
DEPARTMENT OF
COMPUTER SCIENCE

CLASS: A LOGICAL FOUNDATION FOR
TYPEFUL PROGRAMMING WITH
SHARED STATE

PEDRO MANUEL SABINO ROCHA

B.Sc., M.Sc. in Electrical Engineering

DOCTORATE IN COMPUTER SCIENCE

NOVA University Lisbon
June, 2022

DEPARTMENT OF
COMPUTER SCIENCE

CLASS: A LOGICAL FOUNDATION FOR
TYPEFUL PROGRAMMING WITH
SHARED STATE

PEDRO MANUEL SABINO ROCHA

B.Sc., M.Sc. in Electrical Engineering

Adviser: Luís Manuel Marques da Costa Caires
Full Professor, FCT-NOVA University of Lisbon

Examination Committee

Chair: Nuno Manuel Robalo Correia
Full Professor, FCT-NOVA University of Lisbon

Rapporteurs: Lars Birkedal
Full Professor, Aarhus University

Nobuko Yoshida
Full Professor, University of Oxford

Adviser: Luís Manuel Marques da Costa Caires
Full Professor, FCT-NOVA University Lisbon

Members: Sam Lindley
Reader, University of Edinburgh

Vasco Manuel Tudichum de Serpa Vasconcelos
Full Professor, University of Lisbon

Carla Maria Goncalves Ferreira
Associate Professor, FCT-NOVA University of Lisbon

Bernardo Parente Coutinho Fernandes Toninho
Assistant Professor, FCT-NOVA University of Lisbon

DOCTORATE IN COMPUTER SCIENCE

NOVA University Lisbon
June, 2022

CLASS: A Logical Foundation for Typeful Programming with Shared State

Copyright © Pedro Manuel Sabino Rocha, NOVA School of Science and Technology, NOVA
University Lisbon.
The NOVA School of Science and Technology and the NOVA University Lisbon have the
right, perpetual and without geographical boundaries, to file and publish this dissertation
through printed copies reproduced on paper or on digital form, or by any other means
known or that may be invented, and to disseminate through scientific repositories and
admit its copying and distribution for non-commercial, educational or research purposes,
as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.10.16) [100].

https://github.com/joaomlourenco/novathesis

To my loving partner Fábio.

Acknowledgements

First and foremost, without whom this thesis would not be possible, I thank my advisor
Luís Caires. Luís encouraged me though this long journey to always strive for the simplest,
more elegant and principled solution. He introduced me to this wonderful world of
logical foundations of programming languages, linear logic, concurrency, session types
and 𝜋-calculus, always with excitement. I have enjoyed our several discussions, where I
could see his brilliant mind in action, and where I have learned many skills, which I am
sure will be valuable for the rest of my professional life.

I also thank the members of my thesis advisory committee, namely Sam Lindley,
Bernardo Toninho and Vasco Vasconcelos, for their guidance and insightful discussions.
Bernardo also joined us on some preliminary discussions and reviewed several or our
drafts. Thanks also to Stephanie Balzer, Nobuko Yoshida and Philip Wadler for providing
useful comments. To all the members of the PLASTIC research group for giving me the
opportunity of presenting and discussing this work.

Throughout the PhD I had the pleasure of having several colleagues, many of which
became friends, and made this journey much more pleasant: Eduardo Geraldo, Álvaro
Santos, Mirko Engler, Filipe Meirim, Mário Pereira, Miguel Lourenço, Afonso Carvalho,
Paulo Santos, Rita Macedo, Gil Alves, Serena Delli. I met Serena just in the beginning,
when attending the subject Topics of Theory of Computation, and since then we are very
close friends.

Outside the academic world, many were the friends that support me. I cannot mention
them all, but of some them I need to: Sofia Farinha for making her comfortable couch
always available when I most needed it, Sofia Araújo for being always there with her
precious advices, Pedro Tavares for the fun and spark and Lilian Castiglione, with whom
I spent, in the last phase, a lovely co-working season.

Thanks to the unconditional support of my loving family: my parents, my brother and
my grandmother. To my most faithful four-legged and sweet companion Bess, that arrived
just in the middle of the journey, but brought with her an immense energy. At last, to my
loving partner Fábio, for his tremendous, relentless support and for always bringing so
much joy and love to my life.

iv

Abstract

Software construction depends on imperative state sharing and concurrency, which are
naturally present in several application domains and are also exploited to improve the
structure and efficiency of computer programs. However, reasoning about concurrency
and shared mutable state is hard, error-prone and the source of many programming bugs,
such as memory leaks, data corruption, deadlocks and non-termination.

In this thesis, we develop CLASS: a core session-based language with a lightweight
substructural type system, that results from a principled extension of the propositions-as-
types correspondence with second-order classical linear logic. More concretely, CLASS
offers support for session-based communication, mutex-protected first-class reference cells,
dynamic state sharing, generic polymorphic algorithms, data abstraction and primitive
recursion.

CLASS expresses and types significant realistic programs, that manipulate memory-
efficient linked data structures (linked lists, binary search trees) with support for updates
in-place, shareable concurrent ADTs (counters, stacks, functional and imperative queues),
resource synchronisation methods (fork-joins, barriers, dining philosophers, generic core-
cursive protocols). All of these examples are guaranteed to be safe, a result that follows
by the logical approach.

The linear logical foundations guarantee that well-typed CLASS programs do not
go wrong: they never deadlock on communication or reference cell acquisition, do not
leak memory and always terminate, even if they share complex data structures protected
by synchronisation primitives. Furthermore, since we follow a propositions-as-types
approach, we can reason about the behaviour of concurrent stateful processes by algebraic
program manipulation.

The feasibility of our approach is witnessed by the implementation of a type checker
and interpreter for CLASS, which validates and guides the development of many realistic
programs. The implementation is available with an open-source license, together with
several examples.

Keywords: Propositions-as-Types, Shared State, Session Types, Linear Logic

v

Resumo

A construção de software depende de estado partilhado imperativo e concorrência, que
estão naturalmente presentes em vários domínios de aplicação e que também são explo-
rados para melhorar o a estrutura e o desempenho dos programas. No entanto, raciocinar
sobre concorrência e estado mutável partilhado é difícil e propenso à introdução de erros e
muitos bugs de programação, tais como fugas de memória, corrupção de dados, programas
bloqueados e programas que não terminam a sua execução.

Nesta tese, desenvolvemos CLASS: uma linguagem baseada em sessões, com um
sistema de tipos leve e subestrutural, que resulta de uma extensão metodológica da
correspondência proposições-como-tipos com a lógica linear clássica de segunda ordem.
Mais concretamente, a linguagem CLASS oferece suporte para comunicação baseada em
sessões, células de memória protegidas com mutexes de primeira classe, partilha dinâmica
de estado, algoritmos polimórficos genéricos, abstração de dados e recursão primitiva.

A linguagem CLASS expressa e tipifica programas realistas significativos, que mani-
pulam estruturas de dados ligadas eficientes (listas ligadas, árvores de pesquisa binária)
suportando actualização imperativa local, TDAs partilhados e concorrentes (contadores,
pilhas, filas funcionais e imperativas), métodos de sincronização e partilha de recursos
(bifurcar-juntar, barreiras, jantar de filósofos, protocolos genéricos corecursivos). Todos
estes exemplos são seguros, uma garantia que resulta da nossa abordagem lógica.

Os fundamentos, baseados na lógica linear, garantem que programas em CLASS bem
tipificados não incorrem em erros: nunca bloqueiam, quer na comunicação, quer na
aquisição de células de memória, nunca causam fugas de memória e terminam sempre,
mesmo que compartilhem estruturas de dados complexas protegidas por primitivas de
sincronização. Além disso, uma vez que seguimos uma abordagem de proposições-como-
tipos, podemos raciocinar sobre o comportamento de processos concorrentes, que usam
estado, através de manipulação algébrica.

A viabilidade da nossa abordagem é evidenciada pela implementação de um verifica-
dor de tipos e interpretador para a linguagem CLASS, que valida e orienta o desenvolvi-
mento de vários programs realistas. A implementação está disponível com uma licença
de acesso livre, juntamente com inúmeros exemplos.

vi

Palavras-chave: Proposições-como-Tipos, Estado Partilhado, Tipos de Sessão, Lógica Li-
near

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Propositions-as-Types . 3
1.2 Session Types and Linear Logic . 5
1.3 Shared State . 6
1.4 A Taste of CLASS . 8
1.5 Contributions and Outline . 17

I The Concurrent Programming Language CLASS 21

2 The Basic Language �CLL 22
2.1 Introduction . 22
2.2 Process Calculus and Operational Semantics 24
2.3 Type System . 30
2.4 Further Discussion and Related Work . 48

3 CLASS: Classic Linear Logic with Affine Shared State 50
3.1 Introduction . 50
3.2 Process Calculus and Operational Semantics 52
3.3 Type System . 56
3.4 Further Discussion and Related Work . 70

4 Programming in CLASS 76
4.1 Linked Lists, Update In-Place . 77
4.2 A Concurrent Imperative Queue . 78
4.3 Dining Philosophers . 82
4.4 A Shared Resource-Invariant Toggle . 85
4.5 A Barrier for 𝑁 threads . 86

viii

5 Language Implementation CLLSj 88
5.1 Introduction . 88
5.2 Hello World: A Concurrent Counter . 89
5.3 Type Checker and Interpreter . 92
5.4 Further Discussion and Related Work . 94

II Metatheory of CLASS 96

6 Safety: Type Preservation and Progress 97
6.1 Introduction . 97
6.2 Type Preservation . 97
6.3 Progress . 99
6.4 Further Discussion and Related Work . 108

7 Confluence 111
7.1 Introduction . 111
7.2 The Reduction Relation→𝑑 . 113
7.3 Factorisation of→→ through→𝑑 . 117
7.4 Diamond Property for

∗−→ . 120
7.5 Further Discussion and Related Work . 123

8 Cut Normalisation 124
8.1 The Relation ≈ : A Complete Set of Commuting Conversions 125
8.2 Share Expansion and Cut Normalisation 131
8.3 Some Corollaries . 137
8.4 Further Discussion and Related Work . 142

9 Strong Normalisation 143
9.1 Introduction . 143
9.2 Interference-Sensitive Cells . 144
9.3 Linear Logical Predicates for Strong Normalisation 148
9.4 Further Discussion and Related Work . 165

10 Conclusion 167

Bibliography 169

Appendices

A Type Preservation 181

B Progress 208

ix

C Confluence 228

D Cut Normalisation 239

E Strong Normalisation 252

x

List of Figures

2.1 Processes 𝑃 of �CLL (extended by Fig. 3.1). 26
2.2 Structural congruence 𝑃 ≡ 𝑄 rules of �CLL (extended by Fig. 3.2). 28
2.3 Reduction 𝑃 → 𝑄 rules of �CLL (extended by Fig. 3.3). 29
2.4 Typing rules 𝑃 ⊢� Δ;Γ for �CLL (extended by Fig. 3.4). 32
2.5 Code for the boolean calculator and two clients. 42

3.1 Processes 𝑃 of CLASS (extends Fig. 2.1). 53
3.2 Structural congruence 𝑃 ≡ 𝑄 Rules of CLASS (extends 2.2). 54
3.3 Reduction 𝑃 → 𝑄 rules of CLASS (Extends 2.3). 55
3.4 Typing rules 𝑃 ⊢� Δ;Γ for CLASS (extends Fig. 2.4). 56
3.5 A reference cell with increment and get operations. 62

4.1 A linked list with append in-place. 78
4.2 A queue with three elements: 𝑎3 , 𝑎2 and 𝑎1. 80
4.3 Concurrent imperative queue: interfaces for enqueueing and dequeueing. . 80
4.4 Concurrent imperative queue: methods menq and mdeq. 81
4.5 Solution to the dining philosophers problem in CLASS. 84
4.6 Dining philosophers: implementation details. 85
4.7 Code for a shared resource-invariant toggle. 86
4.8 A Barrier for 𝑁 Threads . 87

6.1 Type preservation, example: ≡ rule [PSh]. 98
6.2 Type preservation, example:→ rule [S𝑒 U𝑒]. 99
6.3 Observability predicate 𝑃 ↓𝑥:𝜎 , 𝜎 ∈ {fwd, act} 101

7.1 Sum expansion map 𝒮(𝑃). 118
7.2 Diagram illustrating proof of confluence. 122

8.1 Share-action commuting conversions ≈. 127
8.2 Cut-action commuting conversions ≈. 128
8.3 Cut!-action commuting conversions ≈. 129

xi

8.4 Cut! discarding conversions ≈. 130
8.5 Cut elimination: example. 139

9.1 Logical predicate J𝑥 : 𝐴K𝜎. 150

E.1 Mix-action commuting conversions ≡c. 253

xii

1

Introduction

Several systems rely on concurrency and shared mutable state like, for example, aircraft
systems and cloud computing networks, in which many sequential processes are being
executed simultaneously and cooperate among themselves to attain a common goal.
Besides being naturally present in several applications domains, shared mutable state and
concurrency are also exploited to improve memory usage and speed up computations.
Therefore, it comes at no surprise that mainstream programming languages offer support
for imperative state, state sharing and concurrency.

Despite its ubiquity, reasoning about concurrency and shared mutable state is difficult,
error-prone and the source of many programming bugs, particularly in the presence
of other features such as aliasing, higher-order state, nondeterminism and locks. In
fact, safely programming and reasoning about shared mutable state and concurrency
has always been considered a significant challenge, which has lead to the exploration
of several programming abstractions, logics and type systems. However, despite these
explorations, a canonical solid foundation for shared mutable state and concurrency is
still lacking. These solid foundations can be methodologically sought in logic via the
celebrated propositions-as-types correspondence.

Proposition-as-types is a bridge connecting logic and computation, which allows
knowledge to be transferred between these two fields. Languages built upon propositions-
as-types satisfy certain metatheoretical properties, which hold because of the logical
correspondence, for example: deadlock-freedom, confluence, normalisation, and the
ability to reason about program behaviour through simple equational laws. Overall,
these properties can save a lot of programming bugs, ease the task of building complex
large-scale programs and are even used to improve program efficiency in a calculational
way.

Propositions-as-types is quite widespread in the field of computer science: it lays the
foundation of core functional calculi such as the simply-typed lambda calculus and system
F, and it made its way to to concurrent programming languages via a correspondence
from session types to linear logic. Unfortunately, the correspondence with linear logic
limits the expressiveness of the computational model as it rules out programs involving

1

CHAPTER 1. INTRODUCTION

shared mutable state. In fact, in such a setting, the overall computation remains essentially
functional. Some recent approaches try to address this problem but either diverge from
a pure propositions-as-types foundation or fail to deliver the expected metatheoretical
properties.

In this thesis, we develop CLASS, a core session-typed language with shared affine
state. CLASS builds on top of the propositions-as-types correspondence between session
types and second-order classical linear logic, extended with inductive types. The typing
rules for the imperative fragment are inspired by those for the exponentials of differential
linear logic (DiLL).

In CLASS, well-typed programs do not go wrong. They never deadlock on com-
munication or reference cell acquisition and do not leak memory. Furthermore, they
always terminate, which is a challenging result in the presence of first-class reference
cells, higher-order polymorphic functional code and even recursion. These properties
are established by lifting the basic acyclicity of communication topologies in linear logic
to shared state, without the need to resort to ad-hoc devices such as partial orders. The
proposition-as-types CLASS foundations then allows us to reason about the behaviour of
concurrent stateful processes by doing algebraic program manipulations.

Any type discipline imposes a tradeoff between expressiveness and safety, language
CLASS offers a relevant and interesting balance. The reference cells of CLASS are first-
class objects which can be communicated around and shared dynamically by an arbitrary
number of concurrent threads. Furthermore, in CLASS we can express a significant set
of realistic examples, ranging from booleans and naturals to stateful memory-efficient
linked data structures, such as linked lists and binary search trees, up to mutable shareable
concurrent ADTs such as counters, stacks and queues. We can even express solutions to
famous synchronisation problems such as the dining philosophers, which are guaranteed
to be safe (deadlock-free) purely by the logical correspondence.

The feasibility of our propositions-as-types approach is witnessed by the implementa-
tion of a type checker and interpreter in Java for CLASS, which pragmatically validates
and guides the development of many complex programs. The metatheoretical properties
of CLASS provide strong guarantees for the implementation, which hold even when
running complex examples. For instance, when running tests on our concurrent shareable
ADTs, where everything is implemented using pure session-based processes, from the
high-level ADTs menus to the basic inductive datatypes such as lists, the implementation
spawns thousands of short-lived threads that synchronise perfectly thanks to the linear
logic foundations.

The rest of the chapter is organised as follows. Section 1.1 presents the propositions-
as-types correspondence between logic and computer science. Then, Section 1.2 focuses
on the particular correspondence between session types and linear logic. Section 1.3
presents the challenges of bringing shared mutable state into the picture and Section 1.4
gives a taste of our proposed solution by giving a high-level overview of CLASS. Finally,
Section 1.5 presents our contributions and lays out the thesis outline.

2

1.1. PROPOSITIONS-AS-TYPES

1.1 Propositions-as-Types

Propositions-as-types is a correspondence between logic and computer science. This
correspondence is established by setting a back-and-forth map between two structures: (a)
a deductive proof system for some logic and (b) a typed programming language. This map
establishes a kind of dictionary in which propositions of a logical system are interpreted
as types of a typed programming language, proofs as programs and proof simplification
as program evaluation.

To illustrate, we will consider the seminal instance of propositions-as-types, that
connects intuitionistic logic with the simply-typed �-calculus. It was initially discovered
by Curry [41, 42] and then worked by Howard [76], hence proposition-as-types goes also
by the name of the Curry-Howard correspondence. We consider the implicational fragment
of intuitionistic logic, where propositions include propositional variables and can be
combined with the implication→ connective. On the other hand, types in the simply-
typed �-calculus include type variables and can be combined with the functional arrow
→. On purpose, we use the same notation to denote implication and functional arrow,
because they are connected via proposition-as-types: a proof of the proposition 𝐴→ 𝐵 is
witnessed by a function that converts a proof of 𝐴 into a proof of 𝐵. This interpretation of
propositions goes by the name of the Brouwer-Heyting-Kolmogorov interpretation and it is
considered the standard explanation of intuitionistic logic [8].

Judgments of intuitionistic logic are of the form Γ ⊢ 𝐴 and can be read as follows: from
a set of assumptions Γ we derive conclusion 𝐴. The rules of the deductive proof system
for this logic are

[ax]
Γ, 𝐴 ⊢ 𝐴

Γ, 𝐴 ⊢ 𝐵
[→I]

Γ ⊢ 𝐴→ 𝐵

Γ ⊢ 𝐴→ 𝐵 Γ ⊢ 𝐴 [→E]
Γ ⊢ 𝐵

The identity axiom rule [ax] states that every assumption is a conclusion. Rule [→I]
introduces the implication connective→ and it states that we can derive 𝐴→ 𝐵, whenever
we can derive the conclusion 𝐵 assuming 𝐴. Finally, rule [→E] is the elimination rule for
→ and corresponds to modus ponens: we can derive 𝐵, whenever we derive both 𝐴→ 𝐵

and 𝐴.
On the other hand, processes of the simply-typed �-calculus include process variables

𝑥, 𝑦, 𝑧, . . . and can be combined by defining �-abstractions �𝑥 : 𝐴. 𝑀 - which correspond
to function definitions - and can also be combined by function application 𝑀𝑁 - where
function 𝑀 is applied to input 𝑁 . The defining rules of the type system are as follows

[var]
Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵
[abs]

Γ ⊢ �𝑥 : 𝐴. 𝑀 : 𝐴→ 𝐵

Γ ⊢ 𝑀 : 𝐴→ 𝐵 Γ ⊢ 𝑁 : 𝐴 [app]
Γ ⊢ 𝑀𝑁 : 𝐵

If we forget the term annotations of the typing rules we obtain precisely the rules for
intuitionistic logic, namely [var] corresponds to the identity axiom [ax], [abs] to the
introduction rule [→I] and [app] to modus ponens, rule [→E].

3

CHAPTER 1. INTRODUCTION

One of the immediate practical consequences of the correspondence is that then we
obtain a notation for proofs, we can write them as if they were programs. For example,
the proof of proposition 𝐴→ 𝐴, on the left side, is denoted by the identity function, on
the right

[ax]
Γ, 𝐴 ⊢ 𝐴

[→I]
Γ ⊢ 𝐴→ 𝐴

[var]
Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

[abs]
Γ ⊢ �𝑥 : 𝐴. 𝑥 : 𝐴→ 𝐴

Another example: the proof of proposition 𝐴→ (𝐵→ 𝐴), on the left side, is interpreted
as the 𝐾 combinator, which defines a constant function 𝐵 → 𝐴, that always returns 𝑘
regardless of the argument 𝑥, displayed on the right

[ax]
Γ, 𝐴, 𝐵 ⊢ 𝐴

[→I]
Γ𝐴 ⊢ 𝐵→ 𝐴 [→I]

Γ ⊢ 𝐴→ (𝐵→ 𝐴)

[var]
Γ, 𝑘 : 𝐴, 𝑥 : 𝐵 ⊢ 𝑘 : 𝐴

[abs]
Γ, 𝑘 : 𝐴 ⊢ �𝑥 : 𝐵. 𝑘 : 𝐵→ 𝐴

[abs]
Γ ⊢ �𝑘 : 𝐴. �𝑥 : 𝐵. 𝑘 : 𝐴→ (𝐵→ 𝐴)

This opens a vast array of applications, because then we can have these proofs/pro-
grams mechanically checked by a computer and we can even use computers to help us in
the complex, and sometimes daunting task, of finding proofs for our propositions. Indeed,
several proof assistants and automated theorem provers were inspired by the correspon-
dence, like for example Agda [19], Coq [40, 16], Isabelle [115] and Lean [111], to name
just a few. Interestingly, this has led to the formalisation of a huge body of mathematics
and even to the formal verification of complex pieces of software, as exemplified by the
CompCert project [96].

Another consequence of propositions-as-types, one that we will explore in this thesis,
is to lay principled foundations for programming languages. Programming languages
built on top of a consistent logical theory automatically enjoy some desirable properties.
For example: no program blocks when executing (deadlock-freedom), the outcome of a
program is independent of the order in which instructions are executed (confluence), each
program has a normal reduced form that summarises its behaviour (cut normalisation), all
programs terminates (strong normalisation) and we can reason about program behaviour
in a very simple and algebraic-like way (algebraic reasoning). Overall, these properties can
save a lot of programming bugs, ease the task of building complex large-scale programs
and are even used to improve program efficiency in a calculational way [103].

Propositions-as-types is a notion widespread in the field of computer science and
inspires the development of real-world programming languages. The core simply-typed
lambda calculus has influenced the development of programming languages such as
Lisp [140], Haskell [78] and Scala [117]. After the seminal correspondence by Curry and
Howard, several other instances were discovered like, for example, the correspondence
between second-order logic and the polymorphic system F [62, 130], this has established
the logical underpins of data abstraction [109] and has inspired the design of generics
in the Java programming language [20]. Even classical logic was given a computational
interpretation [120] by propositions-as-types, where the famous Peirce’s law corresponds
precisely to the type of continuation operators such as Scheme’s call/cc.

4

1.2. SESSION TYPES AND LINEAR LOGIC

These are just some examples, we refer the interested reader to [159] for an engaging
expository overview of propositions-as-types and [66, 139] for those wishing to pursue a
deeper technical study of the subject.

In this thesis, we shall be particularly interested in an instance of a propositions-
as-types correspondence, that was established roughly a decade ago and that sets the
foundations for session-based concurrent programming. More specifically, it connects
session types to linear logic, and it will be presented in the following section.

1.2 Session Types and Linear Logic

In this section we discuss the propositions-as-types correspondence that connects session
types and linear logic. Let us start with session types, which are protocols that structure
the interaction of communicating processes. They were initially developed by Kohei
Honda [73] and further adapted in [74]. In session-typed based systems, processes
communicate through sessions. A session has two endpoints and each endpoint has an
associated session type that describes the direction, order and the content of the exchanged
messages.

The type system then guarantees that each endpoint user will follow the protocol dic-
tated by its associated session type (session fidelity). As a consequence, communication
between the two users of a session will run smoothly as in a perfectly synchronised inter-
action and there will be no mismatch between the type of exchanged data (communication
safety).

Session types are a prolific research topic with several variants found in the literature,
for example: multiparty [72], exceptional [57] and gradual session types [79]. Naturally,
you also find them in the practical world of computing: they have inspired the development
of some programming languages such as Links [39] and are also embedded in existing
languages such as C [113], Java [77, 114], Haskell [127, 97] and Rust [81, 36], to name just
a few. We refer the interested reader to [48, 153] for an introduction to the topic.

On the other hand, linear logic is a resource-sensitive logic developed (or discovered,
if you will) by Girard [64]. It is essentially a substructural logic [129] that limits the appli-
cation of weakening (the ability to discard resources) and contraction (the ability to copy
resources) to only certain propositions, whereas in traditional classical and intuitionistic
logic there is no such control. In other words, in traditional logic you can have a cake and
eat it too, whereas in linear logic this is not the case: if you eat the cake then you do not
have it and, furthermore, you must eat the cake. There are some other substructural logics,
called affine, that relax this latter restriction and allow you to trash the cake without eating
it. Interestingly, these kind of affine or ownership type systems [38, 45] are at the base of
the popularity-growing programming language Rust [86].

Since its development, linear logic was looked upon as a promising avenue to establish
the foundations of concurrent stateful programming languages [156]. A connection to
computation was initially hinted by the works of Abramsky [1] and Bellin and Scott [14].

5

CHAPTER 1. INTRODUCTION

However, we would have to wait roughly two decades to see the foundations consolidated
by the works of Caires and Pfenning [23] and Wadler [157], which finally established a
propositions-as-types correspondence between session types and linear logic.

This correspondence revitalised the field and lead to a prolific exploration of further
orthogonal logical or computational concepts, such is the modularity of a propositions-
as-types approach. For example, the correspondence was extended in order to include
parametric polymorphism [32, 157], dependent types [148], code mobility [144], multiparty
protocols [22, 34], recursion [146, 99] and control effects [28].

By basing the development of session types on linear logic, the type system imposes
a couple of conditions that guarantee that well-typed programs do not go wrong. Since
processes cannot simply drop their session endpoints (no-weakening) they must fully
follow the protocol until the end and, therefore, cannot leave other processes hanging for
a message that will never arrive. Furthermore, the linear logic correspondence ensures
that communication topologies are acyclic by construction. This acyclicity is then key to
guarantee, on one hand, that programs do not block (deadlock-freedom) and, at the same
time, that they do not diverge infinitely (termination). Remarkably, these properties are
guaranteed at static time by the lightweight session type system.

Unfortunately, the correspondence with linear logic limits the expressiveness of the
computational model as it rules out programs involving shared mutable state. Session
typed programs based on the correspondence exhibit parallelism, in the sense that many
sessions may run simultaneously and independently, but there is no sharing of linear
sessions (no contraction). There is a limited form of sharing (applied to the so-called
exponential or unrestricted sessions) which allows processes to invoke the same replicated
server. Nonetheless, this shared server behaviour is identical for each invocation (cf.
uniform receptiveness of shared names [136]), in other words: these replicated servers are
stateless. In such a setting, the overall computation remains essentially functional [149],
which is not surprising given the well known interpretations of linear logic as linear
lambda calculi.

The problem is that shared mutable state is an essential ingredient of everyday pro-
gramming that cannot simply be overlooked. But a successful attempt of integrating
shared state into the propositions-as-types correspondence with linear logic [23, 157]
faces several challenges. Because, as soon as we bring state into the picture some of
the previously mentioned good theoretical properties offered by propositions-as-types are
easily compromised. This is a topic that we shall explore further in the next section.

1.3 Shared State

A process behaviour is often stateful as it often depends on the history of its previous
interactions. Furthermore, this state is often shared by several entities, as in, for example,
a shared bank account. Besides being naturally present, shared state is also exploited
in programming to speed up some computations or even to code memory-efficient data

6

1.3. SHARED STATE

structures such as linked lists. As a consequence, either of it being natural or of having
a practical value, we may find shared state present in several programming languages.
For example, in imperative or object-oriented languages such as C, C++ and Java, but
even functional programming languages such as Haskell offer support for shared mutable
state.

However, despite its ubiquity and practical value, programming with and reasoning
about shared mutable state is quite hard, error-prone and the source of many bugs,
particularly in the presence of other language features that are usually associated such as
concurrency and aliasing. One immediate consequence of having shared state is that we
no longer have referential transparency - the ability to replace equals by equals without
changing the value of an expression. This force us to forgo equational program behaviour
and the opportunity to simplify programs by doing simple algebraic-like manipulations.

Furthermore, if one wants to avoid data corruption, some form of thread synchronisa-
tion must be imposed in order to guarantee mutual exclusion by resorting, for example, to
semaphores [50] or synchronisation monitors [68]. Unfortunately, then it becomes quite
easy to express deadlock programs which are the source of many bugs [101]. Addition-
ally, the interaction with other language features might have undesired consequences.
For example, with first-class reference cells and recursion we can potentially express
non-terminating programs such as the Landin’s knot, compromising the normalisation
properties.

Given its importance, we do not want to give up shared state, nonetheless we would
like to mitigate some of its negative consequences. This is, in fact, a prolific research topic
which has lead to the exploration of several programming abstractions, logics and type
systems that in some way or another try to discipline the usage of shared mutable state
like, for example [4, 31, 112, 116, 156, 141, 85].

Other approaches even build on top or are inspired by the propositions-as-types
correspondence between session types and linear logic [10, 11, 7, 91, 128]. But, overall,
they either diverge from a pure logic approach or fail to deliver the good metatheoretical
properties, expected by propositions-as-types. For example, the work [11] relies on ad-
hoc partial orders, whereas [7, 91] give up some important properties like confluence or
algebraic reasoning. Furthermore, some of these approaches do not interact well with
further orthogonal language constructs such as polymorphism, dependent types, control
effects and even recursion.

It is the purpose of this thesis to show that the propositions-as-types correspondence
between session types and linear logic is nevertheless sufficient to seamlessly accommo-
date shared mutable state, thereby laying the solid foundations for concurrent stateful
programming. We show how this can be done without sacrificing the desirable metathe-
oretical properties, that should naturally follow from the basic linear logic foundation.
And while still retaining a considerable degree of language expressiveness and the ability
to accommodate other language constructs. In the next section we give an overview of
the approach.

7

CHAPTER 1. INTRODUCTION

1.4 A Taste of CLASS

We will now give a high-level overview of the session-typed language CLASS, developed
in this thesis, presenting some simple examples.

The Basic Language �CLL

The starting point is the pure fragment �CLL, which CLASS extends with stateful im-
perative constructs. Language �CLL is related, via propositions-as-types [23, 24, 157], to
second-order classical linear logic, here extended with mix and inductive/coinductive
session types.

In �CLL processes interact through session endpoints 𝑥which satisfy a certain protocol,
described by a session type 𝐴. Session types are structured by an involutive operation of
duality 𝐴 ↦→ 𝐴, where 𝐴 and 𝐴 are dual types, that corresponds to linear logic negation
and guarantees that interactions occur always on matching dual pairs, i.e. when one
process sends, the other receives, when offers a menu, the other chooses from that menu,
and so on.

In �CLL, the basic fundamental operation to compose processes is expressed by the
cut construct

cut {𝑃 |𝑥 | 𝑄}

that composes two processes 𝑃 and 𝑄 offering duality-related behaviours on each session
endpoint 𝑥. In a cut cut {𝑃 |𝑥 | 𝑄}, processes 𝑃 and 𝑄 run concurrently communicating
through a single private session 𝑥. This restriction - that two concurrent processes interact
through a single session - guarantees acyclicity on the process communication topologies,
which then implies desirable metatheoretical properties such as the absence of deadlocks.

Another way of composing processes is given by par {𝑃 | | 𝑄} where 𝑃 and 𝑄 run in
parallel without ever interfering with each other. This corresponds to linear logic mix rule.
�CLL also has the bidirectional forwarding construct fwd 𝑥 𝑦, that corresponds to the
identity axiom of linear logic and computationally acts as a link between two dual-typed
endpoints 𝑥 and 𝑦, forwarding all the interactions with 𝑥 to 𝑦 and vice-versa.

The basic propositional fragment of �CLL comprises the multiplicative units 1/⊥ that
type session termination, the additives 𝐴 N 𝐵/𝐴 ⊕ 𝐵 type menu offer and selection and
the multiplicatives 𝐴 ⊗ 𝐵/𝐴 O 𝐵 that type session communication. We also have the
exponentials !𝐴/?𝐴 that satisfy weakening and contraction and type replicated sessions
and their invocation by clients.

�CLL also has existential and universal type-quantifiers ∃𝑋.𝐴 /∀𝑋.𝐴, which are inter-
preted by processes that respectively send and receive types. The type-quantifiers play a
key role to define abstract data types (ADTs) and generic parametric processes. Finally, the
inductive/coinductive session types �𝑋. 𝐴/�𝑋. 𝐴 allows us to type recursive/corecursive
processes.

8

1.4. A TASTE OF CLASS

Language �CLL has already an interesting level of expressiveness, which compares
with system F [149, 66]: we can capture some useful patterns of communication-based
concurrency like session delegation and information hiding, we can even code basic
datatypes such as booleans and naturals. For example, the inductive datatype Nat of the
naturals is encoded in �CLL as

Nat ≜ �𝑋. ⊕ {|Z : 1 |S : 𝑋}

A session 𝑥 : Nat chooses either Z (zero), in which case it closes, or S (successor) in
which case it recurs as 𝑥 : Nat. Then, processes 𝑉0(𝑛), 𝑉1(𝑛), 𝑉2(𝑛) . . . offering a behaviour
of type Nat on session 𝑛, and corresponding to the naturals 0, 1, 2, . . ., are encoded as

𝑉0(𝑛) ≜ Z 𝑛; close 𝑛 𝑉1(𝑛) ≜ S 𝑛; Z 𝑛; close 𝑛 𝑉2(𝑛) ≜ S 𝑛; S 𝑛; Z 𝑛; close 𝑛 . . .

That is, each process 𝑉𝑘(𝑛) chooses 𝑘 times option S on session 𝑛, after which it chooses Z
and closes.

Whereas inductive types allows us to define recursive data structures, coinductive
types allows us to define corecursive process definitions. Forexample, process double(𝑛, 𝑚)
produces the double of natural 𝑛 on 𝑚:

double(𝑛, 𝑚) ≜ case 𝑛{ Z : wait 𝑛; V0(𝑚)
S : cut {double(𝑛, 𝑘) |𝑘 | S 𝑚; S 𝑚; fwd 𝑚 𝑘}}

It starts by pattern matching on 𝑛: if 𝑛 chooses Z (zero) we simply wait for 𝑛 to be closed
and continues as the natural V0(𝑚) on 𝑚. Otherwise: if 𝑛 chooses S (successor) we spawn
a corecursive call double(𝑛, 𝑘) that interacts with its continuation and produces its double
in 𝑘. The corecursive call is composed via a cut on 𝑘 with a process that chooses twice S
on 𝑚 and then forwards to 𝑘.

Further examples can be expressed such as shared replicated boolean calculators. For
example, the following process

calculator(𝑠) ≜
!𝑠(𝑐);
case 𝑐 {
|dis : recv 𝑐(𝑥);

par {discard(𝑥) | | close 𝑐}
|neg : recv 𝑐(𝑥);

send 𝑐(𝑦.not(𝑥, 𝑦));
close 𝑐

|conj : recv 𝑐(𝑥);
recv 𝑐(𝑦);
send 𝑐(𝑧.and(𝑥, 𝑦, 𝑧));
close 𝑐

}

9

CHAPTER 1. INTRODUCTION

defines a boolean calculator calculator(𝑠) that persistently (as indicated by the bang !)
offers a menu of three options: disc, to discard an inputted boolean 𝑥; neg, to compute the
logical negation of an inputted boolean 𝑥; and conj, to compute the logical conjunction of
two inputted booleans 𝑥 and 𝑦. On each invocation on session 𝑠, the calculator spawns a
session 𝑐 to interact with the client, the session is explicitly closed in the end.

However, in �CLL computation is essentially functional: there are no side effects, no
races and shared objects are stateless. We will see next how to bring shared state into the
picture.

Reference Cells and Cell Usages

CLASS extends �CLL with basic imperative stateful operations, which are comprised by
reference cells and cell usages, as displayed below

(1) cell 𝑐(𝑎.𝑃) (3) release 𝑐
(2) empty 𝑐 (4) take 𝑐(𝑎);𝑄

(5) put 𝑐(𝑎.𝑄1);𝑄2

The process expressions (1) and (2) define reference cells on a session 𝑐. In CLASS a cell
can either be full (1) or empty (2), typed by the modalities S 𝑓 𝐴 (state full) and S𝑒 𝐴 (state
empty), respectively. When the cell is full it stores a session 𝑎, the behaviour of which is
implemented by a certain process 𝑃.

If in one endpoint of the session 𝑐 we have reference cells, in the other we must have
cell usages (3), (4) and (5), which are typed either by U 𝑓 𝐴 (usage full) or U𝑒 𝐴 (usage
empty). In (3) we are simply releasing a full cell usage 𝑐 : U 𝑓 𝐴, this corresponds to
coweakening in DiLL [53] and must be explicitly indicated in CLASS.

We can also take the session stored in a full reference cell 𝑐, as expressed in (4), after
which the cell becomes empty. The stored session is then accessed by input parameter 𝑎
and processed by the continuation 𝑄.

In CLASS, each reference cell has an implicit lock which is acquired with the take
operation. The continuation 𝑄 of the take must then release the lock by putting a new
session in the empty cell, after which the cell becomes full again. This lock-releasing is
done with (5), which puts a new session 𝑎, the behaviour of which is implemented by
process 𝑄1, and then continues as 𝑄2. The take operation shifts a usage from full U 𝑓 𝐴 to
empty U𝑒 𝐴, whereas put does the converse.

Affine Stored State

In CLASS, besides linear and persistent, sessions can also be affine. Affine sessions
are types by the modality ∧𝐴 and represent well-behaved discardable sessions (satisfy
weakening), that, when discarded, safely discard all the sessions they hereditarily refer to,
as in [6](akin to cascading deletes in relational databases). The use of affinity is pervasive
in many substructural type systems [3, 150, 38, 33, 110, 28, 57], either to express general

10

1.4. A TASTE OF CLASS

resourceful programming or to model failures and exceptions, and it has also recently
made its way into the practical world of programming with its adoption by Rust.

In CLASS, all the sessions stored by reference cells are affine. This is an essential
restriction since reference cells must be released when no longer needed. And in order
to release a reference cell, we must be able to safely discard the session that it stores,
otherwise leaks or deadlocks may occur, hence affinity.

Furthermore, cell deallocation in CLASS is handled automatically through the interplay
of a couple of simple process algebraic-like manipulations. This automatic memory
management contrasts with [128], in which resources need to be explicitly discarded by
programmers or even with [10], where memory management is left as an open problem.

A Stateful “Hello World”

To illustrate the concepts introduced so far, we will consider a basic programming example
in CLASS of a reference cell storing a natural and two atomic imperative operations, one
for incrementing and other for getting the natural stored in the cell.

Let us start with the following definition

init(𝑐) ≜ cell 𝑐(𝑛.affine 𝑛; V42(𝑛))

This defines a process init(𝑐) that behaves as a reference cell on session 𝑐 : S 𝑓 Nat. The cell
is initially storing the affine natural 42.

We will now define an increment cell usage operation

inc(𝑐) ≜ take 𝑐(𝑛);
put 𝑐(𝑚. affine 𝑚;

use 𝑛;
succ(𝑛, 𝑚));

release 𝑐

Process inc(𝑐) offers the dual behaviour 𝑐 : U 𝑓 Nat, and takes the affine natural 𝑛 stored
in the reference cell 𝑐. Then, it puts back the successor of 𝑛, after which it releases its cell
usage.

We also define an operation that gets the natural stored in the reference cell

get(𝑐, 𝑥) ≜ take 𝑐(𝑛);
par{

use 𝑛;
send 𝑥(𝑛);
close 𝑥
| |
put 𝑐(𝑚.affine 𝑚;𝑉0(𝑚));
release 𝑐
}

11

CHAPTER 1. INTRODUCTION

Process get(𝑐, 𝑥) offers the behaviours 𝑐 : U 𝑓 Nat and 𝑥 : Nat ⊗ 1. It takes the natural 𝑛
stored in the reference cell 𝑐 and outputs 𝑛 in the session channel 𝑥, after which it closes 𝑥.
This output-and-close sequence of interactions on 𝑥 can, for example, represent the action
of printing the natural in the console. In parallel, get(𝑐, 𝑥) resets the cell to 0 and releases
its cell usage.

Finally, we define two simple systems that composes, via cuts on session 𝑐, the reference
cell and with the operations to increment and get

system1 ≜ cut {init(𝑐) |𝑐 | inc(𝑐)} system2(𝑥) ≜ cut {init(𝑐) |𝑐 | get(𝑐, 𝑥)}

When evaluating system1, the cell on 𝑐 will end up storing the natural 43. On the other,
system2(𝑥) reduces to a process in which the natural 42 is being transmitted on channel 𝑥,
this time the cell 𝑐 ends up storing the natural 0. Both threads inc(𝑐) and get(𝑐, 𝑥) release
their usages 𝑐 and, in this case, since the cell is not being shared by any other thread, this
leads to cell deallocation in both systems.

Shared State

Until now, we have only considered sequential cell usage operations. But one of the
advantages of having state is to be able to share it among cooperative threads. Sharing in
CLASS is introduced by the operation

share 𝑐 {𝑃 | | 𝑄}

in which threads 𝑃 and 𝑄 are running concurrently and sharing reference cell usage 𝑐.
Sharing relates to DiLL cocontraction [53], this can be understood as a disciplined fork

operation, in which 𝑃 and 𝑄 may linearly interact at the shared reference 𝑐, but not on
other shared sessions. This condition is related with the basic linear logic cut (cf. [23, 157],
where two threads cannot interact on more than one channel. Cocontraction is essential
to ensure deadlock-freedom by purely logical means.

Revisiting our stateful “hello world” we can now define the following system

system3 ≜ cut {init(𝑐) |𝑐 | share 𝑐 {obs(𝑐, 𝑥) | | inc(𝑐) | | inc(𝑐)}}

in which the reference cell init(𝑐) is composed with three concurrent threads, two of them
are incrementing and there is one observing the stored natural.

Well-Behaved Cell Usages

The fine-grained type system of CLASS distinguishes between full and empty state at the
type level, with the prefixed state/usage modalities S 𝑓 𝐴/U 𝑓 𝐴 and S𝑒 𝐴/U𝑒 𝐴. This
has some pleasant consequences, among which allows us to rule out wrong cell usage
scenarios statically. Add the basic acyclicity, granted by the linear logic foundations and
we have the guarantee that stateful programs in CLASS are deadlock-free, purely by
construction.

12

1.4. A TASTE OF CLASS

This fine-grained type level distinction contrasts with some typed systems, like for
example typed Concurrent Haskell MVars [83, 102], in which both full and empty state are
aggregated under a single type. As a consequence, programs that use MVars in Haskell
can cause runtime errors aborting the whole computations if a put is ever attempted in a
full MVar, whereas in CLASS these wrong cell usages are excluded at compile time.

Actually, this type level distinction between the full and empty states is also present
in Rust [86] mutexes (see std::sync::Mutex). However, the linear logic based type system of
CLASS exclude misbehaved guarantees at compile-time the absence of deadlocks, whereas
in Rust, mutex-based programs can block.

Therefore, in CLASS, the take-put dynamics follows the usual safe pattern of mutex-
protected objects in which each lock-acquire (take) must be followed by a lock-release
(put). Furthermore, in CLASS, the lock and the data it protects are tightly associated since
one must acquire the data with a take operation before any update. This contrasts with
the mutex-based style of programming, e.g mutex synchronisation in POSIX threads API,
in which one might forget to acquire the lock before updating, leading to data corruption.

Reference Cells are First-Class

In CLASS, reference cells are first-class objects. Therefore, they can be passed around
communication channels or even being used to code pointed data structures such as linked
lists and binary search trees. To illustrate the first point consider the following system in
which we compose a reference cell with two communicating threads

cut {cell 𝑐(𝑎.𝑉) |𝑐 | send 𝑥(𝑐);𝑃 |𝑥 | recv 𝑥(𝑐′); release 𝑐′𝑄}

The composition is done with an 𝑛-ary cut, which is left associative. In this example, a cell
usage 𝑐 is sent along channel 𝑥 to the receiver, that frees it upon reception on the input
parameter 𝑐′. Notice that the sending thread send 𝑥(𝑐);𝑃 loses access to the reference cell
𝑐, it transfers ownership of 𝑐 to the receiving thread. This is because reference usages are
linear sessions, whose visibility may only be duplicated by the explicit share construct.

To illustrate the second point, we will show how recursion coupled with higher-order
state allow us to program interesting linked data structures that support memory-efficient
updates in-place. Consider the following mutual recursive pair of type definitions that
express linked lists LL(𝐴), which store affine sessions 𝐴 (recall that in CLASS every value
is represented as a session)

LL(𝐴) ≜ S 𝑓 Node(𝐴)
Node(𝐴) ≜ ⊕{Null : 1,Next : ∧𝐴 ⊗ LL(𝐴)}

A process offering the recursive type LL(𝐴) behaves as a cell which stores a node of session
Node(𝐴). A session of type Node(𝐴) either chooses Null if the list is empty, in which case it
closes; or chooses Next, in which case it sends an affine session ∧𝐴 representing the head
element and recurs as the tail LL(𝐴).

13

CHAPTER 1. INTRODUCTION

With some auxiliary processed, to be defined later, we can express a process

cut {cell 𝑐2(𝑛2.next(𝑎2 , 𝑐1 , 𝑛2)) |𝑐1 | cell 𝑐1(𝑛1.next(𝑎1 , 𝑐0 , 𝑛1)) |𝑐0 | cell 𝑐0(𝑛0.null(𝑛0))}

offering 𝑐 : LL(𝐴) and which codes a linked list with two elements 𝑎2 , 𝑎1.
We also define memory-efficient update in-place operations, like operation

1 : append(𝑙1 , 𝑛2 , 𝑙) ≜
2 : take 𝑙1(𝑛);
3 : use 𝑛;
4 : case 𝑛 {
5 : |#Null : wait 𝑛;
6 : put 𝑙1(𝑛′.fwd 𝑛2 𝑛

′);
7 : fwd 𝑙1 𝑙
8 : |#Next : recv 𝑛(𝑎);
9 : cut {
10 : append(𝑛, 𝑛2 , 𝑙

′)
11 : |𝑙′ |
12 : put 𝑙1(𝑛′.next(𝑎, 𝑙′, 𝑛′));
13 : fwd 𝑙1 𝑙}
14 : }

that corecursively appends node 𝑛2 to the tail of linked list 𝑙1 and outputs the updated list
in 𝑙. Process append(𝑙1 , 𝑛2 , 𝑙) takes the node 𝑛 stored in 𝑙1, uses 𝑛 and then performs case
analysis (ln. 2-4). If Null, it waits for 𝑛 to be closed and puts 𝑛2 in the list 𝑙1, after which 𝑙1
is forwarded to 𝑙 (ln.5-7). This corresponds to the base case in which list 𝑙1 is empty.

The coinductive step, in which 𝑙1 has at least one element is processed when 𝑛 chooses
Next. Then, it it receives the head element 𝑎 : ∨𝐴 on session 𝑛 (ln. 8), recursively appends
𝑛2 to the back of the linked list 𝑛 : LL(𝐴) (ln. 10) and puts on 𝑙1 a node whose head element
is 𝑎 and whose tail is the result 𝑙′ of the recursive call (ln. 12), after which it forwards the
updated usage 𝑙1 to 𝑙 (ln. 13).

These linked data structures are then the building blocks of further complex programs
in CLASS. In Example 4.3, they are used to solve famous resource synchronisation
problems like the dining philosophers [51], in which the order the order on the locks is
ingeniously represented by a passive linked chain. Deadlock-freedom follows by the basic
acyclicity of the linear logic, without needing to resort to extra-logical partial orders.

They are also used to program more complex mutable shareable ADTs such as the
imperative queue 4.2, which is based on a linked list and two independent pointers that
allows for concurrent enqueueing and dequeueing in 𝑂(1) time. Remarkably, even in
the presence of first-class reference cells and recursion, CLASS type system resiliently
precludes circularities in memory (such as the Landin’s knot). In fact, as we will show,
every well-typed program in CLASS terminates.

14

1.4. A TASTE OF CLASS

Nondeterminism and Algebraic Reasoning

Sharing of stateful reference cells leads to nondeterminism, which naturally emerge from
racy concurrent behaviour, specifically from concurrent take operations. In CLASS this
nondeterminism is captured by a non-collapsing sum operation

𝑃 +𝑄

which represents a choice between two alternatives 𝑃 and 𝑄. Sums are also present in
DiLL [53], where cut elimination needs to generate sums of proofs.

In CLASS, they satisfy the expected axioms of nondeterministic sums of process
algebras [67], like commutativity, associativity, idempotency and the basic interleaving
law that connects shared state with nondeterminism. Interestingly, in CLASS these laws
also have an interpretation at the proof level as typed conversions.

Sums play a key role in the metatheoretical model of CLASS as they allows us to
explicitly capture all the possible nondeterministic evolutions of a stateful system and,
because of that, to have a confluent notion of reduction. Remarkably, with sums we
can reason the behaviour of concurrent stateful programs equationally by doing simple
algebraic-like manipulations.

For example, consider the process

system3 ≜ cut {init(𝑐) |𝑐 | share 𝑐 {inc(𝑐) | | obs(𝑐, 𝑥)}}

which composes the previously defined reference cell init(𝑐), initially storing the natural 42,
with the concurrent threads inc(𝑐) and obs(𝑐, 𝑥) that, respectively, increment and observe.
Observation is done by communicating on session 𝑥 the stored natural in the cell 𝑐. The
value to be observed on 𝑥 will depend on the nondeterministic scheduling of the two
concurrent atomic actions. This will be either 42, if the observation happens before the
increment, or 43, otherwise.

In CLASS, we can rewrite system3 in the simplified equivalent form as a sum processes

cut {𝑉42(𝑛) |𝑛 | send 𝑥(𝑛); close 𝑥} + cut {𝑉43(𝑛) |𝑛 | send 𝑥(𝑛); close 𝑥}

which summarises the behaviour of the initial system. Notice that each summand is
pure process that does not use imperative constructs, even though the original system3

internally manipulates shared state. As we shall see, this is not a coincidence, but a
particular consequence of a cut normalisation result that we establish for CLASS.

A Simple Fork-Join

We conclude this overview with the implementation of a simple fork-join synchronisation
method in which a process waits for a number of concurrent threads to finish their work,
inspired in the Rust reference page for std::sync::Mutex. The fork-join FJ representation
datatype is encoded as a reference cell of two components

FJ ≜ S 𝑓 (!Nat ⊗ ∧⊥)

15

CHAPTER 1. INTRODUCTION

which are grouped with a tensor ⊗. The first component, encoded by a persistent natural
!Nat, counts the number of threads that have already finished their work. The second,
encoded by an affine bottom ∧⊥, represents the session used to signal the waiting thread
when all the threads have finished their job.

Code for each working thread is defined on the left

1 : thread(𝑠,max) ≜
2 : take 𝑠(𝑥);
3 : use 𝑥;
4 : recv 𝑥(𝑛);
5 : ?𝑛;
6 : if (𝑛 == max){
7 : par {
8 : use 𝑥;
9 : close 𝑥
10 : | |
11 : put 𝑠(𝑦.affine 𝑦;
12 : send 𝑦(𝑚.let! 𝑚 0);
13 : wait 𝑦; 0);
14 : release 𝑠
15 : }
16 : }{
17 : put 𝑠(𝑦.affine 𝑦;
18 : send 𝑦(𝑚.let! 𝑚 𝑛 + 1);
19 : fwd 𝑥 𝑦);
20 : release 𝑠}

1 : main() ≜
2 : cut{
3 : affine 𝑥;
4 : wait 𝑥;
5 : 𝑃

6 : |𝑥 |
7 : cell 𝑠(𝑦.affine 𝑦;
8 : send 𝑦(𝑛.let! 𝑛 1);
9 : fwd 𝑦 𝑥)
10 : |𝑠 |
11 : let! max 5
12 : |max|
13 : ?max;
14 : for spre : FJ to spost(𝑠, 𝑠′,max){
15 : share spre {thread(spre,max)
16 : | |
17 : fwd spre spost}}
18 : |𝑠′ |
19 : release 𝑠′

20 : }

Process thread(𝑠,max) takes the two components 𝑥 stored in the cell 𝑠 : FJ, uses 𝑥, receives
on 𝑥 the current counter 𝑛 and compares it with a maximum value max (ln. 2-6). If
the maximum value is reached, it signals the waiting thread by using and then closing
the session 𝑥 (ln. 8-9). In parallel, it resets 𝑠 to 0 and puts a dummy waiting session 𝑦

(ln. 11-13). If, on the other hand, the maximum value was not reached yet, we simply
increment the counter and put back the session 𝑥, used to signal the waiting thread (ln.
17-19). Both if and else clauses finish by releasing 𝑠 (ln. 14 and 20)

On the right, we define main() that composes, with several cuts (recall 𝑛-ary cut is left
associative), the following processes:

• the waiting thread on 𝑥 that, after waiting, continues as 𝑃 (ln. 3-4);

• a reference cell 𝑠 : FJ, that starts with counter on 1 and stores session 𝑥 to signal the
waiting thread (ln. 7-9);

• the parameter max, set to 5 (ln. 11);

16

1.5. CONTRIBUTIONS AND OUTLINE

• a for-loop that spawns a number max working threads, starting on 𝑠 to yield 𝑠′ (ln.
15-17);

• an operation that releases usage 𝑠′, after it being processed by the working threads
(ln. 9).

For the sake of presentation, we have used some idiomatic expressions like ML-like let
constructs, if-conditionals and for-loops, both of which can be implemented using pure
sessions in the pure fragment �CLL of CLASS. In particular, the for-loop can be compiled
into primitive recursion and iterates max times the loop body, that yields spost from spre.
The loop body share spre {...} essentially launches a new parallel thread with shared
access to the counter, and forwards a state alias for the next iteration, so that an arbitrary
number max of shared threads is created.

Notice that in CLASS the cell sharing topologies are dynamic since users can come and
go and, furthermore, they can grown potentially unbounded, as in this example, in which
an arbitrary number of shared threads is created within a for-loop. This contrasts with
some session-typed languages (e.g., [91]) in which the number of participants sharing a
session is statically bounded by the type system.

Interestingly, the waiting thread is wrapped as an affine on session 𝑥 since it can be the
case that session 𝑥 is never used and closed, in which the case 𝑥 has to be safely discarded.

In this implementation, clients can tamper with the representation of the fork-join
datatype but we will see later how to hide the implementation details with existential
types [109] and force the clients to manipulate the stateful objects with a provided interface.

The thesis discusses many more interesting examples, a shareable linked list with an
update in-place append operation, a concurrent queue, and also discuss how to express
and type resource synchronisation methods such as barriers and even a solution to the
famous dining philosophers problem. For all these programs, strong guarantees including
memory safety, deadlock-freedom, termination, and general absence of "dynamic bugs",
which survive even in the presence of our blocking primitives and higher-order state, are
automatically and compositionally implied by our type discipline based on propositions-
as-types and linear logic, which imposes crisp yet expressive acyclicity conditions on
channel communication topology and shared linked data structures. In the next section,
we present our contribution and outline the thesis structure.

