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REALIZABILITY OF SOME BÖRÖCZKY ARRANGEMENTS
OVER THE RATIONAL NUMBERS

MAREK JANASZ, MAGDALENA LAMPA-BACZYŃSKA, AND DANIEL WÓJCIK

Streszczenie. In this paper, we study the parameter spaces for Böröczky
arrangements Bn of n lines, where n < 12. We prove that up to n = 12, there
exist only one arrangement nonrealizable over the rational numbers, that is
B11.

1. Introduction

Recently, some considerations about realizability of Böröczky configurations over
the rational numbers have shown up, especially in algebra and combinatorics. An
excuse for such research is the problem of containment relations between the sym-
bolic and ordinary powers of homogeneous ideals. The Böröczky arrangement of 12
lines was the first counterexample for some hypothesis in this area over the reals.
In [9], using the parameter space, it was shown that this arrangement is relizable
over the rational numbers and also that 12 lines is the minimal number of Böröczky
lines, where intersection points give a similar counterexample.

In this context, some new results appeared with references to the higher number
of lines. The aim of this paper is to complete the picture for number of lines
between 3 and 11 in Böröczky arrangements and to establish the realizability of
these configurations over the rational numbers.

According to [2], the Böröczky configurations were originally introduced in con-
nection with the orchard problem. Böröczky described his construction to some
mathematicians but he never published this results. In [2], these configurations are
concidered in a relation to the celebrated Sylvester-Gallai Theorem. In [7, 8] they
appear as configurations with a large number of ordinary lines.
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The interest was recently renewed with a linkaye to the containment problem
studied in commutative algebra (see details in [3] and [5]). Our research are inspired
by papers [9] and [6], where the parameter spaces of some Böröczky arrangements
were considered.

Let us denote by Bn the configuration of n lines arranged with Böröczky con-
struction. Up to now, there were published such results for configurations B12, B13,
B14, B15, B16, B18 and B24. The Böröczky arrangement of 12 lines is up to now
the only known Böröczky configuration realizable over the rational numbers. We
mean by this that there exists a configuration of 12 lines with the same incidences
between the lines and the intersection points, which all the points have coordinates
being the rational numbers. Since, in connection with the containment problem,
there were considered only arrangements with at least 12 lines, we fill the gap in
picture for 3 ¬ n ¬ 11.
The Böröczky configurations Bn were described in [7]. Following this, we present

here the construction.

Consider an 2n-gon inscribed in a circle. Let us fix one of the 2n points and
denote it by Q0. By Qα we mean the point arising by the rotation of Q0 around
the center of a circle by some angle α.

We take the following n lines:

Bn =
{
QαQπ−2α, where α =

2kπ
n
for k = 0, 1, . . . , n− 1

}
.

If α ≡ (π − 2α)(mod 2π), then QαQπ−2α is the tangent to the circle at the point
Qα.

These configurations have the maximal numbers of triple intersection points
estimated in [8], with reference to n, namely

t3 = 1 +
⌊
n(n− 3)
6

⌋
.

2. Realization of line configurations

By a configuration we mean an ordered pair A = (S,L), where a set L is
a finite family of lines and by S we denote the set of all their intersection po-
ints. The realizability problem for configurations is intensively studied during the
last few decades. Sturmfels in [10] establishes a connection between the realizability
of projective configurations and some polynomial identity, so called final polyno-
mial. Instead of this, we consider a system of equations, which are the generators
of some standard basis connected with the configuration.

Following [10], we recall some basic notions necessary in the future considera-
tions.
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Let K be an arbitrary field of characteristic 0 and let ϕ : S −→ K3 be a mapping
such that

s 7−→ rs = (rs,1, rs,2, rs,3)T .

We call ϕ a realization of a configuration A over a field K if the following conditions
are equivalent:

• det(ri, rj , rk) = 0,
• i, j, k ∈ S are contained in some line of A.

If |S| = n, then every realization of A can be though as a 3 × n matrix, which
columns are the coordinates of points of S. We call such matrix as points matrix
of A.

Directly from definition, the 3×3 minors of points matrix are 0 iff their collumns
are the cordinates of collinear points. Hence the realizations of A correspond to
labeled subsets of the projective plane P2(K) which satisfy the given incidence
structure. The subset F ⊂ K corresponding to a realization of configuration A (i.e.
entries of matrix are the elements of F) is called the realization space of A.
Realizability of configuration can be expressed in the language of polynomials.

Theorem 2.1 ([10], Theorem 3.2). The following problems are polynomially equ-
ivalent:

• Do the polynomials of the set {f1, . . . , fm} have the common zero in Kn?
• Is a configuration A realizable over K?

