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CONVEXIFYING OF POLYNOMIALS BY CONVEX FACTOR

ABDULLJABAR NAJI ABDULLAH, KLAUDIA ROSIAK, AND STANIS LAW SPODZIEJA

Abstract. Let X ⊂ Rn be a convex closed and semialgebraic set and
b : Rn → (0,+∞) be a C 2 class positive strongly convex function. Let f be

a polynomial positive on X. If X is compact, we prove that there exists an ex-

ponent N ≥ 1, such that for any ξ ∈ X, the function φN,ξ(x) = bN (x−ξ)f(x)
is strongly convex on X. If X = {ξ ∈ Rn : f(ξ) ≤ r} is bounded we define

a mapping κN : X ∋ ξ 7→ argminX φN,ξ ∈ Rn, where argminX φN,ξ is the

unique point x ∈ X at which φN,ξ has a global minimum. We prove that

κN is a mapping of class C 1 of X onto Y = κN (X) ⊂ X and that for any

ξ ∈ X the limit of the iterations limν→∞ κν
N (ξ) exists and belongs to the set∑

f of critical points of f . If additionally b is logarithmically strongly convex

then κN is injective and it is defined on Rn, provided f takes only positive

values and the leading form of f is positive except of the origin. In the case

b(x) = exp |x|2 and f |X has only one critical value we prove that the map-
ping X ∋ ξ 7→ limν→∞ κν

N (ξ) ∈ Σf ∩ X is continuous. Moreover, assuming

that limν→∞ κν
N (ξ) = 0 we study convergence of the sequence of the spherical

parts of κν
N (ξ), ν ∈ N.

1. Introduction

The first goal of the paper is to study convexification of polynomial functions by
a positive strongly convex function b : Rn → R of class C k, k ≥ 2. More precisely,
we will prove that (see Corollary 5.1): If a polynomial f : Rn → R is positive on
a compact and convex set X ⊂ Rn, then there exists an effectively calculable positive
integer N0 such that for any N ≥ N0 the function

φN (x) = b(x)Nf(x)

is strongly convex on X. The exponent N0 depend on R = max{|x| : x ∈ X},
S = max{b(x) : x ∈ X}, the size of coefficients of the polynomial f and m > 0
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such that f(x) ≥ m for x ∈ X. In case the polynomial f has integer coefficients
finding N is fully effective (see Section 7).

A stronger version of the above result we give in Corollary 5.2; there exists
an integer N0, which can be explicitly estimated, such that for any N ≥ N0 the
functions

φN,ξ(x) = b(x− ξ)Nf(x), ξ ∈ X,

are strongly convex on X.

The second goal of the paper is to construct a mapping κN and investigate its
properties. Namely, in the case when Xf≤r := {x ∈ Rn : f(x) ≤ r} ⊂ X, where
r ∈ R and X is a closed ball, we prove that the mapping κN : Xf≤r → Xf≤r

defined by
κN (ξ) = argminX φN,ξ

is of class C k−1 (see Lemma 4.2 and Corollary 5.6). Moreover, it is a diffeo-
morphism of class C k−1 provided b is logarithmically strongly convex, i.e., ln b
is strongly convex (see Lemma 4.3 and Corollary 5.6). For a strongly convex
function g : Y → R on a closed and convex set Y the unique point x0 ∈ Y at
which g has a global minimum on Y we denote by argminY g. In Theorem 4.8
we give some properties of the iterations κνN of the mapping κN and prove that:
κN,∗(ξ) := limν→∞ κνN (ξ) exists and belongs to the set Xf≤r ∩Σf of critical points
of f in Xf≤r. Note that the set of fixed points of κN is equal to Xf≤r ∩ Σf (see
Lemma 4.5).

Analogous results for unbounded sets we obtain in Section 6 under assumption
that b is logarithmically strongly convex and that the leading form fd of f (i.e.,
a homogeneous polynomial fd such that deg(f − fd) < deg f) satisfy

(1.1) fd(x) > 0 for x ∈ Rn \ {0}.

In Section 8 we give some results on the convergence of the sequence κνN (ξ),
provided b(x) = exp |x|2. We prove that there is a neighbourhood U ⊂ Rn of the
set of points, where the function f takes the smallest value such that the mapping
assigning to each point ξ ∈ U the limit point κN,∗(ξ) of the proximal algorithm
is continuous (see Proposition 8.17). Moreover, we prove that the sequence κνN |U
uniformly converges to κN,∗|U . Without the assumption on U , the assertion of
Proposition 8.17 does not hold (see Remark 8.18). We also show that the curve
connecting successively the points κνN (ξ), ξ ∈ X, defined by the formula (8.19),
shows a number of properties similar to those of the trajectory of the gradient field
1

2N∇(ln f) (see Section 8.2). At the end of the paper we consider the problem of
convergence of the sequence of the spherical parts κνN (ξ)/|κνN (ξ)| of the sequence
κνN (ξ), provided κνN (ξ) → 0 as ν → ∞ (see Fact 8.21).

In the special case when b(x) = 1 + |x|2, a similar results to Corollary 5.1 and
Theorem 4.8 are known. In [5, Theorem 5.1] there was proved that: If a polynomial
f : Rn → R is positive on a compact and convex set X ⊂ Rn, then there exists
an effectively calculable positive integer N0 such that for any integer N ≥ N0

the function
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ϕN (x) = (1 + |x|2)Nf(x)

is strongly convex on X. Moreover, a stronger version of [5, Theorem 5.1] was given
in [5]; there exists an effectively calculable positive integer N1 such that for any
integer N ≥ N1 the polynomials ϕN,ξ(x) = (1 + |x− ξ|2)Nf(x), ξ ∈ X, are strongly
convex on X. This is a crucial fact for a construction of a proximal algorithm
which for a given polynomial f , positive in the convex compact semialgebraic set
X, produces a sequence ξν ∈ X starting from an arbitrary point ξ0 ∈ X, defined
by induction: ξν = argminX ϕN,ξν−1 . The sequence ξν converges to a lower critical
point of f on X (see [5, Theorem 7.5]), i.e., a point a ∈ X for which there exists
a neighborhood Ω ⊂ Rn such that ⟨x−a,∇f(a)⟩ ≥ 0 for every x ∈ X ∩ Ω, where
∇f is the gradient of f in the Euclidean norm. In the case of non-compact closed
convex set X, under the assumption (1.1) we have that: if the polynomial f is
positive on X then for any R > 0 there exists NR such that for any ξ ∈ X,
|ξ| ≤ R, N > NR the polynomial ϕN,ξ is strongly convex on X. Similar results

to the above were obtained in [7] for the functions ψN,ξ(x) := eN |x−ξ|2f(x) and

ΨN,ξ(x) := ee
N|x−ξ|2

f(x).

2. Auxiliary results

2.1. Convex functions. Let f : X → R, where X ⊂ Rn. The function f is called
convex if the set X is convex and for any x, y ∈ X and 0 < t < 1,

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y).

If the above inequality holds with < for x ̸= y, the function is called strictly convex.

Let f be a real function of class C 2 defined on a neighbourhood of a convex set
X ⊂ Rn.

Denote by ∂vf(x) the directional derivative of the function f in the direction of
a vector v ∈ Rn at a point x ∈ Rn, and by ∂2vf(x) the second order derivative of f
in the direction v at x. If v = (0, . . . , 0, 1, 0, . . . , 0), where 1 is on the ith place, we

write traditionally ∂vf = ∂f
∂xi

. Then the gradient ∇f : X → Rn of f is of the form

∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
.

For any a ∈ X and v ∈ Rn we put Ia,v = {t ∈ R : a + tv ∈ X}. Obviously, the
set Ia,v is an interval or a single point. Recall some known facts (cf. [11]).

Fact 2.1. The following conditions are equivalent:

(a) The function f is convex.

(b) For any vector v ∈ Rn and any a ∈ X the function Ia,v ∋ t 7→ ∂vf(a+tv) ∈ R
is increasing.

(c) For any vector v ∈ Rn and any a ∈ X we have ∂2vf(a) ≥ 0.
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Fact 2.2. The following conditions are equivalent:

(a) The function f is strictly convex.

(b) For any vector v ∈ Rn of positive length and any a ∈ X the function Ia,v ∋
t 7→ ∂vf(a+ tv) ∈ R is strictly increasing.

(c) The function f is convex and for any vector v ∈ Rn of positive length and
any a ∈ X the set {t ∈ Ia,v : ∂2vf(a + tv) = 0} is novhere dense in Ia,v, provided
Ia,v is an interval.

A function g : X → R is called strongly convex or µ-strongly convex, µ > 0, if
X ⊂ Rn is a convex set and for any x, y ∈ X and 0 < t < 1,

g(tx+ (1 − t)y) ≤ tg(x) + (1 − t)g(y) − t(1 − t)
µ

2
|x− y|2,

If additionally g is of class C 1 then the above condition is equivalent to

g(y) ≥ g(x) + ⟨y − x,∇g(x)⟩ +
µ

2
|y − x|2 for x, y ∈ X,

where ⟨·, ·⟩ is the standard scalar product in Rn. Obviously, any strongly convex
function is strictly convex and consequently, it is also convex.

Denote by Sn−1 the unit sphere in Rn, i.e., Sn−1 = {x ∈ Rn : |x| = 1}.

Fact 2.3. Let µ > 0. The following conditions are equivalent:

(a) The function f is µ-strongly convex.

(b) For any vector v ∈ Sn−1 we have ∂2vf(x) ≥ µ at any point x ∈ X.

(c) For any x ∈ X any eigenvalue of the Hessian matrix of f

H(f) =

[
∂2f

∂xi∂xj
(x)

]
1≤i,j≤n

is bounded from below by µ.

Fact 2.4. If f : Rn → R is a strongly convex function then lim|x|→∞ f(x) = +∞.

If f(x) > 0 for x ∈ X, the function f we will call logarithmically convex, loga-
rithmically strictly convex and logarithmically µ-strongly convex if ln f is convex,
strictly convex and µ-strongly convex respectively.