1.5 Contributions and Outline

This thesis has the following original contributions

Linear Logical Foundations for Shared State. We build on the propositions-as-types ap-
proach to session-based concurrency [23, 24, 157] by defining CLASS: an extension
of classical linear logic with shared affine state. The system fully complies with the
propositions-as-types approach (proofs as programs, formulas as types, evaluation

17

CHAPTER 1. INTRODUCTION

as proof simplification). The typing rules for the imperative fragment are inspired
by those for the exponentials and sum connectives of differential linear logic (DiLL)
[54, 53]. In particular, we originally interpret the logical principle of cocontraction
from DiLL as state sharing, which is a key contribution of this thesis, and relate non-
deterministic sums with concurrency, via the interleaving law of process algebras,
which in our framework naturally appears as a typed conversion.

Language Expressiveness and Orthogonality. We showcase the expressiveness of lan-
guage CLASS by coding several examples, ranging from basic datatypes such as
booleans and naturals to stateful memory-efficient linked data structures, such as
linked lists and binary search trees, up to mutable shareable concurrent ADTs such
as counters, stacks and queues. We show that it is even possible to code resource syn-
chronisation methods in CLASS (fork-joins, barriers, dining philosophers), where
deadlock-freedom follows just by the linear logic based type system. Remarkably,
everything is coded by relying on pure linear logical sessions.

These examples also show how orthogonal type features combine well with the
imperative stateful framework. Namely, standard existential type quantifiers [35,
109] harmoniously combine with the basic stateful framework of CLASS in order
to define stateful ADTs, while the presence of basic inductive/coinductive session
types allows us to define linked data structures.

Metatheory. Building on top of a logic edifice pays off. We show that CLASS enjoys several
metatheoretical properties: deadlock-freedom, confluence, cut normalisation and
termination. Furthermore, because of our propositions-as-types approach we can
reason equationally about the behaviour of concurrent stateful programs. These
results follow from the correspondence with linear logic and are fully detailed in
this thesis. They adapt previous methods so as to accommodate shared mutable
state.

Type Checker and Interpreter. We show the feasibility of our propositions-as-types ap-
proach by implementing a type checker and interpreter in Java for CLASS. The
implementation is used to validate many examples such as inductive datatypes
(naturals, lists) using system F style encodings, linked data structures (linked lists,
binary search trees), and shareable concurrent mutable ADTs (bank accounts, stacks,
functional and imperative queues). We also developed a test suite.

An article was published in Proc. ACM Program. Lang. 5, ICFP 2021 [134], in which we
developed a concurrent session-typed language 𝜋SSL with first-class reference cells and
locks, based on a propositions-as-types correspondence with classical linear logic. The
publication is accompanied of a type checker and interpreter implementation, approved
as an artifact [131] and there is also a technical report [132] with complete definitions and
detailed proofs.

18

1.5. CONTRIBUTIONS AND OUTLINE

Language CLASS, presented in this thesis, is a natural outgrowth of 𝜋SSL, but results
from a more fundamental and expressive approach. In [133], the reader may find an
extended draft presenting CLASS together with a type checker and interpreter imple-
mentation with a creative commons license. The implementation comes with detailed
use instructions (README.md), the source code (folder src/) and an extensive (∼ 6k loc)
collection of examples (folder examples/). We refer to these examples throughout the thesis.

The thesis is split into two parts. In the first part we present the session-typed concur-
rent language CLASS, showcase its expressiveness andpresent its practical implementation.
More specifically:

Chapter 2. We present the session-typed process calculus �CLL which is related, via
propositions-as-types correspondence [23, 24, 157], to second-order classical linear
logic, here extended with mix and inductive/coinductive types. We also give a
tutorial-like presentation of �CLL going though each of the process constructs,
associated typing rules and operational semantics.

Chapter 3. We present CLASS, which extends �CLL with first-class stateful reference
cells, sharing and nondeterminism. We defines its type and process syntax, the
type system and the reduction-based operational semantics. We give a tutorial-like
presentation of CLASS, interspersed with several examples that illustrate the main
concepts.

Chapter 4. we exhibit the expressive powerof CLASS language and type system, by coding
several realistic examples: general corecursive protocols with some resource invari-
ant, a linked list, a solution to the dining philosophers problem and a concurrent
imperative queue.

Then, in the second, part we present the language metatheoretical results:

Chapter 6. We show that our stateful language CLASS satisfies the key safety properties
of type preservation (Theorem 1) and progress (Theorem 2), which in the context of
session-based concurrency entail session-fidelity and deadlock-freedom. Progress
follows naturally from the acyclicity inherent to linear logic.

Chapter 7. We establish that our system CLASS, internalising nondeterminism with sum
processes, enjoys confluence (Theorem 3). The proof relies on the Tait and Martin-
Löf technique and shows that proof reductions and conversions represent proof
identities or behavioural equivalences. This also reveals a new connection between
logic interpretations of programming languages, concurrency and nondeterminism.
We prove an interesting auxiliary result that shows that each process can be written
in an equivalent form by interleaving all the concurrent take operations and by
distributing sums.

19

CHAPTER 1. INTRODUCTION

Chapter 8. We establish a cut normalisation result for open processes in a sublanguage of
CLASS without second-order quantifiers and without inductive/coinductive session
types (Theorem 4) by adapting Pfenning’s structural cut elimination technique for
classical linear logic [122, 123].Then, it derives some corollaries: the Subformula
Property Corollary 1 and a Cut Elimination for Pure Sequents Corollary 2. The latter
implies that any process that potentially uses shared state internally, but that offers a
pure typing interface, normalises to a cut-free process that does not use imperative
constructs at all (Corollary 2).

Chapter 9. We prove strong normalisation (Theorem 5) for well-typed closed CLASS
programs, a challenging result in this setting, which strengthens the propositions-as-
types interpretation of our language. Our proof scales linear logical relations [121,
63, 9] to accommodate shared mutable state and relies on new techniques to handle
stateful computation and interference.

Finally, Chapter 10 offer some concluding remarks and present further research direc-
tions. Each chapter, with the exception of Chapter 4 and Chapter 10, is concluded with
a section in which we present further discussion and related work. Detailed proofs are
presented in appendices A-E.

20

Part I

The Concurrent Programming
Language CLASS

21

2

The Basic Language �CLL

2.1 Introduction

In this chapter we present the pure fragment of CLASS, dubbed �CLL. Sublanguage
�CLL is related, via a propositions-as-types correspondence [23, 24, 157], to second-order
classical linear logic, here extended with mix and inductive/coinductive types.

As typical of session-typed based programming languages [73, 74], in �CLL processes
communicate trough sessions 𝑥, 𝑦, 𝑧, A session has two endpoints, each with an
associated protocol described by a session type 𝐴, where we write 𝑥 : 𝐴 to indicate that
the session endpoint 𝑥 obeys type 𝐴. Session types describe the direction, the order and
the content of the messages exchanged. For example

𝑥 : Nat ⊸ Bool ⊗ 1

characterises an endpoint of a session 𝑥 that inputs a natural number, then outputs a
boolean and finally closes, after which no interaction can possibly occur. Furthermore,
session types are dynamic entities since they evolve as computation takes place. In the
referred example, after the natural being received, the protocol of the session changes to

𝑥 : Bool ⊗ 1

Session types are structured by an involutive operation of duality 𝐴 ↦→ 𝐴, where 𝐴
and 𝐴 are dual types, that corresponds to linear logic negation and captures symmetry
in interaction: when one process sends, the other receives, when offers a menu, the other
chooses from that menu, and so on.

In �CLL, the basic fundamental operation to compose processes is expressed by the
cut construct

cut {𝑃 |𝑥 | 𝑄}

that composes two processes 𝑃 and 𝑄 offering duality-related behaviours on each session
endpoint 𝑥. In a cut cut {𝑃 |𝑥 | 𝑄}, processes 𝑃 and 𝑄 run concurrently communicating
through a single private session 𝑥. This interactive composition corresponds to the cut
rule of linear logic. Cut restricts interactions to a single private session, this is essential

22

2.1. INTRODUCTION

Table 2.1: Types and actions of �CLL, together with their interpretation.

Type Corresponding Action(s) Interpretation

1 close 𝑥 Close 𝑥.
⊥ wait 𝑥;𝑄 Wait on 𝑥, continue as 𝑄.
𝐴N 𝐵 case 𝑥 {|inl : 𝑃1 | inr : 𝑃2} Case on 𝑥: left and continue as 𝑃1;

or right and continue 𝑃2.
𝐴 ⊕ 𝐵 𝑥.inl;𝑄1 Choose right on 𝑥, continue as 𝑄1.

𝑥.inr;𝑄2 Choose left on 𝑥, continue as 𝑄2.
𝐴 ⊗ 𝐵 send 𝑥(𝑦.𝑃1);𝑃2 Send 𝑦 on 𝑥, continue as 𝑃2.
𝐴O 𝐵 recv 𝑥(𝑦);𝑄 Receive 𝑦 on 𝑥, continue as 𝑄.
!𝐴 !𝑥(𝑦);𝑃 Replicated session on 𝑥 with parameter 𝑦.
?𝐴 ?𝑥;𝑄 Make 𝑥 unrestricted, continue as 𝑃.

call 𝑥(𝑦);𝑄 Call 𝑥 with input 𝑦, continue as 𝑃.
∃𝑋.𝐴 sendty 𝑥 𝐵;𝑃 Send on 𝑥 type 𝐵, continue as 𝑃.
∀𝑋.𝐴 recvty 𝑥(𝑋);𝑄 Receive on 𝑥 type 𝑋, continue as 𝑄.
�𝑋𝐴 unfold� 𝑥;𝑃 Unfold 𝑥, continue as 𝑃.
�𝑋𝐴 unfold� 𝑥;𝑄 Unfold 𝑥, continue as 𝑄.

corec 𝑋(𝑧, ®𝑤);𝑄 [𝑥, ®𝑦] Corecursive definition with body 𝑄.

to guarantees acyclicity on the process communication topologies, which then implies
desirable metatheoretical properties such as the absence of deadlocks.

Another way of composing processes is given by par {𝑃 | | 𝑄} where 𝑃 and 𝑄 run in
parallel without ever interfering with each other. This corresponds to linear logic mix rule.
�CLL also has the bidirectional forwarding construct fwd 𝑥 𝑦 that computationally acts
as a link between two dual-typed endpoints 𝑥 and 𝑦, forwarding all the interactions with
𝑥 to 𝑦 and vice-versa. Forwarding corresponds to the identity axiom of linear logic.

Table 2.1 lists the types 𝐴 of �CLL, together with the corresponding actions on a
session endpoint 𝑥 : 𝐴 and their interpretation. The multiplicative units 1/⊥ type session
termination, the additives 𝐴N 𝐵/𝐴 ⊕ 𝐵 type menu offer and selection, the multiplicatives
𝐴 ⊗ 𝐵/𝐴O 𝐵 type session communication. Then, the exponentials !𝐴/?𝐴 type replicated
sessions and their invocation by clients. The existential and universal type-quantifiers
∃𝑋.𝐴 /∀𝑋.𝐴 are interpreted by processes that respectively send and receive types and
play a key role for defining abstract data types (ADTs). The inductive/coinductive session
types �𝑋𝐴/�𝑋{𝑋/𝑋}𝐴 type recursive/corecursive process.

As typical of process calculi [15, 107, 75], �CLL has a reduction-based operational
semantics, which is defined by specifying a structural congruence relation ≡ that captures
the static laws, essentially rearranging processes, and a dynamic reduction relation→
that captures the evolution of a process as interaction takes place. For example, ≡ rule [0
M]

par {𝑃 | | 0} ≡ 𝑃

expresses that inaction 0 is a unit of the binary mix construct, whereas rule [CM]

cut {𝑃 |𝑥 : 𝐴| par {𝑄 | | 𝑅}} ≡ par {cut {𝑃 |𝑥 : 𝐴| 𝑄} | | 𝑅}

23

CHAPTER 2. THE BASIC LANGUAGE �CLL

linearly distributes a cut over a mix. For example, the reduction→ rule [1⊥]

cut {close 𝑥 |𝑥 : 1| wait 𝑥;𝑃} → 𝑃

models the interaction between a close and a wait: after the interaction the cut evolves
to the continuation 𝑃 of the waiting process. Rules of ≡ and → are connected to the
commuting and principal cut conversions of classical linear logic [23, 157].

As we shall see, �CLL is able to express general polymorphic higher-order concurrent
and functional programs, and compare in expressiveness with System F [149, 66]. We
will see, in particular, how to code basic datatypes such as booleans and naturals and
shared boolean calculators. Since everything is implemented by using pure linear logic
based sessions, by construction processes are guaranteed to be deadlock-free and always
terminate. However, in �CLL computation is essentially functional: there are no side effects,
no races and shared objects are stateless. In the next chapter we will explore how to lift
these restrictions to capture more interesting computational scenarios involving shared
state, without messing up with the linear logic foundations.

This chapter is organised as follows. Section 2.2 defines the process calculus �CLL and
its operational semantics. Then, in Section 2.3, we present the type system going though
each of the process constructs, associated typing and reduction rules. The introduced
concepts are illustrated with several examples. Finally, Section 2.4 concludes with further
discussion and related work.

2.2 Process Calculus and Operational Semantics

In this section, we define the process syntax and the reduction-based operational semantics
of �CLL.

Types and Duality

Since in �CLL processes depend on types, we start by presenting types and defining type
duality.

Definition 1 (Types). The types of �CLL are defined by

𝐴, 𝐵 ::= 𝑋 (type variable) | 𝑋 (dual of type variable)

| 1 (one) | ⊥ (bottom)

| 𝐴 ⊗ 𝐵 (tensor) | 𝐴O 𝐵 (par)

| 𝐴 ⊕ 𝐵 (plus) | 𝐴N 𝐵 (with)

| !𝐴 (bang) | ?𝐴 (why not)

| ∃𝑋.𝐴 (exists) | ∀𝑋.𝐴 (for all)

| �𝑋. 𝐴 (mu) | �𝑋. 𝐴 (nu)

24

2.2. PROCESS CALCULUS AND OPERATIONAL SEMANTICS

Types are composed from type variables, units (1, ⊥), multiplicatives (⊗, O), additives
(⊕, N), exponentials (!, ?), second-order type quantifies (∃, ∀) and inductive types (�,
�). The expressions ∃𝑋.𝐴, ∀𝑋.𝐴, �𝑋. 𝐴, �𝑋. 𝐴 all bind the type variable 𝑋 in 𝐴. The
expression {𝐴/𝑋}𝐵 denotes capture-avoiding substitution of type variable 𝑋 by 𝐴 in 𝐵.

We consider that the binary type connectives associate to the right, therefore the type
𝐴 ⊗ 𝐵 O 𝐶 should be parsed as 𝐴 ⊗ (𝐵 O 𝐶). Furthermore, we consider that the unary
operators !, ?, ∃𝑋, ∀𝑋, �𝑋 and �𝑋 have higher precedence that the binary connectives.
Therefore, the type !𝐴 ⊗ 𝐵 should be parsed as (!𝐴) ⊗ 𝐵.

Types are structured by an involutive operation 𝐴 ↦→ 𝐴 of duality that corresponds to
linear logic negation and captures symmetry in interaction.

Definition 2 (Duality on Types 𝐴). Duality 𝐴 is the involution on types defined by

1 ≜ ⊥ 𝐴 ⊗ 𝐵 ≜ 𝐴O 𝐵 𝐴 ⊕ 𝐵 ≜ 𝐴 N 𝐵

!𝐴 ≜ ?𝐵 ∃𝑋.𝐴 ≜ ∀𝑋.𝐴 �𝑋. 𝐴 ≜ �𝑋. {𝑋/𝑋}(𝐴)

For convenience, we define the lollipop type constructor by 𝐴 ⊸ 𝐵 ≜ 𝐴 O 𝐵, using
duality and par (O), which types session input.

Type-level duality is explicitly defined for half of the type connectives (1, ⊗, ⊕, ! and ∃,
�). Since it is an involution we can obtain the explicit definition for the other half (⊥, O, N,
?, ∀, �). For example, for the connective tensor ⊗, Definition 2 postulates

𝐴 ⊗ 𝐵 ≜ 𝐴O 𝐵

By instantiating the metavariables 𝐴 and 𝐵 with 𝐶 and 𝐷, respectively, yields

𝐶 ⊗ 𝐵 = 𝐶 O 𝐵

By applying duality to both sides of the equation and by using the involution property
𝑋 = 𝑋 to simplify the resulting expression, we obtain the explicit expression that gives
duality for the connective par O:

𝐶 ⊗ 𝐵 = 𝐶 O 𝐵

Duality preserves type substitution {𝐴/𝑋}𝐵 = {𝐴/𝑋}𝐵. As we shall see, duality
enforces a pleasant symmetry on process interaction, captured at the proof level by a
series of principal cut reductions.

Processes

We will now define processes of �CLL.

Definition 3 (Processes). The syntax of process terms for �CLL is defined in Fig. 2.1.

25

CHAPTER 2. THE BASIC LANGUAGE �CLL

𝑥, 𝑦, 𝑧, . . . ∈ 𝒩 (session names)

𝑃, 𝑄 ::= 0 (inaction)

| fwd 𝑥 𝑦 (forwarder)

| 𝒜 (action)

| 𝑋(𝑥, ®𝑦) (variable)

| par {𝑃 | | 𝑄} (mix)

| cut {𝑃 |𝑥 : 𝐴| 𝑄} (linear cut)

| cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} (unrestricted cut)

𝒜 ,ℬ ::= close 𝑥 (close)

| wait 𝑥;𝑃 (wait)

| 𝑥.inl;𝑃 (choose left)

| 𝑥.inr;𝑃 (choose right)

| case 𝑥 {|inl : 𝑃 | inr : 𝑄} (offer)

| send 𝑥(𝑦.𝑃);𝑄 (send)

| recv 𝑥(𝑦);𝑃 (receive)

| !𝑥(𝑦);𝑃 (replication)

| ?𝑥;𝑃 (unrestrict)

| call 𝑥(𝑦);𝑃 (call)

| sendty 𝑥 𝐴;𝑃 (send type)

| recvty 𝑥(𝑋);𝑃 (receive type)

| corec 𝑋(𝑧, ®𝑤);𝑃 [𝑥, ®𝑦] (corecursion

| unfold� 𝑥;𝑃 (unfold �)

| unfold� 𝑥;𝑃 (unfold �)
Figure 2.1: Processes 𝑃 of �CLL (extended by Fig. 3.1).

Processes depend on session names 𝑥, 𝑦, 𝑧, . . . and on variables 𝑋(𝑥, ®𝑦). The static
part of the syntax comprises inaction, mix, cut and cut!; the dynamic part includes actions
𝒜 ,ℬ, and forwarder. An action is typically a process 𝛼;𝑃, where 𝛼 is an action-prefix and
𝑃 is the continuation. In these cases, the subject 𝑠(𝒜) of an action𝒜 is the leftmost name
occurrence of𝒜. For example, the subject of the action send 𝑥(𝑦.𝑃);𝑄 is 𝑥. The subject of
corec 𝑋(𝑧, ®𝑤);𝑃 [𝑥, ®𝑦] is 𝑥.

For convenience, we equip �CLL with 𝑛-ary cut which is right-associative, encoded
using binary cuts as:

cut {𝑃1 |𝑥1 : 𝐴1 | . . . 𝑃𝑛−1 |𝑥𝑛−1 : 𝐴𝑛−1 | 𝑃𝑛} ≜ cut {𝑃1 |𝑥1 : 𝐴1 | . . . cut {𝑃𝑛−1 |𝑥𝑛−1 : 𝐴𝑛−1 | 𝑃𝑛}}

26

2.2. PROCESS CALCULUS AND OPERATIONAL SEMANTICS

Similarly, we also equip �CLL with 𝑛-ary mix

par {𝑃1 | | . . . 𝑃𝑛−1 | | 𝑃𝑛}

The expression cut {𝑃 |𝑥 : 𝐴| 𝑄} binds the name 𝑥 on processes 𝑃 and𝑄. cut! {𝑦.𝑃 |𝑥 :
𝐴| 𝑄} binds 𝑦 in 𝑃 and 𝑥 in 𝑄. Actions send 𝑥(𝑦.𝑃);𝑄, recv 𝑥(𝑦);𝑃, !𝑥(𝑦);𝑃, call 𝑥(𝑦);𝑃
bind 𝑦 on 𝑃. Action corec 𝑋(𝑧, ®𝑤);𝑃 [𝑥, ®𝑦] binds names 𝑧, ®𝑤 in 𝑃. All other name
occurrences are free. The set of free names of 𝑃 is denoted by fn(𝑃); if fn(𝑃) = ∅, we say 𝑃
is closed.

The expressions recvty 𝑥(𝑋);𝑃 binds the type variable 𝑋 on process 𝑃. All the other
type variable occurrences are free. Capture-avoiding substitution and 𝛼-conversion are
defined as usual. We denote by {𝑥/𝑦}𝑃 the process obtained by replacing the name 𝑦
by 𝑥 on 𝑃. Similarly, we denote by {𝐴/𝑋}𝑃 the process term obtained by replacing type
variable 𝑋 by type expression 𝐴 in process term 𝑃. If ®𝑥 and ®𝑦 are arrays of names with
the same length 𝑛 we let { ®𝑥/®𝑦}𝑃 denote the substitution { ®𝑥[0]/®𝑦[0]}(. . . { ®𝑥[𝑛]/®𝑦[𝑛]}𝑃).

Operational Semantics

We will now present the reduction-based operational of �CLL , which is defined by
specifying a structural congruence relation ≡ that captures the static laws, essentially
rearranging processes, and a a dynamic reduction relation→ that captures the evolution
of a process as interaction takes place.

Before defining structural congruence, we need to introduce process contexts. A
process context 𝒞 is a process expression containing a single hole □ [137]. For example,
the following

□ cut {□ |𝑥 : 𝐴| 𝑃} wait 𝑦; par {cut {𝑄 |𝑥 : 𝐴| □} | | 𝑃}

are both process contexts. We write 𝒞[𝑃] for the process obtained by replacing the hole
in 𝒞 by 𝑃 (notice that in 𝒞[𝑃] the context 𝒞 may bind free names of process 𝑃). Similarly,
given two process contexts 𝒞1 , 𝒞2, we write𝒞1[𝒞2] for the context obtained by replacing
the hole in 𝒞1 by 𝒞2. We define context composition by 𝒞1 ◦ 𝒞2𝒞1[𝒞2]. A process 𝑃′ is a
subprocess of 𝑃 if 𝑃 = 𝒞[𝑃′], for some process context 𝒞. We say that a relation ℛ is a
process congruence iff whenever 𝑃ℛ𝑄, then 𝒞[𝑃]ℛ𝒞[𝑄].

Definition 4 (Structural Congruence 𝑃 ≡ 𝑄). Structural congruence ≡ is the least relation on
processes that includes 𝛼-conversion and the rules in Fig. 2.2.

The basic rules of ≡ essentially reflect the expected static laws, along the lines of the
structural congruences / conversions in [23, 157]. Relation ≡ is an equivalence relation
(rules [refl], [symm] and [trans]) which satisfies the congruence rule [cong]. The binary
operators cut, forwarder and mix are commutative (rules [C], [fwd], [M]). Furthermore,
mix is associative (rule [MM]) and has the inaction process 0 as identity (rule [0M]). We
can linearly distribute the linear and the unrestricted cuts, where the distributions are

27

CHAPTER 2. THE BASIC LANGUAGE �CLL

Congruence Rules
𝑃 ≡ 𝑃 [refl]

𝑃 ≡ 𝑄 ⊃ 𝑄 ≡ 𝑃 [symm]

𝑃 ≡ 𝑄 and 𝑄 ≡ 𝑅 ⊃ 𝑃 ≡ 𝑅 [trans]

𝑃 ≡ 𝑄 ⊃ 𝒞[𝑃] ≡ 𝒞[𝑄] [cong]

Commutativity Rules

cut {𝑃 |𝑥 : 𝐴| 𝑄} ≡ cut {𝑄 |𝑥 : 𝐴| 𝑃} [C]

fwd 𝑥 𝑦 ≡ fwd 𝑦 𝑥 [fwd]

Mix Rules
par {𝑃 | | 0} ≡ 𝑃 [0M]

par {𝑃 | | 𝑄} ≡ par {𝑄 | | 𝑃} [M]

par {𝑃 | | par {𝑄 | | 𝑅}} ≡ par {par {𝑃 | | 𝑄} | | 𝑅} [MM]

Linearly Distributive Conversions
cut {𝑃 |𝑥 | par {𝑄 | | 𝑅}} ≡ par {cut {𝑃 |𝑥 | 𝑄} | | 𝑅}, 𝑥 ∈ fn𝑄 [CM]

cut {𝑃 |𝑥 | cut {𝑄 |𝑦 | 𝑅}} ≡ cut {cut {𝑃 |𝑥 | 𝑄} |𝑦 | 𝑅}, 𝑥, 𝑦 ∈ fn𝑄 [CC]

cut {𝑃 |𝑥 | cut! {𝑦.𝑄 |𝑧 | 𝑅}} ≡ cut! {𝑦.𝑄 |𝑧 | cut {𝑃 |𝑥 | 𝑅}}, 𝑧 ∉ fn𝑃 [CC!]

cut! {𝑦.𝑃 |𝑥 | par {𝑄 | | 𝑅}} ≡ par {cut! {𝑦.𝑃 |𝑥 | 𝑄} | | 𝑅}, 𝑥 ∉ fn𝑅 [C!M]

cut! {𝑦.𝑃 |𝑥 | cut! {𝑤.𝑄 |𝑧 | 𝑅}}
≡ cut! {𝑤.𝑄 |𝑧 | cut! {𝑦.𝑃 |𝑥 | 𝑅}}, 𝑥 ∉ fn𝑄, 𝑧 ∉ fn𝑃 [C!C!]

Unrestricted Cut Distributive Conversions
cut! {𝑦.𝑃 |𝑥 : 𝐴| par {𝑄 | | 𝑅}} ≡ par {cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} | | cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅}} [D-C!M]

cut! {𝑦.𝑃 |𝑥 : 𝐴| cut {𝑄 |𝑧 | 𝑅}}
≡ cut {cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} |𝑧 | cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅}} [D-C!C]

cut! {𝑦.𝑃 |𝑥 : 𝐴| cut! {𝑤.𝑄 |𝑧 | 𝑅}}
≡ cut! {𝑤.cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} |𝑧 | cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅}} [D-C!C!]

Figure 2.2: Structural congruence 𝑃 ≡ 𝑄 rules of �CLL (extended by Fig. 3.2).

guided by the provisos (rules [CM], [CC], [CC!], [C!M], [C!C!]). Finally, we can distribute
the unrestricted cut over the static constructs mix, cut and unrestricted cut as expressed
by rules [D-C!M], [D-C!C] and [D-C!C!].

Before defining reduction, we introduce static contexts, which are defined by

𝒞 ::= □ | par {𝒞 || 𝑃} | par {𝑃 | | 𝒞} | cut {𝒞 |𝑥 | 𝑃} | cut {𝑃 |𝑥 | 𝒞} | cut! {𝑦.𝑃 |𝑥 | 𝒞}

A static context is therefore a context where the hole is neither guarded by any action nor
lies in the server body 𝑃 of a cut! cut! {𝑦.𝑃 |𝑥 | 𝑄}.

28

2.2. PROCESS CALCULUS AND OPERATIONAL SEMANTICS

cut {fwd 𝑥 𝑦 |𝑦 | 𝑃} → {𝑥/𝑦}𝑃 [fwd]

cut {close 𝑥 |𝑥 | wait 𝑥;𝑃} → 𝑃 [1⊥]

cut {send 𝑥(𝑦.𝑃);𝑄 |𝑥 | recv 𝑥(𝑧);𝑅} → cut {𝑄 |𝑥 | cut {𝑃 |𝑦 | {𝑦/𝑧}𝑅}} [⊗O]

cut {case 𝑥 {|inl : 𝑃 | inr : 𝑄} |𝑥 | 𝑥.inl;𝑅} → cut {𝑃 |𝑥 | 𝑅} [N⊕𝑙]

cut {case 𝑥 {|inl : 𝑃 | inr : 𝑄} |𝑥 | 𝑥.inr;𝑅} → cut {𝑄 |𝑥 | 𝑅} [N⊕𝑟]

cut {!𝑥(𝑦);𝑃 |𝑥 | ?𝑥;𝑄} → cut! {𝑦.𝑃 |𝑥 | 𝑄} [!?]

cut! {𝑦.𝑃 |𝑥 | call 𝑥(𝑧);𝑄} → cut {{𝑧/𝑦}𝑃 |𝑧 | cut! {𝑦.𝑃 |𝑥 | 𝑄}} [call]

cut {sendty 𝑥 𝐴;𝑃 |𝑥 | recvty 𝑥(𝑋);𝑄} → cut {𝑃 |𝑥 | {𝐴/𝑋}𝑄} [∃∀]

cut {unfold� 𝑥;𝑃 |𝑥 | unfold� 𝑥;𝑄} → cut {𝑃 |𝑥 | 𝑄} [��]

cut {unfold� 𝑥;𝑃 |𝑥 | corec 𝑌(𝑧, ®𝑤);𝑄 [𝑥, ®𝑦]}
→ cut {𝑃 |𝑥 | {𝑥/𝑧}{ ®𝑦/ ®𝑤}{corec 𝑌(𝑧, ®𝑤);𝑄/𝑌}𝑄} [corec]

𝑃 ≡ 𝑃′ and 𝑃′→ 𝑄′ and 𝑄′ ≡ 𝑄 ⊃ 𝑃 → 𝑄 [≡]

𝑃 → 𝑄 ⊃ 𝒞[𝑃] → 𝒞[𝑄] [cong]
Figure 2.3: Reduction 𝑃 → 𝑄 rules of �CLL (extended by Fig. 3.3).

We need also to define substitution of a process variable by a corecursive process, which
will be used when modelling the one-step unfold of a corecursive process definition. The
base cases are defined by

{corec 𝑋(𝑧, ®𝑤);𝑃/𝑋}𝑋(𝑥, ®𝑦) ≜ corec 𝑋(𝑧, ®𝑤);𝑃 [𝑥, ®𝑦]
{corec 𝑋(𝑧, ®𝑤);𝑃/𝑋}𝑌(𝑥, ®𝑦) ≜ 𝑌(𝑥, ®𝑦), 𝑌 ≠ 𝑋

and the substitution is propagated without surprises to the remaining cases.

Definition 5 (Reduction 𝑃 → 𝑄). Reduction→ is the least relation on processes that includes
the rules in Fig. 2.3. N.B.: In [cong], 𝒞 is an arbitrary static context.

Reduction includes a set of principal cut conversions, it is closed by structural congru-
ence ([≡]) and defined on the nose, so in rule [cong] we consider that 𝒞 is a static context.
Operationally, the forwarding behaviour is implemented by name substitution [30] ([fwd]).
All the other conversions apply to a cut between two dual actions. For example, rule [⊗O]
applies to a cut on session 𝑥 : 𝐴 ⊗ 𝐵 between send and receive and reduces to a process
expression with two cuts. The inner cut on 𝑦 : 𝐴 connects the continuation {𝑦/𝑧}𝑅 of the
receiver with the provider 𝑃 of the sent channel, whereas the outer cut on 𝑥 : 𝐵 connects
{𝑦/𝑧}𝑅 with the continuation 𝑄 of the send process.The principal cut conversions are
type-annotated for convenience, but types play no role in reduction. We let

+−→ stand for
the transitive closure of→, and

∗−→ be the reflexive-transitive closure of→. We postpone
detailed comments on the operational model for the next section.

29

CHAPTER 2. THE BASIC LANGUAGE �CLL

In the following guided tour, we will often appeal to notions such as communication
channels and later to memory cells, for the sake of conveying intuition about the operational
model. However, we would like to stress that, in our approach, process reduction is
explained solely by pure algebraic manipulations on process terms that contain variables
andvariable binding operators, as usual in computational interpretations of logic, therefore
communication channels and memory cells are nothing but standard variables in proof terms.
In our practical interpreter implementation (Chapter 5), we naturally resort to actual
channels and memory locations, but that is a different realm.

2.3 Type System

In this section we define the type system of �CLL. Then, we go through each of the typing
rules in detail by presenting the associated structural congruence rules (Definition 4) and
all the principal cut conversions of reduction→ (Definition 5). The introduced concepts
will be illustrated with several examples.

We start by defining typing contexts and typing judgments. A typing context is a finite
partial assignment from names to types, which we denote by

𝑥1 : 𝐴1 , . . . , 𝑥𝑛 : 𝐴𝑛︸ ︷︷ ︸
Δ

; 𝑦1 : 𝐵1 , . . . , 𝑦𝑚 : 𝐵𝑚︸ ︷︷ ︸
Γ

Typing contexts are separated (with a semi-colon) into two parts: a linear part denoted by
Δ and an unrestricted (or exponential) part, which absorbs weakening and contraction,
and is denoted by Γ. The empty context is written ∅. We write Δ,Δ′ (two comma-separated
contexts) for the disjoint union of Δ and Δ′. Given a set 𝑆 of names we write Δ ↾ 𝑆 to
denote the partial map obtained by restricting Δ to 𝑆.

The set of free type variables of a typing context is the union of the free type variables
of the types in the image of the typing context. We denote by {𝐴/𝑋}(Δ;Γ) the typing
context obtained by replacing the free type variable 𝑋 in every type in the image of Δ;Γ
by 𝐴. Similarly, we extend name substitutions to typing contexts accordingly, written
{ ®𝑥/®𝑦}(Δ;Γ), which affects the domain of Δ;Γ by replacing each name ®𝑦[𝑖] by ®𝑥[𝑖].

Typing judgments are of the form 𝑃 ⊢� Δ;Γ where 𝑃 is a process, Δ;Γ is a typing
context and � is a finite partial map

� = 𝑋1(®𝑥1) ↦→ Δ1;Γ, . . . , 𝑋𝑛(®𝑥𝑛) ↦→ Δ𝑛 ;Γ𝑛

where recursion variables are assigned to typing contexts, this essentially allows to type
corecursive process definitions in �CLL. Later, in 2.3, we will see in detail the role of �.

If Γ is empty we write just 𝑃 ⊢� Δ instead of 𝑃 ⊢� Δ; ∅. Sometimes we omit the subscript
�, writing 𝑃 ⊢ Δ;Γ.

30

2.3. TYPE SYSTEM

We define {𝑦/𝑥}(Δ;Γ) by cases:

{𝑦/𝑥}(Δ′𝑥 : 𝐴;Γ) = Δ′, 𝑦 : 𝐴;Γ
{𝑦/𝑥}(Δ;Γ′, 𝑥 : 𝐴) = Δ;Γ, 𝑦 : 𝐴
{𝑦/𝑥}(Δ;Γ) = Δ;Γ, 𝑥 ∉ dom(Δ) ∪ dom(Γ)

We denote by {𝐴/𝑋}(Δ;Γ) the typing context obtained by replacing the free type variable
𝑋 by 𝐴 in every type in the image of Δ;Γ. Similarly, we extend simultaneous substitutions
to typing contexts accordingly, written { ®𝑥/®𝑦}(Δ;Γ).

Definition 6 (Type System). The typing rules of �CLL are listed in Fig. 2.4.

A process 𝑃 is well-typed if 𝑃 ⊢� Δ;Γ for some typing contexts Δ and Γ and map �.
In the following subsections we go through each of the typing rules in detail by

presenting the associated structural congruence rules (Definition 4) and all the principal
cut conversions of reduction→ (Definition 5).

Inaction and Mix

The inaction process 0 operationally does nothing, i.e. there is no process 𝑃 for which

0→ 𝑃

and types with an empty linear context.

[T0]
0 ⊢ ∅;Γ

The process construct par {𝑃 | | 𝑄} composes 𝑃 and 𝑄, which run in parallel without ever
interfering with each other. It is typed by rule [Tmix]

𝑃 ⊢ Δ1;Γ 𝑄 ⊢ Δ2;Γ
[Tmix]

par {𝑃 | | 𝑄} ⊢ Δ1 ,Δ2;Γ

which corresponds to linear logic mix. Processes 𝑃 and 𝑄 type with disjoint linear typing
contexts Δ1 and Δ2, hence there is possible linear interaction between 𝑃 and 𝑄.

There are some structural congruence ≡ rules involving inaction and mix (Fig. 2.2):

par {𝑃 | | 0} ≡ 𝑃 [0M]
par {𝑃 | | 𝑄} ≡ par {𝑄 | | 𝑃} [M]
par {𝑃 | | (par {𝑄 | | 𝑅})} ≡ par {(par {𝑃 | | 𝑄}) | | 𝑅} [MM]

Inaction is a unit for independent parallel composition as expressed by ≡-rule [0M].
Additionally, since mix is commutative (rule [M]) and associative (rule [MM]), we conclude
that the set of processes modulo ≡ forms a commutative monoid where the multiplication
is given by ∥ and whose unit is 0.

A final remark concerning the unrestricted context Γ: rule [T0] types inaction with an
arbitrary unrestricted typing context Γ in which the unrestricted names are not used. As

31

CHAPTER 2. THE BASIC LANGUAGE �CLL

[T0]
0 ⊢� ∅;Γ

𝑃 ⊢� Δ′;Γ 𝑄 ⊢� Δ;Γ
[Tmix]

par {𝑃 | | 𝑄} ⊢� Δ′,Δ;Γ

[Tfwd]
fwd 𝑥 𝑦 ⊢� 𝑥 : 𝐴, 𝑦 : 𝐴;Γ

𝑃 ⊢� Δ′, 𝑥 : 𝐴;Γ 𝑄 ⊢� Δ, 𝑥 : 𝐴;Γ

cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ′,Δ;Γ
[Tcut]

[T1]
close 𝑥 ⊢� 𝑥 : 1;Γ

𝑄 ⊢� Δ;Γ
[T⊥]

wait 𝑥;𝑄 ⊢� Δ, 𝑥 : ⊥;Γ

𝑃1 ⊢� Δ, 𝑥 : 𝐴;Γ 𝑃2 ⊢� Δ, 𝑥 : 𝐵;Γ
[TN]

case 𝑥 {|inl : 𝑃1 | inr : 𝑃2} ⊢� Δ, 𝑥 : 𝐴N 𝐵;Γ

𝑄1 ⊢� Δ′, 𝑥 : 𝐴;Γ
[T⊕𝑙]

𝑥.inl;𝑄1 ⊢� Δ′, 𝑥 : 𝐴 ⊕ 𝐵;Γ

𝑄2 ⊢� Δ′, 𝑥 : 𝐵;Γ
[T⊕𝑟]

𝑥.inr;𝑄2 ⊢� Δ′, 𝑥 : 𝐴 ⊕ 𝐵;Γ

𝑃1 ⊢� Δ1 , 𝑦 : 𝐴;Γ 𝑃2 ⊢� Δ2 , 𝑥 : 𝐵;Γ
[T⊗]

send 𝑥(𝑦.𝑃1);𝑃2 ⊢� Δ1 ,Δ2 , 𝑥 : 𝐴 ⊗ 𝐵;Γ

𝑄 ⊢� Δ, 𝑧 : 𝐴, 𝑥 : 𝐵;Γ
[TO]

recv 𝑥(𝑧);𝑄 ⊢� Δ, 𝑥 : 𝐴O 𝐵;Γ

𝑃 ⊢� 𝑦 : 𝐴;Γ
[T!]

!𝑥(𝑦);𝑃 ⊢� 𝑥 :!𝐴;Γ

𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴
[T?]

?𝑥;𝑄 ⊢� Δ, 𝑥 :?𝐴;Γ

𝑃 ⊢� 𝑦 : 𝐴;Γ 𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴
[Tcut!]

cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ;Γ

𝑄 ⊢� Δ, 𝑧 : 𝐴;Γ, 𝑥 : 𝐴
[Tcall]

call 𝑥(𝑧);𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴

𝑃 ⊢� Δ, 𝑥 : {𝐵/𝑋}𝐴;Γ
[T∃]

sendty 𝑥 𝐵;𝑃 ⊢� Δ, 𝑥 : ∃𝑋.𝐴;Γ

𝑄 ⊢� Δ, 𝑥 : 𝐴;Γ
[T∀]

recvty 𝑥(𝑋);𝑄 ⊢� Δ, 𝑥 : ∀𝑋.𝐴;Γ

𝑃 ⊢�′ Δ, 𝑧 : 𝐴;Γ �′ = �, 𝑋(𝑧, ®𝑤) ↦→ Δ, 𝑧 : 𝑌;Γ
[Tcorec]

corec 𝑋(𝑧, ®𝑤);𝑃 [𝑥, ®𝑦] ⊢� { ®𝑦/ ®𝑤}Δ, 𝑥 : �𝑌. 𝐴; { ®𝑦/ ®𝑤}Γ

� = �′, 𝑋(𝑥, ®𝑦) ↦→ Δ, 𝑥 : 𝑌;Γ
[Tvar]

𝑋(𝑧, ®𝑤) ⊢� { ®𝑤/®𝑦}(Δ, 𝑧 : 𝑌;Γ)
𝑃 ⊢� Δ, 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ

[T�]
unfold� 𝑥;𝑃 ⊢� Δ, 𝑥 : �𝑋. 𝐴;Γ

𝑃 ⊢� Δ, 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ
[T�]

unfold� 𝑥;𝑃 ⊢� Δ, 𝑥 : �𝑋. 𝐴;Γ

Figure 2.4: Typing rules 𝑃 ⊢� Δ;Γ for �CLL (extended by Fig. 3.4).

we shall see, this applies to all the axiom rules, hence in �CLL we have a contained form of
weakening that applies to the leaves of typing derivations. Furthermore, the unrestricted
context also absorbs contraction: in the non-axiom rules involving more than one premise,
as it is the case, for example, with [Tmix], the unrestricted typing context is copied from
the conclusion to the premises.

32

2.3. TYPE SYSTEM

Cut, Duality and Forwarding

Whereas mix is independent parallel composition, the cut construct allows to build
dependent interactive composition. In a cut cut {𝑃 |𝑥 : 𝐴| 𝑄}, processes 𝑃 and 𝑄 run
concurrently, interacting on a single private linear session 𝑥. This restriction - that two
concurrent processes interact through a single session - guarantees acyclicity on the process
communication topologies, which then implies desirable metatheoretical properties such
as the absence of deadlocks.

The cut construct is typed by [Tcut]

𝑃 ⊢ Δ′, 𝑥 : 𝐴;Γ 𝑄 ⊢ Δ, 𝑥 : 𝐴;Γ
[Tcut]

cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢ Δ′,Δ;Γ

which corresponds precisely to the cut rule of linear logic. Process 𝑃 provides a behaviour
of type 𝐴 along 𝑥, whereas 𝑄 offers on 𝑥 a dual behaviour of type 𝐴. Cut is annotated
with the type of its left argument, but we sometimes omit this annotation.

The cut construct is commutative as modelled by ≡ rule [C]:

cut {𝑃 |𝑥 : 𝐴| 𝑄} ≡ cut {𝑄 |𝑥 : 𝐴| 𝑃}

On going from left to right we swap the arguments and replace the cut annotation 𝐴 by
its dual 𝐴. Cut linearly distributes over all the static constructs. For example, the linearly
distribution of cut over mix is modelled by ≡ rule [CM]

cut {𝑃 |𝑥 : 𝐴| par {𝑄 | | 𝑅}} ≡ par {cut {𝑃 |𝑥 : 𝐴| 𝑄} | | 𝑅}, 𝑥 ∈ fn(𝑄)

The distribution is guided by the proviso 𝑥 ∈ fn(𝑄).
In �CLL we also have forwarding. The forwarding process fwd 𝑥 𝑦 acts as a link

between the two channel endpoints 𝑥 and 𝑦, forwarding all the interactions with 𝑥 to 𝑦
and vice-versa. It is typed by

[Tfwd]
fwd 𝑥 𝑦 ⊢ 𝑥 : 𝐴, 𝑦 : 𝐴;Γ

and corresponds to the identity axiom of linear logic. are interpreted by processes fwd 𝑥 𝑦
and cut {𝑃 |𝑥 : 𝐴| 𝑄}, respectively.

Operationally, the forwarding behaviour is modelled by name substitution [30]

cut {fwd 𝑥 𝑦 |𝑦 : 𝐴| 𝑃} → {𝑥/𝑦}𝑃 [fwd]

Here, on the left-hand side of the reduction rule, a forwarding between 𝑥 and 𝑦 is
composed via a cut on 𝑦 with a process 𝑃. On the right-hand side there is process 𝑃
with name 𝑦 substituted by 𝑥. Algebraically, forwarding behaves like an identity for cut
composition. The following typing rule for name substitution is admissible

𝑃 ⊢ Δ, 𝑦 : 𝐵;Γ

{𝑥/𝑦}𝑃 ⊢ Δ, 𝑥 : 𝐵;Γ

33

CHAPTER 2. THE BASIC LANGUAGE �CLL

provided 𝑦 is not a free name of 𝑃.
The symmetric behaviour of the forwarding construct is patent on structural congru-

ence law [fwd]
fwd 𝑥 𝑦 ≡ fwd 𝑦 𝑥

Close and Wait

Session termination is expressed by the processes close 𝑥, that closes a session 𝑥, and
wait 𝑥;𝑄, that symmetrically waits for 𝑥 to be closed and then continues as 𝑄. Close and
wait are typed by dual types 1 (one) and ⊥ (bottom)

[T1]
close 𝑥 ⊢ 𝑥 : 1;Γ

𝑄 ⊢ Δ;Γ
[T⊥]

wait 𝑥;𝑄 ⊢ Δ, 𝑥 : ⊥;Γ

The interaction between close and wait is modelled by the reduction rule

cut {close 𝑥 |𝑥 : 1| wait 𝑥;𝑄} → 𝑄 [1⊥]

where, after the interaction, the cut evolves to the continuation process 𝑄 and the session
on 𝑥 disappears. The reduction rule corresponds to the following conversion at the level
of proofs / typing conversions

[T1]
close 𝑥 ⊢ 𝑥 : 1;Γ

𝑄 ⊢ Δ;Γ
[T⊥]

wait 𝑥;𝑄 ⊢ Δ, 𝑥 : ⊥;Γ
[Tcut]

cut {close 𝑥 |𝑥 | wait 𝑥;𝑄} ⊢ Δ;Γ

→ 𝑄 ⊢ Δ;Γ

Send and Receive

Session communication is expressed by processes send 𝑥(𝑦.𝑃1);𝑃2 (send) and recv 𝑥(𝑧);𝑄
(receive). Process send 𝑥(𝑦.𝑃1);𝑃2 sends a fresh session channel 𝑦 on session 𝑥 and
continues as 𝑃2. Symmetrically, process recv 𝑥(𝑧);𝑄 receives a name 𝑧 on session 𝑥 and
continues as 𝑄. Name 𝑦 is bound in 𝑃1 and 𝑧 is bound in 𝑄.

Send and receive are typed by the dual types 𝐴 ⊗ 𝐵 (tensor) and 𝐴O 𝐵 (par)

𝑃1 ⊢ Δ1 , 𝑦 : 𝐴;Γ 𝑃2 ⊢ Δ2 , 𝑥 : 𝐵;Γ
[T⊗]

send 𝑥(𝑦.𝑃1);𝑃2 ⊢ Δ1 ,Δ2 , 𝑥 : 𝐴 ⊗ 𝐵;Γ
𝑄 ⊢ Δ, 𝑧 : 𝐴, 𝑥 : 𝐵;Γ

[TO]
recv 𝑥(𝑧);𝑄 ⊢ Δ, 𝑥 : 𝐴O 𝐵;Γ

The send process is composed of two independent parts: a term 𝑃1 which implements
the session on fresh channel 𝑦 : 𝐴 to be sent, and a term 𝑃2 which provides the continuation
session behaviour on 𝑥 : 𝐵.

The associated reduction between send and receive is expressed by

cut {send 𝑥(𝑦.𝑃1);𝑃2 |𝑥 : 𝐴 ⊗ 𝐵| recv 𝑥(𝑧);𝑄} → cut {𝑃2 |𝑥 : 𝐵| cut {𝑃1 |𝑦 : 𝐴| {𝑦/𝑧}𝑄}} [⊗O]

34

2.3. TYPE SYSTEM

Notice that a cut on a session 𝐴 ⊗ 𝐵 gives origin to two lower rank cuts on sessions 𝐴 and 𝐵.
The inner cut on 𝑦 connects the continuation 𝑄 of the receiver with the provider 𝑃1 of the
sent channel, whereas the outer cut on 𝑥 connects 𝑄 to the continuation 𝑃2 of the sending
process. Observe that the type associated with session 𝑥 evolves from 𝐴 ⊗ 𝐵 to 𝐵 upon
communication.

As in [23, 157], only fresh (bound) names are sent in communication, following the
internal mobility discipline of Boreale [17], as opposed to external mobility in which free
names can be transmitted. However, we can encode free output of a (free) linear name
with the following definition, justified by Proposition 1.

Definition 7 (Free Output of a Linear Name). Define

send 𝑥(𝑦);𝑃 ≜ send 𝑥(𝑤. fwd 𝑤 𝑦);𝑃

Proposition 1. The following typing

𝑃 ⊢ Δ, 𝑥 : 𝐵;Γ
[T⊗ 𝑓]

send 𝑥(𝑦);𝑃 ⊢ Δ, 𝑦 : 𝐴, 𝑥 : 𝐴 ⊗ 𝐵;Γ

and reduction rule

cut {send 𝑥(𝑦);𝑃 |𝑥 : 𝐴 ⊗ 𝐵| recv 𝑥(𝑧);𝑄} +−→ cut {𝑃 |𝑥 : 𝐵| {𝑦/𝑧}𝑄} [⊗O 𝑓]

are derivable.

Proof. Rule [T⊗ 𝑓] is derivable by

[Tfwd]
fwd 𝑤 𝑦 ⊢ 𝑤 : 𝐴, 𝑦 : 𝐴;Γ 𝑃 ⊢ Δ, 𝑥 : 𝐵;Γ

[T⊗]
send 𝑥(𝑤.fwd 𝑦 𝑤);𝑃 ⊢ Δ, 𝑦 : 𝐴, 𝑥 : 𝐴 ⊗ 𝐵;Γ

Rule [⊗O 𝑓] is derivable by

cut {send 𝑥(𝑦);𝑃 |𝑥 : 𝐴 ⊗ 𝐵| recv 𝑥(𝑧);𝑄}
= cut {send 𝑥(𝑤. fwd 𝑤 𝑦);𝑃 |𝑥 : 𝐴 ⊗ 𝐵| recv 𝑥(𝑧);𝑄} (Def. 7)

→ cut {𝑃 |𝑥 : 𝐵| cut {fwd 𝑤 𝑦 |𝑦 : 𝐴| {𝑦/𝑧}𝑄}} (→ rule [⊗O])

→ cut {𝑃 |𝑥 : 𝐵| {𝑤/𝑦}({𝑦/𝑧}𝑄)} (→ rule [fwd])

= cut {𝑃 |𝑥 : 𝐵| {𝑤/𝑧}𝑄} ({𝑤/𝑦}({𝑦/𝑧}𝑄) = {𝑤/𝑧}𝑄)

The following example illustrates the symmetric nature of the tensor construct ⊗.

Example 1 (Symmetry of ⊗). There is a canonical proof term that witnesses commutativity of
the tensor construct

symm(𝑥, 𝑦) ≜ recv 𝑥(𝑧); send 𝑦(𝑤.fwd 𝑤 𝑥); fwd 𝑧 𝑦

35

CHAPTER 2. THE BASIC LANGUAGE �CLL

symm(𝑥, 𝑦) converts a typed channel 𝑥 : 𝐴 ⊗ 𝐵 to 𝑦 : 𝐵 ⊗ 𝐴, therefore testifying the symmetric
nature of ⊗. We have

symm(𝑥, 𝑦) ⊢ 𝑥 : 𝐴 ⊗ 𝐵, 𝑦 : 𝐵 ⊗ 𝐴;Γ

the derivation of which is a follows
[Tfwd]

fwd 𝑤 𝑥 ⊢ 𝑤 : 𝐵, 𝑥 : 𝐵;Γ
[Tfwd]

fwd 𝑧 𝑦 ⊢ 𝑧 : 𝐴, 𝑦 : 𝐴
[T⊗]

send 𝑦(𝑤.fwd 𝑤 𝑥); fwd 𝑧 𝑦 ⊢ 𝑧 : 𝐴, 𝑥 : 𝐵, 𝑦 : 𝐵 ⊗ 𝐴;Γ
[TO]

recv 𝑥(𝑧); send 𝑦(𝑤.fwd 𝑤 𝑥); fwd 𝑧 𝑦 ⊢ 𝑥 : 𝐴O 𝐵, 𝑦 : 𝐵 ⊗ 𝐴;Γ
When we compose symm with a process that outputs 𝐴 and continues as 𝐵 on channel 𝑥

𝑃1(𝑢) ⊢ Δ1 , 𝑢 : 𝐴;Γ 𝑃2(𝑥) ⊢ Δ2 , 𝑥 : 𝐵;Γ
[T⊗]

send 𝑥(𝑦.𝑃1);𝑃2 ⊢ Δ1 ,Δ2 , 𝑥 : 𝐴 ⊗ 𝐵;Γ
we obtain a process that outputs 𝐵 and continues as 𝐴

cut {send 𝑥(𝑢.𝑃1(𝑢));𝑃2(𝑥) |𝑥 | symm(𝑥, 𝑦)}
= cut {send 𝑥(𝑢.𝑃1(𝑢));𝑃2(𝑥) |𝑥 | recv 𝑥(𝑧); send 𝑦(𝑤.fwd 𝑤 𝑥); fwd 𝑧 𝑦}

(by definition)

→ cut {𝑃2(𝑥) |𝑥 | cut {𝑃1(𝑢) |𝑢 | send 𝑦(𝑤.fwd 𝑤 𝑥); fwd 𝑢 𝑦}} (→ [⊗O])

≈ cut {𝑃2(𝑥) |𝑥 | send 𝑦(𝑤.fwd 𝑤 𝑥); cut {fwd 𝑢 𝑦 |𝑢 | 𝑃1(𝑢)}}
→ cut {𝑃2(𝑥) |𝑥 | send 𝑦(𝑤.fwd 𝑤 𝑥);𝑃1(𝑦)} (→ [fwd])

≈ send 𝑦(𝑤.cut {fwd 𝑤 𝑥 |𝑥 | 𝑃2});𝑃1(𝑦)
→ send 𝑦(𝑤.𝑃2(𝑤));𝑃1(𝑦) (→ [fwd])

In the derivation we used two ≈ laws that commute the send action with cut and which
are not part of structural congruence. We will present the relation ≈, which extends structural
congruence≡with further commuting conversions, appropriately when studying cut normalisation
(see Chapter 8). This example was adapted from [158] and [23].

Offer and Choice

Menu offer and choice is expressed by processes case 𝑥 {|inl : 𝑃1 | inr : 𝑃2} and 𝑥.inl;𝑄1,
𝑥.inr;𝑄2, respectively. Process case 𝑥 {|inl : 𝑃1 | inr : 𝑃2} offers on session 𝑥 a menu of two
options: inl (left), after which it continues as 𝑃1 or inr (right), after which it continues as 𝑃2.
Symmetrically, process 𝑥.inl;𝑄1 (resp., 𝑥.inr;𝑄2) chooses inl (resp., inr) on session 𝑥 and
continues as 𝑄1 (resp., 𝑄2).