A parametrization of the realization space can be found by an analysis of polyno-
mials of the standard basis for some polynomials connected with the configuration.

Let MA be a points matrix of A and let {f1, . . . , fm} be a subset of polynomials
in K[x1, . . . , xn] with no common zero in Kn, where fi are minors of collinear points
of A. We define the auxiliary polynomials

f̂i(x1, . . . , xn, t1, . . . , tm) := fi(x1, . . . , xn)− ti

with the slack variables ti. Thus ti = 0 if and only if the proper points are collinear.
Let Ĝ be a Gröbner basis of the set {f̂1, . . . , f̂m} with pure lexicographic order

(1) t1 < · · · < tm < x1 < · · · < xn.

Then the generators of Ĝ designate the realization space of A (compare to [10],
Theorem 6.2). Order (1) assures that the variables x1, . . . , xn appears in generators
of Ĝ with relatively low powers, comparing to variables t1, . . . , tm. It is the ma-
in reason why we introduce these additional variables. Taking into consideration
that finally ti = 0 for collinear points, we obtain emphatically simpler conditions
involving coordinates xi, than computing a Gröbner basis of the set {f1, . . . , fm}
directly.
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It leads to the explicit algorithm allowing us to conclude a realizability of some
configurations. An algorithm is based on general ideas of Sturmfels [10] combined
with methods established in [9].

We carry out the construction in the following way:

Step 1 : We fix matrix MA = (r1, r2, . . . , rs) ∈M3×s of triple points of
the configuration.

Step 2 : We establish the family of equations F = {f1, f2, . . . , fk}, whe-
re fi are the 3× 3 minors of MA with 3 collinear points as the
columns.

Step 3 : We define the family of auxiliary equations F̂ =
{f̂1, f̂2, . . . , f̂k} with slack variables.

Step 4 : We compute a Gröbner basis Ĝ of F̂ in the following way. We
divide the set F̂ into finite number of subsets (not necessary
disjoint), which sum is all F̂. We take the ideals of these sets
and compute their sum. Finally, the basis of sum of ideal is
the basis of F̂. We substitute ti := 0.

Step 5 : (Optionally) We use one of conditions determined by the ele-
ments of Ĝ (with no variables ti) to eliminate some of variables
x1, . . . , xn. After such substitution we repeat Steps 1− 4 for
matrix MA with reduced number of variables.

Step 6 : We repeat all algorithm step by step until we obtain condi-
tion clearly designating the realization space of configuration
(or eventually we obtain condition excluding realization of con-
figuration over some taken field).

3. Realizability of Böröczky configurations over the rationals

Below we present detailed algorithm for Böröczky configurations B8 and B11.
We establish in this way, which of them are realizable over the rationals.

From now on, if there is no additional informations about fixed point, we assume
Pi = (xi : yi : zi). General idea in the first step of algorithm is to introduce as many
parameters as necessary and reduce considerably necessary parameters, using some
obvious incidences.

Example 3.1. (Configuration of 8 lines)
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Step 1:

We start with finding the matrix MA. We fix the first four appropriate points
in the arrangement as the fundamental points: P1 = (1 : 0 : 0), P2 = (0 : 1 : 0),
P3 = (0 : 0 : 1) and P4 = (1 : 1 : 1). They give as the beginning five lines of the
construction, namely P1P2, P2P3, P1P3, P3P4 and P2P4 (lines distinguished with
bold solid line in the Figure 1).

P4

P6

P3

P1

P7

P2

P5

Figure 1

Automatically we obtain one more point:

P5 = P1P3 ∩ P2P4 = (1 : 0 : 1).

The last two points of the configuration are taken as some free points on the
fixed lines and they are expressed with parameters:

P6 = (x6 : 1 : 0) ∈ P1P2,
P7 = (0 : y7 : 1) ∈ P2P3.
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Thus the points matrix of the configuration is the following

MA =

 1 0 0 1 1 x6 0
0 1 0 1 0 1 y7
0 0 1 1 1 0 1

 .
The remaining three lines of the construction are P4P6, P1P7, P5P6 (distingu-

ished as the dashed lines).

Step 2:

The lines P3P4, P1P7, P4P6 contain only two from points {P1, . . . , P7}. Remaining
five lines contain exactly three of them. The points are grouped on the lines as
follows:

{P1, P2, P6}, {P2, P3, P7}, {P2, P4, P5}, {P5, P6, P7},
{P1, P3, P5}.

The only collinearity demanding to check is for points P5, P6, P7. The rest of them
are automatically satisfied. Thus

F = {det(P5, P6, P7)}.

