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Abstract

The present work aims to study the dynamics of a particular type of topological soliton called
vortex. This solution is present in various theoretical models, depending on the application to be
studied. We will speci�cally consider the Abelian-Higgs model. Taking this model as a basis, we
will study various modi�cations of this model, either by adding new couplings or by including both,
magnetic and Higgs impurities. We will compute the metric on a submanifold of the space of �eld
con�gurations, called themoduli space, for each of these generalized models. Such a submanifold will
play a crucial role in the study of the dynamics of solitons, since it will provide general properties
of the dynamics without the use of full numerical simulations. As in all the previous cases only
the translational degrees of freedom will be considered, we will �nally qualitatively analyse the
dynamics of the vortices in the standard Abelian-Higgs model when some of their internal degrees
of freedom have been excited.

Resumen

En el presente trabajo se pretende estudiar la dinámica de un tipo particular de solitón topológico
llamado vórtice. Dicha solución aparece en diversos modelos teóricos, dependiendo de la aplicación
que se quiera estudiar. Nosotros consideraremos en concreto el modelo de Higgs abeliano. Tomando
dicho modelo como base, estudiaremos diversas modi�caciones del mismo, bien añadiendo nuevos
acoplamientos, bien mediante la inclusión de impurezas, tanto magnéticas como de Higgs. Calcu-
laremos la métrica de una subvariedad del espacio de con�guraciones de campo, llamada espacio de

parámetros, para cada uno de estos modelos generalizados. Tal subvariedad jugará un papel crucial
en el estudio de la dinámica de los soltiones, debido a que aportará propiedades generales de la
dinámica sin el uso exclusivo de simulaciones numéricas. Como en todos los casos anteriores solo
los grados de libertad traslacionales serán considerados, analizaremos �nalmente la dinámica de los
vórtices en el modelo de Higgs abeliano estándar cuando alguno de sus grados de libertad internos
ha sido excitado.

KEYWORDS: Topological solitons, BPS structure, Abelian-Higgs model, Supersymmetry, Higgs
and magnetic impurities, Internal degrees of freedom
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1 Introduction to topological solitons

Solitons were introduced into science after J. S. Russell [1] observed in 1834 a hump of water
travelling several miles along the Union Canal near Edinburg, Scotland, without changing its shape
and speed. That behaviour was characteristic of what we now call solitary waves, that is, localised
non-singular solutions of a nonlinear �eld equation whose energy density moves undistorted with
constant velocity [2]. When two such waves collided and their pro�les were asymptotically restored
to their original shapes and speeds, they were called hydrodynamical solitons. These de�nitions
have been changing over time, and di�erent classi�cations are currently given. In the present work,
we are interested in the so-called topological solitons.

Topological solitons are de�ned as stable particle-like objects with �nite energy and a smooth
structure [3], or in more mathematical terms, they are solutions of partial di�erential equations of
nonlinear �eld theories which are homotopically distinct from the vacuum solution, this being the
characteristic that ensures its stability. The topological concepts necessary to understand this topic
will be carefully explained in Section 2.1. The main examples of topological solitons are kinks in
one dimension (Section 3.1), lumps and vortices in two dimensions (Section 3.2), monopoles and
Skyrmions in three dimensions (Section 3.3), as well as instantons in four dimensions. Topological
solitons have been employed in a wide variety of disciplines and areas of Physics, such as Condensed
matter [4], Cosmology [5], Particle physics [6], Optics, [7] or even Biophysics [8], which con�rm the
relevance that solitons have been gained in these last decades.

There are two fundamental aspects that must be taken into account when looking for models
that can support topological solitons. The �rst one is related to spontaneous symmetry breaking.
For a model to support topological solitons, it needs to possess a structure that allows the symmetry
of the theory to be spontaneously broken. Only for this case the model can conceive non-trivial
solutions, i.e., di�erent from the vacuum. This topic will be covered in detail in Section 2.3. The
second aspect is related to the existence of stable �nite energy soliton solutions under a spatial
rescaling. Such scaling argument is due to Derrick [11] in 1964. It states that, given a certain �eld
theory where φ(x) is a �nite energy �eld con�guration distinct from vacuum, which is rescaled to
φ(µ)(x) by applying the map x 7→ µx, if its associated energy E

(
φ(µ)(x)

)
has no stationary points,

the corresponding theory does not admit a �nite energy static solution of the �eld equation other
than the vacuum. This is related to the fact that topological solitons are stable by de�nition, so
speci�cally must be stable under spatial scaling, and have a characteristic size.

Interestingly, there exist certain �eld theories in which the energy enjoys a bound from below
that only depends on topological data. This was �rst noted in Prasad and Sommerfeld's work on the
't Hooft-Polyakov monopole [10] in 1975. A detailed analysis of these phenomenon was accomplished
by Bogomolny [9] in 1976. He proposed that the Euler-Lagrange equations of certain �eld theories
can be reduced from second order to �rst order partial di�erential equations, provided that the
coupling constants take particular values. They consist on �rst integrals of the Euler-Lagrange
equations, and they are equivalent to the zero pressure sector. Then, for such a value, the static
intersoliton forces vanish, and the �eld con�guration is an absolute minimum of the energy (within
its topological sector). Therefore, the solutions of these equations saturate the lower bound of the
energy. This is the so-called BPS bound, and the �rst order partial di�erential equations are referred
to as Bogomolny equations. When in addition the �eld theory admits topological solitons in virtue
of the two previous arguments, solitons are said to be BPS solitons. All the examples of topological
solitons exposed in this work are BPS solitons.

The structure of the present work will be the following: �rst, the mathematical background
of soliton theories is discussed in Section 2, which will be necessary to understand the underlying
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ideas behind these theories. Section 3 is devoted to the construction of soliton solutions in various
models, describing the more relevant issues concerning to each of them. In Section 4 some notions of
supersymmetry will be introduced, due to its connection to the study of BPS models. Sections 5 and
6 constitute the original part of the present work, and are orientated to analyse modi�cations and
generalizations of the Abelian-Higgs model, where new couplings and impurities will be included
into the Lagrangian. The purpose is to obtain a more general framework to explore the metric of the
respective moduli spaces, with the intention of extracting information about the soliton dynamics
in the physical situations that these models describe. The signi�cance of this study is that we
can gather analytic information about the dynamics of vortices without performing full numerical
simulations, which provides mainly phenomenological information. Finally, the conclusions of the
work are collected in Section 7.

2 Topological protection and e�ective dynamics

Section 2.1 aims to give a brief introduction to topology through a formal discussion, focusing
on the most signi�cant results necessary to understand the idea of homotopy group. Likewise, an
introductory discussion on di�erential geometry will be covered in Section 2.2. All these results will
allow us to accurately connect these ideas with the study of the stability of solitons in Section 2.3,
as well as with the treatment of their dynamics through an e�ective theory exposed in Section 2.4.
For this reason, we belief that for a reader unfamiliar with these issues, these two �rst subsections
could be a compilation guide, which would allow him to better grasp the mathematical foundations
of our arguments during the present work.

2.1 Topology in Physics

To begin with our discussion, let us start by presenting the concept of topological space.

De�nition 2.1.1 Let X be any set and τ = {Ui|i ∈ I} denote a certain collection of subsets of X
called open sets. The pair (X, τ) is a topological space with τ a topology if τ satis�es the following

requirements:

� ∅, X ∈ τ .

� If J is any subcollection of I, the family {Uj |j ∈ J} satis�es
⋃
j∈J Uj ∈ τ .

� If K is any �nite subcollection of I, the family {Uk|k ∈ K} satis�es
⋂
k∈K Uk ∈ τ .

Therewith, we will enunciate the notion of continuity in this more general context.

De�nition 2.1.2 Let us suppose that τ is a topology on X. N is a neighbourhood of a point x ∈ X
if N is a subset of X and N contains some open set Ui to which x belongs.

De�nition 2.1.3 Let X and Y be topological spaces. A map φ : X → Y is continuous at x0 ∈ X
if for every neighbourhood N of φ(x0), φ−1(N) is a neighbourhood of x0.

A map φ is said to be continuous in X if φ is continuous at every x0 ∈ X.
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Such de�nition allows us to present the idea of homeomorphism, which intuitively can be understood
as two topological spaces being homeomorphic to each other if we can deform one into the other
continuously.

De�nition 2.1.4 Let X and Y be topological spaces. Then, a map φ : X → Y is a homeomorphism

if it is continuous and has an inverse φ−1 : Y → X which is also continuous. Then, X and Y are

said to be homeomorphic.

De�nition 2.1.5 A property is said to be a topological invariant if it is conserved under a home-

omorphism.

The following de�nitions will provide the necessary tools to de�ne a manifold.

De�nition 2.1.6 A topological space X is a Hausdor� space if, for an arbitrary pair of distinct

x, x′ ∈ X, there always exist neighbourhoods Nx of x and Nx′ of x
′ such that Nx∩ Nx′ = ∅.

De�nition 2.1.7 A topological space X is second-countable if there exists some countable collection

U = {Ui}∞i=1 of open subsets of X such that any open subset of X can be written as a union of

elements of some subfamily of U .

De�nition 2.1.8 A n-dimensional manifold is a second countable Hausdor� space with the prop-

erty that each point has a neighbourhood that is homeomorphic to an open subset of n-dimensional

Euclidean space.

All the above de�nitions are essential to introduce the concept of homotopy between two manifolds,
which will play a crucial role in our explanation of soliton stability.

De�nition 2.1.9 Let X and Y be two manifolds and φ a continuous map between them φ : X → Y .
Let us �x two points x0 ∈ X and y0 ∈ Y , and let us impose that φ(x0) = y0. The points x0 and y0

are said to be base points, and φ is said to be a based map.

A based map φ1 : X → Y is said to be homotopic to another map φ2 if there is a continuous map

Ψ : X × [0, 1]→ Y, t ∈ [0, 1] ,

such that ψ|t=0 = φ1 and ψ|t=1 = φ2, along with Ψ(x0; t) = y0 ∀t .

Proposition 2.1.1 The homotopy is an equivalence relation, and thus all the maps φ from X → Y
can be classi�ed into homotopy classes.

De�nition 2.1.10 The set of homotopy classes of based maps φ : Sn → Y , with n ≥ 1, forms a

group called n-th group of homotopy and it is denoted by πn(Y ).

Let ∗ and • be rules endowed on the sets X and Y respectively, inducing in them a certain algebraic
structure.

De�nition 2.1.11 A map φ : (X, ∗)→ (Y, •) is said to be a homomorphism if

φ(x1 ∗ x2) = φ(x1) • φ(x2), ∀x1, x2 ∈ X .
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An important case of homomorphism is the so-called isomorphism, which is a bijective homomor-
phism. In that case X is said to be isomorphic to Y , and we will denote it by X ∼= Y .

Theorem 2.1.1 The n-th homotopy group of the n-dimensional sphere Sn is isomorphic to Z, i.e.,

πn(Sn) ∼= Z .

Therefore, the homotopy classes of the n-th group of homotopy of Sn are labelled by the integers.

With all this, we only need to introduce the de�nition of topological degree of a map to show
the reason for the stability of solitons in scalar �eld theories. Nevertheless, �rst we have to give
some fundamental notions of di�erential geometry to achieve this.

2.2 Di�erential geometry in Physics

In the above section, we presented the concept of manifold. Nonetheless, we are interested in a
precise type of manifold named as di�erentiable manifolds. These di�erentiable manifolds attract
our attention due to their relation with the analysis of the geometrical structure of the so-called
moduli spaces, or due to their relationship with the de�nition of the topological degree of a map.
Then, we will show the examples that will be useful for our later study. However, we want to
emphasise that a detailed de�nition of all the ideas that will be exposed would need of a great
amount of technicalities. Then, only the more relevant ideas will me discussed here. For more
information, see [13].

We �rst present some de�nitions, and then we will introduce the notion of di�erentiable structure,
which is the necessary property to describe a di�erentiable manifold.

De�nition 2.2.1 Let M be a manifold. A local chart onM is the pair (V, ϕ) where V ⊂M and

ϕ is a mapping ϕ : V → ϕ(V ) such that ϕ(V ) is an open set of Rn and the mapping is bijective.

De�nition 2.2.2 Let (V, ϕ) and (Ṽ , φ) be two local charts on M such that V ∩ Ṽ 6= ∅. We will

say that the local charts are compatible if

ϕ ◦ φ−1 : φ(V ∩ Ṽ )→ ϕ(V ∩ Ṽ ) is bijective and C∞ as a fuction of Rn → Rn.

By C∞ we denote the in�nitely di�erentiability of the functions.

De�nition 2.2.3 LetM be a manifold. An atlas onM is a set A = {Vα, ϕα} of local charts with
α ∈ I that ful�l

�

⋃
α Vα =M.

� The local charts are compatible two by two.

De�nition 2.2.4 Let A = {Vα, ϕα} and A′ = {Ṽβ, φβ} be two atlases on M. It is said that two

atlases are equivalent if A∪A′ is a new atlas. The equivalence among atlases de�ne an equivalence

relation.