Offer and choice are typed by 𝐴N 𝐵 (with) and 𝐴 ⊕ 𝐵 (plus), respectively

𝑃1 ⊢ Δ, 𝑥 : 𝐴;Γ 𝑃2 ⊢ Δ, 𝑥 : 𝐵;Γ
[TN]

case 𝑥 {|inl : 𝑃1 | inr : 𝑃2} ⊢ Δ, 𝑥 : 𝐴N 𝐵;Γ

𝑄1 ⊢ Δ′, 𝑥 : 𝐴;Γ
[T⊕𝑙]

𝑥.inl;𝑄1 ⊢ Δ′, 𝑥 : 𝐴 ⊕ 𝐵;Γ

𝑄2 ⊢ Δ′, 𝑥 : 𝐵;Γ
[T⊕𝑟]

𝑥.inr;𝑄2 ⊢ Δ′, 𝑥 : 𝐴 ⊕ 𝐵;Γ

36

2.3. TYPE SYSTEM

The interaction between offer and choice is expressed by the following two associated
reduction rules

cut {case 𝑥 {|inl : 𝑃1 | inr : 𝑃2} |𝑥 : 𝐴N 𝐵| 𝑥.inl;𝑄1} → cut {𝑃1 |𝑥 : 𝐴| 𝑄1} [N⊕𝑙]
cut {case 𝑥 {|inl : 𝑃1 | inr : 𝑃2} |𝑥 : 𝐴N 𝐵| 𝑥.inr;𝑄2} → cut {𝑃2 |𝑥 : 𝐵| 𝑄2} [N⊕𝑟]

We conclude this subsection with some examples. First we code the optional datatype
Maybe 𝐴, then we illustrate how generic labelled-choice can be implemented with binary
left-right choice. Finally, we conclude by coding the booleans and define some operations
using the session-based constructs that we have already introduced.

Example 2 (Maybe). The type
Maybe 𝐴 ≜ 1 ⊕ 𝐴

is the protocol of sessions that either choose left and close or choose right and continue as a session
of type 𝐴.

We can think of sessions of type Maybe 𝐴 as sessions that maybe offer a behaviour of type 𝐴,
though they have the possibility of offering no behaviour at all. As we shall see, this type arises
naturally, for example it allows us to express the returning type of a non-blocking dequeue operation,
where we may return just an element if the queue is nonempty or we return nothing otherwise.

Processes
nothing(𝑥) ⊢ 𝑥 : Maybe 𝐴 just(𝑎, 𝑥) ⊢ 𝑎 : 𝐴, 𝑥 : Maybe 𝐴

are defined by
nothing(𝑥) ≜ 𝑥.inl; close 𝑥
just(𝑎, 𝑥) ≜ 𝑥.inr; fwd 𝑎 𝑥

Example 3 (Labelled Choice). In this example we illustrate how binary left-right offer and choice
is sufficient to implement offer and choice from an arbitrary set of labels. For the purpose, we
consider menu offer and choice from a set {𝑙1 , 𝑙2 , 𝑙3} of three labelled possibilities.

We have the following definitions

N{𝑙1 : 𝐴1 , 𝑙2 : 𝐴2 , 𝑙3 : 𝐴3} ≜ (𝐴1 N 𝐴2)N 𝐴3 (1)
⊕{𝑙1 : 𝐴1 , 𝑙 : 𝐴2 , 𝑙3 : 𝐴3} ≜ (𝐴1 ⊕ 𝐴2) ⊕ 𝐴3 (2)
case 𝑥 { | 𝑙1 : 𝑃1 | 𝑙2 : 𝑃2 | 𝑙3 : 𝑃3} ≜ case 𝑥 {|inl : (case 𝑥 {|inl : 𝑃1 | inr : 𝑃2}) | inr : 𝑃3} (3)
𝑥.𝑙1;𝑄1 ≜ 𝑥.inl; 𝑥.inl;𝑄1 (4)
𝑥.𝑙2;𝑄2 ≜ 𝑥.inl; 𝑥.inr;𝑄2 (5)
𝑥.𝑙3;𝑄3 ≜ 𝑥.inr;𝑄3 (6)

The following typing rules are then derivable

𝑃1 ⊢ Δ, 𝑥 : 𝐴1;Γ 𝑃2 ⊢ Δ, 𝑥 : 𝐴2;Γ 𝑃3 ⊢ Δ, 𝑥 : 𝐴3;Γ
case 𝑥 { | 𝑙1 : 𝑃1 | 𝑙2 : 𝑃2 | 𝑙3 : 𝑃3} ⊢ Δ, 𝑥 : N{𝑙1 : 𝐴1 , 𝑙2 : 𝐴2 , 𝑙3 : 𝐴3}

𝑄𝑖 ⊢ Δ′, 𝑥 : 𝐴𝑖 ;Γ

𝑥.𝑙𝑖 ;𝑄𝑖 ⊢ Δ′, 𝑥 : ⊕{𝑙1 : 𝐴1 , 𝑙2 : 𝐴2 , 𝑙3 : 𝐴3}

37

CHAPTER 2. THE BASIC LANGUAGE �CLL

for all 1 ≤ 𝑖 ≤ 3.
The offering process can interact with three possible choices, which we model by the principal

cut conversions

cut {case 𝑥 { | 𝑙1 : 𝑃1 | 𝑙2 : 𝑃2 | 𝑙3 : 𝑃3} |𝑥 | 𝑥.𝑙𝑖 ;𝑄𝑖} → cut {𝑃𝑖 |𝑥 | 𝑄𝑖}, 1 ≤ 𝑖 ≤ 3

We illustrate how to derive one of the reduction rules:

cut {case 𝑥 { | 𝑙1 : 𝑃1 | 𝑙2 : 𝑃2 | 𝑙3 : 𝑃3} |𝑥 | 𝑥.𝑙2;𝑄2}
= cut {case 𝑥 {|inl : (case 𝑥 {|inl : 𝑃1 | inr : 𝑃2}) | inr : 𝑃3} |𝑥 | 𝑥.inl; 𝑥.inr;𝑄2}

(by definition)

→ cut {case 𝑥 {|inl : 𝑃1 | inr : 𝑃2} |𝑥 | 𝑥.inr;𝑄2} (→ [N⊕𝑙])
→ cut {𝑃2 |𝑥 | 𝑄2} (→ [N⊕𝑟])

Hereafter, we will assume the existence of labelled choices with an arbitrary number of options.

Example 4 (Booleans). This example illustrates how basic programming data types can be encoded
as pure session types in �CLL. In this example, we encode booleans but, as we shall see later, more
complex data structures such as naturals (Examples 6) can be encoded.

We encode the linear booleans as sessions of type

Bool ≜ ⊕{ | F : 1 | T : 1}

A boolean session chooses either F (false) or T (true) and then closes. The basic boolean constants
true and false are then defined by

false(𝑏) ⊢ 𝑏 : Bool true(𝑏) ⊢ 𝑏 : Bool
false(𝑏) ≜ F 𝑏; close 𝑏 true(𝑏) ≜ T 𝑏; close 𝑏

Process false(𝑏) chooses F on session 𝑏, whereas process true(𝑏) chooses T. Then, both processes
false(𝑏) and true(𝑏) close the session 𝑏. We now define some processes that operate on linear
booleans. Process discard(𝑏) ⊢ 𝑏 : Bool, defined by

discard(𝑏) ≜ case 𝑏 { | F : wait 𝑏; 0 | T : wait 𝑏; 0}

performs case analysis on session 𝑏 and in each branch of the case it waits for 𝑏 to be closed, after
which continues as the inaction process, thereby discarding the linear boolean on 𝑏. Some linear
types (such as Bool) can be discarded and copied, in fact these principles are derivable for some
types of linear logic [56]. The following pair of reductions are easily derivable

cut {false(𝑏) |𝑏 : Bool| discard(𝑏)} +−→ 0 (1) cut {true(𝑏) |𝑏 : Bool| discard(𝑏)} +−→ 0 (2)

Process not(𝑏, 𝑏′) ⊢ 𝑏 : Bool, 𝑏′ : Bool interacts with a boolean 𝑏 and offers its negation on session
𝑏′

not(𝑏, 𝑏′) ≜ case 𝑏 { | F : wait 𝑏; true(𝑏′) | T : wait 𝑏; false(𝑏′)}

38

2.3. TYPE SYSTEM

We have
cut {false(𝑏) |𝑏 : Bool| not(𝑏, 𝑏′)} +−→ true(𝑏′) (3)
cut {true(𝑏) |𝑏 : Bool| not(𝑏, 𝑏′)} +−→ false(𝑏′) (4)

Finally, process and(𝑏1 , 𝑏2 , 𝑏) interacts with booleans 𝑏1 and 𝑏2 and produces their logical con-
junction on channel 𝑏

and(𝑏1 , 𝑏2 , 𝑏) ≜ case 𝑏1 { | F : wait 𝑏1; par {discard(𝑏2) | | false(𝑏)} | T : wait 𝑏1; fwd 𝑏 𝑏2}

Process and(𝑏1 , 𝑏2 , 𝑏) starts by performing case analysis on 𝑏1. If 𝑏1 chooses F, which means that
the boolean on 𝑏1 is false, then it waits for 𝑏1 to be closed and then, in parallel, discards 𝑏2 and
defines the boolean false on 𝑏 (the output is false regardless of the input 𝑏2). On the other hand, if
𝑏1 chooses T, which corresponds to the encoding of the boolean true, then it waits for 𝑏1 to be closed
and then forwards the output 𝑏 to the input 𝑏2. As expected, we have the following

cut {false(𝑏2) |𝑏2 | cut {false(𝑏1) |𝑏1 | and(𝑏1 , 𝑏2 , 𝑏)}}
+−→ false(𝑏) (5)

cut {true(𝑏2) |𝑏2 | cut {false(𝑏1) |𝑏1 | and(𝑏1 , 𝑏2 , 𝑏)}}
+−→ false(𝑏) (6)

cut {false(𝑏2) |𝑏2 | cut {true(𝑏1) |𝑏1 | and(𝑏1 , 𝑏2 , 𝑏)}}
+−→ false(𝑏) (7)

cut {true(𝑏2) |𝑏2 | cut {true(𝑏1) |𝑏1 | and(𝑏1 , 𝑏2 , 𝑏)}}
+−→ true(𝑏) (8)

We derive (5)

cut {false(𝑏2) |𝑏2 | cut {false(𝑏1) |𝑏1 | and(𝑏1 , 𝑏2 , 𝑏)}}
→ cut {false(𝑏2) |𝑏2 | cut {close 𝑏1 |𝑏1 | wait 𝑏1; par {discard(𝑏2) | | false 𝑏}}}

(expanding def. of false(𝑏1) and and(𝑏1 , 𝑏2 , 𝑏) and labelled choice)

→ cut {false(𝑏2) |𝑏2 | par {discard(𝑏2) | | false(𝑏)}} (→ rule [1⊥])

≡ par {cut {false(𝑏2) |𝑏2 | discard(𝑏2)} | | false(𝑏)} (≡ rule [C-CM])
+−→ par {0 | | false(𝑏)} (from (1))

≡ false(𝑏) (≡ rule [0M])

and (8)

cut {true(𝑏2) |𝑏2 | cut {true(𝑏1) |𝑏1 | and(𝑏1 , 𝑏2 , 𝑏)}}
→ cut {true(𝑏2) |𝑏2 | cut {close 𝑏1 |𝑏1 | wait 𝑏1; fwd 𝑏 𝑏2}}

(expanding def. of true(𝑏1) and and(𝑏1 , 𝑏2 , 𝑏) and labelled choices)

→ cut {true(𝑏2) |𝑏2 | fwd 𝑏 𝑏2} (→ rule [1⊥])

≡ cut {fwd 𝑏 𝑏2 |𝑏2 | true(𝑏2)} (≡ rule [C-C])

→ {𝑏/𝑏2}true(𝑏2) = true(𝑏) (→ rule [fwd])

The derivations of (6) and (7) can be established along similar lines.
Code for this example and some tests is available in examples/pure/booleans.clls.

39

CHAPTER 2. THE BASIC LANGUAGE �CLL

Persistent Sessions

Until now, all the introduced process constructs operate on linear sessions. The input-
replication process !𝑥(𝑦);𝑃 defines a persistent session on 𝑥 with argument 𝑦 and body
𝑃. A persistent session 𝑥 can be invoked with call 𝑥(𝑧);𝑄, which calls 𝑥 with input 𝑧, and
continues as 𝑄.

The replication process !𝑥(𝑦);𝑃 is typed by !𝐴 (bang), whereas call 𝑥(𝑧);𝑄 is implicitly
typed by ?𝐴 (why not), as expressed by rules [T!] and [Tcall]

𝑃 ⊢� 𝑦 : 𝐴;Γ
[T!]

!𝑥(𝑦);𝑃 ⊢� 𝑥 :!𝐴;Γ

𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴
[T?]

?𝑥;𝑄 ⊢� Δ, 𝑥 :?𝐴;Γ

𝑃 ⊢� 𝑦 : 𝐴;Γ 𝑄 ⊢ Δ;Γ, 𝑥 : 𝐴
[Tcut!]

cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ;Γ

𝑄 ⊢� Δ, 𝑧 : 𝐴;Γ, 𝑥 : 𝐴
[Tcall]

call 𝑥(𝑧);𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴

We also display rule [T?] which types ?𝑥;𝑄 and the unrestricted cut [Tcut!]. Process
?𝑥;𝑄 moves the linear session 𝑥 :?𝐴 to the unrestricted context, typed as 𝑥 : 𝐴, where it
can now be shared by many clients and called as many times as necessary.

Whereas [Tcut] acts on the linear context, [Tcut!] acts on the unrestricted context. The
term cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} composes 𝑃 with a pool of clients represented by 𝑄, and which
can call session 𝑥 an unbounded (possibly zero) number of times.

The interaction between [T!] and [T?] is expressed by rule [!?]

cut {!𝑥(𝑦);𝑃 |𝑥 :!𝐴| ?𝑥;𝑄} → cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} [!?]

where a linear cut on 𝑥 :!𝐴 reduces to an unrestricted cut on 𝑥 : 𝐴. This cut-reduction is
standard in dyadic presentations of linear logic [122].

Then, persistent session invocation by clients is modelled by rule [call]

cut! {𝑦.𝑃 |𝑥 : 𝐴| call 𝑥(𝑧);𝑄} → cut {{𝑧/𝑦}𝑃 |𝑧 : 𝐴| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄})} [call]

A linear replica of the body 𝑃 is instantiated on the fresh name 𝑧 as {𝑧/𝑦}𝑃. Notice that
session 𝑥 is still available to the continuation 𝑄 for (possibly) further calls.

The unrestricted cut distributes over all the static constructs, for example the distribu-
tion over mix is given by ≡ rule

cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ≡ par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅}, 𝑥 ∉ fn(𝑅) [C!M]

Computationally, when interpreted from left to right, it corresponds to the replication of
𝑦.𝑃 among two clients 𝑄 and 𝑅. On the right-hand side each client interacts with its own
replica in parallel.

The following defines some useful process encoding which are used throughout the
text, first the unrestricted copycat forwarding construct and then the free output of an
unrestricted name.

40

2.3. TYPE SYSTEM

Definition 8 (Unrestricted Copycat fwd! 𝑥 𝑦). The unrestricted copycat process on names 𝑥
and 𝑦 is defined by

fwd! 𝑥 𝑦 ≜ !𝑥(𝑥0); call 𝑦(𝑦0); fwd 𝑥0 𝑦0

Definition 9 (Free Output of an Unrestricted Name). Free output on unrestricted names 𝑦 is
defined by send 𝑥(𝑦);𝑃 ≜ send 𝑥(𝑤.fwd! 𝑤 𝑦);𝑃

Proposition 2. The typing rules

[TfwdE]
fwd! 𝑥 𝑦 ⊢ 𝑥 :!𝐴;Γ, 𝑦 : 𝐴

𝑃 ⊢ Δ, 𝑥 : 𝐵;Γ, 𝑦 : 𝐴
[T⊗ 𝑓 !]

send 𝑥(𝑦);𝑃 ⊢ Δ, 𝑥 :!𝐴 ⊗ 𝐵;Γ, 𝑦 : 𝐴

are derivable.

Proof. Immediate from Definitions 8 and 9.

The unrestricted copycat process fwd! 𝑥 𝑦 ⊢ 𝑥 :!𝐴;Γ, 𝑦 : 𝐴 defines a replicated session
on session 𝑥 that, on each invocation, redirects the call request to 𝑦. Process send 𝑥(𝑦);𝑃
outputs the free unrestricted session 𝑦 : 𝐴 on session 𝑥 and then continues as 𝑥 : 𝐵, being
implemented as a process that communicates on 𝑥 a fresh session 𝑤 implemented by the
unrestricted copycat process.

We use the same process expression for the free output of a linear name (see Def. 7) and
the free output of an unrestricted name. Nevertheless, it is always possible to disambiguate
which process definition the expression stands for by analysing the context with which
the expression types: the free output of a linear name send 𝑥(𝑦); types a session 𝑦 in
the linear part of the context, whereas the free output of an unrestricted name send 𝑥(𝑦);
types a session 𝑦 in the unrestricted part of the context.

Before moving on to present polymorphic and inductive type sessions, we show how
all the basic process and type constructs presented so far can be combined to define a
simple boolean calculator.

Example 5 (Boolean Calculator). The boolean calculator operates on the datatype Bool of
boolean sessions, previously defined in Example 4.

Fig. 2.5 lists code for the calculator calculator(𝑠) that, on request, either discards a boolean,
computes the logical negation of an inputted boolean or the logical conjunction of two inputted
booleans. Process calculator(𝑠) offers on 𝑠 a protocol of type !Menu where

Menu ≜ N{ dis : Bool ⊸ 1
neg : Bool ⊸ Bool ⊗ 1
conj : Bool ⊸ Bool ⊸ Bool ⊗ 1}

On each call on channel 𝑠, calculator(𝑠) spawns a linear session on a fresh 𝑐 (of type Menu).
Then, on 𝑐, it offers a menu with three choices: dis, neg or conj. In case the choice is dis, it receives
on 𝑐 a boolean 𝑥 and discards 𝑥. If neg, it receives on 𝑐 boolean 𝑥, computes the logical negation of
𝑥 on 𝑦 and sends 𝑦 on session 𝑐. Finally, if the chosen option is conj, the boolean calculator receives

41

CHAPTER 2. THE BASIC LANGUAGE �CLL

calculator(𝑠) ≜
!𝑠(𝑐);
case 𝑐 {
|dis : recv 𝑐(𝑥);

par {discard(𝑥) | | close 𝑐}
|neg : recv 𝑐(𝑥);

send 𝑐(𝑦.not(𝑥, 𝑦));
close 𝑐

|conj :recv 𝑐(𝑥);
recv 𝑐(𝑦);
send 𝑐(𝑧.and(𝑥, 𝑦, 𝑧));
close 𝑐

}

client1(𝑠) ≜
call 𝑠(𝑐0);
neg 𝑐0;
send 𝑐0(𝑥.false(𝑥));
recv 𝑐0(𝑦);
wait 𝑐0;
call 𝑠(𝑐1);
dis 𝑐1;
send 𝑐1(𝑦);
wait 𝑐1;
client′1(𝑠)

client2(𝑠) ≜
call 𝑠(𝑐);
conj 𝑐;
send 𝑐(𝑥.true(𝑥));
send 𝑐(𝑦.false(𝑦));
recv 𝑐(𝑧);
wait 𝑐;
client′2(𝑧, 𝑠)

Figure 2.5: Code for the boolean calculator and two clients.

on 𝑐 two booleans 𝑥 and 𝑦, computes their logical conjunction on 𝑧 and sends back the result 𝑧 on
session 𝑐. Both branches finalise the session 𝑐 by closing it, after which no further interaction takes
place.

Fig. 2.5 presents code for two alternative clients of the boolean calculator both offering the same
typing context:

client1(𝑠) ⊢ ∅; 𝑠 : Menu client2(𝑠) ⊢ ∅; 𝑠 : Menu

Client client1 calls the replicated calculator twice: first to compute the logical negation of the
boolean false and then to discard the result, after which it continues as client′1(𝑠) ⊢ 𝑠 : Menu.
Alternatively, client client2 chooses option conj to compute the logical conjunction of booleans true
and false and gets the result on 𝑧, continuing as client′2(𝑧, 𝑠) ⊢ 𝑧 : Bool; 𝑠 : Menu. Both client
continuations can possibly make further invocations on the replicated calculator, since session 𝑠
persists on the unrestricted context.

Finally, we define a closed process system ⊢ ∅; ∅ that composes the two clients, running in
parallel, with the boolean calculator

system ≜ cut {calculator(𝑠) |𝑠 :!Menu| ?𝑠; par {client1(𝑠) | | client2(𝑠)}}

The process construct ?𝑥;𝑃 moves a session 𝑥 : ?𝐴 from the linear to the unrestricted context
(to be typed as 𝑥 : 𝐴) and proceeds as 𝑃. Independently of the order in which the calculator requests
are processed, both clients will always get the same results. The calculator behaviour is identical
for each invocation (cf. uniform receptiveness of shared names [136]). In the next chapter, we
will present our language extension CLASS that allows clients to share stateful objects, in which
non-deterministic computations naturally emerge.

A variant of this example is coded in examples/pure/boolean-server.clls.

Existential and Universal Abstraction

CLASS has support for existential (∃𝑋.𝐴) and universal (∀𝑋.𝐴) types, which allows us to
define abstract datatypes [109] and generic polymorphic algorithms.

42

2.3. TYPE SYSTEM

In session-based process calculi, abstraction is implemented by a process sendty 𝑥 𝐵;𝑃
that sends a representation type 𝐵 along 𝑥, and then continues as 𝑄. Symmetrically,
process recvty 𝑥(𝑋);𝑄 receives on 𝑥 a representation 𝑋 and continues as 𝑄.

Type send and receive are typed by ∃𝑋.𝐴 (exists) and ∀𝑋.𝐴 (for all) respectively

𝑃 ⊢ Δ, 𝑥 : {𝐵/𝑋}𝐴;Γ
[T∃]

sendty 𝑥 𝐵;𝑃 ⊢ Δ, 𝑥 : ∃𝑋.𝐴;Γ
𝑄 ⊢ Δ, 𝑥 : 𝐴;Γ

[T∀]
recvty 𝑥(𝑋);𝑄 ⊢ Δ, 𝑥 : ∀𝑋.𝐴;Γ

the rules correspond to second-order existential and universal quantification. In rule [T∀],
we consider that 𝑋 does not occur free in Δ, Γ.

The associated reduction between type send and receive is

cut {sendty 𝑥 𝐵;𝑃 |𝑥 : ∃𝑋. 𝐴| recvty 𝑥(𝑋);𝑄} → cut {𝑃 |𝑥 : {𝐵/𝑋}𝐴| {𝐵/𝑋}𝑄} [∃∀]

The presence of existential quantifiers allow us to hide the representation datatype
(cf. [109]) of our concurrent shareable stateful ADTs, as we will in the next chapter. On
the other hand, with universal quantifiers we can express generic parametric processed
and even inductive datatypes such as naturals and lists (see [161, 149]), as we illustrate in
the following example, by encoding the Church numerals.

Example 6 (Inductive types). We illustrate the usage of type quantifiers to encode inductive
types, by implementing the naturals with polymorphic sessions (cf. [66])

Nat ≜ ∀𝑋.𝑋 ⊸!(𝑋 ⊸ 𝑋) ⊸ 𝑋

zero(𝑛) ≜ recvty 𝑛(𝑋); recv 𝑛(𝑧); recv 𝑛(𝑠); ?𝑠; fwd 𝑧 𝑛

succ(𝑛, 𝑚) ≜ recvty 𝑚(𝑋); recv 𝑚(𝑧); recv 𝑚(𝑠); ?𝑠;
sendty 𝑛 𝑋; send 𝑛(𝑧); send 𝑛(𝑠); call 𝑠(𝑐); send 𝑐(𝑛); fwd 𝑐 𝑚

Terms of type Nat receive a type variable 𝑋, a value 𝑧 : 𝑋 and a persistent session 𝑠 :!(𝑋 ⊸ 𝑋) and
call the 𝑠 a finite (possibly zero) number of times on 𝑧 to return a value 𝑛 : 𝑋. Notice that zero(𝑛) ⊢
𝑛 : Nat simply forwards 𝑧 on 𝑛 without calling 𝑠. On the other hand, succ(𝑛, 𝑚) ⊢ 𝑛 : Nat, 𝑚 : Nat
calls 𝑠 one more time on the output produced by the calls of 𝑛. The encoding of the naturals allows
for the definition of recursive operations. For example, the predicate zero?(𝑛, 𝑏) ⊢ 𝑛 : Nat, 𝑏 : Bool
that consumes a natural 𝑛 and produces the boolean true if 𝑛 is zero and false otherwise is defined
by

zero?(𝑛, 𝑏) ≜ sendty 𝑛 Bool; send 𝑛(𝑧. true 𝑧); send 𝑛(𝑠. kfalse(𝑠)); fwd 𝑛 𝑏

where kfalse(𝑠) ⊢ 𝑠 :!(Bool ⊸ Bool);Γ is a process that persistently continues as the boolean false
regardless of the input

kfalse(𝑠) ≜ !𝑠(𝑠0); recv 𝑠0(𝑏); case 𝑏 {|inl : wait 𝑏; false(𝑠0) | inr : wait 𝑏; false(𝑠0)}

Check pure/naturals-systemF.clls for an implementation of this example, where we also
define more functions such as equal(𝑛 : Nat, 𝑚 : Nat, 𝑏 : Bool) that checks for the equal-
ity of two naturals. Check also pure/lists-systemF.clls for an implementation of lists and

43

CHAPTER 2. THE BASIC LANGUAGE �CLL

pure/recursion-for-free.clls for how to encode recursive types using polymorphism, based
on [161].

Inductive/Coinductive Session Types

In the previous subsection we saw that polymorphism allows us to encode a form of
recursion for free, in the style of system-F encodings. However, this encoding cannot be
extended to accommodate imperative stateful recursive structures, such as linked lists,
with support for memory-efficient updates in-place. This is because the recursive iterators
obtained with polymorphism destroy the recursive structure over which the iteration is
performed.

This has motivated the introduction of inductive �𝑋. 𝐴 and coinductive �𝑋. 𝐴 session
types in CLASS. Coinductive sessions are introduced by rule [Tcorec]

𝑃 ⊢�′ Δ, 𝑧 : 𝐴;Γ �′ = �, 𝑋(𝑧, ®𝑤) ↦→ Δ, 𝑧 : 𝑌;Γ
[Tcorec]

corec 𝑋(𝑧, ®𝑤);𝑃 [𝑥, ®𝑦] ⊢� { ®𝑦/ ®𝑤}Δ, 𝑥 : �𝑌. 𝐴; { ®𝑦/ ®𝑤}Γ

It types a corecursive process corec 𝑋(𝑧, ®𝑤);𝑃 [𝑥, ®𝑦] with parameters 𝑧, ®𝑤 bound in body
𝑃, which is instantiated with arguments 𝑥, ®𝑦. By convention, the coinductive behaviour is
always offered in the first argument 𝑧 of the corecursive process.

To type the body 𝑃 ⊢�′ Δ, 𝑧 : 𝐴;Γ of a corecursive process we extend the map � with a
binding for a process variable 𝑋 mapped to the typing context Δ, 𝑧 : 𝑌;Γ, so that when
typing the body 𝑃 of the corecursion we can appeal to 𝑋, which intuitively stands for 𝑃
itself, and recover its typing invariant.

The type variable 𝑌 is free only in 𝑧 : 𝐴, when typing the body 𝑃. This guarantees that
the corecursive call is done in a session that hereditarily descends from the corecursive
argument 𝑧, thereby ensuring that corecursion is well-founded, which is then essential to
have strong normalisation.

Typing rule [Tvar]
� = �′, 𝑋(𝑥, ®𝑦) ↦→ Δ, 𝑥 : 𝑌;Γ

[Tvar]
𝑋(𝑧, ®𝑤) ⊢� { ®𝑤/®𝑦}(Δ, 𝑧 : 𝑌;Γ)

allows us to type a recursive call 𝑋(𝑥, ®𝑦) by looking up in � for the corresponding binding
and by renaming the parameters of the binding with the arguments of the call.

On the other hand, type �𝑋. 𝐴 allows us to type recursive process definitions, as we
illustrate in Example 7 by encoding the natural datatype. Both inductive and coinductive
types can be unfolded, as typed by rules

𝑃 ⊢� Δ, 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ
[T�]

unfold� 𝑥;𝑃 ⊢� Δ, 𝑥 : �𝑋. 𝐴;Γ

𝑃 ⊢� Δ, 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ
[T�]

unfold� 𝑥;𝑃 ⊢� Δ, 𝑥 : �𝑋. 𝐴;Γ

Process unfold� 𝑥;𝑃 (resp., unfold� 𝑥;𝑃) unfolds the inductive type 𝑥 : �𝑋𝐴 (resp.,
coinductive type �𝑋. 𝐴) and continues as 𝑃.

44

2.3. TYPE SYSTEM

The cut between the unfold of an inductive type and a corecursive process definition
reduces to a process in which the corecursive definition is unfolded by one step, as
modelled by

cut {unfold� 𝑥;𝑃 |𝑥 : �𝑋. 𝐴| corec 𝑌(𝑧, ®𝑤);𝑄 [𝑥, ®𝑦]}
→ cut {𝑃 |𝑥 : {�𝑋. 𝐴/𝑋}𝐴| {𝑥/𝑧}{ ®𝑦/ ®𝑤}{corec 𝑌(𝑧, ®𝑤);𝑄/𝑌}𝑄} [corec]

A cut between the unfold of an inductive type and the unfold of a coinductive type
simply reduces to a cut of the continuations as modelled by

cut {unfold� 𝑥;𝑃 |𝑥 : �𝑋. 𝐴| unfold� 𝑥;𝑄} → cut {𝑃 |𝑥 : {�𝑋. 𝐴/𝑋}𝐴| 𝑄} [��]

To simplify the presentation of examples, we omit unfolding actions (typed by [T�]
and [T�]) and write corecursive processes in the form 𝑄(𝑥, ®𝑦) ≜ . . . 𝑄(−) . . . instead of
corec 𝑋(𝑧, ®𝑤); . . . 𝑋(−) . . . [𝑥, ®𝑦], while of course respecting the typing rules.

We conclude this subsection with two examples: in 7 we encode naturals and define
some operations using primitive inductive/coinductive session types; in 8 we show
general recursion loops.

Example 7 (Naturals). Previously, in Example 6 we defined the naturals in the style of System F
encodings by resorting to polymorphic session types. In this example we give a direct encoding by
relying on our primitive inductive/coinductive session types.

Let
Nat ≜ �𝑋. ⊕ {|Z : 1 |S : 𝑋}

A session 𝑥 : Nat chooses either Z (zero), in which case it closes, or S (successor) in which case it
recurs as 𝑥 : Nat.

Processes 𝑉0(𝑛), 𝑉1(𝑛), 𝑉2(𝑛) . . . ⊢ 𝑛 : Nat corresponding to the naturals 0, 1, 2, . . . can be
encoded as

𝑉0(𝑛) ≜ Z 𝑛; close 𝑛
𝑉1(𝑛) ≜ S 𝑛; Z 𝑛; close 𝑛
𝑉2(𝑛) ≜ S 𝑛; S 𝑛; Z 𝑛; close 𝑛
. . .

The idea can be generalised to define process succ(𝑛, 𝑚) ⊢ 𝑛 : Nat, 𝑚 : Nat which interacts with a
natural on 𝑛 and produces its successor on 𝑚 by

succ(𝑛, 𝑚) ≜ S 𝑚; fwd 𝑛 𝑚

We will now illustrate corecursion by defining a process that doubles a natural number, but
first we defined the following auxiliary process add2(𝑛, 𝑚) ⊢ 𝑛 : Nat, 𝑚 : Nat that produces on 𝑚
the result of adding 2 to 𝑛

add2(𝑛, 𝑚) ≜ S 𝑚; S 𝑚; fwd 𝑛 𝑚

We can rewrite process add2(𝑛, 𝑚) with explicit unfolds as

add2(𝑛, 𝑚) = unfold� 𝑚; S 𝑚; unfold� 𝑚; S 𝑚; fwd 𝑛 𝑚

45

CHAPTER 2. THE BASIC LANGUAGE �CLL

The type derivation for add2(𝑛, 𝑚) ⊢ 𝑛 : Nat, 𝑚 : Nat is then as follows

[Tfwd]
fwd 𝑛 𝑚 ⊢ 𝑛 : Nat, 𝑚 : Nat

[T⊕]
S 𝑚; fwd 𝑛 𝑚 ⊢ 𝑛 : Nat, 𝑚 : ⊕{|Z : 1 |S : Nat}

[T�]
unfold� 𝑚; S 𝑚; fwd 𝑛 𝑚 ⊢ 𝑛 : Nat, 𝑚 : Nat

[T⊕]
S 𝑚; unfold� 𝑚; S 𝑚; fwd 𝑛 𝑚 ⊢ 𝑛 : Nat, 𝑚 : ⊕{|Z : 1 |S : Nat}

[T�]
unfold� 𝑚; S 𝑚; unfold� 𝑚; S 𝑚; fwd 𝑛 𝑚 ⊢ 𝑛 : Nat, 𝑚 : Nat

In the type derivation, the recursive type Nat is unfolded twice, so that we can exhibit the type
choice and select the branch S, corresponding to successor.

With corecursion we can define process double(𝑛, 𝑚) ⊢ 𝑛 : Nat, 𝑚 : Nat produces the double
of 𝑛 on 𝑚:

double(𝑛, 𝑚) ≜ case 𝑛{ |Z : wait 𝑛; V0(𝑚)
|S : cut {double(𝑛, 𝑘) |𝑘 | add2(𝑘, 𝑚)}}

double(𝑛, 𝑚) starts by pattern matching on 𝑛: if 𝑛 chooses Z (zero) we simply wait for 𝑛 to be
closed and continues as the natural V0(𝑚) on 𝑚. Otherwise: if 𝑛 chooses S (successor) we spawn
a corecursive call double(𝑛, 𝑘) that interacts with its continuation and produces its double in 𝑘.
The corecursive call is composed via a cut on 𝑘 with process add2(𝑘, 𝑚).

We will now show how the corecursive definition double(𝑛, 𝑚) maps to the core language
syntax with the explicit annotation of corecursion, by rewriting double(𝑛, 𝑚) as

double(𝑛, 𝑚) ≜ corec 𝑌(𝑥, 𝑦);𝐶(𝑥, 𝑦) [𝑛, 𝑚]

where the auxiliary case process 𝐶(𝑥, 𝑦) is defined by

𝐶(𝑥, 𝑦) ≜ case 𝑥{ Z : wait 𝑥; V0(𝑦)
S : cut {𝑌(𝑥, 𝑧) |𝑧 | add2(𝑦, 𝑧)}}

We will now show the type derivation for double(𝑛, 𝑚). The corecursive construct extends
map � with a binding for the variable 𝑌

... [TN]
𝐶(𝑥, 𝑦) ⊢�′ 𝑥 : ⊥N 𝑋, 𝑦 : Nat �′ = �, 𝑌(𝑥, 𝑦) ↦→ Δ, 𝑥 : 𝑋, 𝑦 : Nat

[Tcorec]
corec 𝑌(𝑥, 𝑦);𝑃(𝑥, 𝑦) [𝑛, 𝑚] ⊢� 𝑛 : Nat, 𝑚 : Nat

We complete the type derivation by displaying the derivation for each branch of the case, namely Z
(zero)

V0(𝑦) ⊢�′ 𝑦 : Nat
[T⊥]

wait 𝑥; V0(𝑦) ⊢�′ 𝑥 : ⊥, 𝑦 : Nat

and S (successor)

46

2.3. TYPE SYSTEM

�′ = �, 𝑌(𝑥, 𝑦) ↦→ Δ, 𝑥 : 𝑋, 𝑦 : Nat
[Tvar]

𝑌(𝑥, 𝑧) ⊢�′ 𝑥 : 𝑋, 𝑧 : Nat add2(𝑦, 𝑧) ⊢�′ 𝑧 : Nat, 𝑦 : Nat
[Tcut]

cut {𝑌(𝑥, 𝑧) |𝑧 | add2(𝑦, 𝑧)} ⊢�′ 𝑥 : 𝑋, 𝑦 : Nat

where �′ = �, 𝑌(𝑥, 𝑦) ↦→ Δ, 𝑥 : 𝑋, 𝑦 : Nat.
This example is coded in pure/naturals.clls, where we also define further corecursive process

definitions such as the arithmetic operations of addition and multiplication, as well as some tests.

Example 8 (Repeat). In this example we show how to code general recursion loops. We code
process

repeat(𝑛, 𝑖, 𝑜, 𝑏) ⊢ 𝑛 : Nat, 𝑖 : 𝐴, 𝑜 : 𝐴;Γ, 𝑏 : (𝐴 ⊸ 𝐴)

that repeats 𝑛 times the replicated session 𝑏, starting with 𝑖 and producing the output on 𝑜. The
definition is as follows

repeat(𝑛, 𝑖, 𝑜, 𝑏) ≜ case 𝑛{ Z : wait 𝑛; fwd 𝑖 𝑜
S : call 𝑏(𝑥); send 𝑥(𝑖); repeat(𝑛, 𝑥, 𝑜, 𝑏)}

Process repeat(𝑛, 𝑖, 𝑜, 𝑏) performs case analysis on 𝑛. If Z (zero), it waits for 𝑛 to be closed and
then simply forwards the initial input 𝑖 to the output 𝑜. On the other hand, if S, it calls the
replicated session 𝑏 on 𝑥, sends the initial input 𝑖 on 𝑥 and then continues as tail corecursive call
repeat(𝑛, 𝑥, 𝑜, 𝑏).

By using repeat and process double, that doubles a natural number (from previous Example 7),
we implement

pow2(𝑛, 𝑚) ⊢ 𝑛 : Nat, 𝑚 : Nat

that computes the exponent of base 2 of 𝑛 and outputs on 𝑚, defined by

pow2(𝑛, 𝑚) ≜ cut {V1(𝑖) |𝑖 | cut {?𝑏; repeat(𝑛, 𝑖, 𝑚, 𝑏) |𝑏 | !𝑏(𝑘); recv 𝑘(𝑗); double(𝑗 , 𝑘)}}

Process pow2(𝑛, 𝑚) composes repeat(𝑛, 𝑖, 𝑚, 𝑏) with two processes: natural number 1 on session
𝑖, that represents the initial value of the iteration; and the replicated body 𝑏 that, on each call,
doubles the inputted natural.

Process repeat allows us to code the for-loop used in the introduction to implement the fork-
join 1.4. Given any 𝑃 ⊢ spre : 𝐴, spost : 𝐴;Γ,max : Nat, we define

for spre : 𝐴 to spost(𝑠, 𝑠′,max){𝑃}
≜ cut {!𝑏(spost); recv spost(spre);𝑃 |𝑏 | ?𝑏; call max(𝑛); repeat(𝑛, 𝑠, 𝑠′, 𝑏)}

47

CHAPTER 2. THE BASIC LANGUAGE �CLL

2.4 Further Discussion and Related Work

This chapter presented the session-typed language �CLL, based on the propositions-as-
types interpretation of second-order classical linear logic [23, 24, 157], extended with mix
and inductive / coinductive types.

The notion of propositions-as-types goes back to the functional interpretation of
Intuitionistic logic due to Brouwer, Heyting and Kolmogorov, but was only brought under
the spotlight after the famous notes of Curry and Howard [76]. It has been since then
considered both an intriguing and prolific concept, with many instances and consequences
(see [160]).

Linear logic was developed by Girard [61] and it was advertised as the logic for
concurrency. Some initial steps by Abramsky [1] and Bellin and Scott [14] were taken
to connect linear logic to Milner’s 𝜋-calculus [108]. However, a propositions-as-types
correspondence between linear logic and session types [73] was only established a decade
ago by Caires and Pfenning [23] and Wadler [157], on which we based the development
of �CLL.

In [23] the authors propose a type system, named 𝜋DILL, for a synchronous 𝜋-calculus
that corresponds, by erasing process annotations, exactly to a sequent-calculus formulation
of dual intuitionistic linear logic. They prove the existence of a bidirectional simulation
between (typed) 𝜋-calculus computations and proof conversions on typing derivations,
thereby establishing a strong form of subject reduction.

Following [23], the work [157] presents a session-typed process calculus, named CP,
that corresponds to classical linear logic and formalises the connection with session types
by translating a linear functional language with session types, inspired by [58], to CP.
Independently, in [24], the author define a variant of the interpretation [23] for classical
linear logic.

The underlying calculus of both 𝜋DILL and CP are variants of Milner’s 𝜋-calculus. The
𝜋-calculus has, among others, process constructors �𝑥 for name restriction and | for
parallel composition, which do not find a direct correspondence in linear logic. In fact,
those constructors are plugged together in 𝜋DILL to obtain the process �𝑥 (𝑃 | 𝑄) that
interprets the cut rule and corresponds to interactive composition. In contrast, in our
language �CLL, interactive composition has an indivisible process construct ∥𝑥 of its own.
Interestingly, this indivisible kind of interactive composition (parallel composition plus
hiding) is the basic morphism composition of the work on interactive categories [2] and it
was even considered by Milner as a candidate primitive operation of the 𝜋-calculus [105].
Those and other discrepancies between the 𝜋-calculus and linear logic proof syntax pose
some problems for defining an observable semantics, which were recently investigated
in [90].

The type system of �CLL is dyadic. Dyadic formulations of logic can be found in
the unified sequents of Girard [65], where there is a zone with a classical maintenance, and
a zone with a linear maintenance. And they can also be found in the work on focusing

48

2.4. FURTHER DISCUSSION AND RELATED WORK

proofs of Andreoli [5]. Whereas in monadic presentations of CLL [63], weakening and
contraction are explicit rules of the typing system, in dyadic formulation the same rules
are admissible. As we shall see when studying proof normalisation, and as explored by
Pfenning [122], isolating the non-linear reasoning in a separated context eases the task of
building constructive proofs of cut-elimination. As far as process interpretations of linear
logic are concerned, dyadic presentations can be found in [23] for the intuitionistic and in
[29] for the classical variants. Wadler [157] adopts a monadic presentation.

Least and greatest fixed points were studied in the context of linear logic by Baelde [9],
which inspired the development of recursion in session-based propositions-as-types inter-
pretations [147, 99]. Our treatment of recursion in �CLL is inspired by [147, 143], where
recursion/corecursion is added on top of the Curry-Howard interpretation of intuition-
istic linear logic [23]. Also based on [23], the work [47] develops a session-typed process
interpretation with fixed points for a subsingleton fragment of intuitionistic linear logic,
in which the antecedent of each sequent consists of at most one formula.

49

3

CLASS: Classic Linear Logic with
Affine Shared State

3.1 Introduction

In this chapter, we conclude the presentation of CLASS by extending the pure fragment
�CLL with affine sessions, first-class higher-order reference cells, shared state and nonde-
terminism. This allows rich imperative stateful programs to be coded and typed, such as
linked data structures, resource synchronisation methods and shared mutable concurrent
ADTs, to name a few. Some examples were already presented in the introductory overview,
in this chapter we revisit some of them and then, in the next chapter, we will code several
more.

CLASS fine-grained lightweight type system, based on linear logic, imposes crisp
conditions, guaranteeing that all cell operations are well-behaved and that the state
sharing topologies are acyclic and also implies strong guarantees like memory safety,
deadlock-freedom and termination. Furthermore, because we follow a propositions-as-
types approach, in CLASS we can reason about the behaviour of concurrent programs
that manipulate shared state, by doing simple algebraic-like manipulations on process
expressions.

CLASS has a rich substructural type system: besides linear and unrestricted sessions,
it also offers support for affine sessions. The process construct

affine 𝑎;𝑃

types with the affine modality ∧𝐴 and defines an affine session on 𝑎, it then continues as
𝑃. Affine sessions can either be used or discarded, with the operations

use 𝑎;𝑃 discard 𝑎

that type with the dual coaffine modality ∨𝐴. Besides being useful for expressing general
resourceful programs, affine sessions play a key role in CLASS, since the sessions stored
by reference cells are affine. This is an essential condition to guarantee memory-safe
deallocation, which is handled automatically in CLASS.

50

3.1. INTRODUCTION

In CLASS, reference cells can either be full or empty, as expressed by process constructs

cell 𝑐(𝑎.𝑃) empty 𝑐

The process on the left-hand side defines a full reference cell on session 𝑐, which stores
an affine session 𝑎, the behaviour on 𝑎 being implemented by 𝑃. On the other hand, the
right-hand side defines an empty cell on session 𝑐. Both cells type with a state modality,
but CLASS fine-grained type system distinguishes between the two full and empty states,
expressed by the S 𝑓 𝐴 (state full) and S𝑒 𝐴 (state empty) modalities, respectively.

There are three possible operations on CLASS reference cells

release 𝑐 take 𝑐(𝑎);𝑄 put 𝑐(𝑎.𝑄1);𝑄2

Processes release 𝑐 and take 𝑐(𝑎);𝑄 can be applied to full reference cells, they type with
the modality U 𝑓 𝐴 (full usage), the former releases the cell usage whereas the latter takes
the session 𝑎 stored in the reference cell 𝑐, then continues as𝑄. The take operation acquires
the implicit lock associated with the reference cell 𝑐, the type system then guarantees that
this lock is released, so as to ensure the absence of deadlocks. This lock-releasing is done
with the put operation put 𝑐(𝑎.𝑄1);𝑄2, which applies to empty reference cells, it types
with the modality U𝑒 𝐴 (empty usage). It puts back a new session 𝑎, the behaviour of
which is implemented by 𝑄1, and continues as 𝑄2.

The reference cells and their sequential cell usage operations allows us to express rich
efficient data structures in CLASS, such as mutable pairs, linked lists and binary search
trees, without violating important safety properties such as termination. We will show
some of these examples later, interestingly they illustrate how primitive recursion fits well
with higher-order state in CLASS.

CLASS also offers support for state sharing, with the construct

share 𝑐 {𝑃 | | 𝑄}

and which allows us to dynamically share a cell usage 𝑐 by an arbitrary number of
cooperative concurrent threads. With sharing at our disposal, we can code expressive
fine-grained concurrent programs, such as shared concurrent mutable ADTs (counters,
stacks, functional and imperative queues), resource synchronisation methods (fork-joins,
barriers and dining philosophers) and generic corecursive protocols.

The type system of CLASS lifts the basic acyclicity of linear logic session communication
topologies, expressed by the cut rule, to cell sharing topologies, in this case expressed
logically by cocontraction. This guarantees that CLASS well-typed programs dot not
block, neither on channel communication, nor on cell-lock acquisition, are memory-safe
and terminate. A guarantee that holds even for complex structures involving recursion,
polymorphism and higher-order state, with dynamic unbounded sharing. Furthermore,
these properties follow from the basic linear type system, without needing to resort to
extra-logical devices such as partial orders.

51

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

Sharing of stateful reference cells leads to nondeterminism, which naturally emerge
from racy concurrent behaviour, specifically from concurrent take operations. In CLASS
this nondeterminism is captured by a non-collapsing sum operation

𝑃 +𝑄

which represents a choice between two alternatives 𝑃 and 𝑄.
Sums play a key role in the metatheoretical model of CLASS as they allows us to

explicitly capture all the possible nondeterministic evolutions of a stateful system and,
because of that, to have a confluent notion of reduction, as required from a propositions-as-
types approach. As will see, with sums we can reason about the behaviour of concurrent
stateful programs equationally by doing simple algebraic-like manipulations, which paves
the way for program optimisations.

This chapter is organised as follows. Section 3.2 presents the process calculus CLASS
and its operational semantics. Then, in Section 3.3, we present the type system going
though each of the process constructs, associated typing and reduction rules. The intro-
duced concepts are illustrated with several examples. Finally, Section 3.4 concludes with
further discussion and related work.

3.2 Process Calculus and Operational Semantics

In this section, we define the process syntax and the reduction-based operational semantics
of CLASS, extending the corresponding elements of the pure fragment �CLL (Chapter 2,
Section 2.2).

Types and Duality

Since processes in CLASS depend on types, we start with types and type duality.

Definition 10 (Types). We extend the grammar of types of �CLL (Definition 1) with

𝐴, 𝐵 ::= . . .

| ∧𝐴 (affine) | ∨𝐴 (coaffine)

| S 𝑓 𝐴 (full state) | U 𝑓 𝐴 (full usage)

| S𝑒 𝐴 (empty state) | U𝑒 𝐴 (empty usage)

The types of CLASS extend the propositions of classical linear logic with type modalities
for affine sessions (∧𝐴,∨𝐴) and for imperative state and state usage (S 𝑓 𝐴, U 𝑓 𝐴, S𝑒 𝐴,U𝑒 𝐴).
We consider that affine/coaffine modalities and the state/usage modalities have higher
precedence than the binary connectives.

The following definition extends duality to the newly introduced modalities.

52

3.2. PROCESS CALCULUS AND OPERATIONAL SEMANTICS

𝑃, 𝑄 ::= . . . |
share 𝑐 {𝑃 | | 𝑄} (share)

𝑃 + 𝑄 (sum)

𝒜 ,ℬ ::= . . . |

| affine®𝑐,®𝑎 𝑎;𝑃 (affine)

| discard 𝑎 (discard)

| use 𝑎;𝑃 (use)

| cell 𝑐(𝑎.𝑃) (cell)

| release 𝑐 (release)

| take 𝑐(𝑎);𝑃 (take)

| empty 𝑐 (empty cell)

| put 𝑐(𝑎.𝑃);𝑄 (put)
Figure 3.1: Processes 𝑃 of CLASS (extends Fig. 2.1).

Definition 11 (Duality on Types 𝐴). We extend the definition of duality of �CLL (Definition 2)
with

∧𝐴 ≜ ∨𝐴
S 𝑓 𝐴 ≜ U 𝑓 𝐴

S𝑒 𝐴 ≜ U𝑒 𝐴

Processes

We will now present the processes of CLASS.

Definition 12 (Processes). The syntax of process terms for CLASS extends the syntax of �CLL
(Definition 3) with the rules of Fig. 3.1.

The imperative fragment of CLASS contains affine sessions affine®𝑐,®𝑎 𝑎;𝑃 and operations
to discard discard 𝑎 and use use 𝑎;𝑃 a coaffine session. CLASS also defines full reference
cells cell 𝑐(𝑎.𝑃) which can be either released with release 𝑐 or acquired with a take
operation take 𝑐(𝑎);𝑃, as well as empty reference cells empty 𝑐 which support a put
operation put 𝑐(𝑎.𝑃);𝑄.

Besides the static constructs cut and mix, CLASS also has an operation share 𝑐 {𝑃 | | 𝑄}
to share state and nondeterministic sums 𝑃 +𝑄. For convenience, we equip CLASS with
𝑛-ary right-associative share constructs

share {𝑃1 | | . . . 𝑃𝑛−1 | | 𝑃𝑛}

In the process expression affine®𝑐,®𝑎 𝑎;𝑃 we let ®𝑐 and ®𝑎 be possible empty arrays of
session names, which explicitly capture the dependencies of an affine session on other

53

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

Commutativity Rules
share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑥 {𝑄 | | 𝑃} [Sh]

Sum Rules
0 + 0 ≡ 0 [0Sm] 𝑃 + 𝑄 ≡ 𝑄 + 𝑃 [Sm] 𝑃 + (𝑄 + 𝑅) ≡ (𝑃 + 𝑄) + 𝑅 [SmSm]

Linearly Distributive Conversions
cut {𝑃 |𝑥 | share 𝑦 {𝑄 | | 𝑅}} ≡ share 𝑦 {cut {𝑃 |𝑥 | 𝑄} | | 𝑅}, 𝑥, 𝑦 ∈ fn(𝑄) [CSh]

share 𝑥 {𝑃 | | cut! {𝑦.𝑄 |𝑧 | 𝑅}} ≡ cut! {𝑦.𝑄 |𝑧 | share 𝑥 {𝑃 | | 𝑅}}, 𝑧 ∉ fn(𝑃) [ShC!]

share 𝑥 {𝑃 | | (par {𝑄 | | 𝑅})} ≡ par {share 𝑥 {𝑃 | | 𝑄} | | 𝑅}, 𝑥 ∈ fn(𝑄) [ShM]

share 𝑥 {𝑃 | | share 𝑦 {𝑄 | | 𝑅}} ≡ share 𝑦 {share 𝑥 {𝑃 | | 𝑄} | | 𝑅}, 𝑥, 𝑦 ∈ fn(𝑄) [ShSh]

Sum Distributive Conversions
par {𝑃 | | (𝑄 + 𝑅)} ≡ (par {𝑃 | | 𝑄}) + (par {𝑃 | | 𝑅}) [MSm]

cut {𝑃 |𝑥 : 𝐴| (𝑄 + 𝑅)} ≡ (cut {𝑃 |𝑥 : 𝐴| 𝑄}) + (cut {𝑃 |𝑥 : 𝐴| 𝑅}) [CSm]

cut! {𝑦.𝑃 |𝑥 : 𝐴| (𝑄 + 𝑅)} ≡ (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) + (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅}) [C!Sm]

share 𝑥 {𝑃 | | (𝑄 + 𝑅)} ≡ (share 𝑥 {𝑃 | | 𝑄}) + (share 𝑥 {𝑃 | | 𝑅}) [ShSm]

Share Conversions
share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2}
≡ take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} + take 𝑥(𝑦2); share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2},
𝑦1 ∈ fn(𝑃1), 𝑦2 ∈ fn(𝑃2) [TSh]

share 𝑥 {release 𝑥 | | 𝑃} ≡ 𝑃 [RSh]

share 𝑥 {put 𝑥(𝑦.𝑃);𝑄 | | 𝑅} ≡ put 𝑥(𝑦.𝑃); share 𝑥 {𝑄 | | 𝑅} [PSh]
Figure 3.2: Structural congruence 𝑃 ≡ 𝑄 Rules of CLASS (extends 2.2).

coaffine sessions ®𝑎 and full cell usages ®𝑐. Sometimes we omit them and simply write
affine 𝑎;𝑃.

Actions cell 𝑐(𝑎.𝑃), take 𝑐(𝑎);𝑃 and put 𝑐(𝑎.𝑃);𝑄 of Fig. 3.1 bind 𝑎 on 𝑃. All other name
occurrences are free. In particular, the sharing construct share 𝑐 {𝑃 | | 𝑄} does not bind 𝑐,
it occurs free in the process expression.

Operational Semantics

We will now present the reduction-based operational semantics of CLASS by extending
the operational model for the pure fragment. We start with the definition of structural
congruence.

Definition 13 (Structural Congruence 𝑃 ≡ 𝑄). Structural congruence ≡ for CLASS extends
the definition of structural congruence for �CLL (Def. 4) with the rules listed in Figure 3.2. In rule
[FSh], we consider that whenever 𝑃 ⊢� Δ;Γ, then Δ = Δ′, 𝑥 : 𝐴 where 𝐴 = U 𝑓 𝐵 or 𝐴 = U𝑒 𝐵.