Obviously for any µ-strongly convex function a : Rn → R the function b =
exp a is logarithmically strongly convex, for instance b(x) = exp(|x|2), b(x) =
exp(exp(|x|2)),..., are logarithmically strongly convex functions.

Fact 2.5. If b : Rn → R is a logarithmically strongly convex function then b is also
a strongly convex function.

Proof. Indeed, for any β ∈ §n−1, we have

∂2β(ln b(x)) =
b(x)∂2βb(x) − (∂βb(x))2

b(x)2
≥ µ for x ∈ Rn,
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so,

∂2βb(x) ≥ ηb(x) +
(∂βb(x))2

b(x)
≥ µb(x0) > 0 for x ∈ Rn

and some µ > 0, where x0 = argminRn b. □

2.2. Gradient of convex functions. Let f be a real function of class C 2 defined
in a neighbourhood of a convex set X ⊂ Rn.

From Fact 2.2 we immediately obtain

Corollary 2.6. If f is a strictly convex function, then the gradient

∇f : X ∋ x 7→ ∇f(x) ∈ Rn

is injective.

Proof. Indeed, by Fact 2.2, for any a, b ∈ X, a ̸= b, the function

φ : Ia,b−a ∋ t 7→ ∂b−af(a+ t(b− a)) ∈ R
is strictly increasing. Moreover, 0, 1 ∈ Ia,b−a, so

⟨∇f(a), b− a⟩ = φ(0) < φ(1) = ⟨∇f(b), b− a⟩.
Consequently, ∇f(a) ̸= ∇f(b). □

From Corollary 2.6 we obtain

Corollary 2.7. If f is an logarithmically strictly convex function, then the mapping

1

f
∇f : X ∋ x 7→ 1

f(x)
∇f(x) ∈ Rn

is injective.

Proof. Indeed, by definition, ln f is strictly convex and ∇(ln f) = 1
f∇f . So, Corol-

lary 2.6 gives the assertion. □

Without assuming logarithmically strict convexity of the function f , the above
corollary does not hold. This is demonstrated by the following example.

Example 2.8. Let f(x) = 1 + x2. Then f ′

f (x) = 2x
1+x2 and obviously this function

is not injective. Moreover, the function f is strongly convex.

Lemma 2.9. Let b : Rn → R be a µ-strongly convex function of class C 2, let
x0 = argminRn b and let X ⊂ Rn be a convex and compact set. If b(x) > 0 for
x ∈ X and x0 is an interior point of the set X then there exists ε > 0 such that

(i) the function b is an logarithmically strongly convex in the set Xx0,ε = {x ∈
X : |x− x0| ≤ ε}.

(ii) the function Xx0,ε ∋ x 7→ 1
b(x)∇b(x) ∈ Rn is injective.

(iii) there exists δ > 0 such that for any x ∈ X such that |∇b(x)|
b(x) < δ we have

|x− x0| < ε.
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Proof. Since b(x) > 0 for x ∈ X and b is µ-strongly convex function, for any x ∈ X
and β ∈ Rn, |β| = 1 we have

∂2β(ln b)(x) =
∂2βb(x)

b(x)
−
(
∂βb(x)

b(x)

)2

≥ µ

b(x)
−
(
∂βb(x)

b(x)

)2

.

Since b is of class C 2 and ∂βb(x0) = 0 then there exists ε > 0 fulfilling (i). The
assertion (ii) immediately follows from (i) and Corollary 2.7. Taking

δ = min

{
ε, inf

{
|∇b(x)|
b(x)

: x ∈ X, |x− x0| ≥ ε

}}
,

where inf ∅ = +∞, we see that δ > 0 and deduce the assertion (iii). □

2.3. Convexifying functions on compact sets.

Fact 2.10. If b : Rn → R is a function of class C 2 such that for any compact and
convex set X ⊂ Rn there exists N0 ∈ N such that for any N ≥ N0 the function
x 7→ bN (x) is strongly convex on X, then b is positive on Rn.

Proof. Take any compact and convex set X ⊂ Rn and let N0 be such that for any
N ≥ N0 the function bN (x) is strongly convex on X. Take N ≥ N0. Since b is of
class C 2, from Fact 2.3, for any vector v ∈ Sn−1 we have

∂2vb
N (x) = N(N − 1)bN−2(x)(∂vb(x))2 +NbN−1(x)∂2vb(x)

= NbN−2(x)
[
(N − 1)(∂vb(x))2 + b(x)∂2vb(x)

]
> 0 for x ∈ X.

So, b(x) ̸= 0 for x ∈ Rn. Hence, in view of continuity of the functions x 7→ b(x),
(x, v) 7→ ∂vb(x), (x, v) 7→ ∂2vb(x), the Darboux property gives the assertion. □

Example 2.11. Under assumptions of Fact 2.10 we cannot require that the func-
tion b is convex. For example for b(x) = 4

√
1 + |x|2, x ∈ Rn, the assertion of Fact

2.10 holds (see [5, Theorem 5.1]) but b is not convex. It can not be expected that
lim|x|→∞ b(x) = +∞. For example, for the function b(x) = expx, x ∈ R, the
assertion of Fact 2.10 holds (see Lemma 3.1 in Section 5.1) but limx→−∞ b(x) = 0.

Fact 2.12. If b : Rn → R is a function of class C 2 such that for any compact and
convex set X ⊂ Rn there exists N0 ∈ N such that for any N ≥ N0 the function
x 7→ bN (x) is logaritmically strongly convex on X, then b is also logarithmically
strongly convex on any compact and convex set X ⊂ Rn.

Proof. Sine a logarithmically strongly convex function is also strongly convex, by
Fact 2.10, the function b is positive on Rn. Take any compact and convex set
X ⊂ Rn. Let N0 be such that for any N ≥ N0 the function bN (x) is logarithmically
strongly convex on X. Then for N ≥ N0 the function ln bN (x) = N ln b(x) is
strongly convex on X. Consquently, b is logarithmically strongly convex on X. □
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2.4. Polynomials. Let f ∈ R[x] be a polynomial in x = (x1, . . . , xn) of the form

(2.1) f =

d∑
j=0

∑
|ν|=j

aνx
ν ,

where aν ∈ R, xν = xν1
1 · · ·xνn

n and |ν| = ν1 + · · · + νn for ν = (ν1, · · · , νn) ∈ Nn

(we assume that 0 ∈ N). Assume that d = deg f . Then f = f0 + · · ·+ fd, where fj
is a homogeneous polynomial of degree j or zero, i.e.,

(2.2) fj :=
∑
|ν|=j

aνx
ν , 0 ≤ j ≤ d.

We will call The polynomial fd the leading form of f . Obviously deg(f − fd) < d.

We set

∥f∥ :=
∑
|ν|≤d

|aν |.

Then ||f0|| = |a0| and

||f || = ||f0|| + · · · + ||fd||.

Lemma 2.13. Take any β ∈ Sn−1. Then for any x ∈ Rn we have

(2.3) |∂βf(x)| ≤
d∑

j=1

j||fj |||x|j−1, |∂2βf(x)| ≤
d∑

j=1

j(j − 1)||fj |||x|j−2.

In particular if |x| ≥ 1 then

(2.4) |∂βf(x)| ≤ d||f || · |x|d−1, |∂2βf(x)| ≤ d(d− 1)||f || · |x|d−2.

Proof. Let β = (β1, . . . , βn). We have

∂βf(x) =

d∑
j=1

∑
|ν|=j

aν∂βx
ν , ∂2βf(x) =

d∑
j=2

∑
|ν|=j

aν∂
2
βx

ν

Take any ν = (ν1, · · · , νn) ∈ Nn, |ν| = ν1 + · · · + νn = j. Then

|∂βxν | ≤
n∑

k=1

νk|xν1
1 · · ·xνk−1

k · · ·xνn
n | ≤ j|x|j−1

and consequently,

|∂2βxν | ≤
n∑

k=1

νk|∂βxν1
1 · · ·xνk−1

k · · ·xνn
n | ≤ j(j − 1)|x|j−2.

This gives (2.3). Consequently, for |x| ≥ 1 we have

|∂βf(x)| ≤
d∑

j=1

j|x|j−1
∑
|ν|=j

|aν | ≤ d|x|d−1(||f1|| + · · · + ||fd||) ≤ d|x|d−1 · ||f ||.
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and

|∂2βf(x)| ≤
d∑

j=2

j(j − 1)|x|j−2
∑
|ν|=j

|aν | ≤ d(d− 1)|x|d−2 · ||f ||,

which gives (2.4) and ends the proof. □

From Lemma 2.13 we immediately obtain

Corollary 2.14. If ∇f(0) = 0 then

|∇f(x)| ≤ d
√
n∥f − f0∥ · |x| for |x| ≤ 1.

2.5. Estimation of zeros of a polynomial. Let f ∈ R[x] be a polynomial of
form (2.1). Put fd∗ = min|x|=1 fd(x). Assume that fd∗ > 0 and set

Kf (r) := 2 max

{(
||f0|| + r

fd∗

)1/d

, max
1≤j≤d−1

∣∣∣∣ ||fd−j ||
fd∗

∣∣∣∣1/j
}

for r > 0.

We put K(f) := Kf (0).

Fact 2.15. For any r ≥ 0,

{x ∈ Rn : f(x) ≤ r} ⊂ {x ∈ Rn : |x| ≤ Kf (r)}.

Proof. Under notations of Section 2.4,

|fj (θ)| ≤ ||fj || for θ ∈ Sn−1.

Take any x ∈ Rn \{0} and put r = |x| and θ = 1
|x|x. Then x = rθ, r > 0, θ ∈ Sn−1

and f(x) can be written in the form

f(x) =

d∑
j=0

fj(θ)r
j .

