

From Lemma 2.9 we obtain an analogous lemma as Lemma 4.3 for strongly
convex functions. Unfortunately, this version is not as effective as Lemma 4.3.

Lemma 4.4. Let b be strongly convez function. Then there exists Ny such that for
any N > Ny, the mapping

(4.9) K:N‘str :ngr _>K/N(Xf§r)
is a diffeomorphism of class €% 1.

Proof. Let € > 0 and § > 0 be as in Lemma 2.9. Then there exists N; such that
for any N > N; we have

b
Nf(z)
Then for Ny = maX{Nl,N(u,S{LR,mR,DR)}, analogously as in the proof of

[Vf(z)] <o forxze Xicr

Lemma 4.3 (by using Lemma 2.9) we obtain the assertion. (I

Let X7 be the set of critical points of f, i.e. X :={{ € R": Vf(§) = 0}.
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Lemma 4.5. The set of fired points of kn|x,_, is equal to ¥y N Xy,

Proof. Let £ € X<, be a fixed point of ky|x,_,. Then, analogously as in the
proof of Lemma 4.3, we have Voy ¢(§) =0, i.e.,

NVb(0) () +b(0)Vf(§) = 0.

Since b takes the minimal value at zero we have Vb(0) = 0, so Vf(§) = 0 and
€ € Xy. Let now & € X<, be a critical point of f and let x = kn(§). Then z is
the unique point in X<, for which Vpy ¢(z) = 0. Since Vin ¢(§) = 0, we have
§ =z and  is a fixed point of Ky|x,_, a

Corollary 4.6. If{ € X;<, \ X5 and x = kn(§), then
(410)  Ooef(E+ Uz —&)) =(VI(E+t(z =),z —&) <0 fortel0,1],
x & Xy and the function

fea 10,13t f(E+t(x—¢)) €R

is strictly decreasing. In particular, the sequence f(k%(€)), v € N, is strictly
decreasing, the sequence kK% (€), v =0,1,..., is injective and

ky(§) €2y forv=0,1,....

Proof. Since £ ¢ ¥y, by Lemma 4.5 we have z # £. Since x is the unique point
of Xy<, at which ¢ takes the minimal value in X;<,, then (4.7) holds, i.e.,
NVb(x—&)f(z) +blx—E&)Vf(xr) =0. Since x — & # 0, we have Vb(z —¢) # 0 and,
S0,
(4.11) Vf(x) #0.
Moreover, the function

0,1] 3t = one(+i(z—¢)) €R
is strongly convex with the minimal value at 1, so it is strictly decreasing and its

z—&

derivative have no zeroes in (0,1). Consequently, for 5 = To=g] We have

Ippne(€+t(x—€) <0 forte(0,1).
On the other hand 9gb(t(z — &)) > 0 for ¢ € (0,1] and
Do elw) = NV™L(z — £)9sb(z — £)1(x) + Y (z — )51 (@),
s0, O3 f({+t(z—&)) < 0 and consequently (4.10) holds. In particular « ¢ ¥ ;. More-

over, the function f¢ , is strictly decreasing. The particular part of the assertion is
an easy consequence of the above. O

Remark 4.7. If pn ¢ is p-strongly convex function then for any & € X<y,

F(&) = Flren () = £1e = rn (O
If additionally pn.¢ is logarithmically p-strongly convex then for any & € X<,

f(€) H 2
m > exp <5|5 - HN(5)| ) .
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By using the idea from [5, Section 7] we obtain the following proximity algorithm
for semialgebraic functions of class ¢ on convex sets (cf [12]).

Theorem 4.8. If f : R® — R is a semialgebraic function of class €% satisfying
(4.1) and N satisfies (4.3), then for any & € X<,

(a) the limit point lim, o K%, (§) exists and belongs to Xy N Xy<,.

(b) the series S o0 o |k (&) — K (€)| is convergent.

In particular the curve ¢ : [0,4+00) = X<, defined by

() = KN (€) + (¢ = k) (sT(€) — v (§)) fort € [k k+1)

has finite length and the function fo~e : [0,+00) — R is decreasing. If additionally
& & Xy then the function f oy is strictly decreasing.

Proof. Take any £ € X y<,. The particular part of the assertion immediately follows
from (b) and Corollary 4.6, so it suffices to prove (a) and (b).

Put & = € and §,41 = k% (&) for v = 0,1,.... Then &,4+1 = Ky (&) for
v=0,1,....

We will quote a sketch of the reasoning used in [5] in the case X = X<, and
& € Xy<r. In [5, Theorem 7.5], the assertion was obtained assuming that the
function b is of the form b(z) = 1 + |z|2. Obviously b is strongly convex. In this
case we have that (see [5, Lemma 7.1])

(4.12) €041 — &l = dist(&y, fH(f(Es1)). v=0,1,...

and the sequence f(&,) is decreasing (see [5, Lemma 7.2] and Corollary 4.6). By
using the monotonity of the sequence f(£,) and the Comparison pronciple (see
[5, Lemma 7.7]) we obtain that the series

(4.13) > dist(&y, £ (f(&v41)))
v=0

is convergent. Then, by (4.12), the series

(4.14) > 1 — &l
v=0

is convergent and consequently the sequence &, tends to some &,.