54

3.2. PROCESS CALCULUS AND OPERATIONAL SEMANTICS

cut {affine®𝑐,®𝑎 𝑎;𝑃 |𝑎 | discard 𝑎} → par {release ®𝑐 | | discard ®𝑎} [∧∨d]

cut {affine®𝑐,®𝑎 𝑎;𝑃 |𝑎 | use 𝑎;𝑄} → cut {𝑃 |𝑎 | 𝑄} [∧∨u]

cut {cell 𝑐(𝑎.𝑃) |𝑐 | release 𝑐} → cut {𝑃 |𝑎 | discard 𝑎} [S 𝑓 U 𝑓 f]

cut {cell 𝑐(𝑎.𝑃) |𝑐 | take 𝑐(𝑎′);𝑄}
→ cut {𝑃 |𝑎 | cut {empty 𝑐 |𝑐 | {𝑎/𝑎′}𝑄}} [S 𝑓 U 𝑓 t]

cut {empty 𝑐 |𝑐 | put 𝑐(𝑎.𝑃);𝑄} → cut {cell 𝑐(𝑎.𝑃) |𝑐 | 𝑄} [S𝑒 U𝑒]
Figure 3.3: Reduction 𝑃 → 𝑄 rules of CLASS (Extends 2.3).

Share and sum are commutative ([Sh] and [Sm]), furthermore sum is associative
([SmSm]). The inaction process 0 is an idempotent element of sum ([0Sm]).

We can commute a (linear or unrestricted) cut, mix and share construct with a share
(rules [CSh], [ShC!], [ShM] and [ShSh]). Furthermore, we can distribute all the static
constructs mix, linear cut, unrestricted cut and share over sum (rules [MSm], [CSm],
[C!Sm], [ShSm]).

A share with two concurrent take actions can be ≡-equivalently rewritten into a sum
in which the two concurrent take operations are interleaved, according to rule [TSh]. The
release operation is a unit w.r.t to share-composition ([RSh]) and a put action commutes
with a share construct ([PSh]).

We will now introduce the reduction relation→, but first we need a couple of defini-
tions. First, we extend the static contexts of the pure fragment �CLL with

𝒞 ::= . . . | share 𝑥 {𝒞 || 𝑃} | share 𝑥 {𝑃 | | 𝒞} | 𝒞 + 𝑃 | 𝑃 + 𝒞

which allows to reduce processes within share and sum constructs. We also define the
following auxiliary operations release ®𝑥 and discard ®𝑥, by induction on ®𝑥:

release [] ≜ 0 release (®𝑥 : 𝑦) ≜ par {(release ®𝑥) | | release 𝑦}
discard [] ≜ 0 discard (®𝑥 : 𝑦) ≜ par {(discard ®𝑥) | | discard 𝑦}

which are used to model the interaction between an affine and discard process.
We can present the reduction relation.

Definition 14 (Reduction 𝑃 → 𝑄). Reduction→ for CLASS extends the definition of reduction
for �CLL (Def. 5) with the rules listed in Fig. 3.3.

The structural congruence rules of Def. 13 and the reduction rules of Def. 14 are complete
and correct in the sense of being sufficient and necessary to establish the metatheoretical
properties of type preservation, progress, confluence and normalisation, furthermore
they have an intuitive reading as behavioural identities on concurrent processes that
manipulate shared mutable state, we will go though all of them in detail in the following
section.

55

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

𝑃 ⊢� ®𝑐 : U 𝑓
®𝐵, ®𝑎 : ∨ ®𝐶, 𝑎 : 𝐴;Γ

[Taffine]
affine®𝑐,®𝑎 𝑣;𝑃 ⊢� ®𝑐 : U 𝑓

®𝐵, ®𝑎 : ∨ ®𝐶, 𝑎 : ∧𝐴;Γ

[Tdiscard]
discard 𝑎 ⊢� 𝑎 : ∨𝐴;Γ

𝑄 ⊢� Δ, 𝑎 : 𝐴;Γ
[Tuse]

use 𝑎;𝑄 ⊢� Δ, 𝑎 : ∨𝐴;Γ

𝑃 ⊢� Δ, 𝑎 : ∧𝐴;Γ
[Tcell]

cell 𝑐(𝑎.𝑃) ⊢� Δ, 𝑐 : S 𝑓 𝐴;Γ
[Tempty]

empty 𝑐 ⊢� 𝑐 : S𝑒 𝐴;Γ

[Trelease]
release 𝑐 ⊢� 𝑐 : U 𝑓 𝐴;Γ

𝑄 ⊢� Δ, 𝑎 : ∨𝐴, 𝑐 : U𝑒 𝐴;Γ
[Ttake]

take 𝑐(𝑎);𝑄 ⊢� Δ, 𝑐 : U 𝑓 𝐴;Γ
𝑄1 ⊢� Δ1 , 𝑎 : ∧𝐴;Γ 𝑄2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ

[Tput]
put 𝑐(𝑎.𝑄1);𝑄2 ⊢� Δ1 ,Δ2 , 𝑐 : U𝑒 𝐴;Γ

𝑃 ⊢� Δ′, 𝑐 : U 𝑓 𝐴;Γ 𝑄 ⊢� Δ, 𝑐 : U 𝑓 𝐴;Γ
[Tsh]

share 𝑐 {𝑃 | | 𝑄} ⊢� Δ′,Δ, 𝑐 : U 𝑓 𝐴;Γ

𝑃 ⊢� Δ;Γ 𝑄 ⊢� Δ;Γ
[Tsum]

𝑃 + 𝑄 ⊢� Δ;Γ

𝑃 ⊢� Δ′, 𝑐 : U𝑒 𝐴;Γ 𝑄 ⊢� Δ, 𝑐 : U 𝑓 𝐴;Γ
[TshL]

share 𝑐 {𝑃 | | 𝑄} ⊢� Δ′,Δ, 𝑐 : U𝑒 𝐴;Γ

𝑃 ⊢� Δ′, 𝑐 : U 𝑓 𝐴;Γ 𝑄 ⊢� Δ, 𝑐 : U𝑒 𝐴;Γ
[TshR]

share 𝑐 {𝑃 | | 𝑄} ⊢� Δ′,Δ, 𝑐 : U𝑒 𝐴;Γ

Figure 3.4: Typing rules 𝑃 ⊢� Δ;Γ for CLASS (extends Fig. 2.4).

3.3 Type System

In this section we conclude the definition of the type system for CLASS, by presenting the
typing rules associated with the affine/coaffine and the imperative state/usage modalities,
as well as the rules for state sharing and nondeterminism. We will also elaborate on the
operational model by presenting and commenting the associated principal cut reductions
(Def. 14) and structural congruence rules (Def. 13). The introduced concepts will be
illustrated with several examples.

Before introducing the type system for the imperative fragment, we need a couple of
definitions. We write ®𝐴 to denote a finite (possibly empty) array of types. We write ®𝑥 : ®𝐴,
only if length(®𝑥) = length(®𝐴), to denote the typing assignment ®𝑥[0] : ®𝐴[0], . . . , ®𝑥[𝑛 − 1] :
®𝐴[𝑛 − 1], or ∅ in case 𝑛 = 0. If ®𝐴 is an array of types with length 𝑛 and M a type modality,
then M ®𝐴 is an array with length 𝑛 and such that, for all 0 ≤ 𝑖 ≤ 𝑛−1, (M ®𝐴)[𝑖] = M(®𝐴[𝑖]). If
®𝑥 and ®𝑦 are arrays of names with the same length we let { ®𝑥/®𝑦}𝑃 denote the simultaneous
substitution of each component ®𝑥[𝑖] by ®𝑦[𝑖] in process 𝑃.

Definition 15 (Type System). The type system of CLASS extends the type system of �CLL
(Definition 6) with the typing rules listed in Fig. 3.4.

In the following subsections we go through each of the typing rules in detail by
presenting the associated structural congruence rules (Definition 13) and principal cut

56

3.3. TYPE SYSTEM

conversions of reduction→ (Definition 14).

Affine, Discard and Use

In CLASS all the sessions stored by cells are affine. This is an essential restriction since
reference cells must be released when no longer needed. And in order to release a reference
cell, we must be able to safely discard the session it stores, otherwise leaks or deadlocks
may occur, hence affinity.

Process affine®𝑐,®𝑎 𝑎;𝑃 defines an affine session on 𝑎, which can be either used or
discarded, and continues as 𝑃. It is typed by rule [Taffine], which introduces the affine
modality ∧𝐴

𝑃 ⊢� ®𝑐 : U 𝑓
®𝐵, ®𝑎 : ∨ ®𝐶, 𝑎 : 𝐴;Γ

[Taffine]
affine®𝑐,®𝑎 𝑎;𝑃 ⊢� ®𝑐 : U 𝑓

®𝐵, ®𝑎 : ∨ ®𝐶, 𝑎 : ∧𝐴;Γ
At the type-level, a session 𝑎 : 𝐴 is promoted to an affine session 𝑎 : ∧𝐴. The session being
promoted depends only on sessions that can be disposed, i.e. that satisfy some form of
weakening, namely

• coaffine sessions 𝑎1 , . . . , 𝑎𝑛 = ®𝑎, which type with ∨𝐴1 , . . . ,∨𝐴𝑛 = ∨ ®𝐴, respectively;

• full cell usages 𝑐1 , . . . , 𝑐𝑚 = ®𝑐, which type with U 𝑓 𝑐1 , . . . ,U 𝑓 𝑐𝑚 = U 𝑓
®𝐶, respectively;

• unrestricted sessions in Γ.

The dependencies on coaffine sessions ®𝑎 and on full cell usages ®𝑐 are explicitly annotated in
the process construct, but sometimes we opt to omit them and we simply write affine 𝑎;𝑃.

On the coaffine endpoint ∨𝐴 of a session we have two options: either to use or discard.
Process use 𝑎;𝑄 uses a coaffine session 𝑎 and continues as 𝑄. The use operation is typed
by rule [Tuse]

𝑄 ⊢� Δ, 𝑎 : 𝐴;Γ
[Tuse]

use 𝑎;𝑄 ⊢� Δ, 𝑎 : ∨𝐴;Γ
The interaction between an affine and use processes is modelled by reduction rule

cut {affine®𝑎,®𝑐 𝑎;𝑃 |𝑎 : ∧𝐴| use 𝑎;𝑄} → cut {𝑃 |𝑎 : 𝐴| 𝑄} [∧∨u]

A cut on an affine session 𝑎 : ∧𝐴 between affine®𝑎,®𝑐 𝑎;𝑃 and use 𝑎;𝑄 reduces to a cut on
𝑎 : 𝐴 between the continuations 𝑃 and 𝑄.

The other alternative is to discard a coaffine session 𝑎, as expressed by process discard 𝑎,
the operation being typed by rule [Tdiscard]

[Tdiscard]
discard 𝑎 ⊢� 𝑎 : ∨𝐴;Γ

The interaction between an affine and a discard processes is modelled by the reduction
rule

cut {affine®𝑐,®𝑎 𝑎;𝑃 |𝑎 : ∧𝐴| discard 𝑎} → par {release ®𝑐 | | discard ®𝑎} [∧∨d]

57

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

A cut between affine®𝑎,®𝑐 𝑎;𝑃 and discard 𝑎 reduces to a mix-composition in which all
the coaffine sessions ®𝑎 on which 𝑃 depends are discarded, as in [6, 28], and all the full
reference cell usages ®𝑐 are released. In the corner case, where 𝑃 does not depend neither
on coaffine nor on usage sessions, the parallel composition on the left-hand side of [∧∨d]
simply degenerates to inaction 0.

We may therefore conceive affine objects as well-behaved disposable values, that
when disposed, safely dispose all the resources they hereditarily refer to. Interestingly,
this hereditarily resource-disposing behaviour is akin to cascading deletes in relational
databases.

We finish this subsection with two examples: in 9 we illustrate the operational model of
affine sessions with some simple affine boolean processes, in 10 we show that in CLASS we
can parametrically convert bang to affine sessions.

Example 9 (Affine Booleans). The following process defines an affine boolean on session 𝑧

𝑃(𝑧) ⊢ 𝑧 : ∧Bool
𝑃(𝑧) ≜ cut{affine 𝑥; true(𝑥) |𝑥 | affine 𝑦; false(𝑦) |𝑦 | affine 𝑧; use 𝑥; use 𝑦; and(𝑥, 𝑦, 𝑧)}

It composes the affine booleans true and false with an affine process that computes their logical
conjunction.

The computation of the conjunction is postponed until it is necessary, furthermore it might
not be carried at all if the affine session 𝑧 is not used, i.e. if it is discarded. In this case, the affine
booleans 𝑥 and 𝑦, on which the computation depends will also be safely discarded. Operationally,
this is captured with the following sequence of reductions

cut {𝑃(𝑧) |𝑧 | discard 𝑧}
≡ cut{affine 𝑥; true(𝑥) |𝑥 | affine 𝑦; false(𝑦) |𝑦 | affine 𝑧; use 𝑥; use 𝑦; and(𝑥, 𝑦, 𝑧) |𝑧 | discard 𝑧}
→ cut{affine 𝑥; true(𝑥) |𝑥 | affine 𝑦; false(𝑦) |𝑦 | par {discard 𝑥 | | discard 𝑦}}
≡ par {cut {affine 𝑥; true(𝑥) |𝑥 | discard 𝑥} | | cut {affine 𝑦; false(𝑦) |𝑦 | discard 𝑦}}
→ par {0 | | cut {affine 𝑦; false(𝑦) |𝑦 | discard 𝑦}}
→ par {0 | | 0} ≡ 0

by successively applying principal cut conversion rule [∧∨d].

Alternatively, we can define a process

𝑄(𝑧, 𝑤) ⊢ 𝑧 : ∨Bool, 𝑤 : Bool
𝑄(𝑧, 𝑤) ≜ use 𝑧; not(𝑧, 𝑤)

that uses the affine boolean 𝑧 and computes its logical negation on 𝑤.

When𝑄(𝑧) interacts with 𝑃(𝑧) it forces the computation of the logical conjunction to be carried

58

3.3. TYPE SYSTEM

out, as captured by the following sequence of reductions

cut {𝑃(𝑧) |𝑧 | 𝑄(𝑧, 𝑤)}
≡ cut{affine 𝑥; true(𝑥) |𝑥 | affine 𝑦; false(𝑦) |𝑦 |

affine 𝑧; use 𝑥; use 𝑦; and(𝑥, 𝑦, 𝑧) |𝑧 | use 𝑧; not(𝑧, 𝑤)}
→ cut{affine 𝑥; true(𝑥) |𝑥 | affine 𝑦; false(𝑦) |𝑦 | use 𝑥; use 𝑦; and(𝑥, 𝑦, 𝑧) |𝑧 | not(𝑧, 𝑤)}
→ cut{true(𝑥) |𝑥 | affine 𝑦; false(𝑦) |𝑦 | use 𝑦; and(𝑥, 𝑦, 𝑧) |𝑧 | not(𝑧, 𝑤)}
→ cut{true(𝑥) |𝑥 | false(𝑦) |𝑦 | and(𝑥, 𝑦, 𝑧) |𝑧 | not(𝑧, 𝑤)}
+−→ cut{false(𝑧) |𝑧 | not(𝑧, 𝑤)}
+−→ true(𝑤)

where, this time, the derivation follows by successively applying reduction rule [∧∨u].

Example 10 (Converting Exponential to Affine Sessions). Exponential (or unrestricted)
sessions !, ? can be used multiple times since they satisfy contraction and can also be disposed
since they satisfy weakening. On the other hand, affine/coaffine sessions can be disposed since they
satisfy weakening. Therefore, exponential sessions are a particular case of affine/coaffine sessions
and in this example we code a process

conv(𝑓) ⊢ 𝑓 : ∀𝑋.!𝑋 ⊸ ∧𝑋

that witnesses this inclusion relationship.
Process conv(𝑓) converts a bang !𝑋 to an affine session ∧𝑋, the definition works for all types

𝑋 as explicitly indicated by the universal quantification. The definition is as follows

conv(𝑓) ≜ recvty 𝑓 (𝑋); recv 𝑓 (𝑥); ?𝑥; affine 𝑓 ; call 𝑥(𝑥0); fwd 𝑥0 𝑓

conv(𝑓) inputs on 𝑓 a type 𝑋, then a session 𝑥 :?𝑋 and moves it to the unrestricted typing
context as 𝑥 : 𝑋. Then, it defines an affine session 𝑓 : ∧𝑋 which, when used, call 𝑥 on 𝑥0 : 𝑋,
which is then forwarded to 𝑓 : 𝑋. If the affine session is discarded no call to the replicated server
ever occurs. Therefore, a bang session is encoded as an affine session which invokes the exponential
server at most once.

Exponential sessions can be used multiple times and copied, wheres affine sessions cannot, so
we conjecture that there is no process that satisfies the typing context 𝑓 : ∀𝑋. ∧ 𝑋 ⊸!𝑋, obtained
by reversing the arrow.

Reference Cells and Cell Usages

CLASS supports first-class higher-order reference cells. Its fine-grained type system, based
on linear logic, ensures that all the cell usages operations are well-behaved at compile
time and that every stateful program is deadlock-free, conditions that hold even in the
presence of state sharing, as we shall see later.

In CLASS reference cells are expressed by cell 𝑐(𝑎.𝑃), this construct defines a cell on
session 𝑐 which stores an affine session 𝑎, the behaviour on 𝑎 is implemented by 𝑃. It is

59

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

typed by rule [Tcell], which introduces the state full modality S 𝑓 𝐴

𝑃 ⊢� Δ, 𝑎 : ∧𝐴;Γ
[Tcell]

cell 𝑐(𝑎.𝑃) ⊢� Δ, 𝑐 : S 𝑓 𝐴;Γ

At the type-level it promotes an affine session 𝑎 : ∧𝐴 to a full state session 𝑎 : S 𝑓 𝐴.
On the dual session endpoint, the basic operation is to release the cell usage 𝑐, which is

done with release 𝑐. Release is types by [Trelease] and introduces the full usage modality
U 𝑓 𝐴

[Trelease]
release 𝑐 ⊢� 𝑐 : U 𝑓 𝐴;Γ

[Trelease] corresponds to DiLL [53] coweakening.
When all the threads are releasing their usages 𝑐 it is necessary to safely dispose the

corresponding reference cell, so as to avoid memory leaks, which is done in CLASS by
discarding the affine session the reference cell stores, as modelled by the reduction rule

cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| release 𝑐} → cut {𝑃 |𝑎 : ∧𝐴| discard 𝑎} [S 𝑓 U 𝑓 f]

The other possible operation on a full usage is to take the session stored by the reference
cell: process take 𝑐(𝑎′);𝑄 takes session stored in 𝑐 on input parameter 𝑎′ and then continues
as 𝑄. Take acquires the implicit lock associated with the reference cell 𝑐. It is typed by
rule [Ttake]

𝑄 ⊢� Δ, 𝑎′ : ∨𝐴, 𝑐 : U𝑒 𝐴;Γ
[Ttake]

take 𝑐(𝑎′);𝑄 ⊢� Δ, 𝑐 : U 𝑓 𝐴;Γ

After the take operation the reference cell 𝑐 becomes empty, notice that in [Take] the
cell usage shifts from full (in the conclusion) to empty (in the premise).

Process empty 𝑐 defines an empty cell on 𝑐 and is typed by rule [Tempty], which
introduces the state empty modality S𝑒 𝐴

[Tempty]
empty 𝑐 ⊢� 𝑐 : S𝑒 𝐴;Γ

The interaction between a cell and take operation is captured by the reduction rule

cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| take 𝑐(𝑎′);𝑄}
→ cut {𝑃 |𝑎 : ∧𝐴| cut {empty 𝑐 |𝑐 : S𝑒 𝐴| {𝑎/𝑎′}𝑄}} [S 𝑓 U 𝑓 t]

A cut on session 𝑐 : S 𝑓 𝐴 between a full cell cell 𝑐(𝑎.𝑃) and a take take 𝑐(𝑎′);𝑄 reduces
to a process expression with two cuts, both composed with the continuation {𝑎/𝑎′}𝑄
of the take operation. The outer cut on 𝑎 : ∧𝐴 composes with the stored affine session,
implemented by process 𝑃, which was successfully acquired by the take operation. The
inner cut on 𝑐 : S𝑒 𝐴 composes with the empty cell 𝑐. In the continuation of the take, he
input parameter 𝑎′ is substituted by the session 𝑎 stored in the cell, as denoted by {𝑎/𝑎′}𝑄.

The cell can be restored to full again, with a put operation which also releases the
implicit lock. Process put 𝑐(𝑎′.𝑄1);𝑄2 puts a new coaffine session 𝑎′ in the empty cell 𝑐

60

3.3. TYPE SYSTEM

and continues as 𝑄2, the behaviour at 𝑎′ is provided by process 𝑄1. It is typed by rule
[Tput]

𝑄1 ⊢� Δ1 , 𝑎
′ : ∧𝐴;Γ 𝑄2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ

[Tput]
put 𝑐(𝑎′.𝑄1);𝑄2 ⊢� Δ1 ,Δ2 , 𝑐 : U𝑒 𝐴;Γ

The put operation acts as a symmetric operation of the take operation, in fact, if we
read rule [Ttake] from the conclusion to the premise, then take shifts from a full U 𝑓 𝐴 to
an empty usage U𝑒 𝐴, whereas [Tput] does the converse.

The interaction between an empty cell and a put operation is modelled by the reduction
rule

cut {empty 𝑐 |𝑐 : S𝑒 𝐴| put 𝑐(𝑎′.𝑄1);𝑄2} → cut {cell 𝑐(𝑎′.𝑄1) |𝑐 : S 𝑓 𝐴| 𝑄2} [S𝑒 U𝑒]

The put operation restores an empty cell 𝑐, which then becomes full, storing session 𝑎′.
The full cell 𝑐 is then accessed by the continuation process 𝑄2.

Whereas a full usage can either be taken or released, an empty usage needs to be
restored to full with a put operation, an obligation which guarantees that other potential
concurrent take operations that are waiting for the cell to become full will eventually
succeed, thereby avoiding deadlocks. Therefore, in CLASS, the take-put dynamics follows
the usual safe pattern of mutex-protected objects in which each lock-acquire (take) must
be followed by a lock-release (put).

Furthermore, in CLASS, the lock and the data it protects are tightly associated (one
must acquire the data with a take operation before any update), which contrasts with the
mutex-based style of programming, e.g mutex synchronisation in POSIX threads API, in
which one must not forget to acquire the lock before updating the data it protects.

Typing rules [Ttake] and [Tput] incorporate codereliction, but also follow the general
structure of the typing rules for session input ([TO]) and output ([T⊗]).

Before introducing state sharing and nondeterminism, we present three examples.
In 11 we illustrate the sequential cell usage operations with a basic mutable reference
cell that stores a natural and supports two increment and get operations. In 12 we code
mutable pairs and a swap operation. In the subsequent chapter we will code further
pointed data structures such as linked lists. We conclude with 13, by coding exponential
reference cells, i.e. cells that store unrestricted sessions typed by bang !.

Example 11. In Fig. 3.5 we define a process init(𝑐), that declares reference cell 𝑐 storing the natural
42. We also show code for two basic operations, one to increment and other to get the natural stored
in the reference cell.

Process inc(𝑐) takes the affine natural 𝑛 stored in the reference cell 𝑐. Then, it puts back the
successor of 𝑛, after which it releases its cell usage. Notice that we explicitly indicate that we are
using the taken affine natural 𝑛, the other possibility would be to discard it. The take-put defines a
critical section.

Process get(𝑐, 𝑥) takes the natural 𝑛 stored in the reference cell 𝑐 and outputs 𝑛 in the session
channel 𝑥, after which it closes 𝑥. In parallel, get(𝑐, 𝑥) resets the cell to 0 and releases its cell usage.

61

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

init(𝑐) ⊢ 𝑐 : S 𝑓 Nat
init(𝑐) ≜ cell 𝑐(𝑛.affine 𝑛; V42(𝑛))

inc(𝑐) ⊢ 𝑐 : U 𝑓 Nat
inc(𝑐) ≜ take 𝑐(𝑛);

put 𝑐(𝑚. affine 𝑚;
use 𝑛;
succ(𝑛, 𝑚));

release 𝑐

get(𝑐, 𝑥) ⊢ 𝑐 : U 𝑓 Nat, 𝑥 : Nat ⊗ 1
get(𝑐, 𝑥) ≜ take 𝑐(𝑛);

par{
use 𝑛;
send 𝑥(𝑛);
close 𝑥
| |
put 𝑐(𝑚.affine 𝑚;𝑉0(𝑚));
release 𝑐
}

Figure 3.5: A reference cell with increment and get operations.

Finally, we define two simple systems that composes, via cuts on session 𝑐, the reference cell
and with the operations to increment and get

system1 ⊢ ∅
system1 ≜ cut {init(𝑐) |𝑐 | inc(𝑐)}

system2(𝑥) ⊢ 𝑥 : Nat ⊗ 1
system2(𝑥) ≜ cut {init(𝑐) |𝑐 | get(𝑐, 𝑥)}

When evaluating system1, the cell on 𝑐 will end up storing the natural 43. On the other, system2(𝑥)
reduces to a process in which the natural 42 is being transmitted on channel 𝑥, this time the cell 𝑐
ends up storing the natural 0. Both threads inc(𝑐) and get(𝑐, 𝑥) release their usages 𝑐 and, in this
case, since the cell is not being shared by any other thread, this leads to cell deallocation in both
systems. We illustrate the operational model with the reduction sequence for system2(𝑥)

system2(𝑥)
→ par {cut {V42(𝑛) |𝑛 | send 𝑥(𝑛); close 𝑥} | |

cut {empty 𝑐 |𝑐 | put 𝑐(𝑚.affine 𝑚; V0(𝑚)); release 𝑐}} (1)
→ {cut {V42(𝑛) |𝑛 | send 𝑥(𝑛); close 𝑥} | | cut {cell 𝑐(𝑚.affine 𝑚; V0(𝑚)) |𝑐 | release 𝑐}} (2)
→ {cut {V42(𝑛) |𝑛 | send 𝑥(𝑛); close 𝑥} | | cut {affine 𝑚; V0(𝑚) |𝑚 | discard 𝑚}} (3)
→ {cut {V42(𝑛) |𝑛 | send 𝑥(𝑛); close 𝑥} | | 0} ≡ cut {V42(𝑛) |𝑛 | send 𝑥(𝑛); close 𝑥} (4)

After the take operation the system evolves to a parallel composition of two cuts (1). The cut on the
left-hand side of the parallel composition connects the acquired natural, which was already used,
with the output process on session 𝑥. On the other hand, the cut on the right-hand side connects
the empty cell with the process that resets the cell before releasing. Then, the empty cell is set with
the natural 0, just before releasing (2). Releasing safely leads to cell deallocation since no other
thread has access to usage 𝑐, which is done by discarding the affine session 𝑚 stored in 𝑐 (3). Since
the affine session 𝑚 stored in the cell does not depend on other resources, discarding reduces simply
to the inaction process (4).

Example 12 (Mutable Pairs). The type of mutable pairs, whose first component is of type 𝐴 and
second component is of type 𝐵 is denoted by Pair(𝐴, 𝐵) and defined by

Pair(𝐴, 𝐵) ≜ S 𝑓 [(∧𝐴) ⊗ S 𝑓 𝐵]

62

3.3. TYPE SYSTEM

Process init(𝑎, 𝑏, 𝑐1) ⊢ 𝑎 : ∨𝐴, 𝑏 : ∨𝐵, 𝑐1 : Pair(𝐴, 𝐵) defines a pair on session 𝑐1 whose first
component is forwarded to 𝑎 and second component is forwarded to 𝑏:

init(𝑎, 𝑏, 𝑐1) ≜ cut {cell 𝑐1(𝑥1.affine 𝑥1; send 𝑥1(𝑎); fwd 𝑥1 𝑐2) |𝑐2 | cell 𝑐2(𝑥2.fwd 𝑥2 𝑏)}

Process
swap(𝑐1 , 𝑐

′
1) ⊢ 𝑐1 : Pair(𝐴, 𝐴), 𝑐′1 : Pair(𝐴, 𝐴)

swaps the components of pair 𝑐1 and outputs the updated pair on 𝑐′1, being defined by

swap(𝑐1 , 𝑐
′
1) ≜ take 𝑐1(𝑐2); use 𝑐2; recv 𝑐2(𝑎); take 𝑐2(𝑏);

put 𝑐2(𝑎′.fwd 𝑎 𝑎′); put 𝑐1(𝑐′2.affine 𝑐′2; send 𝑐′2(𝑏); fwd 𝑐′2 𝑐2); fwd 𝑐1 𝑐
′
1

Cell 𝑐1 is taken and unpacked with a use and receive operations, after which we obtain the first
component 𝑎 : ∨𝐴, an empty cell usage 𝑐1 : U𝑒 𝐴 and a full cell usage 𝑐2 : U 𝑓 𝐴. We take the
second component 𝑏 : ∨𝐴 from the cell usage 𝑐2 and then we start to restore the empty usages 𝑐1

and 𝑐2: we put on 𝑐2 the first component 𝑎 and we put on 𝑐1 an affine session 𝑐′2, in which we send
the the second component 𝑏 and continue as a cell 𝑐′2 that forwards to 𝑐1. Finally, after the update
operations, we forward the usage 𝑐1 to 𝑐′1.

As expected, one obtains

cut {init(𝑎, 𝑏, 𝑐1) |𝑐 | swap(𝑐1 , 𝑐
′
1)}

+−→ init(𝑏, 𝑎, 𝑐′1)

where
+−→ denotes the transitive-closure of→.

In CLASS sessions are safely disposed, when they are no longer used. For example, when we
release a mutable pair, a chain of cell-release and affine-discard interactions is triggered that ends
up in a process that discards the resources 𝑎 and 𝑏 in parallel:

cut {init(𝑎, 𝑏, 𝑐1) |𝑐1 | release 𝑐1}
+−→ par {discard 𝑏 | | discard 𝑎}

The dynamics is captured by the following reduction sequence

cut {init(𝑎, 𝑏, 𝑐1) |𝑐1 | release 𝑐1}
≡ cut {cell 𝑐2(𝑦.affine 𝑦; fwd 𝑦 𝑏) |𝑐2 | cell 𝑐1(𝑥.affine 𝑥; send 𝑥(𝑎); fwd 𝑥 𝑐2) |𝑐1 | release 𝑐1}
→ cut {cell 𝑐2(𝑦.affine 𝑦; fwd 𝑦 𝑏) |𝑐2 | affine 𝑥; send 𝑥(𝑎); fwd 𝑥 𝑐2 |𝑥 | discard 𝑥}

(→ [S 𝑓 U 𝑓 f])

→ par {cut {cell 𝑐2(𝑦.affine 𝑦; fwd 𝑦 𝑏) |𝑐2 | release 𝑐2} | | discard 𝑎} (→ [∧∨d])

→ par {cut {affine 𝑦; fwd 𝑦 𝑏 |𝑦 | discard 𝑦} | | discard 𝑎} (→ [S 𝑓 U 𝑓 f])

→ par {discard 𝑏 | | discard 𝑎} (→ [∧∨d])

This example as well as some tests are coded in state/mutable-pairs.clls.

Example 13. Exponential Cells, Read and Write Memory cells in CLASS are like Haskell MVars
and store affine resources whose values can be taken and updated with a put operation. In this

63

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

example we show that, nevertheless, we can code ML-like memory cells that support a reading
operation that necessarily duplicates the value that the cell stores.

This is simply done in CLASS by storing exponential sessions, these cells are typed by S 𝑓 !𝐴
and we call them exponential cells. Additionally, this examples hints how the session-typed
language 𝜋SSL, with first-class exponential reference cells and locks, defined in [134], can be
embedded in CLASS.

Since exponential sessions can be copied, this allows us to define a read operation on exponential
cells. More specifically, define the process constructs

cell! 𝑐(𝑎.𝑃) ≜ cell 𝑐(𝑎.affine 𝑎;𝑃)
read 𝑐(𝑎0);𝑃 ≜ take 𝑐(𝑎); use 𝑎; ?𝑎; put 𝑐(𝑎1.affine 𝑎1; fwd! 𝑎1 𝑎); cut {fwd! 𝑎0 𝑎 |𝑎0 | 𝑃}
wrt 𝑐(𝑎0.𝑃);𝑄 ≜ take 𝑐(𝑎); put 𝑐(𝑎0.affine 𝑎0;𝑃); par {discard 𝑎 | | 𝑄}

The following typing rules are derivable from the typing rules of CLASS

𝑃 ⊢� 𝑎 : !𝐴;Γ
[Tcell!]

cell! 𝑐(𝑎.𝑃) ⊢� 𝑐 : S 𝑓 !𝐴;Γ

𝑃 ⊢� Δ, 𝑐 : U 𝑓 ?𝐴, 𝑎0 : ?𝐴;Γ
[Tread]

read 𝑐(𝑎0);𝑃 ⊢� Δ, 𝑐 : U 𝑓 ?𝐴;Γ

𝑃 ⊢� 𝑎0 : !𝐴;Γ 𝑄 ⊢ Δ, 𝑐 : U 𝑓 ?𝐴;Γ
[Twrite]

wrt 𝑐(𝑎0.𝑃);𝑄 ⊢� Δ, 𝑐 : U 𝑓 ?𝐴;Γ
We will now describe the code for each of the operations read and write. read 𝑐(𝑎0);𝑃 reads the

exponential reference cell 𝑐 on parameter 𝑎0 and continue as 𝑃. It is encoded in CLASS as an affine
(full) usage operation 𝑐 : U 𝑓 ?𝐴 that takes the exponential stored session 𝑎 : ∨?𝐴 from the affine
cell, uses the stored session 𝑎 :?𝐴 and moves it to the unrestricted typing context, typed as 𝑎 : 𝐴.

Once in the unrestricted typing context, the stored session is then copied, via two exponential
forwarders, to produce two new sessions: 𝑎0 and 𝑎1. Session 𝑎1 is used to restore the empty cell
whereas 𝑎0 is composed with the continuation of the read process 𝑃.

Operation wrt 𝑐(𝑎0.𝑃);𝑄 updates an exponential reference cell 𝑐 with a new session 𝑎0, the
behaviour on 𝑎0 is offered by 𝑃, and continues as 𝑄. It is implemented as an affine usage operation
𝑐 : U 𝑓 ?𝐴 that takes the session 𝑎 : ∧?𝐴 stored on 𝑐, puts a new session 𝑎0 : ∧!𝐴 and continues as
𝑄. In parallel it discards the taken session 𝑎.

Alternatively, notice that we can dispose the taken session 𝑥 : ∨?𝐴 by first using it 𝑥 :?𝐴 and
then moving to the unrestricted typing context, to be typed as 𝑥 : 𝐴, whereas it would be weakened
(as in use 𝑥; ?𝑥;−).

The read and write operations are used frequently in CLASS in examples that manipulate
reference cells storing exponential sessions, as we will see in Example 4.2.

This example and some tests are coded in state/exponential-cells.clls. Furthermore, in
state/exponential-cells-and-locks.clls we extend the encoding with first-class locks over expo-
nential cells, which then allows us to define indivisible sequences of read/write operations.

State Sharing

Until now, we have only considered sequential cell usage operations, however one of the
main benefits of having mutable state is to be able to share it among cooperative threads.

64

3.3. TYPE SYSTEM

In CLASS, state sharing is supported by the logically motivated construct share 𝑐 {𝑃 | | 𝑄},
which allows a cell usage 𝑐 to be shared by an arbitrary number of concurrent threads.

Sharing is typed by rule [Tsh]

𝑃 ⊢� Δ′, 𝑐 : U 𝑓 𝐴;Γ 𝑄 ⊢� Δ, 𝑐 : U 𝑓 𝐴;Γ
[Tsh]

share 𝑐 {𝑃 | | 𝑄} ⊢� Δ′,Δ, 𝑐 : U 𝑓 𝐴;Γ

Typing rule [Tsh] enforces that processes 𝑃 and 𝑄 may linearly interact at the shared
reference 𝑐, but not on other linear objects.

Typing rule [Tsh] for the share construct corresponds precisely to cocontraction of the
cell usage modality (cf. DiLL [53]). Contraction of the exponentials allows a proposition
?𝐴 to be copied, similarly cocontraction produces two cell usages U 𝑓 𝐴 from a single one.
However, contraction allows a flow between the two contracted propositions whereas
cocontraction ensures that there is now such flow, by splitting the linear region of the
conclusion by the two premises being cocontracted.

Cocontraction relates with cut rule [Tcut], where two threads cannot interact on more
than one channel and ensures the basic acyclicity of linear logic [23, 157]. This is an
essential condition to establish deadlock-freedom of the typed calculus (Theorem 2) by
purely logical means. Because suppose that we could share more than one cell usage
between two concurrent threads. Then, we could type the blocked program

share 𝑐1 , 𝑐2 {take 𝑐1(𝑎); take 𝑐2(𝑏);𝑃 | | take 𝑐2(𝑏); take 𝑐1(𝑎);𝑄}

unless we impose some sort of restriction on top of the logical system such as partial
orders [11].

A priori, this restriction of sharing only one reference cell might seem quite restrictive.
However, notice that a single shared cell may group all the state shared by the two
threads (e.g. in a resource bundle, a sequence of values). In fact, sharing in CLASS
allows quite expressive stateful programs to be typed, such as shared mutable ADTs
with dynamic sharing topologies, in which clients of the ADT can be connected on the
fly. These sharing topologies can grow potentially unbounded, this contrasts with some
session-typed languages (e.g., [91]) in which the number of participants sharing a session
is statically bounded by the type system. Furthermore, as we shall see later, in CLASS we
can even code shared resource hierarchies, without resorting to partial orders, and where
deadlock-freedom follows just by linearity.

In CLASS, besides cocontracting two full usages we can also cocontract two usages
where one of them is full and the other is empty, as typed [TshL] and [TshR]

𝑃 ⊢� Δ′, 𝑐 : U𝑒 𝐴;Γ 𝑄 ⊢� Δ, 𝑐 : U 𝑓 𝐴;Γ

share 𝑐 {𝑃 | | 𝑄} ⊢� Δ′,Δ, 𝑐 : U𝑒 𝐴;Γ

𝑃 ⊢� Δ′, 𝑐 : U 𝑓 𝐴;Γ 𝑄 ⊢� Δ, 𝑐 : U𝑒 𝐴;Γ

share 𝑐 {𝑃 | | 𝑄} ⊢� Δ′,Δ, 𝑐 : U𝑒 𝐴;Γ

The cell usage is propagated as full if both premises type with a full usage (rule [Tsh]);
otherwise one and only one of the premises type with an empty usage, in which case we

65

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

propagate an empty usage (rules [TshL] and [TshR]). Therefore, typing rules [Tsh], [TshL],
[TshR] guarantee that in any sharing topology at most one thread types with an empty
usage, that is, in any sharing topology at most one thread has taken the cell.

Notice that the share construct share 𝑐 {− || −} is not a binding operator, in fact 𝑐
is present in the typing context of the conclusion in rules [Tsh], [TshL] and [TshR] and
actions on 𝑐 will be propagated by applying one of the structural congruence ≡ rules [TSh],
[RSh] or [PSh] (Def. 13), which we will now introduce.

Structural congruence law [TSh] is written as

share 𝑐 {take 𝑐(𝑎1);𝑃1 | | take 𝑐(𝑎2);𝑃2}
≡ take 𝑐(𝑎1); share 𝑐 {𝑃1 | | take 𝑐(𝑎2);𝑃2} + take 𝑐(𝑎2); share 𝑐 {take 𝑐(𝑎1);𝑃1 | | 𝑃2}

On the left-hand side of ≡ law [TSh], two threads are racing to take the session stored
in the reference cell 𝑐. The two possible interleavings of the concurrent take actions are
expressed as a nondeterministic sum on the right-hand side, where, in each summand,
the successful take operation commutes with the share construct whereas the other take
is postponed. The share construct on the left-hand side of the congruence rule is typed by
[TSh], whereas the left and right summands on the right-hand side are typed by [TShL]
and [TShR], respectively, thereby indicating which thread has taken the session stored in
the cell.

The share construct satisfies the following structural congruence ≡ law

share 𝑐 {release 𝑐 | | 𝑃} ≡ 𝑃 [RSh]

Algebraically, rule [RSh] expresses that the release operation acts as an identity for share-
composition. Computationally, it allows a release operation to be discarded (when we
read the congruence from left to right), provided it occurs within a share block.

When all processes in a sharing topology are releasing a common cell usage we can
successively apply [RSh] in order to obtain a single release operation that no longer occurs
within a share block and, therefore it can safely interact with the reference cell leading to
cell deallocation, as in the following derivation

cut {cell 𝑐(𝑎.𝑃) |𝑐 | share 𝑐 {share 𝑐 {release 𝑐 | | release 𝑐} | | release 𝑐}}
≡ cut {cell 𝑐(𝑎.𝑃) |𝑐 | share 𝑐 {release 𝑐 | | release 𝑐}}
≡ cut {cell 𝑐(𝑎.𝑃) |𝑐 | release 𝑐} → cut {𝑃 |𝑎 | discard 𝑎}

Rule [RSh] applies to share constructs that can either be typed by [TSh] or [TShR].
Finally, the share construct satisfies ≡ law

share 𝑐 {put 𝑐(𝑎.𝑃);𝑄 | | 𝑅} ≡ put 𝑐(𝑎.𝑃); share 𝑐 {𝑄 | | 𝑅} [PSh]

which allows us to commute a put with a share construct, thereby bubbling up a put action
in a share topology which eventually reaches a reference cell. If a process 𝑃 has taken the
cell contents in a sharing topology, then all the other take operations are blocked until

66

3.3. TYPE SYSTEM

𝑃 puts back a new session, after which the previously blocked take operations can now
compete to access the cell according to rule [TSh]. The left-hand side of rule [PSh] types
with [TShL], whereas the share on right-hand side types with [TSh].

We conclude this subsection with an examples that illustrates the dynamic nature of
sharing in CLASS.

Example 14 (Dynamic Sharing). The topology of the sharing trees arising from nested share
blocks changes dynamically during computation, because of the extrusion of cell references along
session channels to outside the share block. Consider the following reduction

cut {share 𝑐 {𝑅 | | send 𝑥(𝑐);𝑃} |𝑥 | recv 𝑥(𝑐′); share 𝑐′ {𝑄 | | 𝑆}}
+−→ cut {𝑃 |𝑥 | share 𝑐 {𝑅 | | share 𝑐 {{𝑐/𝑐′}𝑄 | | {𝑐/𝑐′}𝑆}}}

Here, a shared alias of 𝑐 is sent along 𝑥 to a partner receive process, that inputs the alias and further
shares it between threads𝑄 and 𝑆. Hence, access to 𝑐, initially only shared between the two threads
𝑅 and send 𝑥(𝑐);𝑃, ends up being shared among the three threads 𝑅, {𝑐/𝑐′}𝑄 and {𝑐/𝑐′}𝑆.

The thread send 𝑥(𝑐);𝑃 transfers ownership of 𝑐 on output – references aliases are linear
values, whose visibility may only be duplicated by the share construct. Indeed, linear typing of
session send ensures that 𝑃 must lose access to 𝑐.

The fact that sharing in CLASS is dynamic allows us to represent interesting programming
patterns in which users of a shared resource are coming and leaving on the fly as the system evolves,
like for example in the imperative queue Example 4.2, where we can have a dynamic configuration
of producers (processes that enqueue) and consumers (processes that dequeue).

We show typings for components of the above reduction

(1) 𝑅 ⊢ Δ1 , 𝑐 : U 𝑓 𝐴;Γ (2) 𝑃 ⊢ Δ2 , 𝑥 : 𝐵;Γ
(3) 𝑄 ⊢ Δ3 , 𝑐

′ : U 𝑓 𝐴, 𝑥 : 𝐵;Γ (4) 𝑆 ⊢ Δ4 , 𝑐
′ : U 𝑓 𝐴;Γ

(5) send 𝑥(𝑐);𝑃 ⊢ Δ2 , 𝑐 : U 𝑓 𝐴, 𝑥 : S 𝑓 𝐴 ⊗ 𝐵;Γ (Proposition 1([T⊗ 𝑓]), (2))
(6) share 𝑐 {𝑅 | | send 𝑥(𝑐);𝑃} ⊢ Δ1 ,Δ2 , 𝑐 : U 𝑓 𝐴, 𝑥 : S 𝑓 𝐴 ⊗ 𝐵;Γ ([Tsh], (1), (5))
(7) share 𝑐′ {𝑄 | | 𝑆} ⊢ Δ3 ,Δ4 , 𝑐

′ : U 𝑓 𝐴, 𝑥 : 𝐵;Γ ([Tsh], (3), (4))
(8) recv 𝑥(𝑐′); share 𝑐′ {𝑄 | | 𝑆} ⊢ Δ3 ,Δ4 , 𝑥 : S 𝑓 𝐴 ⊸ 𝐵;Γ ([TO], (7))
(9) cut {share 𝑐 {𝑅 | | send 𝑥(𝑐);𝑃} |𝑥 | recv 𝑥(𝑐′); share 𝑐′ {𝑄 | | 𝑆}} ⊢ Δ1 ,Δ2 ,Δ3 ,Δ4 , 𝑐 : U 𝑓 𝐴;Γ

([Tcut], (6), (8))

as well as its derivation

cut {share 𝑐 {𝑅 | | send 𝑥(𝑐);𝑃} |𝑥 | recv 𝑥(𝑐′); share 𝑐′ {𝑄 | | 𝑆}}
≡ share 𝑐 {𝑅 | | cut {send 𝑥(𝑐);𝑃 |𝑥 | recv 𝑥(𝑐′); share 𝑐′ {𝑄 | | 𝑆}}} (≡ rule [CSh])
+−→ share 𝑐 {𝑅 | | cut {𝑃 |𝑥 | {𝑐/𝑐′}share 𝑐′ {𝑄 | | 𝑆}}} (Proposition 1([⊗O 𝑓]))

= share 𝑐 {𝑅 | | cut {𝑃 |𝑥 | share 𝑐 {{𝑐/𝑐′}𝑄 | | {𝑐/𝑐′}𝑆}}} (name substitution)

≡ cut {𝑃 |𝑥 | share 𝑐 {𝑅 | | share 𝑐 {{𝑐/𝑐′}𝑄 | | {𝑐/𝑐′}𝑆}}} (≡ rule [CSh])

67

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

Nondeterminism

In CLASS nondeterminism naturally emerges through racy concurrent manipulations,
which we internalise with sums. This internalisation is crucial if we want to keep within
a propositions-as-types approach and be able to reason algebraically about imperative
program behaviour.

Nondeterministic sums in CLASS are typed by the following rule

𝑃 ⊢� Δ;Γ 𝑄 ⊢� Δ;Γ
[Tsum]

𝑃 +𝑄 ⊢� Δ;Γ

A sum process represents a nondeterministic choice between two alternatives 𝑃 and 𝑄,
each offering the same typing context Δ;Γ. Sums are also present in DiLL [53], where cut
elimination needs to generate sums of proofs.

In our model, sum satisfy the expected axioms of nondeterministic sums of process
algebras [67], like commutativity (𝑃+𝑄 ≡ 𝑄 +𝑃), associativity (𝑃+(𝑄 +𝑅) ≡ (𝑃+𝑄)+𝑅)
and idempotency (𝑃 + 𝑃 ≡ 𝑃) and the already presented interleaving law ≡ [TSh] that
connects shared state with nondeterminism at the logical level.

Notice that when defining structural congruence ≡ for CLASS (Def. 13) we only list an
idempotency law for the inaction process 0

0 + 0 ≡ 0 [0Sm]

Nevertheless, since 0 is an unit w.r.t. to parallel composition (≡ law [0M]) and since mix
distributes over sum (≡ law [MSm]), we can derive idempotency of sum for all processes
𝑃 in general as shown by

𝑃 ≡ par {𝑃 | | 0} ≡ par {𝑃 | | (0 + 0)} ≡ (par {𝑃 | | 0}) + (par {𝑃 | | 0}) ≡ 𝑃 + 𝑃

We conclude this chapter by showing how sums allows us to reason about the
behaviour of concurrent programs that manipulate shared state in CLASS by doing simple
algebraic-like manipulations. In the next chapter we will see further examples that
showcase the expressiveness of CLASS language and type system.

Example 15 (Concurrency, Nondeterminism and Algebraic Reasoning). The purpose of this
example is to illustrate how CLASS allows us to reason algebraically about concurrent processes
that manipulate shared state.

We revisit Example 11 in which we defined a reference cell storing a natural number and two
operations

inc(𝑐) ⊢ 𝑐 :⊢ 𝑐 : U 𝑓 Nat get(𝑐, 𝑥) ⊢ 𝑐 : U 𝑓 Nat, 𝑥 : Nat ⊗ 1

that increment and get the contents of the cell, respectively. Process get(𝑐, 𝑥) outputs the natural
stored in the cell on session 𝑥, after which the cell is reseted to 0. Suppose that we also have an
operation

double(𝑐) ⊢ 𝑐 :⊢ 𝑐 : U 𝑓 Nat

68

3.3. TYPE SYSTEM

that takes the natural stored in the cell and puts back its double, after which the usage is released.
We can then define a system

system(𝑥) ⊢ 𝑥 : Nat ⊗ 1

that composes a reference cell 𝑐, initially storing 3, with the three concurrent threads

system(𝑥) ≜
cut {

cell 𝑐(𝑛.affine 𝑛;𝑉3(𝑛))
|𝑐 |
share 𝑐 {inc(𝑐) | | double(𝑐) | | get(𝑐, 𝑥)}
}

system(𝑥) will output a natural on session 𝑥, the precise value will depend on the interleaving
of the atomic operations performed by the three concurrent threads, and it is described by the
following map that associates each possible way of sequencing the three thread operations increment
(𝐼), double (𝐷) and get (𝐺) with the outputted natural on 𝑥

𝐼𝐷𝐺 ↦→ 8 𝐷𝐺𝐼 ↦→ 6
𝐼𝐺𝐷 ↦→ 4 𝐺𝐼𝐷 ↦→ 3
𝐷𝐼𝐺 ↦→ 7 𝐺𝐷𝐼 ↦→ 3

For example, 𝐼𝐷𝐺 ↦→ 8, since the natural sent on session 𝑥 will be result of first incrementing
3 (inc), then doubling (double) and finally getting and natural and communicating it on session
𝑥(get): (3 + 1) ∗ 2 = 8.

In CLASS we can capture all these possible outcomes using nondeterministic sums. By
applying a set of simple congruence laws (Def. 13) and reduction rules (Def. 14) we can reason
algebraically about process system(𝑥) in order to compute a simplified form. But first we introduce
the following definition

out𝑘(𝑥) ≜ cut {𝑉𝑘(𝑛) |𝑛 | send 𝑥(𝑛); close 𝑥}

Process out𝑘(𝑥) ⊢ 𝑥 : Nat ⊗ 1 is parametric on a natural 𝑘: it sends 𝑘 on session 𝑥 and then closes
𝑥.

Then, in CLASS we can capture the nondeterministic evolution of system(𝑥) by

system(𝑥) +−→ out3(𝑥) + out4(𝑥) + out6(𝑥) + out7(𝑥) + out8(𝑥)

After some internal reductions, we can express system(𝑥) as sum of processes, each one of the
summands is just communicating a natural over channel 𝑥. Arguably, it’s easier to reason about
the behaviour of these summands than about the behaviour of the equivalent original system(𝑥).

Sums play a key role in the metatheoretical model of CLASS as they allows us to explicitly
capture all the possible nondeterministic evolutions of a stateful system and, because of that, to
have a confluent notion of reduction as will see in Chapter 7. Even though sums are not explicitly

69

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

present in our practical implementation (see Chapter 5) - in a race between two concurrent take
operations the interpreter arbitrarily picks one of them and postpones the other - they can still
be used to reason about the outcome of a program and possibly to do program simplifications by
replacing a program by a simpler equivalent one.

Notice that the original system(𝑥) is a process that internally manipulates shared state but
that can be expressed, after some internal reductions, as a sum of pure functional processes that
do not use imperative constructs at all. This is not a coincidence, but a particular instance of a
general result that will pop up when studying cut normalisation (Section 8.2). More specifically,
we will see how to mechanically compute an equivalent sum of pure functional processes from any
process that manipulates shared state internally but that types with a pure typing context (without
state/usage modalities).

3.4 Further Discussion and Related Work

Resource-Aware Systems for Shared State

Many resource-aware logics and type systems to tame shared state and interference have
been proposed [4, 104, 155, 80, 21, 112, 116, 31]. These systems use forms of linearity or
affinity, affine types apply to general resourceful programming [150, 38] and to model
failures/exceptions [33, 110, 28, 57, 94]. The monadic session-discarding behaviour of
affine sessions in CLASS is present in many works, e.g. [6]. The work [3] provides a very
general semantic model for the notion of "uniqueness" pervasive in many substructural
systems.

Propositions-as-Types and Shared State

CLASS builds on top of the propositions-as-types correspondence with Linear Logic [23,
24, 157], the logical principles for the state modalities being inspired by DiLL [53]. Re-
cent works [10, 11, 7, 91, 128, 134] have also addressed the problem of sharing and
nondeterminism in the setting of logical interpretations of sessions.

The work in [134] develops a concurrent session-typed language 𝜋SSL with first-class
reference cells and locks, based on a PaT correspondence with Classical Linear Logic, the
logical principles governing the state modalities being inspired by DiLL [53], and shown to
enjoy confluence, cut normalisation and deadlock-freedom, even in the presence of locking
primitives. In [134], reference cells may only store exponential persistent sessions of type !𝐴
and, therefore, cannot refer to other reference cells (reference cells can only be used locally
when allocated by persistent sessions). CLASS is a novel, more fundamental approach,
able to flexibly handle affine state. While a linear object must be used exactly once (e.g. it
cannot be duplicated nor discarded, cf., the absence of contraction and weakening in Linear
Logic), an affine object cannot be duplicated, but can be discarded (cf. the weakening
principle that holds in the affine type discipline). Therefore, affine state accommodates
exponential state as a special case (see Example 13), but is much more expressive, allowing

70

3.4. FURTHER DISCUSSION AND RELATED WORK

CLASS to support programs that manipulate shared linearobjects, in particular, concurrent
shareable linked data structures (see Example 4.1), while still adhering to the PaT approach.
Furthermore, recursion in [134] was based on System F encodings, therefore essentially
functional, which has motivated in this work the introduction of inductive/coinductive
types in order to model stateful recursive structures.

The works [10, 11] introduced manifest sharing, the first proposal to represent shared
state on top of a session types Linear Logic interpretation. Although the resulting system
is grounded on the Curry-Howard correspondences of [23, 24, 157] it departs from a pure
PaT interpretation in its stateful extension, unlike the work presented in this paper, and
explores a different route, based on a special purpose operational semantics, designed
to keep track of shared channels availability to control resource acquisition and perform
context switching.

The key idea of manifest sharing is to serialise concurrent access to linear objects by
two modal operators (acquire/release), which induce a stratification [124] of session types
in two layers, and provide locking / unlocking behaviour at computation points where a
resource invariant holds. We follow a related approach in CLASS, where take/put opera-
tions play the role of acquire/release in [10, 11], which also allows us to express general
corecursive protocols that alternate between a linear and a shared phase, as we will show
with Example 4.4. Moreover, in our approach state sharing also essentially differs from
[10, 11], since we rely on a logical interpretation of sharing by the DiLL cocontraction rule,
where the single DiLL introduction form for codereliction is decomposed in the two take
and put primitives, which are subject to the corecursive alternating protocol, coordinated
by the sharing type rules [Tsh], [TshL], [TshR]. This interpretation is fundamental to
ensure deadlock absence.