Step 3:

We have only one auxiliary equation with slack variable t1

f̂1 = x6y7 + 1− t1.

Step 4:

The basis of an ideal < x6y7 + 1− t1 > with t1 = 0 is

Ĝ = {x6y7 + 1}.

Step 5:

Not applicable.

Step 6:

Since condition x6y7 + 1 = 0 may be fulfilled by infinitely many pairs of rational
numbers (x6, y7), the configuration B8 can be realized over rationals.

Analogously we may easily check, that all remaining Böröczky configurations Bn
with 3 ¬ n ¬ 10 are realizable over the rational numbers. In [9], there was proved
that also B12 may be realized over rationals.

In fact for n ¬ 12 there exist only one configuration in this family, which can
not be obtained over the field of rational numbers, namely B11. We prove it in
Example 3.2 by showing the resulting of algorithm in this case.
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Example 3.2. (Configuration of 11 lines)

Step 1:

We start with finding the matrix MA. As a core of configuration, we fix the first
four appropriate points in the arrangement as the fundamental points:

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1), P4 = (1 : 1 : 1).

They give us the beginning five lines of the construction, namely P1P2, P2P3, P1P3,
P3P4 and P2P4 (distinguished with bold solid lines in the Figure 2). Automatically
we obtain two more points:

P5 = P1P3 ∩ P2P4 = (1 : 0 : 1),

P15 = P1P2 ∩ P3P4 = (1 : 1 : 0).

x = 0

x− z = 0

x− y = 0

y − z = 0

P4

P14
P2

P10
P5

P6

P13

P9

P8

P3

P12

P11

P7
P1

P15

Figure 2
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Remaining points of the configuration are taken as some free points on the fixed
lines and they are expressed with parametres:

P6 = (0 : y6 : 1) ∈ P2P3,
P7 = (1 : 1− y6 : 0) ∈ P1P2 ∩ P4P6,
P8 = (0 : y6 − 1 : 1) ∈ P2P3 ∩ P5P7,
P9 = (x9 : 0 : 1) ∈ P1P3,
P10 = (1 : y10 : 1) ∈ P2P4,
P11 = (1 : y6 · z11 − y6 + 1 : z11) ∈ P4P6,
P12 = (1 : 1− y6 + z12(y6 − 1) : z12) ∈ P5P7,
P13 = (1 : 1 : z13) ∈ P3P4,
P14 = (1 : y14 : 1) ∈ P2P4.

Thus the points matrix of configuration in this case is the following 1 0 0 1 1 0 1 0 x9 1 1 1 1 1 1
0 1 0 1 0 y6 1− y6 y6 − 1 0 y10 y6 · (z11 − 1) + 1 (z12 − 1)(y6 − 1) 1 y14 1
0 0 1 1 1 1 0 1 1 1 z11 z12 z13 1 0

.
The remaining six lines of the construction are P4P6, P5P7, P8P9, P1P10, P6P9

and P11P15.

Step 2:

Triple points P1, . . . , P15 are grouped on the lines in the following sets (compare
with Figure 2):

{P1, P2, P7, P15}, {P2, P3, P6, P8},
{P2, P4, P5, P10, P14},
{P3, P4, P13, P15}, {P1, P3, P5, P9},

{P1, P10, P12, P13},
{P8, P9, P10, P11}, {P5, P7, P8, P12},

{P4, P6, P7, P11},
{P6, P9, P13, P14}, {P11, P12, P14, P15}.

Some of these collinearities results directly from the construction (for example
P6 is taken as a point on the line P2P3). Remaining collinearities generate the
family of polynomials F, where the polynomials are the following determinants:

f1 = det(P8, P9, P10), f2 = det(P8, P9, P11),

f3 = det(P1, P10, P12), f4 = det(P1, P10, P13),

f5 = det(P6, P9, P13), f6 = det(P6, P9, P14),

f7 = det(P12, P14, P15), f8 = det(P11, P14, P15).
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Step 3:

We introduce the auxiliary variables t1, . . . , t8 and we define the family of equ-
ations F̂ = {f̂1, f̂2, . . . , f̂8}, where

f̂i = fi − ti.

Step 4:

We consider the ideals I =< f̂1, . . . f̂7 > and J =< f̂4, . . . , f̂8 >. We take I + J
and computing with Singular [4] we obtain its basis. Substituting ti := 0 we have

Ĝ = {z212 · z213 − z12 · z213 − z12 + z13, z11 · z13 − 1, z11 · z12 − z212 · z13 + z12 · z13 − 1,
y14 − z12 · z13 + z13 − 1, y10 − z11, y6 · z13 − y6 + z12 · z13 − z13,

y6 · z12 − y6 − z212 · z13 + z12 · z13 − z12, y6 · z11 − y6 − z12 + 1, x9 − z12}.