To prove that &, € Xy, observe that by analogously as in the proof of Lemma
4.3 we have (4.7), i.e.,

NVb(&us1 = &) f(Ev1) +0(E1 = &)V f(€py1) =0 forv=0,1,....

Since Vb(0) = 0 and Vb is a Lipschitz mapping on X ¢<,, there exists L > 0 such
that [Vb(§+1 — &) — Vb(0)] < L|§y 41 — &y for any v, so,

‘vf(£u+1)‘ < be(gqul)

——=——Ll& 11— &
(€V+1 _gl/) |§ i g |
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Hence, by convergence of the series (4.14), we obtain convergence of the series
>0l o Vf(&u41). Moreover, continuity of the gradient Vf and the necessary con-
dition for series convergence gives V f(£,) = lim, o V f(€,4+1) = 0. This gives the
assertion in the case b(z) = 1+ |z|>. Note that the proof of the fact that &, € X
differs from the one in the article [5]. It was carried out without any assumptions
about form of the function b, so we proved the assertion (a), provided (b) holds.

Let us return to the proof of the Theorem 4.8. It suffices to prove the part (b)
of the assertion.

In the proof of convergence of the series (4.13) the form of the function b was not
important, the proof consisted in the use of Comparison pronciple, semialgebraicity
of the function f and monotonity of the sequence f(§,). Hence the series (4.13) is
convergent. Therefore, taking into account the above considerations, it is enough
to prove the convergence of the series (4.14). For this, it is sufficient to show that
there is a constant C' > 0 such that

(4.15) €1 — & < COdist(&, fH(f(E041))), ¥ =0,1,...
Let a, € f~1(f(&)), v=1,2,..., be such that
dist(&, £ (f (1)) = 1€ — avyal.
Then by definition of &,
WY (€1 — &) [ (Er1) <O (antn — &) favsa)-
Since f(ay+1) = f(§+1) > 0, we have
b1 — &) < blavy1 —&).

By convergence of the series (4.13) we have lim, o (ay+1 — &) = 0, and conse-
quently, lim, o (£,+1 — &) = 0, because the origin is the unique point at which
the function b takes minimal value. Take the Taylor expansion of the function b at
the origin (recal that Vb(0) = 0),

b(x) = b(0) + %ITHb(O)x + Rs(z),

where H,(0) is the Hessian matrix of b at 0 and |R3(z)| < M|z|? in a neighbourhood
U of the origin for some constant M > 0. One can assume that a,41 —&, € U and
&vp1—& eUforv=0.1..... Then

(€V+1 - §V)THb(O) (£V+1 - §V) - 2M|§V+1 - €V|3
S (aqul - 'fV)THb(O)(aunLl - fu) + 2M|au+1 - £V|3'
Since the matrix Hy(0) is symetric and positively defined, we have
|£V+1 - §V|2 < C|a1/+1 - &/‘2

for some constant C' > 0. Hence |&, 11 — &,| < VClay1 — &,| which gives (4.15)
and ends the proof. O
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Remark 4.9. In the proof of Theorem 4.8 we have shown, inter alia, that if Vb
is a Lipschitz mapping in X<, with a constant L > 0, then the jump |{ 41 — &
can be estimated from below as follows

Ivf(gu-&-l)lb(fu-i-l - gu‘)
LN f(&v41) '

|§V+1 - fz/l Z

5. CONVEXIFYING OF POLYNOMIALS

5.1. Convexifying polynomials on compact sets. Let f € R[z] be a polyno-
mial of form (2.1). Assume that d = deg f. Let X C R™ be a compact and convex
set.

For any R > 0 we put
d ‘ d _
6 DR = { S AAIRT S 56 - DIl
j=1 j=1
From Lemma 2.13, for any 8,2 € R™ such that || =1 and |z| < R we have
(5.2) 0./ ()| < Du(f,R),  105/(x)| < Du(f, R).

Let b: R™ = R be a function of class 2 which is p-strongly convex, p > 0, and
takes only positive values, and let

S := max{b(z) : z € X}.

Let
R :=max{|z| :xz € X}.

From Lemma 3.1 we obtain
Corollary 5.1. If
(5.3) flxy>m forzeX
for some positive constant m, then for any
N > N(u,S,m,D,(f,R))
the function oy (x) = b (x)f(x) is strongly convex on the set X.

Let
S":=max{b(x — &) : 2,6 € X }.

From Corollary 3.2 we immediately obtain

Corollary 5.2. If f satisfies (5.3) for some positive constant m, then for any
N > N(u,S",m,D,(f,R)) and any £ € X the function

(5-4) pne(a) =0V (z — &) f(x)

is strongly convex on the set X.
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If additionally we assume that b is logarithmically p-convex function then from
Lemma 3.4 we obtain

Corollary 5.3. If f satisfies (5.3) for some positive constant m, then for any
N > Nexp (i, m, Dy (f, R)) and any & € R™ the function oy ¢(x) = b (x — &) f(z)
is logarithmically strongly convex on the set X.