Reduction for the stateful fragment in [10, 11] cannot solely be seen as proof simplifi-
cation, as the operational semantics relies on proof construction / deconstruction steps,
where the “wait" computation states are seen as an “incomplete proof", possibly intro-
ducing deadlock. Moreover, in manifest sharing, computation is not confluent, and thus
cannot be seen as a proof simplification, also for this reason. This is unlike our system in
which confluence holds due to the introduction of sums and cocontraction-based sharing.

In [11], shared resources can only depend on shared resources, likewise, in CLASS,
reference cell modalities can only depend on affine and reference cell modalities. In [11],
the shared modalities satisfy the logical principles of weakening and contraction, however
these principles are not process-interpreted, as in CLASS, where the logical principles
of cocontraction and coweakening are explicitly annotated with the cell usage sharing
and release process constructs, respectively. In [11] it is conjectured that manifest sharing
admits a reference counting garbage collector by transforming the typing derivation to
make implicit applications of weakening and contraction explicit, but leave this as a
conjecture.

71

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

The work [128] introduces the session-typed calculus CSLL, by extending a hyperse-
quent formulation of Classical Linear Logic with a pair of type-duality related coexpo-
nentials ¡𝐴 and ¿𝐴 that type stateful servers and their clients, respectively. CSLL satisfies
type preservation and progress and it is capable of encoding various examples such as
compare-and-set and a functional queue. Language CSLL also draws inspiration on DiLL
but, as opposed to DiLL and CLASS, it does not include a general cocontraction rule and
it does not internalise nondeterminism with sums and hence lacks confluence.

In CSLL, stateful servers of type 𝑐 : ¡𝐴 are comprised of three components: (i) a state
of type 𝑖 : 𝐵 (which must be initialised), (ii) an update rule of type 𝑢𝑝𝑑 :!(𝐵 ⊸ 𝐵 ⊗ 𝐴),
which, from a previous state 𝑠 : 𝐵, produces a new state 𝑠′ : 𝐵 and an observable 𝑎 : 𝐴 to
the client that requested the update and (iii) a finaliser of type 𝑓 : 𝐵 that consumes the
current state 𝐵, when there are no more incoming client requests to process.

Client requests req 𝑐(𝑎);𝑄 on a server 𝑐 : ¿𝐴 are typed by rule QueA. This rule restricts
the threads𝑄1(𝑎), that accesses the observable 𝑎 of the request, and𝑄2(𝑐), that accesses the
client 𝑐 for possible more requests, to be parallel i.e.: 𝑄 ≡ par {𝑄1(𝑎) | | 𝑄2(𝑐)}, due to the
hypersequent structure of the premise. By iterated application of rule QueA we can form
a sequence of client requests, this sequence is then ordered non-deterministically before
being processed by the server, by applying a structural congruence rule (Que − Que) that
commutes two arbitrary client requests req 𝑐1(𝑎1); req 𝑐2(𝑎2);𝑄 ≡ req 𝑐2(𝑎2); req 𝑐1(𝑎1);𝑄.

We may model CSLL stateful servers in CLASS by using a reference cell to store the
server state 𝐵 and the update rule

SS(𝐴, 𝐵) ≜ S 𝑓 [∧𝐵 ⊗ !(∧𝐵 ⊸ ∧𝐵 ⊗ 𝐴)]

and by expressing client requests as follows

req 𝑐(𝑎); (par {𝑄1(𝑎) | | 𝑄2(𝑐)}) = share 𝑐 {
take 𝑐(𝑥); use 𝑥; recv 𝑥(𝑠); ?𝑥;
call 𝑥(𝑢𝑝𝑑); send 𝑢𝑝𝑑(𝑠); recv 𝑢𝑝𝑑(𝑠′);

put 𝑐(𝑥′.affine 𝑥′; send 𝑥′(𝑠′); fwd! 𝑥′ 𝑥);
par {𝑄1(𝑢𝑝𝑑) | | release 𝑐}
| |
𝑄2(𝑐)}

Given the encoding displayed above, the following typing rule is admissible in CLASS

𝑄1(𝑎) ⊢ Δ1 , 𝑎 : 𝐴;Γ 𝑄2(𝑐) ⊢ Δ2 , 𝑐 : SS(𝐴, 𝐵);Γ

req 𝑐(𝑎); (par {𝑄1(𝑎) | | 𝑄2(𝑐)}) ⊢ Δ1 ,Δ2 , 𝑐 : SS(𝐴, 𝐵);Γ

The implementation of req 𝑐(𝑎); (par {𝑄1(𝑎) | | 𝑄2(𝑐)}) shares the usage 𝑐 by two concurrent
threads, one of which is simply𝑄2(𝑐). The other concurrent thread takes the state 𝑠 stored
in the cell 𝑐 and applies the update rule 𝑢𝑝𝑑 to compute the new state 𝑠′ and the observable.
It then updates the cell 𝑐 by putting back the new state 𝑠′, after which it releases the usage

72

3.4. FURTHER DISCUSSION AND RELATED WORK

𝑐 and in parallel continues as𝑄1(𝑢𝑝𝑑). Notice that𝑄1(𝑢𝑝𝑑)will no longer be able to access
the stateful server 𝑐.

In [128], the authors hint at a connection between DiLL’s cocontraction and rule QueA,
but leave this “exact relationship” as a future research direction. We believe that this
implementation of CSLL stateful servers in CLASS might be elucidative. In particular,
notice that the usage for stateful servers in CSLL is propagated linearly to the continuation
of the request and cannot be cocontracted “freely” as in CLASS, as the implementation
shows: the usage is concontracted only to perform the update, after which the thread that
receives the observable releases its usage.

The client modality ¡𝐴 satisfies weakening, as typed by QueW, which corresponds
to cell usage release in CLASS. Interestingly, in CSLL, the problem of safely discarding
a resource is solved in a very distinct way, where each stateful server has an explicitly
manually defined finaliser, whereas in CLASS this is done automatically through the
interplay of a couple of process manipulations. It would be interesting to investigate how
to model manually defined finalisers in CLASS.

Both works [10, 11, 128] tackle a theme common to what is explored in this thesis, with
different contributions, directions, and merits.

Recently, [7, 91] also studied nondeterminism in the setting of logical interpretations
of session types. The work [7] studies extensions of Wadler’s CP calculus obtained by
conflating dual types of Linear Logic. By conflating the multiplicatives ⊗ and O they
allow two processes to interact in more than one session, which logically corresponds
to the multi-cut rule and introduces the possibility of deadlock programs. By conflating
the additives N and ⊗ they obtain a simple form of local coin-flipping nondeterminism
which differs from our global nondeterminism, the latter being inherently related with
racy manipulation of shared state by concurrent programs. Finally, by conflating the
exponentials ! and ?, they obtain access points which allows to non-deterministically
match processes that offer a behaviour of type 𝐴with processes that offer a dual behaviour
𝐴. They show how reference cells can be implemented through access points and how
their system allows non-terminating programs such as the Landin’s knot to be typed.

The work [91] extends a hypersequent formulation of Wadler’s CP with a form of
session sharing that leads to races and nondeterminism, while preserving termination
and deadlock-freedom. Their type system draws on bounded Linear Logic, by introducing
two integer-subscripted modalities that keep track of the number of statically fixed client-
server interactions. This contrasts with our system, in which reference cells can be shared
by an arbitrary number of clients that evolves dynamically, as illustrated by Example 14.

Differential Linear Logic (DiLL)

DiLL [53] works on top of linear logic by extending the exponential bang ! modality with
new rules, namely coweakening, codereliction and cocontraction, which can be thought
of logical principles dual of weakening, contraction and dereliction, these latter apply to

73

CHAPTER 3. CLASS: CLASSIC LINEAR LOGIC WITH AFFINE SHARED STATE

the ? modality.
From the proof-theoretic side, we have built on ideas from DiLL to obtain a logical

perspective on state sharing and nondeterminism. We have seen the presence of coweak-
ening and codereliction and cocontraction, this latter being computationally interpreted
by mutable state sharing in CLASS.

In DiLL, the meaning of a proof (or process) brought explicit by cut normalisation is
represented by a sum

𝑃 + · · · +𝑄

understood as the set of alternative outcomes of a computation, as necessary, e.g., to
capture the result of a cut-reduction between cocontraction and contraction. In our
interpretation, sums play a key role to internalise the nondeterminism that naturally
emerges from concurrent state manipulations. Sums allow confluence of cut-reduction to
be preserved, allowing non-deterministic proof-reductions to be understood equationally,
cf. behavioural equivalence in process algebras [67] or program equivalence in power-
domain denotational semantics [125].

Concurrent Haskell MVars and Rust Mutexes

The reference cells of CLASS and their corresponding cell usage operations - put and
take - bear resemblance to Concurrent Haskell MVars [83, 102], which have associated the
following basic operations

newEmptyMVar :: IO (MVar 𝐴)
newMVar :: 𝐴→ IO (MVar 𝐴)
takeMVar :: MVar 𝐴→ IO 𝐴

putMVar :: MVar 𝐴→ 𝐴→ IO ()

MVar 𝐴 is the type of mutable locations, which can either be empty (created through
newEmptyMVar) or full (created through newMVar), in the latter case they contain a value
of type 𝐴. The operation takeMVar takes a value from a full MVar and blocks if the MVar
is empty. Conversely, the operation putMVar fills in a value into an empty MVar. Although
simple, MVars are Haskell building blocks for more complex concurrent data structures.

However, the fine-grained type system of CLASS distinguishes between full and empty
state at the type level, whereas in Haskell both full and empty MVars are aggregated under
a single type. As a consequence, programs that use MVars in Haskell can cause runtime
errors, aborting the whole computations, if a put is ever attempted in a full MVar, whereas
in CLASS these wrong cell usage scenarios are excluded at compile time. Additionally,
programs in Haskell can block, for example if a take is waiting forever for an empty cell to
become full. This contrasts with CLASS, in which the take-put dynamics follows the usual
safe pattern of mutex-protected objects where each lock-acquire (take) must be followed
by a lock-release (put). Similar to what happens in Concurrent Haskell MVars, in CLASS

74

3.4. FURTHER DISCUSSION AND RELATED WORK

the lock and the data it protects are tightly associated since one must acquire the data
with a take operation before any update.

Also in Rust [86] mutexes are tightly associated with the data they protect and, like
in CLASS, the type system distinguishes between locked and unlocked state. However,
programs in Rust can still block due to aliasing or because threads can share more that
one mutex, whereas, in CLASS, programs are guaranteed to be deadlock-free by the linear
type system (cocontraction).

Memory Management in Rust

In our system, a simple form of ownership and ownership transfer results naturally
from the underlying linear typing discipline. It is interesting to compare the memory
management model of CLASS with the safe manifest presentation of the Rust approach,
to which it turns out to be quite similar.

In Rust [86], references may be shared, but mutation is considered an unsafe operation,
tamed with the so called “interior mutability" pattern. In CLASS references may be shared
using the explicitly share construct, whose typing principle (cocontraction) ensures safety.
Constructing cyclic data structures in Rust is unsafe, as it may lead to memory leaks due
to the reference counting technique used for recycling storage. In CLASS, well-typed
programs do not leak memory: we may understand the release construct as an explicit
declaration of ownership dropping (that may be used to decrement a reference count,
which is what we do in our implementation to dispose cells). CLASS does not allow cyclic
data structures, ensuring strong normalisation and safe sharing, which are fundamental
baseline properties. As Rust assumes immutability by default and sharing as a potentially
unsafe feature, a pragmatic implementation of CLASS could conceivably adopt a similar
perspective for acyclicity, but of course this requires further research.

75

4

Programming in CLASS

In this chapter we continue to exhibit the expressive power of CLASS language and type
system, by coding several examples. The plan is the following

Example 4.1: We start with fundamental concurrent imperative data structures by coding
linked lists in CLASS that support memory-efficient updates in-place. This also
shows how corecursion and shared mutable state fit very well together in CLASS.

Example 4.2: We implement a concurrent imperative queue ADT, implemented in CLASS
using a linked list and two pointers: one to the head (for enqueueing) and other to
tail (for dequeueing), which allows enqueueing and dequeueing to be in general
performed concurrently in 𝑂(1) time by an arbitrary number of processes. This
examples shows how standard existential type quantifiers [35, 109] harmoniously
combine with the basic stateful framework of CLASS in order to define stateful
mutable ADTs.

Example 4.3: We show that in CLASS we can solve famous resource synchronisation
problems like the dining philosophers. We implement Dĳkstra’s solution [51] by
representing the order in the forks as a simple passive shared chain. Our solution
is quite flexible: new philosophers can be added to the system on the fly. And,
interestingly, deadlock-freedom is ensured simply by the linear logic based type
system, without resorting to extra-logical devices such as partial orders.

Example 4.4: We show that the semantics of CLASS reference cells and the basic share
operation are sufficient to express general corecursive protocols, which satisfy some
resource invariant [68, 21, 10], by coding a basic shared toggle.

Example 4.5: In CLASS we can express resource synchronisation methods such as barriers,
fork-joins and Hoare-style monitors in which the absence of deadlocks and livelocks
is statically guaranteed by the linear type system. In this example, we provide the
implementation of a simple barrier.

All these examples were validated by our implemented type checker and tested with
our interpreter implementation (Chapter 5), the reader can check code and tests in the

76

4.1. LINKED LISTS, UPDATE IN-PLACE

folder examples/. In examples/pure/ we code several programs involving only the pure
fragment of CLASS, ranging from basic data structures such as booleans, naturals and
trees to corecursive bit counters. Furthermore, for some of the structures, we offer two
encodings: one following system-F style, based on polymorphism, and other based on
our primitive inductive/coinductive session types.

On the other hand, in examples/state, we code programs involving shared mutable state,
besides the ones in the chapter, the reader may find further linked data structures such as
binary search trees, synchronisation methods such as fork-joins, barriers and monitors and
further shared mutable concurrent ADTs such as counters, functional queues with 𝑂(1)
amortised time for enqueue and dequeue [118], bank accounts and imperative queues.

All these programs satisfy memory safety, confluence, deadlock-freedom and termi-
nation, even though they manipulate higher-order state with blocking primitives and
recursive imperative data structures. These properties follow automatically and compo-
sitionally by our type discipline based on propositions-as-types and linear logic, which
imposes crisp yet expressive acyclicity conditions on channel communication topology
and shared linked data structures. In the second part of this thesis, we will go through
the derivation of all of those metatheoretical properties in detail.

4.1 Linked Lists, Update In-Place

Previously, we have showed how the presence of inductive/coinductive session types
allows us to represent in CLASS basic recursive data structures suchas naturals (Example 7).
In this example we go a step further and show how the presence of reference cells allows us
to express more interesting linked data structures with memory-efficient updates in-place.

More specifically, we implement linked lists LL(𝐴)which store affine sessions 𝐴 (recall
that in CLASS every value is represented as a session). The type LL(𝐴) is expressed by the
mutually recursive pair of definitions

LL(𝐴) ≜ S 𝑓 Node(𝐴) Node(𝐴) ≜ ⊕{#Null : 1, #Next : ∧𝐴 ⊗ LL(𝐴)}

A process offering the recursive type LL(𝐴) behaves as a cell which stores a node of session
Node(𝐴). A session of type Node(𝐴) either chooses #Null if the list is empty, in which case
it closes; or chooses #Next, in which case it sends an affine session ∧𝐴 representing the
head element and recurs as the tail LL(𝐴). We define process null(𝑛) ⊢ 𝑛 : ∧Node(𝐴) that
chooses #Null on session 𝑛 and then closes, and process next(𝑎, 𝑙, 𝑛) ⊢ 𝑎 : ∨𝐴, 𝑙 : LL(𝐴), 𝑛 :
∧Node(𝐴), that chooses #Next, sends an element 𝑎 : ∨𝐴 and continues as a linked list
𝑛 : LL(𝐴) that forwards to 𝑙 : LL(𝐴)

null(𝑛) ≜ affine 𝑛; #Null 𝑛; close 𝑛
next(𝑎, 𝑙, 𝑛) ≜ affine 𝑛; #Next 𝑛; send 𝑛(𝑎); fwd 𝑛 𝑙

With those auxiliary definitions, we code in Fig. 4.1 a linked list 𝑙 : LL(𝐴) that stores
two elements 𝑎1 : ∨𝐴 and 𝑎1 : ∨𝐴. The upper-left shows code for a linked list with two

77

CHAPTER 4. PROGRAMMING IN CLASS

cut {
cell 𝑐2(𝑛2.next(𝑎2 , 𝑐1 , 𝑛2))
|𝑐1 |
cell 𝑐1(𝑛1.next(𝑎1 , 𝑐0 , 𝑛1))
|𝑐0 |
cell 𝑐0(𝑛0.null(𝑛0))
}

1 : append(𝑙1 , 𝑛2 , 𝑙) ≜
2 : take 𝑙1(𝑛);
3 : use 𝑛;
4 : case 𝑛 {
5 : |#Null : wait 𝑛;
6 : put 𝑙1(𝑛′.fwd 𝑛2 𝑛

′);
7 : fwd 𝑙1 𝑙
8 : |#Next : recv 𝑛(𝑎);
9 : cut {
10 : append(𝑛, 𝑛2 , 𝑙

′)
11 : |𝑙′ |
12 : put 𝑙1(𝑛′.next(𝑎, 𝑙′, 𝑛′));
13 : fwd 𝑙1 𝑙}
14 : }

Figure 4.1: A linked list with append in-place.

elements 𝑎2 , 𝑎1. In the bottom we draw the corresponding diagrammatic representation:
blue boxes represent reference cells, black boxes other sessions which are not stateful. The
dashed box represents the null node.

In Fig. 4.1, on the right side, we also define a process

append(𝑙1 , 𝑛2 , 𝑙) ⊢ 𝑙1 : LL(𝐴), 𝑛2 : ∨Node(𝐴), 𝑙 : LL(𝐴)

that updates in-place linked list 𝑙1 by appending node 𝑛2 to its tail, outputting the updated
list in session 𝑙.

Process append(𝑙1 , 𝑛2 , 𝑙) takes the node 𝑛 stored in 𝑙1, uses 𝑛 and then performs case
analysis (ln. 2-4). If #Null, it waits for 𝑛 to be closed and puts 𝑛2 in the list 𝑙1, after which
𝑙1 is forwarded to 𝑙 (ln.5-7). This corresponds to the base case in which list 𝑙1 is empty.

The coinductive step, in which 𝑙1 has at least one element is processed when 𝑛 chooses
#Next. Then, it it receives the head element 𝑎 : ∨𝐴 on session 𝑛 (ln. 8), recursively appends
𝑛2 to the back of the linked list 𝑛 : LL(𝐴) (ln. 10) and puts on 𝑙1 a node whose head element
is 𝑎 and whose tail is the result 𝑙′ of the recursive call (ln. 12), after which it forwards the
updated usage 𝑙1 to 𝑙 (ln. 13).

Linked lists are implemented in file state/linked-lists.clls where we also define further op-
erations such as insertion sort and also define some tests. We also have an implementation
of binary search trees in file state/binary-search-trees.clls.

4.2 A Concurrent Imperative Queue

We code a shareable mutable imperative queue which supports concurrent enqueueing
and dequeueing. The queue is based on a linked list and two independent pointers: one
points to the head of list, used for dequeueing, and another points to the tail of the list,

78

4.2. A CONCURRENT IMPERATIVE QUEUE

used for enqueueing. Each pointer is represented as session of type 𝑋 = S 𝑓 LL(𝐴), i.e. as
a reference cell to a linked list.

Each pointer can be manipulated by an arbitrary number of concurrent threads. In
particular, when the queue is nonempty, each pointer can operate simultaneously without
blocking each other. In Fig. 4.2 we draw a diagram illustrating an imperative queue with
three elements. Head (ℎ) and tail pointers (𝑡) are used for dequeueing and enqueueing,
respectively. They can be shared by an arbitrary number of threads and operate concur-
rently when the queue is nonempty. We stress that they are connected (represented with
a dash line) with a par (O) and not with a tensor (⊗) since they share a common structure,
hence are not disjoint.

The queue offers two ADT interfaces EnqT(𝐴) and DeqT(𝐴): one for enqueueing and
another for dequeueing, respectively. Each interface is associated with the corresponding
head or tail pointer, the type definition of each is given in Fig. 4.3.

The representation type𝑋 = S 𝑓 LL(𝐴) of each interface is hidden through an existential
quantification [35, 109] and, as compliantwithan OOP paradigm, an objectof each interface
will be comprised of reference cell𝑋 that points to a given node of the linked list and which
represent the object’s state, and a collection of persistent (typed by a bang !) methods
- !MenuE(𝐴, 𝑋) for enqueueing and !MenuD(𝐴, 𝑋) for dequeueing - that act on 𝑋 and
represent the object’s interface menu. The clients are then forced to manipulate their
pointers using the interface methods. Session type

Queue(𝐴) ≜ EnqT(𝐴)O DeqT(𝐴)

pack together the two ADTs interfaces
Fig. 4.3 also defines the menu for each interface. Each interface can be released and

shared by an arbitrary number of concurrent threads, through options #Free and #Share,
which are common to both menus. Those options are uniformly implemented by the
process methods mfree(𝑚) and mshare(𝑚):

mfree(𝑚) ⊢ 𝑚 : 𝑋 ⊸ 1
mfree(𝑚) ≜ recv 𝑚(𝑐); par {release 𝑐 | | close 𝑚}

mshare(𝑚) ⊢ 𝑋 ⊸ (𝑋 O 𝑋 O⊥)
mshare(𝑚) ≜ recv 𝑚(𝑐); recv 𝑚(𝑐1); recv 𝑚(𝑐2); wait 𝑚;

share 𝑐 {fwd 𝑐 𝑐1 | | fwd 𝑐 𝑐2}

Process mfree(𝑚) receives on session 𝑚 an usage 𝑐 : U 𝑓 LL(𝐴), then releases 𝑐 and, in
parallel, closes the communication session 𝑚 with the client, therefore mfree(𝑚) releases
each inputted usage 𝑐 when no longer needed.

Process mshare(𝑚) receives on session 𝑚 usage 𝑐 : U 𝑓 LL(𝐴), inputs two cells 𝑐1 , 𝑐2,
both of type S 𝑓 LL(𝐴), waits for the client to close 𝑚 and proceeds as an operation that
shares 𝑐 between two threads: one forwards 𝑐 to 𝑐1, whereas the other forwards 𝑐 to 𝑐2. As
a consequence, all reference cell usages on 𝑐1 and 𝑐2 will be redirected to common cell 𝑐.

79

CHAPTER 4. PROGRAMMING IN CLASS

Figure 4.2: A queue with three elements: 𝑎3 , 𝑎2 and 𝑎1.

EnqT(𝐴) ≜ ∃𝑋.!MenuE(𝐴, 𝑋) ⊗ 𝑋

MenuE(𝐴, 𝑋) ≜ N {
|#Enq : 𝑋 ⊸ ∧𝐴 ⊸ (𝑋 ⊗ 1),
|#Share : 𝑋 ⊸ (𝑋 O 𝑋 O⊥),
|#Free : 𝑋 ⊸ 1
}

DeqT(𝐴) ≜ ∃𝑋.!MenuD(𝐴, 𝑋) ⊗ 𝑋

MenuD(𝐴, 𝑋) ≜ N {
|#Deq : 𝑋 ⊸ (Maybe(∧𝐴) ⊗ 𝑋 ⊗ 1),
|#Share : 𝑋 ⊸ (𝑋 O 𝑋 O⊥),
|#Free : 𝑋 ⊸ 1
}

Figure 4.3: Concurrent imperative queue: interfaces for enqueueing and dequeueing.

Methods
menq(𝑚) ⊢ 𝑚 : 𝑋 ⊸ ∧𝐴 ⊸ (𝑋 ⊗ 1)
mdeq(𝑚) ⊢ 𝑚 : 𝑋 ⊸ (Maybe(∧𝐴) ⊗ 𝑋 ⊗ 1)

where 𝑋 = S 𝑓 LL(𝐴), implementing the menu options #Enq for enqueueing and #Deq for
dequeueing, respectively, are defined in Fig. 4.4.

Method mdeq(𝑚) is non-blocking, always returning a session of type Maybe(𝐵). It
receives on 𝑚 both the reference cell usage tail : U 𝑓 LL(𝐴) that points to the tail of the list
and the element 𝑎 : ∨𝐴 to enqueue (ln. 2-3). Then, it takes the list 𝑙 : ∨LL(𝐴) stored in
the tail, which is wrapped as coaffine session and therefore needs to be explicitly used
(ln. 4-5), after which we can take the empty node 𝑛 : ∨Node(𝐴) from 𝑙 (ln. 6). A new list
𝑙′ storing the empty node 𝑛 is created (ln. 7), which is then shared between two threads
(ln. 9). In one of the threads we update 𝑙, which was previously empty, with a new node
𝑛′ that stores 𝑎 and continues as the empty node 𝑛, after which we release usage 𝑙 (ln.
10-11). In the other thread we update the tail, so that it stores the newly created empty list
𝑙′, sends it back on session 𝑚 and then closes 𝑚 (ln. 13-15).

Process mdeq(𝑚) receives on session 𝑚 the reference cell usage head : U 𝑓 LL(𝐴) (ln. 2)
that points to the head of the linked list and unpacks the structure, obtaining the list 𝑙 and
the node 𝑛 stored in 𝑙 (ln. 3-6). Then, it performs a case analysis on 𝑛 (ln. 7). If the node

80

4.2. A CONCURRENT IMPERATIVE QUEUE

1 : menq(𝑚) ≜
2 : recv 𝑚(tail);
3 : recv 𝑚(𝑎);
4 : take tail(𝑙);
5 : use 𝑙;
6 : take 𝑙(𝑛);
7 : cut {cell 𝑙′(𝑥.fwd 𝑥 𝑛)
8 : |𝑙′ |
9 : share 𝑙′{
10 : put 𝑙(𝑛′.next(𝑎, 𝑙′, 𝑛′));
11 : release 𝑙
12 : | |
13 : put tail(𝑦.affine 𝑦; fwd 𝑦 𝑙′);
14 : send 𝑚(tail);
15 : close 𝑚}}

1 : mdeq(𝑚) ≜
2 : recv 𝑚(head);
3 : take head(𝑙);
4 : use 𝑙;
5 : take 𝑙(𝑛);
6 : use 𝑛;
7 : case 𝑛 {
8 : |#Null : wait 𝑛;
9 : put 𝑙(𝑛′.null(𝑛′));
10 : put head(𝑙′.affine 𝑙′; fwd 𝑙 𝑙′);
11 : send 𝑚(ℎ.Nothing ℎ; close ℎ);
12 : send 𝑚(head);
13 : close 𝑚
14 :
15 : |#Next : par {put 𝑙(𝑛′.null(𝑛′));
16 : release 𝑙
17 : | |
18 : recv 𝑛(𝑎);
19 : put head(𝑙′.affine 𝑙′; fwd 𝑙′ 𝑛);
20 : send 𝑚(ℎ.Just ℎ; fwd ℎ 𝑎);
21 : send 𝑚(head);
22 : close 𝑚}}

Figure 4.4: Concurrent imperative queue: methods menq and mdeq.

chooses #Null, a null node 𝑛′ is put back on 𝑙 and the empty list 𝑙 is restored to the head
(ln.9-10), after which Nothing is sent to the client (ln. 11) on 𝑚. On the other hand, if the
node chooses #Next, we receive the head element 𝑎 (ln. 18) and update the head so that it
points to the next list 𝑛 (ln. 19). Element 𝑎 is sent to the client, wrapped as a Just (ln. 20).
In parallel, it releases the usage 𝑙 (ln. 16), which previously corresponded to the head, but
before releasing we need to put back some dummy null node 𝑛′ (ln. 15). Both branches of
the case end by sending the updated head on 𝑚, after which 𝑚 is closed.

We have also coded in CLASS a variation of this example, inspired by the multicast
operation of the buffered channel implementation given in [102]. The variation extends
the menu for dequeueing with a method mdup(𝑚), which allows two dequeue usages to
be duplicated, i.e. when when one element is dequeued through one of the usages, it is
still available to the other. This contrasts with the already defined method mshare(𝑚) for
sharing two dequeue usages: when two dequeue usages are shared, a dequeue operation
on one of the usages will consume the head element, which will no longer be available to
the other.

In other words, method mshare(𝑚) shares a single dequeueing pointer, whereas
mdup(𝑚) produces two independent dequeueing pointers which share the same underling
linked list structure.

81

CHAPTER 4. PROGRAMMING IN CLASS

Crucially, for this implementation to work, method mdeq(𝑚) (Fig. 4.4) for dequeueing
needs to be adapted. On each dequeue usage, the head element of the linked list to which
the dequeue usage points is copied. One of the copies is sent to the invoking client of the
method mdeq(𝑚), after which the dequeueing pointer moves by one position. The other
copy is used to restore the head element to the linked list, so that it is still available to
possible independent duplicated dequeue usages.

Since we need to copy elements of the linked list, this implementation only works
with linked lists S 𝑓 LL(!𝐴) that store exponentials !𝐴. The dequeue operation can then
be straightforwardly implemented with the exponential read operation, which was intro-
duced previously in Example 13.

On the other hand, method

mdup(𝑚) ⊢ 𝑚 : 𝑋 ⊸ (𝑋 O 𝑋 O⊥), where 𝑋 = S 𝑓 LL(!𝐴)

that duplicates a pointer 𝑚 is defined by

mdup(𝑚) ≜ recv 𝑚(𝑐); recv 𝑚(𝑐1); recv 𝑚(𝑐2); take 𝑐(𝑙); use 𝑙; wait 𝑚;
share 𝑙 {

put 𝑐(𝑙′.affine 𝑙′; fwd 𝑙′ 𝑙); fwd 𝑐 𝑐1

| |
cell 𝑐2(𝑙′.affine 𝑙′; fwd 𝑙′𝑙)}

It inputs on 𝑚 an usage 𝑐 for dequeueing and produces two duplicated usages 𝑐1 , 𝑐2. The
linked list 𝑙 stored in 𝑐 is shared between two concurrent threads: one puts back the list 𝑙
on 𝑐 and forwards 𝑐1 to 𝑐, whereas the other creates on 𝑐2 a new cell that stores 𝑙.

Code for the imperative queue (server side and client) as well as collection of tests can
be found in state/imperative-queue. The variation in which exponential cells are stored and
which allows the head pointer to be duplicated can be found in state/imperative-queue-B.

4.3 Dining Philosophers

The purpose of this example is to illustrate how we can handle resource synchronisation
scenarios in CLASS, more specifically we address the famous dining philosophers problem.
Dĳkstra’s resource hierarchy solution [51] ensures deadlock-freedom by imposing a partial
order on usage of shared resources.

In our solution, we show how this partial order can be captured in CLASS by a simple
passive linked data structure. Remarkably, deadlock-freedom is then guaranteed purely
by typing and follows by the basic acyclicity of linear logic (manifest in the typing rules
[Tcut], [Tsh], [TshL], [TshR]), without the need to rely on extra-logical devices.

Let us recall the problem: there are 𝑘 (𝑘 ≥ 2) philosophers - 𝑃0 , 𝑃1 , . . . , 𝑃𝑘−1 -sitting
in a round table and 𝑘 forks - 𝑓0 , 𝑓1 , . . . , 𝑓𝑘−1, a fork between each pair of philosophers.
Philosophers alternate between eating and thinking, in order to eat they must acquire their
two neighbouring forks. Namely each philosopher𝑃𝑖 , with 0 ≤ 𝑖 < 𝑘−1 must acquire forks

82

4.3. DINING PHILOSOPHERS

𝑓𝑖 , 𝑓𝑖+1; philosopher 𝑃𝑘−1 must acquire forks 𝑓0 and 𝑓𝑘−1. After eating, each philosophers
drops the forks and starts to think. No pair of two philosophers can communicate, the
problem is then to design a decentralised fork-acquiring policy so as to avoid deadlock.

Dĳkstra’s resource hierarchy solution works by requiring each fork to be acquired by
ascending order, i.e. if a philosophers acquires first 𝑓𝑖 and and then 𝑓𝑗 we have 𝑖 < 𝑗. In
other words, each philosopher 𝑃𝑖 with 0 ≤ 𝑖 < 𝑘 − 1 acquires first its right and left fork,
whereas philosophers 𝑃𝑘−1 is the symmetry-breaker that must acquire first its left and
only then its right fork.

In order to code this solution in CLASS, the key idea is to represent the order in which
the forks must be acquired by an explicit acyclic linked chain. More specifically, let us
define the following recursive datatype structure

Fork ≜ S 𝑓 Node Node ≜ ∧ ⊕ {#Null : 1, #Next : Fork}

A process offering the recursive type Fork behaves as a cell which stores a node of session
Node. A session of type Node either chooses #Null, in which case it closes; or chooses #Next,
in which case it continues as the next Fork. Define the basic operations null(𝑛) ⊢ 𝑛 : ∧Node
and next(𝑓 , 𝑛) ⊢ 𝑓 : Fork, 𝑛 : ∧Node by

null(𝑛) ≜ affine 𝑛; #Null 𝑛; close 𝑛 next(𝑓 , 𝑛) ≜ affine 𝑛; #Next 𝑛; fwd 𝑛 𝑓

A resource hierarchy on 𝑘 forks 𝑓0 < 𝑓1 < . . . < 𝑓𝑘 is then represented in CLASS by the
passive linked chain

cut {cell 𝑓0(𝑛0.next(𝑓1 , 𝑛0)) | 𝑓1 | cell 𝑓1(𝑛1.next(𝑓2 , 𝑛1)) | 𝑓2 | . . . | 𝑓𝑘 | cell 𝑓𝑘(𝑛𝑘 .null(𝑛𝑘))}

If a philosopher is granted access to a fork 𝑓𝑖 , he can then access any fork 𝑓𝑗 , with 𝑖 < 𝑗, by
traversing the pointed structure. Crucially, he must follow the path dictated by the chain
and hence, cannot acquire forks 𝑓𝑗 with 𝑗 < 𝑖.

The chain on forks can then be shared by an arbitrary number of dining philosophers
by applying cocontraction. Cocontraction ensures that philosophers do not communicate
between themselves, any synchronisation happens through the shared passive ordered
structure on forks.

In Fig. 4.5, on the left, we show how an example with a round table of four philosophers
more specifically with two logicians - William Howard (𝑃0) and Jean-Yves Girard (𝑃3) -
and two computer scientists - Robin Milner (𝑃1) and Kohei Honda (𝑃2), and the four forks
numbered from 0 to 3. The order on the forks is captured in CLASS by an acyclic linked
chain, represented on the right. A fork is represented with a blue box, the dashed black
box represents the end of the chain. Philosophers 𝑃0 , 𝑃1 , 𝑃2 , 𝑃3 have access to a particular
fork of the chain as represented by the dashed links. Each philosophers 𝑃0 , 𝑃1 , 𝑃2 eats by
acquiring consecutive forks in the chain. The symmetry-breaker philosopher 𝑃3 must eat
by acquiring first the head fork 𝑓0 and then needs to traverse the whole structure in order
to acquire the last fork 𝑓3.

83

CHAPTER 4. PROGRAMMING IN CLASS

Figure 4.5: Solution to the dining philosophers problem in CLASS.

We will now describe in detail processes that implement eating for a system with 𝑘

philosophers. Each philosopher 𝑃𝑖 , with 0 ≤ 𝑖 < 𝑘 − 1 eats by acquiring two consecutive
forks, whereas philosopher 𝑃𝑘−1 eats by acquiring the first 𝑓0 and last fork 𝑓𝑘−1. Eating
for a philosopher 𝑃𝑖 , with 0 ≤ 𝑖 < 𝑘 − 1 is implemented by process eat, whereas eat2
implements eating for philosophers 𝑃𝑘 (Fig. 4.6).

Process eat(𝑓 , 𝑓 ′) ⊢ 𝑓 : Fork, 𝑓 ′ : Fork takes fork 𝑓 on parameter 𝑛 (ln. 2), then it
performs case analysis to check if 𝑛 is #Null or #Next (ln. 4). If #Null it simply puts null
back on 𝑓 and forwards to 𝑓 ′, this is done by auxiliary process putNull(𝑓 , 𝑓 ′) (ln. 6).

The interesting case occurs when 𝑛 selects #Next, in which case a further take occurs
(ln. 7). The philosophers has now acquired the two forks - 𝑓 and 𝑛 - and can eat, we
left code for eating unspecified. Then, the philosopher puts back the two forks (ln. 9-10),
while preserving the original chain structure, and forwards fork 𝑓 to 𝑓 ′ (ln. 11) which can
then be used by subsequent rounds of eating.

In a system with 𝑛 philosophers, philosopher 𝑃𝑛(𝑓0) has access to the head of the
chain but eats in a distinct way, as described by process eat2(𝑓 , 𝑓 ′) ⊢ 𝑓 : Fork, 𝑓 ′ : Fork in
Fig. 4.6. As it happened before, it starts by taking the first fork which contains always a
nonempty node, but then it has to take the last fork in the chain, which is done with the
auxiliary process takeLast(𝑛, 𝑥) ⊢ 𝑛 : Fork, 𝑥 : Fork ⊗ 1, which recursively traverses the
whole chain 𝑛 until it takes the last fork, after which it eats, puts back the last fork, sends
the unmodified structure 𝑛 on 𝑥 and closes.

Inevitably, the way in which philosopher 𝑃𝑘 eats has to be distinct so as to ensure
the key symmetry-breaking, implicit in Dĳkstra’s original resource hierarchy solution:
philosophers 𝑃0 , . . . , 𝑃𝑘−1 all pick the first the left and then the right forks, whereas
philosopher 𝑃𝑘 starts by picking the right forks and then picks the left.

Interestingly, further partial orders on resources, other that simple chains, can also be
explored, for example: we can model directed trees simply by redefining Node as a linked
list of forks.

Code for this example can be found in state/dining-philosophers.clls.

84

4.4. A SHARED RESOURCE-INVARIANT TOGGLE

1 : eat(𝑓 , 𝑓 ′) ≜
2 : take 𝑓 (𝑛);
3 : use 𝑛;
4 : case 𝑛 {
5 : |#Null : wait 𝑛;
6 : putNull(𝑓 , 𝑓 ′)
7 : |#Next : take 𝑛(𝑚);
8 : . . . //eating
9 : put 𝑛(𝑚′.fwd 𝑚 𝑚′);
10 : put 𝑓 (𝑛′.next(𝑛, 𝑛′));
11 : fwd 𝑓 𝑓 ′}

1 : eat2(𝑓 , 𝑓 ′) ≜
2 : take 𝑓 (𝑛);
3 : use 𝑛;
4 : case 𝑛 {
5 : |#Null : wait 𝑛;
6 : putNull(𝑓 , 𝑓 ′)
7 : |#Next : cut {takeLast(n, x) |𝑥 |
8 : recv 𝑥(𝑚);
9 : wait 𝑥;
10 : put 𝑓 (𝑛′.next(𝑚, 𝑛′));
11 : fwd 𝑓 𝑓 ′}}

1 : putNull(𝑓 , 𝑓 ′) ≜
2 : put 𝑓 (𝑛.null(𝑛));
3 : fwd 𝑓 𝑓 ′

1 : takeLast(𝑓 , 𝑥) ≜
2 : take 𝑓 (𝑛);
3 : use 𝑛;
4 : case 𝑛 {
5 : |#Null : wait 𝑛;
6 : . . . //eating
7 : put 𝑓 (𝑛′.null(𝑛′));
8 : send 𝑥(𝑓);
9 : close 𝑥
10 : |#Next : cut {takeLast(𝑛, 𝑦) |𝑦 |
11 : recv 𝑦(𝑚);
12 : put 𝑓 (𝑛′.next(𝑚, 𝑛′));
13 : wait 𝑦;
14 : send 𝑥(𝑓);
15 : close 𝑥}}

Figure 4.6: Dining philosophers: implementation details.

4.4 A Shared Resource-Invariant Toggle

The semantics of CLASS reference cells and the basic share operation are sufficient to
express general corecursive protocols that alternate between a linear and a shared phase.
That is, shareable protocols that satisfy some resource invariant, which may be acquired,
to be interacted with linearly, and then released, when the invariant upholds, to be shared
again. This is a standard technique to implement and reason about resource sharing (see,
e.g., [68, 21, 10]).

We illustrate with a basic toggle example. The toggle has two states - On and Off - the
resource invariant is the state Off, which can be shared. The protocol is expressed by the
following pair of mutually corecursive type definitions

Off ≜ N{#turnOn : On} On ≜ N{#turnOff : ∧Off}

Type Off offers the single option #turnOn, after which it evolves to On. Conversely, type
On offers the single option #turnOff, after which it evolves to an affine Off. Wrapping the
state Off within an affine modality allows the toggle to be shared in the invariant type and,
furthermore, provides a termination base case for a recursive process interacting with the
toggle, which corresponds to discarding the affine session.

85

CHAPTER 4. PROGRAMMING IN CLASS

off(𝑡) ⊢ 𝑡 : Off
off(𝑡) ≜ case 𝑡 {|#turnOn : on(𝑡)}

on(𝑡) ⊢ 𝑡 : ∧On
on(𝑡) ≜ case 𝑡 {|#turnOff : affine 𝑡; off(𝑡)}

main() ⊢ ∅
main() ≜ cut {

cell 𝑐(𝑡.affine 𝑡; off(𝑡))
|𝑐 |
share {

take 𝑐(𝑡);
use 𝑡; #turnOn 𝑡; #turnOff 𝑡;
put 𝑐(𝑡′.fwd 𝑡 𝑡′); release 𝑐
| |
take 𝑐(𝑡);
use 𝑡; #turnOn 𝑡; #turnOff 𝑡;
use 𝑡; #turnOn 𝑡; #turnOff 𝑡;
put 𝑐(𝑡′.fwd 𝑡 𝑡′); release 𝑐
}
}

Figure 4.7: Code for a shared resource-invariant toggle.

In Fig. 4.7, on the left-hand side, we show code for mutually corecursive processes
on(𝑡) and off(𝑡), that follow automatically from the type definitions On and Off. More
interestingly, the right-hand side displays code for a toggle, that is being shared between
two clients. Each client acquires the toggle, with a take operation, in the Off invariant type
and then uses the linear protocol freely, by calling #turnOn and #turnOff in strict alternation.
After this linear interaction, they release the toggle (in the invariant type) by putting it
back in the cell 𝑐.

Code for this example is available in examples/state/toggle.clls.
In examples/state/shared-factory.clls, we also provide code for a generic (polymorphic)

wrapper factory. that for any affine object, provides a coercion to a general invariant-based
sharing interface, all written in CLASS.

4.5 A Barrier for 𝑁 threads

We describe in Fig. 4.8 a CLASS implementation of a simple barrier, parametric on the
number 𝑁 of threads to synchronise. We find it interesting to model the “real" code
shown in the Rust reference page for std::sync::Mutex [86]. The code uses if-then-else and
primitive integers, supported by our implementation, but that could be defined as idioms
of pure CLASS processes.

We represent a barrier by a mutex cell storing a pair consisting of an integer 𝑛, holding

86

4.5. A BARRIER FOR 𝑁 THREADS

init(𝑤𝑠) ⊢ 𝑤𝑠 : ∧BState
init(𝑤𝑠) ≜

affine 𝑤𝑠 ; send 𝑤𝑠(𝑁); affine 𝑤𝑠 ; nil(𝑤𝑠)

awakeAll(𝑤𝑠 : List(∧⊥))
awakeAll(𝑤𝑠) ≜

case 𝑤𝑠 {
#Nil : wait 𝑤𝑠 ; 0
#Cons :
recv 𝑤𝑠(𝑤);
par {use 𝑤; close 𝑤 | | awakeAll(𝑤𝑠)}

spawnAll(𝑐; 𝑖 , 𝑛) ⊢ 𝑐 : Barrier; 𝑖 : Int, 𝑛 : Int
spawnAll(𝑐; 𝑖 , 𝑛) ≜

if (𝑛 == 0) { release 𝑐}
{ share 𝑐 {

thread(𝑐; 𝑖)
| |
spawnall(𝑐; 𝑖 + 1, 𝑛 − 1)}}

thread(𝑐; 𝑖) ⊢ 𝑐 : Barrier; 𝑖 : Int
thread(𝑐; 𝑖) =

println 𝑖 + “: waiting.”;
take 𝑐(𝑤𝑠); recv 𝑤𝑠(𝑛); use 𝑤𝑠 ;
if (𝑛 == 1) {

par {
println 𝑖 + “: finished.”;
use 𝑤𝑠 ; awakeAll(𝑤𝑠)
| |
put 𝑐(𝑤′𝑠 .init(𝑤′𝑠));
release 𝑐}}

{ cut {
affine 𝑤; wait 𝑤;
println 𝑖 + “: finished.”; 0
|𝑤 | put 𝑐(𝑤′𝑠 .affine 𝑤′𝑠 ;

send 𝑤′𝑠(𝑛 − 1);
affine 𝑤′𝑠 ;
cons(𝑤, 𝑤𝑠 , 𝑤′𝑠));

release 𝑐}}

Figure 4.8: A Barrier for 𝑁 Threads

the number of threads that have not yet reached the barrier, and a stack 𝑠 of waiting
threads, each represented by a session of affine type ∧⊥ (so they will be safely aborted if
at least one thread fails to reach the barrier).

The type Barrier of the barrier is S 𝑓 BState, where BState ≜ Int ⊗ ∧List(∧⊥). Initially
the barrier is initialised with 𝑛 = 𝑁 threads and an empty stack, so that the invariant 𝑛 +
𝑑𝑒𝑝𝑡ℎ(𝑠) = 𝑁 holds during execution. Each thread(𝑐; 𝑖) acquires the barrier 𝑐 andchecks if it
is the last thread to reach the barrier (if𝑛 == 1): in this case, it awakes all the waiting threads
(awakeAll(𝑤𝑠)) and resets the barrier. Otherwise, it updates the barrier by decrementing
𝑛 and pushing its continuation into the stack (the continuation for thread 𝑖 just prints
“finished"). The following process main() ⊢ ∅ creates a new barrier 𝑐 and spawns𝑁 threads,
each labelled by a unique id 𝑖: main() ≜ cut { cell 𝑐(𝑤𝑠 .init(𝑤𝑠)) |𝑐 | spawnAll(𝑐; 0, 𝑁) }.
Again, our type system statically ensures that the code does not deadlock or livelock.

Code for this example is available in examples/state/barrier.clls. We provide further
synchronisation methods in the distribution such as fork-joins and Hoare style monitors.

87

5

Language Implementation CLLSj

5.1 Introduction

The session-typed process calculus CLASS (Chapter 3), based on the correspondence with
classical linear logic and extended with first-class mutable affine-stored state and state
sharing, has a practical language implementation, dubbed CLLSj.

CLLSj consists of a type checker and interpreter, both of which were implemented
in the Java programming language (∼ 8k loc). CLLSj demonstrates the feasibility of our
propositions-as-types approach to mutable shared state and, pragmatically, validates and
guides the development of complex programs written in CLASS. In fact, all the examples
presented so far were validated by CLLSj type checker and tested using its interpreter.

The implementation can be dowloaded at [133]. It comes with detailed use instructions
(README.md), the source code (folder src/) and an extensive (∼ 6k loc) collection of
examples (folder examples/). The file README.md helps you get started, shows you how
to interact with the CLLSj read-eval-print loop (REPL) and also presents the full concrete
syntax of the implemented language, mapping whenever necessary to the theoretical
model CLASS.

In the folder examples/ you may find several realistic examples which showcase the
expressiveness of our approach: we code inductive datatypes (naturals, lists) using either
primitive recursion types or using system-F style encodings, linked data structures (linked
lists, binary search trees), shareable concurrent mutable ADTs (bank accounts, stacks,
functional and imperative queues), resource synchronisation methods (fork-joins, barriers,
dining philosophers) and several test suites. Folder examples/ is divided into two subfolders:
in examples/pure we list all the examples of the pure sublanguage �CLL (Chapter 2), based
on the correspondence with classical linear logic; all the examples in examples/state involve
mutable state.

The metatheoretical properties of CLASS, like deadlock-freedom (Chapter 6) and
strong normalisation (Chapter 9), provide strong guarantees for our implementation
CLLSj: the interpreter never blocks and always terminates when running type checked
programs. This is true even when running complex examples involving the concurrent

88

5.2. HELLO WORLD: A CONCURRENT COUNTER

shareable ADTs, where everything is implemented using pure session-based processes,
from the high-level ADTs menus to the basic inductive datatypes such as lists, where
the implementation spawns thousands of short-lived threads that synchronise perfectly
thanks to linear logic.

The rest of the chapter is organised as follows. In Section 5.2 we go step-by-step
through the implementation of a simple “hello world” concurrent counter in order to
illustrate some features and details of CLLSj. Then, Section 5.3 gives a high-level overview
of the implementation of the type checker and interpreter. Finally, 8.4 concludes with
further discussion and related work.

5.2 Hello World: A Concurrent Counter

We will go step-by-step through the implementation of a simple “hello world” concurrent
counter with two operations to get-and-reset and increment. The purpose is to illustrate
some features and details of our language implementation CLLSj. Once in the main
directory execute ./CLLSj to run the interactive REPL.

A counter is just a reference cell that stores an integer, the datatype Counter is defined
with the following instruction

type Counter { state lint };;

This instructs the REPL to associate the type id Counter with the type expression state

lint, which denotes a state full of a linear integer. After typing the above expression the
REPL prints

Type Counter: defined.

informing that the new datatype Counter was successfully defined.
All the instructions to interact with the REPL end with a double semi-colon, processes

and type expressions are enclosed in curly braces. The keyword state is the concrete
syntax expression for the modality S 𝑓 from CLASS. We denote the empty state modality
S𝑒 with the concrete expression statel which stands for state locked. Similarly, the concrete
syntax expressions usage and usagel stand for the usage modalities U 𝑓 and U𝑒 of CLASS,
respectively.

We will now define a process named counter, which offers the protocol Counter on a
session c

proc counter(c: Counter){ cell c(n: affine lint. affine n; let n 42) };;

This instructs the REPL to type check the process expression enclosed in curly braces
with the typing context c:Counter and, provided type checking is successful, to associate it
the id counter(c).

89

CHAPTER 5. LANGUAGE IMPLEMENTATION CLLSj

In this case the typing context is just made of a linear part which associates the name id
c with the previously defined type Counter. We use a semicolon to separate the linear and
the unrestricted typing context as in n:Nat ; b:Bool. When the unrestricted typing context is
empty we do not need to use the semicolon, writing c:Counter instead of c:Counter;.

The process expression cell c(n: affine lint. affine n; let n 42) denotes a reference cell
on session c that is storing an affine linear integer n. The affine linear integer is initially
set to 42. In our concrete process language CLLSj, terms are written with bound names
type-annotated, which from a pragmatic point of view guides the type checking algorithm
and eases the task of writing complex programs.

The duality related pair of modalities ∧/∨ is denoted in the language implementation
with the terms affine/ coaffine. The keyword affine is also used in the process term
language to introduce affine sessions in the example above, where we are defining an
affine session on n and continuing as let n 42, an expression that defines on session n the
linear integer 42.

For convenience, the implementation language CLLSj also includes efficient prag-
matic basic datatypes (native integers, booleans, strings), ML-style let expressions and
primitive operations (arithmetic sum, if-conditional, string concatenation, to name a
few). These basic datatypes and primitive operations can, anyway, be encoded in the
fundamental classical linear logic based pure session-typed calculus �CLL. For example,
we implement the booleans and the natural datatypes in examples/pure/booleans.clls and
examples/pure/naturals.clls.

After typing the above expression, the REPL outputs

Process counter: defined.

informing the process counter was defined, this implies that type cheking was successful.
We will now define some basic processes that operate in the counter. We start with

the following operation

proc getAndReset(c: ~ Counter){
take c(n: coaffine colint);
use n;
println("GOT "+n+" and RESET");
put c(v: affine lint. affine v; let v 0);
release c

};;

It gets the linear integer stored in the counter c, prints the integer and resets the counter.
It type checks with c:~ Counter. The type concrete expression ~ A in CLLSj denotes the dual
type 𝐴 in CLASS. Instead of writing ~ Counter we could alternatively have written usage

colint, but we let the type checker carry out the computation of the dual type.
Process getAndReset(c) starts by taking the usage c on session n: coaffine colint. Notice

how the type annotation can inform us what to do next: we have to use the take session to

90

5.2. HELLO WORLD: A CONCURRENT COUNTER

unstrip the coaffine modality after which we get a session n of type colint. Now we must
do some operation that consumes the linear integer, which, in this case, is done by the
print instruction. Finally, we put the affine linear 0, and then release the usage c.

The increment operation is defined by

proc inc(c: ~ Counter){
take c(n: coaffine colint);
println "INC";
put c(v: affine lint. affine v; use n; let v n+1);
release c

};;

It also type checks with c:~ Counter and follows a similar usage pattern, already described
for getAndReset(c). It prints a message "INC" informing that the increment operation is being
carried out. The taken linear integer in this case is consumed by the let expression to
define the incremented value being put. After feeding the REPL with the above process
definitions we obtain:

Process getAndReset: defined.

Process inc: defined.

To conclude, we assemble everything in the following process definition

proc system(){
cut{

counter(c)
|c: ~ Counter|
share c {

inc(c) || getAndReset(c) || inc(c) || getAndReset(c)
}

}};;

This composes a counter with 4 atomic threads, two of which are incrementing and another
two are printing and resetting.

After typing the expression the REPL prints

Process system: defined.

Once a closed process (with an empty typing context) is type checked we can run it
multiple times by writing the process name. For example, if we input the REPL with

> system();;

it may print the log

91

CHAPTER 5. LANGUAGE IMPLEMENTATION CLLSj

INC

INC

GOT 44 and RESET

GOT 0 and RESET

The emphasis is to stress the fact that the printed log depends on the scheduling of the
atomic actions. For example, the above log corresponds to the scheduling in which the
two atomic increment instructions were executed before the two get-and-reset instructions.
If we run process system() again we might obtain

GOT 42 and RESET

INC

INC

GOT 2 and RESET

This corresponds to the scheduling in which the two increment instructions are executed
after and before a get-and-reset.

Our implementation exposes nondeterminism arising from concurrency as real com-
mitted nondeterminism, so that the sum operator from the metatheoretical model CLASS,
while crucial to establish a propositions-as-types model and to characterise the semantics
of our language, is not present in our practical runtime system CLLSj. On the other hand,
the metatheoretical model allows us to reason about the behaviour of concurrent pro-
grams in the implementation(as illustrated in Example 15) since the result produced by
running a process in the implementation CLLSj is always a summand of a sum, obtained
by→-reducing the process in the metatheoretical model CLASS.

Complete code for this example can be found in examples/state/simple-counter.clls. The
whole file can be type checked at once by typing

> include ‘‘examples/state/simple-counter.clls’’;;

5.3 Type Checker and Interpreter

We will now give a high-level overview of how the type checker and interpreter were
implemented. The source code can be consulted in src/.

When type checking linear logic based type systems we need to guess how to split the
linear typing context of the conclusion between the premises in the multiplicative rules,
like [T⊗], which types session output. The type checker of CLLSj deals with this issue by
doing a lazy guess, as in [71], so we pass the context to the recursive type checker call on
one of premises, which consumes some linear sessions, and then we pass the remaining
linear context to the recursive type checker call on the other premise. In the end we check

92

5.3. TYPE CHECKER AND INTERPRETER

that the linear typing context was fully consumed. The unrestricted typing context is
simply shared by reference from the conclusion to the premises.

Type definitions are kind-checked against a global environment of type identifiers,
this allows the definition of inductive/coinductive session types. Similarly, type checking
of processes is done against a global environment that maps process identifiers to typing
contexts and which allows for corecursive process definitions.

