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A B S T R A C T   

Study Region: Licungo basin (Mozambique) 
Study Focus: The Licungo basin (23,263 km2) suffers frequent severe flooding due to tropical 
storms, in a country that is among the world’s most vulnerable in terms of exposure to weather- 
related hazards and climate change. We propose a methodology for the estimation of the popu-
lation exposed to flooding at the catchment scale in data-scarce regions, combining satellite 
imagery with integrated high-resolution hydrological-hydraulic modelling. All the input data 
needed are retrieved from freely-available global satellite products. The numerical model is also 
freeware. The methodology is therefore replicable worldwide. An estimate of the flood extent and 
exposed population during Tropical Storm Ana (January 2022) is presented as a case study. 
New Hydrological Insights for the Region: Current freely-available satellite products in combination 
with high-resolution hydrological-hydraulic models can be used to estimate the population 
exposed to flooding in the whole catchment. This estimate is more realistic than the one obtained 
using satellite imagery alone, since satellite images are very rarely taken at the time of maximum 
flooding. Using the proposed methodology, we estimate that over 273,000 people (out of 1.5 
million) were exposed to flooding in the Licungo basin during Tropical Storm Ana. This represents 
18% of the basin population and is 8 times larger than the estimate obtained using only the 
available satellite images.   

1. Introduction 

Vulnerability to river floods has increased throughout whole world in recent decades, but most intensively in developing countries 
(Cao et al., 2022; Douglas et al., 2008; Di Baldassarre et al., 2010; Rentschler et al., 2022; Tate et al., 2021; Tramblay et al., 2014; Wing 
et al., 2018). Moreover, a number of studies indicate that flood risk is expected to increase further in coming decades due to climate 
change, urbanization of river floodplains and changes in land use at the catchment scale (Areu-Rangel et al., 2019; Arnell and Gosling, 
2016; Hirabayashi et al., 2013; Jenkins et al., 2017; Jongman et al., 2012; Liu et al., 2018). In this global context, African countries are 
especially exposed to flood damage due to the social and economic vulnerability of their communities and to the extreme magnitude of 
the flood events in large rivers and basins (Revilla-Romero et al., 2014). One example here is Mozambique, which occupies the 8th 
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position in a ranking of 178 countries in the Ecological Threat Report Index, a composite risk index based on 5 indicators (rapid 
population growth, water risk, food risk, temperature anomalies and natural disasters) that together measure the impact of ecological 
threats that countries will face between now and 2050 (Institute for Economics and Peace, 2021). According to the Ecological Threat 
Report, the population of Mozambique is expected to double over the next 30 years (from 32.2 million in 2021 to 65.3 million in 2050). 
A significant proportion of the population lives close to the river network, this in order to have access to surface water resources and to 
fertile lands, since subsistence farming constitutes the food base for many rural communities. As a consequence of all this, in 2020 the 
country had a prevalence of food insecurity of 71 % (10th highest in the world) and a prevalence of undernourishment of 31 % (13th 
highest in the world) (Institute for Economics and Peace, 2021). 

For these reasons, in recent years several developing countries, including Mozambique, have made significant efforts to put Disaster 
Risk Reduction policies in place, including the evaluation of flood risk and the establishment of flood mitigation measures. This has 
been supported by funds from the European Commission and EU Member States, the U.S. Agency for International Development, the 
World Bank, and various NGOs. One example of this is the intervention in the Licungo basin (Mozambique) carried out by the Hu-
manitarian Implementation Plan in 2018, which was supported by the Directorate-General for European Civil Protection and Hu-
manitarian Operations (ECHO), the main objective being the strengthening of local preparedness and response capacities by linking 
early warning to early action. To this end, the identification of flood-prone areas, population exposed to flood risk, main infrastructures 
affected by floods, and safe evacuation routes all contribute significantly to the development and improvement of disaster management 
plans by the local and regional authorities. Such information also contributes to the implementation of flood early warning systems 
(EWS), a type of flood mitigation measure that has been implemented in recent years in many developed and underdeveloped 
countries, both on the local level (Fraga et al., 2020; González-Cao et al., 2019; Cools et al., 2012; Krajewski et al., 2017) and at a 
national or transnational scale (Alfieri et al., 2013; Weerts et al., 2011; Wu et al., 2014; Thielen et al., 2009). 

The evaluation of flood hazard in large basins is usually done by coupling a hydrological model that computes the water discharge 
along the river network of the whole catchment with a 2D hydrodynamic model that transforms water discharge into water depths, 
velocities and flood extent at the river reach scale (Bermúdez et al., 2017; Komi et al., 2017; Nogherotto et al., 2019). The use of 
lumped hydrological models in data-scarce regions is very constrained, due to the high dependency of such models on the availability 
of observed data for the calibration of parameters (Merz et al., 2011). On the other hand, physically-based distributed models are, to a 
certain degree, less dependent on the calibration of input parameters, and can therefore be useful tools to estimate flood hazard in 
regions where hydrometric data are scarce (Cornelissen et al., 2013). Nonetheless, they require large amounts of spatially distributed 
data to define the catchment topography, land uses and soil types. Regarding the evaluation of water depths and velocities at the river 
reach scale, the most commonly used models today are those based on the2D fully dynamic shallow water Eq. (2D-SWE) due to the 
capacity of these to reproduce complex local flow patterns, although alternatives are available, including different simplifications of 
the 2D-SWE, as well as 1D-2D coupled models. An alternative to the coupled hydrologic/hydrodynamic modelling approach is to 
perform an integrated hydrological/hydrodynamic simulation at the catchment scale. Until recently this was prohibitive because of the 
computational cost of modelling such a large domain with a hydrodynamic model, but advances in High Performance Computing 
(HPC) and the development of new numerical schemes for solving the 2D-SWE at the catchment scale including rainfall and infiltration 
processes, opens up the possibility of modelling rainfall-runoff transformation and river hydraulics within a single integrated simu-
lation over an entire catchment (Cea and Blade, 2015; García-Feal et al., 2018; Khaing et al., 2019; Xia et al., 2019). A review of flood 
hazard modelling approaches can be found in Cea and Costabile (2022) and Teng et al. (2017). 

However, one of the main handicaps in the improvement of flood management in developing countries, and particularly in Africa, 
is the scarcity of quality hydrological and meteorological data, which precludes a robust and accurate calibration of hydrological and 
hydraulic flood hazard models (Komi et al., 2017; Sampson et al., 2015; Sanyal et al., 2014; Tramblay et al., 2014). On the other hand, 
over the last decade a large number of satellite remote sensing data related to water resources has been made available by international 
institutions and agencies, such as the National Aeronautics and Space Administration (NASA,) the European Space Agency (ESA) and 
the Japan Aerospace Exploration Agency (JAXA). These data include digital terrain models (DTM), quantitative precipitation esti-
mations (QPE), land uses, soil types, soil moisture and surface water extent, among others. The spatial and temporal resolution of these 
data products is not as detailed and accurate as data from national observation networks in developed countries, but they are of great 
value in conducting flood hazard studies in developing countries or at a transnational scale (Dottori et al., 2016; Kugler and De Groeve, 
2007; Kundu et al., 2015; Pappenberger et al., 2010; Sakamoto et al., 2007; Sampson et al., 2015; Winsemius et al., 2013; Yamazaki 
et al., 2011). 

In addition to the characterisation of flood hazard, flood risk management plans require information on vulnerability and popu-
lation exposure to floods. To date, those variables have received far less attention than flood hazard (Smith et al., 2019), even though 
they provide information that is essential as a means of establishing emergency plans and of estimating economic and social losses. 
Detailed maps of the spatial distribution of population (Calka et al., 2017; Winsemius et al., 2013) and transport infrastructures are of 
great value in evaluating the real exposure of a population to floods and the safest routes of evacuation in case of flooding (Watik and 
Jaelani, 2019). For this purpose, several population data sets are currently available (Calka et al., 2017; Smith et al., 2019). 