Set
1f1lr == Zdjllflej
Then | f(z)| < ||f]|lz and f(z) + ||f||r ;Ofor z €R", || < R. Let
(5.5) f=f+fllr+1.

Then f satisfies (5.3) with m = 1. So, from Corollaries 5.1 and 5.2 we obtain
Corollary 5.4. For any

N > N(p, S, 1, Du(f, B) + || fllr + 1)
the function @y (x) = bN (z)f(z) is strongly convex on the set X. For any

N = N(pu, 8", 1, Do (f, R) + | fllr + 1)

and any & € X the function ¢ ¢(x) = bN (v — §)f(:17) is strongly convex on the set
X.

Analogously as in Corollary 5.4, from Corollary 5.3 we obtain

Corollary 5.5. For any N > Nexp(u, 1, Dy (f, R) + || fllr +1) and any § € R™ the
function oy ¢(z) = b (z — &) f(x) is logarithmically strongly convez on the set X.

5.2. Iteration of the mapping ¢ — argmin ¢y ¢ for polynomials. Let f € R[z]
be a polynomial of form (2.1). Assume that fg. > 0. Take any r > 0 and R > Ky(r)
and assume that X <, # 0.

Let b : R® — R be a function of class €%, k > 2, which is u-strongly convex,
© > 0, and takes only positive values and the minimal value takes at the point
x =0, and let

Sy r = max{b(x — &) : x,& € Bgr},
where Bg = {x € R" : |z| < R}.
Let N be an integer number such that
(5.6) N > N(u, Sy g, 1, Du(f, R)).
If f(z) > 1 for x € R™, by Corollary 5.2 for any { € Bg the function ¢y ¢(z) =

bN (z — &) f(x) is strongly convex on the set Br. Let kx : Br — Bg be a mapping
defined by (4.4). So, from Lemmas 4.2, 4.3, 4.5 and Theorem 4.8 we obtain
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Corollary 5.6. If f4. >0, f(z) > 1 for x € R" and N meets the inequality (5.6)
then:

(a)
(b)
(c) the set of fized points of kn|x,., is equal to Xp N X<,

N(Xf<r) C Xp<r.

the function “N‘Xf<r is of class cr1.

(d) for any & € X<, the limit point lim, o KX (€) ezists and belongs to Xy.

If additionally b is a logarithmically p-strongly convex function and
N > Nexp(p, 1, Dy (f, R))

then

(e) the mapping kn|x,.. : Xp<r — kn(Xf<r) is a diffeomorphism of class
g+, R
Remark 5.7. To construct a mapping Ky satisfying the assertion of Corollary
5.6 we do not have to assume that the polynomial f takes~0nly positive values. It
is sufficient to assume that fq. > 0. More precisely, let f be of form (5.5), i.e.,
f=f+1lfllr+1 Then f(z) > 1 for |z| < R and the polynomials f and f
have the same set of critical points. So, for suitable N, the mapping Rn(§) =
argming b (z — &) f(x) € Bg for £ € By satisfy the assertion of Corollary 5.6.

6. LOGARITHMICALLY CONVEXIFICATION OF POLYNOMIALS ON UNBOUNDED
SETS

Let f € R[z] be a polynomial of form (2.1), i.e.,
d
(6.1) f@)=>"> aa”
=0 [vI=j

Assume that d = deg f. Then f = fo +--- + fq, where f; is a homogeneous poly-
nomial of degree j or zero. Assume that fq. > 0. Recall that fz. = minj,—; fa(z).
Then ||| = [[fall = fax- Put

_ 2
and i
c(f) = far = Y KU I£51]
=0

Obviously, K(f) > 2.

We will need the following lemma (see [7, Lemma 3.4]).

Lemma 6.1. Ifd =deg f >0 and fg. > 0, then c(f) > 0 and f(z) > c(f)|z|? for
any x € R™ such that |z| > K(f).

From Lemmas 6.1 and 2.13 we immediately obtain
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Corollary 6.2. Let f be a polynomial of form (6.1) such that fg« > 0. Take any
B € 8" L. Then for any x € R", |z| > K(f) we have

0 f (@) _ dllfll |~ _ dllfIl
(62 @ e = 2l
and
055 @I _ d@d—DIfIl | > _ dd=DIIf]]
(63 ¢ R v R
For a polynomial f of form (6.1) such that fg4. > 0 and for any u > 0 we put
d(d+ 1| fl
Nexp,oo(H, =
o0 (:U’ f) 4,UJC(f)
Obviously, for any 8,2 € R™ such that || =1 and |z| < R we have
(6.4) 05 ()| < Du(f, R), 03 (2)] < Du(f,R),

where D, (f, R) is defined by (5.1).

Let b : R™ — R be logarithmically p-strongly convex function of class €%, k > 2.
From Lemma 3.4 and Corollaty 6.2 we obtain

Corollary 6.3. Let X C R" be a closed and convex set. Let f be a polynomial of
form (6.1) such that fq. > 0 and there exists m > 0 such that f(x) > m forxz € X.
For any

N > max {NeXp(//'a m, Dy (f,K(f))), NeXp@o(Hv H}
and any € € R™ the function oy ¢(x) = b (x — &) f(z) is logarithmically strongly
convex on the set X.