De�nition 2.2.5 A di�erentiable structure S onM is the union atlas of all the atlases of a given

equivalence class.
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Observation 2.2.1 When the charts of the atlases consist of holomorphic functions with image

on open sets of Cn instead of Rn, we can similarly de�ne what is called a complex di�erentiable

structure.

Through this concept we can �nally de�ne the notion of di�erentiable manifold.

De�nition 2.2.6 A di�erentiable manifold is a pair (M,S) withM a manifold and S a di�eren-

tiable structure.

We can endow a di�erentiable manifold with other structures. One of the most common examples
is the Riemannian manifold.

De�nition 2.2.7 A di�erentiable manifold endowed with a positive de�nite inner product on each

of the individual tangent spaces is called a Riemannian manifold.

However, there are others less popular structures, but with a hight interest in some mathematical
and physical applications. An interesting one is the Kähler manifold, that will appear in many
occasions along the present work.

De�nition 2.2.8 A s-form ω in a vectorial space V is a tensor s-times covariant that is antisym-

metric in all its components. When a di�erentiable manifoldM is considered, at each point ofM
the s-forms are referred to as di�erentiable s-forms.

De�nition 2.2.9 A di�erentiable p-form ω is said to be closed if dω = 0.

De�nition 2.2.10 A di�erentiable manifoldM has a symplectic structure if it is equipped with a

closed nondegenerate di�erential 2-form ω.

De�nition 2.2.11 A Kähler manifold is a di�erentiable manifold M with three mutually com-

patible structures: a Riemannian structure, a complex di�erentiable structure, and a symplectic

structure.

Observation 2.2.2 The relation between the Kähler metric and the Kähler form is through the

complex structure: g(SX,Y ) = ω(X,Y ). If (M, ω) is Kähler, then about every point p ∈ M
there exists a neighbourhood Np and a function K ∈ C∞(Np,R) such that ω|Np = i∂∂K with

∂ =
∑ ∂

∂zk
dzk and ∂ =

∑ ∂

∂z̄k
dz̄k . Here K is called a local Kähler potential.

To integrate over a di�erentiable manifolds, it must be orientable, for which the following concept
is essential.

De�nition 2.2.12 Let M be a m-dimensional di�erentiable manifold. A volume form on M, Ω,
is a di�erential m-form that satis�es

Ω(p) 6= 0, ∀p ∈M.

A di�erentiable manifoldM will be orientable if there exists a volume form on it.
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Finally, we are prepared to give the de�nition of topological degree of a map.

De�nition 2.2.13 Let us regard φ as a di�erentiable map between two compact and without bound-

ary orientable di�erentiable manifolds M and N , where the volume form Ω de�ned on N is nor-

malized to unity. Now consider φ∗(Ω) the pull-back of Ω toM using the map φ. Then, we de�ne

deg φ =

∫
M
φ∗(Ω)

as the topological degree of the map φ.

The most important example is the map φ : Sn → Sn, that is, a map belonging to πn(Sn). If we
suppose that φ is in the k-th homotopy class of πn(Sn), then deg φ = k. When n = 1, we talk about
winding number of a map. Naively, we could regard k as the number of times that the domain
manifold wraps around the range manifold under the mapping.

Proposition 2.2.1 If two maps φ1, φ2 : X → Y are homotopic, then deg φ1 = deg φ2.

2.3 Stability of solitons

The stability of the topological solitons requires of the combination of two considerations. The
�rst one is the topological structure of the model and the second one is related to the de�nition
of topological soliton. Recall that we de�ne a topological soliton as a stable particle-like object
with �nite energy and a smooth structure. As a result, the �niteness of the energy must play an
important role in its classi�cation.

For now, suppose that we are considering scalar �eld theories. Let φ : Rd → Y be a static
�eld con�guration. We �rst have to distinguish between a linear and a nonlinear theory in this
context: a linear theory is one in which the kinetic term is quadratic in the Lagrangian, whereas
a nonlinear theory is one in which it is not. Soliton solutions in nonlinear theories are known as
textures. Derrick's argument implies that if a potential term is not present in a linear theory, then
the theory does not support stable soliton solutions of �nite energy. Thereby, let U(φ1, · · · , φn)
be a de�nite positive potential. To guarantee energy �nitude, the �eld must take values in the
vacuum manifold ν at spatial in�nity, which is de�ned as the subset of �eld values for which the
potential function U(φ) from the theory takes its minimum value. We can just focus on the �eld
con�guration φ at spatial in�nity, i.e. the map de�ned as φ∞ : Sd−1

∞ −→ ν, where both have the
same topological character given by πd−1(ν). Figure 2.1 illustrates this map in the trivial case of
2 + 1 dimensions and the famous Mexican hat potential, where ν = U(1). Thus, if we consider
two �eld con�gurations φ and φvac whose topological character is given by the associated �elds
φ∞ and φ∞vac, in case the degrees of the maps are di�erent, the homotopy classes will di�er due to
Proposition 2.2.1. This ensures the stability of the soliton solutions because it is not possible to
continuously transform a soliton solution into the vacuum solution, and temporal evolution is an
example of continuous map. However, sometimes this is not enough to guarantee the existence of
stable �nite energy solutions di�erent from the vacuum, as it happens with global vortices, where
it is necessary to couple the scalar �eld to a gauge �eld, or as it happens with lumps, where it is
necessary to introduce higher derivatives of the scalar �eld, to avoid the Derrick's theorem. These
comments will make more sense in Sections 3.1 and 3.2.2, where we will analyse these topics in
more detail.

When we consider nonlinear theories, Derrick's argument shows that a potential is not nec-
essary to guarantee the stability of solitons, although it could be introduced. Instead, to ensure

6



the �niteness of the energy, we only need to impose that the �eld con�guration must tend to an
arbitrary constant value y0 at spatial in�nity. Therefore, this base point allows us, in terms of the
one-point compacti�cation, to regard the �eld con�gurations as based maps φ : Sd −→ Y . The
topological character of that con�guration φ is determined by an element of the homotopy group
πd(Y ). When the homotopy group of the theory is non-trivial for a given manifold Y , arguing again
as in Proposition 2.2.1, the same conclusion as above are obtained.

Figure 2.1: Plot of φ∞ between the the circle of in�nity S1
∞ and the vacuum

manifold ν ∼= S1.

In both theories we can note the importance of the existence of spontaneous symmetry breaking
to ensure the presence of topological solitons. We need multiple vacua in linear theories so that the
vacuum manifold is non-trivial and that the �eld acquires an arbitrary constant value at in�nity
in nonlinear theories.

Suppose now a gauge �eld theory. In this case, the classi�cation of solitons may be associated to
another topological invariant di�erent from the degree of a map; this is the so-called Chern form.
The Chern forms are gauge-invariant di�erential forms of even power constructed algebraically
from the strength �eld tensor of the theory. Depending on whether the theory is Abelian or non-
Abelian, the strength �eld is de�ned di�erently. In an Abelian gauge theory, the strength �eld
tensor is de�ned as

f = da =
∑
i<j

(∂iaj − ∂jai)dxi ∧ dxj , (2.1)

whilst in a non-Abelian gauge theory is de�ned as

F = dA+A ∧A =
∑
i<j

(∂iAj − ∂jAi + [Ai, Aj ])dx
i ∧ dxj , (2.2)

with a and A the respective gauge �elds. When the Chern forms are integrated over the manifold
M in which they are de�ned, the so-called Chern number is obtained.

To end this section, let us explain the concept of topological charge. The topological charge is
any conserved quantity associated with a solution that is conserved independently of the equa-
tions of motion (i.e., it is not a conserved Noether charge). It divides the con�guration space into
sectors named as topological sectors. In di�erent models and di�erent dimensions the topological
charge is de�ned by di�erent topological invariants. Thereby, when we talk about topological charge
throughout the text, we will be referring to quantities such as the topological degree of a map, the
winding number, or the Chern number, depending on the type of theory we are dealing with at
that moment. From now on, we will use the term topological charge indistinctly.

2.4 Collective coordinates method: Moduli space dynamics

As it is well known, the fundamental contrast between �eld dynamics and mechanics is that when we
deal with �elds, they have an in�nite number of degrees of freedom, whereas particles have a �nite
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number of them. For simplicity, it would be interesting to obtain a �nite-dimensional approach to
�eld dynamics and have an e�ective dynamical theory [14]. In this approximation, the topological
soliton would be expressed in terms of a few coordinates that are promoted to time-dependent
parameters, and that are referred to as collective coordinates or moduli, which in certain low speed
situations (adiabatic limit motion) could be a good approximation to the soliton dynamics of the
full theory [15]. This method is widely known as collective coordinate method, and the dynamics is
commonly known as moduli space dynamics.

The moduli spaceMN is a submanifold of the in�nite-dimensional �eld con�guration space C
in the sector of topological charge N . The moduli space is generally curved, and such curvature
can be determined by restricting the kinetic term of the full �eld theory to the moduli space, which
provides a positive de�nite metric. The other term in the moduli space is a potential inherited from
the remaining term of the full Lagrangian, which induces static forces that modify the motion in the
moduli space. Something remarkable happens when we contemplate a theory with BPS solitons. In
that situation, let us consider as initial condition a slow motion tangent toMN . By conservation
of energy, the trajectory of the the system will be constrained by V to lie close to MN , with V
remaining approximately constant and with no direct e�ect. Therefore, the subsequent motion is
geodesic on the manifold and, as a result, fully codi�ed by the metric inMN . Such geodesic motion
is only related to the e�ect of the curvature of the moduli space. A crucial point is that the moduli
space should be smoothly embedded in the �eld con�guration space so that the motion smoothly
approximates the true �eld dynamics [19].

When we list the diverse types of solitons in the next section, we will provide a brief summary
of their respective moduli spaces using some of the de�nitions presented in Section 2.2, and the
variety of di�erent manifolds will become visible.

3 Topological solitons in di�erent dimensions

The purpose of this section is to explore some of the best-known theories that allow topological
solitons in di�erent spatial dimensions, as well as the context in which each of them appears. In the
�rst place, we will introduce the theory under study with an analysis that will reveal us the presence
or not of soliton solutions, followed by the search for their corresponding Bogomolny bound and
equations. In addition, we will provide the main features of their solutions. Finally, some of the
ideas related to the moduli spaces for each soliton will be mentioned. With the di�erent techniques
provided through this section, one could acquire the necessary foundations to study more involved
theories. The analysis will cover the kink in 1-spatial dimension (Section 3.1), lumps and vortices
in 2-spatial dimensions (Section 3.2), and �nally Skyrmions and monopoles in 3-spatial dimensions
(Section 3.3).

3.1 Solitons in one spatial dimension: Kinks

Assume the usual Lagrangian density in a (1 + d) scalar �eld theory with only a real scalar �eld
~φ(t, x0, x1, . . . , xd)

L =
1

2
∂µ~φ · ∂µ~φ− U( ~φ ), (3.1)
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where ~φ : R1,d → Rn and U( ~φ ) is a potential which we will consider positive de�nite. The Euler-
Lagrange �eld equations that follow from the Lagrangian density above are

∂µ∂
µφa +

∂U

∂φa
= 0, a = 1, 2, ..., n. (3.2)

The energy functional

E[~φ ] =

∫
Rd

(
1

2
∂0
~φ · ∂0

~φ+
1

2
∇~φ · ∇~φ+ U( ~φ )

)
dxd (3.3)

can be split into a kinetic and potential term as follows

T =
1

2

∫
Rd

∂0
~φ · ∂0

~φ dxd, V =

∫
Rd

(
1

2
∇~φ · ∇~φ+ U( ~φ )

)
dxd . (3.4)

We know that a �eld con�guration, to have �nite energy, requires that the energy drops to zero
fast enough as x= (x1, . . . , xd) approaches spatial in�nite, so the �eld must necessarily reach a
minimum of U( ~φ ). The vacua of the theory is formed by the constant solutions at the minima of
the potential. However, the �eld may also interpolate between di�erent vacua, and this gives rise
di�erent topological sectors that are characterized by the behavior of the �eld at spatial in�nity.

We must �rst check whether the theory admits soliton solutions or not, for which we will use
the argument exposed in Section 1 based on Derrick's theorem. Let us consider that ~φ is a static
�eld con�guration of (3.2). Applying a rescaling map x 7→ x̃ = µx the energy becomes

e[µ] =

∫
Rd

dx̃d

µd

(
1

2
µ2∇̃~φ(µx) · ∇̃~φ(µx) + U(~φ(µx))

)
= µ2−dE2 + µ−dE0 , ∇̃ ≡ ∂

∂x̃
, (3.5)

where E2 and E0 represent the terms of the integral along with their respective power of µ that
appears when the integral is rescaled and a change of variable is performed. Both, E2 and E0, are
positive de�nite. Solitons have a characteristic size, so a �eld con�guration ~φ(µx) solution of the
equations of motion corresponds to a stationary point of e[µ] at µ = 1. Minimizing the energy, the
condition of stationary point is

0 = (2− d)µ1−dE2 − dµ−(d+1)E0 , (3.6)

and as a consequence, the existence of stationary point depends on the dimensionality of the model.
When d = 1, the stationary point is µ0 =

√
E0/E2, and the analysis of the second derivative reveals

that it is a minimum. Conversely, when d = 2, E0 must be null everywhere to have a stationary
point, so the �eld always must be in the vacuum state, and when d ≥ 3, either E2 or E0 must be
negative, but they are positive by de�nition. As a result, a fast inspection reveals that there are
only static, �nite energy solutions, di�erent from the vacuum solution, for a Lagrangian density
with the structure given above, in (1 + 1) dimensions.