The main purpose of the present study is to propose a methodology for the estimation of the population exposed to river flooding at 
the catchment scale in data-scarce regions, combining satellite imagery with an integrated high-resolution hydrological-hydraulic 
modelling approach based on the model Iber (Bladé et al., 2014; García-Feal et al., 2018). All the input data needed to apply the 
proposed methodology is retrieved from remote sensing open data sources at the global scale. The estimate of the flood extent and 
population affected by the inundation caused by the recent Tropical Storm Ana (January 2022) in the Licungo basin (Mozambique, 23, 
263 km2) is presented as a case study. Over a 24-hour period this Tropical Storm left a basin-averaged rainfall depth of 200 mm, 
reaching values of 350 mm at certain locations. The Licungo basin suffers flooding almost every year as a consequence of tropical 
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storms and cyclones, this in a country with one of the highest exposures to weather-related hazards (flooding, cyclones and drought) 
and climate change in the world. According to the International Disaster Database (CRED, 2022), floods and storms represent, 
respectively, 35.6 % and 23.7 % of the 118 natural disasters that have affected Mozambique over the last 56 years (1967–2022). The 
death toll associated with these closely related events in that period exceeds 100,000 people, while the total population affected was 
over 40 million, with economic losses estimated as 5.6 billion USD, representing 56.2 % of the total losses due to natural hazards in 
Mozambique. Whereas the present study focusses on the Licungo basin, the methodology proposed can be applied worldwide, since all 
the data and software required are freely available on the world wide web, and is therefore of especial interest in data-scarce regions 
and developing countries. 

The following sections of the paper are organized thus. Section 2 presents a description of the Licungo basin and the main facts 
relating to Tropical Storm Ana. The methodology, open data sources and numerical model used in this study, plus their relation to 
other available data packages and models, is described in Section 3. In Section 4 we present and discuss the results related to flood 
extent and population affected by Tropical Storm Ana. Finally, Section 5 summarizes the main conclusions, including the advantages 
and limitations of the study. 

2. Case study 

Mozambique is a country with a high exposure to natural hazards and climate variability (World Bank, 2019a,b), and is a paradigm 
of Southeast Africa vulnerability to floods. Over 60% of its population is concentrated on the coastline, which is located on the path of 
tropical cyclones (TC) and tropical storms (TS) that form in, or pass through, the western part of the Indian Ocean (WMO, 2019). The 
country’s exposure and vulnerability to floods is exacerbated by its relatively flat topography and scarce vegetation cover. 

On average, one TS or TC hits the coast of Mozambique every two years between the months of October and April. However, the 
frequency of these tropical events has increased in recent years due to higher ocean temperatures brought about by climate change. In 
the first months of 2022 Mozambique was affected by two TS and one TC: TS Ana (GDACS, 2022a; OCHA, 2022a), TS Dumako (OCHA, 
2022b) and TC Gombe (GDACS, 2022b; OCHA, 2022c). These three events had an impact on extensive areas of Central and North 
Mozambique. The regions of Zambezia and Nampula were affected by all three of them within a period of approximately two months. 
As a consequence, and according to the estimates of the National Institute for Disaster Management of Mozambique (INGD), over one 
million people were affected, around 10,000 people were displaced, and more than 100 people died. The floods affected over 200,000 
ha, with serious damages to crop production and food security. According to the latest data released by the INGD, these three storms 
also destroyed 153,611 houses, damaged 95 health centres, 46 water supply systems, 2902 power poles, 4436 km of roads and 781 
schools (impacting a total of 353,485 students). 

The Licungo basin is located in northern Mozambique and has an area of approximately 23,263 km2 (Fig. 1). The axis of the basin 

Fig. 1. Location map of the Licungo catchment within Mozambique (left). Administrative Posts within the Licungo basin and location of the three 
reaches (Reach 1, 2 and 3) used for the analysis of results at the reach scale (right). 
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follows an NW - SE orientation and is 343 km long. The average altitude is 474 m above mean sea level, with the highest altitude at 
2348 m. The average slope of the basin hills is 10.6 %, which can be described as Moderately Sloping. Approximately 58% of the basin 
has a Flat to Undulating topography, with slopes ranging from 0 % to 8 %. The Mozambique National Water Resources Plan identifies 
the Licungo as one of the 11 basins in the country most exposed to flood damage. Over the last 52 years, the Licungo basin has 
experienced catastrophic floods in the following years: 1970, 1984, 1995, 1998, 2014, 2015, 2019 and 2022. Among these, the most 
severe in terms of material, economic and human life damages occurred in 2015, and was associated with the tropical cyclone events 
Chedza and Bansi (DRRT, 2015). Recently, during the first trimester of 2022 and barely one month apart, the aforementioned TS Ana, 
TS Dumako and TC Gombe caused severe flooding and extensive damage in the basin. 

According to the Köppen Geiger climate classification, the Licungo is located in a Tropical Savanna area. The average annual 
precipitation over the basin in the period 1981–2010, as estimated using the CHIRPS (Climate Hazards Centre InfraRed Precipitation 
with Station data) pentadal data set (Funk et. al, 2015) was 1518 mm, although there are regions in the centre and northeast of the 
basin in which the annual precipitation exceeds 2000 mm. The rainy season extends from October to March, in which about 80 % of 
total annual precipitation is typically experienced. 

The basin is divided into 9 administrative Districts, these subdivided into a total of 22 Administrative Posts (AP), as shown in Fig. 1. 
The main population settlements are the cities of Mocuba, located at the confluence of the Licungo and Lugela rivers in the central part 
of the basin, and Gurué , in the northeast of the basin. The communities most vulnerable to flooding are those located in the middle and 
lower part of the basin (AP of Mocuba, Mugeba, Munhamade, Macuze, Namacurra and Nante). 

In this study we focused on the evaluation of the effects of TS Ana in terms of population exposed to flooding within the Licungo 
basin. TS Ana took place between 24/01/2022 and 27/01/2022, leaving a basin-averaged rainfall depth of 200 mm in the first 24 h, 
and maximum rainfall depths of 350 mm at certain locations in the basin. According to the report issued on 14/02/2022 by the United 
Nations Office for the Coordination of Humanitarian Affairs (OCHA), TS Ana affected 185,429 people, leading to 38 deaths and injuries 
to a further 207 people, and destroyed 11,757 houses across the whole of Mozambique (OCHA, 2022a). The final numbers were 
probably even greater, given that this evaluation of damages was carried out just two weeks after the storm. 

3. Data and methodology 

3.1. Open data sources 

The different satellite data sets used in this study are listed in Table 1, which also includes the URL where each data set can be 
accessed freely. The spatial resolution varies from 10 m to 10 km, depending on the data set. The following sections describe the most 
pertinent features of each data set for hydrological modelling purposes, as well as the relations to alternative satellite data sources. 

3.1.1. Digital elevation model 
Having a Digital Elevation Model with the highest available spatial resolution and vertical accuracy is probably the most important 

requirement for a successful flood simulation. This is especially true for data-scarce regions, where the availability of topographic data 
are limited to satellite remote sensors (Álvarez et al., 2017). Currently, there are several Global Digital Elevation Models (GDEM) that 
were obtained after processing data from satellite missions carried out by international space agencies. Some of the GDEM commonly 
used in hydrological studies are those issued by the Shuttle Radar Topography Mission (SRTM) from the US Geological Survey (Farr 
et al., 2007), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) from NASA (Tadono et al., 2014), the 
Advanced Land Observing Satellite (ALOS) from JAXA (Abrams, 2000), and the TanDEM-X data set from the German Aerospace 
Agency and Airbus (Rizzoli et al., 2017). 