Since the number

2 max
1≤j≤d

∣∣∣∣fd−j(θ)

f0(θ)

∣∣∣∣1/j
estimate from above the modul of any zero r of the polynomial fd(θ)rd +
fd−1(θ)rd−1 + · · · + f0(θ) in r, where fd(θ) ≥ fd∗ > 0, then the polynomial f − r
have no zeros x ∈ Rn such that |x| > Kf (r). Since f have positive values for
x ∈ Rn such that |x| tends to infinity, then we obtain the assertion. □

3. Convexifying functions on compact sets

3.1. Strongly convex functions. Let b : Rn → R be a function of class C 2 which
is µ-strongly convex, µ > 0, and takes only positive values.

Take any convex and compact set X ⊂ Rn. Let

S := max{b(x) : x ∈ X}.
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Obviously S > 0. Take any function f : Rn → R of class C 2 which is positive on
X. Let m,D ∈ R be a positive numbers such that

f(x) ≥ m, |∂βf(x)| ≤ D, |∂2βf(x)| ≤ D for x ∈ X and β ∈ Sn−1.

Let

N(µ, S,m,D) :=
S

µ

(
D

m
+
D2

m2

)
+ 1.

The following lemma is a version of Lemma 49 from [13] by Klaudia Rosiak.

Lemma 3.1. For any N ≥ N(µ, S,m,D) the function φN (x) = bN (x)f(x) is
strongly convex on the set X.

Proof. Take any N ≥ N(µ, S,m,D) and x, β ∈ Rn, |β| = 1. Then

∂2βφN (x) = N(N − 1)bN−2(x)f(x) (∂βb(x))
2

+ 2NbN−1(x)∂βb(x)∂βf(x)

+NbN−1(x)f(x)∂2βb(x) + bN (x)∂2βf(x).

Since b(x) > 0 for x ∈ Rn, we have

∂2βφN (x) = bN (x)Λ(x),

where

Λ(x) = N(N − 1)f(x)

(
∂βb(x)

b(x)

)2

+ 2N
∂βb(x)

b(x)
∂βf(x) + ∂2βf(x) +Nf(x)

∂2βb(x)

b(x)
.

Since f and b are functions of class C 2, then φ is also class C 2 and it suffices to
prove that

(3.1) Λ(x) > 0 for x ∈ X.

Let now x ∈ X and put t =
∂βb(x)
b(x) . From the assumptions on f and b,

Λ(x) ≥ N(N − 1)m|t|2 − 2ND|t| −D +Nm
µ

S
.

The discriminant of the quadratic function in |t| on the right hand of the above
inequality is of the form

∆ = 4N2D2 − 4N(N − 1)m
(
−D +Nm

µ

S

)
= −4Nm2µ

S

[
N

(
N − 1 − S

µ

D

m
− S

µ

D2

m2

)
+
S

µ

D

m

]
So, for N ≥ N(µ, S,m,D) we have ∆ < 0 and consequently

N(N − 1)m|t|2 − 2ND|t| −D +Nm
µ

S
> 0 for t ∈ R.

This gives (3.1) and ends the proof. □

Let
S′ := max{b(x− ξ) : x, ξ ∈ X}.

From Lemma 3.1 we immediately obtain
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Corollary 3.2. For any N ≥ N(µ, S′,m,D) and any ξ ∈ X the function

(3.2) φN,ξ(x) = bN (x− ξ)f(x)

is strongly convex on the set X.

Remark 3.3. Let b : Rn → R be a µ-strongly convex function, µ > 0, and let
X ⊂ Rn be a compact and convex set. Let f : Rn → R be a function of class C 2

and let D ∈ R be a positive number such that

|∂2βf(x)| ≤ D for x ∈ X and β ∈ Rn, |β| = 1.

Then for any ξ ∈ Rn and

N >
D

µ
,

the function ΨN,ξ : Rn → R defined by ΨN,ξ(x) = Nb(x − ξ) + f(x), x ∈ Rn, is
strongly convex on X (more precisely (Nµ−D)-strongly convex).

Indeed, take any ξ ∈ Rn. Since Nµ > D then for any β ∈ Rn, |β| = 1 we have

∂2βΨN,ξ(x) = N∂2βb(x− ξ) + ∂2βf(x) ≥ Nη −D > D −D = 0 for x ∈ X.

This gives the assertion.

3.2. Logarithmically convex functions. Let b : Rn → R be a function of class
C 2 which is logarithmically µ-strongly convex, µ > 0.

Let f : Rn → R be a function of class C 2 taking only positive values. Take any
convex and compact set X ⊂ Rn. Let m,D ∈ R be a positive numbers such that

f(x) ≥ m, |∂βf(x)| ≤ D, |∂2βf(x)| ≤ D for x ∈ X and β ∈ Sn−1.

Let

Nexp(µ,m,D) :=
1

µ

(
D

m
+
D2

m2

)
.

Lemma 3.4. For any N > Nexp(µ,m,D) and any ξ ∈ Rn the function φN,ξ(x) =
bN (x− ξ)f(x) is logarithmically strongly convex on the set X.

Proof. Take any ξ ∈ Rn. Let ψN,ξ = lnφN,ξ. Then

ψN,ξ(x) = N ln b(x− ξ) + ln f(x), x ∈ Rn

so for any β ∈ Sn−1, we have

∂βψN,ξ(x) = N∂β(ln b(x− ξ)) +
∂βf(x)

f(x)
, x ∈ Rn,

and

∂2βψN,ξ(x) = N∂2β(ln b(x− ξ)) +
f(x)∂2βf(x) − (∂βf(x))2

f(x)2
, x ∈ Rn.

Consequently, for N > Nexp(µ,m,D) and x ∈ X, we have

∂2βψN (x) ≥ Nµ− D

m
− D2

m2
> 0, x ∈ X.
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Since ∂2βψN is continuous and X is compact, we obtain the assertion. □

4. Iterations of the mapping ξ 7→ argminφN,ξ

Let f : Rn → R be a function of class C k, k ≥ 2. Take any r > 0 and assume
that the set

Xf≤r := {x ∈ Rn : f(x) ≤ r}
is bounded and nonempty. Let Rf≤r be the size of Xf≤r, i.e.,

Rf≤r := sup{|x| : x ∈ Xf≤r}.
Take any R > Rf≤r and put

BR := {x ∈ Rn : |x| ≤ R}.
Since Xf≤r ̸= ∅, we have Rf≤r ≥ 0 and so, R > 0.

Let mR, DR ∈ R be a positive numbers such that

(4.1) f(x) ≥ mR, |∂βf(x)| ≤ DR, |∂2βf(x)| ≤ DR for x ∈ BR, β ∈ Sn−1.

Let b : Rn → R be a function of class C k, k ≥ 2, which is µ-strongly convex,
µ > 0, and takes only positive values, let (for simplicity of notations),

(4.2) 0 = argminRn b,

and let

S′
b,R := max{b(x− ξ) : x, ξ ∈ BR}.

Let N be an integer number such that

(4.3) N ≥ N(µ, S′
b,R,mR, DR).

By Corollary 3.2 for any ξ ∈ BR the function φN,ξ(x) = bN (x− ξ)f(x) is strongly
convex on the set BR. Let κN : BR → BR be a mapping defined by

(4.4) κN (ξ) := argminBR
φN,ξ ∈ BR for ξ ∈ BR.

Fact 4.1. κN (Xf≤r) ⊂ Xf≤r.

Proof. Take any ξ ∈ Bf≤r and let x = κN (ξ). Then φN,ξ(x) ≤ φN,ξ(ξ) and
consequently, bN (x− ξ)f(x) ≤ bN (0)f(ξ). Since, by (4.2), b(0) ≤ b(x− ξ), we have
f(x) ≤ f(ξ) which gives the assertion. □

Lemma 4.2. The function κN |Xf≤r
is of class C k−1.

Proof. Take any ξ ∈ Xf≤r. Observe that x = κN (ξ) satisfies the following system
of equations

(4.5) ∇φN,ξ(x) = 0.

Indeed, by the choice of R we have min{f(x) : |x| = R} > r, so, Xf≤r ⊂ IntBR

and by Fact 4.1, κN (ξ) ∈ IntBR. So, x satisfies (4.5). Since the Jacobian (with
respect to x) of the system of equations is equal to the Hessian of φN,ξ then the
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Jacobian is nonzero at x, because the Hessian matrix has only positive eigenvalues.
Then the Implicit function theorem gives the assertion. □

Lemma 4.3. Let b be µ-logarithmically strongly convex function of class C k and
let N > Nexp(µ,mR, DR). Then the mapping

(4.6) κN |Xf≤r
: Xf≤r → κN (Xf≤r)

is a diffeomorphism of class C k−1.

Proof. Take any ξ ∈ Xf≤r and let x = κN (ξ). Since b(x− ξ) > 0, under notations
of the proof of Lemma 4.2 from (4.5) we have

(4.7) N∇b(x− ξ)f(x) + b(x− ξ)∇f(x) = 0,

where ∇b(x− ξ) is the gradient of b(x− ξ) with respect to x. Then

(4.8)
1

b(x− ξ)
∇b(x− ξ) +

1

Nf(x)
∇f(x) = 0.

So, by Corollary 2.7, the point ξ is uniquely determined by x. Consequently, the
mapping (4.6) is bijective and consequently it is a homeomorphism, because Xf,R

is compact anf κN is continuous. To complete the proof it suffices to show that

the mapping
(
κN |Xf≤r

)−1
: κN (Xf≤r) → Xf≤r is of class C k−1. For this it is

enough to show that the Jacobian with respect to ξ of the system of equations
(4.8) is nonzero for any (x, ξ) ∈ Xf≤r × κN (Xf≤r) such that ξ = κN (x). This
is due to the fact that the Jacobian with respect to ξ of the system of equations
(4.8) is equal to the Hessian of ln(φN,ξ), so it does not zero anywhere in the set

Xf≤r. Consequently
(
κN |Xf≤r

)−1
is a mapping of class C k−1, which completes

the proof. □

From Lemma 2.9 we obtain an analogous lemma as Lemma 4.3 for strongly
convex functions. Unfortunately, this version is not as effective as Lemma 4.3.