For the sake of simplicity, we will restrict our attention to the case in which φ : R1,1 → R, so
from now on the energy functional will be

E[φ] =

∫ ∞
−∞

(
1

2
φ̇2 +

1

2
φ′2 + U(φ)

)
dx , φ̇ = ∂tφ , φ′ = ∂xφ . (3.7)

With the equation (3.7) in mind, let us �rst consider a static �eld con�guration. We can manipulate
the expression in such a way that we manage to stablish a bound in the energy from below. With
simple algebraic operations it follows that

E[φ] =

∫ ∞
−∞

(
1√
2
φ′ ±

√
U(φ)

)2

dx ∓
∫ ∞
−∞

(√
2U(φ)φ′

)
dx . (3.8)
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Since the �rst integral is always positive, then

E[φ] ≥
∣∣∣∣ ∫ ∞
−∞

√
2U(φ)φ′dx

∣∣∣∣ =

∣∣∣∣ ∫ φ+

φ−

√
2U(φ)dφ

∣∣∣∣ , (3.9)

where φ+ and φ− denote the values that the �eld φ takes at x = +∞ and x = −∞ respectively.

Finally, if we de�ne U(φ) =
1

2

(
dW

dφ

)2

, inequality (3.8) takes the form

E ≥ |W (φ+)−W (φ−)| , (3.10)

whereW (φ) is the so-called superpotential. We will discuss the terminology used to refer toW (φ) in
Section 4. This equation also holds for time dependent �elds, because the kinetic energy is positive
de�nite. Overall, we accomplished to bound the energy from below just in terms of topological
data, and this is precisely the Bogomolny property that we discussed in Section 1. Such a limit
from below is reached when the Bogomolny equation is satis�ed

φ′ = ±
√

2U(φ) , (3.11)

which results from vanishing the squared term in (3.8). If a �eld con�guration obeys that equation,
it is said to saturate the BPS bound. The solutions of (3.11) are global minima of the energy
within a given topological class of �elds, so they are critical points of the energy function and thus
automatically static solutions of the second order �eld equation (3.2).

Now that we have exposed the general framework, we will assume a certain potential U(φ).
Because of its simplicity as well as its importance in many contexts, we will consider the φ4 model.

The potential in φ4 model is
U(φ) = λ(m2 − φ2)2 , (3.12)

which comes from considering a polynomial of even powers of φ2 up to second order, in addition
to imposing that λ > 0 to allow the presence of minima. Substituting into (3.1) the corresponding
Lagrangian density is

L =
1

2
∂µφ∂

µφ− λ(m2 − φ2)2 , (3.13)

and the respective �eld equation is

∂µ∂
µφ− 4λ(m2 − φ2)φ = 0 . (3.14)

Clearly, the vacuum values are φ = ±m, and such values are what the �eld con�gurations have to
approach at spatial in�nity to have �nite energy. Since the energy of the solutions is conserved, the
�eld at in�nity must always be one of the minima of U(φ). Moreover, the time evolution of a �eld is
continuous, so as the potential has a discrete set of minima, the �eld reaches the same vacuum value
at x =∞ for all instant of time. The same discussion is applied at x = −∞. Therefore, the space
of all �nite energy non-singular solutions can be divided into topological sectors, characterised by
φ+ and φ−. Then, the topological charge N can be de�ned thought the expression [3]

N =
φ+ − φ−

2m
. (3.15)

Thereby, N can only take the values {−1, 0, 1}. If a �eld has N = 0, it is homotopic to the vacuum
solution. On the other hand, if N = 1, the �eld is said to be a kink, whilst if N = −1, it is said to
be an antikink. Let us emphasise here that the topological sectors are not continuously connected,
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i.e., a solution in a given topological sector cannot decay into a di�erent topological sector. The
Bogomolny equation in the φ4 model is

φ′ = ±
√

2λ(m2 − φ2), (3.16)

that has the solutions

φK = m tanh
(√

2λm(x−X0)
)
, φK = −m tanh

(√
2λm(x−X0)

)
, (3.17)

where X0 appears as a constant of integration related to the translational invariance of the theory.
The �rst one is the kink solution, whereas the second one is the antikink solution, which are related
through re�ection. This exempli�es the discrete Z2 symmetry that the model possesses. The energy
density (3.7) associated to both, the kink and antikink, results in

ε = 2λm4sech4
(√

2λm(x−X0)
)
. (3.18)

Therefore, integrating in the real line, it is straightforward to con�rm that

E =
4

3
m3
√

2λ , (3.19)

which is interpreted as the classical rest mass of the kink. A quantum approach to the mass of the
kink can be consulted in [2].

In Figure 3.1 we plot the kink solution and the energy density for given values of λ and m.
Additionally, we took advantage of translation invariance �xing the kink at the origin. It results
that the point where the �eld φ is null, the energy density reaches its maximum, so that point
could be consider as the position of the kink. Moreover, remarkably, the energy density pro�le
is exponentially con�ned in space, which strengthens the particle-like nature of the topological
solitons as we mentioned in Section 1.

Figure 3.1: Kink solution (solid line) and energy density pro�le (dashed line) �xed at

the origin for λ =
1

2
and m = 1.

So far we have not discussed about the dynamical solutions, but certainly a dynamical solution of
(3.14) can be obtained simply by applying a Lorentz boost to the kinks (3.17), since the Lagrangian
density (3.13) is Lorentz invariant. On the other hand, since the only free parameter in kink solution
is the one related to its position, the moduli space is M1 = R, and if one promotes the position
to a time dependent variable (X0 → X(t)), the reduced Euler-Lagrange equation has as solution
a moving kink with constant speed, which does not solve (3.14) because it does not capture the
Lorentz contraction. Consequently, this is a non-relativistic approach only valid at low velocities.
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To obtain a relativistic solution we must insert a second parameter as we will see in Section 6.1.
The moduli space dynamics gets more involved when we study kink-antikink collisions, since a
complex fractal velocity-dependent structure appears in the �nal state of the collision [18].

To end with the discussion in one spatial dimension, let us remark that similar analysis can
be performed in other (1 + 1) dimensional models, such as the sine-Gordon model. This model is
very relevant because is integrable and because �eld con�gurations with any number of solitons do
appear.

3.2 Solitons in two spatial dimensions: Lumps and vortices

In this section we �rst intend to discuss a peculiar type of solutions that, technically, are not solitons,
since the conformal invariance of the theory where these solutions do appear causes an instability
under a spatial rescaling, so they tend to extend to in�nity or collapse to a point. Such solutions
are called lumps, and do appear in the so-called sigma models. In addition, we will also introduce
another type of soliton in two-dimensions, the vortex. These vortices exist in two forms, the so-
called gauge vortices, whose action in invariant under local gauge transformations, and the so-called
global vortices, whose action in invariant under global gauge transformations. In this section, we
will focus only on the �rst type, since it will be the starting point of our investigations from Sec. 5.

3.2.1 Lumps

A nonlinear sigma model is a nonlinear scalar �eld theory in which the �elds take values in a
target space that corresponds to a curved Riemannian manifold. The most general structure of the
nonlinear sigma model in a (1 + d)-dimensional space time is speci�ed by the following Lagrangian
density [12]

L =
1

4
gab(φ)∂µφ

a∂µφb , (3.20)

where φa are real scalar �elds and gab is the metric of the Riemannian manifold parametrized by
these �elds. We are interested in the O(3) nonlinear sigma model, which is the canonical example
of nonlinear sigma model. The name O(3) refers to the global rotational symmetry of the target
space, corresponding to the unit two-dimensional sphere S2. Then, we can rewrite (3.20) for such a
case by considering that the unit two-dimensional sphere is parametrised through ~φ = (φ1, φ2, φ3)
with the condition ~φ · ~φ = 1, and introducing the constraint into the Lagrangian of the standard
scalar �eld model by means of a Lagrange multiplier, resulting in

L =
1

4

3∑
a=1

∂µφ
a∂µφa + λ

(
3∑

a=1

(φa)2 − 1

)
. (3.21)

Therefore, after elimination of λ, the Euler-Lagrange equation looks like

∂µ∂
µ~φ+

(
∂µ~φ · ∂µ~φ

)
~φ = 0 . (3.22)

The energy of a static �eld con�guration is

E =
1

4

∫
R2

∂i~φ · ∂i~φ d2x . (3.23)

Since the static energy density (3.23) is quadratic in spatial derivatives and, moreover, the space is
two-dimensional, a spatial rescaling does not change the energy, which leads to the instability of the

12



solutions mentioned earlier. For this to be �nite, φ must approach to a constant vector at spatial
in�nity. We will take here ~φ∞ = (0, 0, 1) without loosing generality, although whatever value can
be chosen. That makes ~φ to be a based map. In addition, R2 ∪ {∞} ∼= S 2 due to the one-point
compacti�cation, so ~φ can be interpreted as the base map ~φ : S 2 → S 2, and in terms of this, the
relevant homotopy group is π2(S 2) ∼= Z. In fact, the usual stereographic projection from the sphere
S2 onto the complex plane allows us to reformulate the O(3) nonlinear sigma model in terms of the
complex function

R =
(φ1 + iφ2)

(1 + φ3)
, (3.24)

where, generally, R = R(z, z̄) and z = x1 + ix2 is the complex coordinate in the spatial plane. With
this change, the Lagrangian density (3.20) takes the form

L =
∂µR∂

µR̄

(1 + |R|2)2 , (3.25)

that is referred to as the Lagrangian density of the CP 1 nonlinear sigma model. Note that the metric
is indeed that of a sphere of unit radius in terms of the stereographic projection variable, and that
it has a Fubini-Study metric form. Using the de�nitions ∂z = 1

2(∂x − i∂y) and ∂z̄ = 1
2(∂x + i∂y),

the energy of a static �eld con�guration (3.23) in terms of R(z, z̄) reads as

E = 2

∫
R2

|∂zR|2 + |∂z̄R|2

(1 + |R|2)2 d2x . (3.26)

For that map, its topological degree is given by

N =
1

π

∫
R2

|∂zR|2 − |∂z̄R|2

(1 + |R|2)2 d2x . (3.27)

Comparing (3.26) and (3.27) we �nd the BPS bound

E ≥ 2π|N | . (3.28)

The Bogomolny equations that saturate the BPS bound are

∂z̄R = 0, ∂zR = 0, (3.29)

which show that R is a holomorphic function of z or an antiholomorphic function of z̄ respectively.
The requirement that R(z) has a de�ned limit as z → ∞ as well as that its energy is �nite,
makes R(z) a rational function R(z) = q(z)/p(z), where p(z) and q(z) do not have common roots.
Remembering that ~φ satis�es a boundary condition at in�nity, the function R must also satisfy
a constraint at in�nity; we choose it in such a way that R(∞) = 0. The algebraic degree kalg of
the rational map is the larger of the degrees of the polynomials p(z) and q(z). Since this number
counts, taking into account the multiplicity, the preimages of a given point on the target space
manifold, it can be interpreted as the topological degree of the rational map. As an example, we
will illustrate the rational map of one lump at the point a, solution that takes the form

R(z) =
λeiχ

z − a
, (3.30)

where a is its position, λ is its radius, and χ is an internal phase. The position of the lump
is identi�ed with the pole because that is where the energy density reaches its maximum (see
Figure 3.2). The parameter λ is called radius because if it is integrated over the disc |z − a| ≤ λ,
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the topological charge is 1/2, so it is appropriate to identify that parameter with the radius. In
case we had a N -lumps solution, the poles of the rational function would be the positions of
the lumps, whereas the module and phase of the residues at those poles would be the radii and
the internal phases respectively. In contrast to the single lump case, for N coincident lumps at a
point, the energy density is zero there and maximal on a circle, giving then a ring shape of radius
λ((N − 1)/(N + 1))1/2N (see Figure 3.2).

Figure 3.2: Energy density of one lump at the origin (left), two lumps coincident at
the origin (middle), and two lumps at two di�erent positions (right) with λ = 2.

As we have mentioned, Derrick's argument shows that there is no preferred scale even for
the N = 1. This provoques the lump to shrink into a point or spread at in�nity. To remove the
instability of the O(3) nonlinear sigma model, we can highlight two simple ways that allow us to
accomplish this, which are based on approaches where new terms are added to the Lagrangian
density (3.20), although the reasons of stability are completely di�erent.