The SRTM data were obtained during a single 11-day mission in 2000, and is the basis for several GDEM that have been processed 
by different algorithms (e.g. void and sink filling, removal of outliers, smoothing of elevation, or merging with other satellite data, 
among others) in order to reduce vertical errors and to facilitate the application of the data to hydrological studies. Some SRTM-based 
GDEM commonly used in hydrological studies are SRTM v3, the one provided by the CGIAR Consortium for Spatial Information 
(CGIAR-CSI), the Bare Earth DEM (O’Loughlin et al., 2016), the Multi-Error-Removed-Improved-Terrain (MERIT) (Yamazaki et al., 
2017), and the recently released NASADEM, which was obtained after reprocessing the entire original SRTM raw data set with 
improved processing algorithms, and is expected to be NASA’s finest resolution (1 arc-sec, roughly 30 m) freely-available GDEM 
product for the foreseeable future. The SRTM data are also used in the HydroSHEDS package (Hydrological data and maps based on 
SHuttle Elevation Derivatives at multiple Scales), that includes global digital data layers as catchment boundaries, river networks, and 

Table 1 
Data sets and sources used in the numerical model.  

Variable Data set Resolution Source 

DEM Copernicus GLO-30 30 m https://panda.copernicus.eu/web/cds-catalogue 
Rainfall GPM IMERG Final Precipitation L3 10 km, 30 min https://disc.gsfc.nasa.gov 
Land Cover GlobCover 20 m http://due.esrin.esa.int/page_globcover.php 
Infiltration GCN250 250 m https://doi.org/10.6084/m9.figshare.7756202.v1 
Flood extent Sentinel-1A 10 m https://scihub.copernicus.eu/dhus/#/home 
Population WorldPop 90 m https://hub.worldpop.org/geodata/summary?id= 6404  
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lakes at multiple resolutions and scales (Lehner et al., 2008). Most of these DEM products (CGIAR, Bare Earth, MERIT, HydroSHEDS 
v1) are provided at 3 arc-sec resolutions (roughly 90 m), while only two (NASADEM and SRTM v3) at 1 arc-sec (roughly 30 m). 

The TanDEM-X mission is far more recent than SRTM (the data were obtained between 2011 and 2015) and consists of two twin 
satellites (TanDEM-X and TerraSAR-X) that orbit the earth in close formation (Krieger et al., 2013; Zink et al., 2021). The main 
practical improvements over SRTM is that the TanDEM-X mission covers the entire Earth (also the highest latitudes, above 60o N and 
below 60o S) with a higher vertical accuracy (lower than 2 m) and a horizontal resolution of 12 m (although data with this resolution is 
not freely available). The original version of the TanDEM-X DEM is a non-edited product, which leads to local errors that typically 
appear on ridges and canyons (Marešová et al., 2021). Airbus Defence and Space released an edited commercial version of TanDEM-X 
with a spatial resolution of 12 m, known as WorldDEM™, which significantly improves the vertical accuracy of other available GDEMs 
(Bayburt et al., 2017), and which was used by the European Space Agency (ESA) to generate three Copernicus DEMs: EEA-10 (0.4 
arc-sec), GLO-30 (1 arc-sec), and GLO-90 (3 arc-sec), the first of these covering only European states. TanDEM-X data are also being 
used to produce the next version of the HydroSHEDS package. 

Recent studies indicate that Copernicus GLO-30 is the DEM with the best overall performance that is freely available. Guth and 
Geoffroy (2021) assessed the performance of Copernicus GLO-30 in eight regions representing a variety of reliefs, and concluded that it 
provides the best representation of the terrain when compared to other commonly used 1 arc-sec DEMs (ALOS, ASTER, NASADEM, and 
SRTM v3). Maresova et al. (2021) compared the performance of several GDEMs in three European mountain ranges (Alps, Pyrenees 
and Carpathians), showing that Copernicus GLO-30 gives a more accurate representation of the terrain than TanDEM-X, SRTM v3, and 
NASADEM. Garrote (2022) analysed the suitability for hydraulic modelling of eight freely-available GDEMs in a river reach of the 
Licungo basin and, in line with the previous studies, concluded that Copernicus GLO-30 is clearly the best option for hydraulic 
modelling in this region. Although we didn’t perform a detailed comparison of all the previous GDEMs for modelling purposes in the 
Licungo basin, we did compare the topography and water depths obtained with SRTM v3 and Copernicus GLO-30, concluding that 
GLO-30 clearly outperforms SRTM v3 in this case, with a far more precise and less noisy definition of the main channel and floodplains 
(Fig. 2). 

Considering the previous studies, and especially the comparative DEM analysis presented by Garrote (2022) applied to flood 
modelling in a reach of the Licungo river, we used Copernicus GLO-30 to represent the topography of the whole Licungo catchment 
(Fig. 2) in the integrated hydrological-hydraulic modelling performed with Iber. 

3.1.2. Rainfall 
A correct characterization of the spatial and temporal variability of rainfall is of utmost importance for the estimation of flood 

hazard. The spatial and temporal resolution of the rainfall input in hydrological models must be in accordance with the catchment 
characteristics that determine its characteristic response time during a storm event (land cover, size, slopes, drainage network and 

Fig. 2. Topography of the whole Licungo basin obtained from Copernicus GLO-30 DEM (left), and comparison of the topography and water depths 
in the confluence of the Licungo and Lugela rivers, obtained from SRTM v3 and Copernicus GLO-30 (right). 
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shape). In small catchments of a few km2, a time resolution of 10–15 min and a spatial resolution of 1 km is usually needed. For larger 
catchments, over a thousand km2, a time resolution of one hour and a spatial resolution of 10 km are generally sufficient. 

Precipitation gauges still provide the most accurate point estimates of rainfall intensity. However, their practical application is 
limited due to the sparse spatial distribution of gauges over the majority of African countries. On the other hand, satellite rainfall 
estimates, although less accurate than rain gauge data, have an almost global coverage and provide valuable products for hydrological 
simulations in data-scarce regions (Liu et al., 2020). 

In recent years several satellite missions providing satellite rainfall estimates (SRE) have become operational and their products are 
freely available. However, for most of these the temporal resolution is too low for use in flood inundation studies, being oriented 
towards water resources or climate change studies. For the evaluation of extreme floods, the following are worth mentioning: the 
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) (Hsu and Sorooshian, 
2008), the PERSIANN-CCS (Hong et al., 2004; Nguyen et al., 2018), the Global Satellite Mapping of Precipitation (GSMaP) (Kubota 
et al., 2007), the Tropical Rainfall Measuring Mission (TRMM) (Huffman et al., 2007) and the Global Precipitation Measurement 
(GPM) mission (Huffman et al., 2020). 

The TRMM operated from 1997 to 2015, providing rainfall estimates between latitudes 35oN and 35oS with a time resolution of 3 h 
and a spatial resolution of 0.25o (roughly 25 km) that have been used in many flood studies (Curtis et al., 2007; Harris et al., 2007; 
Komi et al., 2017; Li et al., 2009; Tekeli et al., 2016; Yang et al., 2017). The GPM mission is the follow-up to the TRMM that was 
launched in order to continue and improve upon satellite-based rainfall and snowfall observations on a global scale. The Level 3 
Integrated Multi-Satellite Retrievals for GPM (IMERG) product provides precipitation estimates since March 2014 within the 60o N–S 
latitude band, from the combined use of passive microwave (PMW) and infrared (IR) sensors. The GPM-IMERG data set is available in 
the form of near-real-time data divided into three different categories: near-real-time Early Run (ER) with a latency of 4 h; 

Fig. 3. Spatial distribution of rainfall depth in Mozambique (upper-left) and in the Licungo basin (upper-right) during TS Ana (24–27 January 
2022), obtained from the GPM database, and the basin-averaged rainfall depth-duration curve (lower). Source of the background image on the left: 
Google earth V 7.3.4.8642. Imagery date: December 14, 2015. http://www.earth.google.com (Accessed June 26, 2022). 
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near-real-time reprocessed Late Run (LR) with a latency of 14 h; and Final Run (FR) with more precise precipitations estimates but with 
a higher latency of approximately 3–4 months. These products have a spatial resolution of 0.1o (roughly 10 km) and temporal reso-
lutions of 30 min, 3 h, 1 day, 3 days, 7 days and 1 month. A comprehensive review of GPM-IMERG validation studies from 2016 to 
2019 around the globe characterized by various locations, topography, and climatic regions can be found in Pradhan et al. (2022). 