Proof. Take any £ € R". Let ¢ne(z) = Inpne(z). Take any § € S"~'. By
Lemma 3.4 there exists p; > 0 such that 8%1#1\/15(30) > py for x € X, |z] < K(f).
Since

: 2 BI@)  (95@\
OB elo) = NOBmb(o - )+ S0 - (BIE) L a e

then by Corollary 6.2 there exists pus > 0 such that 8%1/}1\[15(33) > g for v € X,
|z| > K(f). Consequently, 8%1[11\775(:5) > min{py, po} > 0 for z € X. O

From Corollary 6.3 we obtain

Corollary 6.4. Let f € R[z] be a polynomial of form (6.1). If fs > 0 and
f(x) = m for x € R™ and some constant m > 0, then for any

N > max {Nexp(ﬂa m, Dn(faK(f))a Nexp,oo(:ufv f)}

and any & € R™ the function on¢(z) = b (x — &) f(x) is logarithymically strongly
convex on R™ and the mapping Ky : R™ — R"™ defined by

kN (§) = argming, oy e € R"  for £ € R,
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is a diffeomorphism of class €*~'. Moreover, for any € € R"™ the limit point
lim,, oo K% (§) exists and belongs to y.

Proof. By Corollary 6.3 for any £ € R” the function ¢y ¢ is logarithmically strongly
convex on R". So, argming. ¢ ¢ is a critical point of pn ¢ and consequently by
analogous argument as in the proof of Theorem 4.8 we obtain the assertion. (]

Remark 6.5. To determine the diffeomorphism, the successive iterations which
converge to the critical points of the polynomial f, we do not have to assume that
all values of f are positive. It is enough to assume that fq. > 0 and take R = Ky
and f = f+||fllr + 1 (see Remark 5.7).

7. POLYNOMIALS WITH INTEGER COEFFICIENTS

For applications of the above results it is important to estimate the numbers
fax, m =min{f(z) : x € X} and R = max{|z| : « € X} for a polynomial f and a
compact and convex set X C R™. In the case when f and polynomials describing
X have integer coefficients the above numbers can be effectively estimated. More
precisely, let X C R™, n > 2, be a compact semialgebraic set of the form

(7.1) X={zeR":g1(x)=0,...,g1(x) =0, g141(x) > 0,...,gx(x) > 0},

where ¢1,...,g9x € Z[z]. Under the above notations G. Jeronimo, D. Perrucci,
E. Tsigaridas in [3] proved that

Theorem 7.1. Let f,g1,...,9x € Z[zx] be polynomials with degrees bound by
an even integer d and coefficients of absolute values at most H, and let H =
max{H,2n + 2k}. If f(x) > 0 for x € X and X of form (7.1) is compact, then

o\ —n2md”
flz) > (24*5Hd") forz e X.

From Theorem 7.1 we immediately obtain

Corollary 7.2. Let f € Z[z] be a homogeneous polynomial with degree bound

by an even integer d and coefficients of absolute values at most H, and let H =
max{H,2n +2}. If f(z) >0 for |z| =1. Then

o o~ —n2"d"
f(x) > (2475Hdn) for |z| = 1.

From Theorems 7.1 we immediately obtain (see [7, Theorem 2.7])

Theorem 7.3. Let X C R" be a compact and convex semialgebraic set of form
(7.1) and let f,g1,...,9xr € Zlx] be polynomials with degrees bound by an even
integer d and coefficients of absolute values at most H. Set

b(n,d, H, k) = (2*~% max{H,2n + 2k}a") "> "

and

R= \/[b(n +1,max{d,4}, H,k+2)] ' =1, m=b(n,d, H,k).
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Then
(7.2) max{|z| :x € X} <R.

8. THE MAPPING ky FOR b(z) = exp|z|?

From an IT point of view, it is important to know how fast x%; converges to
its limit. One of the problems that arises here is whether the sequence converges
along any direction, that is, whether the spherical part of the sequence (in the
polar coordinates) has a limit. It seems to be quite a difficult problem and the
methods of solving the gradient conjecture of Rene Thom’s used in [4] should be
applied. This leads to R. Thom’s discrete hypothesis: Does k% /|k%;| have a limit
when v — oco. We immediately encounter a difficulty here. While in the case of
the gradient field trajectory, the Darboux property holds, it is not the case in the
discrete case. We will show in a relatively simple example what are similarities and
what are differences in the case of the trajectory and in the case of the sequence.

Let f € R[z] be a polynomial of the form

(8.1) f@) = fo+ fu(@) + -+ fa(z),

where f; is a homogeneous polynomial of degree j or zero for j = 0,k,...,d, k > 1,
and fi # 0, fa # 0. Recall that fg. = min|;—; fa(v). Assume that fg. > 0 and
(8.2) flx)>1 forzeR™

Let gy : R™ = R, N > 0, be a function defined by

(8.3) gn(z) == % In f(z), x=eR™

We will assume that
(8.4) b(x) = exp |z|?, x € R™.
Fact 8.1. The function b is logarithmically 2-strongly convez in R™ of class €*°.
Moreover, Vb (x) = 2NbN (z) - x for x € R™.