Lemma 4.4. Let b be strongly convex function. Then there exists N0 such that for
any N > N0, the mapping

(4.9) κN |Xf≤r
: Xf≤r → κN (Xf≤r)

is a diffeomorphism of class C k−1.

Proof. Let ε > 0 and δ > 0 be as in Lemma 2.9. Then there exists N1 such that
for any N ≥ N1 we have

1

Nf(x)
|∇f(x)| < δ for x ∈ Xf≤r

Then for N0 = max
{
N1, N(µ, S′

b,R,mR, DR)
}

, analogously as in the proof of

Lemma 4.3 (by using Lemma 2.9) we obtain the assertion. □

Let Σf be the set of critical points of f , i.e. Σf := {ξ ∈ Rn : ∇f(ξ) = 0}.



CONVEXIFYING OF POLYNOMIALS BY CONVEX FACTOR 33

Lemma 4.5. The set of fixed points of κN |Xf≤r
is equal to Σf ∩Xf≤r.

Proof. Let ξ ∈ Xf≤r be a fixed point of κN |Xf≤r
. Then, analogously as in the

proof of Lemma 4.3, we have ∇φN,ξ(ξ) = 0, i.e.,

N∇b(0)f(ξ) + b(0)∇f(ξ) = 0.

Since b takes the minimal value at zero we have ∇b(0) = 0, so ∇f(ξ) = 0 and
ξ ∈ Σf . Let now ξ ∈ Xf≤r be a critical point of f and let x = κN (ξ). Then x is
the unique point in Xf≤r for which ∇φN,ξ(x) = 0. Since ∇φN,ξ(ξ) = 0, we have
ξ = x and ξ is a fixed point of κN |Xf≤r

. □

Corollary 4.6. If ξ ∈ Xf≤r \ Σf and x = κN (ξ), then

(4.10) ∂x−ξf(ξ + t(x− ξ)) = ⟨∇f(ξ + t(x− ξ)), x− ξ⟩ < 0 for t ∈ [0, 1],

x ̸∈ Σf and the function

fξ,x : [0, 1] ∋ t 7→ f(ξ + t(x− ξ)) ∈ R
is strictly decreasing. In particular, the sequence f(κνN (ξ)), ν ∈ N, is strictly
decreasing, the sequence κνN (ξ), ν = 0, 1, . . . , is injective and

κνN (ξ) ̸∈ Σf for ν = 0, 1, . . . .

Proof. Since ξ ̸∈ Σf , by Lemma 4.5 we have x ̸= ξ. Since x is the unique point
of Xf≤r at which φN,ξ takes the minimal value in Xf≤r, then (4.7) holds, i.e.,
N∇b(x− ξ)f(x) + b(x− ξ)∇f(x) = 0. Since x− ξ ̸= 0, we have ∇b(x− ξ) ̸= 0 and,
so,

(4.11) ∇f(x) ̸= 0.

Moreover, the function

[0, 1] ∋ t 7→ φN,ξ(ξ + t(x− ξ)) ∈ R
is strongly convex with the minimal value at 1, so it is strictly decreasing and its
derivative have no zeroes in (0, 1). Consequently, for β = x−ξ

|x−ξ| we have

∂βφN,ξ(ξ + t(x− ξ)) < 0 for t ∈ (0, 1).

On the other hand ∂βb(t(x− ξ)) > 0 for t ∈ (0, 1] and

∂βφN,ξ(x) = Nbn−1(x− ξ)∂βb(x− ξ)f(x) + bN (x− ξ)∂βf(x),

so, ∂βf(ξ+t(x−ξ)) < 0 and consequently (4.10) holds. In particular x ̸∈ Σf . More-
over, the function fξ,x is strictly decreasing. The particular part of the assertion is
an easy consequence of the above. □

Remark 4.7. If φN,ξ is µ-strongly convex function then for any ξ ∈ Xf≤r,

f(ξ) − f(κN (ξ)) ≥ µ

2
|ξ − κN (ξ)|2.

If additionally φN,ξ is logarithmically µ-strongly convex then for any ξ ∈ Xf≤r,

f(ξ)

f(κN (ξ))
≥ exp

(µ
2
|ξ − κN (ξ)|2

)
.
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By using the idea from [5, Section 7] we obtain the following proximity algorithm
for semialgebraic functions of class C 2 on convex sets (cf [12]).

Theorem 4.8. If f : Rn → R is a semialgebraic function of class C 2 satisfying
(4.1) and N satisfies (4.3), then for any ξ ∈ Xf≤r

(a) the limit point limν→∞ κνN (ξ) exists and belongs to Σf ∩Xf≤r.

(b) the series
∑∞

ν=0 |κ
ν+1
N (ξ) − κνN (ξ)| is convergent.

In particular the curve γξ : [0,+∞) → Xf≤r defined by

γξ(t) = κνN (ξ) + (t− k)(κν+1
N (ξ) − κνN (ξ)) for t ∈ [k, k + 1)

has finite length and the function f ◦γξ : [0,+∞) → R is decreasing. If additionally
ξ ̸∈ Σf then the function f ◦ γξ is strictly decreasing.

Proof. Take any ξ ∈ Xf≤r. The particular part of the assertion immediately follows
from (b) and Corollary 4.6, so it suffices to prove (a) and (b).

Put ξ0 = ξ and ξν+1 = κνN (ξ0) for ν = 0, 1, . . .. Then ξν+1 = κN (ξν) for
ν = 0, 1, . . ..

We will quote a sketch of the reasoning used in [5] in the case X = Xf≤r and
ξ0 ∈ Xf≤r. In [5, Theorem 7.5], the assertion was obtained assuming that the
function b is of the form b(x) = 1 + |x|2. Obviously b is strongly convex. In this
case we have that (see [5, Lemma 7.1])

(4.12) |ξν+1 − ξν | = dist(ξν , f
−1(f(ξν+1))). ν = 0, 1, . . .

and the sequence f(ξν) is decreasing (see [5, Lemma 7.2] and Corollary 4.6). By
using the monotonity of the sequence f(ξν) and the Comparison pronciple (see
[5, Lemma 7.7]) we obtain that the series

(4.13)

∞∑
ν=0

dist(ξν , f
−1(f(ξν+1)))

is convergent. Then, by (4.12), the series

(4.14)

∞∑
ν=0

|ξν+1 − ξν |

is convergent and consequently the sequence ξν tends to some ξ∗.

To prove that ξ∗ ∈ Σf , observe that by analogously as in the proof of Lemma
4.3 we have (4.7), i.e.,

N∇b(ξν+1 − ξν)f(ξν+1) + b(ξν+1 − ξν)∇f(ξν+1) = 0 for ν = 0, 1, . . . .

Since ∇b(0) = 0 and ∇b is a Lipschitz mapping on Xf≤r, there exists L > 0 such
that |∇b(ξν+1 − ξν) −∇b(0)| ≤ L|ξν+1 − ξν | for any ν, so,

|∇f(ξν+1)| ≤ Nf(ξν+1)

b(ξν+1 − ξν)
L|ξν+1 − ξν |.
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Hence, by convergence of the series (4.14), we obtain convergence of the series∑∞
ν=0 ∇f(ξν+1). Moreover, continuity of the gradient ∇f and the necessary con-

dition for series convergence gives ∇f(ξ∗) = limν→∞ ∇f(ξν+1) = 0. This gives the
assertion in the case b(x) = 1 + |x|2. Note that the proof of the fact that ξ∗ ∈ Σf

differs from the one in the article [5]. It was carried out without any assumptions
about form of the function b, so we proved the assertion (a), provided (b) holds.

Let us return to the proof of the Theorem 4.8. It suffices to prove the part (b)
of the assertion.

In the proof of convergence of the series (4.13) the form of the function b was not
important, the proof consisted in the use of Comparison pronciple, semialgebraicity
of the function f and monotonity of the sequence f(ξν). Hence the series (4.13) is
convergent. Therefore, taking into account the above considerations, it is enough
to prove the convergence of the series (4.14). For this, it is sufficient to show that
there is a constant C > 0 such that

(4.15) |ξν+1 − ξν | ≤ C dist(ξν , f
−1(f(ξν+1))), ν = 0, 1, . . .

Let aν ∈ f−1(f(ξν)), ν = 1, 2, . . ., be such that

dist(ξν , f
−1(f(ξν+1)) = |ξν − aν+1|.

Then by definition of ξν ,

bN (ξν+1 − ξν)f(ξν+1) ≤ bN (aν+1 − ξν)f(aν+1).

Since f(aν+1) = f(ξν+1) > 0, we have

b(ξν+1 − ξν) ≤ b(aν+1 − ξν).

By convergence of the series (4.13) we have limν→∞(aν+1 − ξν) = 0, and conse-
quently, limν→∞(ξν+1 − ξν) = 0, because the origin is the unique point at which
the function b takes minimal value. Take the Taylor expansion of the function b at
the origin (recal that ∇b(0) = 0),

b(x) = b(0) +
1

2
xTHb(0)x+R3(x),

where Hb(0) is the Hessian matrix of b at 0 and |R3(x)| ≤M |x|3 in a neighbourhood
U of the origin for some constant M > 0. One can assume that aν+1 − ξν ∈ U and
ξν+1 − ξν ∈ U for ν = 0.1. . . .. Then

(ξν+1 − ξν)THb(0)(ξν+1 − ξν) − 2M |ξν+1 − ξν |3

≤ (aν+1 − ξν)THb(0)(aν+1 − ξν) + 2M |aν+1 − ξν |3.