In the present study we used the GPM-IMERG Late Precipitation L3 Half Hourly 0.1o data set. The Licungo basin is covered by 236 
rainfall pixels. The rainfall estimates during the simulation period (from 24/01/2022 at 00:00 until 28/01/2022 at 03:00) were 
retrieved (198 files) and used as the rainfall input for the numerical model. Fig. 3 shows the spatial distribution of rainfall depth in the 
Licungo basin during the simulation period, as well as the basin-averaged rainfall depth-duration curve, which shows that most of the 
rainfall (94 %) fall during the first 24 h. 

3.1.3. Land cover 
Land cover data are needed for flood estimation in order to characterize hydrological processes as flow resistance and evapo-

transpiration. There are several land cover data products available for free. In this study we have used the land cover maps developed 
by the European Space Agency (ESA) through the GlobCover project. Those maps were derived from the MERIS sensor observations on 
board the ENVISAT satellite mission during 2005–2006 and 2009, and they are provided globally at a resolution of 300 m. However, 
for this study we have used a prototype land cover product that was released only for Africa by the GlobCover project with a spatial 
resolution of 20 m, based on Sentinel-2A observations from December 2015 to December 2016 (Fig. 4). According to this land cover 
map, 47% of the basin is covered by trees, while cropland and grassland are the other two predominant land uses, covering 30 % and 
20 % of the basin, respectively. These three land uses occupy 97 % of the basin’s surface. 

Two alternative land cover data sources that could also be used for our purposes are the Climate Change Initiative (CCI) Land Cover 
project from the ESA (ESA, 2017), which includes global land cover maps at 300 m spatial resolution on an annual basis since 1992, 
and the Terra and Aqua Combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type, which provides global 
land cover types at yearly intervals (2001–2018) with a spatial resolution of 500 m. 

3.1.4. Infiltration 
Infiltration, together with rainfall, is one of the most important processes in the generation of floods. The infiltration capacity of the 

terrain depends mainly on the soil type, land cover, slope and moisture content. From the many formulations available, the Soil 

Fig. 4. Spatial distribution of land uses obtained from the ESA CCI Land Cover project (left) and CN obtained from GCN250 (Jaafar et al., 2019), in 
the whole Licungo basin. 
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Conservation Service Curve Number (SCS-CN) is among the most widely used for the estimation of infiltration losses in flood studies. It 
characterizes the infiltration capacity of the soil using a single parameter, the curve number (CN), this having been extensively 
tabulated as a function of the hydrological soil group, the land cover and the terrain slope (Mishra and Singh, 2003). Corrections due to 
antecedent soil moisture condition (AMC) can also be considered, but these are difficult to calibrate in the absence of discharge field 
data and might be dependent on the study region. In fact, several studies have pointed out the limitations of the standard corrections 
used to correct the CN as a function of the 5-day antecedent rainfall, and have recognized that, in order to account properly for the AMC 
effect on the SCS-CN method, more sophisticated approaches should be implemented that are difficult to apply when no observed data 
are available (see, for instance, Caletka et al., 2020, Cea and Fraga, 2018, Hope and Schulze, 1982, Huang et al., 2007, Shi and Wang, 
2020, Soulis, 2021). 

The land cover and the terrain slope can easily be derived from any of the GDEMs and land cover maps mentioned in Sections 3.1.1 
and 3.1.2. The hydrological soil groups can be obtained with a resolution of 250 m from the HYSOGs250m global data set (Ross et al., 
2018). The HYSOGs250m data set were derived from soil texture classes and depth to bedrock data provided by the FAO Harmonized 
World Soil Database, in order to support SCS-CN runoff modelling at regional and continental scales, and hence are especially suitable 
for the estimation of the CN. 

In this study we have used the global CN estimation GCN250, presented recently by Jaafar et al. (2019), which is based on the 
hydrological soil groups from the HYSOG250m data set and on the land cover classification of 2015 from the ESA CCI Land Cover 
project. The GCN250 data set has a spatial resolution of 250 m and is provided for average, dry, and wet antecedent soil moisture 
conditions. According to this data set, the CN in the Licungo basin varies between 59 and 98, with a basin-averaged value of 77, a mode 
of 79 and a median of 78. 

3.1.5. Flood extent 
Earth observation data from space can be used to estimate the extent of floods associated with extreme rainfall events in large and 

inaccessible territories, as is the case with floods caused by tropical cyclones in Mozambique. This information can then be used to 
assess economic damages, quantify the exposed population, and define evacuation routes. An observed estimate of the flood extent can 
also be very valuable for the validation of hydrological and hydraulic models in data-scarce regions (Di Baldassarre et al., 2009; 
Domeneghetti et al., 2014; Schumann and Moller, 2015; Sun et al., 2012). 

The ESA satellites Sentinel-1, Sentinel-2 and Sentinel-3 provide images that can be used during the different phases of a flood 
management plan (Kuntla and Manjusree, 2021). Sentinel-1A is equipped with a C-band Advanced Synthetic Aperture Radar with a 
pixel spacing of 10 m, and processed to Level-1 Ground Range Detected with High-resolution (GRDH). One of the biggest advantages of 
using SAR measurements over optical imagery for flood mapping is that SAR is not limited by the presence of clouds, and is able to 

Fig. 5. Coverage of S-1A SAR-C products ID 77E4 and 7A3D over the Licungo basin on 28/01/2022.  
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effectively capture images during rain and other adverse weather conditions, both day and night. In SAR imagery water appears to be 
dark due to the low backscatter from its smooth surface, whereas the surrounding terrain appears bright due to its roughness that 
causes moderate backscatter (Kuntla and Manjusree, 2020). Sentinel-1 imagery is the base of the dashboard UNOSAT S-1 FloodAI 
Monitoring Dashboard, which is managed by the United Nations Satellite Centre (UNOSAT) for the analysis of the flood exposed 
population in several countries of Africa and Asia, including Mozambique (Nemni et al., 2020). 

In the present study the flood extent over the Licungo basin was estimated using the Sentinel Application Platform (SNAP) Toolkit 
developed by ESA for processing SAR-C images (Zuhlke et al., 2015). This process was done following a standardised procedure to 
process Level-1 GRDH products in order to obtain final sigma nought images and interferograms corresponding to the flood extent. 

The only two available images from ESA during TS Ana are those taken by Sentinel-1A on 28/01/2022 at 03:00 UTC, which cover 
partially the Licungo basin (Fig. 5). The area covered by the two images is limited to the east part of the basin, and it only represents 28 
% (6415 km2) of the catchment area. Nonetheless, the images cover the APs of Mocuba, Nante, Namacurra and Macuze, which are the 
locations that include most of the flood prone areas in the basin, and where most of the population is concentrated. 

3.1.6. Population maps 
In order to estimate the number of people exposed to a storm event, it is necessary to know the spatial distribution of population in 

the flooded areas. Population maps, in combination with flood extent maps, can be used here. Global gridded population data sets 
provide estimates of population figures in a uniform grid across the world, contributing to a better understanding of where groups of 
people are settled (Leyk et al., 2019). There are currently several global population data sets that can be used for this purpose, such as 
the Gridded Population of the World (GPW), the Global Human Settlement Layer-Population (GHS-POP), the LandScan Global Pop-
ulation Database (LandScan Global), the World Population Estimate (WPE), the High-Resolution Settlement Layer (HRSL), and the 
WorldPop. A detailed description can be found in Leyk et al. (2019) and Dahmm et al. (2020). 

In this study we used the WorldPop gridded population data set (Tatem, 2017; WorldPop et al., 2018), which is freely available for 
the whole world with a spatial resolution of 3 arc-sec (roughly 90 m). It was derived using a Random Forest model to produce a 
predictive weighting layer for asymetrically redistributing population counts into gridded cells (Stevens et al., 2015). One of strengths 
of WorldPop is that it offers population estimates every year since 2000, which makes it comparable over time and facilitates the 
monitoring of population evolution. In the case of Mozambique, the latest available estimate is for 2020, which was the one used in this 

Fig. 6. WorldPop population density (inhabitants per pixel of 90 m width) estimate for 2020 in Mozambique.  
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study (Fig. 6). 