1. Baby Skyrme model: this model presents a Lagrangian density for a given choice of the
free parameters that looks like [20]

L =
1

2
∂µ~φ · ∂µ~φ−

1

4

(
∂µ~φ× ∂ν~φ

)
·
(
∂µ~φ× ∂ν~φ

)
− U(|~φ|), (3.31)

where the �rst term is that of the O(3) nonlinear sigma model, the second is the Skyrme term,
and the last is the mass term. The symbol �·� represents the scalar product on S2, and �×�
denotes the vector product. With only the Skyrme term the conformal invariance of the theory
is broken thanks to the inclusion of higher order terms in the �rst derivatives. Nevertheless,
the potential is needed for soliton solutions to exist, because after scaling x→ µx, the energy
looks like e[µ] = E2 + µ2E4 + µ−2E0 using the notation of (3.5), guaranteeing Derrick's
argument the stability under scaling. Note that the nonlinear sigma model term is the only
term in (3.31) that can be omitted and that the �eld con�gurations remain stable under
scaling. That model is the BPS baby Skyrmion model. The most common choice of the
potential U(|φ|) is [12]

U = m2(1− φ3), (3.32)

preserving the O(2) symmetry of φ1 and φ2 of the O(3) nonlinear sigma model (3.21).

2. Q-lumps model: these soliton solutions do appear when the nonlinear O(3) sigma model is

modi�ed by adding a potential term of the form α2

4 (1 − φ2
3) with α a positive constant [21].

When the model is constructed in the CP 1 formulation, the Lagrangian density is no longer
(3.25), and takes the form

L =
∂µR∂

µR̄− α2|R|2

(1 + |R|2)2 . (3.33)
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The additional term with respect to (3.25) maintains the global U(1) symmetry, where the
associated non-topological Noether charge Q that comes from Noether's theorem, contributes
to the energy bound as

E ≥ 2π|N |+ |αQ| . (3.34)

In this case, the bound is reached by time-dependent �elds rather than static �elds, that
present the form R(t, z) = e−iαtR0(z), where R0(z) is the based rational map with topological
index N discussed earlier. The internal spin lifts the degeneracy between solitons of di�erent
radii, because the radius is determined by the value of the Noether charge. Consequently, the
conservation of the Noether charge ensures that the size of the Q-lumps do not shrink to zero
or expand to in�nity.

Finally, let's talk about the moduli space of lumps. The moduli space MN of based rational
maps of degree N is a complex manifold of dimension 2N , which may be interpreted as the position,
radius, and phase of each lump. If the general procedure for obtaining the metric were followed,
one would obtain a metric that is not well de�ned in all directions in MN . This is because the
kinetic energy associated with changing some parameters diverges. They are said to have in�nite
inertia. For example, such behaviour occurs in MN=1 when we promote the radius or the phase
to time-dependent variables. The inspection for the case N > 1 suggests that the leading order
coe�cient of the expansion of R(z) at in�nity must be a time-independent variable to guarantee
that the divergence is removed. The resulting (2N − 1)-dimensional submanifold ofMN is Kähler.
This can be seen if the kinetic energy is expressed as

T =

∫
|ṗ(z)q(z)− q̇(z)p(z)|2

(|p(z)|2 + |q(z)|2)2
d2x = u̇α ˙̄uβ

∫
∂

∂uα

∂

∂ūβ
log(|p(z)|2 + |q(z)|2) d2x, (3.35)

where uα with α ∈ (1, N) are the zeros of the polynomial p(z) and uα with α ∈ (N + 1, 2N) are
the zeros of the polynomial q(z). The metric gαβ is identi�ed with

gαβ =
∂

∂uα

∂

∂ūβ
log(|p(z)|2 + |q(z)|) =

∂

∂uα

∂

∂ūβ
K, K = log(|p(z)|2 + |q(z)|2), (3.36)

being K the Kähler potential, which is very relevant since it describes locally the metric, and it is
not always possible to derive it, so the identi�cation of the Kähler potential is of great interest.

3.2.2 Vortices

Field theories with vortices are of two types, global and gauged, so their solutions are called,
respectively, global and gauged vortices. The basic �eld theory with vortices is one having a single
complex scalar �eld φ(x) = φ1(x) + iφ2(x) that possesses a U(1) internal symmetry. In the global
theory we only need the complex scalar �eld, whilst in the gauged theory, the scalar complex �eld
which receives the name of scalar Higgs �eld is coupled to a U(1) gauge �eld aµ = (a0(x),a(x)).
Here we are considering the Abelian-Higgs model

L =
1

2
DµφD

µφ− 1

4
fµνf

µν + U(φφ) , (3.37)

where Dµφ = (∂µ − iaµ)φ is the covariant gauge derivative and fµν = ∂µaν − ∂νaµ is the �eld
strength. From now on, we will focus on the gauged theory, understanding that one can descend to
the global theory by annihilating the gauge terms and exchanging covariant gauge derivatives for
ordinary derivatives. The comments corresponding to the global theory will be mentioned when it
is necessary to clarify any di�erence with respect to the gauge vortices. The potential U is usually
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assumed to be a polynomial of, at most, quadratic or cubic order in φφ. Taking quadratic order
and adjusting the coe�cients so that U has minima and Umin = 0, U is

U =
λ

8
(m2 − φφ)2, m > 0 . (3.38)

Therefore, the vacuum manifold ν is the circle |φ| = m, and π(ν) = Z. The free parameter λ
measures the relative strengths of the attractive scalar force and repulsive magnetic force between
vortices. When λ < 1 the vortices attract each other, whereas when λ > 1 the vortices repel each
other. The λ = 1 case is the so-called critical value where the forces exactly cancel. The resulting
Euler-Lagrange �eld equations are

DµD
µφ− λ

2
(1− φφ)φ =0, (3.39)

∂µf
µν +

i

2
(φDνφ− φDνφ) =0 . (3.40)

If we focus on the static �elds and consider polar coordinates, the potential looks like

V =
1

2

∫ ∞
0

∫ 2π

0

(
1

ρ2
f2
ρθ +DρφDρφ+

1

ρ2
DθφDθφ+

λ

8
(m2 − φφ)2

)
ρ dρ dθ, (3.41)

where Dρ = ∂ρφ − iaρφ, Dθ = ∂θφ − iaθφ and fρθ = ∂ρaθ − ∂θaρ = ρB. For a �eld con�guration
{φ(x), ai(x)} to have �nite energy, the �eld has to satisfy the boundary condition |φ| → m as
|x| → ∞, as well as Dρφ tends to zero as |x| → ∞, as can be seen in (3.41). The �niteness of
the remaining two integrals also implies that Dθφ → 0 and fρθ → 0 as |x| → ∞. Overall, using
the so-called radial gauge in which aρ = 0, along with those conditions, the scalar �eld at in�nity
results in a map

φ∞ : S 1
∞ → S 1 (3.42)

that satis�es φ∞ = meiχ
∞(θ), as well as ∂θχ

∞ = a∞θ . Thus, the winding number associated is the
integer

N =
1

2π

∫ 2π

0
∂θχ

∞(θ) dθ =
1

2π
(χ∞(2π)− χ∞(0)) , (3.43)

that coincides with the �rst Chern number c1 = 1
2

∫
R2 B d2x. Instead, in the global theory it

is necessary that χ∞ be a constant to avoid a logarithmic divergence from the ordinary angular
partial derivative term when it is integrated. Consequently, this fact restricts the �nite energy
con�gurations to belong to the N = 0 topological sector.

All known charge one �nite energy static solutions of the �eld equations with λ 6= 1 have
circular symmetry about some point, as well as re�ection symmetry. The solutions that present
these symmetries are called vortices. Such a circular symmetry is contemplated by the combined
action of SO(2) group with global phase rotations as follows(

R(θ1), R̃(κθ1)
)
·
(
R(θ2), R̃(κθ2)

)
=
(
R(θ1 + θ2), R̃(κ(θ1 + θ2))

)
, (3.44)

where R ∈ SO(2), R̃ ∈ U(1) and κ ∈ N. The fact that φ has to be invariant under these transfor-
mations requires that φ possesses the structure φ(ρ, θ) = eiκθφ(ρ). Additionally, due to re�ection
symmetry φ(ρ, θ) = φ(ρ,−θ) the radial term must be a real function. It seems clear that N = κ. In
relation to gauge �elds, since the phase rotation is global, it has not e�ect on such �elds, so ulti-
mately gauge �elds are just real radial functions where, using the radial gauge, the only component
is aθ(ρ). When these �elds are introduced into the static energy, the resulting reduced expression
leads to two coupled Euler-Lagrange equations, giving solutions that near the origin are of the form
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φ(ρ) = ρNF (ρ2) and aθ(ρ) = ρ2 G(ρ2) with F (ρ2) and G(ρ2) series in ρ2, whilst as ρ → ∞ the
increasing to the vacuum value is exponential and in terms of the modi�ed Bessel functions K0(ρ)
or K1(ρ).

So far we have made a distinction between λ = 1 and all other values. The reason is that this
value is the limit between Type I and Type II superconductivity and at which a BPS structure can
be found. To illustrate it, consider (3.38) with λ = 1. The static energy can be rewritten as

E =
1

2

∫
R2

{(
B ∓ 1

2
(1− φφ̄)

)2

+
(
D1φ∓ iD2φ

)
(D1φ± iD2φ)

}
d2x± πN, (3.45)

after using Stoke's theorem. Therefore, since the integrand is non-negative, we have the inequality

E ≥ π|N | . (3.46)

As usual, the BPS bound saturates if the integrand vanishes, which leads us to the Bogomolny
equations

D1φ± iD2φ =0, (3.47)

B ∓ 1

2
(1− φ̄φ) =0 . (3.48)

At this point, a signi�cant contribution was made by Taubes [22], who managed to summarise the
two Bogomolny equations in a single equation with a rede�nition of φ via h = log|φ|2, obtaining

∇2h+ 1− eh = 4π

N∑
r=1

δ2(x−Xr), (3.49)

whereXr represents the position of the r-th vortex on the real plane. This expression is determined
by assuming the expression of φ in terms of h, i.e., φ = e

1
2
h+iχ, and introducing that into (3.47).

By using the resulting equation, the gauge �eld components can be trivially written as

a1 =
1

2
∂2h+ ∂1χ, a2 = −1

2
∂1h+ ∂2χ. (3.50)

Hence, rewriting B = ∂1a2 − ∂2a1 in terms of the previous identi�cations, (3.48) reads as (3.49).

Finally, let us sketch some details on the moduli space of the vortices at critical coupling. In
the �rst place, Weinberg proved with an index theorem that the moduli space of vortices had
dimension 2N , and later Samols [16] managed to derive an analytic expression for the metric of
such 2N -dimensional moduli space. For that, it is necessary to de�ne a new �eld η = ∂0 log φ and
express the kinetic energy in terms of η and h. A relation between η and the derivative of h with
respect to the poles of h can be attained by an approach where another Taubes-like equation is
derived for η. Expanding h around the zero Zj of the Higgs �eld φ, we get

h = log|z−Zr|2 +ar+
1

2
(br(z−Zr)+br(z−Zr))+cr(z−Zr)2 +dr(z−Zr)(z−Zr)+cr(z−Z

2
r)+ · · ·
(3.51)

and it is easy to see that, in order to obey (3.49), the coe�cient dr has to take the value dr = −1
4 ,

whilst the rest of the terms have no restrictions. Finally, after some complex variable calculus, the
metric on the N -vortex moduli spaceMN turns out to be

T =
1

2
π

N∑
r,s=1

(
δrs + 2

∂bs
∂Zr

)
ŻrŻs ⇒ ds2 = π

N∑
r,s=1

(
δrs + 2

∂bs
∂Zr

)
dZrdZs . (3.52)
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A signi�cant feature is that the metric tensor is Kähler (see Section 2.2). In order to see this, one
can construct the associated 2-form

ω =
i

2

N∑
r,s=1

grsdZr ∧ dZs , (3.53)

for the metric coe�cients of (3.52). After a simple algebraic manipulation using the symmetry
properties of the coe�cients bs in the expansion of the metric, one can prove that dω = 0. We will
use and generalize this derivation through the following sections.

3.3 Solitons in three dimensions: Skyrmions and monopoles

To end this section we will talk about some of the soliton solutions that appear in three dimensions.
Skyrmions do appear in the Skyrme theory [24], which is a topological model of nucleons in which
baryons are considered as solitons and where the baryon number coincides with the topological
charge. In this picture, pions correspond to linearized �uctuations of the pion �eld around the
vacuum, and it is considered as a low-energy Quantum Chromodynamics e�ective theory with many
quark colours. On the other hand, monopoles are hypothetical isolated magnetic poles that have
no yet been experimentally con�rmed. In the �rst place, Dirac established in 1961 a formulation
of a monopole (the so-called Dirac monopole) that had at its origin a singularity, whose existence
would lead to an explanation for the quantization of electric charge. Later, 't Hooft discovered that
non-abelian gauge theories can have magnetic monopole solutions without singularities, and they
may be interpreted as soliton solutions.