Since the matrix Hb(0) is symetric and positively defined, we have

|ξν+1 − ξν |2 ≤ C|aν+1 − ξν |2

for some constant C > 0. Hence |ξν+1 − ξν | ≤
√
C|aν+1 − ξν | which gives (4.15)

and ends the proof. □
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Remark 4.9. In the proof of Theorem 4.8 we have shown, inter alia, that if ∇b
is a Lipschitz mapping in Xf≤r with a constant L > 0, then the jump |ξν+1 − ξν |
can be estimated from below as follows

|ξν+1 − ξν | ≥
|∇f(ξν+1)|b(ξν+1 − ξν |)

LNf(ξν+1)
.

5. Convexifying of polynomials

5.1. Convexifying polynomials on compact sets. Let f ∈ R[x] be a polyno-
mial of form (2.1). Assume that d = deg f . Let X ⊂ Rn be a compact and convex
set.

For any R > 0 we put

(5.1) Dn(f,R) := max

{ d∑
j=1

j||fj ||Rj−1;

d∑
j=1

j(j − 1)||fj ||Rj−2

}
.

From Lemma 2.13, for any β, x ∈ Rn such that |β| = 1 and |x| ≤ R we have

(5.2) |∂βf(x)| ≤ Dn(f,R), |∂2βf(x)| ≤ Dn(f,R).

Let b : Rn → R be a function of class C 2 which is µ-strongly convex, µ > 0, and
takes only positive values, and let

S := max{b(x) : x ∈ X}.

Let

R := max{|x| : x ∈ X}.

From Lemma 3.1 we obtain

Corollary 5.1. If

(5.3) f(x) ≥ m for x ∈ X

for some positive constant m, then for any

N > N(µ, S,m,Dn(f,R))

the function φN (x) = bN (x)f(x) is strongly convex on the set X.

Let

S′ := max{b(x− ξ) : x, ξ ∈ X}.

From Corollary 3.2 we immediately obtain

Corollary 5.2. If f satisfies (5.3) for some positive constant m, then for any
N ≥ N(µ, S′,m,Dn(f,R)) and any ξ ∈ X the function

(5.4) φN,ξ(x) = bN (x− ξ)f(x)

is strongly convex on the set X.



CONVEXIFYING OF POLYNOMIALS BY CONVEX FACTOR 37

If additionally we assume that b is logarithmically µ-convex function then from
Lemma 3.4 we obtain

Corollary 5.3. If f satisfies (5.3) for some positive constant m, then for any
N > Nexp(µ,m,Dn(f,R)) and any ξ ∈ Rn the function φN,ξ(x) = bN (x − ξ)f(x)
is logarithmically strongly convex on the set X.

Set

||f ||R :=

d∑
j=0

||fj ||Rj

Then |f(x)| ≤ ||f ||R and f(x) + ||f ||R ≥ 0 for x ∈ Rn, |x| ≤ R. Let

(5.5) f̃ := f + ||f ||R + 1.

Then f̃ satisfies (5.3) with m = 1. So, from Corollaries 5.1 and 5.2 we obtain

Corollary 5.4. For any

N > N(µ, S, 1, Dn(f,R) + ||f ||R + 1)

the function φ̃N (x) = bN (x)f̃(x) is strongly convex on the set X. For any

N ≥ N(µ, S′, 1, Dn(f,R) + ||f ||R + 1)

and any ξ ∈ X the function φ̃N,ξ(x) = bN (x− ξ)f̃(x) is strongly convex on the set
X.

Analogously as in Corollary 5.4, from Corollary 5.3 we obtain

Corollary 5.5. For any N > Nexp(µ, 1, Dn(f,R) + ||f ||R + 1) and any ξ ∈ Rn the

function φN,ξ(x) = bN (x− ξ)f̃(x) is logarithmically strongly convex on the set X.

5.2. Iteration of the mapping ξ 7→ argminφN,ξ for polynomials. Let f ∈ R[x]
be a polynomial of form (2.1). Assume that fd∗ > 0. Take any r > 0 and R > Kf (r)
and assume that Xf≤r ̸= ∅.

Let b : Rn → R be a function of class C k, k ≥ 2, which is µ-strongly convex,
µ > 0, and takes only positive values and the minimal value takes at the point
x = 0, and let

S′
b,R := max{b(x− ξ) : x, ξ ∈ BR},

where BR = {x ∈ Rn : |x| ≤ R}.

Let N be an integer number such that

(5.6) N ≥ N(µ, S′
b,R, 1, Dn(f,R)).

If f(x) ≥ 1 for x ∈ Rn, by Corollary 5.2 for any ξ ∈ BR the function φN,ξ(x) =
bN (x− ξ)f(x) is strongly convex on the set BR. Let κN : BR → BR be a mapping
defined by (4.4). So, from Lemmas 4.2, 4.3, 4.5 and Theorem 4.8 we obtain
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Corollary 5.6. If fd∗ > 0, f(x) ≥ 1 for x ∈ Rn and N meets the inequality (5.6)
then:

(a) κN (Xf≤r) ⊂ Xf≤r.

(b) the function κN |Xf≤r
is of class C k−1.

(c) the set of fixed points of κN |Xf≤r
is equal to Σf ∩Xf≤r.

(d) for any ξ ∈ Xf≤r the limit point limν→∞ κνN (ξ) exists and belongs to Σf .

If additionally b is a logarithmically µ-strongly convex function and

N > Nexp(µ, 1, Dn(f,R))

then

(e) the mapping κN |Xf≤r
: Xf≤r → κN (Xf≤r) is a diffeomorphism of class

C k−1.

Remark 5.7. To construct a mapping κN satisfying the assertion of Corollary
5.6 we do not have to assume that the polynomial f takes only positive values. It
is sufficient to assume that fd∗ > 0. More precisely, let f̃ be of form (5.5), i.e.,

f̃ = f + ||f ||R + 1. Then f̃(x) ≥ 1 for |x| ≤ R and the polynomials f and f̃
have the same set of critical points. So, for suitable N , the mapping κ̃N (ξ) =

argminBR
bN (x− ξ)f̃(x) ∈ BR for ξ ∈ BR satisfy the assertion of Corollary 5.6.

6. Logarithmically convexification of polynomials on unbounded
sets

Let f ∈ R[x] be a polynomial of form (2.1), i.e.,

(6.1) f(x) =

d∑
j=0

∑
|ν|=j

aνx
ν .

Assume that d = deg f . Then f = f0 + · · · + fd, where fj is a homogeneous poly-
nomial of degree j or zero. Assume that fd∗ > 0. Recall that fd∗ = min|x|=1 fd(x).
Then ∥f∥ ≥ ∥fd∥ ≥ fd∗. Put

K(f) :=
2∥f∥
fd∗

and

c(f) := fd∗ −
d−1∑
j=0

K(f)j−d||fj ||.

Obviously, K(f) ≥ 2.

We will need the following lemma (see [7, Lemma 3.4]).

Lemma 6.1. If d = deg f > 0 and fd∗ > 0, then c(f) > 0 and f(x) ≥ c(f)|x|d for
any x ∈ Rn such that |x| ≥ K(f).

From Lemmas 6.1 and 2.13 we immediately obtain
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Corollary 6.2. Let f be a polynomial of form (6.1) such that fd∗ > 0. Take any
β ∈ Sn−1. Then for any x ∈ Rn, |x| ≥ K(f) we have

(6.2)
|∂βf(x)|
f(x)

≤ d||f ||
c(f)

· |x|−1 ≤ d||f ||
2c(f)

and

(6.3)
|∂2βf(x)|
f(x)

≤ d(d− 1)||f ||
c(f)

· |x|−2 ≤ d(d− 1)||f ||
4c(f)

.

For a polynomial f of form (6.1) such that fd∗ > 0 and for any µ > 0 we put

Nexp,∞(µ, f) :=
d(d+ 1)||f ||

4µc(f)
.

Obviously, for any β, x ∈ Rn such that |β| = 1 and |x| ≤ R we have

(6.4) |∂βf(x)| ≤ Dn(f,R), |∂2βf(x)| ≤ Dn(f,R),

where Dn(f,R) is defined by (5.1).

Let b : Rn → R be logarithmically µ-strongly convex function of class C k, k ≥ 2.
From Lemma 3.4 and Corollaty 6.2 we obtain

Corollary 6.3. Let X ⊂ Rn be a closed and convex set. Let f be a polynomial of
form (6.1) such that fd∗ > 0 and there exists m > 0 such that f(x) ≥ m for x ∈ X.
For any

N > max {Nexp(µ,m,Dn(f,K(f))), Nexp,∞(µ, f)}
and any ξ ∈ Rn the function φN,ξ(x) = bN (x − ξ)f(x) is logarithmically strongly
convex on the set X.

Proof. Take any ξ ∈ Rn. Let ψN,ξ(x) = lnφN,ξ(x). Take any β ∈ Sn−1. By
Lemma 3.4 there exists µ1 > 0 such that ∂2βψN,ξ(x) ≥ µ1 for x ∈ X, |x| ≤ K(f).
Since

∂2βψN,ξ(x) = N∂2β(ln b(x− ξ)) +
∂2βf(x)

f(x)
−
(
∂βf(x)

f(x)

)2

, x ∈ Rn,

then by Corollary 6.2 there exists µ2 > 0 such that ∂2βψN,ξ(x) ≥ µ2 for x ∈ X,

|x| ≥ K(f). Consequently, ∂2βψN,ξ(x) ≥ min{µ1, µ2} > 0 for x ∈ X. □

From Corollary 6.3 we obtain

Corollary 6.4. Let f ∈ R[x] be a polynomial of form (6.1). If fd∗ > 0 and
f(x) ≥ m for x ∈ Rn and some constant m > 0, then for any

N > max {Nexp(µ,m,Dn(f,K(f)), Nexp,∞(µ, f)}

and any ξ ∈ Rn the function φN,ξ(x) = bN (x− ξ)f(x) is logarithymically strongly
convex on Rn and the mapping κN : Rn → Rn defined by

κN (ξ) = argminRn φN,ξ ∈ Rn for ξ ∈ Rn,
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is a diffeomorphism of class C k−1. Moreover, for any ξ ∈ Rn the limit point
limν→∞ κνN (ξ) exists and belongs to Σf .