Each corecursive process definition must always provide at least one linear parameter
which corresponds to the session in which corecursion is done, by convention this is
the first parameter. The type checker then ensures that the corecursive call is done
in a session that hereditarily descends from the first parameter so as to guarantee that
corecursion is well-founded. We support an unsafe pattern of corecursion in which these
restrictions are lifted and which allows us to type nonterminating programs (see, for
example, examples/pure/loop.clls). We also support mutually recursive type and process
definitions, for example check examples/pure/naturals.clls in which we provide a mutually
recursive definition of the natural predicates even and odd.

We now move to the interpreter, our implementation is not a high-level “naive” ren-
dering of the formal semantics, but an efficient implementation based on a fine-grain
concurrent runtime / abstract machine system, the implementation of which relies on
Doug Lea’s java.util.concurrent.* package [95] provided since J2SE 5.0

The interpretation of a process depends on a global environment that associates each
process identifier with its respective process definition. It depends, as well, on two further
environments: one that associates each free linear name of the process being interpreted
with a linear session object that mediates linear process interactions; the other maps each
unrestricted free name with a server object.

The server object has essentially code for a replicated server process that is concurrently
interpreted on each method call invocation. On the other hand, the purpose of a linear
session object is twofold: first to mediate each binary linear interaction that occurs exactly
between two partners (e.g., close and wait, send and receive) and, secondly, to mediate
the cell-usage interactions, which occur between a reference cell and an arbitrary number
of cell usage concurrent threads.

Each binary interaction is handled by a blocking channel object that supports two
methods for sending and receiving arbitrary objects, send blocks until a receive is invoked
and vice-versa: receive blocks until a send is invoked. This allows us to emulate the
synchronous rendezvous interaction typical of process calculi in general, and of CLASS
in particular.

The linear session typing discipline guarantees that each send will eventually be
matched with a receive invocation on the same channel object and vice-versa, thereby
guaranteeing progress of the interpretation.

When interpreting some process binary interactions of CLLSj, for example close/wait,
the object sent is irrelevant (null), whereas it plays a key role on interpreting some other
process interactions, like for example session output/input, where a fresh linear session

93

CHAPTER 5. LANGUAGE IMPLEMENTATION CLLSj

object is sent by the interpretation of the output process and received by the interpretation
of the input process.

Each cell object has code for the body P of a full reference cell cell(c: affine A. P) which
is concurrently invoked with each take method invocation. A take method acquires the
cell object, so that further take method invocations block until a put method invocations
occurs, in which case the lock is released and the object is updated with new code for the
body of the reference cell.

Each cell object keeps a count of the number of threads that are currently sharing it,
which is incremented on the interpretation of each share construct and decremented on
the interpretation of each release action. When the count reaches zero the cell body is
simply discarded.

Forwarding redirects each send and receive method invocation on a channel, as well
as each take and put method invocation on a cell object. There is a symmetry in the
implementation of binary session interactions in the sense that either the send or receive
method invoker can be redirected, whereas in the case of cell-usage interactions this
symmetry is lost and we need to redirect each usage operation.

Importantly, structural congruence does not play any explicit role in the implemen-
tation model. In particular, our implementation exposes nondeterminism arising from
concurrency as real committed nondeterminism, so that the sum operator, while crucial to
establish a propositions-as-types model and to characterise the semantics of our language,
is not present in our practical runtime system, that is, the implementation commits to one
of the summands in sums, while any of such may be nondeterministically picked. Types
are not used at runtime, but to orient forwarders at state types, and handle polymorphic
type variables.

When running complex examples involving the concurrent shareable ADTs, such as
the functional queue (examples/state/2queue/), where we intensively use session processes
to implement everything, down to basic inductive data types such as lists (along the
lines of [161]), our implementation spawns thousands of short-lived processes. In order
to reduce the overhead associated with thread creation/destruction we have opted to
manage the execution of concurrent tasks through a cached thread pool.

5.4 Further Discussion and Related Work

There are several language implementations of binary and multiparty session types, for
example: [113] describes an implementation, in C, that statically checks multiparty
session types and [138] gives a representation of session types in Scala as well as library
for session-based programming, to name just a few.

The idea of dealing with the multiplicatives of linear logic by context splitting and
lazy propagation of context residuals originated in linear logic proof search [71] and has,
since then, influenced the implementation of linear logic based programming languages,
e.g. [126, 98].

94

5.4. FURTHER DISCUSSION AND RELATED WORK

The work [10] provides an implementation of the manifest session-typed calculus
SILLS in Concurrent C0 (CC0) [162]. CC0 is a type-safe C-like imperative language
with contracts and session types. Session communication in CC0 is implemented via
asynchronous buffered channels: a send never blocks, receive blocks until a message is
available. In [10] forwarding is dealt with by redirecting all clients of a shared resource
through a chain of forwarding pointers, similarly to what happens in the implementation
of CLASS. In [10] shared channels are not deallocated, this is a challenge for their system
since, in manifest sharing, weakening of shared resources is not explicitly annotated, as
it is in CLASS with the release operation (coweakening). More recently, the work [36]
developed an embedding of SILLS in Rust.

Programs written in the mplementation [10] and the embedded language [36] can block
since the source language SILLS does not guarantee deadlock-freedom. This contrasts
with our implementation CLLSj, in which all the executed type checked programs never
block and always terminate, as implied by the linear logic based type system of CLASS.

95

Part II

Metatheory of CLASS

96

6

Safety: Type Preservation and
Progress

6.1 Introduction

In this chapter we prove that the session-typed calculus CLASS satisfies the basic prop-
erties of type preservation and progress. Type preservation states that, in CLASS, both
structural congruence ≡ and reduction→ preserve the typing relation (Theorem 1). This
is established by routinely checking that all the defining rules of structural congruence ≡
(Def. 13) and reduction→ (Def. 14) are type-preserving. In fact, from each rule of ≡/→,
we can extract a correspondent conversion on proofs/typing derivations.

On the other hand, progress (deadlock-freedom) is a liveness property which states
that all closed processes with a pending action eventually reduce (Theorem 2), thereby
guaranteeing that no closed live system will ever get stuck. Deadlock-freedom follows
from the basic acyclicity of the linear logic type system of CLASS, manifest in rules [Tcut]
(cut) and [Tsh], [TshL], [TshR] (cocontraction), which guarantee that no thread blocks,
neither through channel synchronisation nor through cell lock acquisition.

We present the type preservation result in Section 6.2, followed by progress in Sec-
tion 6.3. Then, we conclude the chapter in Section 6.4 with further discussion and related
work.

6.2 Type Preservation

The session-typed process calculus CLASS satisfies the basic property of type preservation
(Theorem 1, a.k.a. subject reduction), which states that both structural congruence ≡ and
reduction→ preserve the typing relation. As a consequence, it implies that well-typed
processes always evolve to well-typed processes. On the other hand, from a logical point
of view, it ensures that all the algebraic manipulations on processes are justified by logical
conversions on proofs / typing derivations. We now state our type preservation result.
The complete proof can be found in Appendix A.

97

CHAPTER 6. SAFETY: TYPE PRESERVATION AND PROGRESS

(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝑒 𝐴 (2) put 𝑥(𝑦.𝑃);𝑄 ⊢� Δ1 , 𝑥 : U𝑒 𝐴;Γ
(3) 𝑅 ⊢� Δ2 , 𝑥 : U 𝑓 𝐴;Γ, for some 𝐴,Δ1 ,Δ2
(By inverting share 𝑥 {put 𝑥(𝑦.𝑃);𝑄 | | 𝑅} ⊢� Δ;Γ)
(4) Δ1 = Δ11 ,Δ12 (5) 𝑃 ⊢� Δ11 , 𝑦 : ∧𝐴;Γ (6) 𝑄 ⊢� Δ12 , 𝑥 : U 𝑓 𝐴;Γ (By inverting (2))
(7) share 𝑥 {𝑄 | | 𝑅} ⊢� Δ12 ,Δ2 , 𝑥 : U 𝑓 𝐴;Γ ([Tsh], (6) and (3))
(8) put 𝑥(𝑦.𝑃); share 𝑥 {𝑄 | | 𝑅} ⊢� Δ11 ,Δ12 ,Δ2 , 𝑥 : U𝑒 𝐴;Γ ([Tput], (5) and (7))
(9) Δ11 ,Δ12 ,Δ2 , 𝑥 : U𝑒 𝐴 = Δ ((1) and (4))
(10) put 𝑥(𝑦.𝑃); share 𝑥 {𝑄 | | 𝑅} ⊢� Δ;Γ ((8) and (9))

(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝑒 𝐴 (2) 𝑃 ⊢� Δ1 , 𝑦 : ∧𝐴;Γ
(3) share 𝑥 {𝑄 | | 𝑅} ⊢� Δ2 , 𝑥 : U 𝑓 𝐴;Γ, for some Δ1 ,Δ2 , 𝐴
(By inverting put 𝑥(𝑦.𝑃); share 𝑥 {𝑄 | | 𝑅} ⊢� Δ;Γ)
(4) Δ2 = Δ21 ,Δ22 (5) 𝑄 ⊢� Δ21 , 𝑥 : U 𝑓 𝐴;Γ
(6) 𝑅 ⊢� Δ22 , 𝑥 : U 𝑓 𝐴;Γ, for some Δ21 ,Δ22 (By inverting (3))
(7) put 𝑥(𝑦.𝑃);𝑄 ⊢� Δ1 ,Δ21 , 𝑥 : U𝑒 𝐴;Γ ([Tput], (2) and (5))
(8) share 𝑥 {put 𝑥(𝑦.𝑃);𝑄 | | 𝑅} ⊢� Δ1 ,Δ21 ,Δ22 , 𝑥 : U𝑒 𝐴;Γ ([TshL], (7) and (6))
(9) Δ1 ,Δ21 ,Δ22 , 𝑥 : U𝑒 𝐴 = Δ ((1) and (4))
(10) share 𝑥 {put 𝑥(𝑦.𝑃);𝑄 | | 𝑅} ⊢� Δ;Γ ((8) and (9))

Figure 6.1: Type preservation, example: ≡ rule [PSh].

Theorem 1 (Type Preservation). The following properties hold

(1) If 𝑃 ⊢ Δ;Γ and 𝑃 ≡ 𝑄, then 𝑄 ⊢ Δ;Γ.

(2) If 𝑃 ⊢ Δ;Γ and 𝑃 → 𝑄, then 𝑄 ⊢ Δ;Γ.

Proof. By induction on derivations for 𝑃 ≡ 𝑄 and 𝑃 → 𝑄. Follows by checking that all
the conversion rules of structural congruence ≡ (Def. 13) and reduction→ (Def. 14) are
type-preserving.

In the proof of Theorem 1(1) we use an axiomatisation of ≡ equivalent to Definition 13
but in which we drop rule [symm] 𝑃 ≡ 𝑄 ⊃ 𝑄 ≡ 𝑃 and assume that each commuting
conversion holds from left to right and right to left. We illustrate the proof with ≡ rule
[PSh], which commutes as share with a put operation, in Fig. 6.1. The top part gives
the proof for the case in which the rule is applied from left to right, bottom part for the
direction from right to left.

In the proof we often need to invert the typing relation. That is, by inspecting the
constituent constructors of a process 𝑃 for which a typing judgement 𝑃 ⊢� Δ;Γ holds we
infer some particularities of the typing contexts Δ and Γ as well as infer typing judgments
for the subprocesses of 𝑃. For example, in a derivation for par {𝑃1 | | 𝑃2} ⊢� Δ;Γ the last
rule has to be [Tmix], from which we conclude that there is a partitioning Δ1 ,Δ2 of the
typing context Δ = Δ1 ,Δ2 such that 𝑃1 ⊢� Δ1;Γ and 𝑃2 ⊢� Δ2;Γ.

The typing relations is not only preserved by structural congruence ≡ but also by
reduction→, as stated by Theorem 1(2). We illustrate the proof with→ rule [S𝑒 U𝑒], that

98

6.3. PROGRESS

(1) Δ = Δ1 ,Δ2 (2) empty 𝑐 ⊢� Δ1 , 𝑐 : S𝑒 𝐴;Γ
(3) put 𝑐(𝑎.𝑃);𝑄 ⊢� Δ2 , 𝑐 : U𝑒 𝐴;Γ, for some Δ1 ,Δ2
(By inverting cut {empty 𝑐 |𝑐 : S𝑒 𝐴| put 𝑐(𝑎.𝑃);𝑄} ⊢� Δ;Γ)
(4) Δ1 = ∅ (By inverting (2)
(5) Δ2 = Δ21 ,Δ22 (6) 𝑃 ⊢� Δ21 , 𝑎 : ∧𝐴;Γ (7) 𝑄 ⊢� Δ22 , 𝑐 : U 𝑓 𝐴;Γ (By inverting (3))
(8) cell 𝑐(𝑎.𝑃) ⊢� Δ21 , 𝑐 : S 𝑓 𝐴;Γ ([Tcell] and (6)
(9) cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| 𝑄} ⊢� Δ21 ,Δ22;Γ ([Tcut], (8) and (7))
(10) Δ = Δ21 ,Δ22 ((1), (4) and (5))
(11) cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| 𝑄} ⊢� Δ;Γ ((9) and (10))

[Tempty]
empty 𝑐 ⊢� 𝑐 : S𝑒 𝐴;Γ

...

𝑃 ⊢� Δ1 , 𝑎 : ∧𝐴;Γ

...

𝑄 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ
[Tput]

put 𝑐(𝑎.𝑃);𝑄 ⊢� Δ1 ,Δ2 , 𝑐 : U𝑒 𝐴;Γ
[Tcut]

cut {empty 𝑐 |𝑐 : S𝑒 𝐴| put 𝑐(𝑎.𝑃);𝑄} ⊢� Δ1 ,Δ2;Γ

→

...

𝑃 ⊢� Δ1 , 𝑎 : ∧𝐴;Γ
[Tcell]

cell 𝑐(𝑎.𝑃) ⊢� Δ1 , 𝑐 : S 𝑓 𝐴;Γ

...

𝑄 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ
[Tcut]

cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| 𝑄} ⊢� Δ1 ,Δ2;Γ

Figure 6.2: Type preservation, example:→ rule [S𝑒 U𝑒].

models the interaction between an empty cell with a put operation, in Fig. 6.2. The proof
yields a correspondent typed principal cut conversion, which we display in the bottom.

Theorem 1 justifies our propositions-as-types approach that connects computation
to logic, by mapping all process manipulations of ≡ and → to proof conversions and
vice-versa. In fact, from each rule of ≡/→, we can extract a correspondent conversion on
proofs/typing derivations, e.g. the process reduction rule→ [S𝑒 U𝑒] corresponds to a
principal cut conversion on typing derivations displayed in Fig. 6.2.

6.3 Progress

In the previous section we proved type preservation. We will now prove that CLASS enjoys
the progress property (Theorem 2), namely that all closed live processes reduce. Progress
is a liveness property: it guarantees that closed live processes will never get stuck.

We start by defining what means for a process to be live (Definition 16) and then
we introduce an observability predicate (Definition 17) which characterises the potential
interactions of an open typed processes and which is instrumental to prove progress
compositionally.

99

CHAPTER 6. SAFETY: TYPE PRESERVATION AND PROGRESS

Definition 16 (Live Process). A process 𝑃 is live if 𝑃 = 𝒞[𝒜] or 𝑃 = 𝒞[fwd 𝑥 𝑦] for some
static context 𝒞 and action𝒜.

Intuitively, a process is live if it presents an unguarded action or forwarder waiting to
interact, that action lies only under the scope of a static construct (mix, linear or unrestricted
cut, share, sum). As a consequence of our linear typing discipline, all the typed processes
𝑃 ⊢� Δ;Γ that (i) type with a nonempty linear context Δ and (ii) with an empty map
� are necessarily live, as established by the following lemma. The latter condition (ii)
is necessary so as to exclude processes variables 𝑋(®𝑦) since they offer no structure for
interaction, they are not live.

Lemma 1. If 𝑃 ⊢∅ Δ;Γ and Δ ≠ ∅, then 𝑃 is live.

Proof. By induction on a derivation of 𝑃 ⊢∅ Δ;Γ. Case [T0] holds vacuously because it
types inaction 0 with an empty linear context. Case [Tvar] holds vacuously because it
types a variable with a nonempty recursion map �.

Cases which introduce the forwarder construct or an action hold trivially since 𝑃 can
be written as −[fwd 𝑥 𝑦] or −[𝒜], where − is the empty static process context and 𝒜 is
an action.

The remaining cases are [Tmix], [Tcut], [Tcut!], [Tsh], [TshL], [TshR] and [Tsum]. In
these cases, from the fact that the conclusion types with a nonempty linear context we
can infer that at least one of the premises types with a nonempty linear context as well, so
that we can apply the inductive hypotheses to infer liveness of one of the arguments of 𝑃,
which then implies liveness of 𝑃. We illustrate with cases [Tmix] and [Tsh].

Case [Tmix]
We have

...

𝑃1 ⊢ Δ1;Γ

...

𝑃2 ⊢ Δ2;Γ
[Tmix]

par {𝑃1 | | 𝑃2} ⊢ Δ1 ,Δ2;Γ

where 𝑃 = par {𝑃1 | | 𝑃2} and Δ = Δ1 ,Δ2.

Since Δ ≠ ∅, then either Δ1 ≠ ∅ or Δ2 ≠ ∅.

Assume w.l.o.g. that Δ1 ≠ ∅.

By applying the i.h. to 𝑃1 ⊢ Δ1;Γ we conclude that 𝑃1 = 𝒞1[𝒳], where 𝒞 is a static
context and 𝒳 is either an action or a forwarder.

Let 𝒞 = par {𝒞1 | | 𝑃2}. Then, 𝒞 is static and 𝑃 = 𝒞[𝒳].

100

6.3. PROGRESS

[fwd]
fwd 𝑥 𝑦 ↓𝑥:fwd

𝑠(𝒜) = 𝑥
[act]

𝒜 ↓𝑥:act

𝑃 ↓𝑥:𝜎 [mix]
(par {𝑃 | | 𝑄}) ↓𝑥:𝜎

𝑃 ↓𝑦:𝜎 𝑦 ≠ 𝑥
[cut]

(cut {𝑃 |𝑥 | 𝑄}) ↓𝑦:𝜎

𝑄 ↓𝑧:𝜎 𝑧 ≠ 𝑥
[cut!]

(cut! {𝑦.𝑃 |𝑥 | 𝑄}) ↓𝑧:𝜎
𝑃 ↓𝑦:𝜎 𝑦 ≠ 𝑥

[share]
(share 𝑥 {𝑃 | | 𝑄}) ↓𝑦:𝜎

𝑃 ↓𝑥:𝜎 [sum]
(𝑃 + 𝑄) ↓𝑥:𝜎

𝑃 ≡ 𝑄 𝑄 ↓𝑥:𝜎 [≡]
𝑃 ↓𝑥:𝜎

Figure 6.3: Observability predicate 𝑃 ↓𝑥:𝜎 , 𝜎 ∈ {fwd, act}

Case [Tsh].
We have

...

𝑃1 ⊢ Δ1 , 𝑥 : U 𝑓 𝐴;Γ

...

𝑃2 ⊢ Δ2 , 𝑥 : U 𝑓 𝐴;Γ
[Tsh]

share 𝑥 {𝑃1 | | 𝑃2} ⊢ Δ1 ,Δ2 , 𝑥 : U 𝑓 𝐴;Γ

where 𝑃 = share 𝑥 {𝑃1 | | 𝑃2} and Δ = Δ1 ,Δ2 , 𝑥 : U 𝑓 𝐴.

By applying the i.h. to 𝑃1 ⊢ Δ1 , 𝑥 : U 𝑓 𝐴;Γ we conclude that 𝑃1 = 𝒞1[𝒴], where 𝒞 is
a static context and𝒴 is either an action or a forwarder.

Let 𝒞 = share 𝑥 {𝒞1 | | 𝑃2}. Then, 𝒞 is static and 𝑃 = 𝒞[𝒴].

Notice that in this case both premises type with a nonempty linear context, indepen-
dently of the conclusion, and so the hypothesis that Δ is nonempty is superfluous.
We could have opted to establish liveness of share 𝑥 {𝑃1 | | 𝑃2} by applying the i.h.
to 𝑃2 ⊢ Δ2 , 𝑥 : U 𝑓 𝐴;Γ instead. A similar situation happens for [Tcut].

The progress Theorem 2 states that a closed, i.e. typed with an empty typing context
𝑃 ⊢∅ ∅; ∅ and empty map �, and live process 𝑃 reduces. If one tries to prove this statement
by induction on a typing derivation for𝑃 ⊢∅ ∅; ∅ one soon realises, when analysing the case
[Tcut], that we need to say something about open processes. That is, to compositionally
prove progress we need to characterise the potential interactions of (possibly open) typed
processes, for which we define the following observability predicate, which is akin to
𝜋-calculus observability (cf. [137]). Our proof is along the lines of [23], but here we rely
in an observability predicated, whereas in [23] progress is established by relying on a
labelled transition system instead.

Definition 17 (Observability Predicate). The relation 𝑃 ↓𝑥:𝜎, where 𝜎 = fwd or 𝜎 = act, is
defined by the rules of Figure 6.3. We say that 𝑥 is an observable of 𝑃 or that we can observe 𝑥 in
𝑃, written 𝑃 ↓𝑥 , if either 𝑃 ↓𝑥:fwd or 𝑃 ↓𝑥:act. If 𝑃 ↓𝑥:act, we say that 𝑥 is an observable action of 𝑃.
If 𝑃 ↓𝑥:fwd, we say that 𝑥 is an observable forwarder of 𝑃.

101

CHAPTER 6. SAFETY: TYPE PRESERVATION AND PROGRESS

The definition of𝑃 ↓𝑥 is explicitly closed under≡ (rule [≡]) and propagates observations
on the various static operators. For example, 𝑥 is an observable of a mix par {𝑃 | | 𝑄},
provided 𝑥 is an observable of one of its arguments 𝑃 or 𝑄. The same principle applies
to the cut construct with the proviso that we can never observe the name 𝑥 in a cut
cut {𝑃 |𝑥 | 𝑄} since it is kept private to the interacting processes 𝑃 and 𝑄.

We can always observe the subject of an action (rule [act]) and we can observe the
constituent names 𝑥, 𝑦 of a forwarder fwd 𝑥 𝑦: observation of 𝑥 is direct from rule [fwd],
whereas observation of 𝑦 follows because of the≡ commuting rule [fwd] fwd 𝑥 𝑦 ≡ fwd 𝑦 𝑥

fwd 𝑥 𝑦 ≡ fwd 𝑦 𝑥
[fwd]

fwd 𝑦 𝑥 ↓𝑦
[≡]

fwd 𝑥 𝑦 ↓𝑥

In a share share 𝑥 {𝑃 | | 𝑄}, processes 𝑃 and𝑄 run concurrently freely communicating
with the external context and sharing memory cell 𝑥. As a consequence, and similar to
the cut construct, the share construct share 𝑥 {𝑃 | | 𝑄} propagates all the observations 𝑦
for which 𝑦 ≠ 𝑥 (rule [share]).

Intuitively, 𝑥 is an observable of a process 𝑃 iff we can rewrite 𝑃 in an ≡-equivalent
form 𝑄 so as to expose an action with subject 𝑥 or forwarder fwd 𝑥 𝑦 and, furthermore,
that action or forwarder in 𝑄 is not under the scope of a sharing construct on 𝑥. The
following Definition 18 and Lemma 2 formalise this intuition

Definition 18. We say that a hole in a static context 𝒞 is guarded by a share on 𝑥 iff there are static
contexts 𝒞1 , 𝒞2 and a process 𝑃 s.t. 𝒞 = 𝒞1[share 𝑥 {𝒞2 | | 𝑃}] or 𝒞 = 𝒞1[share 𝑥 {𝑃 | | 𝒞2}].

Lemma 2. Let 𝑃 be a typed process. The following two propositions are equivalent

(1) 𝑃 ↓𝑥 .

(2) 𝑃 ≡ 𝒞[𝒜] or 𝑃 ≡ 𝒞[fwd 𝑥 𝑦], where 𝑠(𝒜) = 𝑥, 𝑥 ∈ fn(𝑃), for some static context 𝒞 where
the hole is not guarded by a share on 𝑥.

Proof. Proof of (1) =⇒ (2): By induction on a derivation tree for 𝑃 ↓𝑥 and case analysis
on the root rule. We illustrate with some cases

Case: [fwd].
We have 𝑃 = fwd 𝑥 𝑦. Let 𝒞 be the empty context −. A similar analysis for case
[act].

Case: [share].
We have

...

𝑃1 ↓𝑥 𝑦 ≠ 𝑥
[share]

share 𝑦 {𝑃1 | | 𝑃2} ↓𝑥

where 𝑃 = share 𝑦 {𝑃1 | | 𝑃2}.

102

6.3. PROGRESS

By applying the i.h. to 𝑃1 ↓𝑥 we infer the existence of a static context 𝒞1 for
which (2) is true of 𝑃1.
Let 𝒞 = share 𝑦 {𝒞1 | | 𝑃2}. Notice that the hole in 𝒞 is still no guarded by a
share on 𝑥 since 𝑦 ≠ 𝑥.

Case: [≡].
We have

𝑃 ≡ 𝑃′
...

𝑃′ ↓𝑥 [≡]
𝑃 ↓𝑥

Follows by applying i.h. to 𝑃′ ↓𝑥 and by transitivity of ≡ (≡ rule [trans]).

Proof of (2) =⇒ (1): We prove by induction on the static context 𝒞 that 𝒞[𝒳] ↓𝑥 , where
𝒳 stand for the action 𝒜 or the forwarder fwd 𝑥 𝑦. Then, by applying rule [≡] we
conclude that 𝑃 ↓𝑥 . We illustrate with some cases

Case: 𝒞 = −.
Follows by applying either [fwd] or [act].

Case: 𝒞 = cut {𝒞′ |𝑦 | 𝑄}.
Applying i.h. to 𝒞′[𝒳] yields 𝒞′[𝒳] ↓𝑥 .
Since 𝑥 ∈ fn(𝒞[𝒳]) (as 𝑥 ∈ fn(𝑃), 𝑃 ≡ 𝒞[𝒳] and ≡ preserves free names) we
conclude that 𝑦 ≠ 𝑥.
Hence, we can apply rule [cut] to obtain cut {𝒞′[𝒳] |𝑦 | 𝑄} ↓𝑥 .

Case: 𝒞 = share 𝑦 {𝒞′ | | 𝑄}.
Applying i.h. to 𝒞′[𝒳] yields 𝒞′[𝒳] ↓𝑥 .
Since the hole in 𝒞 is not guarded by a share on 𝑥, we conclude that 𝑦 ≠ 𝑥.
Hence, we can apply rule [share] to obtain share 𝑦 {𝒞′[𝒳] || 𝑄} ↓𝑥 .

We will now present some properties (Lemma 3) concerning the observability predicate,
which will play a key role to derive progress.

Lemma 3 (Properties of 𝑃 ↓𝑥). The following properties hold

(1) Let 𝑃 ⊢� Δ, 𝑥 : U 𝑓 𝐴;Γ and 𝑄 ⊢� Δ′, 𝑥 : U 𝑓 𝐴;Γ be processes for which 𝑃 ↓𝑥:act and 𝑄 ↓𝑥:act.
Then, share 𝑥 {𝑃 | | 𝑄} ↓𝑥:act.

(2) Let 𝑃 ⊢� Δ, 𝑥 : U𝑒 𝐴;Γ, 𝑄 ⊢� Δ, 𝑥 : U 𝑓 𝐴;Γ. If 𝑃 ↓𝑥:𝑎𝑐𝑡 , then share 𝑥 {𝑃 | | 𝑄} ↓𝑥:𝑎𝑐𝑡 .

(3) Let 𝑃 ⊢� Δ, 𝑥 : U 𝑓 𝐴;Γ, 𝑄 ⊢� Δ, 𝑥 : U𝑒 𝐴;Γ. If 𝑄 ↓𝑥:𝑎𝑐𝑡 , then share 𝑥 {𝑃 | | 𝑄} ↓𝑥:𝑎𝑐𝑡 .

(4) Let 𝑃 ⊢� Δ, 𝑥 : 𝐴;Γ and 𝑄 ⊢� Δ′, 𝑥 : 𝐴;Γ be processes for which 𝑃 ↓𝑥:act and 𝑄 ↓𝑥:act. Then,
cut {𝑃 |𝑥 | 𝑄} reduces.

103

CHAPTER 6. SAFETY: TYPE PRESERVATION AND PROGRESS

(5) Let 𝑃 ⊢� Δ, 𝑥 : 𝐴;Γ, 𝑄 ⊢� Δ′, 𝑥 : 𝐴;Γ be processes for which 𝑃 ↓𝑥:fwd. Then, cut {𝑃 |𝑥 | 𝑄}
reduces.

(6) Let 𝑃 ⊢� 𝑦 : 𝐴;Γ and 𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴 be processes for which 𝑄 ↓𝑥 . Then, cut! {𝑦.𝑃 |𝑥 | 𝑄}
reduces.

(7) Let 𝑃 ⊢� Δ, 𝑥 : 𝐴;Γ and suppose that 𝐴 ≠ S 𝑓 𝐵 and 𝐴 ≠ S𝑒 𝐵. If 𝑃 ↓𝑥:fwd, then either (i)
𝑃 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ or (ii) 𝑃 reduces.

Proof. We give a proof sketch. Complete proofs for all properties ca be found in Appendix B.

(1) By double induction on derivation trees for 𝑃 ↓𝑥:act and 𝑄 ↓𝑥:act. For the base cases we
apply either one of≡ rules [RSh] or [TSh] in order to expose an observable action. For
the inductive cases we consider that we are given a derivation tree for 𝑃 ↓𝑥 . This is
w.l.o.g. since share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑥 {𝑄 | | 𝑃}. In cases [mix], [cut], [cut!], [share]
we commute the share on 𝑥 with the principal form of 𝑃 by applying either ≡ rule
[ShM], [CSh], [ShC!], [ShSh] or [ShSm]. The inductive case [≡] follows immediately
because the relation ≡ is a congruence, i.e. satisfies ≡ rule [cong].

(2) By induction on the structure of a derivation for 𝑃 ↓𝑥:𝑎𝑐𝑡 and case analysis on the root
rule. The base case [act] follows by applying ≡ rule [PSh] in order to expose the put
action. The inductive cases [mix], [cut], [cut!], [share], [sum] and [≡] are handled in
the same way as (1).

(3) Follows by (2) and because share is commutative: share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑥 {𝑄 | | 𝑃}.

(4) By double induction on derivation trees for 𝑃 ↓𝑥:act and 𝑄 ↓𝑥:act. For the base cases
we apply one of the principal cut conversions. For the inductive cases we consider
that we are given a derivation tree for 𝑃 ↓𝑥 . This is w.l.o.g. since cut {𝑃 |𝑥 | 𝑄} ≡
cut {𝑄 |𝑥 | 𝑃}. For cases [mix], [cut], [cut!], [share] we commute the cut on 𝑥 with the
principal form of 𝑃 by applying either ≡ rule [CM], [CC], [CC!], [CSh] or [CSm]. The
inductive case 𝑃 ↓𝑥 rule [≡] follows immediately because the relation→ is closed
by structural congruence.

(5) By induction on a derivation trees for𝑃 ↓𝑥:fwd. The base case [fwd] follows by applying
reduction rule→ [fwd]. The inductive cases [mix], [cut], [cut!], [share], [sum] and
[≡] are handled in the same way as (4).

(6) By induction on a derivation tree for 𝑄 ↓𝑥 and case analysis on the root rule. The
base case [act] follows by applying reduction rule → [call]. The inductive cases
[mix], [cut], [cut!], [share] and [sum] follow by distributing the unrestricted cut over
the arguments of 𝑄 (with ≡ rules [D-C!M], [D-C!C], [D-C!C!], [D-C!Sh] or [C!Sm])
and then apply the inductive hypothesis. The inductive case [≡] follows because
reduction→ is closed by structural congruence.

104

6.3. PROGRESS

(7) By induction on a derivation tree 𝑃 ↓𝑥:fwd. In the inductive cases we propagate
either the observable action on name 𝑦 or the reduction. In the action on name 𝑦
occurs with a cut cut {− |𝑦 | −} we trigger a reduction by applying (5). The typing
constraints 𝐴 ≠ S 𝑓 𝐵 and 𝐴 ≠ S𝑒 𝐵 ensures that we can propagate the observable
action on 𝑦 in case of a share.

Properties Lemma 3(1)-(3) describe sufficient conditions to propagate observations 𝑥
on a share share 𝑥 {𝑃 | | 𝑄}.

Lemma 3(1) states that we can observe a full usage on 𝑥 in a share 𝑥 {𝑃 | | 𝑄} provided
we can observe a full usage 𝑥 on both 𝑃 and 𝑄. This full usage on 𝑥 is propagated
by applying either ≡ rule [RSh] or ≡ rule [TSh]. For example, by rule ≡ [RSh] we have
share 𝑥 {release 𝑥 | | take 𝑥(𝑦);𝑃} ≡ take 𝑥(𝑦);𝑃. Then

share 𝑥 {release 𝑥 | | take 𝑥(𝑦);𝑃} ≡ take 𝑥(𝑦);𝑃
𝑠(take 𝑥(𝑦);𝑃) = 𝑥

[act]
take 𝑥(𝑦);𝑃 ↓𝑥

[≡]
share 𝑥 {release 𝑥 | | take 𝑥(𝑦);𝑃} ↓𝑥

Additionally, we can observe an empty usage 𝑥 on share 𝑥 {𝑃 | | 𝑄} provided we can
observe an empty usage 𝑥 on either 𝑃 or𝑄, as stated by Lemma 3(2)-(3). The empty usage
corresponds to a put action which can always be propagated to the top by applying ≡ rule
[PSh].

Properties Lemma 3(4)-(6) describe sufficient conditions for obtaining a reduction:
either by observing two dual actions with subject 𝑥 in a linear cut cut {𝑃 |𝑥 | 𝑄}
(Lemma 3(4)), by observing a forwarder 𝑥 on a linear cut cut {𝑃 |𝑥 | 𝑄} (Lemma 3(5)) or by
observing a single action 𝑥 in the right argument 𝑄 of an unrestricted cut cut! {𝑦.𝑃 |𝑥 | 𝑄}
(Lemma 3(6)).

Lemma 3(7) characterises the potential observation or reduction of a process that 𝑃
for which 𝑃 ↓𝑥:fwd. Either name 𝑦 occurs free, and 𝑃 also offers a forwarder interaction at
𝑦, or lies in the scope of a cut cut {− |𝑦 | −}, in which case a reduction can be triggered
(Lemma 3(5)). The typing constraints 𝐴 ≠ S 𝑓 𝐵 and 𝐴 ≠ S𝑒 𝐵 exclude processes like
share 𝑦 {fwd 𝑥 𝑦 | | 𝑄}, that neither reduce nor offer an interaction at 𝑦. Intuitively, in this
case, the share is suspended on the availability of cell usages at name 𝑦. We will see later,
when studying cut normalisation, in Chapter 8, that this kind of processes will play a key
role in defining normal forms.

We now state our liveness Lemma 4 which says that a live open process either reduces
or offers an interaction at some session 𝑥. This lemma implies our main progress result
(Theorem 2), with which we conclude this section.

Lemma 4 (Liveness). Let 𝑃 ⊢∅ Δ;Γ be such that 𝑃 is live. Either 𝑃 ↓𝑥 , for some 𝑥, or 𝑃 reduces.

Proof. By induction on a typing derivation for 𝑃 ⊢∅ Δ;Γ. We illustrate with some cases.
The complete proof can be found in Appendix B.

105

CHAPTER 6. SAFETY: TYPE PRESERVATION AND PROGRESS

Case [T0]
We have

[T0]
0 ⊢ ∅;Γ

where 𝑃 = 0. Holds vacuously because 0 is not live.

Case [Tvar]

We have
� = �′, 𝑋(®𝑦) ↦→ Δ′;Γ′

[Tvar]
𝑋(®𝑥) ⊢� { ®𝑥/®𝑦}(Δ′;Γ′)

where 𝑃 = 𝑋(®𝑥). Holds vacuously because

assumes a nonempty � context.

Case [T1]
Since 𝑃 = close 𝑥 is an action:

𝑠(close 𝑥) = 𝑥
[act]

close 𝑥 ↓𝑥

Similarly for [Tfwd] and the other typing rules which introduce an action.

Case [Tcut]
We have

𝑃1 ⊢∅ Δ1 , 𝑥 : 𝐴;Γ 𝑃2 ⊢∅ Δ2 , 𝑥 : 𝐴;Γ
[cut]

cut {𝑃1 |𝑥 | 𝑃2} ⊢∅ Δ1 ,Δ2;Γ

where 𝑃 = cut {𝑃1 |𝑥 | 𝑃2} and Δ = Δ1 ,Δ2.

Since both 𝑃1 and 𝑃2 type with nonempty linear typing context and with an empty
map �, we conclude that both 𝑃1 and 𝑃2 are live (Lemma 1).

By applying the i.h. to 𝑃1 ⊢∅ Δ1 , 𝑥 : 𝐴;Γ and 𝑃2 ⊢∅ Δ2 , 𝑥 : 𝐴;Γ we conclude that

• 𝑃1 ↓𝑦 or 𝑃1 reduces, and

• 𝑃2 ↓𝑧 or 𝑃2 reduces

We have the following cases to consider

Case (𝑃1 ↓𝑦 and 𝑦 ≠ 𝑥) or (𝑃2 ↓𝑧 and 𝑧 ≠ 𝑥)
Suppose w.l.o.g. that 𝑃1 ↓𝑦 and 𝑦 ≠ 𝑥.

Then

𝑃1 ↓𝑦 𝑦 ≠ 𝑥
[cut]

(cut {𝑃1 |𝑥 | 𝑃2}) ↓𝑦

Case 𝑃1 ↓𝑥 and 𝑃2 ↓𝑥
We have the following two cases

106

6.3. PROGRESS

Case 𝑃1 ↓𝑥:fwd or 𝑃2 ↓𝑥:fwd

Suppose w.l.o.g. that 𝑃1 ↓𝑥:fwd.
Then, by Lemma 3(5), we conclude that cut {𝑃1 |𝑥 | 𝑃2} reduces.

Case 𝑃1 ↓𝑥:act and 𝑃2 ↓𝑥:act

Then, by Lemma 3(4), we conclude that cut {𝑃1 |𝑥 | 𝑃2} reduces.

Case 𝑃1 reduces or 𝑃2 reduces
Because of→ rule [cong], cut {𝑃1 |𝑥 | 𝑃2} reduces.

Case [Tsh]
We have

𝑃1 ⊢∅ Δ1 , 𝑥 : U 𝑓 𝐴;Γ 𝑃2 ⊢∅ Δ2 , 𝑥 : U 𝑓 𝐴;Γ
[Tsh]

share 𝑥 {𝑃1 | | 𝑃2} ⊢ Δ1 ,Δ2 , 𝑥 : U 𝑓 𝐴;Γ

where 𝑃 = share 𝑥 {𝑃1 | | 𝑃2} and Δ = Δ1 ,Δ2 , 𝑥 : U 𝑓 𝐴.

Since both 𝑃1 and 𝑃2 type with nonempty linear context and an empty map �, then
both 𝑃1 and 𝑃2 are live (Lemma 1).

By applying the i.h. to 𝑃1 ⊢∅ Δ1 , 𝑥 : U 𝑓 𝐴;Γ and 𝑃2 ⊢∅ Δ2 , 𝑥 : U 𝑓 𝐴;Γ we conclude
that

• 𝑃1 ↓𝑦 or 𝑃1 reduces, and

• 𝑃2 ↓𝑧 or 𝑃2 reduces.

We have the following cases to consider.

Case A (𝑃1 ↓𝑦 and 𝑦 ≠ 𝑥) or (𝑃2 ↓𝑧 and 𝑧 ≠ 𝑥)
Suppose w.l.o.g. that 𝑃1 ↓𝑦 and 𝑦 ≠ 𝑥.
Then

𝑃1 ↓𝑦 𝑦 ≠ 𝑥
[share]

(share 𝑥 {𝑃1 | | 𝑃2}) ↓𝑦

Case B 𝑃1 ↓𝑥 and 𝑃2 ↓𝑥
We have the following two cases.

Case B1 𝑃1 ↓𝑥:fwd or 𝑃2 ↓𝑥:fwd

Suppose w.l.o.g. that 𝑃1 ↓𝑥:fwd.
Observe that 𝑥 occurs typed by U 𝑓 𝐴 in the linear typing context of 𝑃1.
Hence, we can apply Lemma 3(7) in order to conclude that either (i) 𝑃1 ↓𝑦
for 𝑦 ≠ 𝑥 or (ii) 𝑃1 reduces. If (i) go to case A. If (ii), go to case C.

Case B2 𝑃1 ↓𝑥:act and 𝑃2 ↓𝑥:act.
Then (share 𝑥 {𝑃1 | | 𝑃2}) ↓𝑥 (Lemma 3(1)).

Case C 𝑃1 reduces or 𝑃2 reduces
Because of→ rule [cong], share 𝑥 {𝑃1 | | 𝑃2} reduces.

107

CHAPTER 6. SAFETY: TYPE PRESERVATION AND PROGRESS

Theorem 2 (Progress). Let 𝑃 ⊢∅ ∅; ∅ be a live process. Then, 𝑃 reduces.

Proof. Follows from Lemma 4 since fn(𝑃) = ∅.

6.4 Further Discussion and Related Work

Type Preservation

In the seminal propositions-as-types correspondence [23, 24] two languages are connected:
a typed synchronous 𝜋-calculus extended with guarded choice and a faithful proof term
assignment for dual intuitionistic linear logic. The connection is established by exhibiting
a simulation between reductions in the typed𝜋-calculus and conversions in the proof term
calculus, therefore establishing a strong form of subject reduction for the typed 𝜋-calculus.

In [23, 24], the underlying (untyped) 𝜋-calculus of the session-typed system has
structural congruence and reduction rules which do not have a direct correspondence
with typing derivation / proof conversion manipulations, like for example the distribution
of name restriction over parallel composition 𝑥 ∉ fn(𝑃) ⊃ 𝑃 |(�𝑥)𝑄 ≡ (�𝑥) (𝑃 | 𝑄).

In our approach there is a single language which corresponds to the proof term
annotation of typing derivations / proofs in CLASS. Therefore, all process manipulations
in CLASS can be also understood as manipulations on typing derivations / proofs, as
exhibited by our proof of type preservation (Theorem 1).

Progress

Deadlock-freedom in the context of session-based concurrent programming languages
results from restricting communication topologies to be acyclic. There are two main
ways in which type systems guarantee acyclicity, namely either by (a) following a logical
approach based on propositions-as-types or (b) by defining extra-logical mechanisms,
such as partial orders.

Approach (a) is characteristic of session-typed systems which build on the propositions-
as-types correspondence to linear logic [23, 157, 91, 128], where two concurrent threads
can only be connected via a binary cut. Approach (b) essentially builds on the work
of Kobayashi [88, 87], and for example, the works [25, 154, 43, 49, 163] also fall in this
category.

Our approach to obtain deadlock-freedom for CLASS falls in the first category (a).
Binary cut [Tcut] guarantees that two concurrent threads can synchronise on only a single
private session, which excludes blocked processes of the form

cut {send 𝑥(−.−); send 𝑦(−.−);− |𝑥, 𝑦 | recv 𝑦(−); recv 𝑥(−);−} (I)

108

6.4. FURTHER DISCUSSION AND RELATED WORK

from being typed, where the − is a placeholder for a process or session name. But it also
excludes non-blocked processes of the form

cut {send 𝑥(−.−); send 𝑦(−.−);− |𝑥, 𝑦 | recv 𝑥(−); recv 𝑦(−);−} (II)

This interaction through a single session property is then transposed to the stateful
extension of the language by restricting two concurrent threads to share at most one cell
usage, as typed by [Tsh], [TshL] and [TshR], which logically interprets cocontraction in
DiLL [53]. This automatically excludes processes of the form

cut {cell 𝑦(−.−) |𝑦 | (cut {cell 𝑥(−.−) |𝑥 |
share 𝑥, 𝑦 {take 𝑥(−); take 𝑦(−);− || take 𝑦(−); take 𝑥(−);−}})} (III)

which block when the left thread takes 𝑥 and is waiting for taking 𝑦, whereas the right
thread takes 𝑦 and is waiting forever for usage 𝑥 to be put back. But it also excludes
non-blocking programs of the form (IV)

cut {cell 𝑦(−.−) |𝑦 | (cut {cell 𝑥(−.−) |𝑥 |
share 𝑥, 𝑦 {take 𝑥(−); take 𝑦(−);− || take 𝑥(−); take 𝑦(−);−}})} (IV)

While approach (b) to deadlock-freedom is less conservative, approach (a) is arguably
simpler and integrates well with further extensions such as polymorphism [26], dependent
types [145], control effects [28] and even recursion [146, 99]. Furthermore, the behaviour
of programs like (IV) can be reproduced in CLASS by packing all shared state between
threads in a single data structure so as to force resources to be acquired in a defined order,
as illustrated by Example 4.3.

Partial orders do not compose well [82] and are a leaky abstraction. To illustrate this
last point, consider that one needs to write a program that returns the total amount of
money in a given list of stateful bank accounts. A simple program in CLASS would be
expressed as the composition of three steps: (i) first acquire the lock of each bank account,
then (ii) compute the sum of the money stored in all the bank accounts and finally (iii)
release the lock of each bank account. Actually, this example is coded in state/bank-account.
In an approach with partial orders, to program step (i) we would need first to order the
inputted list according to the partial order. Additionally, it is well-recognised that the
integration of recursion and statically unbounded structures with the partial-order based
type systems of approach (b) poses some technical challenges [60, 89, 11]. See [44] for a
detailed comparison between the expressiveness of the two approaches.

The type system SILLS+ of manifest sharing [11] obtains deadlock-freedom by em-
ploying a mixed strategy between approaches (a) and (b): threads can synchronise their
actions on only one single channel but can share more than one stateful resource. The
communication topology then forms a tree and there is partial order on top of the typing
system which forces shared resources to be acquired in ascending order, i.e. to lock-up.

The type system SILLS+ excludes circular dependencies resulting from lock acquisi-
tions and also between lock acquisitions and other synchronisation actions like session

109

CHAPTER 6. SAFETY: TYPE PRESERVATION AND PROGRESS

input-output communication. The partial orders of SILLS+ comes with some restrictions
however, for example: in SILLS+ every process has to release all its shared resources before
synchronising with other process, whereas in CLASS this is not the case as, for example,
we can type process wait 𝑦; put 𝑥(−.−); release 𝑥 with the linear context 𝑥 : U𝑒 𝐴, 𝑦 : ⊥,
that synchronises on 𝑦 even though it has an acquired session 𝑥. Furthermore, we can com-
municate empty usages (acquired sessions) on session channels, after which the processes
who sends the empty usage looses access to it.

Additionally, in order to preserve the invariants that guarantee deadlock-freedom,
the system in SILLS+ does not type the linear forwarder, therefore it does not provide
a computational interpretation for the identity axiom of linear logic, excluding some
important session-based encodings, such as the free output, from being expressed. Also,
the type system SILLS+ might not scale for complex programs since the partial order on
locks have to be manually defined by the programmer. Since SILLS+ does not support
systems in which the partial orders are dynamically generated, it cannot type processes
that spawn a statically undetermined number of shared objects, while in our work such
systems are naturally allowed (see Example 14).

110

7

Confluence

7.1 Introduction

In this chapter we prove that the reduction relation
∗−→ of language CLASS satisfies the

diamond property (modulo ≡) or, equivalently, that the process reduction relation→ is
globally confluent (satisfies the Church-Rosser Property).

Confluence is a property that holds of various functional calculi, e.g. the untyped
lambda calculus [37], but that normally fails for concurrent process calculi, e.g. the
𝜋-calculus [106], where there are races on the communication channels.

As already remarked, the basic language �CLL, corresponding to the session-based in-
terpretation of classic linear logic, is essentially functional [149] and, therefore, confluence
for this language comes at no surprise: the typing system excludes races on the linear ses-
sions and the unrestricted sessions are served by uniform replicated processes. However,
as soon as we add reference cells and cell sharing to obtain CLASS, races naturally emerge
from concurrent manipulations of stateful objects, as in two concurrent take operations to
the same reference cell.

Nevertheless, reduction→ in CLASS still enjoys the global confluence property. This
is the case because the nondeterminism that naturally emerges from concurrent cell
manipulations is captured by sums, via the interleaving structural congruence ≡ law [TSh]

share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2}
≡ take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} + take 𝑥(𝑦2); share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2}

and, furthermore, sums in CLASS are non-collapsing, i.e. they satisfy neither the law
𝑃 +𝑄 → 𝑃 nor the law 𝑃 +𝑄 → 𝑄.

By establishing confluence we guarantee that the order in which processes are reduced
in CLASS is irrelevant and we also give substance to the claim that

∗−→ can be understood as
a proof equivalence relation, as required by propositions-as-types. Confluence is one of the
key steps towards equational reasoning, the other being strong normalisation (established
in Chapter 9), which together imply the existence of unique process / proof normal forms
that summarise the behaviour of each process term.

111

CHAPTER 7. CONFLUENCE

We will now describe our general strategy to establish global confluence for reduction
→ in CLASS (i.e., diamond property for

∗−→). Details about the proof will be described in
the following sections and in Appendix C. We employ the Tait and Martin-Löf technique,
which consists in establishing the diamond property for a relation ℛ by finding a relation
𝒮 s.t. (1) 𝒮 satisfies the diamond property and (2) 𝒮∗ = ℛ, i.e. the reflexive-transitive
closure of 𝒮 is the same as a ℛ.

Since
∗−→ is the reflexive-transitive closure of reduction →, a natural proof strategy

would be demonstrating the diamond property for→, but this property fails. To see why,
consider the process

par {𝑃 | | (𝑄1 +𝑄2 +𝑄3)}

and assume that 𝑃′← 𝑃 → 𝑃′′. Then, we can form the→-reductions

par {𝑃 | | (𝑄1 +𝑄2 +𝑄3)} → par {𝑃′ | | 𝑄1} + par {𝑃′ | | 𝑄2} + par {𝑃 | | 𝑄3} ≜ 𝑅 (1)
par {𝑃 | | (𝑄1 +𝑄2 +𝑄3)} → par {𝑃 | | 𝑄1} + par {𝑃′′ | | 𝑄2} + par {𝑃′′ | | 𝑄3} ≜ 𝑆 (2)

Reduction (1) is obtained by associating the sum as (𝑄1+𝑄2)+𝑄3, distributing the mix over
the outer sum, applying the reduction 𝑃 → 𝑃′ to obtain par {𝑃′ | | (𝑄1+𝑄2)}+par {𝑃′ | |𝑄3},
after which we distribute 𝑃′ over the sum 𝑄1 +𝑄2. The derivation of reduction (2) follows
a similar pattern but we associate the sum as 𝑄1 + (𝑄2 +𝑄3) and we apply the reduction
𝑃 → 𝑃′′ instead.

Assume that 𝑃′ and 𝑃′′ reduce to a common form 𝑃∗ in one single step: 𝑃′→ 𝑃∗ ← 𝑃′′.
Note, however, that we need two →-reduction steps to bring processes 𝑅 and 𝑆 to a
common term

𝑅
2−→ par {𝑃′ | | 𝑄1} + par {𝑃∗ | | 𝑄2} + par {𝑃′′ | | 𝑄3}

2←− 𝑆

The solution is to allow, in one single step, to perform in parallel→-reductions of
independent sum components, as captured in the following definition.

Definition 19 (Parallel Sum Reduction→→). Let→→ be the least relation that contains→ and
satisfies the following rule

𝑃 →→ 𝑃′ 𝑄 →→ 𝑄′
[+par]

𝑃 +𝑄 →→ 𝑃′ +𝑄′

The relation→→ allows us to→-reduce the arguments 𝑃1 , . . . , 𝑃𝑛 of a sum expression
𝑃1 + . . . + 𝑃𝑛 in parallel. That is, if 𝑃𝑖 → 𝑃′

𝑖
, for all 1 ≤ 𝑖 ≤ 𝑛, then

𝑃1 + . . . + 𝑃𝑛 →→ 𝑃′1 + . . . + 𝑃
′
𝑛

Therefore, it allows us to close the→-reduction fork (1)-(2) in the example above in one
single→→-reduction step. The following lemma relates→with→→.

Lemma 5. The following (in)equalities hold: (1)→ ⊆→→, (2)→→ ⊆ ∗−→ and (3)
∗−→→ =

∗−→.

Proof. (1) follows directly from Definition 19. (2) is by induction on→→. (1) and (2) imply
(3).

112

7.2. THE REDUCTION RELATION →𝑑

Therefore, going back to the Tait and Martin-Löf technique, we observe that relation
→→ satisfies requirement (2), i.e. that

∗−→ =
∗−→→, as stated by Lemma 5(3). The rest of the

chapter is devoted to prove requirement (1), i.e. to establish the diamond property for
relation→→.

To handle the complexity of the ≡-commuting conversions that manipulate sums,
we show first that we can write each process in a ≡-normal form by interleaving all the
concurrent take cell usages and distributing the static operators over sums. This essentially
computes a normal form for the left-to-right oriented ≡-rules that distribute the static
constructors over sum (≡ rules [MSm], [CSm], [C!Sm] and [ShSm]) as well as for the rule
that interleave take usages (≡ rule [TSh]).

Each→→-reduction is then obtained by evaluating the summands of this normal form
with a restricted form of reduction→𝑑 that does not manipulate sums at all and for which
the diamond property is straightforward to establish. The relation→→ then factors→𝑑,
which allows us to lift the diamond property of the latter to the former, thereby concluding
our proof of global confluence.

This chapter is organised as follows. Section 7.2 introduces the relation→𝑑 and proves
that it satisfies the diamond property (Lemma 8). Section 7.3 proves that relation →→
factors through→𝑑 (Lemma 9(3)). Then, in Section 7.4, we lift the diamond property of→𝑑

to→→ (Lemma 11) and, as consequence, for
∗−→which yields our main result (Theorem 3).

Finally, Section 7.5 concludes with further discussion and related work.

7.2 The Reduction Relation→𝑑

In this section we introduce the restricted simpler form of reduction→𝑑 that essentially
does not manipulate sums (Def. 20) and for which a diamond property is straightforward
to establish (Lemma 8). We start by defining→𝑑.

Definition 20 (Relations ≡𝑑,→𝑑). Let ≡𝑑 be defined by all the rules of ≡ except the laws that
manipulate sums, namely the distributive laws over sum (rules [MSm], [CSm], [C!Sm] and
[ShSm]) and the interleaving law (rule [TSh]), sum commutativity (rule [Sm]), associativity (rule
[SmSm]) and idempotency for inaction (rule [0Sm]). Let→𝑑 be the least relation that satisfies all
the rules of→ except [≡] and for which the rule [≡𝑑] 𝑃 ≡𝑑 𝑃′ →𝑑 𝑄

′ ≡𝑑 𝑄 ⊃ 𝑃 →𝑑 𝑄 holds.
Furthermore, in rule [cong], the hole in the context 𝒞 is not guarded by a sum.

Relation ≡𝑑 is defined by all the process manipulation laws of ≡, except those that
involve sums. Reduction→𝑑 contains all the principal cut reductions of→ but is closed
by congruence ≡𝑑 instead of being closed by congruence ≡. Furthermore, sum 𝑃 +𝑄 is a
→𝑑-normal form since it offers no→𝑑-reduction.