3.3.1 Skyrmions

The basic �eld of this model is the Skyrme �eld U(x, t), which is de�ned as an unitary SU(2)-valued
scalar in (3+1) dimensions, which can be written in terms of the following scalar �eld quartet [24]

U = σ + iπ · τ , (3.54)

where π denotes the triplet of Pauli matrices, τ alludes to the triplet of pion �elds, and σ is an
additional �eld. The unitarity of the Skyrme �eld imposes the following restriction

σ2 + π · π = I , (3.55)

which allows to determine the �eld σ. The model is de�ned through the following Lagrangian

L =

∫ {
F 2
π

16
Tr
(
∂µU∂

µU †
)

+
1

32e2
Tr
([
∂µUU

†, ∂νUU
†
] [
∂µUU †, ∂νUU †

])}
d3x . (3.56)

Here, �[ , ]� represents the commutator. The quartic term is crucial since it allows stable soliton
solutions by invoking Derrick's argument, and because it is the only quartic term that allows Lorentz
invariance as well as a Hamiltonian formulation with a positive Hamiltonian. Any other choice of
the quartic term excludes either Lorentz invariance or a well-de�ned Hamiltonian formulation. The
parameters Fπ (pion decay constant) and e (dimensionless constant) can be scaled away using other
units of length and energy, and introducing the current Rµ = (∂µU)U † ∈ su(2), the Lagrangian
�nally reads as [3]

L =

∫ {
−1

2
Tr (RµR

µ) +
1

16
Tr ([Rµ, Rν ] [Rµ, Rν ])

}
d3x . (3.57)

18



One can realize that the pions are massless by introducing (3.54) into (3.57). Consequently, they are
the Goldstone bosons of the spontaneously broken chiral symmetry. If (3.57) was supplemented by
a symmetry-breaking potential term of the form m2

∫
Tr(U − I)d3x, then the pions would acquire

a mass m. The Euler-Lagrange equation associated to (3.57) is

∂µ

(
Rµ +

1

4
[Rν , [Rν , R

µ]]

)
= 0, (3.58)

that takes the form of a chiral conservation law. For that reason, Rµ is called right-handed chiral
current. The Skyrme �eld U is postulated to satisfy the boundary condition U(x)→ I as |x| → ∞.
That spontaneously breaks the chiral symmetry (SU(2)× SU(2))/Z2

∼= SO(4) to a SO(3) isospin
symmetry. Furthermore, the boundary condition implies an one-point compacti�cation of R3 to S3.
Since the manifold of SU(2) is S3, then U∞ is a map between 3-spheres, and therefore the maps
fall into homotopy classes indexed by an integer π3(S3) = Z, which is denoted by B and identi�ed
with the baryon number. As it coincides with the degree of the map U , we conclude that

B = − 1

24π2

∫
εijkTr(RiRjRk)d

3x . (3.59)

The static energy functional of the Skyrme model looks like

E =

∫ {
−1

2
Tr(RiRi)−

1

16
Tr([Ri, Rj ] [Ri, Rj ])

}
. (3.60)

From (3.59) and (3.60) one deduces the following Bogomolny lower bound

E ≥ 12π2|B| . (3.61)

Nevertheless, the compatibility condition ∂µ∂νU = ∂ν∂µU yields the Maurer-Cartan structure
equations [12]

∂µRν − ∂νRµ + [Rµ, Rν ] = 0, (3.62)

and the energy bound is only saturated in case Ri satis�es the equation

Ri =
1

2
εijkRjRk , (3.63)

which is not compatible with (3.62). More geometrically, the reason for the incompatibility is that
to satisfy the bound, U would have to be an isometry. Since R3 is �at and S3 is curved, then an
isometry between the two spaces cannot exist. Hence, the bound is only reached if we consider the
vacuum state. Nonetheless, the bound can be attained by non-trivial solutions if the spatial domain
is taken to be the 3-sphere of unit radius for U to be a isometry.

No analytical solutions of (3.58) are known, so the �eld con�gurations are obtained by numerical
methods where the energy is minimized. When B = 1, the minimizer of the energy takes the form
of a spherically symmetric Skyrmion called hedgehog solution

U(x) = exp(if(r)x̂ · τ ), (3.64)

being π = sin f(r)x̂ and σ = cos f(r). To ensure the correct baryon number, the boundary condi-
tions f(0) = π and f(∞) are imposed. Solving the corresponding second order ordinary di�erential
equation using a shooting method, the energy associated to this con�guration is E = 12π2 · 1.232
[12], a value that certainly exceeds the Bogomolny bound. Nevertheless, this ansatz does not repre-
sent the minimal energy Skyrmions when |B| > 1. Conversely, Skyrmions that minimize the energy
for B > 1 have other type of symmetries like B = 2 D∞h symmetry, B = 3 Td symmetry, B = 4
Oh symmetry, B = 5 D2h symmetry or B = 6 D4d symmetry, for example. This can be veri�ed
if the surfaces of constant baryon density are plotted. Interestingly, there is an hypothesis saying
that the structures for higher charge Skyrmions (B ≥ 7) are fullerene-like [25].
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3.3.2 Monopoles

Let us start by introducing the SU(2) Yang-Mills-Higgs theory with the SU(2) gauge potential Aµ
and the adjoint Higgs �eld Φ, both valued in the Lie Algebra su(2), where

DµΦ = ∂µΦ + [Aµ,Φ] and Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (3.65)

are the covariant derivative and the Yang-Mills �eld tensor respectively. The choice of the basis is
the following {ta = iτa : a = 1, 2, 3}.

We will consider here a theory with a Lorentz invariant Lagrangian density of the form

L =
1

8
Tr(FµνF

µν)− 1

4
Tr(DµΦDµΦ)− λ

4
(1− |Φ|2)2 where |Φ|2 = −1

2
Tr(Φ2) , (3.66)

which spontaneously symmetry breaking to U(1). The boundary condition is Φ(0, 0, x3) → t3 as
x3 →∞ here. The �eld equations derived from (3.66) are

DµD
µΦ = λ(1− |Φ|2)Φ , DµF

µν = [DνΦ,Φ] . (3.67)

The static solution representing a magnetic monopole was found independently by 't Hooft and
Polyakov using the following ansatz with spherical and re�ection symmetry

Φ = h(r)
xa

r
ta , Ai = −1

2
(1− k(r))εija

xj

r
ta . (3.68)

Hence, equations (3.67) reduce to

d2h

dr2
+

2

r

dh

dr
=

2

r2
k2h− λ(1− h2)h ,

d2k

dr2
=

1

r2
(k2 − 1)k + 4h2k , (3.69)

having to be solved numerically. Prasad and Sommer�eld obtained an analytic solution for the case
λ = 0 [10], being the solution

h(r) = coth 2r − 1

2r
, k(r) =

2r

sinh 2r
, (3.70)

and 2π the associated energy.

A deeper understanding of this characteristic limit was due to Bogomolny [9]. He observed that
the energy of a static �eld

E = −1

4

∫
(Tr(BiBi) + Tr(DiΦDiΦ)) d3x (3.71)

can be rewritten as

E = −1

4

∫
R3

Tr(Bi +DiΦ)(Bi +DiΦ) d3x−
∫
S2∞

bi dS
i , (3.72)

with bi = −1
2Tr(BiΦ) and Bi = −1

2εijkFjk. Since the last integral is quantized as 2πN [3], then

E ≥ 2πN , (3.73)

where the condition to saturate the bound is

Bi = −DiΦ . (3.74)
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Therefore, the monopole solution obtained by Prasad and Sommer�eld must saturate the bound
to have the 2π predicted energy, hence possessing unity monopole number.

The moduli space approximation for monopoles is extremely involved, so here we will just
mention that the moduli spaceMN is a 4N -dimensional hyper Kähler manifold with the following
decomposition

MN ' R3 ×
S1 × M̃0

N

ZN
. (3.75)

In this metric, R3 parametrizes the centre of mass coordinate X, S1 parametrizes the total phase

χ, and M̃0
N is the space of the strongly centred monopoles.

4 Brief introduction to supersymmetry

It is well-known that supersymmetic theories may have BPS sectors. If, at the same time, the model
can host topological solitons, they become BPS solitons. This connection suggests that a natural
strategy for building models with BPS solitons is to search for the corresponding supersymmetric
versions, and then constrain the theory to its bosonic sector. In the following sections we will
systematically use supersymmetry as a guiding principle to build BPS models. Below, we brie�y
discuss the basic ingredients necessary to build supersymmetry using the superspace.

The Coleman-Mandula theorem [26] states that any symmetry group of a quantum �eld theory
has to be locally isomorphic to the direct product of an internal symmetry group and the Poincaré
group when the commutator is the bilinear operation in the Lie algebra. That constraints the
symmetries of the scattering matrix. Nonetheless, as in every no-go theorem, it is always possible
to relax some condition to evade the theorem, in this case, for example, considering a graded Lie
algebra whose generators obey commutation and anticommutation relations. For this purpose let's
proceed as follows:

Let us introduce a left-handed Weyl spinor generator Qα together with its right-handed Hermi-
tian conjugate Qα̇. They will be called supercharges. From now on, the symbol α will represent the
index of an object that transforms in the spinor representation, whereas α̇ will denote the index of
an object that transforms in the conjugated spinor representation. The new graded algebra main-
tains the same commutation relations that existed for the Poincaré algebra, but adds the following
ones

[Mµν , Qα] = (σµν)α
βQβ, {Qα, Qβ} = 0,[

Mµν , Q
α̇
]

= (σµν)α̇ β̇Q
β̇
,

{
Qα̇, Qβ̇

}
= 0,{

Qα, Qα̇
}

= 2σµ αα̇Pµ, [Pµ, Qα] = 0. (4.1)

Here �[ , ]� denotes a commutator and �{ , }� an anticommutator. The Haag-Lopuszanski-Sohnius
theorem [27] shows that the unique graded Lie algebra of symmetries consistent with quantum �eld
theory is the one de�ned above. This is known as N = 1 supersymmetric algebra. It is plausible to
extend the algebra by introducing more supercharges in what is known as extended supersymmetry,
but we will focus our explanation on the N = 1 supersymmetry. The interpretation of the commu-
tators and anticommutators is simple: the zero anticommutators state that the supercharges are
anticommuting objects, whereas the commutators withMµν show that Qα and Qα̇ are spinors, and
a consequence of this is that although the irreducible representations of the supersymmetric algebra
are labelled by the mass, because PµP

µ is still a Casimir, WµW
µ with Wµ the Pauli-Lubanski vec-

tor is not, what induces that in a supersymmetric multiplet the particles do not have the same spin.
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Since Qα is a spinor, it is invariant under translations, which explains the null commutator with
Pµ. Finally, the most intriguing anticommutation relation is

{
Qα, Qα̇

}
= 2σµ αα̇Pµ. As a result,

in supersymmetry all states have positive energy, so the ground state is the one with zero energy.
It is well known, thanks to E. Witten and D. Olive [28], that when a supersymmetric theory has
topological charge, this supersymmetric algebra is not complete, and therefore it is necessary to
introduce the topological charge as a central charge.

In special relativity, Lorentz invariance manifests itself in Minkowski space. Similarly, super-

symmetry manifests itself in the named superspace, where the coordinates are xµ, θα and θ
α̇
, with

xµ the coordinates of Minkowski space and where θα and θ
α̇
are Grassman-valued spinors. We can

de�ne the superspace as

Superspace = G/H =
Super-Poincaré group

Lorentz group
.

Under a transformation of the form exp(iaµP
µ), the Minkowski coordinates translate as we could

expect, i.e., xµ → xµ + aµ. The striking transformation occurs when we consider the action due

to exp(iεαQα + iεα̇Q
α̇
), that in addition to shift the Grassmann coordinates as θ → θ + ε and

θ → θ + ε, produces a shift in xµ as xµ → xµ + iθσµε− iεσµθ due to the anticommutator between
Qα and Qα̇. In such superspace, one can de�ne a super�eld as Y = Y (x, θ, θ). Taylor expanding
the super�eld in θ and θ, we obtain a truncated expansion due to the anticommutation of the
Grassmann variables [29]:

Y (x, θ, θ) = φ(x) + θαψα(x) + θα̇χ
α̇(x) + θ2M(x) + θ

2
N(x)

+ θαθ
α̇
Vαα̇(x) + θ2θα̇θ

α̇
(x) + θ

2
θαρα(x) + θ2θ

2
D(x) . (4.2)

In the above expression appear: four complex scalars �elds φ,M,N and D, two left-handed spinors
ψα and ρα, two right-handed spinors χ̄α and λ̄α, and a vector Vαα̇ = σµαα̇Vµ. By analyzing how
the super�eld transforms under a supersymmetry transformation, we can deduce how each �eld
component of the super�eld transforms. We especially emphasise the role played by the higher
order term in the Grassmann variables, i.e., the term with the complex scalar �eld D(x). The
reason is the following: suppose we want to construct an action that is manifestly invariant under
supersymmetry transformations. Now consider that such action is a function of super�elds that
we will denote by K(x, θ, θ). The function K(x, θ, θ) will itself be a super�eld. Integrated over the
whole superspace, the action reads as

S =

∫
d4x d2θ d2θ K(x, θ, θ) , (4.3)

with K(x, θ, θ) a real super�eld to ensure that the action is also real. The integration in the
Grassmann variables is achieved through the Berezin integral [29], which acts as a derivative.
Expanding K(x, θ, θ) as in (4.2), only the higher order term in the Grassmann variables remains,
and since it transforms as a total derivative under supersymmetric transformations, the action is
invariant if the �eld drops su�ciently fast to zero. Therefore, any action given by (4.3) is then
invariant by construction.