3.2. Integrated hydrological-hydraulic modelling 

There are several modelling approaches that can be used to evaluate flood hazard (Cea and Costabile, 2022; Teng et al., 2017). In 
large catchments the standard two-stage approach consists of using a hydrological model first to transform rainfall fields into water 
discharges along the main river network, and then using those discharges as the input for a detailed hydraulic model to compute the 
extent of the inundation, water depths and velocities only at specific flood prone river reaches, the so-called Areas of Potential Sig-
nificant Flood Risk (APSFR). The rainfall-discharge transformation can be done with a lumped, semi-distributed or fully-distributed 
hydrological model, while the local hydraulic modelling in the APSFR is often performed with a 2D depth-averaged shallow water 
model, although other configurations are possible. 

Recently, different integrated modelling approaches have been proposed in which the rainfall-runoff transformation in the whole 
catchment and the flood inundation in the river network are computed simultaneously (Khaing et al., 2019; Sanz-Ramos et al., 2021; 
Xia et al., 2019). With these integrated approaches there is a continuous spatially distributed contribution of surface runoff to the river 
streams and over the APSFR, which is a far better representation of reality than the classical two-stage approach. In addition, an 
integrated hydrological/hydraulic modelling approach has the advantage of providing a global estimate of inundation in the entire 
catchment and river network with just one simulation. The main drawback of such approaches is the different spatial scales involved in 
the modelling of an entire catchment, including hillslope runoff and river flow. This implies the use of discretisation grids with a very 
large number of elements, requiring enhanced computational performance of the numerical solver. For instance, Xia et al. (2019) 
presented an integrated simulation of a flood event in a 2500 km2 catchment in which the 2D-SWEs were solved in a uniform 
structured grid with 100 million computational cells (element size of 25 m2). Such a modelling approach required a multi-GPU 
parallelization scheme and the use of 8 Nvidia Tesla K80 GPUs in order to obtain a computational time 2.5 times faster than real 
time. This means that the same modelling approach, applied to a four-day event in the Licungo catchment (23,263 km2), would require 
over two weeks of computational time, using eight high-performance GPUs and a very complex High Performance Computing 
implementation. In addition, such a spatial resolution would need to handle a mesh of one billion elements. This is very far from being 
affordable for most inundation studies in developing countries, and thus the computational requirements must be relaxed for practical 
purposes. 

In this study we have used an integrated modelling approach based on solving the 2D-SWE in the whole catchment, using an 
unstructured computational mesh with a lower spatial resolution than Xia et al. (2019), given the far larger size of the Licungo basin 
(23,263 km2). The advantage of using an unstructured mesh is that the grid can be adapted to the catchment morphology, using 
different element sizes in the hillslopes and in the river network, where the flow concentrates. In our case study we have used 
triangular elements with edge sizes ranging from 30 m in some river reaches to 140 m in the hillslopes. To this end, the river network 
width was digitized manually from an ortophoto obtained from Sentinel-2, obtaining the main river channels, as shown in Fig. 7. A 
similar procedure to define the river network width was followed by Komi et al. (2017). Alternatively, the definition of the river width 
can also be done based on the contributing drainage area (CDA) at each river cross section. This, for instance, is done by Neal et al. 
(2012) using the empirical hydraulic-morphological relationships proposed by Leopold and Maddock (1953), or by Uber et al. (2021) 
based on visual inspection of the river network at cross sections with different CDAs. However, for the purposes of the present case 
study, we considered digitization from a visual inspection of the ortophoto, although more laborious, to be the most appropriate 
approach. This zonification produced a river network with a total length of 700 km and a surface of 331 km2 (Fig. 7). With this ge-
ometry and mesh configuration, the 331 km2 of main channels were discretised with approximately 0.3 million elements, while 2.9 

Fig. 7. Numerical discretisation of the Licungo basin.  
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million elements were used to discretise the floodplains and hillslopes, which occupy an area of 22,932 km2. The total number of 
elements of the mesh was 3.2 million. 

The 2D-SWEs were solved with the numerical model Iber+ (García-Feal et al., 2018), which is a GPU-parallelized implementation 
of the software Iber (Bladé et al., 2014), and is available free of cost at www.iberaula.com. The equations solved by the model can be 
expressed as: 
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where h is the water depth, qx, qy and |q| are the two components of the unit discharge and its modulus, zb is the bed elevation, n is 
the Manning coefficient, g is the gravity acceleration, R is the rainfall intensity, and i is the infiltration rate. All the input data and 
parameters (rainfall fields, infiltration parameters and Manning coefficient) can vary in space. 

Iber implements an unstructured finite volume solver for the 2D-SWEs. It was initially developed to model river flow, but in recent 
years several numerical implementations have broadened its range of application to hydrological processes (Cea and Blade, 2015), 
allowing the simulation of rainfall-runoff transformation and river inundation processes simultaneously. The model has previously 
been applied and validated in rainfall-runoff computations at different spatial scales (Cea et al., 2016; Cea and Blade, 2015; Fraga et al., 
2019; Sanz-Ramos et al., 2018; Sanz-Ramos et al., 2021; Tamagnone et al., 2020; Uber et al., 2021), and its reliability and compu-
tational efficiency has led to its implementation in several flood early warning systems (Fernández-Nóvoa et al., 2020; Fraga et al., 
2020; González-Cao et al., 2019). 

As mentioned in Section 3.1.4, the soil infiltration capacity was modelled with the SCS-CN method, using the spatial distribution of 
CN provided by Jaafar et al. (2019) for normal antecedent soil moisture conditions (Fig. 4). In order to define the Manning’s coef-
ficient, six different land covers were considered (Trees, Shrubs, Grassland, Cropland, Built-up areas, and Rivers). Their spatial dis-
tribution over the hillslopes and floodplains was retrieved from the high-resolution land cover map provided by the ESA CCI project for 
Africa at 20 m resolution, previously mentioned in Section 3.1.3 and shown in Fig. 4, except for the Rivers land cover, which was 
defined manually for the whole stream network, as shown in Fig. 7, since the Open Water cover defined in the ESA CCI map does not 
include a precise definition of the whole river network. For modelling purposes, the Manning coefficients defined in Table 2 were 
assigned to each land use (Fig. 8). 

Rainfall was defined in the model as raster files of precipitation intensity obtained from the GPM database, as detailed in Section 
3.1.2, with a spatial and temporal resolutions of 10 km and 30 min, respectively. The simulated period is from 24/01/2022 at 00:00, 
the time at which the TC Ana hit the Licungo basin, until 28/01/2022 at 03:00, the time at which the Sentinel-1 image used to estimate 
the flood extent was taken. As shown in Fig. 3, most of the rainfall (94 %) took place in the first 24 h. 

With the numerical setup described above it took around 1 h of computational time to model the whole simulation period of 4.1 
days (i.e., 100 times faster than real time), using a standard laptop with a NVIDIA GeForce RTX 3080 Ti, which is an affordable 
hardware configuration. 

3.3. Flood extent-based performance indices 

The predictive capacity of the numerical model in the Licungo catchment was assessed by comparing the water extent, computed 
numerically, with the one estimated from the Sentinel-1 image taken on 28/01/2022 at 03:00. This image was processed as described 
in Section 3.1.5 in order to obtain a raster with the observed flood extent, with a spatial resolution of 10 m. This raster was compared, 
on a pixel basis, with the prediction obtained using Iber for the same date and time. To do so, the flood extent in Iber was defined as the 
envelope of the wet mesh elements, and the water depths computed within the flood extent were transferred from the triangular 
elements to the centre of the pixels using a linear interpolation scheme. 

To quantify the agreement between both inundation maps, the following indices were computed: 1) Hit Rate (proportion of the area 

Table 2 
Manning coefficient assigned to each land use considered in 
the ESA CCI Land Cover map.  