Proof. By Corollary 6.3 for any ξ ∈ Rn the function φN,ξ is logarithmically strongly
convex on Rn. So, argminRn φN,ξ is a critical point of φN,ξ and consequently by
analogous argument as in the proof of Theorem 4.8 we obtain the assertion. □

Remark 6.5. To determine the diffeomorphism, the successive iterations which
converge to the critical points of the polynomial f , we do not have to assume that
all values of f are positive. It is enough to assume that fd∗ > 0 and take R = Kf

and f̃ = f + ||f ||R + 1 (see Remark 5.7).

7. Polynomials with integer coefficients

For applications of the above results it is important to estimate the numbers
fd∗, m = min{f(x) : x ∈ X} and R = max{|x| : x ∈ X} for a polynomial f and a
compact and convex set X ⊂ Rn. In the case when f and polynomials describing
X have integer coefficients the above numbers can be effectively estimated. More
precisely, let X ⊂ Rn, n ≥ 2, be a compact semialgebraic set of the form

(7.1) X = {x ∈ Rn : g1(x) = 0, . . . , gl(x) = 0, gl+1(x) ≥ 0, . . . , gk(x) ≥ 0},
where g1, . . . , gk ∈ Z[x]. Under the above notations G. Jeronimo, D. Perrucci,
E. Tsigaridas in [3] proved that

Theorem 7.1. Let f, g1, . . . , gk ∈ Z[x] be polynomials with degrees bound by

an even integer d and coefficients of absolute values at most H, and let H̃ =
max{H, 2n+ 2k}. If f(x) > 0 for x ∈ X and X of form (7.1) is compact, then

f(x) ≥
(

24−
n
2 H̃dn

)−n2ndn

for x ∈ X.

From Theorem 7.1 we immediately obtain

Corollary 7.2. Let f ∈ Z[x] be a homogeneous polynomial with degree bound

by an even integer d and coefficients of absolute values at most H, and let H̃ =
max{H, 2n+ 2}. If f(x) > 0 for |x| = 1. Then

f(x) ≥
(

24−
n
2 H̃dn

)−n2ndn

for |x| = 1.

From Theorems 7.1 we immediately obtain (see [7, Theorem 2.7])

Theorem 7.3. Let X ⊂ Rn be a compact and convex semialgebraic set of form
(7.1) and let f, g1, . . . , gk ∈ Z[x] be polynomials with degrees bound by an even
integer d and coefficients of absolute values at most H. Set

b(n, d,H, k) =
(
24−

n
2 max{H, 2n+ 2k}dn

)−n2ndn

and

R =

√[
b(n+ 1,max{d, 4}, H, k + 2)

]−1 − 1, m = b(n, d,H, k).



CONVEXIFYING OF POLYNOMIALS BY CONVEX FACTOR 41

Then

(7.2) max{|x| : x ∈ X} ≤ R.

8. The mapping κN for b(x) = exp|x|2

From an IT point of view, it is important to know how fast κνN converges to
its limit. One of the problems that arises here is whether the sequence converges
along any direction, that is, whether the spherical part of the sequence (in the
polar coordinates) has a limit. It seems to be quite a difficult problem and the
methods of solving the gradient conjecture of Rene Thom’s used in [4] should be
applied. This leads to R. Thom’s discrete hypothesis: Does κνN/|κνN | have a limit
when ν → ∞. We immediately encounter a difficulty here. While in the case of
the gradient field trajectory, the Darboux property holds, it is not the case in the
discrete case. We will show in a relatively simple example what are similarities and
what are differences in the case of the trajectory and in the case of the sequence.

Let f ∈ R[x] be a polynomial of the form

(8.1) f(x) = f0 + fk(x) + · · · + fd(x),

where fj is a homogeneous polynomial of degree j or zero for j = 0, k, . . . , d, k > 1,
and fk ̸= 0, fd ̸= 0. Recall that fd∗ = min|x|=1 fd(x). Assume that fd∗ > 0 and

(8.2) f(x) ≥ 1 for x ∈ Rn.

Let gN : Rn → R, N > 0, be a function defined by

(8.3) gN (x) :=
1

2N
ln f(x), x ∈ Rn.

We will assume that

(8.4) b(x) = exp |x|2, x ∈ Rn.

Fact 8.1. The function b is logarithmically 2-strongly convex in Rn of class C∞.
Moreover, ∇bN (x) = 2NbN (x) · x for x ∈ Rn.

Take notations and assumptions from Section 5.2. Let S′
b,R = e4R

2

and

(8.5) N ≥ N(2, S′
b,R, 1, Dn(f,R)).

By Corollary 5.2 the function φN,ξ(x), ξ ∈ Xf≤r, is strongly convex on the convex
hull of the set Xf≤r and the mapping κN defined by (4.4) is well defined. By Facts
5.6 and 8.1, analogously as in the proof of Lemma 4.3, from (4.7) we have

Fact 8.2. The mapping κN : Xf≤r → κN (Xf≤r) is the inverse of

(8.6) κN (Xf≤r) ∋ x 7→ x+
1

2Nf(x)
∇f(x) ∈ Xf≤r ,

so it is an analytic and semialgebraic mapping, i.e., it is a Nash mapping.

Since 1
2Nf(x)∇f(x) = ∇gN (x), so putting g = gN , from Fact 8.2 we have
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Fact 8.3. The Jacobian matrix J(κN ) of κN is of the form

J(κN (ξ)) = (I +H(g)(κN (ξ)))
−1
,

where I is the n× n unit matrix.

By Fact 8.3 we see that J(κN (ξ)) is a symmetric matrix. So, we have the
following corollary suggested by Krzysztof Kurdyka.

Corollary 8.4. The mapping κN : Xf≤r → κN (Xf≤r) is the gradient of an ana-
lytic function F : Xf≤r → R. Moreover, ξ = κN (ξ) + ∇g(κN (ξ)) and

∇
(
F (ξ) − |ξ|2

2

)
= −∇g(κN (ξ)).

Since we assumed (8.2), from Corollary 6.4 we immediately obtain

Corollary 8.5. Let R = Kf . Assume that fd∗ > 0 and let

N > max {Nexp(µ, 1, Dn(f,K(f)), Nexp,∞(µ, f)} .

Thn the mapping κN : Rm → Rm is an analytic diffeomorphism. Moreover, for
any ξ ∈ Rn the limit point limν→∞ κνN (ξ) exists and belongs to Σf ∩Xf≤r.

Let ω0 : Xf≤r ∋ ξ 7→ ξ ∈ Xf≤r be the identity mapping and let ων : Xf≤r →
Xf≤r be mappings defined by

ων+1 = κN (ων) for ν ≥ 0

By Fact 5.6 we have that ων(ξ) ∈ Xf≤r for any ξ ∈ Xf≤r and ν = 1, 2, . . ., so the
mappings ων are well defined. Obviously ων = κνN for ν = 0, 1, . . ..

8.1. Some properties of the sequence ων = κνN . Take any ξ ∈ Xf≤r. By [5,
Lemma 7.1] (cf., (4.12)),

(8.7) |ων+1(ξ) − ων(ξ)| = dist(ων(ξ), f−1(f(ων+1(ξ)))), ν = 0, 1, . . . ,

and by Theorem 4.8, the sequence

(8.8) ων(ξ) has a limit point ω∗(ξ) ∈ Σf ∩Xf≤r ,

the series

(8.9)

∞∑
ν=0

|ων+1(ξ) − ων(ξ)| is convergent

and the sequence

(8.10) f(ων(ξ)) is decreasing.

From Lemma 4.5 and Corollary 4.6 we have

Fact 8.6. The sequence ων(ξ) is constant if and only if ξ ∈ Xf≤r ∩Σf . Moreover,
for ξ ∈ Xf≤r \ Σf the sequence ων(ξ) is injective and ων(ξ) ̸= ω∗(ξ) for any ν.
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By Fact 8.2 (or by Fact 8.1, analogously as in the proof of Lemma 4.3, from
(4.7)) we have

(8.11) ων+1(ξ) − ων(ξ) = − 1

2Nf(ων+1(ξ))
∇f(ων+1(ξ)), ν ∈ N.

In particular, by (8.9), the series

(8.12)
∞∑
ν=0

|∇f(ων(ξ))| is convergent.

Remark 8.7. By the Bochnak- Lojasiewicz inequality (see [2]),

(B L) |f(x) − f(ω∗(ξ))| ≤ C|∇f(x)||x− ω∗(ξ)|

in a neighbourhood in Rn of the point ω∗(ξ) for some positive constant C, so from
(8.12) we obtain that the series

∞∑
ν=0

f(ων(ξ)) − f(ω∗(ξ))

|ων(ξ) − ω∗(ξ)|
is convergent,

provided ξ ̸∈ Σf .

Remark 8.8. By the  Lojasiewicz gradient inequality (see [9, 10])

( L1) |f(x) − f(ω∗(ξ))|ϱ ≤ C|∇f(x)|

in a neighbourhood in Rn of the set f−1(f(ω∗(ξ))) for some constants 0 < ϱ < 1
and C > 0, we have that the series

(8.13)

∞∑
ν=0

(f(ων(ξ)) − f(ω∗(ξ)))ϱ is convergent.

Note that the  Lojasiewicz gradient inequality ( L1) was proved in a neighbourhood
of a point. Since the set f−1(f(ω∗(ξ))) is compact, we easily get this inequality
around it.

By the global  Lojasiewicz inequality :

( L2) |f(x) − f(y)| ≥ C

(
dist(x, f−1(f(y)))

1 + |x|2

)d(6d−3)n−1

for x ∈ Rn,

under fixed y for some positive constant C and d = deg f (see [6, Corollary 10]),
we have

Fact 8.9. For any neughbourhood U ⊂ Rn of the set f−1(f(ω∗(ξ))) there exists
ε > 0 such that

{x ∈ Rn : |f(x) − f(ω∗(ξ))| < ε} ⊂ U.