We will now prove that→𝑑 satisfies the diamond property. The proof is as follows: we
show that each process 𝑃 can be decomposed in an ≡𝑑-equivalent form as 𝒞[𝑅1 , . . . , 𝑅𝑘],
i.e., as a static context with 𝑘-holes that exhibits all the 𝑘 predexes of the process 𝑃
(Lemma 6). All the→𝑑 reductions of process 𝑃 are then obtained by→𝑑-reducing one

113

CHAPTER 7. CONFLUENCE

of the predexes 𝑅1 , . . . , 𝑅𝑘 and since the diamond property for→𝑑 holds for a predex
(Lemma 7), then the diamond property for→𝑑 holds for all processes in general (Lemma 8).
We start by formally defining what is a predex.

Definition 21 (Predex). The set of predexes is defined by

𝑅 ::= cut {𝒜 |𝑥 | ℬ}, 𝑠(𝒜) = 𝑠(ℬ) = 𝑥

| cut! {𝑦.𝑃 |𝑥 | call 𝑥(𝑦);𝑄}
| cut {fwd 𝑥 𝑦 |𝑦 | 𝒟[𝑅1 , . . . , 𝑅𝑛]}
| cut {𝒞[𝑅1 , . . . , 𝑅𝑚] |𝑥 | cut {fwd 𝑥 𝑦 |𝑦 | 𝒟[𝑅′1 , . . . , 𝑅′𝑛]}}

where 𝒞 ,𝒟 are static contexts with 𝑚 ad 𝑛 holes, respectively. Furthermore, the constituent
processes of 𝒞 ,𝒟 have no possible→𝑑 reduction, we write 𝒞 ↛𝑑 and𝒟 ↛𝑑.

Intuitively, predexes characterise the possible ways in which we can have a →𝑑

reduction, namely it can be result of the interaction of two dual actions𝒜 and ℬ, of the
interaction between an unrestricted server and a server invocation or it can be result of an
interaction with a forwarder. In the latter case there are two possibilities, depending on
whether the two forwarder names are cut or not.

The following result proves that the set of predexes is complete in the sense that we
can decompose any process 𝑃 as a context 𝒞 and 𝑘 predexes, the predexes exhibiting all
the possible→𝑑 reductions of 𝑃.

Lemma 6 (Predex Decomposition). For each process 𝑃 ⊢� Δ;Γ there are predexes 𝑅1 , . . . , 𝑅𝑘

and a static context 𝒞 such that 𝑃 ≡𝑑 𝒞[𝑅1 , . . . , 𝑅𝑘] and 𝒞 ↛.

Proof. By induction on the structure of a typing derivation tree for 𝑃 ⊢� Δ;Γ and by case
analysis on the root rule of the tree. We illustrate with cases [Tmix] and [Tcut]. The
complete proof is in Appendix C.

Case: [Tmix]
Let 𝑃 = par {𝑃1 | | 𝑃2}.

By i.h., 𝑃1 ≡𝑑 𝐶1[𝑅1 , . . . , 𝑅𝑝] and 𝑃2 ≡𝑑 𝐶2[𝑆1 , . . . , 𝑆𝑞], where 𝒞1 ↛𝑑 and 𝒞2 ↛𝑑.

Let 𝒞 = par {𝒞1 | | 𝒞2}.

We have 𝑃 ≡𝑑 𝒞[𝑅1 , . . . 𝑅𝑝 , 𝑆1 , . . . , 𝑆𝑞], with 𝑘 = 𝑝 + 𝑞.

Furthermore, since 𝒞1 ↛𝑑 and 𝒞2 ↛𝑑, then 𝒞 ↛𝑑.

Case: [Tcut]
Let 𝑃 = cut {𝑃1 |𝑥 | 𝑃2}.

By i.h., 𝑃1 ≡𝑑 𝐶1[𝑅1 , . . . , 𝑅𝑝] and 𝑃2 ≡𝑑 𝐶2[𝑆1 , . . . , 𝑆𝑞], where 𝒞1 ↛𝑑 and 𝒞2 ↛𝑑.

We have the following cases to consider.

114

7.2. THE REDUCTION RELATION →𝑑

Case: Either 𝒞1 = 𝒞′1[fwd 𝑥 𝑧] for some 1 ≤ 𝑖 ≤ 𝑝 and static context 𝒞′1 or 𝒞2 =

𝒞′2[fwd 𝑥 𝑧] for some 1 ≤ 𝑗 ≤ 𝑞 and static context 𝒞′2.
Suppose w.l.o.g. that 𝒞1 = 𝒞′1[fwd 𝑥 𝑧] for some 1 ≤ 𝑖 ≤ 𝑝 and static context 𝒞′1
We have two cases to consider, depending on whether (i) fwd 𝑥 𝑧 is guarded
by either a share or (ii) not.

If (i), then cut cut {𝑃1 |𝑥 | 𝑃2} does not yield a predex. So simply let 𝒞 =

cut {𝒞1 |𝑥 | 𝒞2}.
Suppose (ii). Then

𝑃 = cut {𝑃1 |𝑥 | 𝑃2}
≡𝑑 cut {𝒞′1[𝑅1 , . . . , 𝑅𝑝 , fwd 𝑥 𝑧] |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]}
≡𝑑 𝒞′1[𝑅1 , . . . , 𝑅𝑝 , cut {fwd 𝑥 𝑧 |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]}]

with 𝑘 = 𝑝.

Observe that cut {fwd 𝑥 𝑧 |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]} is a predex.

Case: Either𝑅𝑖 = cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]} or𝑄 𝑗 = cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]}
for some 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞.

Suppose w.l.o.g. that 𝑅𝑖 = cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]}.
We have two cases to consider, depending on whether(i) fwd 𝑥 𝑧 is guarded by
either a share in 𝒞1 or (ii) not.

If (i), then cut cut {𝑃1 |𝑥 | 𝑃2} does not yield a predex. Let simply 𝒞 =

cut {𝒞1 |𝑥 | 𝒞2}.
Suppose (ii). Then

𝑃 = cut {𝑃1 |𝑥 | 𝑃2}
≡𝑑 cut {𝒞1[𝑅1 , . . . , cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]}, . . . , 𝑅𝑝] |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]}
≡𝐷 𝒞1[𝑅1 , . . . , cut {cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]} |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]}, . . . , 𝑅𝑝]

with 𝑘 = 𝑝.

Observe that cut {cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]} |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]} is a
predex.

Case: There is no 𝒞′1 s.t. 𝒞1 ≡𝑑 𝒞′1[𝒜], for some static context where 𝑠(𝒜) = 𝑥 and
the hole in 𝒞′1 is not guarded by a share on 𝑥.
Then, the cut cut {𝑃1 |𝑥 | 𝑃2} does not yield a predex.

Case: There is no 𝒞′2 s.t. 𝒞2 ≡𝑑 𝒞′2[𝒜], for some static context where 𝑠(𝒜) = 𝑥 and
the hole in 𝒞′2 is not guarded by a share on 𝑥.
Then, the cut cut {𝑃1 |𝑥 | 𝑃2} does not yield a predex.

115

CHAPTER 7. CONFLUENCE

Case: 𝒞1 ≡𝑑 𝒞′1[𝒜], 𝒞2 ≡𝑑 𝒞′2[ℬ], 𝑠(𝒜) = 𝑠(ℬ) = 𝑥, 𝒞′1 , 𝒞
′
2 are static contexts in

which the holes are not guarded by share operations on 𝑥.
Then

𝑃 = cut {𝑃1 |𝑥 | 𝑃2}
≡𝑑 cut {𝒞′1[𝒜 , 𝑅1 , . . . , 𝑅𝑝] |𝑥 | 𝒞′2[ℬ , 𝑆1 , . . . , 𝑆𝑞]}
≡𝑑 𝒞′1[cut {𝒜 |𝑥 | 𝒞′2[ℬ , 𝑆1 , . . . , 𝑆𝑞]}, 𝑅1 , . . . , 𝑅𝑝]
≡𝑑 𝒞′1[𝒞

′
2[cut {𝒜 |𝑥 | ℬ}, 𝑆1 , . . . 𝑆𝑞], 𝑅1 , . . . , 𝑅𝑝]

Lemma 7 (Diamond Property for→𝑑, Restricted to Predexes). Let 𝑃 be a predex s.t. 𝑃 →𝑑 𝑄

and 𝑃 →𝑑 𝑅. Either 𝑄 ≡𝑑 𝑅 or there exists 𝑆 s.t. both 𝑄 →𝑑 𝑆 and 𝑅→𝑑 𝑆.

Proof. The proof is by induction on the structure of the predex 𝑃. We illustrate for case
in which the predex 𝑃 is of the form cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅𝑛]}. Complete proof is
Appendix C.

Since 𝒞 ↛𝑑, the→𝑑-reductions of cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅𝑛]} are either obtained
by→𝑑-reducing one of the predexes 𝑅𝑖 or by→𝑑-reducing the cut on name 𝑦 with the
forwarder fwd 𝑥 𝑦. Consequently, we have the following cases to consider

Case: 𝑄 and 𝑅 are obtained by→𝑑-reducing distinct predexes 𝑅𝑖 , 𝑅 𝑗 .
Suppose w.l.o.g. that 𝑖 < 𝑗. We have

𝑄 ≡𝑑 cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅
′
𝑖 , . . . , 𝑅 𝑗 , . . . , 𝑅𝑛]} and

𝑅 ≡𝑑 cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅𝑖 , . . . , 𝑅
′
𝑗 , . . . , 𝑅𝑛]}

where 𝑅𝑖 →𝑑 𝑅
′
𝑖
and 𝑅 𝑗 →𝑑 𝑅

′
𝑗
.

Let 𝑆 = cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅
′
𝑖
, . . . , 𝑅′

𝑗
, . . . , 𝑅𝑛]}.

Then, both 𝑄 →𝑑 𝑆 and 𝑅→𝑑 𝑆.

Case: 𝑄 and 𝑅 are obtained by→𝑑-reducing the same predex 𝑅𝑖 .
We have

𝑄 ≡𝑑 cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅
′
𝑖 , . . . , 𝑅𝑛]}

and
𝑄 ≡𝑑 cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅

′′
𝑖 , . . . , 𝑅𝑛]}

where 𝑅𝑖 →𝑑 𝑅
′
𝑖
and 𝑅𝑖 →𝑑 𝑅

′′
𝑖
.

By applying the i.h. to 𝑅𝑖 we conclude that either (1) 𝑅𝑖 ≡𝑑 𝑅′′𝑖 or (2) exists 𝑆𝑖 s.t.
both 𝑅′

𝑖
→𝑑 𝑆𝑖 and 𝑅′′

𝑖
→𝑑 𝑆𝑖 .

Suppose (1). Then 𝑄 ≡𝑑 𝑅.

Suppose (2). Let 𝑆 = cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑆𝑖 , . . . , 𝑅𝑛]}. Then, both 𝑄 →𝑑 𝑆

and 𝑅→𝑑 𝑆.

116

7.3. FACTORISATION OF →→ THROUGH →𝑑

Case: One of 𝑄, 𝑅 is obtained by →𝑑-reducing the cut on name 𝑦, the other by →𝑑-
reducing one predex 𝑅𝑖 .

Suppose w.l.o.g. that 𝑄 is obtained by→𝑑-reducing the cut on name 𝑦 and that 𝑅 is
obtained by→𝑑-reducing a predex 𝑅𝑖 . Then

𝑄 ≡𝑑 ({𝑥/𝑦}𝒞)[{𝑥/𝑦}𝑅1 , . . . , {𝑥/𝑦}𝑅𝑖 , . . . , {𝑥/𝑦}𝑅𝑛] and

𝑅 ≡𝑑 cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅
′
𝑖 , . . . , 𝑅𝑛]}

where 𝑅𝑖 →𝑑 𝑅
′
𝑖
.

We have {𝑥/𝑦}𝑅𝑖 →𝑑 {𝑥/𝑦}𝑅′𝑖 .

Let 𝑆 = ({𝑥/𝑦}𝒞)[{𝑥/𝑦}𝑅1 , . . . , {𝑥/𝑦}𝑅′𝑖 , . . . , {𝑥/𝑦}𝑅𝑛]. Both 𝑄 →𝑑 𝑆 and 𝑅→𝑑 𝑆.

Lemma 8 (Diamond Property for→𝑑). Suppose 𝑃 →𝑑 𝑄 and 𝑃 →𝑑 𝑅. Either 𝑄 ≡𝑑 𝑅 or
exists 𝑆 s.t. 𝑄 →𝑑 𝑆 and 𝑅→𝑑 𝑆.

Proof. Apply Lemma 6 to obtain predexes 𝑅1 , . . . , 𝑅𝑛 and a static 𝑛-hole context 𝒞 such
that 𝑃 ≡ 𝒞[𝑅1] . . . [𝑅𝑛] and 𝒞 ↛. The →𝑑-reductions 𝑃 →𝑑 𝑄 and 𝑃 →𝑑 𝑅 are either
obtained by→𝑑-reducing the same redex 𝑅𝑖 , in which we case we apply Lemma 7, or they
are obtained by→𝑑-reducing distinct redexes 𝑅𝑖 , 𝑅 𝑗 , in which case they commute.

7.3 Factorisation of→→ through→𝑑

In the previous section we have introduced the restricted form of reduction→𝑑, which does
not manipulate sums, and for which a diamond property was straightforward to establish.
In this section we prove that the parallel-sum reduction →→, which does manipulate
sums and, furthermore, allows summands to be reduced in parallel, factors through→𝑑

(Lemma 9(3)). This factorisation result will then be used in the next section to lift the
diamond property of→𝑑 to→→ and

∗−→.
The result works by essentially factorising each→→ reduction of a process 𝑃 in a series

of ≡ manipulations that involve sums and then a series of →𝑑 manipulations. More
specifically, given a process 𝑃 we compute an ≡-equivalent sum expansion 𝑃1 + . . . 𝑃𝑛 in
which all the summands are exposed. This computation is done essentially by interleaving
all the concurrent take usages, applying ≡ law [Tsh], and by pushing the sums outwards
using ≡ laws - [MSm], [CSm], [C!Sm] and [ShSm] - that distribute the static constructors
mix, linear and unrestricted cut and share over sum. This canonical sum expansion exposes
all the possible sum manipulations of 𝑃 and, as a consequence, all the→→-reductions of 𝑃
can be produced by→𝑑-reducing one or more of the summands 𝑃1 , . . . , 𝑃𝑛 .

117

CHAPTER 7. CONFLUENCE

𝒮(𝒳) ≜ {𝒳} [𝒮𝒳]
𝒮(par {𝑃 | | 𝑄}) ≜ {par {𝑃𝑖 | | 𝑄 𝑗}}𝑖∈ℐ , 𝑗∈𝒥 [𝒮M]
𝑆(cut {𝑃 |𝑥 | 𝑄}) ≜ {cut {𝑃𝑖 |𝑥 | 𝑄 𝑗}}𝑖∈ℐ , 𝑗∈𝒥 [𝒮C]
𝒮(cut! {𝑦.𝑃 |𝑥 | 𝑄}) ≜ {cut! {𝑦.𝑃 |𝑥 | 𝑄 𝑗}} 𝑗∈𝒥 [𝒮C!]
𝑆(share 𝑥 {𝑃 | | 𝑄}) ≜ ⋃

𝑖∈ℐ , 𝑗∈𝒥 ℐ𝑥(𝑃𝑖 , 𝑄 𝑗) [𝒮Sh]

𝒮(𝑃 +𝑄) ≜ 𝒮(𝑃) ∪ 𝒮(𝑄) [𝒮Sm]

where ℐ𝑥(𝑃, 𝑄) ≜

{𝒞 ◦ 𝒟[take 𝑥(𝑦); share 𝑥 {𝑃′ | | 𝑄}], 𝒞 ◦ 𝒟[take 𝑥(𝑧); share 𝑥 {𝑃 | | 𝑄′}]},
if 𝑃 ≡𝑑 𝒞[take 𝑥(𝑦);𝑃′] and 𝑄 ≡𝑑 𝒟[take 𝑥(𝑧);𝑄′].

{share 𝑥 {𝑃 | | 𝑄}}, otherwise.

Figure 7.1: Sum expansion map 𝒮(𝑃).

In this section we will find it useful to work with finite nonempty multisets of processes
{𝑃1 , . . . , 𝑃𝑛} that represent sums 𝑃1 + . . . + 𝑃𝑛 , as expressed by the following definition

Definition 22 (
∑𝒮). Given a nonempty multiset 𝒮 of processes we define

∑𝒮 inductively by∑
{𝑃} ≜ 𝑃

∑
(𝒮 , 𝑃) ≜ (

∑
𝒮) + 𝑃

Since sum + is associative and commutative modulo structural congruence ≡ (laws
[Sm] and [SmSm]), the order in which the processes are listed in the multiset 𝒮 when
computing

∑𝒮 is irrelevant. Now, we will define our sum expansion map that allows us
to factorise→→ through→𝑑.

Definition 23 (Sum Expansion Map 𝒮(𝑃)). For each process 𝑃 the sum expansion map 𝒮(𝑃) is
defined by induction according to Fig. 7.1. In [𝒮𝒳], we let 𝒳 stand for 0, fwd 𝑥 𝑦 or any action.
In [𝒮M], [𝒮C], [𝒮C!] and [𝒮Sh] we consider that

𝒮(𝑃) = {𝑃𝑖}𝑖∈ℐ and 𝒮(𝑄) = {𝑄 𝑗} 𝑗∈𝒥

The map𝒮(𝑅) takes as input a process 𝑅 and computes its sum expansion {𝑅1 , . . . , 𝑅𝑛}.
In the base case, where 𝑅 is either the inaction process 0, a forwarder or an action, then
its sum expansion is simply the singleton {𝑅} (case [𝑆𝒳]]). Since structural congruence ≡
operates on the nose, sums guarded by actions (for example wait 𝑥; (𝑅1 + 𝑅2)) are simply
ignored.

The sum expansion of a mix par {𝑃 | | 𝑄} (case [𝒮M]) is obtained by first computing
the sum expansions of each argument 𝑃 and 𝑄

𝒮(𝑃) = {𝑃𝑖}𝑖∈ℐ and 𝒮(𝑄) = {𝑄 𝑗} 𝑗∈𝒥

Then, 𝒮(par {𝑃 | | 𝑄}) is the defined as the set of all elements par {𝑃𝑖 | | 𝑄 𝑗}, where 𝑖 ∈ ℐ
and 𝑗 ∈ 𝒥 . Similarly for linear and unrestricted cut (cases [𝒮C] and [𝒮C!]).

118

7.3. FACTORISATION OF →→ THROUGH →𝑑

A similar process applies to share share 𝑥 {𝑃 | | 𝑄} (case [𝒮Sh]) but instead of simply
aggregating each component 𝑃𝑖 of the sum expansion of 𝑃 and each component 𝑄 𝑗

of the sum expansion of 𝑄 in a share share 𝑥 {𝑃𝑖 | | 𝑄 𝑗}, we need first to expose the
possible interleavings resultant the shared usages of 𝑃𝑖 and𝑄 𝑗 , as defined by the auxiliary
interleaving map ℐ𝑥(𝑃𝑖 , 𝑄 𝑗).

Map ℐ𝑥(𝑃, 𝑄) computes the sum expansion resultant by interleaving two concurrent
take actions, one coming from 𝑃 and another from 𝑄, as essentially expressed by ≡
commuting law [TSh]. In the definition of ℐ𝑥(𝑃, 𝑄) we assume that 𝒞 ,𝒟 are static
contexts where the holes are not guarded by share or sum constructs on 𝑥. Each process
𝑃 and 𝑄 to which the interleaving map ℐ𝑥(𝑃, 𝑄) applies is a component of some sum
expansion, hence there are no unguarded sums and all concurrent share operations were
previously interleaved. As a consequence, each process 𝑃 and 𝑄 in ℐ𝑥(𝑃, 𝑄) can offer
at most one take action. If some of them cannot offer a take action, then there is no
interleaving to carry out and we simply aggregate the components 𝑃 and 𝑄 in a share.

The sum expansion of a sum is simply 𝑃 +𝑄 is simply obtained by taking the multiset
union of the sum expansion of 𝑃 and the sum expansion of𝑄 (case [𝒮Sm]). The following
result states some properties about the sum expansion map.

Lemma 9. The following properties hold

(1)
∑𝒮(𝑃) ≡ 𝑃, for all 𝑃.

(2) Suppose 𝑃 ≡ 𝑄. Then

(i) For all 𝑃 ∈ 𝒮(𝑃) there exists 𝑄′ ∈ 𝒮(𝑄) s.t. 𝑃′ ≡𝑑 𝑄′.

(ii) For all 𝑄′ ∈ 𝒮(𝑄) there exists 𝑃′ ∈ 𝒮(𝑃) s.t. 𝑃′ ≡𝑑 𝑄′.

(3) Let 𝒮(𝑃) = {𝑃𝑖}𝑖∈ℐ . If 𝑃 →→ 𝑄, then exists {𝑄𝑖 𝑗}𝑖∈ℐ , 𝑗∈𝒥𝑖 s.t. 𝑄 ≡ ∑
𝑖∈ℐ , 𝑗∈𝒥𝑖 𝑄𝑖 𝑗 and for all

𝑖 ∈ ℐ , 𝑗 ∈ 𝒥𝑖 , either 𝑃𝑖 ≡𝑑 𝑄𝑖 𝑗 or 𝑃𝑖 →𝑑 𝑄𝑖 𝑗 .

Proof. We give a proof sketch. Details can be found in Appendix C.

(1) By structural induction in 𝑃 and case analysis on its principal form. The equivalence∑𝒮(𝑃) ≡ 𝑃 is shown essentially by applying the structural congruence ≡ laws that
[MSm], [CSm], [C!Sm], [ShSm] that distribute the static constructors over sum and
structural congruence law ≡ [TSh] that computes the interleaving of two concurrent
take actions.

(2) By induction on the structure of a derivation tree for 𝑃 ≡ 𝑄 and by case analysis on
the root rule. Some cases of ≡ immediately follow because they are also contained
in ≡𝑑 and therefore we can apply the conversion pointwise to the multiset 𝒮(𝑃) (and
symmetrically to 𝒮(𝑄)), e.g. ≡ law [M] that expresses the commutativity of the mix
construct. Other cases follow because the two multisets𝒮(𝑃) and𝒮(𝑄) are the same,
e.g. ≡ law [Sm].

119

CHAPTER 7. CONFLUENCE

(3) By induction on the structure of a derivation tree for 𝑃 →→ 𝑄 and case analysis
on the root rule. The principal cut reductions are handled straightforwardly since
they do not involve sums, hence in those cases 𝒮(𝑃) is simply the singleton {𝑃}.
Furthermore, all the principal cut reductions are also valid rules of→𝑑. Case [cong] is
handled by applying pointwise the congruence rule. Case [+par] is straightforward
by invoking the inductive hypothesis on both summands 𝑃1 and 𝑃2 of 𝑃 = 𝑃1 + 𝑃2.
Case [≡] follows by (2).

Each process 𝑃 can be written in an ≡-equivalent sum of basic processes given by its
sum expansion 𝒮(𝑃) (Lemma 9(1)). Property Lemma 9(2) relates the sum expansions
𝒮(𝑃) and 𝒮(𝑄) of ≡-equivalent processes 𝑃 and 𝑄. It states that 𝒮(𝑃) and 𝒮(𝑄) are
essentially the same up to congruence ≡𝑑. Furthermore, this notion of sameness ignores the
multiplicity of ≡𝑑-equivalent terms, which accounts for idempotency of sum (𝑃 + 𝑃 ≡ 𝑃).
That is, if two multisets 𝒮 and 𝒯 are the same, then so they are the multisets 𝒮 , 𝑃 and
𝒯 , where 𝑃 ≡𝑑 𝑃′ for some process 𝑃′. In other words, the quotient sets 𝒮(𝑃)/≡𝑑 and
𝒮(𝑄)/≡𝑑 of two ≡-equivalent processes 𝑃 and 𝑄 are the same.

Lemma 9(3) states that a →→-reduction of a process 𝑃 can be factored through its
sum expansion 𝒮(𝑃) = {𝑃𝑖}𝑖∈ℐ by→𝑑-reducing many components 𝑃𝑖 as many times as
necessary. This is the crucial factorisation property which will allow us to lift the diamond
property of→𝑑 to→→ and hence to

∗−→. We will show how in the next section.

7.4 Diamond Property for
∗−→

In this section we conclude the technical development of this chapter with the proof our
main result of global confluence (Theorem 3). We have proved before that the restricted
form of reduction→𝑑, which does not manipulate sums, satisfies the diamond property
(Lemma 8). We have also showed that we can factor the parallel-sum→→ reduction through
→𝑑 (Lemma 9(3)). This factorisation result allows us to lift the diamond property from
relation→𝑑 to relation→→ (Lemma 11). Since

∗−→=→→∗, this establishes our main result
(Theorem 3).

Before presenting the proof of the diamond property for→→ we need the following
technical auxiliary result.

Lemma 10. Suppose 𝑃 →→ 𝑄 and 𝑃 →→ 𝑅. There are multisets {𝑃𝑖}𝑖∈ℐ , {𝑄𝑖}𝑖∈ℐ and {𝑅𝑖}𝑖∈ℐ
s.t.

(1)
∑
𝑖∈ℐ 𝑃𝑖 ≡ 𝑃,

∑
𝑖∈ℐ 𝑄𝑖 ≡ 𝑄,

∑
𝑖∈ℐ 𝑅𝑖 ≡ 𝑅; and

(2) for all 𝑖 ∈ ℐ, 𝑃𝑖 (→𝑑 ∪ ≡𝑑) 𝑄𝑖 and 𝑃𝑖 (→𝑑 ∪ ≡𝑑) 𝑅𝑖 .

Proof. Let𝒮(𝑃) = {𝑃′
𝑖
}1≤𝑖≤𝑛 . By applying Lemma 9(3) to 𝑃 →→ 𝑄 and 𝑃 →→ 𝑅we conclude

that exists {𝑄′
𝑖 𝑗
}1≤𝑖≤𝑛,1≤ 𝑗≤𝑛𝑖 and {𝑅′

𝑖𝑘
}1≤𝑖≤𝑛,1≤𝑘≤𝑚𝑖

s.t.

120

7.4. DIAMOND PROPERTY FOR
∗−→

(a) 𝑄 ≡ ∑
1≤𝑖≤𝑛,1≤ 𝑗≤𝑛𝑖 𝑄

′
𝑖 𝑗
, 𝑅 ≡ ∑

1≤𝑖≤𝑛,1≤𝑘≤𝑚𝑖
𝑅′
𝑖𝑘

;

(b) 𝑃𝑖 (→𝑑 ∪ ≡𝑑) 𝑄′𝑖 𝑗 , for all 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛𝑖 ; and

(c) 𝑃𝑖 (→𝑑 ∪ ≡𝑑) 𝑅′𝑖 𝑗 , for all 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑚𝑖 .

Define the indexed multisets

{𝑃𝑖𝑥}1≤𝑖≤𝑛,1≤𝑥≤max(𝑛𝑖 ,𝑚𝑖) , {𝑄𝑖𝑥}1≤𝑖≤𝑛,1≤𝑥≤max(𝑛𝑖 ,𝑚𝑖) and {𝑅𝑖𝑥}1≤𝑖≤𝑛,1≤𝑥≤max(𝑛𝑖 ,𝑚𝑖)

by

𝑃𝑖𝑥 ≜ 𝑃
′
𝑖 𝑄𝑖𝑥 ≜

𝑄′
𝑖𝑥
, 𝑥 ≤ 𝑛𝑖

𝑄′
𝑖𝑛𝑖
, otherwise

𝑅𝑖𝑥 ≜

𝑅′
𝑖𝑥
, 𝑥 ≤ 𝑚𝑖

𝑅′
𝑖𝑚𝑖
, otherwise

The defined multisets have the same number of elements, given by
∑

1≤𝑖≤𝑛 max(𝑛𝑖 , 𝑚𝑖),
they correspond to the multisets {𝑃𝑖}𝑖∈ℐ , {𝑄𝑖}𝑖∈ℐ and {𝑅𝑖}𝑖∈ℐ of the statement of this
lemma, where ℐ = {(𝑖 , 𝑥) | 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑥 ≤ max(𝑛𝑖 , 𝑚𝑖)}, and for which we will now
prove properties (1) and (2).

We have ∑
1≤𝑖≤𝑛,1≤𝑥≤max(𝑛𝑖 ,𝑚𝑖)

𝑃𝑖𝑥 =
∑

1≤𝑖≤𝑛
(

∑
1≤𝑥≤max(𝑛𝑖 ,𝑚𝑖)

𝑃𝑖𝑥)

≡
∑

1≤𝑖≤𝑛
𝑃′𝑖 (idempotency of sum)

≡ 𝑃

Similarly, one may derive∑
1≤𝑖≤𝑛,1≤𝑥≤max(𝑛𝑖 ,𝑚𝑖)𝑄𝑖𝑥 ≡ 𝑄 and

∑
1≤𝑖≤𝑛,1≤𝑥≤max(𝑛𝑖 ,𝑚𝑖) ≡ 𝑅

This proves (1).
Let 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑥 ≤ max(𝑛𝑖 , 𝑚𝑖). Properties (b) and (c) imply (2).

Lemma 10 is a consequence of the factorisation property Lemma 9(3), which we
instantiate in the→→-reduction fork 𝑃 →→ 𝑄 and 𝑃 →→ 𝑅. We organised the factorisation
a bit, taking advantage of idempotency of sum, so that we can map a→→-reduction fork to
many→𝑑-reduction forks. These→𝑑-reduction forks can then be closed since→𝑑 satisfies
the diamond property, this then implies the diamond property for→→, as stated by the
following lemma.

Lemma 11 (Diamond Property for→→). Suppose 𝑃 →→ 𝑄 and 𝑃 →→ 𝑅. Either𝑄 ≡ 𝑅 or there
exists 𝑆 s.t. 𝑄 →→ 𝑆 and 𝑅→→ 𝑆.

Proof. Apply Lemma 10 to 𝑃 →→ 𝑄 and 𝑃 →→ 𝑅 in order to infer the existence of multisets
{𝑃𝑖}𝑖∈ℐ , {𝑄𝑖}𝑖∈ℐ and {𝑅𝑖}𝑖∈ℐ for which Lemma 10(1) and Lemma 10(2) hold.

We will now define, by case analysis {𝑆𝑖}𝑖∈ℐ :

121

CHAPTER 7. CONFLUENCE

𝑄

≡
𝑄1

+
𝑄2

+
. . .

+
𝑄𝑛

𝑃 ≡ 𝑃1 + 𝑃2 + . . . + 𝑃𝑛 𝑆𝑛 + . . . + 𝑆2 + 𝑆1 ≡ 𝑆

𝑅𝑛

+
. . .

+
𝑅2

+
𝑅1

≡
𝑅

↠∪≡
→
𝑑∪≡

𝑑→
𝑑∪≡

𝑑

→𝑑∪≡𝑑

↠

↠

→ 𝑑
∪≡ 𝑑

→
𝑑∪≡

𝑑

→ 𝑑
∪≡ 𝑑

→
𝑑∪≡

𝑑

→𝑑∪≡𝑑

→𝑑∪≡𝑑 →𝑑∪≡𝑑

→ 𝑑
∪≡ 𝑑

→ 𝑑
∪≡ 𝑑

↠∪
≡

Figure 7.2: Diagram illustrating proof of confluence.

• If 𝑃𝑖 ≡𝑑 𝑄𝑖 and 𝑃𝑖 ≡𝑑 𝑅𝑖 , let 𝑆𝑖 ≜ 𝑃𝑖 .

• If 𝑃𝑖 ≡𝑑 𝑄𝑖 and 𝑃𝑖 →𝑑 𝑅𝑖 , let 𝑆𝑖 ≜ 𝑅𝑖 .

• If 𝑃𝑖 →𝑑 𝑄𝑖 and 𝑃𝑖 ≡𝑑 𝑅𝑖 , let 𝑃𝑖 ≜ 𝑄𝑖 .

• If 𝑃𝑖 →𝑑 𝑄𝑖 and 𝑃𝑖 →𝑑 𝑅𝑖 , let 𝑆𝑖 be s.t. that either 𝑆𝑖 ≡𝑑 𝑄𝑖 ≡𝑑 𝑅𝑖 or 𝑄𝑖 →𝑑 𝑆𝑖

and 𝑅𝑖 →𝑑 𝑆𝑖 . Such an 𝑆𝑖 is guaranteed to exist because→𝑑 satisfies the diamond
property. (Lemma 8).

By construction, both 𝑄𝑖 (→𝑑 ∪ ≡𝑑) 𝑆𝑖 and 𝑅𝑖 (→𝑑 ∪ ≡𝑑) 𝑆𝑖 , for all 𝑖 ∈ ℐ. Let 𝑆 =
∑
𝑖∈ℐ 𝑆𝑖 .

By iterative application of rule [+par] (Def. 19) we obtain both 𝑄 (≡ ∪ →→) 𝑆 and
𝑅 (≡ ∪ →→) 𝑆. The proof is illustrated in the diagram of Figure 7.2. The process sum
expansions and light-blue edges are inferred by applying Lemma 10, which essentially
allow us to factor the→→-reduction fork through many→𝑑-reduction forks. Dark-blue
edges are inferred because→𝑑 satisfies the diamond property (Lemma 8). Finally, since we
are allowed to→→-reduce parallel independent summands simultaneously, by applying
rule [+par] (Def. 19), this justifies the purple edges.

We conclude this section with the proof our main result.

122

7.5. FURTHER DISCUSSION AND RELATED WORK

Theorem 3 (Diamond Property for
∗−→). Suppose 𝑃

∗−→ 𝑄 and 𝑃
∗−→ 𝑅. Either 𝑄 ≡ 𝑅 or there

exists 𝑆 s.t. 𝑄
∗−→ 𝑆 and 𝑅

∗−→ 𝑆.

Proof. Follows from Lemma 11 and Lemma 5(3).

7.5 Further Discussion and Related Work

In this chapter we have proved that the reduction relation→ of our our language CLASS,
with first-class reference cells, is confluent (Theorem 3) modulo ≡.

CLASS is the first language that accommodates shared state into the propositions-
as-types correspondence between linear logic and session-based concurrency [23, 157],
without sacrificing the confluence property. For example, the session-typed calculi pre-
sented in [10, 128, 7, 91] do not capture the nondeterminism that naturally emerges from
racy concurrent processes with non-collapsing sums, as we do in CLASS, and, hence, fail
to be confluent. As we have already mentioned, confluence is a necessary requirement
for calculi based on proposition-as-types, where reduction is to be interpreted as a proof
equivalence.

The idea of using sums to internalise nondeterministic computations and obtain a
confluent notion of reduction is not new, being explored, for example, in the context of
variants of the Lambda Calculus such as the Differential Lambda Calculus [55] and the
Resource Lambda Calculus [119]; in the context of Differential Interaction Nets [54, 151,
152]; and even in the context of process calculi, like in the work of Beffara [13], which
presents an extension of the 𝜋I-calculus (polyadic 𝜋 calculus with internal mobility) with
sums that enjoys local confluence.

Our proof of confluence (Theorem 3) is based on the the Tait and Martin-Löf proof
technique, which was employed by W. Tait and P. Martin-Löf to show the confluence of
𝛽-reduction for the Lambda Calculus [12]. It consists of proving the diamond property
for a relation ℛ by finding a relation 𝒮 which (1) satisfies the diamond property and (2)
whose reflexive-transitive closure 𝒮∗ equates ℛ. For the case of the Lambda Calculus,
relation 𝒮 is instantiated by a parallel version of 𝛽-reduction which allows to reduce a
number of redexes in a �-term simultaneously [142].

Interestingly, in our proof, the candidate relation 𝒮 is just a more permissible relation
than reduction→ which allows independent summands to be reduced simultaneously
(Def. 19). However, it is not necessary to allow the simultaneous reduction of the arguments
𝑃 and 𝑄 in a cut cut {𝑃 |𝑥 | 𝑄}, for example.

In [121], the authors prove confluence for session-typed process calculus based on
the correspondence with intuitionistic linear logic developed in [23], by applying the
technique of the linear logical relations. The session-typed calculus introduced in [23] is
essentially functional, hence their proof of confluence does not need to handle sums as
we have to in our proof. It remains to explore if the technique of linear logical relations
developed in [121] can be adapted to yield confluence for CLASS.

123

8

Cut Normalisation

Cut elimination states that any provable judgment has a proof that does not make use
of the cut rule and was originally proved by Gentzen for intuitionistic and classical logic
(Gentzen’s Hauptsatz) [59]. It is a result with many deep consequences, among which the
consistency of a logical system, the subformula property and various resolution techniques,
which are important tools in the development of automated theorem provers. In fact, the
central role that cut elimination plays in logic lead Girard once to affirm that a sequent
calculus without cut-elimination is like a car without engine [64].

In this chapter, we study a cut normalisation result for CLASS\∃�, which stands for
the session-typed process calculus CLASS that extends classical linear logic with first-
class reference cells, as defined in Chapter 3, but without the second-order quantifiers
∃𝑋.𝐴,∀𝑋.𝐴 and inductive/coinductive �𝑋. 𝐴, �𝑋. 𝐴 session types.

Namely, we establish the Cut-Normalisation Theorem 4 which states that every typed
process of CLASS\∃� can be rewritten into an equivalent normal form on which there
are no cuts, except on open identity axioms on shared usages: we call open cells to such
cuts. This motivates the following two definitions

Definition 24 (Open Cell). An open cell is a process of the form

cut {𝐶(𝑥) |𝑥 | share 𝑥 {fwd 𝑥 𝑧 | | 𝑄}}

where either 𝐶(𝑥) = cell 𝑥(𝑦.𝑃) or 𝐶(𝑥) = empty 𝑥.

Definition 25 (Normal form). A process is a normal form if it contains no cuts except open cells.

Open cells have a simple form cut {𝐶(𝑥) |𝑥 | share 𝑥 {fwd 𝑥 𝑧 | | 𝑄}}, where the usage
𝑥 on the left argument of the share construct is forwarded to a free name 𝑧. The share
in the open cell cannot be converted to a sum of U 𝑓 𝐴 introduction forms or to an U𝑒 𝐴

introduction form, since fwd 𝑥 𝑧 is not an introduction form, and offers no structure at
𝑧. There is no real redex in an open cell: the share is suspended on the availability of cell
usages at open name 𝑧 from the environment. This justifies open cells as normal forms.

The necessary transformations to obtain cut normalisation are captured by a congru-
ence relation ≈ on type derivations, that contains structural congruence ≡ and reduction

124

8.1. THE RELATION ≈ : A COMPLETE SET OF COMMUTING CONVERSIONS

→, and adds a complete set of commuting conversions along standard lines [23, 24, 157].
The new conversions of ≈ essentially allow actions to be commuted with share, linear and
unrestricted cut constructs as well as unrestricted cuts to be discarded from the leaves of
type derivation trees.

The Cut Normalisation Theorem follows by the the Cut Normalisation Lemma 15,
which constructs an ≈-equivalent normal form for a cut cut {𝑃 |𝑥 | 𝑄}, when given normal
forms for 𝑃 and 𝑄. The proof of the Cut Normalisation Lemma is established by adapting
Frank Pfenning’s structural cut elimination technique for classical linear logic [122, 123].

The proof relies on an auxiliary Share Expansion Lemma 14, that is applied when
normalising cuts between a cell and share on the same session 𝑐. This works by expanding
the share of usage 𝑐 into an ≈-equivalent sum of sequential cell usages on 𝑐, after which
the cut distributes over the sum and normalisation proceeds as usual in each independent
summand. Of course, ff the share is suspended on a forwarder fwd 𝑐 𝑐′, expansion is not
possible, in which case we obtain an open cell.

The Cut Normalisation Theorem yields some corollaries, namely a Subformula Prop-
erty Corollary 1 and a Cut Elimination for Pure Sequents Corollary 2, the latter states that
it is always possible to eliminate cuts from pure sequents 𝑃 ⊢ Δ;Γ in which the cell state
and usage modalities are not present in the typing context Δ;Γ.

Interestingly, Corollary 2 exposes a strong conservativeness and expressiveness result
about the language CLASS\∃�. It implies that any process 𝑃 ⊢ Δ;Γ in CLASS\∃�
that potentially uses shared state internally but that implements an interface Δ;Γ only
manifesting standard propositional pure session types is ≈-equivalent to a (possibly
nondeterministic and larger) process 𝑄 ⊢ Δ;Γ that does not use imperative constructs at all.
This normal form 𝑄 expresses the externally observable behaviour of the original stateful
open process 𝑃. Interestingly, this normal form can be computed by doing simple algebraic
manipulations as expressed by ≈ laws, we illustrate with a comprehensive example in 16.

The restof the chapter is organisedas follows. Section 8.1 defines relation≈, introducing
a complete set of commuting conversions for cut-normalisation and share-expansion.
Section 8.2 defines the #-measure on processes, proves the Share Expansion Lemma 14 and
the Cut Normalisation Lemma 15, from which we derive the Cut Normalisation Theorem 4.
Section 8.3 presents some corollaries of cut normalisation, namely the Subformula Property
Corollary 1 and Cut Elimination for Pure Sequents Corollary 2. Finally, Section 8.4
concludes with further discussion and related work.

8.1 The Relation ≈ : A Complete Set of Commuting Conversions

In this section we define relation ≈ (Def. 26), which extends structural congruence ≡
and→ with a sufficient set of proof transformations, that allows us to establish the cut
normalisation result.

125

CHAPTER 8. CUT NORMALISATION

To illustrate why further conversions are necessary, consider the following process

cut {wait 𝑦; close 𝑥 |𝑥 : 1| wait 𝑥;𝑃}

The cut on session 𝑥 cannot be eliminated solely by applying the commuting conversions
of ≡ and the principal cut conversions of →. It is necessary to commute the cut with
the wait action on name 𝑦 in order to expose the redex, after which the principal cut
conversion→ [1⊥] can then be applied

cut {wait 𝑦; close 𝑥 |𝑥 : 1| wait 𝑥;𝑃} ≈ wait 𝑦; (cut {close 𝑥 |𝑥 : 1| wait 𝑥;𝑃})
→ wait 𝑦;𝑃

The relation ≈ is defined by the following

Definition 26. ≈ is a congruence relation on type derivations of CLASS\∃� that contains
structural congruence ≡ (Def. 13) and reduction → (Def. 14) and includes the commuting
conversions listed in figs. 8.1, 8.2,8.3 as well as the unrestricted cut discarding principles in fig. 8.4.
In all the rules of figs. 8.1, 8.2 and 8.3 we consider the subject of the prefixed action 𝑦 to be distinct
of 𝑥. Furthermore, in all the rules of figs.. 8.1 and 8.2 we consider that 𝑦 ∉ fn(𝑃).

Relation ≈ is defined on type derivation trees. However, to be concise, the conversion
rules of ≈ are written on processes. Nevertheless, from each rule on processes we
can always obtain the corresponding rule on type derivations, for example rule [C⊥]
cut {𝑃 |𝑥 : 𝐴| wait 𝑦;𝑄} ≈ wait 𝑦; (cut {𝑃 |𝑥 : 𝐴| 𝑄}) corresponds to the conversion on
type derivations

𝑃1 ⊢ Δ1 , 𝑥 : 𝐴;Γ
𝑃2 ⊢ Δ2 , 𝑥 : 𝐴;Γ

wait 𝑦;𝑃1 ⊢ Δ2 , 𝑥 : 𝐴, 𝑦 : ⊥;Γ

cut {𝑃1 |𝑥 | wait 𝑦;𝑃2} ⊢ Δ1 ,Δ2 , 𝑦 : ⊥;Γ

≈
𝑃1 ⊢ Δ1 , 𝑥 : 𝐴;Γ 𝑃2 ⊢ Δ2 , 𝑥 : 𝐴;Γ

cut {𝑃1 |𝑥 | 𝑃2} ⊢ Δ1 ,Δ2;Γ
wait 𝑦; (cut {𝑃1 |𝑥 | 𝑃2}) ⊢ Δ1 ,Δ2 , 𝑦 : ⊥;Γ

The rules listed in figures 8.1, 8.2 8.3 commute a share, a linear cut or an unrestricted
cut on name 𝑥 with an action of subject 𝑦 distinct of 𝑥 and all are essential to establish
the Cut Normalisation Lemma 15. The role of the cut-action commutation principles
was already made clear with the previous example. To illustrate the importance of the
share-action commutation rules, which are necessary to establish the Share Expansion
Lemma 14, consider a process of the form

cut {cell 𝑥(𝑣.𝑃) |𝑥 | share 𝑥 {wait 𝑦; release 𝑥 | | put 𝑥(𝑣.𝑄); release 𝑥}}

We cannot commute a cut with a share construct on the same name 𝑥, so the only possibility
is to first expand the share by applying ≈ rule [Sh⊥], followed by ≡ rule [RSh]

share 𝑥 {wait 𝑦; release 𝑥 | | put 𝑥(𝑣.𝑄); release 𝑥} ≈ wait 𝑦; put 𝑥(𝑣.𝑄); release 𝑥

126

8.1. THE RELATION ≈ : A COMPLETE SET OF COMMUTING CONVERSIONS

share 𝑥 {wait 𝑦;𝑃 | | 𝑄} ≈ wait 𝑦; share 𝑥 {𝑃 | | 𝑄} [Sh⊥]

share 𝑥 {𝑃 | | send 𝑦(𝑧.𝑄1);𝑄2} ≈ send 𝑦(𝑧.(share 𝑥 {𝑃 | | 𝑄1}));𝑄2 , 𝑥 ∈ fn(𝑄1) [Sh⊗1]

share 𝑥 {𝑃 | | send 𝑦(𝑧.𝑄1);𝑄2} ≈ send 𝑦(𝑧.𝑄1); share 𝑥 {𝑃 | | 𝑄2}, 𝑥 ∈ fn(𝑄2) [Sh⊗2]

share 𝑥 {𝑃 | | recv 𝑦(𝑧);𝑄} ≈ recv 𝑦(𝑧); share 𝑥 {𝑃 | | 𝑄} [ShO]

share 𝑥 {𝑃 | | 𝑦.inl;𝑄} ≈ 𝑦.inl; share 𝑥 {𝑃 | | 𝑄} [Sh⊕𝑙]

share 𝑥 {𝑃 | | 𝑦.inr;𝑄} ≈ 𝑦.inr; share 𝑥 {𝑃 | | 𝑄} [Sh⊕𝑟]

share 𝑥 {𝑃 | | case 𝑦 {|inl : 𝑄1 | inr : 𝑄2}}
≈ case 𝑦 {|inl : share 𝑥 {𝑃 | | 𝑄1} | inr : share 𝑥 {𝑃 | | 𝑄2}} [Sh&]

share 𝑥 {𝑃 | | ?𝑦;𝑄} ≈ ?𝑦; share 𝑥 {𝑃 | | 𝑄} [Sh?]

share 𝑥 {𝑃 | | call 𝑦(𝑧);𝑄} ≈ call 𝑦(𝑧); share 𝑥 {𝑃 | | 𝑄} [ShCall]

share 𝑥 {𝑃 | | sendty 𝑦 𝐴;𝑄} ≡c sendty 𝑦 𝐴; share 𝑥 {𝑃 | | 𝑄} [Sh∃]

share 𝑥 {𝑃 | | recvty 𝑦(𝑋);𝑄} ≡c recvty 𝑦(𝑋); share 𝑥 {𝑃 | | 𝑄} [Sh∀]

share 𝑥 {𝑃 | | unfold� 𝑦;𝑄} ≡c unfold� 𝑦; share 𝑥 {𝑃 | | 𝑄} [Sh�]

share 𝑥 {𝑃 | | unfold� 𝑦;𝑄} ≡c unfold� 𝑦; share 𝑥 {𝑃 | | 𝑄} [Sh�]

share 𝑥 {𝑃 | | affine 𝑦;𝑄} ≈ affine 𝑦; share 𝑥 {𝑃 | | 𝑄} [ShAffine]

share 𝑥 {𝑃 | | use 𝑦;𝑄} ≈ use 𝑦; share 𝑥 {𝑃 | | 𝑄} [ShUse]

share 𝑥 {𝑃 | | cell 𝑦(𝑧.𝑄)} ≈ cell 𝑦(𝑧.share 𝑥 {𝑃 | | 𝑄}) [ShCell]

share 𝑥 {𝑃 | | take 𝑦(𝑧);𝑄} ≈ take 𝑦(𝑧); share 𝑥 {𝑃 | | 𝑄} [ShTake]

share 𝑥 {𝑃 | | put 𝑦(𝑧.𝑄1);𝑄2} ≡c put 𝑦(𝑧.share 𝑥 {𝑃 | | 𝑄1});𝑄2 , 𝑥 ∈ fn(𝑄1)[ShPut1]

share 𝑥 {𝑃 | | put 𝑦(𝑧.𝑄1);𝑄2} ≈ put 𝑦(𝑧.𝑄1); share 𝑥 {𝑃 | | 𝑄2}, 𝑥 ∈ fn(𝑄2) [ShPut2]

Figure 8.1: Share-action commuting conversions ≈.

after which the cut can then be normalised

cut {cell 𝑐(𝑣.𝑃) |𝑥 | wait 𝑦; put 𝑥(𝑣.𝑄); release 𝑥}
≈ wait 𝑦; (cut {cell 𝑐(𝑣.𝑃) |𝑥 | put 𝑥(𝑣.𝑄); release 𝑥})
+−→ wait 𝑦; 0

The discarding principles [C!0], [C!1], [C!fwd] and [C!free], when read from left to

127

CHAPTER 8. CUT NORMALISATION

cut {𝑃 |𝑥 : 𝐴| wait 𝑦;𝑄} ≈ wait 𝑦; (cut {𝑃 |𝑥 : 𝐴| 𝑄}) [C⊥]

cut {𝑃 |𝑥 : 𝐴| send 𝑦(𝑧.𝑄1);𝑄2} ≈ send 𝑦(𝑧.(cut {𝑃 |𝑥 : 𝐴| 𝑄1}));𝑄2 , 𝑥 ∈ fn(𝑄1) [C⊗1]

cut {𝑃 |𝑥 : 𝐴| send 𝑦(𝑧.𝑄1);𝑄2} ≈ send 𝑦(𝑧.𝑄1); (cut {𝑃 |𝑥 : 𝐴| 𝑄2}), 𝑥 ∈ fn(𝑄2) [C⊗2]

cut {𝑃 |𝑥 : 𝐴| recv 𝑦(𝑧);𝑄} ≈ recv 𝑦(𝑧); (cut {𝑃 |𝑥 : 𝐴| 𝑄}) [CO]

cut {𝑃 |𝑥 : 𝐴| 𝑦.inl;𝑄} ≈ 𝑦.inl; (cut {𝑃 |𝑥 : 𝐴| 𝑄}) [C⊕𝑙]

cut {𝑃 |𝑥 : 𝐴| 𝑦.inr;𝑄} ≈ 𝑦.inr; (cut {𝑃 |𝑥 : 𝐴| 𝑄}) [C⊕𝑟]

cut {𝑃 |𝑥 : 𝐴| case 𝑦 {|inl : 𝑄1 | inr : 𝑄2}}
≈ case 𝑦 {|inl : (cut {𝑃 |𝑥 : 𝐴| 𝑄1}) | inr : (cut {𝑃 |𝑥 : 𝐴| 𝑄2})} [C&]

cut {𝑃 |𝑥 : 𝐴| ?𝑦;𝑄} ≈ ?𝑦; (cut {𝑃 |𝑥 : 𝐴| 𝑄}) [C?]

cut {𝑃 |𝑥 : 𝐴| call 𝑦(𝑧);𝑄} ≈ call 𝑦(𝑧); (cut {𝑃 |𝑥 : 𝐴| 𝑄}) [CCall]

cut {𝑃 |𝑥 | sendty 𝑦 𝐴;𝑄} ≡c sendty 𝑦 𝐴; cut {𝑃 |𝑥 | 𝑄} [C∃]

cut {𝑃 |𝑥 | recvty 𝑦(𝑋);𝑄} ≡c recvty 𝑦(𝑋); cut {𝑃 |𝑥 | 𝑄} [C∀]

cut {𝑃 |𝑥 | unfold� 𝑦;𝑄} ≡c unfold� 𝑦; cut {𝑃 |𝑥 | 𝑄} [C�]

cut {𝑃 |𝑥 | unfold� 𝑦;𝑄} ≡c unfold� 𝑦; cut {𝑃 |𝑥 | 𝑄} [C�]

cut {𝑃 |𝑥 : 𝐴| affine 𝑦;𝑄} ≈ affine 𝑦; cut {𝑃 |𝑥 : 𝐴| 𝑄} [CAffine]

cut {𝑃 |𝑥 : 𝐴| use 𝑦;𝑄} ≈ use 𝑦; cut {𝑃 |𝑥 : 𝐴| 𝑄} [CUse]

cut {𝑃 |𝑥 : 𝐴| cell 𝑦(𝑧.𝑄)} ≈ cell 𝑦(𝑧.(cut {𝑃 |𝑥 : 𝐴| 𝑄})) [CCell]

cut {𝑃 |𝑥 : 𝐴| take 𝑦(𝑧);𝑄} ≈ take 𝑦(𝑧); (cut {𝑃 |𝑥 : 𝐴| 𝑄}) [CTake]

cut {𝑃 |𝑥 | put 𝑦(𝑧.𝑄1);𝑄2} ≡c put 𝑦(𝑧.cut {𝑃 |𝑥 | 𝑄1});𝑄2 , 𝑥 ∈ fn(𝑄1)[CPut1]

cut {𝑃 |𝑥 | put 𝑦(𝑧.𝑄1);𝑄2} ≈ put 𝑦(𝑧.𝑄1); cut {𝑃 |𝑥 | 𝑄2}, 𝑥 ∈ fn(𝑄2) [CPut2]

Figure 8.2: Cut-action commuting conversions ≈.

right, allow us to delete an unrestricted cut with server body 𝑃 composed with an axiom.
The server will never be invoked and hence can be safely discarded. The distributive ≡
conversions associated with the unrestricted cut allows us to lift the discarding principles
to type derivations in general, as stated by the following result.