Land use Manning (s.m-1/3) 

Trees  0.070 
Shrubs  0.060 
Grassland  0.035 
Cropland  0.050 
Built-up areas  0.100 
River  0.040  
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observed as flooded that the model also predicts as flooded); 2) False Alarm Ratio (proportion of the area predicted as flooded by the 
model that has been classified as dry by the observation); 3) Bias (ratio of the area predicted as flooded and the area observed as 
flooded); and 4) F1 score (combination of the Hit Rate and False Alarm Ratio in a single performance measure that varies between 0 and 
1). These indices were computed as: 

HR =
TP

TP + FN
FAR =

FP
TP + FP

Bias =
TP + FP
TP + FN

F1 = 2
HR (1 − FAR)
HR + (1 − FAR)

where HR is the Hit Rate, FAR is the False Alarm Ratio, TP are the true positives (number of grid cells correctly predicted as flooded), FP 
are the false positives (number of cells that the model predicted as flooded but were observed as dry) and FN are the false negatives 
(number of cells predicted as dry but observed as flooded) (Table 3). The HR and F1 score vary between 0 (worst performance) and 1 
(best performance). The FAR varies between 0 (best performance) and 1 (worst performance). The Bias varies between 0 and infinite. If 
Bias = 1, the modelled and observed flooded areas are equal. If Bias < 1, the model underestimates the flood extent. If Bias > 1, the 
model overestimates the flood extent. 

This kind of cell-by-cell performance indices are commonly used in the comparison of 2D models with field observations (Bennett 
et al., 2013; Bermúdez et al., 2019; Costabile et al., 2020; Falter et al., 2013; Grimaldi et al., 2016). 

The performance indices were evaluated both within the region of the Licungo basin covered by the Sentinel-1 images, and at the 
reach scale in three river reaches with lengths from 15 to 25 km, including their associated floodplains (Fig. 1). Reach 1 is located at the 
confluence between the rivers Lugela (right tributary) and Licungo (left tributary), around the city of Mocuba, and has a meandering 
morphology. Reach 2 is rather straight and confined, and is located approximately 20 km downstream from Reach 1. Both reaches 
have a length of approximately 15 km. Reach 3 is the longest (around 25 km), is located near the basin outlet, and has a relatively flat 
topography with a braided morphology. These three reaches were chosen because they represent different river morphologies and are 

Fig. 8. Spatial distribution of the Manning’s coefficient used in Iber.  

Table 3 
Contingency table for the evaluation of water depth predictions. A pixel is considered to be predicted as flooded if 
the water depth computed by the numerical model is greater than 0.10 m.   

Observed as flooded Observed as dry 

Predicted as flooded TP (true positive) FP (False positive) 
Predicted as dry FN (False negative) TN (True negative)  

L. Cea et al.                                                                                                                                                                                                             



Journal of Hydrology: Regional Studies 44 (2022) 101247

13

located in Administrative Posts with a high number of people exposed to flooding, as will be shown in the following sections. For ease 
of reference, and as opposed to reach scale, we will refer to the comparison within the region covered by the Sentinel-1 images as 
catchment scale, even if it does not cover the whole Licungo basin. 

4. Results and discussion 

4.1. Flood extent and validation 

Tropical Strom Ana hit the Licungo basin on 24/01/2022 at 00:00, leaving a basin-averaged rainfall depth of 213 mm, most of 
which fell within the first 24 h (Fig. 3). The rainfall depth at certain locations on the west part of the basin reached values of around 
350 mm. The only available observed data that can be used to estimate the extent of the flood is the image taken by Sentinel-1 on 28/ 
01/2022 at 03:00 (Fig. 5). This image covers only the east part of the basin and was taken 4 days after the start of the storm, with the 
flood in its recession period. Thus, the flooded area observed is much smaller than the maximum flood extent during the storm event.  
Fig. 9 shows the flooded area estimated from Sentinel-1, as well as the area computed with Iber at the same time, assuming in the latter 
case that the flooded areas are those with a water depth greater than 0.1 m. A water depth threshold is needed to define the flood extent 
in the numerical model for two reasons. First, because the model input is rainfall and thus there is a positive water depth for almost 
every computational cell. Second, because very small water depths will not be classified as flooded in the analysis of the satellite image. 
The specific threshold chosen (0.1 m) might have an effect on the results, but it has been verified that the analysis and conclusions 
based on the performance measures presented below do indeed hold for thresholds between 0.05 and 0.20 m. Thresholds of the same 
order of magnitude have been used in other studies (Eilander et al., 2022; Wing et al., 2017). 

Table 4 shows the flood extent-based performance measures computed from the comparison of the satellite image and the pre-
diction of Iber. The Sentinel-1 coverage column includes the performance scores computed for the whole area covered by the Sentinel-1 
image within the Licungo basin (red contour in Fig. 9), that is, at the catchment scale. At this scale the HR is quite high (0.79), meaning 
that most of the observed flooded area is captured by the model. On the other hand, at the catchment scale the model predicts a lot of 
flooded areas that are not identified in the satellite image, and would therefore be classified as False Positives. Thus, the FAR and the 
Bias are quite high (0.60 and 0.53, respectively). Nevertheless, the values of the FAR and Bias at the catchment scale should be taken 
with caution, since most of the False Positives lie in the hillslopes or in tributaries of the Licungo and Lugela rivers that are not captured 
by the analysis of the satellite image, as clearly seen in Fig. 10. With the flood still in its recession phase, all those tributaries that are 
captured by Iber (red areas in Fig. 10) should be conveying a significant amount of water, although they are not identified as flooded 
areas in the analysis of the satellite image (blue areas in Fig. 10). Thus, the water extension predicted by Iber in all those small 
tributaries is contributing to the number of False Positives when computing the FAR and Bias, which explains the high value of these 
performance measures when computed at the catchment scale. The limitations of using SAR images to derive flood extent maps have 
been analysed in recent studies which point out the importance of defining exclusion maps that identify the pixels in which the 
satellite-derived estimation is not reliable, this in order to avoid a substantial reduction in the performance measures of hydrological 
models (Zhao et al., 2021; Di Mauro et al., 2021). In our case, the most likely reason why the satellite-derived map fails to capture the 
water extent in the tributaries is the presence of riparian vegetation that masks the water in and around small rivers. The presence of 
sand bars and braided streams at some locations also contributes to the difficulty of identifying some narrow tributaries. Moreover, the 

Fig. 9. Flood extent on the Licungo basin, estimated from Sentinel-1 on 28/01/2022 at 03:00 (left), computed with Iber as the area with h > 0.1 m 
on 28/01/2022 at 03:00 (middle) and computed with Iber as the area with h > 0.1 m for the whole TS Ana event (right). 
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fact that the width of the water table in many of these tributaries is equivalent to a few pixels in the satellite image also hinders their 
identification as flooded areas. 

A second possible explanation of the high values of the FAR and Bias computed for the whole Sentinel-1 coverage is that the 
propagation of surface runoff in the numerical model creates local and isolated areas with water depths greater than 0.10 m that are 
not identified as flooded in the Sentinel-1 image (Fig. 10). The existence and extension of these isolated flooded areas is very much 
dependant on the local topography, and thus in the quality of the DEM, as well as on the water depth threshold used to define the flood 
extension in Iber (0.10 m). Increasing the water depth threshold diminishes the number of False Positives but also reduces the number 
of True Positives. Therefore, it was maintained at 0.10 m. 

In order to explore the performance of the model at the reach scale, three river reaches with lengths varying from 15 to 25 km and 
different morphology were also analysed. The location of the reaches is shown in Fig. 1, and their description was provided above in 
Section 3.4. The overlapping between the flood extent computed with Iber and estimated from Sentinel-1 is much higher at the reach 
scale than at the catchment scale. The HR computed at reaches 1 and 2 is only slightly better than at the catchment scale (Table 4), but 
the FAR is far lower and the Bias is almost zero, meaning that at the reach scales there is not a significant overprediction of the flood 
extent. The performance measures computed at Reach 3 are not as good as in the other two reaches, but is still far better than at the 
catchment scale. This is due to the braided configuration of Reach 3, which makes the water depth results very dependent on the 

Table 4 
Flood extent-based performance measures computed for three different river reaches and for the whole area covered by Sentinel-1 on 28/01/2022 at 
03:00. *FAR and Bias for the whole Sentinel-1 coverage should be taken with caution for the reasons noted in the text.  