Moreover, if f(ων0
(ξ))− f(ω∗(ξ)) < ε then f(ων(ξ))− f(ω∗(ξ)) < ε and ων(ξ) ∈ U

for any ν ≥ ν0.

From (8.7), (8.9) and [6, Theorem 1] we obtain
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Fact 8.10. Let C and ϱ be as in ( L1). Then there exists δ > 0 such that for any
ξ ∈ Xf≤r such that |ων(ξ) − ω∗(ξ)| < δ we have

(8.14) |ων+1(ξ) − ων(ξ)|

≤ 1

C(1 − ϱ)

[
(f(ων(ξ)) − f(ω∗(ξ)))1−ϱ − (f(ων+1(ξ)) − f(ω∗(ξ)))1−ϱ

]
,

in particular, there exists ν0 such that for any ν ≥ ν0,

(8.15) dist(ων(ξ), f−1(f(ω∗(ξ)))) ≤ 1

C(1 − ϱ)
(f(ων(ω)) − f(ω∗(ξ)))1−ϱ.

Proof. Indeed, for ων(ξ) sufficiently close to the origin, from [6, Theorem 1] (more
specifically from the proof of this theorem) and (8.7) we obtain (8.14). Since
limν→∞(f(ων(ξ)) − f(ω∗(ξ))) = 0 and 1 − ϱ > 0, then

∞∑
k=ν

[
(f(ωk(ξ)) − f(ω∗(ξ)))1−ϱ − (f(ωk+1(ξ)) − f(ω∗(ξ)))1−ϱ

]
= (f(ων(ξ)) − f(ω∗(ξ)))1−ϱ.

By (8.8), there exists ν0 such that foe any k ≥ ν0 the point ωk(ξ) is suffi-
ciently close to ω∗(ξ). So, by (8.7) and (8.9) we have dist(ων(ξ), f−1(f(ω∗(ξ)))) ≤∑∞

k=ν |ωk+1(ξ) − ωk(ξ)|. Consequently, the above and (8.14) gives (8.15). □

Remark 8.11. Let ξ ∈ Xf≤r Take any ε > 0. If N satisfy (8.5) and additionally

(8.16) N ≥ d
√
n

2ε
∥f − f0∥,

then there exists ν0 such that for any ν ≥ ν0,

|ων+1(ξ) − ων(ξ)| ≤ ε|ων+1(ξ)|.

Indeed, by (8.11) and Corollary 2.14 there exists ν0 such that for any ν ≥ ν0,

|ων+1(ξ) − ων(ξ)| ≤ d
√
n

2Nf(ξν+1)
∥f − f0∥ · |ων+1(ξ)| ≤ d

√
n

2N
∥f − f0∥ · |ων+1(ξ)|.

So, (8.16) givs the assertion.

Remark 8.12. By Remark 4.7, there exists µ > 0 such that,

(8.17) f(ων(ξ)) − f(ων+1(ξ)) ≥ µ|ων(ξ) − ων+1(ξ)|2 for any ν.

Under additional assumption that 0 ∈ Rn is an isolated singularity of f , there
exist positive constants C, α such that

(8.18) |∇f(x)| ≥ C|x|α in a neighbourhood of the origin.

The smallest exponent α is called the  Lojasiewicz exponent of the gradient at the
origin and denoted by L0(∇f). It is known that L0(∇f) ≤ (d − 1)(6d − 9)n−1,
where d = deg f (see [6, Remark 4]) and (8.18) holds with α = L0(∇f). Then
(8.12) goves that the convergence rate of the sequence ων(ξ) is quite fast. Namely,
we have the following fact.
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Fact 8.13. Take any ξ0 ∈ Xf≤r \Σf and let ξν = ων(ξ0) for ν = 0, 1, . . . ,. Assume
that ω∗(ξ0) = 0. If the origin is an isolated singularity of f then the series

∞∑
ν=0

|ξν |α is convergent,

where α = (d− 1)(6d− 9)n−1 and d = deg f .

8.2. Some curves with properties similar to trajectories of the gradient
field. Take any ξ0 ∈ Xf≤r \ Σf and let ξν = ων(ξ0) for ν = 1, 2, . . ..

Take a curve γξ0 : [0,+∞) → Xf≤r defined by

(8.19) γξ0(t) = ξν + (t− k)(ξν+1 − ξν) for t ∈ [ν, ν + 1).

The curve γξ0 has several similarities to the trajectory of a gradient field. Namely,
it has the following properties (see Theorem 4.8 and (8.11)):

Fact 8.14. (i) The curve γξ0 has finite length equal to
∑∞

ν=0 |ξν+1 − ξν |.
(ii) The function f ◦ γξ0 : [0,+∞) → R is strictly decreasing (recall that we

assumed that ξ0 ̸∈ Σf ).

(iii) For t ∈ (ν, ν + 1), ν = 0, 1, . . . we have

γ′(t) = ξν+1 − ξν = − 1

2Nf(ξν+1)
∇f(ξν+1).

Condition (iii) does not mean that γ′(t) = − 1
2Nf(γ(t))∇f(γ(t)). This is one of

the difficulties in studies of ξν , which does not exist in gradient field trajectory
studies.

These curves have another similarity to the trajectories of gradient fields.
Namely, we have the following fact.

Proposition 8.15. Let 0 ∈ IntXf≤r and let f(0) be the minimal value of f . Then
for any ε > 0 there exists f(0) < δ < r such that for any ξ0 ∈ Xf≤δ the length of
the curve γξ0 does not exceed ε.

Proof. Let C > 0 and 0 < ϱ < 1 be as in ( L1). Assume that ( L1) holds in
a meighbourhood U of f−1(f(0)), i.e.,

(8.20) |f(x) − f(0)|ϱ ≤ C|∇f(x)| for x ∈ U.

From Fact 8.9 there exists c > 0 such that

{x ∈ Rn : (f(x) − f(0))1−ϱ < 2c} ⊂ U

and f(0) is the unique critical value of f |U .

Take any maximal solution (to the right) γ : [0, β) → U \f−1(f(0)) of the system
of equations

(8.21) x′ = − ∇f(x)

|∇f(x)|
in U \ f−1(f(0)).
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From (8.20) we obtain the following Kurdyka  Lojasiewicz inequality (cf., [6, Propo-
sition 1]):

|∇(f − f(0))1−ϱ(x)| ≥ (1 − ϱ)C for x ∈ U \ f−1(f(0)).

Hence it follows that

((f − f(0))1−ϱ ◦ γ)′ = −|∇(f − f(0))1−ϱ) ◦ γ| ≤ −(1− ϱ)C for x ∈ U \ f−1(f(0))

(cf., the proof of [6, Theorem 1]). Consequently, (f − f(0))1−ϱ ◦ γ and f ◦ γ are
decreasing functions and for any 0 ≤ s1 < s2,

(f − f(0))1−ϱ(γ(s1)) − (f − f(0))1−ϱ(γ(s2)) = (s1 − s2)((f − f(0))1−ϱ ◦ γ)′(t)

≥ (s2 − s1)(1 − ϱ)C.

Since s2 − s1 is equal to the length of γ|[s1,s2], we have

(8.22) length γ|[s1.s2] ≤ (f − f(0))1−ϱ(γ(s1)) − (f − f(0))1−ϱ(γ(s2)).

From the above, for any s1 ∈ [0, β) we obtain that the length of γ|[s1.β) does not

exceed (f − f(0))1−ϱ(γ(s1)). So, under assumption (f(γ(s)) − f(0))1−ϱ < c we
obtain that the trajectory γ|[s1.β) cannot come out of the set U and, consequently,

must have a limit point in the set f−1(f(0)). This gives that any maximal solution
to the right γ : [0, β) → U \f−1(f(0)) of the system of equations (8.21) with initial
condition (f(γ(0)) − f(0))1−ϱ < c runs in the set U \ f−1(f(0)) and intersects at
exactly one point each level f−1(y), f(0) < y < f(γ(0)).

Take any ε > 0. Without loss of generality we may assume that ε < c. Put

δ = f(0) + c1/(1−ϱ).

Now suppose that f(ξ0) < δ. Then (f(ξ0)−f(0))1−ϱ < c and (f(ξν)−f(0))1−ϱ < c
for any ν (see (8.10)). Take the solution γ : [0, β) → U \ f−1(f(0)) of (8.21) such
that γ(0) = ξν . By the above there exists s1 > 0 such that f(γ(s1)) = f(ξν+1) and
by (8.22) and (8.7),

|ξν+1 − ξν | ≤ length γ|[0,s1] ≤ (f − f(0))1−ϱ(ξν) − (f − f(0))1−ϱ(ξν+1).

Since limν→∞(f(ξν) − f(0)) = 0 and 1 − ϱ > 0, then

∞∑
k=ν

[
(f(ξk) − f(0))1−ϱ − (f(ξk+1) − f(0))1−ϱ

]
= (f(ξν) − f(0))1−ϱ.

From this and Fact 8.14 (i) we obtain that the length of γξ0 does not exceed ε. □

From Proposition 8.15 and from the proof of this proposition we immediately
obtain

Corollary 8.16. Let 0 ∈ IntXf≤r and let f(0) be the minimal value of f . Then
for any ε > 0 there exists f(0) < δ < r such that for any ξ ∈ Xf≤δ,

|ων(ξ) − ω∗(ξ)| < ε for any ν.
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8.3. Uniform convergence of the sequence ων . We will show that the sequence
of mappings ων has some property similar to a property of the flow of gradient field
(cf., [8, 10], see also subsection 8.2).

Proposition 8.17. Let 0 ∈ IntXf≤r and let f(0) be the minimal value of f . Then
there exists f(0) < δ < r such that the sequence ων uniformly convergents to ω∗ in
the set U = Xf≤δ. In particular the mapping ω∗ : U → U ∩ Σf is continuous and
ω∗(ξ) = ξ for ξ ∈ U ∩ Σf , i.e., ω∗ is a deformation retraction and the set U ∩ Σf

is a retract of U .