2
4R and

Take notations and assumptions from Section 5.2. Let SI/), R=e
(85) N > N(ZSI/),R,LDn(fa R))

By Corollary 5.2 the function ¢y ¢(z), £ € X<y, is strongly convex on the convex
hull of the set X¢<, and the mapping xy defined by (4.4) is well defined. By Facts
5.6 and 8.1, analogously as in the proof of Lemma 4.3, from (4.7) we have

Fact 8.2. The mapping kn : Xj<, — kn(Xy<,) is the inverse of
1
. Xie) Sz ad —— Xier,
(8.6) v (Xysr) 502 24 5rmrs V@) € Xy

so it is an analytic and semialgebraic mapping, i.e., it is a Nash mapping.

Since me(x) = Vgn(z), so putting g = gn, from Fact 8.2 we have
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Fact 8.3. The Jacobian matriz J(kn) of kn is of the form
J(kn(€) = (I + H(g)(kn (€)™

where I is the n X n unit matriz.

By Fact 8.3 we see that J(kn(£)) is a symmetric matrix. So, we have the
following corollary suggested by Krzysztof Kurdyka.

Corollary 8.4. The mapping kn : X¢<r — kn(Xs<r) is the gradient of an ana-
lytic function F : Xy<, — R. Moreover, { = kn (&) + Vg(kn(§)) and

v (F(ﬁ) - '52) — —Vg(rn(©))-

Since we assumed (8.2), from Corollary 6.4 we immediately obtain

Corollary 8.5. Let R = K. Assume that f4. > 0 and let
N > max {chp(u, 1, Dn(fa K(f)), NCXp,OO(Iu, f)} .

Thn the mapping Ky : R™ — R™ s an analytic diffeomorphism. Moreover, for
any & € R™ the limit point lim, _, kY (&) exists and belongs to Xy N Xy<,.

Let wo : Xy<r 2 & = £ € Xy<, be the identity mapping and let w, : X<, —
X<, be mappings defined by

wyr1 = ky(wy,) forv >0

By Fact 5.6 we have that w,(§) € Xy<, for any £ € X<, and v = 1,2,.. ., so the

mappings w, are well defined. Obviously w, = k%, for v =0,1,....

8.1. Some properties of the sequence w, = r¥,. Take any £ € Xy<,. By [5,
Lemma 7.1] (cf., (4.12)),

(8.7) jwt1(€) — wi (€)] = dist(wy (&), f T (fwir1(6))), »=0,1,...,
and by Theorem 4.8, the sequence

(8.8) wy(§) has a limit point w,(§) € XN Xf<r,
the series
(8.9) Z |wy1(€) —wy(€)| is convergent

v=0

and the sequence
(8.10) f(w,(§)) is decreasing.
From Lemma 4.5 and Corollary 4.6 we have

Fact 8.6. The sequence w,(§) is constant if and only if § € X<, NEs. Moreover,
for & € Xy<, \ Xy the sequence w, () is injective and w, (&) # w. (&) for any v.
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By Fact 8.2 (or by Fact 8.1, analogously as in the proof of Lemma 4.3, from
(4.7)) we have

1
(8.11) wy+1(§) —wu(§) = *mvﬂwuﬂ(f», veN
In particular, by (8.9), the series
(8.12) i |V f(w, ()| is convergent.
v=0

Remark 8.7. By the Bochnak-Lojasiewicz inequality (see [2]),
(BL) [f (@) = fwa(&)] < CIVf(2)]]z — wi (&)

in a neighbourhood in R™ of the point w.(§) for some positive constant C, so from
(8.12) we obtain that the series

3 flw () = flw: (&)

18 convergent,

provided £ & Xy.
Remark 8.8. By the Lojasiewicz gradient inequality (see [9, 10])

(L1) [f(z) = fw.(§)]° < CIVf(z)|

in a neighbourhood in R™ of the set f=(f(w«(£))) for some constants 0 < o < 1
and C' > 0, we have that the series

(oo}

(8.13) Z(f(wy(f)) — f(w«(&)))¢ s convergent.

v=0
Note that the Lojasiewicz gradient inequality (L1) was proved in a neighbourhood
of a point. Since the set f=1(f(w.(€))) is compact, we easily get this inequality
around it.

By the global Lojasiewicz inequality:

dist(z, F~1(f () | "
)

for x € R™,

L2) /@) - f@)>C (

under fixed y for some positive constant C' and d = deg f (see [6, Corollary 10]),
we have

Fact 8.9. For any neughbourhood U C R™ of the set f~1(f(w.(£))) there exists
e > 0 such that

{z eR": |f(z) = f(we(§)) <} C U
Morcover, if f(wy(€)) — F(wa(€)) < & then F(w,(€)) — F(w.(€)) < £ and w,(§) € U

for any v > vy.