Score Units Sentinel-1 coverage Reach 1 Reach 2 Reach 3 

TP (True Positives) km2 260.85  6.60  6.42  29.43 
FP (False Positives) km2 385.30  1.85  0.82  13.44 
FN (False Negatives) km2 69.82  1.38  1.01  9.35 
TP + FP (Predicted flood extent) km2 646.15  8.45  7.24  42.87 
TP + FN (Observed flood extent) km2 330.67  7.99  7.43  38.78 
HR – 0.79  0.83  0.86  0.76 
FAR – 0.60*  0.22  0.11  0.31 
F1 – 0.53  0.80  0.88  0.72 
Bias – 0.53*  0.03  -0.01  0.06  

Fig. 10. Details of the flood extent on two areas of the Licungo basin on 28/01/2022 at 03:00, estimated from Sentinel-1 (blue) and computed with 
Iber as the area with h > 0.1 m (red). 
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accuracy and spatial resolution of the DEM. 
From the above results we can conclude that the flood extent predicted by the numerical model is very reliable in the main river 

reaches and associated floodplains. At the basin scale it is difficult to assess the performance of the model because the satellite data do 
not provide a reliable estimate of the water extent in most of the tributaries of the main river streams. It seems that the model tends to 
overpredict the flood extent due to the presence of small and isolated flooded areas, but it is difficult to give precise and reliable 
performance measures. 

4.2. Estimation of the population affected by TS Ana from satellite imagery 

Fig. 12 and Table 5 show the estimates of the population exposed to flooding on 28/01/2022 at 03:00, obtained from overlying the 
WorldPop raster and the flood extent obtained from Sentinel-1. The data were aggregated by Administrative Posts (AP), the smallest 
administrative unit in Mozambique, and are presented as the total number of people exposed in each AP, and as the percentage of 
people exposed in each AP within the area covered by the Sentinel-1 image. The estimate obtained from Iber at the same date and time 
is also presented, for comparison and validation purposes. 

According to the estimate obtained from Sentinel-1, more than 33,000 people were exposed to flooding at that time, from a total of 
569,000 people living within the area covered by Sentinel-1 (Table 5). This is approximately 6 % of the population covered by the 
satellite image. In the APs located in the lower part of the basin, the percentage of people exposed was far higher, reaching values of 35 
% in Macuze (Fig. 12 and Table 5). In this part of the basin, the higher discharges in combination with a relatively flat topography and a 
braided river morphology lead to large flooded areas, most of which are urbanised. These figures probably underestimate the pop-
ulation that was actually exposed to flooding at that time and in that region, since the satellite image does not identify as flooded most 
of the small tributaries of the Licungo, as discussed in the previous section and shown in Fig. 10. 

Comparing the estimates obtained from the satellite image with those from Iber at the same time, the numerical model clearly 
predicts a far greater population exposed to flooding, with an overall overestimation factor of 1.6 between Iber and Sentinel-1. This 
factor should not be taken directly as a modelling error at the basin scale for the reasons already mentioned. The agreement between 
the satellite and numerical estimates is better in the APs located near the outlet of the catchment (Macuze, Nante, Namacurra and 
Mocuba), where the overestimation factors vary between 1.2 and 1.4, and deteriorates progressively as we move northwards, with 
overestimation factors between 1.4 and 3.0 in the APs of Munhamade, Mugeba and Namarroi, and greater than 3 in the northernmost 
APs (Ile, A. Molocue and Socone). This spatial pattern on the agreement between Iber and Sentinel-1 is clearly related to the 
configuration of the stream network and with the spatial resolution of the numerical model. While in the southern catchment there is 
one single main channel that is well defined and resolved in the numerical model, the stream network in the northern part is very 
ramified and consists of multiple headwater catchments with small tributaries that are not so accurately defined with the spatial 
resolution of the numerical mesh and DEM (Fig. 9). Added to this is the fact that the reliability of the flood extent estimate done from 
Sentinel-1 is more reliable in large and confined streams than in small intermittent and braided tributaries. 

4.3. Estimation of the population affected by TS Ana from hydrological-hydraulic modelling 

The comparative analysis of the flood extent presented in the previous sections was done on 28/01/2022 at 03:00, because it is the 
only time at which there is a satellite image available. However, at that time the flood was already receding, so the percentage of 
people affected during the entire TS Ana event was far greater. In addition, the satellite image only covers 28% of the catchment 
surface, so the total population exposed in the whole basin was even larger. 

Fig. 11. Location of the three river reaches used to validate the flood-extent results (upper) and overlapping between the modelled and observed 
flood-extent on those three reaches on 28/01/2022 at 03:00 (lower). 

L. Cea et al.                                                                                                                                                                                                             



Journal of Hydrology: Regional Studies 44 (2022) 101247

16

Fig. 12. Population exposed to flooding on 28/01/2022 at 03:00 at the different Administrative Posts of the Licungo basin, estimated from Sentinel- 
1 and from Iber (only in the area covered by Sentinel-1). 

Table 5 
Total population and population exposed to flooding at each Administrative Posts lying within the image of Sentinel-1. The exposed population is 
estimated on 28/01/2022 at 03:00 from Sentinel-1 image and from Iber (only in the area covered by Sentinel-1).  

Administrative post Total population Exposed population (S1 coverage) 

S1 28/01/2022 Iber 28/01/2022 

NAMARROI 22,989 426 1260 
ILE 139,115 1889 6818 
MULEVALA 188 0 0 
MUNHAMADE 14,981 1072 1562 
MUGEBA 36,165 479 1359 
MOCUBA 187,164 6713 7968 
NANTE 57,617 9626 13,246 
NAMACURRA 14,978 1660 2307 
MACUZE 30,315 10,715 13,704 
A. MOLOCUE 2242 12 155 
SOCONE 61,813 610 4042 
TOTAL 567,568 33,203 52,419  
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Fig. 13 shows the hydrographs computed with Iber at the basin outlet and at the confluence between the rivers Lugela and Licungo 
(Reach 1 in Fig. 11). According to the model, at the basin outlet the river discharge was approximately 2000 m3/s at the time at which 
the Sentinel-1 image was taken, while the peak discharge occurred 51 h prior to this (26/01/2022 at 00:00) and was over 14,000 m3/s, 
that is, seven times more. The difference is even greater at the confluence between the Licungo and Lugela, where the peak discharge 
reached 16,000 m3/s, i.e., 16 times more than the 1000 m3/s that were flowing when the Sentinel-1 image was taken. To illustrate the 
implications of these differences on the extension of the inundation, the middle and right panels of Fig. 9 show, respectively, the 
predictions of the flood extent obtained with Iber on 28/01/2022 at 03:00 and for the whole TS Ana event. 

Even if these are simply numerical estimates, and the previous ratios might be slightly different in reality, they provide evidence 
that the number of people exposed to flooding during the whole event was much larger than the estimate obtained from the Sentinel-1 
image. According to the numerical results for the whole catchment, over 273,000 people were exposed to flooding during the entire 
event. This is almost three times greater than the estimate made with Iber for the whole basin at the time when the Sentinel-1 image 
was taken (Table 6 and Fig. 14). In the lower part of the catchment, where the estimates obtained from Iber and Sentinel-1 are closer 
(Table 5), this ratio varies between 1.7 and 3.9 (see APs of Mocuba, Nante, Namacurra and Macuze in Table 6 and Fig. 14). In the upper 
catchment the ratio is even larger, reaching values higher than 4 in several APs. Although, as mentioned in Section 4.2, the numerical 
estimate of exposed population in the upper part of the catchment is less reliable than in the lower part, those ratios provide an 
approximation of the underestimation factor introduced when analysing the effects of the flood extent on 28/01/2022 at 03:00 rather 
than at the time of maximum flooding (Fig. 14 and Fig. 15). 