Proof. Let C, ϱ be as in ( L1). Assume that ( L1) is fulfild in the set U = Xf≤δ for
some f(0) < δ < r and that the assertiin of Proposition 8.15 holds for any ξ ∈ U .

By the assumption that f(0) is minimal value of f we have that f(ω∗(ξ)) = f(0)
for ξ ∈ U , so, it is a continuous function. Let 0 < ϱ < 1 and C > 0 be constants
fulfilling ( L1) in Remark 8.8. From Corollary 5.6 (b) we see that

(f ◦ ων − f ◦ ω∗)
1−ϱ

: U 7→ R

is a sequence of continuous functions and by (8.10) it is decreasing. Obviously,
limν→∞ (f ◦ ων − f ◦ ω∗) = 0 is a continuous function. So, by Dini’s theorem the
sequence

(8.23) (f ◦ ων − f ◦ ω∗)1−ϱ tends uniformly to 0 on U.

By the choice of δ, analogously as in the proof of Proposition 8.15, for any ξ ∈ U
we obtain that (cf., Fact 8.10)

|ων(ξ) − ω∗(ξ)| ≤
∞∑

k=ν

|ων+1(ξ) − ων(ξ)|

≤ 1

C(1 − ϱ)

∞∑
k=ν

[
(f(ωk(ξ)) − f(ω∗(ξ)))1−ϱ − (f(ωk+1(ξ)) − f(ω∗(ξ)))1−ϱ

]
=

1

C(1 − ϱ)
(f(ων(ξ)) − f(ω∗(ξ)))1−ϱ.

This and (8.23) gives the assertion. □

Remark 8.18. Without assuming that f(0) is the smallest value of the function,
the assertion of Proposition 8.17 does not hold. Namely, if the set Xf≤r is con-
nected, and f has at least two critical values in Xf≤r, we easily get a contradiction.

8.4. Gradient of a polynomial in the polar coordinates. Let f ∈ R[x] be
a polynomial of form (2.1). Then f can be written as

f(x) =

d∑
j=0

fj

(
1

|x|
x

)
|x|j , x ∈ Rn \ {0}.
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Denote

r = r(x) = |x| and θ = θ(x) =
1

|x|
x for x ̸= 0.

Then x = rθ, r > 0, θ ∈ Sn−1 and f can be written in the polar coordinates

(8.24) f(x) = f(rθ) =

d∑
j=0

fj(θ)r
j , x ̸= 0,

and

(8.25) ∇f(x) = ∂rf(rθ)θ + ∇′f(rθ),

where

(8.26) ∂rf(rθ) =
⟨∇f(rθ), rθ⟩

r
= ∂θf(rθ) =

∂f(rθ)

∂r
=

d∑
j=1

jfj(θ)r
j−1

and

∇′f(rθ) = ∇f(rθ) − ∂rf(rθ)θ.

Obviously,

⟨∇′f(rθ), θ⟩ = 0 for x = rθ ̸= 0

and

∇′f(x) = ∇f(x) − ⟨∇f(x), x⟩
|x|2

x for x ̸= 0.

The vector ∂rf(rθ)θ is called the radial part of the gradient ∇f(x) and ∇′f(rθ) –
the spherical part of ∇f(x).

From the definition of ∇′f we immediately obtain the following remark.

Remark 8.19. Let e1, . . . , en be the standard basis of the linear space Rn, i.e.,
ej = (0, . . . , 0, 1, 0, . . . , 0), where 1 is on the jth place. Take any x ∈ Rn, x ̸= 0.
Put

αj =
⟨ej , x⟩
|x|2

x, vj = ej − αj for j = 1, . . . , n.

Then |vj | = 1 − x2
j

|x|2 ,

vj =

(
−x1xj

|x|2
, . . . ,−xj−1xj

|x|2
, 1 −

x2j
|x|2

,−xj+1xj
|x|2

, . . . ,−xnxj
|x|2

)
, j = 1, . . . , n

and

∇′f(x) =

n∑
j=1

⟨∇f(x), vj⟩vj .
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8.5. Spherical part of the sequence ων = κνN . In view of the results of Section
8.2, there is a problem of the convergence of the spherical part of the sequence
ων(ξ) = κνN (ξ). We will consider this problem under assumption that ξν = ων(ξ) →
0 as ν → ∞.

In [4], the key role is played by the sets

Wε = {x ∈ Rn \ {0} : ε|∇′f(x)| ≤ |∂rf(x)|}, ε > 0,

where ∇′f(x) is the spherical and ∂rf(x) x
|x| – the radial part of the gradient ∇f(x).

One of the most important properties was the behavior of the gradient field tra-
jectory when crossing the boundary of such a set (and properties of the so called
controlling function). More precisely, the trajectory of the gradient field must run
through this set from a certain point and must not leave it. In a discrete case,
a sequence can jump into or out of that set without crossing its boundary.

In order for the method from [4] to be applied in a discrete case, the following
conjecture would have to hold. Take any ξ0 ∈ Xf≤r \ Σf and let ξν = ων(ξ0) for
ν = 0, 1, . . . ,. Assume that ω∗(ξ0) = 0.

Conjecture 8.20. There exists a constant ε > 0 and ν0 such that for any ν ≥ ν0

ε|ξν+1 − ξν | ≤ ||ξν+1| − |ξν ||,

equivalently, ε|∇f(ξν)| ≤ |∂rf(ξν)|, i.e., ξν = ων(ξ) ∈Wε.

With fairly strong assumptions, we get that the limit of the spherical part of
the sequence ξν exists. Namely, the following fact holds.

Fact 8.21. Assume that fk(θ) > 0 for θ ∈ Sn−1. Then there is the following limit

(8.27) lim
ν→∞

1

|ξν |
ξν .

Moreover, the sequence |ξν | is strictly decreasing from a certain point.

Proof. Let’s write f in a polar coordinates:

f(rθ) = f0 + rkfk(θ) + · · · + rdfd(θ),

where r > 0 and θ ∈ Sn−1. Then

(8.28) ∂rf(rθ) = krk−1fk(θ) + · · · + drd−1fd(θ),

∇′f(rθ) = rk∇′fk(θ) + · · · + rd∇′fd(θ).

and

∇f(rθ) = ∂rf(rθ)θ + ∇′f(rθ)

So, from the assumption that fk(θ) > 0 for θ ∈ Sn−1, there exists r0 > 0 such that

(8.29)
|∇′f(rθ)|

r
≤ C1r

k−1 ≤ C2∂rf(rθ) ≤ C3|∇f(rθ)| for 0 < r < r0

and some positive constants C1, C2, C3.
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Take the curve γ = γξ0 defined by (8.19). By Fact 8.14 (ii) the function f ◦ γ is
strictly decreasing, so we have

γ(t) ̸= 0 for t ∈ [0,+∞),

and we may write γ in the polar coordinates γ(t) = rγ(t)θγ(t), rγ(t) = |γ(t)| > 0
amd θγ(t) ∈ Sn−1. Then

γ′(t) = r′γ(t)θγ(t) + rγ(t)θ′γ(t) for t ∈ (ν, ν + 1), ν = 0, 1, . . . ,

and ⟨θγ(t), θ′γ(t)⟩ = 0 for t ∈ [0,+∞) \ Z. On the other hand, by Fact 8.14 (iii),

γ′(t) = ξν+1 − ξν = − 1

2Nf(ξν+1)
∇f(ξν+1) for t ∈ (ν, ν + 1), ν = 0, 1, . . . .

Since ∇f(ξν+1) ̸= 0, we may write ∇f(ξν+1) in the polar coordinates, so

r′γ(t) = − 1

2Nf(ξν+1)
∂rf(ξν+1) for t ∈ (ν, ν + 1), ν = 0, 1, . . .

and

rγ(t)θ′γ(t) = − 1

2Nf(ξν+1)
∇′f(ξν+1) for t ∈ (ν, ν + 1), ν = 0, 1, . . . .

So, by (8.28),

r′γ(t) = − 1

2Nf(ξν+1)

[
krk−1

γ (t)fk(θγ(t)) + · · · + drd−1
γ (t)fd(θγ(t))

]
for t ∈ (ν, ν + 1), ν = 0, 1, . . .. By the assumption that fk(θ) > 0 for θ ∈ Sn−1

we see that the derivative has a fixed sign r′γ(t) < 0 for sufficiently large t /∈ Z.
Consequently, the sequence |ξν | is strictly decreasing from a certain point and we
proved the moreover part of the assertion. Moreover, rγ(t) tends to 0 as t → ∞
and by (8.29),

|θ′(t)| =
|∇′f(ξν+1)|

2Nf(ξν+1)rγ(t)
≤ C2

2Nf(ξν+1)
∂rf(ξν+1) = C2|r′γ(t)| ≤ C3|γ′(t)|

for t ∈ (ν, ν + 1), and sufficiently large ν. Snce the curve γ has z finite length (see
Fact 8.14 (i)), then the above gives that θγ also has a finite length. Consequently
te curve Θ : [0,+∞) → Rn defined by

Θ(t) := θ(ξν) + (t− k) [θ(ξν+1) − θ(ξν)] for t ∈ [ν, ν + 1), ν = 0, 1, . . .

has a finite length. This gives that exists a limit limν→∞ θ(ξν) i.e., the limit (8.27)
exists. □

Remark 8.22. In fact, in the proof of Fact 8.21 we proved that Wε, for some ε > 0,
is equal to some neighbourhood of the origin. Moreover, under the assumption of
this fact, we proved that ε|∇′f(rθ)| ≤ r|∂rf(rθ) in a neighbourhood of the origin.
This is a stronger condition than the fact that ξν belongs to the set Wϵ. It seems
that it is not enough to prove Conjecture 8.20 to show that θ(ξν) converges. The
sequence ξν should satisfy ε|∇′f(ξν)| ≤ |ξν |α|∂rf(ξν) for some positive constants ε
and α.
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