There are four types of super�elds depending on the restriction imposed to them: if Dα̇Φ = 0,
with Dα̇ = −∂α̇−iθασµ αα̇∂µ the anticovariant derivative, then Φ is the chiral super�eld; if DαΨ = 0

with Dα̇ = ∂α + iσµ αα̇θ
α̇
∂µ the covariant derivative, then Ψ is the antichiral super�eld; if V = V †,

then V is the vector super�eld; and if J = J† and D2J = D2
J = 0, then J is the linear super�eld.

The most important are the �rst three because the particles of the chiral multiplet (matter particle
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and its bosonic superpartner) are embedded in the chiral super�eld, and the particles of the vector
multiplet (gauge particle and its fermionic superpartner, called gaugino) are embedded in the vector
super�eld.

The chiral super�eld in components looks like [29]

Φ(x, θ, θ̄) =φ(x) +
√

2θψ(x) + θ2F (x) + iθσµθ̄∂µφ(x)

− i√
2
θ2∂µψ(x)σµθ̄ − 1

4
θ2θ̄2∂µ∂

µφ(x) , (4.4)

where φ and F are complex scalar �elds and ψα is a left-handed spinor. The antichiral super�eld is
its complex conjugate. The simplest example of supersymmetric action involving a chiral super�eld
is the Wess-Zumino model [30], that was the �rst example of interacting four-dimensional quantum
�eld theory with supersymmetry. This action reads as

SWZ =

∫
d4xdθ2dθ̄2 ΦΦ† +

∫
dx4

(∫
d2θ W (Φ) +

∫
d2θ̄ W †(Φ†)

)
=

∫
dx4

(
∂µφ̄∂

µφ− iψ̄σ̄µ∂µψ + FF̄ +

[
F
∂W (φ)

∂φ
− 1

2

∂2W (φ)

∂φ2
ψψ + h.c

])
. (4.5)

Note that F has no kinetic term, revealing that F is a non-dynamic �eld. Its purpose is to ensure
that the action is invariant under supersymmetry for all �eld con�gurations, even when the con�g-
uration does not obey the equations of motion. Hence, its presence is required to match the number
of o�-shell bosonic degrees of freedom with the number of fermionic o�-shell degrees of freedom. F
is usually called auxiliary �eld. Introducing the equations of motion for F and F̄ , the Wess-Zumino
action (4.5) reads as

SWZ =

∫
d4x

(
∂µφ̄∂

µφ− iψ̄σ̄µ∂µψ −
∣∣∣∣∂W∂φ

∣∣∣∣2 − 1

2

∂2W (φ)

∂φ2
ψψ +

1

2

∂2W̄ (φ̄)

∂φ̄2
ψ̄ ψ̄

)
. (4.6)

The chiral super�eld W (Φ) is known as superpotential and usually is de�ned a potential V (φ, φ̄)

depending on the complex scalar �elds by V (φ, φ̄) =

∣∣∣∣∂W (φ)

∂φ

∣∣∣∣2, what explains the terminology used

earlier in (3.10). Here a term of the form ΦΦ† was used in the action, but more general constructions
could have been used. Such a choice is a particular form of the Kähler potential K(Φ,Φ†), which is
de�ned to be any real super�eld that is a function of the chiral and antichiral super�elds.

On the other hand, the real super�eld in components reads as [29]

V (x, θ, θ̄) = C(x) + θχ(x) + θ̄χ̄+ iθ2M(x)− iθ̄2M(x) + θσµAµ(x)

+ θ2θ̄

(
λ̄(x) +

i

2
σ̄µ∂µχ(x)

)
+ θ̄2θ

(
λ(x) +

i

2
σµ∂µχ̄(x)

)
+

1

2
θ2θ̄2

(
D(x)− 1

2
∂µ∂

µC(x)

)
, (4.7)

where C and D are two real scalars �elds, M is a complex scalar �eld, χα and λα are left-handed
spinors, and Aµ is a real vector �eld. As Aµ is a gauge vector �eld, it must enjoy a gauge transfor-
mation, which is accomplished when the real superpotential transforms as the following generalised
gauge transformation

V −→ V + i(Ω− Ω†) , (4.8)

with Ω a chiral super�eld. A simple choice is the one where C = M = χα = 0, which is called
Wess-Zumino gauge. If one performs a supersymmetry transformation, the resulting action will not
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respect the Wess-Zumino gauge, so a compensation transformation is needed as a result. This is
achieved if the supersymmetry transformations adds a strength �eld Fµν . Later, in Section 5.2,
we will discuss the U(1) supersymmetric gauge theory and see how to build the corresponding
supersymmetric gauge action.

The vector super�eld can be used to build supersymmetric invariant Yang-Mills actions. To
construct the corresponding �eld strength one needs also the following chiral super�eld

Wα = −1

4
Dβ̇Dβ̇DαV , (4.9)

known as �eld strength super�eld. Taking into account the chirality of Wα, is it easy to show that
the following action is supersymmetric invariant

SYM =
1

4

∫
d4xd2θ (WαWα + h.c.) . (4.10)

After integration in half of the Grassmann space, one gets

SYM =

∫
d4x

(
−1

4
FµνF

µν − iψσµ∂µψ̄ +
1

2
D2

)
. (4.11)

The auxiliary �eld D can be eliminated form the action. The remaining terms are the U(1) Yang-
Mills term and a Dirac fermion. Later, we will use these techniques to build more exotic supersym-
metric models.

5 Generalizations of the Abelian-Higgs model and their moduli

space

In the previous sections we have provided the main tools necessary for the study of topological
solitons, and in particular, for the study of BPS solitons. From now on, we will focus on the study
of a particular soliton, the local vortex. The canonical model that admits vortex type solutions
was introduced in Section 3.2, through the Abelian-Higgs model. However, this model admits
variations that, without altering the fundamental characteristics of the solutions, give rise to new
dynamics. Several modi�cations of the Abelian-Higgs model have been studied already in the
literature. For example, the possibility of �nding a BPS structure in these models has been analysed
using supersymmetric criteria [34]. The vortex dynamics in the moduli space approximation for
di�erent generalised models [31, 32] has been examined, as well as the possibility of �nding analytic
solutions of the Bogomolny equations [35]. The aim of this section is to follow this line of research,
proposing and studying other generalizations of the standard Abelian-Higgs model and obtaining
the associated metric of the corresponding moduli space, in order to acquire information about the
dynamics of the vortices in these models through the geodesic motion on the moduli space.

5.1 Abelian-Higgs model with a modi�ed Maxwell term

In [31] the authors propose a modi�cation of the Abelian-Higgs model of the form

L = −1

4
G(|φ|)FµνFµν +

1

2
DµφD

µφ− U(|φ|), (5.1)

with both G(|φ|) and U(|φ|) positive de�nite. Here, U(|φ|) is a potential, and G(|φ|) is interpreted
as a dielectric term. If one wants to preserve the BPS bound and the Bogomolny equations, not all
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combinations of G(|φ|) and U(|φ|) are possible. It can be shown that, for the following combination
of both functions,

U(|φ|) =
λκ2

8e2G(|φ|)
(|φ|2 − υ2)2 , (5.2)

the BPS structure is preserved. We denote �υ� as the vacuum value. It can be shown also that a
Bogomolny type bound is saturated [31] by the solutions of the �rst order equations

D1φ± iD2φ = 0, eF12 = ± e2υ2

2G(|φ|)

(
|φ|2

υ2
− 1

)
. (5.3)

They found that only in the special case of considering the standard Abelian-Higgs model, it is
possible to reduce the kinetic energy to a contour integral, where no analytical knowledge of the
vortices beyond the center of each vortex is therefore needed. This can be veri�ed from the following
expression

T =
1

2

∫
R2\{Cr}

d2x

{
− 1

2e
∂k

[
2Gχ̇ȧk + εjkGḣȧj

]
+

ḣ

2e

[
ȧjεjk∂kG− ĠF12

]}
, (5.4)

arguing by Stokes' theorem. In the above expression, the notation from Section 3.2.2 has been used,
and Cr denotes a small disk around the zero Zr. Furthermore, the authors proved that the model
(5.1) possesses a kinetic energy whose associated metric onMN is simply Kähler when the model
reduces to the standard Abelian-Higgs. We will see that further generalizations of the model do
not spoil the Kähler structure.

5.2 Abelian-Higgs model with a modi�ed Higgs term

Motivated by the previous section, we aim to discuss a new modi�cation of the Abelian-Higgs model
that takes the form

L = −1

4
FµνF

µν +
1

2
G(φ, φ)DµφD

µφ− V (φ, φ) . (5.5)

Note that the modi�ed Higgs part has the structure of a gauge invariant nonlinear sigma model
(see Section 3.2.1). As we have mentioned for the case (5.1), a general choice of G and V does
not provide a BPS model, but requires a precise combination to achieve it. To show the speci�c
relationship, let us proceed by SUSY considerations using the super�eld formulation.

In the literature it is well known that the kinetic term of φ can be obtained from the U(1)
invariant Kähler potential

Lφ =

∫
d2θd2θ K(Φ†e2V Φ) , (5.6)

where Φ (resp. Φ†) is a chiral (resp. antichiral) super�eld, whereas V is a vector super�eld. After
integrating in Grassmann coordinates, one gets in components

Lφ = G(φ, φ)(DµφD
µφ+ FF ) +

D

2

(
φ
∂K

∂φ
+ h.c

)
+ fermions , (5.7)

where F and D the non-dynamical auxiliary �elds and K is the Kähler potential when θ = 0. In
addition, one obtains the identi�cation

G(φ, φ) = ∂2
φ,φ
K . (5.8)
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The Maxwell term is also standard and can be generated in the super�eld formulation through

LM =
1

4

(∫
d2θWαWα + h.c

)
, (5.9)

with Wα the �eld strength super�eld. After integrating, we get

LM = −1

4
FµνF

µν +
1

2
D2 + fermions . (5.10)

To allow for non-trivial solitonic solutions, we need a spontaneous symmetry breaking, which will
be encoded by the so-called Fayet-Iliopoulos term

LFI = −ξ
∫
d2θd2θ V = −ξ

2
D . (5.11)

Adding the three terms we derive the total Lagrangian. After removing the auxiliary �elds F and
D we get

L = −1

4
FµνF

µν +G(φ, φ)DµφD
µφ− 1

2

(
ξ

2
− 1

2
φ
∂K

∂φ
− h.c

)2

, (5.12)

where

V = −1

8

(
ξ − φ∂K

∂φ
− h.c

)2

, (5.13)

Note that with the choice K = 1
2φφ, ξ = 1 the standard Abelian-Higgs model is recovered. We

de�ne W (|φ|) = φ
∂K

∂φ
+ φ

∂K

∂φ
. The BPS equations of this model are then (for the choice ξ = 1)

D1φ+ iD2φ = 0, B − 1

2
(1−W (|φ|)) = 0. (5.14)

Now we adapt Samol's calculation to the present situation. After de�ning h = log|φ|2, and using
(5.14), the new Taubes' equation is

∇2h+ 1−W (eh) = 4π

N∑
r=1

δ2(x−Xr) . (5.15)

The Gauss' law is modi�ed according to

∂i∂0ai + iG(eh)(φ∂0φ− φ∂0φ) = 0, (5.16)

and the kinetic energy in terms of h and η = ∂0 log φ as

T =
1

2

∫
d2x(4∂zη∂zη + 2ehG(eh)ηη) . (5.17)

If we de�ne φ = e
1
2
h+iχ, we obtain the following equation from the modi�ed Gauss' law

(∇2 − 2ehG(eh))∂0χ = 0, (5.18)

whereas from the Taubes equation we get

(∇2 − ehW (eh))∂0h = 0 . (5.19)
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Thus
(∇2 − 2ehG(eh))∂0η = 0, (5.20)

since W ′(eh) = 2G(eh). Near a zero Zr of φ, one can still write [22] φ as

φ = (z − Zr)ek . (5.21)

Following Samols approach [16], no further modi�cations are necessary, so the kinetic energy and
the element of line result in

T =
π

2

N∑
r,s=1

(
δrs + 2

∂bs
∂Zr

)
ŻrŻs =⇒ ds2 = π

N∑
r,s=1

(
δrs + 2

∂bs
∂Zr

)
dŻrdŻs , (5.22)

that are formally identical to (3.52). The metric in the moduli space is therefore

grs̄ = π

(
δrs + 2

∂bs
∂Zr

)
. (5.23)

It is easy to prove that the 2-form associated to this metric is closed and, as a consequence, the
metric in the moduli space is Kähler.