If we now compare the estimates of people exposed to flooding in the whole catchment during the entire TS Ana event (273,937 
people) with those corresponding to the date and area of the Sentinel-1 image (52,606 people), both obtained from Iber, it can be seen 
that there is a difference of a factor of 5.2, again implying that the estimate that can be drawn from the satellite image is just a small 
fraction of the real flood impact (Fig. 14). 

It could be argued that the Iber-derived predictions of exposed population (273,937 people) might overpredict the actual number of 
people affected by the flood due to the inherent limitations of the numerical model’s predictions. As an alternative to the estimate 
obtained directly from the numerical model, we can use the Iber-derived factors that relate the number of people exposed in the whole 
basin and/or during the whole TS Ana event with those exposed on 28/01/2022 at 03:00 within the area covered by the Sentinel-1 
image, in order to extrapolate the satellite-derived estimate of exposed population to the whole event and catchment. The extrapo-
lation of the satellite-derived estimates done in such a way are shown in Fig. 14 with an oblique fill pattern, in order to distinguish them 
from the direct estimates from the satellite image. Assuming that the numerical overestimation factor is similar during the whole event 
and for the whole catchment, the total exposed population would be about 5.2 times larger than the estimate obtained directly from 
Sentinel-1, leading to 172,655 (33,203 ×5.2) people that could have been exposed to the flood at some point during the TS Ana event. 

It is difficult to assess which of the previous estimates (273,937 or 172,655 people) is more realistic, but the actual exposed 
population was probably somewhere between these two numbers, probably nearer to 273,000 than to 172,000, since the model’s 
overprediction at the reach scale is not so high (Table 4). In any case, these figures are far more representative of the real number of 
people affected by the flood than the estimate that can be done using only the satellite imagery (33,244 people). 

5. Conclusions 

Estimation of the population affected by major flooding events in data-scarce regions, and especially by tropical storms in East 
Africa, is generally done on the basis of the analysis of satellite images. Such images are used to delineate the water extent and then 

Fig. 13. Hydrographs computed with Iber during the TS Ana event, at the confluence between the Lugela and Licungo rivers (Reach 1 in Fig. 11), 
and at the outlet of the Licungo basin. Source of the satellite image on the top-right: Google earth V 7.3.4.8642. Imagery date: August 9, 2019. 
http://www.earth.google.com (Accessed September 26, 2022). 
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overlapped with population density maps in order to identify the areas most affected by a flood. While this procedure provides very 
useful and timely information for flood management, its main limitation is that the date and time at which the satellite image is 
available is usually not the time of maximum flooding, and therefore the water extent that can be derived from these images might be 
far smaller than the maximum flood extent. This is especially true during flash flood events in large catchments, as in the case study 
presented here, since the maximum flooding does not take place at the same time in the whole river network, but instead propagates 
progressively from the headwater subcatchments to the basin outlet. It is therefore not possible to capture the maximum flood extent in 
a single image. Moreover, large catchments might not be fully captured by the available satellite images during a single storm event, 
preventing an estimate of the flooded area in the whole basin. 

Using an integrated hydrological-hydraulic modelling approach that relies in freely-available software and global satellite data, we 
have estimated the maximum flood extent during TS Ana in the whole Licungo catchment, and from that, the total population affected 
by the flood. We also estimated the area covered by the water during the flood recession, which was the time at which the satellite 
Sentinel-1 took an image of the east part of the basin. A comparison between the water extent computed with Iber and with Sentinel-1 
showed a relatively good Hit Ratio (0.79) when considering the whole area of the basin covered by the satellite images. The False 
Alarm Ratio for the whole Sentinel-1 coverage was also high (0.60), but this value is overestimated, since most of the False Positives lie 
in tributaries of the Licungo and Lugela rivers that are not captured by the analysis of the satellite image. In the Licungo and Lugela 
rivers, where the water extension defined from Sentinel-1 is more reliable, the Hit Ratio is still of the order of 0.80, the FAR decreases to 
around 0.20 and there is no significant bias between the Iber and Sentinel-1 predictions. 

The numerical results obtained with Iber indicate that over 273,000 people were exposed to flooding during the whole event in the 
whole catchment, while only around 95,000 people were being exposed at the time the Sentinel-1 image was taken, since the flood had 

Table 6 
Total population and population exposed to flooding at each Administrative Post for the whole Licungo basin. The exposed population is estimated on 
28/01/2022 at 03:00 and for the whole TS Ana event. In both cases the estimates were obtained from Iber and for the whole Licungo basin. The last 
column indicates the ratio between the population exposed for the whole TS Ana and on 28/01/2022 at 03:00.  

Administrative Post Total population Exposed population (whole Licungo basin) 

Iber 28/01/2022 (A) Iber Whole TS Ana (B) Ratio (B/A) 

MOLUMBO 36,483 1001 4544 4.54 
REGONE 63,864 2262 8052 3.56 
NAMARROI 114,280 6272 18,441 2.94 
MILANGE 200,991 4208 26,925 6.40 
MUABANAMA 77,658 3502 12,879 3.68 
ILE 139,215 6723 19,113 2.84 
LUGELA 54,038 2787 10,335 3.71 
MULEVALA 190 0 7 – 
TACUANE 26,921 1896 6511 3.43 
MUNHAMADE 20,814 1961 6889 3.51 
MUGEBA 35,963 1351 5844 4.32 
NAMANJAVIRA 33,111 1336 6658 4.98 
MOCUBA 200,082 8262 32,267 3.91 
NANTE 57,586 13,210 22,751 1.72 
NAMACURRA 14,933 2324 5255 2.26 
MACUZE 30,423 13,742 24,332 1.77 
LIOMA 5020 114 399 3.50 
NAUELA 30,826 1673 5019 3.00 
GURUE 194,384 12,578 30,816 2.45 
MEPUAGIUA 87,525 5102 13,736 2.69 
A. MOLOCUE 3310 219 576 2.63 
SOCONE 72,403 4941 12,587 2.55 
TOTAL 1,500,019 95,467 273,937 2.87  

Fig. 14. Population exposed to flooding estimated from Iber and from Sentinel-1. Estimates inside the area covered by Sentinel-1, for the whole 
Licungo basin, on 28/01/2022 at 03:00 and for the whole TS Ana event are shown. The bars with an oblique fill pattern are indirect estimates 
obtained from the extrapolation of the Sentinel-1 image and the Iber estimates, as detailed in the text. 
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already been receding for more than 48 h by that time. Moreover, according to the numerical results, around 52,000 people were 
exposed to flooding inside the area covered by the Sentinel-1 image (around 28% of the total basin surface) at the time the image was 
taken. Even if those numbers are just numerical estimates, they contrast with the estimate of 33,000 people exposed to flooding 
obtained from the analysis of the satellite image alone, and are far more representative of the actual number of people affected by TS 
Ana in the Licungo basin. 

The numerical methodology used in this study also provides estimates of the maximum water depths and velocities reached during 
the whole event in all the river network of the catchment. These estimates could be combined with vulnerability maps and damage 
curves in order to give a more detailed definition of flood risk and economical damages during a storm event. Such an analysis was not 
performed here due to the lack of detailed spatial information about vulnerability and stage-damage curves within the study region. 

All the data sets used in this study are available for free and at the global scale, through the URLs provided in Section 3. The 
modelling software, Iber, is also available free of charge from www.iberaula.com. Thus, the methodology followed here can be 
reproduced in almost any region of the world, although it is especially suitable and interesting for the estimation of the effects of storm 
events in data-scarce regions. 
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Álvarez: Conceptualization, Methodology, Validation, Visualization, Writing - original draft, Writing - review & editing. Jerónimo 
Puertas: Conceptualization, Methodology, Supervision. 

Fig. 15. Population exposed to flooding on 28/01/2022 at 03:00 and during the whole TS Ana event, at the different Administrative Posts of the 
Licungo basin, estimated from Iber. The final column shows the ratio between the exposed population during the whole TS Ana event and that 
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Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, M.E., Dolz, J., Coll, A., 2014. Iber: herramienta de simulación numérica del flujo en ríos. 
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