From (8.7), (8.9) and [6, Theorem 1] we obtain
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Fact 8.10. Let C and o be as in (L1). Then there exists 6 > 0 such that for any
€ € Xy<, such that |w,(§) —wi(€)| < § we have

(8.14)  |wi41(8) —wu (8]

1 . .
Sei-o [(f@i(€) = F(wel(&)))' 72 = (F(wir1(8)) = flw:(€)) 7],

in particular, there exists vy such that for any v > vy,

. . 1 Y
(8.15) dist(wy (£), f 1(J“(cw(é))))ém(f(wu(w})*f(w*(ﬁ)))l :

Proof. Indeed, for w, (&) sufficiently close to the origin, from [6, Theorem 1] (more
specifically from the proof of this theorem) and (8.7) we obtain (8.14). Since
limy, oo (f (Wi (€)) — f(wi(§))) =0 and 1 — o > 0, then

o0

D (Fwrl(€) = F@u(€))' 78 = (F@rs1(€)) — Flwn (€))7

k=v
= (f(wu(€) = flw(O)' e
By (8.8), there exists vy such that foe any k > 1 the point wg(€) is suffi-
ciently close to w(£). So, by (8.7) and (8.9) we have dist(w, (€), f 1 (f(w«(£)))) <

Y ope, lwkg1(€) — wi(€)]. Consequently, the above and (8.14) gives (8.15). O
Remark 8.11. Let { € Xy<, Take any € > 0. If N satisfy (8.5) and additionally

dy/n
(5.16) N2 D),
then there exists vy such that for any v > vy,

|wy41(§) — wu (§)] < elwyr1(E)]-
Indeed, by (8.11) and Corollary 2.14 there exists vy such that for any v > vy,

r1(€) = O] £ eI = fol lasa ()] < SEE1S = fol- bna(€)

So, (8.16) givs the assertion.
Remark 8.12. By Remark 4.7, there exists u > 0 such that,

(8.17) F@n(€)) = flwrs1(€)) = plw(§) — wira () for any v.

Under additional assumption that 0 € R™ is an isolated singularity of f, there
exist positive constants C, a such that

(8.18) [Vf(z)| > Clx|® in a neighbourhood of the origin.

The smallest exponent « is called the Lojasiewicz exponent of the gradient at the
origin and denoted by Lo(Vf). It is known that Lo(Vf) < (d — 1)(6d — 9)" 1,
where d = deg f (see [6, Remark 4]) and (8.18) holds with a = L¢(Vf). Then
(8.12) goves that the convergence rate of the sequence w, (£) is quite fast. Namely,
we have the following fact.
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Fact 8.13. Take any & € X<, \Xs and let §, = w, (&) forv =0,1,...,. Assume
that w« (&) = 0. If the origin is an isolated singularity of f then the series

Z 1€, is convergent,

v=0

where a = (d — 1)(6d — 9)" ! and d = deg f.
8.2. Some curves with properties similar to trajectories of the gradient

field. Take any {y € X<, \ ¥y and let §, = w, (&) for v =1,2,....
Take a curve g, : [0, +00) — X<, defined by

(8.19) Yo t) = &+ (t— k)€1 — &) for t € [p,v+1).

The curve ¢, has several similarities to the trajectory of a gradient field. Namely,
it has the following properties (see Theorem 4.8 and (8.11)):

Fact 8.14. (i) The curve ¢, has finite length equal to Y - [&v1 — &

(i) The function f o, : [0,+00) — R is strictly decreasing (recall that we
assumed that §o & X¢).

(i) Fort € (v,v+1), v =0,1,... we have

Y(t) =& —& = Vf(&s1)-

- 2Nf(§l/+1)
C d. . e / _ 1 . .
ondition (iii) does not mean that v/(t) = 72Nf(7(t))Vf('y(t)). This is one of
the difficulties in studies of &,, which does not exist in gradient field trajectory
studies.

These curves have another similarity to the trajectories of gradient fields.
Namely, we have the following fact.

Proposition 8.15. Let 0 € Int X<, and let f(0) be the minimal value of f. Then
for any € > 0 there exists f(0) < § < r such that for any & € Xy<s the length of
the curve ¢, does not exceed €.

Proof. Let C > 0 and 0 < ¢ < 1 be as in (L1). Assume that (E1) holds in
a meighbourhood U of f~1(f(0)), i.e.,

(8.20) |f(z) = f(0)]° < C|Vf(x)| foraxel.
From Fact 8.9 there exists ¢ > 0 such that

{z eR": (f(x) - f(0))' "¢ <2c} CU
and f(0) is the unique critical value of f|y.

Take any maximal solution (to the right) v : [0, 8) — U\ f~1(f(0)) of the system
of equations
Vf(x)

= in -1 .
(8.21) Y= ) U\ f7(f(0))
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From (8.20) we obtain the following Kurdyka Lojasiewicz inequality (cf., [6, Propo-
sition 1]):

IV(f = f0)'7¢(@)] > (1= 0)C forze U\ fH(f(0)).
Hence it follows that

((f = f(0)!7207) = =|V(f = f(0))! "9 0| < (1= 0)C forz € U\ f7(f(0))

(cf., the proof of [6, Theorem 1]). Consequently, (f — f(0))!17 20~ and f o~ are
decreasing functions and for any 0 < s7 < s,

(f = £(0))'7¢(v(51)) = (f = £(0))'72(v(s2)) = (51 = s2)((f = £(0))' "¢ 07)'(t)
2 (52 = s1)(1 - 0)C.