It is important to realize that, although the expression is formally the same as in the standard
case, the coe�cients bs are not the same because the Higgs �eld does not satisfy the same BPS
equations. Let us clarify this point. All the information about the metric is encoded in the bs
coe�cients, which in turn are the linear terms in the expansion of h as we showed in (3.51). Now,
a BPS solution of (5.14), say (φ, ai), will in general di�er from a standard vortex solution. This
implies that the dependence of bs in the moduli space coordinate Zr will be di�erent from the
standard case. As a consequence, although the moduli space metric is formally identical to the
Abelian-Higgs vortex, one should expect a di�erent geodesic structure and therefore a di�erent
dynamics.

On the other hand, it is noteworthy that contrary to what happens in the generalized model with
dielectric term [31], here any choice of K produces a Kähler structure in the moduli space. Actually,
this is quite natural, since any real functionK (Kähler potential) gives a Kähler metric in the target
space manifold. This means, in particular, that the generalized model (5.12) inherits all the features
of the standard moduli associated to the Kähler structure, namely, that the bs coe�cients do not
change under a rigid translation of the positions of the vortices. As a consequence, the metric
remains invariant. This allows for a splitting of the metric in terms of the center of mass of the
vortices and the relative distances, which reduces e�ectively the degrees of freedom of the moduli.
For details see [16]. The explicit computation of the geodesics for a 2-vortex con�guration as well
as the comparison with full numerical simulations is left for future work as a natural continuation
of this Master's thesis.

5.3 Abelian-Higgs model with magnetic impurity

To deform the Lagrangian density (3.37) including magnetic impurities (so referred since it couples
to the magnetic �eld) while preserving half of the BPS structure, the authors in [33] suggested the
following model

L =

∫ (
−1

4
FµνF

µν +
1

2
DµφD

µφ− 1

8
(1 + σm − |φ|2)2 +

1

2
σmB

)
d2x , (5.24)
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where σ is a static background �eld with �nite L2 norm. In this case, the Bogomolny equations
look like

D1φ+ iD2φ = 0, B − 1

2
(1 + σm − |φ|2) = 0, (5.25)

whose solutions saturate the energy bound E ≥ πN . It is straightforward to derive the new Taubes
equation, which reads as follows

∇2h+ 1 + σm − eh = 4π
N∑
r=1

δ2(z − Zr) . (5.26)

For the vacuum state and for the N = 1 vortex, the Taubes equation is numerically solved by
an over-relaxing method in [32], where it is argued that a localized impurity also has a localized
response. Following the standard derivation by Samols, the kinetic energy and thus the metric of
the moduli space are [32]

T =
π

2

N∑
r,s=1

(
δrs(1 + σm) + 2

∂bs
∂Zr

)
ŻrŻs → ds2 = π

N∑
r,s=1

(
δrs(1 + σm) + 2

∂bs
∂Zr

)
dŻrdŻs , (5.27)

where the impurity is present even in the case of just a single vortex, revealing that the impurity
always has e�ect on the dynamics of the vortices. The new contribution arises from the coe�cient
dr of the expansion of the function h(z, z) at a zero of φ, resulting in dr = −1

4(1 + σm) .

An interesting localized impurity limit arises when the impurity approaches a delta function,
i.e., an impurity of the form −4παδ(z) with α ∈ N. In that case, (5.26) looks like the impurity-free
Taubes equation of N +α vortices where α of them are placed at the origin. Therefore, the metric
of the moduli space of N vortices in the presence of α delta function impurities is expected to be
the submanifold of the moduli space of N +α vortices in the case where α vortices are constrained
to lie at z = 0. This was proved numerically [32] with great agreement for the case of a 1-vortex
with an impurity that is led to be a delta source.

5.4 Abelian-Higgs model with Higgs impurity

It is possible to add another partially BPS preserving impurity in the Abelian-Higgs model although
this time, contrary to the case [32], the impurity is coupled to the Higgs �eld, and thus refers to it
as Higgs impurity. The half BPS preserving model proposed in [34] with a Higgs impurity is

L =

∫
d2x

(
−1

4
FµνF

µν +
1

2
DµφD

µφ− 1

8
(1− |φ|2)2

)
+ LHiggs , (5.28)

being

LHiggs = −
∫

1

2
(σhσhφφ+ σhφDzφ+ σhφDzφ)d2x , (5.29)

where σh is complex-valued and transforms trivially as σh → σh under a gauge transformation.
The BPS structure of this model can be traced back to the fact that the impurity term (5.29)
is invariant under a supersymmetric transformation [34]. On the other hand, this type of linear
coupling in derivatives between the �eld and the impurity can be a bit exotic. However, it is very
similar to the well-known Dzyaloshinskii−Moriya interaction that stabilizes magnetic Skyrmions in
two dimensions. In fact, there is a relationship between the solutions of this type of models with
impurities and the critical magnetic Skyrmions [34]. The Bogomolny equations are of the form

D1φ+ iD2φ+ σhφ = 0, B − 1

2
(1− |φ|2) = 0, (5.30)
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and the solutions of this equations also saturate the bound E ≥ πN .

Through the Bogomolny equations (5.30), we derived the following new Taubes' equation

∇2h+ 1− eh + 2(∂1σ1 + ∂2σ2) = 4π
N∑
r=1

δ2(z − Zr) , (5.31)

with σ1 and σ2 the real and imaginary part of σh respectively. Such a expression is obtained as in
(3.49), where in this occasion, we �nd that the gauge �eld components (3.50) look like

a1 =
1

2
∂2h+ ∂1χ+ σ2 , a2 = −1

2
∂1h+ ∂2χ− σ1 . (5.32)

Since σh is time-independent, the steps to derive the metric on the moduli space of this model
are similar to that ones followed by Samols. Remember that a constraint is imposed only on the
coe�cient dr of the expansion (3.51) of h(z, z) around a zero Zr of the Higgs �eld φ, in order to
satisfy the Taubes equation (3.49). For the model (5.28), we obtain that the coe�cient dr is

dr = −1

4
− 2(∂1σ1 + ∂2σ2) . (5.33)

Consequently, we derive that the kinetic energy and the metric associated are

T =
π

2

N∑
r,s=1

(
δrs(1 + 2(∂1σ1 + ∂2σ2)) + 2

∂bs
∂Zr

)
ŻrŻs , (5.34)

ds2 = π

N∑
r,s=1

(
δrs(1 + 2(∂1σ1 + ∂2σ2)) + 2

∂bs
∂Zr

)
dŻrdŻs . (5.35)

Again, even in the case of just a single vortex, the dynamics is modi�ed by the presence of the
(Higgs) impurity. Of course, this is expected since the impurity is nothing but a background �eld
interacting with the vortex which breaks the translational invariance. This implies, in particular,
that the vortex does not preserve its shape through the moduli space even in the N = 1 con�gu-
ration. Let us assume that the impurity is exponentially localized near the origin, then one should
expect an asymptotically trivial metric (i.e. a constant metric). Note that far from the impurity
the BPS equations (5.30) reduce to the standard ones. As the vortex approaches the origin the
e�ect of the impurity cannot be neglected and the change of shape in the vortex translates into
accelerations or decelerations. As a consequence, the geodesics associated to the 1-vortex dynamics
are not straight lines anymore and therefore the metric is non-trivial. However, it is important
to remember that the impurity does not interact statically with the vortex, as the model is BPS.
Hence, this repulsion/attraction e�ect only takes place dynamically.

A detailed analysis of the geodesic of this manifold it is still necessary, but due to the similarities
of (5.30) with the BPS equations of the magnetic impurity model (5.25), one should expect similar
results to those presented in [32]. This work will be done later on, using numerical simulations.

5.5 Magnetic and Higgs impurities in the AH model

Let's suppose that we have both types of impurities. The Lagrangian density for that situation is

L =

∫ (
−1

4
FµνF

µν +
1

2
DµφD

µφ− 1

8
(1 + σm − |φ|2)2 +

1

2
σmB

)
d2x+ LHiggs . (5.36)
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The model (5.36) is still SUSY invariant and preserves the BPS structure [34]. The Bomomolny
equations read as

D1φ+ iD2φ+ σhφ = 0, B − 1

2
(1 + σm − |φ|2) = 0, (5.37)

which is just a combination of the Bogomolny equations derive for each impurity case. Through
these Bogomolny equations, we derive the following Taubes' equation

∇2h+ 1− eh + 2(∂1σ1 + ∂2σ2) + σm = 4π
N∑
r=1

δ2(z − Zr) . (5.38)

As usual, adapting the Samols calculation to the present situation, we conclude that

dr = −1

4
(1 + σm)− 1

2
(∂1σ1 + ∂2σ2) , (5.39)

and thereby,

T =
π

2

N∑
r,s=1

(
δrs(1 + σm + 2(∂1σ1 + ∂2σ2)) + 2

∂bs
∂Zr

)
ŻrŻs , (5.40)

ds2 = π
N∑

r,s=1

(
δrs(1 + σm + 2(∂1σ1 + ∂2σ2)) + 2

∂bs
∂Zr

)
dŻrdŻs . (5.41)

The �rst aspect that is noteworthy is that for σm + 2(∂1σ1 + ∂2σ2) = 0 the structure of (5.41)
reduces formally to the standard metric (3.52). This suggests a sort of cancelation between the
Higgs and magnetic impurities with respect to the metric structure in such a way that the general
properties of the standard moduli space remain (since the metric has the same structure). However,
the geodesics of the moduli are not the same, as the dependence of bs in Zr still gets modi�ed by
the presence of impurities. A numerical study of the moduli is left for a future work.

6 Moduli space approximation with internal degrees of freedom

In this section we intend to study the moduli space dynamics for the 1-vortex including not only
translational degrees of freedom (the standard moduli space discussed so far) but also internal
degrees of freedom, which allows the vortex to change its shape. Once the shape of the 1-vortex
has been modi�ed, the new con�guration is not BPS, so it does not obey the Taubes' equation and
the Samols approach is not applicable as in the procedures performed in Section 5. In Section 6.1
we show a �rst example of collective coordinates method with internal degrees of freedom in the
case of the φ4 model, to familiarize ourselves with the notion of internal structure, its obtaining,
and the coupling it can have with the translational degrees of freedom. Then, in Section 6.2, we
suggest a perturbation of the BPS solution in terms of a single shape mode, which will allow us to
identify the unperturbed terms with the metric derived by Samols and the rest of the contributions
with the in�uence of the change of shape.

6.1 Collective coordinates method for the φ4: A toy example

In Section 3.1 we had the opportunity to study the φ4 model, where the Lagrangian there exposed
takes the simple form

L =

∫ (
1

2
∂µφ∂

µφ− 1

2
(1− φ2)2

)
dx (6.1)
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for a given rescaling of the time, space and of the �eld in terms of the parameters λ and m from
(3.12). The standard degree of freedom is the position of the kink, due to the translational invariance
of the theory. For that reason, let's consider the φ4 kink solution and promote the position of the
kink to a time-dependent variable X0 → X(t)

φk(x, t) = tanh(x−X(t)) . (6.2)

In this case, the e�ective Lagrangian that appears by introducing (6.2) into (6.1) is simply

Leff = −4

3
+

2

3
X ′(t)2 , (6.3)

so the associated Euler-Lagrange equation is X ′′(t) = 0, whose solution is a motion at constant
velocity X(t) = x0 + vt. Obviously, this solution is not relativistic because it does not include the
Lorentz contraction, so the lower the velocity, the better this description will be. However, the
following could still be done instead of (6.2): let us propose the so-called Derrick mode ansatz

φk(x, t) = tanh

(
x−X(t)

a(t)

)
, (6.4)

where a new degree of freedom has been inserted which can be interpreted as the size of the kink.
Introducing this new ansatz back into (6.1), the e�ective Lagrangian obtained is

Leff = − 2

3a(t)
− 2a(t)

3
− a′(t)2

3a(t)
+
π2a′(t)2

18a(t)
+

2X ′(t)2

3a(t)
. (6.5)

If one calculates the Euler-Lagrange equations associated to these two degrees of freedom, it is
trivial to con�rm that a possible combination is

X(t) = X0 + vt, a(t) =
√

1− v2 , (6.6)

that is, a Lorentz boosted kink that contains the desired Lorentz contraction, so this simple model
can describe relativistic solutions. One could say that this is a expected possible solution because
of the Lorentz invariance of the Lagrangian (6.1). Notably, however, the ansatz (6.4) also contains
the non-trivial solution

X = X0 , a(t) = 1 + ε cos

(√
12

π2 − 6
t

)
, (6.7)

which describe a stilled kink with its size oscillating slightly (with a small amplitude ε) with respect
to its characteristic size.