Step 5:

We make substitution using condition x9 − z12 = 0. We repeat all algorithm for
matrix M1 without variable z12. We obtain a new Gröbner basis

Ĝ1 = {z11 ·z13−1, y214−y14 ·z11+y14 ·z13−2·y14+z11, y10−z11, y6 ·z13−y6+y14−1,
y6 ·z11−y6−y14 ·z11+z11, y6 ·y14−y6−y14 ·z11−y14+z11, x9−y14 ·z11+z11−1}.

We make new substitution using condition y10−z11 = 0. We obtain the following
basis, independent of variable z11:

Ĝ2 = {y214 · z13 + y14 · z213 − 2 · y14 · z13 − y14 + 1, y10 · z13 − 1,
y10·y14−y10−y214−y14·z13+2·y14, y6·z13−y6+y14−1, y6·y14−y6−y214−y14·z13+y14,

y6 · y10 − y6 − y214 − y14 · z13 + 2y14, x9 − y214 − y14 · z13 + 2y14 − 1}.

Step 6:

Let us focus on the condition:

y214 · z13 + y14 · z213 − 2 · y14 · z13 − y14 + 1 = 0.
It is a plane cubic in variables y14 and z13. To make further considerations more
transparent, we substitute y13 := u and z14 := v. Thus we have curve

C : u2v + uv2 − 2uv − u+ 1 = 0.
By homogenization we obtain plane projective cubic

C̃ : u2v + uv2 − 2uvw − uw2 + w3 = 0.
Using Magma computations ([1]), we verify that C̃ is an elliptic curve with only
five rational points, namely

(1 : 1 : 1), (1 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (−1 : 1 : 0).

Only first two of these points can be applied to the curve C. Remaining points
are the points at infinity, while C is an affine plane cubic. But if y14 = 1, the
configuration is degenerated. More precisely, P4 = P14. Analogously, when z13 = 1
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or z13 = 0. Thus P13 = P4 or P13 = P15. We conclude that configuration of 11
Böröczky lines can not be realizable over the rational numbers.

Corollary 3.3. The configurations Bn for n ¬ 12 can be realizable over the ratio-
nals, except the case of n = 11.

The proof of case n = 12 reader can find in [9].

Remark 3.4. We believe that, among all Böröczky arrangements Bn with n > 10,
arrangement B12 is the only one realizable over the rationals. In [9], the authors
consider B12 and B15 arrangements and they explain why B12 arrangement can
be realized over the rationals. Furthermore, in [6], another set of authors consider
cases with n ∈ {13, 14, 16, 18, 24}. In all these cases, it is directly proved that Bns
are not realizable over the rationals, or there is no evidence that any realization
over rationals would not degenerate the whole construction, i.e., available tools do
not allow us to decide the existence of another such realizations. We want to reveal
additionally here some additional unpublished results for other values of n < 30.
In these cases, arrangements are not realizable over the rationals.

Our aim is to understand in deep the case n = 12 in order to find some com-
binatorial features that can potentially give some evidence about the speciality of
B12. We hope to come back to such a discussion in a forthcoming article soon.

Acknowledgements. We would like to thank Grzegorz Malara and Piotr Pokora for
helpful remarks on this text and for assistance with programming of some symbolic
computations.

We also thank the knowledgeable referee for helpful remarks, which improved
our paper.

Literatura

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language,
J. Symbolic Comput. 24 (1997), no. 3–4, 235–265.

[2] D. W. Crowe, T. A. McKee, Sylvesters problem on collinear points, Math. Mag. 41 (1968),
30–34.

[3] A. Czapliński, A. Gówka-Habura, G. Malara, M. Lampa-Baczyńska, P. Łuszcz- Świdecka,
P. Pokora and J. Szpond, A counterexample to the containment I(3) ⊂ I2 over the reals,
Adv. Geom. 16 (2016) 77–82.

[4] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, H.: Singular 4-2-1 — A computer
algebra system for polynomial computations. http://www.singular.uni-kl.de 2021.

[5] Ł. Farnik, J. Kabat, M. Lampa-Baczyńska and H. Tutaj-Gasińska, Containment problem
and combinatorics, J. Algebraic Combin. 50 (2019), 39–47.

[6] Ł. Farnik, J. Kabat, M. Lampa-Baczyńska and H. Tutaj-Gasińska, On the parameter spa-
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