Since s3 — 51 is equal to the length of v|f,, 5,1, we have

(8.22) length ][, s) < (f = F(0)'2(v(s1)) = (f = f(0)) "2(v(s2)).
From the above, for any s; € [0, 3) we obtain that the length of v|f,, g does not

exceed (f — f(0))'72(y(s1)). So, under assumption (f(y(s)) — f(0))17¢ < ¢ we
obtain that the trajectory 7|5, 5) cannot come out of the set U and, consequently,
must have a limit point in the set f~(f(0)). This gives that any maximal solution
to the right v : [0,8) — U\ f~1(f(0)) of the system of equations (8.21) with initial
condition (f(v(0)) — f£(0))!7¢ < ¢ runs in the set U \ f~1(f(0)) and intersects at
exactly one point each level f=1(y), f(0) <y < f(v(0)).

Take any € > 0. Without loss of generality we may assume that € < ¢. Put
6= f(0) 4 /-9,

Now suppose that f(£y) < d. Then (f(&)— f(0))}72 < c and ( (&)—fO)e<ec
for any v (see (8.10)). Take the solution v : [0,8) — U \ f~1(f(0)) of (8.21) such
that v(0) = &,. By the above there exists s; > 0 such that f(y(s1)) = f(&,+1) and
by (8.22) and (8.7),

[€v+1 — &l < lengthy|o,s,) < (f = £(0)'74(&) — (f = f(0))' 2 (&wsr).
Since lim, o (f(£,) — f(0)) =0 and 1 — ¢ > 0, then

oo

D L) = F0))' 78 = (f(€ra) = F(0)' 2] = (f(&) — £(0)' 2.

k=v
From this and Fact 8.14 (i) we obtain that the length of ¢, does not exceed e. O

From Proposition 8.15 and from the proof of this proposition we immediately
obtain

Corollary 8.16. Let 0 € Int X;<, and let f(0) be the minimal value of f. Then
for any € > 0 there exists f(0) < 6 <r such that for any § € Xy¢<s,

|wy (&) —ws(§)] <& for any v.
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8.3. Uniform convergence of the sequence w,. We will show that the sequence
of mappings w, has some property similar to a property of the flow of gradient field
(cf., [8, 10], see also subsection 8.2).

Proposition 8.17. Let 0 € Int X<, and let f(0) be the minimal value of f. Then
there exists f(0) < § < r such that the sequence w, uniformly convergents to w, in
the set U = Xy<s. In particular the mapping w, : U — U N Xy is continuous and
wy(§) =& for E e UNEy, i.e., wy is a deformation retraction and the set U N Xy
is a retract of U.

Proof. Let C, o be as in (L1). Assume that (L1) is fulfild in the set U = X <4 for
some f(0) < ¢ < r and that the assertiin of Proposition 8.15 holds for any £ € U.

By the assumption that f(0) is minimal value of f we have that f(w.(£)) = f(0)
for € € U, so, it is a continuous function. Let 0 < o < 1 and C' > 0 be constants
fulfilling (L1) in Remark 8.8. From Corollary 5.6 (b) we see that

(fow,—fow,)  2:U—R

is a sequence of continuous functions and by (8.10) it is decreasing. Obviously,
lim, 00 (f ow, — fow,) = 0 is a continuous function. So, by Dini’s theorem the
sequence

(8.23) (fow, — fow,)' ™2 tends uniformly to 0 on U.

By the choice of §, analogously as in the proof of Proposition 8.15, for any £ € U
we obtain that (cf., Fact 8.10)

jwi (€) = we ()] < D lwn41() —wi(€)]
k=v

fé w — flw 1=e
— =g e l€) — Flan()

This and (8.23) gives the assertion. O

Remark 8.18. Without assuming that f(0) is the smallest value of the function,
the assertion of Proposition 8.17 does not hold. Namely, if the set X<, is con-
nected, and f has at least two critical values in X y<,, we easily get a contradiction.

8.4. Gradient of a polynomial in the polar coordinates. Let f € Rlz] be
a polynomial of form (2.1). Then f can be written as

=31, (e) b, @m0,

=0
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Denote

r=r(z) =|z|] and G:Q(x):ﬁx for z # 0.
x

Then z =76, r > 0,0 € S* ! and f can be written in the polar coordinates

d
(8.24) fl@)=fro)=>_f;(0)r7, x#0,
3=0
and
(8.25) Vf(z)=0.f(r0)d+ V' f(ro),
where
d
s26) o sty = YT g gy OO >isor
and
V' f(r0) =V f(ro) — 0, f(r6)6.
Obviously,
(V'f(r6),0) =0 forz=r60+#0
and
V'f(z)=Vf(x)— Wﬂ: for z # 0.

The vector 0, f(r8)0 is called the radial part of the gradient V f(x) and V' f(rf) —
the spherical part of V f(z).