Alternatively, let us consider this other ansatz

tanh(x−X(t)) + a(t)ηs(x−X(t)), ηs(x−X(t)) =
3

2

tanh(x−X(t))

cosh(x−X(t))
, (6.8)

where ηs denotes the so-called shape mode of the kink. The spectral structure of the kink is formed
by this shape mode, a zero mode, and a continuum of scattering states. Such a spectral structure
comes from the Schrödinger-like eigenvalue problem of the linearised equations of motion of the
φ4 model. Then, the combination (6.8) is an exact solution of the linearised equations of motion if
a(t) is very small with respect to the scale of the kink mass. This time, the ansatz is given by the
perturbed kink solution through the shape mode with amplitude a(t). Introducing (6.8) into (6.1),
one obtains

Leff = −4

3
− 9a(t)2

4
+

3

4
a′(t)2 +

2

3
X(t)′2 +

3

8
πa(t)X ′(t)2 +

21

20
a(t)2X ′(t)2 . (6.9)
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In case that the kink was stilled, the Euler-Lagrange equations for a(t), at leading order, would
give the equation of an harmonic oscillator with a frequency

√
3, value that is not very away

from the frequency of (6.7). The main di�erence is then that the ansatz (6.8) contains the exact
spectral structure whereas the ansatz (6.4) does not, although on the contrary it allows for Lorentz
contraction. When the terms beyond quadratic order are considered, there is a coupling between the
two dynamical parameters, so the energy is exchanged between the translational and the internal
mode. This produces an involved dynamics in which the kink, instead of following a motion at
constant speed, alternates time intervals in which it accelerates with time intervals in which it
decelerates (see Figure 6.1). Sometimes this motion is called wobbling motion.

Figure 6.1: The blue curve is the position of the kink with the Derrick mode ansatz
(X0 = 0, X ′

0 = 0.2, a0 = 0.8, a′0 = 0), and the red curve is the position of the kink
with the shape mode ansatz (X0 = 0, X ′

0 = 0.2, a0 = 0.1, a′0 = 0).

The comparison of the two ansatze reveals the degree of agreement between them, having a
good degree of approximation. The di�erence starts to increase as time increases. The reason for
this is that the oscillation frequency is not the same for the shape mode as it is for Derrick mode.
Therefore, since energy is exchanged between the translational and the oscillatory mode, the phase
di�erence between the ansatze leads to an advance from one solution to the other, speci�cally, from
Derrick mode to the shape mode.

6.2 Vortex dynamics with internal degrees of freedom

Now that we are familiarized with the inclusion of internal degrees of freedom in the collective
coordinates method for the φ4 kink, let us apply the same approach to the vortex. The treatment is
more cumbersome this time because now we do not have only a single scalar �eld, but also a gauge
�eld. Therefore, we need two time-dependent parameters A(t) and Bi(t) to introduce the e�ect of
the internal degrees of freedom. This would allow us to study the vortex in situations where it is
excited. Some qualitative results can be expected to coincide with those reported in Section 6.1.
For example, an exchange of energy between the translational and internal degrees of freedom is
expected to occur, appearing a wobbling motion, i.e., a motion where the vortex accelerates and
decelerates and where the energy goes back and forth between the kinetic energy and the internal
energy.
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We proceed by a perturbation approach, assuming the following ansatz

φ(x−X(t)) = φBPS(x−X(t)) +A(t)η(x−X(t)), (6.10)

ai(x−X(t)) = aBPSi (x−X(t)) +Bi(t)ξi(x−X(t)), (6.11)

which consist of a perturbation of the BPS solution by the internal modes η(z−Z(t)) and ξi(z−Z(t))
through, respectively, a small amplitude A(t) and Bi(t) with respect to the vortex mass. The reason
for A(t) and B(t) to be small is that, in such a case, the ansatze (6.10) and (6.11) are exact solutions
of the linearised equations of motion. Therefore, at su�ciently small amplitudes, the ansatz is very
close to satisfy the Bogomolny equations. This means that, if such a mode is excited, it will not
decay rapidly and will have an important in�uence on the vortex dynamics. Vortices, as opposed to
kinks, have several internal modes, not just one. As a �rst approximation, we will consider that only
a particular internal degree of freedom has been excited. Assuming for a moment that X(t) = X0

the second order perturbed action reads

S = S0(φBPS , aBPSi ) +
1

2

∫
d2xdt Ω†DΩ , (6.12)

where D is the second order matrix perturbation operator and Ω denotes collectively the per-
turbations on the BPS solution (for the explicit computation of D see for example [36]). Since
by construction (η(x), η∗(x), ξi(x)) are internal modes of the vortex they solve the second order
eigenvalue equation

M

 η(x)
η∗(x)
ξi(x)

 = ω2

 η(x)
η∗(x)
ξi(x)

 , (6.13)

whereM is the spatial part of the operator D, i.e.,

D =

−1
2∂

2
t 0 0

0 −1
2∂

2
t 0

0 0 −δij∂2
t

−M . (6.14)

Now, let us assume that Ω = (η(x)A(t), η∗(x)A∗(t), ξi(x)Bi(t)), then the second order perturbed
action reads simply

S = S0(φBPS , aBPSi ) +
1

2

(
Ȧ(t)Ȧ∗(t) + Ḃi(t)Ḃi(t)− ω2 (A(t)A∗(t) +Bi(t)Bi(t))

)
, (6.15)

where we have used the normalization condition for the internal modes∫
d2x η(x)η∗(x) = 1,

∫
d2x ξi(x)ξi(x) = 1. (6.16)

Let us assume now that X depends on time. Then, the zero-th order action splits into kinetic and
potential part

S0 = T − V . (6.17)

The kinetic part is just what we got in Section 3.2.2, and in the 1-vortex case is simply

T =
π

2
˙̄ZŻ, (6.18)

i.e. the vortex moves at constant velocity. Since we are considering a BPS con�guration, the po-
tential V is approximately the energy of the vortex E1. Finally, at second order in Z, A and Bi we
have

S = −E1 +
π

2
˙̄ZŻ +

1

2

(
Ȧ(t)Ȧ∗(t) + Ḃi(t)Ḃi(t)− ω2 (A(t)A∗(t) +Bi(t)Bi(t))

)
+O(3), (6.19)
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At this order, we note that translational and internal degrees of freedom are not coupled and, as a
consequence, the interpretation of the e�ective action (6.19) is simple: the vortex simply translates,
information that is encoded in the variable Z, at constant velocity, and with its excited internal
modes, represented by η and ξi, oscillating at constant frequency ω

Z(t) = Z(0) + vt, A(t) = A(0) cos(ωt), Bi(t) = B
(0)
i cos(ωt). (6.20)

The coupling between internal and translation degrees of freedom appears beyond quadratic order.
This allows for an interchange of energy between them. The time dependence on X, generates
in the second order perturbed action, higher order couplings between X(t), the translational de-
grees of freedom and (A(t), Bi(t)), the internal ones. The perturbation has now the following form
Ω = (η(x−X(t))A(t), η∗(x−X(t))A∗(t), ξi(x−X(t))Bi(t)). By inserting this ansatz in the second
order action and integrating by parts in the time derivative we get �nally

S3,4 =
1

4
C4

1
˙̄ZŻ|A|2 +

1

4
C4

2 Ż
2|A|2 − i

2
C3

1 ȦŻĀ−
i

2
C3

2
˙̄AŻA+ c.c.

+
1

4
D4

1,i
˙̄ZŻB2

i +
1

4
D4

2,iŻ
2B2

i − iD3
1,iḂiŻBi + c.c. (6.21)

The coe�cients that appear in S3,4 are given by

C4
1 =

∫
d2x (∂xη∂xη̄ + ∂yη∂yη̄) ,

C4
2 =

∫
d2x (∂xη̄ − i∂yη̄) (∂xη − i∂yη) ,

C3
1 =

∫
d2x (∂yη̄ + i∂xη̄) η,

C3
2 =

∫
d2x (∂yη + i∂xη) η̄,

D4
1,i =

∫
d2x (∂xξi∂xξi + ∂yξi∂yξi) ,

D4
2,i =

∫
d2x (∂yξi + i∂xξi) (∂yξi + i∂xξi) ,

D3
1,i =

∫
d2x (∂yξi + i∂xξi) ξi.

These numerical coe�cients depend on the chosen internal mode. We do not intend here to make
a detailed analysis of the problem, but, even without the knowledge of the internal modes, it is
possible to extract some information from the action (6.21). The �rst obvious consequence we may
read directly form (6.21) is that the Kähler structure of the moduli space has been broken by the
coupling to the internal modes, as one can see from the Z2 and Z̄2 terms in the quartic action.
Secondly, if we assume that there is no back-reaction of the internal modes on the translation mode,
the action (6.21) simply couples the coordinate Z (Z̄) to periodic functions of frequency ω (the
frequency of the internal mode considered). This translates into a sort of �wavy� trajectories of the
vortex, similar to what we found in the kink case. Finally, the most interesting situation requires
con�gurations of N -vortices, each of which could have an internal mode excited. A detailed analysis
of such con�guration is an ambitious program that requires a numerical analysis of the internal
modes as well as the geodesics. These results may provide new relevant insights in the study of
vortex scattering.
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7 Conclusions

In the present work, we have systematically studied di�erent generalizations of the standard
Abelian-Higgs model (3.37). In the literature, previous attempts has been analysed. For example,
in [31], the authors inspected the case in which a �eld dependent factor couples to the Maxwell
term (5.1). Inspired by this type of modi�cation of a particular term of the Lagrangian density,
we have explored the possibility of constructing a modi�cation of the Abelian-Higgs model where
a �eld dependent factor appears coupled, but to the Higgs term (5.5). For this, we have used the
super�eld formalism, and we have tried to derive a supersymmetric formulation where the bosonic
sector of the theory coincides with the modi�ed Abelian-Higgs model under study. In [31], the
authors found that when the Maxwell term is generalized by introducing a �eld dependent factor,
the metric on the moduli space associated to that model is only Kähler for the trivial choice of
the pre-factor (5.4), i.e., the pure Abelian-Higgs model (3.37). However, the model that we have
proposed admits, for whatever Kähler potential that we assume, a metric on the moduli space that
is always Kähler (5.22). This is true by construction, due to the form in which is integrated over
the superspace, that induces sigma model terms where the metric on the target space manifold
is Kähler by de�nition. Moreover, the explicit expression is formally the same as in the standard
case (3.52). However, we have noted that the geodesic motion is not the same, since the Higgs
�eld satis�es other Bogomolny equations (5.14), and therefore, the bs coe�cients are not the same
either. We conclude that, as the metric is Kähler, the properties derived from the Abelian-Higgs
model regarding the Kähler structure, also hold in our case. As we have mentioned, such properties
result in great simpli�cations on the computation of the moduli space metric.

We have also investigated the case in which the model is modi�ed by the inclusion of impurities,
which breaks the translational symmetry of the theory. In [33], the authors proposed a model with a
localised impurity that is coupled to the magnetic �eld (magnetic impurity), and that is a half-BPS
preserving soliton-impurity model (5.24). Such a model was studied by [32], and the authors found
that the metric on the moduli space changes non-trivially even for a single vortex (5.27). Another
possibility of half-BPS preserving soliton-impurity model was conceived in [34], where now, the
impurity is coupled to the Higgs �eld (Higgs impurity). Taking the model proposed in [34] as a
basis, we have attempted to extract dynamics information for that model (5.28). Our calculations
suggest that the metric on the moduli space (5.35) for that model, is also modi�ed in a non-trivial
way even for a single vortex once more. In addition, we expect that the presence of the impurity
changes the shape of the vortex, resulting in a repulsion/attraction e�ect when the vortex moves.
At this point, we faced the case in which magnetic and Higgs impurities do appear (5.36) as a more
general scenario. We noted something that in principal is not obvious. It is very striking that the
metric that we found, i.e. (5.41), enjoys a sort of combination between both types of impurities that
simpli�es the metric structure, in such a way that the general properties of the standard moduli
space remains, when actually these impurities are introduced via completely di�erent couplings.
Furthermore, the geodesics are altered due to the modi�ed dependence of bs with the zeros Zr of
the scalar �eld, as a consequence of the presence of impurities. There are many directions in which
one may continue this work, and a comparison of all these results with full numeric simulations is
left for the future.

So far, in all the previous models, only the translational degrees of freedom have been taken into
account. This fact has motivated us to generalize the standard moduli space for a single vortex, by
including internal degrees of freedom through a perturbation approach of the BPS con�guration
with one of the possible shape modes that the vortex possesses (6.10)-(6.11). We have found the time
evolution of the translational degree of freedom Z(t), as well as that of the perturbation amplitudes
A(t) and Bi(t), at second order in perturbation theory. We have noted that, at quadratic order in
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Z, A and Bi, the translational and internal modes are not coupled, so the vortex moves in straight
line at constant speed with the internal modes excited (6.20). It turns out that the couplings appear
when terms beyond quadratic order are considered (6.21). As we had expected, some qualitative
characteristics are the same as in the kink example. For example, the wobbling motion due to the
energy exchange between the translational mode and the internal modes is obtained. We hope to
derive a generalization of this approach to an arbitrary number of vortices in forthcoming work,
where each vortex could have a di�erent internal mode excited. These results may provide new
relevant insights in the study of vortex scattering.

Last but not least, we emphasise the relevance of all the conclusions derived from this work,
since we have extracted general properties of the dynamics for these generalised models, and such
properties may be important to analyse the vortex-scattering processes. Moreover, the conclusions
have been derived without the use of full numerical simulations, which sometimes do not provide
enough information to describe certain behaviours, and that might be extremely computationally
expensive in many cases.
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