From the definition of V’f we immediately obtain the following remark.
Remark 8.19. Let eq,...,e, be the standard basis of the linear space R™, i.e.,

ej =(0,...,0,1,0,...,0), where 1 is on the jth place. Take any x € R™, x # 0.
Put

€j,x )
z2
Then |vj| =1 — EiEE
o T1T; Tj—12; 1 ‘rJQ Lj+1L5 Inlj i=1
U\ TRE T TR TR T R T e ) T
and

Vi)=Y (V@)v)v;.

j=1
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8.5. Spherical part of the sequence w, = k%;. In view of the results of Section
8.2, there is a problem of the convergence of the spherical part of the sequence
wy (&) = k% (§). We will consider this problem under assumption that &, = w, (§) —
0 as v — o0.

In [4], the key role is played by the sets
W.={z e R"\ {0} : e|V'f(2)| <|0-f(2)|]}, &>0,

where V' f(x) is the spherical and 8Tf(m)‘”7| — the radial part of the gradient V f(z).
One of the most important properties was the behavior of the gradient field tra-
jectory when crossing the boundary of such a set (and properties of the so called
controlling function). More precisely, the trajectory of the gradient field must run
through this set from a certain point and must not leave it. In a discrete case,
a sequence can jump into or out of that set without crossing its boundary.

In order for the method from [4] to be applied in a discrete case, the following
conjecture would have to hold. Take any & € X<, \ ¥y and let £, = w, (&) for
v=0,1,...,. Assume that w.(§) = 0.

Conjecture 8.20. There exists a constant € > 0 and vy such that for any v > vy

elévr1 — &l <&l = €01l
equivalently, €|V f(£,)] < 10-f(&)], d.e., & = wy(§) € We.

With fairly strong assumptions, we get that the limit of the spherical part of
the sequence £, exists. Namely, the following fact holds.

Fact 8.21. Assume that fr(0) > 0 for § € S"~1. Then there is the following limit

(8.27) lim ¢,

v=oo (&

Moreover, the sequence |€,| is strictly decreasing from a certain point.

Proof. Let’s write f in a polar coordinates:

Fr0) = fo +r* fr(0) + -+ fa(6),
where r > 0 and § € S~ 1. Then
(8.28) 0, f(r0) = kr* =1 f1(8) + - -+ dri ™! f(6),

V' f(r0) = "V fr(0) + - - - + 1V £4(0).
and
Vf(r0) = 0.f(r0)0 + V'f(r0)
So, from the assumption that f(6) > 0 for # € S"~1, there exists ry > 0 such that

!/
(8.29) M <Oyl < Co0,f(r0) < C3|Vf(ro)| for 0 <r <o

and some positive constants Cy, Cy, Cs.
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Take the curve v = 7, defined by (8.19). By Fact 8.14 (ii) the function f o~y is
strictly decreasing, so we have

() #0 for t € [0, +00),

and we may write vy in the polar coordinates y(t) = 7, (¢)0(t), ry(t) = |y(t)] > 0
amd 6. () € S"~1. Then

v'(t) =1l ()0, (t) + ry ()0 (t) forte (v,v+1), v=0,1,...,

v
and (0, (t),0.,(t)) = 0 for t € [0, +00) \ Z. On the other hand, by Fact 8.14 (iii),
1
,t:y *uzfiv v for t € l/,l/+1, 1/2071,....
Y ( ) g +1 E 2Nf(£u+1) f(£ +1) ( )

Since Vf(€,41) # 0, we may write V f(£,41) in the polar coordinates, so

/

1
= NG

. 0, f(6ysr) forte(mu+1), v=0,1,...
and
(0] (1) = —mvf@w) forte(wu+l), v=0,1,....
So, by (8.28),
(1) = ! [krh =1 () fi(04(8) + - - - 4+ drd =" (1) fa(04(1))]

2N f(&v+1)
for t € (v,v+1), v = 0,1,.... By the assumption that fi(6) > 0 for § € S"~!
we see that the derivative has a fixed sign r/ (¢) < 0 for sufficiently large ¢ ¢ Z.
Consequently, the sequence |, is strictly decreasing from a certain point and we

proved the moreover part of the assertion. Moreover, 7 (t) tends to 0 as t — oo
and by (8.29),

, _ |V/f(€v+1)| CQ
0°(t)] = INf(Eyi1)r4(t) = 2N f(&v+1)

for t € (v,v + 1), and sufficiently large v. Snce the curve v has z finite length (see
Fact 8.14 (i)), then the above gives that 6, also has a finite length. Consequently
te curve © : [0, +00) — R™ defined by

Ot):=00&)+ (t—Fk)[0(&+1)—00&)] fortev,v+1), v=0,1,...

has a finite length. This gives that exists a limit lim, o 6(§,) i.e., the limit (8.27)
exists. g

O f(§41) = Calr, ()] < sy ()]

Remark 8.22. In fact, in the proof of Fact 8.21 we proved that W¢, for somee > 0,
is equal to some neighbourhood of the origin. Moreover, under the assumption of
this fact, we proved that |V’ f(r0)| < r|0,f(r6) in a neighbourhood of the origin.
This is a stronger condition than the fact that &, belongs to the set W. It seems
that it is not enough to prove Congecture 8.20 to show that 6(§,) converges. The
sequence &, should satisfy e|V'f(&,)| < |€,]%(0-f (&) for some positive constants €
and o.
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