128

8.1. THE RELATION ≈ : A COMPLETE SET OF COMMUTING CONVERSIONS

cut! {𝑤.𝑃 |𝑥 : 𝐴| wait 𝑦;𝑄} ≈ wait 𝑦; (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄}) [C!⊥]

cut! {𝑤.𝑃 |𝑥 : 𝐴| send 𝑦(𝑧.𝑄1);𝑄2}
≈ send 𝑦(𝑧.(cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄1})); (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄2}) [C!⊗]

cut! {𝑤.𝑃 |𝑥 : 𝐴| recv 𝑦(𝑧);𝑄} ≈ recv 𝑦(𝑧); (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄}) [C!O]

cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑦.inl;𝑄} ≈ 𝑦.inl; (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄}) [C!⊕𝑙]

cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑦.inr;𝑄} ≈ 𝑦.inr; (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄}) [C!⊕𝑟]

cut! {𝑤.𝑃 |𝑥 : 𝐴| case 𝑦 {|inl : 𝑄1 | inr : 𝑄2}}
≈ case 𝑦 {|inl : (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄1}) | inr : (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄2})} [C!&]

cut! {𝑤.𝑃 |𝑥 : 𝐴| ?𝑦;𝑄} ≈ ?𝑦; (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄}) [C!?]

cut! {𝑤.𝑃 |𝑥 : 𝐴| !𝑦(𝑧);𝑄} ≈ !𝑦(𝑧); (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄}) [C!!]

cut! {𝑤.𝑃 |𝑥 : 𝐴| call 𝑦(𝑧);𝑄} ≈ call 𝑦(𝑧); (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄}) [C!Call]

cut! {𝑤.𝑃 |𝑥 : 𝐴| sendty 𝑦 𝐴;𝑄} ≡c sendty 𝑦 𝐴; cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄} [C!∃]

cut! {𝑤.𝑃 |𝑥 : 𝐴| recvty 𝑦(𝑋);𝑄} ≡c recvty 𝑦(𝑋); cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄} [C!∀]

cut! {𝑤.𝑃 |𝑥 : 𝐴| unfold� 𝑦;𝑄} ≡c unfold� 𝑦; cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄} [C!�]

cut! {𝑤.𝑃 |𝑥 : 𝐴| unfold� 𝑦;𝑄} ≡c unfold� 𝑦; cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄} [C!�]
cut! {𝑤.𝑃 |𝑥 : 𝐴| affine 𝑦;𝑄} ≈ affine 𝑦; (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄}) [C!Affine]

cut! {𝑤.𝑃 |𝑥 : 𝐴| use 𝑦;𝑄} ≈ use 𝑦; (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄}) [C!Use]

cut! {𝑤.𝑃 |𝑥 : 𝐴| cell 𝑦(𝑧.𝑄)} ≈ cell 𝑦(𝑧.(cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄})) [C!Cell]

cut! {𝑤.𝑃 |𝑥 : 𝐴| take 𝑦(𝑧);𝑄} ≈ take 𝑦(𝑧); (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄}) [C!Take]

cut! {𝑤.𝑃 |𝑥 : 𝐴| put 𝑦(𝑧.𝑄1);𝑄2}
≈ put 𝑦(𝑧.(cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄1})); (cut! {𝑤.𝑃 |𝑥 : 𝐴| 𝑄2}) [C!Put]

Figure 8.3: Cut!-action commuting conversions ≈.

Lemma 12. Let 𝑃 ⊢ 𝑦 : 𝐴;Γ and 𝑄 ⊢ Δ;Γ, 𝑥 : 𝐴. Then, the rule

cut! {𝑦.𝑃 |𝑥 | 𝑄} ≈ 𝑄, 𝑥 ∉ fn(𝑄) [C!Discard]

is derivable.

Proof. By structural induction on a type derivation tree for 𝑄 ⊢ Δ;Γ. We perform case
analysis on the root rule of the tree. We will illustrate the proof with some representative

129

CHAPTER 8. CUT NORMALISATION

𝑃 ⊢ 𝑦 : 𝐴;Γ 0 ⊢ ∅;Γ, 𝑥 : 𝐴

cut! {𝑦.𝑃 |𝑥 | 0} ⊢ ∅;Γ
≈ 0 ⊢ ∅;Γ [C!0]

𝑃 ⊢ 𝑦 : 𝐴;Γ close 𝑧 ⊢ 𝑧 : 1;Γ, 𝑥 : 𝐴

cut! {𝑦.𝑃 |𝑥 | close 𝑧} ⊢ 𝑧 : 1;Γ
≈ close 𝑧 ⊢ 𝑧 : 1;Γ [C!1]

𝑃 ⊢ 𝑦 : 𝐴;Γ fwd 𝑧 𝑤 ⊢ 𝑧 : 𝐵, 𝑤 : 𝐵;Γ, 𝑥 : 𝐴

cut! {𝑦.𝑃 |𝑥 | fwd 𝑧 𝑤} ⊢ 𝑧 : 𝐵, 𝑤 : 𝐵;Γ
≈ fwd 𝑧 𝑤 ⊢ 𝑧 : 𝐵, 𝑤 : 𝐵;Γ [C!fwd]

𝑃 ⊢ 𝑦 : 𝐴;Γ discard 𝑧 ⊢ 𝑧 : ∨𝐵;Γ, 𝑥 : 𝐴

cut! {𝑦.𝑃 |𝑥 | discard 𝑧} ⊢ 𝑧 : ∨𝐵;Γ
≈ discard 𝑧 ⊢ 𝑧 : ∨𝐵;Γ [C!discard]

𝑃 ⊢ 𝑦 : 𝐴;Γ release 𝑧 ⊢ 𝑧 : U 𝑓 𝐵;Γ, 𝑥 : 𝐴

cut! {𝑦.𝑃 |𝑥 | release 𝑧} ⊢ 𝑧 : U 𝑓 𝐵;Γ
≈ release 𝑧 ⊢ 𝑧 : U 𝑓 𝐵;Γ [C!release]

𝑃 ⊢ 𝑦 : 𝐴;Γ empty 𝑧 ⊢ 𝑧 : U𝑒 𝐵;Γ, 𝑥 : 𝐴

cut! {𝑦.𝑃 |𝑥 | empty 𝑧} ⊢ 𝑧 : U𝑒 𝐵;Γ
≈ empty 𝑧 ⊢ 𝑧 : U𝑒 𝐵;Γ [C!empty]

Figure 8.4: Cut! discarding conversions ≈.

cases. The remaining cases are handled similarly.

Case: [T0]. Applying [C!0] yields cut! {𝑦.𝑃 |𝑥 | 0} ≈ 0. Similarly for [T1], [Tfwd], [Tdiscard],
[Trelease] and [Tempty].

Case: [T⊥]. We have

cut! {𝑦.𝑃 |𝑥 | wait 𝑧;𝑄} ≈ wait 𝑧; (cut! {𝑦.𝑃 |𝑥 | 𝑄}) ([C!⊥])

≈ wait 𝑧;𝑄 (i.h. applied to 𝑄)

Case: [Tmix]. We have

cut! {𝑦.𝑃 |𝑥 | (par {𝑄1 | | 𝑄2})} ≈ par {(cut! {𝑦.𝑃 |𝑥 | 𝑄1}) | | (cut! {𝑦.𝑃 |𝑥 | 𝑄2})}
([D-C!M])

≈ par {𝑄1 | | 𝑄2} (i.h. applied to 𝑄1 and 𝑄2)

Case: [Tcall]. Since 𝑥 ∉ fn(call 𝑧(𝑤);𝑄), we conclude that the subject of the introduced
action is 𝑧 ≠ 𝑥. We have

cut! {𝑦.𝑃 |𝑥 | call 𝑧(𝑤);𝑄} ≈ call 𝑧(𝑤); (cut! {𝑦.𝑃 |𝑥 | 𝑄}) ([C!Call])

call 𝑧(𝑤);𝑄 (i.h. applied to 𝑄)

130

8.2. SHARE EXPANSION AND CUT NORMALISATION

Interestingly, our axiomatisation is now redundant since we can derive commuting
conversions of the form [C!X], where X ranges through the static operators mix (M), cut
(C), unrestricted cut (C!) and share (Sh), from the commuting conversions [C!Discard] and
[D-C!X]. For example, the commuting conversion [C!M]

cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ≡ par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅}, 𝑥 ∉ fn(𝑅)

is derivable by

cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ≈ par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})}
([D-C!M])

≈ par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅}
([C!Discard], since 𝑥 ∉ fn(𝑅))

8.2 Share Expansion and Cut Normalisation

The goal of this section is to establish the Cut Normalisation Theorem 4 which follows
from the Share Expansion Lemma 14 and the Cut Normalisation Lemma 15. Lem-
mas 14 and 15 apply the conversions of ≈ in a given direction so as to expand a share
operation into a sum of processes or so as to push a cut down the derivation tree. Crucially,
some of these transformations decrease a measure # on processes, as introduced by the
following definition. In this section we consider all processes 𝑃 to be from the subcalculus
CLASS\∃� without quantifiers and inductive/coinductive types.

Definition 27 (The Measure #𝑃). We define #𝑃 by induction and pattern matching on 𝑃

#(0) ≜ 1 #(fwd 𝑥 𝑦) ≜ 2 #(close 𝑥) ≜ 2 #(discard 𝑥) ≜ 2 #(release 𝑥) ≜ 2 #(empty 𝑥) ≜ 2

#(wait 𝑥;𝑃) ≜ 1 + #𝑃 #(send 𝑥(𝑦.𝑃);𝑄) ≜ 1 + #𝑃 × #𝑄 #(recv 𝑥(𝑦);𝑃) ≜ 1 + #𝑃

#(𝑥.inl;𝑃) ≜ 1 + #𝑃 #(𝑥.inr;𝑃) ≜ 1 + #𝑃 #(case 𝑥 {|inl : 𝑃 | inr : 𝑄}) ≜ 1 + #𝑃 + #𝑄

#(!𝑥(𝑦);𝑃) ≜ 1 + #𝑃 #(?𝑥;𝑃) ≜ 1 + #𝑃 #(call 𝑥(𝑦);𝑃) ≜ 1 + #𝑃

#(affine 𝑥;𝑃) ≜ 1 + #𝑃 #(use 𝑥;𝑃) ≜ 1 + #𝑃

#cell 𝑥(𝑦.𝑃) ≜ 1 + #𝑃 #(take 𝑥(𝑦);𝑃) ≜ 1 + #𝑃 #(put 𝑥(𝑦.𝑃);𝑄) ≜ 1 + #𝑃 × #𝑄

#(par {𝑃 | | 𝑄}) ≜ #𝑃 × #𝑄 #(cut {𝑃 |𝑥 | 𝑄}) ≜ #𝑃 × #𝑄 #(cut! {𝑦.𝑃 |𝑥 | 𝑄}) ≜ #𝑃 × #𝑄

#(share 𝑥 {𝑃 | | 𝑄}) ≜ #𝑃 × #𝑄 #(𝑃 + 𝑄) ≜ #𝑃 + #𝑄

It is easy to check that # is invariant under name substitution, i.e. #𝑃 = #({𝑥/𝑦}𝑃).
Furthermore, the following principles hold

Lemma 13. Let 𝑃 ⊢ Δ;Γ. Then, either

131

CHAPTER 8. CUT NORMALISATION

(i) #𝑃 > 1 or

(ii) #𝑃 = 1 and Δ = ∅.

Proof. Follows straightforwardly by induction on a type derivation tree for 𝑃 ⊢ Δ;Γ. We
illustrate with some cases.

Case: [T0]. We have 𝑃 = 0 and Δ = ∅. Since #0 = 1, (ii) holds.

Case: [Tfwd]. We have 𝑃 = fwd 𝑥 𝑦. Since #fwd 𝑥 𝑦 = 2, (i) holds. Similar for cases [T1],
[Tdiscard], [Tempty] and [Trelease].

Case: [T⊥]. We have 𝑃 = wait 𝑥;𝑃′, for some 𝑃′ ⊢ Δ′;Γ.

I.h. applied to 𝑃′ ⊢ Δ′;Γ yields #𝑃′ > 0.

Then
#(wait 𝑥;𝑃′) = 1 + #𝑃′ > 1 + 0 = 1

which implies (i).

Similarly for cases [TO], [T⊗], [T⊕𝑙], [T⊕𝑟], [TN], [T!], [T?],[Tcall], [Taffine], [Tuse],
[Tcell], [Ttake] and [Tput].

Case: [Tmix]. We have 𝑃 = par {𝑃1 | | 𝑃2}, where 𝑃1 ⊢ Δ1;Γ and 𝑃2 ⊢ Δ2;Γ for some
Δ1 ,Δ2 = Δ.

By applying i.h. to 𝑃1 ⊢ Δ1;Γ and 𝑃2 ⊢ Δ2;Γ, we conclude that both #𝑃1 ≥ 1 and
#𝑃2 ≥ 1 and one of the following cases hold

Case: Either #𝑃1 > 1 or #𝑃2 > 1.
Suppose w.l.o.g. that #𝑃1 > 1.

Then
#(par {𝑃1 | | 𝑃2}) = #𝑃1 × #𝑃2 ≥ #𝑃1 > 1

which implies (i).

Case: Both #𝑃1 = #𝑃2 = 1, in which case Δ1 = Δ2 = ∅.
Then Δ = ∅ and #(par {𝑃1 | | 𝑃2}) = #𝑃1 × #𝑃2 = 1 × 1 = 1.

Case: [Tcut]. We have 𝑃 = cut {𝑃1 |𝑥 : 𝐴| 𝑃2}, where 𝑃1 ⊢ Δ1 , 𝑥 : 𝐴;Γ and 𝑃2 ⊢ Δ2 , 𝑥 : 𝐴;Γ
for some Δ1 ,Δ2 = Δ.

Applying i.h. to 𝑃1 ⊢ Δ1 , 𝑥 : 𝐴;Γ and 𝑃2 ⊢ Δ2 , 𝑥 : 𝐴;Γ yields #𝑃1 > 1 and #𝑃2 > 1.

Then #(cut {𝑃1 |𝑥 | 𝑃2}) = #𝑃1 × #𝑃2 > 1 × 1 = 1, which implies (ii).

Similarly for cases [Tsh], [TshL], [TshR].

Case [Tcut!]. We have 𝑃 = cut! {𝑦.𝑃1 |𝑥 : 𝐴| 𝑃2} where 𝑃1 ⊢ 𝑦 : 𝐴;Γ and 𝑃2 ⊢ Δ;Γ, 𝑥 : 𝐴.

I.h applied to 𝑃1 ⊢ 𝑦 : 𝐴;Γ and 𝑃2 ⊢ Δ;Γ, 𝑥 : 𝐴 yields #𝑃1 > 1 and #𝑃2 ≥ 1.

132

8.2. SHARE EXPANSION AND CUT NORMALISATION

Then
#(cut! {𝑦.𝑃1 |𝑥 | 𝑃2}) = #𝑃1 × #𝑃2 ≥ #𝑃1 > 1

which implies (i).

Case: [Tsum]. We have 𝑃 = 𝑃1 + 𝑃2 where 𝑃1 ⊢ Δ;Γ and 𝑃2 ⊢ Δ;Γ.

Applying i.h. to 𝑃1 ⊢ Δ;Γ and 𝑃2 ⊢ Δ;Γ yields #𝑃1 , #𝑃2 ≥ 1.

Then #(𝑃1 + 𝑃2) = #𝑃1 + #𝑃2 ≥ 1 + 1 = 2 > 1, which implies (i).

Observe that the measure # remains invariant under some structural congruence rules
of ≈, namely the conversions that commute static figures, such as [CM]

cut {𝑃 |𝑥 | (par {𝑄 | | 𝑅})} ≡ par {(cut {𝑃 |𝑥 | 𝑄}) | | 𝑅}

and remains also invariant by the conversions that distribute the static constructs over
sum, such as [CSm]

cut {𝑃 |𝑥 | (𝑄 + 𝑅)} ≡ (cut {𝑃 |𝑥 | 𝑄}) + (cut {𝑃 |𝑥 | 𝑅})

Importantly, though, the ≡ share commuting conversions [RSh], [TSh] and [PSh] and
the conversions of Fig. 8.1 that commute a share with an action all yield a #-smaller process
when applied from left to right. And all play an essential role in establishing the following
lemma

Lemma 14 (Share Expansion). Let 𝑃 and𝑄 be processes of CLASS\∃� s.t. 𝑄 ⊢ Δ′, 𝑥 : U 𝑓 𝐴;Γ
and either 𝑃 ⊢ Δ,U𝑒 𝐴;Γ or 𝑃 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ. Then, one of the following hypothesis hold

(i) There is a process 𝑅 s.t. share 𝑥 {𝑃 | | 𝑄} ≈ 𝑅 and #(share 𝑥 {𝑃 | | 𝑄}) > #𝑅.

(ii) There are processes 𝑅, 𝑆 s.t share 𝑥 {𝑃 | | 𝑄} ≈ 𝑅 + 𝑆 and #(share 𝑥 {𝑃 | | 𝑄}) > #𝑅, #𝑆.

(iii) There is a process 𝑅 s.t. share 𝑥 {𝑃 | | 𝑄} ≈ share 𝑥 {fwd 𝑥 𝑦 | | 𝑅}.

Proof. The proof is by induction on the sum of depths of the type derivation trees of 𝑃
and 𝑄. If 𝑃 and 𝑄 are both take actions with subject 𝑥, then we apply [TSh] and (ii) holds.
If either 𝑃 or 𝑄 is either a put or release with subject 𝑥, when we apply either [PSh] or
[RSh] and (i) holds. If either 𝑃 and 𝑄 is a sum, then we apply [ShSm] and (ii) holds. If
either 𝑃 or𝑄 is a forwarder, then (iii) holds. The remaining cases follow by commuting the
share with the principal form of either 𝑃 or 𝑄 and by applying the inductive hypothesis.
Check Appendix D for details.

Lemma 14 states that either we can expand a share into a #-smaller process (i) or a sum
of #-smaller process (ii) by applying a series of ≈-conversions. This is possible if the usage
is not being forwarded, in which case expansion is not possible (iii). This latter case gives,
as we shall see in the proof of the Cut Normalisation Lemma 15, origin to open cells.

133

CHAPTER 8. CUT NORMALISATION

The proof of Cut Normalisation Lemma 15 is by lexicographical induction, the first
component of this order being the type of the cut as ordered by the relation ≤, introduced
in the following definition

Definition 28 (𝐴 < 𝐵). Let ≈ be the least congruence relation on types s.t.

𝐴 ≈ 𝐴 S 𝑓 𝐴 ≈ S𝑒 𝐴

< is the least partial order on types that satisfies the following

𝐴 < 𝐴 ⊗ 𝐵 𝐵 < 𝐴 ⊗ 𝐵 𝐴 < 𝐴 ⊕ 𝐵 𝐵 < 𝐴 ⊕ 𝐵 𝐴 <!𝐴 𝐴 < ∧𝐴 𝐴 < S 𝑓 𝐴 𝐴 < S𝑒 𝐴

∧𝐴 < S 𝑓 𝐴 𝐴 ≈ 𝐶 𝐶 < 𝐷 𝐷 ≈ 𝐵
𝐴 < 𝐵

It is easy to check that < has no infinite descending chain, since every descending
chain starting with a type 𝐴 has length at most ℎ(𝐴) + 1, where ℎ(𝐴) is the height of the
construction tree for type 𝐴. Crucially, we have ∧𝐴 < S 𝑓 𝐴, since a cut on S 𝑓 𝐴 between a
full reference cell and release or a take usage reduces to an expression that in which there
is a cut on ∧𝐴, as expressed by the principal cut reductions [S 𝑓 U 𝑓 𝑟] and [S 𝑓 U 𝑓 𝑡].

The relation < is preserved by ≈-equality both on the left and on the right. Dual types
have the same <-order, as well as the state full and empty modalities. The latter because
a cut on S 𝑓 𝐴 reduces to a cut on S𝑒 𝐴 and vice-versa, as expressed by the principal cut
reductions [S 𝑓 U 𝑓 𝑡] and [S𝑒 U𝑒].

Normalisation of linear cuts depends on normalisation of unrestricted cuts, since
a linear cut reduces to an unrestricted cut, as expressed by → rule [!?]. At the same
time, normalisation of unrestricted cuts depends on normalisation of linear cuts, since
the principal conversion [call] reduces an unrestricted cut by spawning a new linear cut.
This knot is untied by establishing linear and unrestricted cut normalisation by mutual
lexicographical induction as described in the proof of the following lemma

Lemma 15 (Cut Normalisation). The following two hypothesis hold

𝐻1(𝐴, 𝑃, 𝑄): Suppose 𝑃 ⊢ Δ′, 𝑥 : 𝐴;Γ, 𝑄 ⊢ Δ, 𝑥 : 𝐴;Γ are normal processes of CLASS\∃�.
There exists a normal process 𝑅s.t. cut {𝑃 |𝑥 : 𝐴| 𝑄} ≈ 𝑅.

𝐻2(𝐴, 𝑃, 𝑄) Suppose 𝑃 ⊢ 𝑦 : 𝐴;Γ and 𝑄 ⊢ Δ;Γ, 𝑥 : 𝐴 are normal processes of CLASS\∃�.
There exists a normal process 𝑅 s.t. cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ≈ 𝑅.

Proof. The proof is by mutual induction. More precisely, by lexicographical induction:
first on 𝐴 (ordered by <, Def. 28), then on the hypothesis being proved - we consider
𝐻1 < 𝐻2 - and finally on the #-measure of the cut.

Since 𝐻1 < 𝐻2, we can appeal to 𝐻1(𝐴, 𝑃, 𝑄)when proving 𝐻2(𝐴, 𝑃, 𝑄). To justify the
inductive call we use the following notation

(𝐴, 𝐻𝑖 , 𝑃, 𝑄) → (𝐵, 𝐻𝑗 , 𝑅, 𝑆)

134

8.2. SHARE EXPANSION AND CUT NORMALISATION

which means that we are proving hypothesis 𝐻𝑖(𝐴, 𝑃, 𝑄) and that somewhere during the
proof we appeal to hypothesis𝐻𝑗(𝐵, 𝑅, 𝑆). The inductive call must respect the lexicograph-
ical order.

The overall proof strategy is to work the linear or the unrestricted cut by applying one
of the rules ≈, so as to either expose a cut where we can make an inductive call, or to
obtain a process in which there are not cuts except open cells. Lemma 14 is crucially used
to normalise cuts between cells and shared usages on the same session.

We will now illustrate the proof of both hypothesis. Check Appendix D for details.

Proof of 𝐻1(𝐴, 𝑃, 𝑄): We perform case analysis on the root rules of derivation trees for
𝑃 ⊢ Δ′, 𝑥 : 𝐴;Γ and 𝑄 ⊢ Δ, 𝑥 : 𝐴;Γ. We illustrate with some cases.

Case: The root rule of 𝑃 is [T!], the root rule of 𝑄 is [T?], both introduce an action
with the same subject 𝑥.
We have

𝑃′ ⊢ 𝑦 : 𝐵;Γ

!𝑥(𝑦);𝑃′ ⊢ 𝑥 :!𝐵;Γ
𝑄′ ⊢ Δ;Γ, 𝑥 : 𝐵

?𝑥;𝑄′ ⊢ Δ, 𝑥 :?𝐵;Γ

where 𝑃 = !𝑥(𝑦);𝑃′, Δ′ = ∅ and 𝑄 = ?𝑥;𝑄′.

Then

cut {!𝑥(𝑦);𝑃′ |𝑥 :!𝐵| ?𝑥;𝑄′}
→ cut! {𝑦.𝑃′ |𝑥 : 𝐵| 𝑄′} (→ [!?])

≈ 𝑅, for some normal 𝑅 (induction (!𝐵, 𝐻1 ,−,−) → (𝐵, 𝐻2 ,−,−))

Case The root rule of P is [Tcell], the root rule of Q is [Trelease], both introduce an
action with the same subject 𝑥.

We have

𝑃′ ⊢ Δ′, 𝑦 : ∧𝐵;Γ

cell 𝑥(𝑦.𝑃′) ⊢ Δ′, 𝑥 : S 𝑓 𝐵;Γ
release 𝑥 ⊢ 𝑥 : U 𝑓 𝐵;Γ

where 𝑃 = cell 𝑥(𝑦.𝑃′), 𝑄 = release 𝑥 and Δ = ∅.
Then

cut {cell 𝑥(𝑦.𝑃′) |𝑥 : S 𝑓 𝐵| release 𝑥}
→ cut {𝑃 |𝑦 : ∧𝐵| discard 𝑦} (→ [S 𝑓 U 𝑓 r])

≈ 𝑅, for some normal 𝑅 (induction (S 𝑓 𝐵,−,−,−) → (∧𝐵,−,−,−))

Case: The root rule of𝑃 [Tcell] with subject 𝑥, the root rule of𝑄 is [Tsh] on the usage 𝑥.

135

CHAPTER 8. CUT NORMALISATION

We have

𝑃′ ⊢ Δ, 𝑦 : ∧𝐵;Γ

cell 𝑥(𝑦.𝑃′) ⊢ 𝑥 : S 𝑓 𝐵;Γ

𝑄1 ⊢ Δ′1 , 𝑥 : U 𝑓 𝐵;Γ 𝑄2 ⊢ Δ′2 , 𝑥 : U 𝑓 𝐵;Γ

share 𝑥 {𝑄1 | | 𝑄2} ⊢ Δ′1 ,Δ
′
2 , 𝑥 : U 𝑓 𝐵;Γ

where 𝑃 = cell 𝑥(𝑦.𝑃′), 𝑄 = share 𝑥 {𝑄1 | | 𝑄2}, Δ′ = Δ′1 ,Δ
′
2 and 𝐴 = S 𝑓 𝐵.

By a applying Lemma 14 to hypothesis 𝑄1 ⊢ Δ′1 , 𝑥 : U 𝑓 𝐵;Γ and 𝑄2 ⊢ Δ′2 , 𝑥 :
U 𝑓 𝐵;Γ we conclude that one of the following cases hold

Case (i): There is 𝑄′ s.t. 𝑄 ≈ 𝑄′ and #𝑄 > #𝑄′.
Then

cut {𝑃 |𝑥 : 𝐴| 𝑄} ≈ cut {𝑃 |𝑥 : 𝐴| 𝑄′}
≈ 𝑅, for some normal 𝑅

(i.h. (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , 𝑃, 𝑄
′))

Case (ii): Exists 𝑅1 , 𝑅2 s.t. 𝑄 ≈ 𝑅1 + 𝑅2 and #𝑄 > #𝑅1 , #𝑅2.
Then

cut {𝑃 |𝑥 : 𝐴| 𝑄} ≈ cut {𝑃 |𝑥 : 𝐴| (𝑅1 + 𝑅2)}
≈ (cut {𝑃 |𝑥 : 𝐴| 𝑅1}) + (cut {𝑃 |𝑥 : 𝐴| 𝑅2})
≈ 𝑆1 + (cut {𝑃 |𝑥 : 𝐴| 𝑅2}), for some normal 𝑆2

(i.h. (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , 𝑃, 𝑅1))

≈ 𝑆1 + 𝑆2, for some normal 𝑆2

(i.h. (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , 𝑃, 𝑅2))

Case (iii): Exists 𝑄′ s.t. 𝑄 ≈ share 𝑥 {fwd 𝑥 𝑧 | | 𝑄′}
Then

cut {𝑃 |𝑥 : 𝐴| 𝑄} ≈ cut {cell 𝑥(𝑦.𝑃′) |𝑥 : 𝐴| share 𝑥 {fwd 𝑥 𝑧 | | 𝑄′}}

and cut {cell 𝑥(𝑦.𝑃′) |𝑥 : 𝐴| share 𝑥 {fwd 𝑥 𝑧 | | 𝑄′}} is an open cell.

Proof of 𝐻2

We perform case analysis on the root rule of the tree for𝑄 ⊢ Δ;Γ, 𝑥 : 𝐴. We illustrate
with the principal unrestricted cut reduction.

Case The root rule if [Tcall] with subject 𝑥.
We have

𝑄′ ⊢ Δ, 𝑧 : 𝐴;Γ, 𝑥 : 𝐴

call 𝑥(𝑧);𝑄′ ⊢ Δ;Γ, 𝑥 : 𝐴

where 𝑄 = call 𝑥(𝑧);𝑄′.

136

8.3. SOME COROLLARIES

Then

cut! {𝑦.𝑃 |𝑥 : 𝐴| call 𝑥(𝑧);𝑄′} → cut {{𝑧/𝑦}𝑃 |𝑧 : 𝐴| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄′})}
(→ [call])

≈ cut {{𝑧/𝑦}𝑃 |𝑧 : 𝐴| 𝑅′}, for some normal 𝑅′

(i.h. (𝐴, 𝐻2 , 𝑃, 𝑄) → (𝐴, 𝐻2 , 𝑃, 𝑄
′))

≈ 𝑅, for some normal 𝑅
(i.h. (𝐴, 𝐻2 ,−,−) → (𝐴, 𝐻1 ,−,−))

Ourmain result for this chapter, the Cut Normalisation Theorem 4, follows immediately
by the Cut Normalisation Lemma 15. In the next section we will present some corollaries
of this main result.

Theorem 4 (Cut Normalisation). Fore every process 𝑃 ⊢ Δ;Γ there is a normal form 𝑄 s.t.
𝑃 ≈ 𝑄.

Proof. By straightforward induction on a type derivation tree for 𝑃 ⊢ Δ;Γ and by case
analysis on the root rule. Cases [Tcut] and [Tcut!] follow by Lemma 15.

8.3 Some Corollaries

In this section we collect some corollaries of the Cut Normalisation Theorem 4. First,
we establish that every typed process has a type derivation that satisfies the subformula
property (Corollary 1). In this section we considerallprocesses𝑃 to be from the subcalculus
CLASS\∃� without quantifiers and inductive/coinductive types.

Then, we show that cuts can be eliminated from processes that type with a pure typing
context (Corollary 2), i.e. with a typing context formed with only the types of Propositional
Linear Logic, without the imperative state and usage modalities. Furthermore, we show
that this target cut-free simpler form is pure itself, in the sense that it does not use imperative
constructs, even if the source process manipulates shared state internally. Interestingly,
this allows us to express the behaviour of a potentially complex imperative concurrent
program as a sum of considerable simpler pure processes, as illustrated in Example 16

Before presenting our first corollary 2 we show first that every normal type derivation
in CLASS\∃� satisfies the subformula property. But first let us introduce some definitions.
We say that a type 𝐴 is in a typing context Δ;Γ iff 𝑥 : 𝐴 ∈ Δ or 𝑥 : 𝐴 ∈ Γ, for some 𝑥. A
type 𝐴 is in a type derivation iff it is in a typing context of one of the sequents composing
the derivation. In the following definition the order ≤ on types refers to Def. 28.

Definition 29 (Subformula Property). A type derivation for 𝑃 ⊢ Δ;Γ has the subformula
property iff for all types 𝐴 in the derivation there exists a type 𝐵 in Δ;Γ s.t. 𝐴 ≤ 𝐵.

137

CHAPTER 8. CUT NORMALISATION

Lemma 16 (Normal Forms Satisfy the Subformula Property). If 𝑃 is normal then every type
derivation for 𝑃 ⊢ Δ;Γ satisfies the subformula property.

Proof. By induction on a derivation for 𝑃 ⊢ Δ;Γ and by case analysis on the root rule. The
interesting case is [Tcut]. Since 𝑃 is normal, the cut must be an open cell.

Suppose w.l.o.g that it is a full open cell. Then,

𝑃 = cut {cell 𝑥(𝑦.𝑄) |𝑥 : S 𝑓 𝐴| share 𝑥 {fwd 𝑥 𝑧 | | 𝑅}}

and by inverting we conclude that any type derivation for 𝑃 ⊢ Δ;Γ has the following form

...

𝑄 ⊢ 𝑦 :!𝐴;Γ

cell 𝑥(𝑦.𝑄) ⊢ 𝑥 : S 𝑓 𝐴;Γ

fwd 𝑥 𝑧 ⊢ 𝑥 : U 𝑓 𝐴, 𝑧 : S 𝑓 𝐴;Γ

...

𝑅 ⊢ Δ′, 𝑥 : U 𝑓 𝐴;Γ

share 𝑥 {fwd 𝑥 𝑧 | | 𝑅} ⊢ Δ′, 𝑥 : U 𝑓 𝐴, 𝑧 : S 𝑓 𝐴;Γ

cut {cell 𝑥(𝑦.𝑄) |𝑥 | share 𝑥 {fwd 𝑥 𝑧 | | 𝑅}} ⊢ Δ′, 𝑧 : S 𝑓 𝐴;Γ

where Δ = Δ′, 𝑧 : S 𝑓 𝐴. By induction on 𝑄 ⊢ 𝑦 : 𝐴;Γ and 𝑅 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ we conclude
that derivations for𝑄 ⊢ 𝑦 : 𝐴;Γ and𝑅 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ enjoy the subformula property, from
which we can easily derive subformula property for the type derivation of 𝑃 ⊢ Δ;Γ. Recall
that ≤ is preserved by duality, hence U 𝑓 𝐴 ≤ S 𝑓 𝐴 and that the inequality affine 𝐴;≤ S 𝑓 𝐴

holds (Def. 28).

We now present our first corollary.

Corollary 1 (Subformula Property). Suppose 𝑃 ⊢ Δ;Γ. There is a type derivation 𝑄 ⊢ Δ;Γ that
satisfies the subformula property and 𝑃 ≈ 𝑄.

Proof. Follows by Cut Normalisation Theorem 4 and Lemma 16.

We will now present the second corollary 2. But first, some definitions. We say
that a process 𝑃 is cut-free iff there is no process context 𝒞 nor processes 𝑄, 𝑅 s.t. 𝑃 =

𝒞[cut {𝑄 |𝑥 | 𝑅}] or 𝑃 = 𝒞[cut! {𝑦.𝑄 |𝑥 | 𝑅}], in other words if the process does not have
either linear nor unrestricted cuts as subprocesses. We say that a type 𝐴 is pure iff there
is no type 𝐵 s.t. either S 𝑓 𝐵 ≤ 𝐴 or S𝑒 𝐵 ≤ 𝐴. A typing context is pure iff all the types
in Δ;Γ are pure. A process 𝑃 is pure iff there is no process context nor processes 𝑄, 𝑅 s.t.
either 𝑃 = 𝒞[cell 𝑥(𝑦.𝑄)], 𝑃 = 𝒞[release 𝑥], 𝑃 = 𝒞[take 𝑥(𝑦);𝑄], 𝑃 = 𝒞[put 𝑥(𝑦.𝑄);𝑅] or
𝑃 = 𝒞[share 𝑥 {𝑄 | | 𝑅}].

Now, we present our second corollary.

Corollary 2 (Cut Elimination for Pure Sequents). Suppose 𝑃 ⊢ Δ;Γ, where Δ;Γ is a pure
typing context. There exists a pure cut-free process 𝑄 ⊢ Δ;Γ s.t. 𝑃 ≈ 𝑄.

Proof. By the Normalisation Theorem 4, there exists a normal process 𝑄 ⊢ Δ;Γ s.t 𝑃 ≈ 𝑄.
We show first that 𝑄 ⊢ Δ;Γ is pure.

138

8.3. SOME COROLLARIES

cut {cell 𝑐(𝑏.affine 𝑏; 𝐵(𝑏)) |𝑐 | toggle(𝑐, 𝑐′)}
≈ cell 𝑐′(𝑏′.affine 𝑏′; (cut {𝐵(𝑏) |𝑏 | not(𝑏, 𝑏′)})) [cell-toggle]
cut {cell 𝑐(𝑏.affine 𝑏; 𝐵(𝑏)) |𝑐 | obs(𝑐, 𝑥, 𝑐′)}
≈ par {send 𝑥(𝑏.𝐵(𝑏)); close 𝑥 | | cell 𝑐′(𝑏′.affine 𝑏′; false(𝑏′))} [cell-obs]

cut {cell 𝑐(𝑏.affine 𝑏; 𝐵(𝑏)) |𝑐 | toggle(𝑐, 𝑐′)}
= cut {cell 𝑐(𝑏.affine 𝑏; 𝐵(𝑏)) |𝑐 | take 𝑐(𝑏); put 𝑐(𝑏′.affine 𝑏′; use 𝑏; not(𝑏, 𝑏′)); fwd 𝑐 𝑐′}
(by def. of toggle(𝑐, 𝑐′))
≈ cut {empty 𝑐 |𝑐 | affine 𝑏; 𝐵(𝑏) |𝑏 | put 𝑐(𝑏′.affine 𝑏′; use 𝑏; not(𝑏, 𝑏′)); fwd 𝑐 𝑐′}
(by→ rule [S 𝑓 U 𝑓 𝑡])
≈ cut {empty 𝑐 |𝑐 | put 𝑐(𝑏′.affine 𝑏′; cut {affine 𝑏; 𝐵(𝑏) |𝑏 | use 𝑏; not(𝑏, 𝑏′)}); fwd 𝑐 𝑐′}
(by ≈ rules [CPut] and [CAffine])
≈ cut {empty 𝑐 |𝑐 | put 𝑐(𝑏′.affine 𝑏′; cut {𝐵(𝑏) |𝑏′ | not(𝑏, 𝑏′)}); fwd 𝑐 𝑐′}
(by→ [∧ ∨ 𝑢])
≈ cut {cell 𝑐(𝑏.affine 𝑏′; cut {𝐵(𝑏) |𝑏′ | not(𝑏, 𝑏′)}) |𝑐 | fwd 𝑐 𝑐′}
(by→ rule [S𝑒 U𝑒])
≈ cell 𝑐′(𝑏.affine 𝑏′; cut {𝐵(𝑏) |𝑏′ | not(𝑏, 𝑏′)})
(by→ [fwd])

cut {cell 𝑐0(𝑏.affine 𝑏; true(𝑏)) |𝑐0 | 𝑃}
(by def. of 𝑃)
≈ cut { cell 𝑐0(𝑏.affine 𝑏; true(𝑏)) |𝑐0 | toggle(𝑐0 , 𝑐1) |𝑐1 | obs(𝑐1 , 𝑥, 𝑐2) |𝑐2 | release 𝑐2}
(by [cell-toggle])
≈ cut {affine 𝑏′; cut {true(𝑏) |𝑏 | not(𝑏, 𝑏′)}) |𝑐1 | obs(𝑐1 , 𝑥, 𝑐2) |𝑐2 | release 𝑐2}
(since cut {true(𝑏) |𝑏 | not(𝑏, 𝑏′)} +−→ false(𝑏′), see Example 4)
≈ cut { cell 𝑐1(𝑏′.affine 𝑏′; false(𝑏′)) cut𝑐1 obs(𝑐1 , 𝑥, 𝑐2) cut𝑐2 release 𝑐2}
(by [cell-obs])
≈ par {send 𝑥(𝑏.false(𝑏)); close 𝑥 | | cut {cell 𝑐2(𝑏.affine 𝑏; false(𝑏)) |𝑐2 | release 𝑐2}}
(by→ rules [S 𝑓 U 𝑓 𝑟] and [∧ ∨ 𝑑])
≈ par {send 𝑥(𝑏.false(𝑏)); close 𝑥 | | 0}
(by ≡ unit rule [0M])
≈ send 𝑥(𝑏.false(𝑏)); close 𝑥

Figure 8.5: Cut elimination: example.

For suppose, in order to derive a contradiction, that 𝑄 has an imperative construct,
then it uses one of the typing rules [Tcell], [Tempty] [Tfree], [Ttake], [Tput], [Tsh],
[TshL] or [TshR], which necessarily introduce either a S 𝑓 𝐴 or a U 𝑓 𝐴 modality.

But then, by the Subformula Property 1, we conclude that there should exist a type 𝐵
in Δ;Γ for which S 𝑓 𝐴 ≤ 𝐵, which contradicts the fact that Δ;Γ is a pure typing context.

Now, we show that 𝑄 is cut-free. For suppose that 𝑄 has a cut, since it is a normal
process the cut must be an open cell cut {cell 𝑦(−.−) |𝑦 | share 𝑦 {− || −}}, but then it implies
that 𝑄 has imperative constructs and, hence is not pure, which is a contradiction.

Example 16. In this example we apply Corollary 2 and show to derive, by doing simple algebraic-like
≈-manipulations, a sum of pure processes that summarises the behaviour of a stateful program.

139

CHAPTER 8. CUT NORMALISATION

Consider a stateful process
system(𝑥) ⊢ 𝑥 : Bool ⊗ 1

defined by

system(𝑥) ≜
cut {cell 𝑐0(𝑏.affine 𝑏; true(𝑏)) |𝑐0 |
share 𝑐0 {cut {toggle(𝑐0 , 𝑐1) |𝑐1 | release 𝑐1} | | cut {obs(𝑐0 , 𝑥, 𝑐1) |𝑐1 | release 𝑐1}}}

where

toggle(𝑐, 𝑐′) ≜ take 𝑐(𝑏); put 𝑐(𝑏.affine 𝑏′; use 𝑏; not(𝑏, 𝑏′)); fwd 𝑐 𝑐′

obs(𝑐, 𝑥, 𝑐′) ≜ take 𝑐(𝑏); par {use 𝑏; send 𝑥(𝑏); close 𝑥 | |
put 𝑐(𝑏′.affine 𝑏′; false(𝑏′)); fwd 𝑐 𝑐′}

Process system(𝑥) composes a reference boolean cell 𝑐0 : S 𝑓 Bool, initially storing the boolean true,
with two atomic actions: one that toggles the cell state and another that observes. The booleans and
their basic operations were previously defined in Example 4.

The toggle action is defined by composing, via a cut on 𝑐1, process toggle(𝑐0 , 𝑐1)with release 𝑐1.
Process

toggle(𝑐, 𝑐′) ⊢ 𝑐 : U 𝑓 Bool, S 𝑓 Bool

updates the reference cell with its negated boolean and forwards its updated state to 𝑐′.
Likewise, the observation operation is defined by composing obs(𝑐0 , 𝑥, 𝑐1) with release 𝑐1.

Process
obs(𝑐, 𝑥, 𝑐′) ⊢ 𝑐 : U 𝑓 Bool, 𝑥 : Bool ⊗ 1, 𝑐′ : S 𝑓 Bool

observes cell 𝑐 by sending the stored boolean on a session 𝑥, after which 𝑥 is closed, then it resets
the cell 𝑐 to false and forwards the updated cell to 𝑐′.

Process system(𝑥) internally manipulates a reference cell, but since it types with a pure typing
context, by Corollary 2, there must exist a cut-free pure process system′(𝑥) ⊢ 𝑥 : Bool ⊗ 1 such
that system(𝑥) ≈ system′(𝑥).

Indeed, let

system′(𝑥) ≜ send 𝑥(𝑏.affine 𝑏; false(𝑏)); close 𝑥 + send 𝑥(𝑏.affine 𝑏; true(𝑏)); close 𝑥

The cut-free pure process system′(𝑥) ⊢ 𝑥 : Bool ⊗ 1 summarises the behaviour of system(𝑥) as a
sum of pure process that send either the boolean false or true, depending on the nondeterministic
scheduling of the two concurrent atomic actions toggle and observe.

We will now show how to compute system′(𝑥) by doing simple algebraic manipulations, as
expressed by the complete set of commuting conversions ≈ (Def. 26).

First, we will start by expanding the share of usage 𝑐0 of system(𝑥) into a sum of sequential
usages

share 𝑐0 {cut {toggle(𝑐0 , 𝑐1) |𝑐1 | release 𝑐1} | | cut {obs(𝑐0 , 𝑥, 𝑐1) |𝑐1 | release 𝑐1}} ≈ 𝑃 +𝑄

140

8.3. SOME COROLLARIES

where

𝑃 ≜ cut {(cut {toggle(𝑐0 , 𝑐1) |𝑐1 | obs(𝑐1 , 𝑥, 𝑐2)}) |𝑐2 | release 𝑐2}
𝑄 ≜ cut {(cut {obs(𝑐0 , 𝑥, 𝑐1) |𝑐1 | toggle(𝑐1 , 𝑐2)}) |𝑐2 | release 𝑐2}

The sum is exhibited by first applying ≈ law [TSh] that interleaves the two concurrent take actions.
Then, we apply further laws of ≈ to each summand that allows us to push the structure inside the
share constructs outside, like for example ≡ rule [PSh] and ≈ rule [ShUse]. Finally, by applying the
identity ≡ law [RSh] share 𝑥 {release 𝑥 | | 𝑅} ≡ 𝑅 we get rid of the share construct, obtaining
the sequential cell usages defined by 𝑃 and 𝑄.

Process 𝑃 corresponds to the cell usage scheduling where we first toggle the cell and only then
do the observation, whereas𝑄 corresponds to the scheduling in which the observation is done before
the toggle.

Applying ≡ law [CSm] allows us to distribute the cell over each summand

system(𝑥) ≈ cut {cell 𝑐(𝑏.affine 𝑏; true(𝑏)) |𝑐 | (𝑃 +𝑄)}
≈ (cut {cell 𝑐(𝑏.affine 𝑏; true(𝑏)) |𝑐 | 𝑃}) + (cut {cell 𝑐(𝑏.affine 𝑏; true(𝑏)) |𝑐 | 𝑄})

and then cut elimination proceeds independently for each summand.
The following auxiliary ≈-equivalences

cut {cell 𝑐(𝑏.affine 𝑏; 𝐵(𝑏)) |𝑐 | toggle(𝑐, 𝑐′)}
≈ cell 𝑐′(𝑏′.affine 𝑏′; (cut {𝐵(𝑏) |𝑏 | not(𝑏, 𝑏′)})) [cell-toggle]
cut {cell 𝑐(𝑏.affine 𝑏; 𝐵(𝑏)) |𝑐 | obs(𝑐, 𝑥, 𝑐′)}
≈ par {send 𝑥(𝑏.𝐵(𝑏)); close 𝑥 | | cell 𝑐′(𝑏′.affine 𝑏′; false(𝑏′))} [cell-obs]

allows us to compute the result of the interaction of a cell 𝑐 storing an arbitrary boolean 𝐵(𝑏) with
processes toggle(𝑐, 𝑐′) and obs(𝑐, 𝑥, 𝑐′), respectively.

Fig. 8.5 shows how to derive step-by-step law [cell-inc], law [cell-obs] can be derived in a similar
way. It shows ≈-equalities [cell-toggle] and [cell-obs] for interaction between a natural reference cell
and the imperative atomic toggle and observe operations. The equalities are presented on top. Then,
we show how to derive step-by-step [cell-toggle]. We also show how the ≈-equalities [cell-toggle]
and [cell-obs] are then used to simplify a stateful process, obtaining a pure one.

Then, we obtain

cut {cell 𝑐0(𝑏.affine 𝑏; true(𝑏)) |𝑐0 | 𝑃} ≈ send 𝑥(𝑏.false(𝑏)); close 𝑥

the derivation of which is also displayed in Fig. 8.5. Similarly one may derive

cut {cell 𝑐0(𝑏.affine 𝑏; true(𝑏)) |𝑐0 | 𝑄} ≈ send 𝑥(𝑏.true(𝑏)); close 𝑥

and this concludes the derivation of the simplified cut-free pure process system′(𝑥).

141

CHAPTER 8. CUT NORMALISATION

8.4 Further Discussion and Related Work

Our proof of the Cut Normalisation Lemma 15 is inspired by [122, 123], where Pfenning
presents a proof of cut elimination for linear logic, based on the work of Hodas [70]. The
structural proof of Pfenning is given for a dyadic sequent calculus formulation of linear
logic, called LV, that works by isolating the non-linear reasoning into an unrestricted typing
context (like in CLASS), and thereby circumvents some difficulties of establishing cut
elimination for monadic sequent formulations of linear logic in the presence of contraction.
Pfenning proves linearand unrestricted cut admissibility for LV by a mutual lexicographical
induction. The novelty in the proof of Lemma 15 lies in the additional step for expanding
share operations by applying a series of ≈-transformations (Share Expansion Lemma).

Another result that is usually proved alongside cut elimination is identity elimination,
i.e. that each provable type judgment has a proof that does not use the identity axiom
[Tfwd]. The result holds for classical linear logic and the collection of necessary proof
transformations for identity elimination are usually referred to as identity expansions (see,
for example, [24]).

For example, if we consider the following type-annotated version of the forwarding
construct fwd𝐴 𝑥 𝑦 ⊢ 𝑥 : 𝐴, 𝑦 : 𝐴;Γ, then the identity expansions for the unit 1 and the
tensor ⊗ are written as

fwd1 𝑥 𝑦 ≈ wait 𝑦; close 𝑥
fwd𝐴⊗𝐵 𝑥 𝑦 ≈ recv 𝑦(𝑤); send 𝑥(𝑧.fwd𝐴 𝑧 𝑤); fwd𝐵 𝑥 𝑦

Given the infinite possible set of behaviours of a cell usage and the complexity layer added
by cell sharing, it is not clear at the moment if it is possible to express identity expansions
for the state modalities.

The technique used in this chapter to prove cut normalisation relies on a well-founded
inductive measure on the cut formula and, therefore, does not scale for more complex
type constructs such as polymorphic and inductive types. In the following chapter we
introduce a new technique, based on linear logical relations, that allows us to prove a
normalisation result for the complete language CLASS.

142

9

Strong Normalisation

9.1 Introduction

In this chapter we prove a strong normalisation result. Let ℛ be a binary relation on
processes. A process 𝑃0 is strongly normalising (SN) w.r.t. ℛ iff there is no infinite
sequence 𝑃0 , 𝑃1 , 𝑃2 , . . . starting with 𝑃0 s.t. (𝑃𝑖 , 𝑃𝑖+1) ∈ ℛ, for all 0 ≤ 𝑖. The relation ℛ is
said to be strongly normalising if all the processes 𝑃 are strongly normalising w.r.t ℛ.

Strong normalisation of reduction is key for critical imperative concurrent code since
it guarantees that processes are responsive participants which always react within a finite
amount of time. For example: when a client requests a service, the computation on the
server side is always guaranteed to terminate and to return an answer. The client will
not be left hanging out forever. And even if at the global level we may want to write
programs that do not terminate (such as operating systems) we still want to guarantee
that this non-terminating behaviour does not result from internal activity. Furthermore,
basic operations of concurrent datatypes must always terminate.

Strong normalisation is a result quite challenging to obtain, particularly in the the
context of concurrent process calculi [46]. Furthermore, it is a property which can be
easily compromised in the presence of recursion and shared mutable state. For example,
with higher-order state and without further restrictions, we can express non-terminating
programs such as the famous Landin’s Knot. However, our linear logic based type system
rules out cyclic dependencies in memory, additionally our recursion is well-founded since
the type system excludes infinite chains of nested corecursive calls.

Our proof of strong normalisation relies on the technique of linear logical relations
for session-based concurrent processes [121, 32, 146], here adapted to classical linear logic
where we explore the benefits of having a duality relation for session types [63, 9, 1]. We
extend the technique with auxiliary constructs cell 𝑐(𝑎.𝑆) and empty 𝑐(𝑎.𝑆), which are
cells subject to interference over a set 𝑆. They crucially allows us to reason about state
sharing in a compositional way and the argument to go through. The intuition is that
a take on an interference-sensitive cell might obtain a session distinct from the session
previously put, even if the cell is not being shared.

143

CHAPTER 9. STRONG NORMALISATION

In CLASS, reduction → is not SN, essentially due to the idempotency of the sum
constructor (𝑃 ≡ 𝑃 + 𝑃). For suppose that 𝑃 → 𝑃′, then we can form the infinite reduction
sequence

𝑃 ≡ 𝑃 + 𝑃 → 𝑃′ + 𝑃 ≡ 𝑃′ + (𝑃 + 𝑃) → 𝑃′ + (𝑃′ + 𝑃) ≡ (𝑃′ + 𝑃′) + 𝑃 ≡ 𝑃′ + 𝑃 → . . .

Nevertheless, there is a sum-free subcalculus of CLASS for which strong normalisation
holds. More precisely, we say that a process 𝑃 in CLASS is said to be sum-free iff there are
no processes 𝑄, 𝑅 in CLASS s.t. 𝑄 + 𝑅 is a subprocess of 𝑃. In this chapter we consider
all processes to be sum-free.

In this chapter, we work with a congruence relation ≡𝑐 that extends structural congru-
ence ≡, restricted to sum-free processes, with a complete set of commuting conversions
,along standard lines [23, 24, 157], that allows us commute actions with static constructs,
for example:

par {wait 𝑥;𝑃 | | 𝑄} ≈ wait 𝑥; par {𝑃 | | 𝑄}
cut {wait 𝑥;𝑃 |𝑦 | 𝑄} ≈ wait 𝑥; cut {𝑃 |𝑦 | 𝑄}, 𝑦 ≠ 𝑥

share 𝑦 {wait 𝑥;𝑃 | | 𝑄} ≈ wait 𝑥; share 𝑦 {𝑃 | | 𝑄}

and that satisfies rule [TShC]

share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2} ≡c take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2}

which allows us to nondeterministically choose a take operation to have precedence and
interact with a reference cell. In rule [TShC] we pick the take operation that occurs in
the left argument of the share construct, however since share is commutative we can pick
the take operation that occurs in the right argument instead. The collapsing reduction
relation →c is a static congruence that operates on sum-free processes, it satisfies the
same principal cut reductions as reduction→ in CLASS but it is closed by the congruence
relation ≡c instead. Complete definitions are given in Appendix E. Hereafter, strong
normalisation is always with respect to→c.

The chapter is organised as follows. In Section 9.2 we extend CLASS with the
interference-sensitive reference cells and proves some simulation properties, among
which is the key simulation given by Lemma 20 which allows us to reason about state
sharing compositionally. Then, in Section 9.3 we introduce the linear logical predicates
and conclude with the proof of the Fundamental Lemma 27, which states that every
well-typed process is in the corresponding logical predicate. This lemma immediately
implies our strong normalisation result (Theorem 5). Finally, we conclude this chapter in
Section 9.4 with further discussion and related work.

9.2 Interference-Sensitive Cells

144

9.2. INTERFERENCE-SENSITIVE CELLS

In this section we equip CLASS with interference-sensitive cells, reference cells which
internalise state interference, resultant from shared usage manipulation, in their opera-
tional model. These auxiliary process constructs play a crucial technical role in the proof
of the strong normalisation result, essentially because they allow us to reason about state
interference compositionally, as expressed by Lemma 20. We start with the definition of
interference-sensitive cells.

Definition 30 (Interference-Sensitive Cells). Let 𝑆 ⊆ {𝑅 | 𝑅 ⊢� 𝑎 : ∧𝐴}. We extend the
process calculus CLASS with the interference-sensitive full cell 𝑐(𝑎.𝑆) and empty empty 𝑐(𝑎.𝑆)
cells, which have following associated principal reduction rules

cut {cell 𝑐(𝑎.𝑆) |𝑐 | release 𝑐} →c cut {𝑃 |𝑎 | discard 𝑎}, 𝑃 ∈ 𝑆 (1)
cut {cell 𝑐(𝑎.𝑆) |𝑐 | take 𝑐(𝑎′);𝑄} →c cut {empty 𝑐(𝑎.𝑆) |𝑐 | (cut {𝑃 |𝑎 | {𝑎/𝑎′}𝑄})}, 𝑃 ∈ 𝑆 (2)
cut {empty 𝑐(𝑎.𝑆) |𝑐 | put 𝑐(𝑎.𝑄1);𝑄2} →c cut {cell 𝑐(𝑎.𝑆) |𝑐 | 𝑄2} (3)

Rules (1) and (2) apply to usage processes 𝑃 ⊢ 𝑐 : U 𝑓 𝐴, whereas rule (3) applies
to a usage process 𝑃 ⊢ 𝑐 : U𝑒 𝐴. When a take or a release action interacts with an
interference-sensitive full cell cell 𝑐(𝑎.𝑆) we pick an arbitrary element 𝑃 from the set 𝑆
(rules (1) and (2)). On the other hand, when a put action put 𝑐(𝑎.𝑄1);𝑄2 interacts with an
interference-sensitive empty cell empty 𝑐(𝑎.𝑆) it evolves to cell 𝑐(𝑎.𝑆) (3).

The process constructs cell 𝑐(𝑎.𝑆) and empty 𝑐(𝑎.𝑆) can be though of as reference
cells subject to interference over the set 𝑆. They contrast wit the the basic empty and
full reference cells cell 𝑐(𝑎.𝑃) and empty 𝑐 of CLASS which are, so to speak, blind to
the interference that results from concurrency, since from a local point of view they obey
a sequential protocol: if a cell is not being shared by any other thread then every take
acquires the session that was put before or that was present in the cell initially. On the
other hand, a take on an interference-sensitive cell might obtain a session distinct from the
session previously put, even if the interference-sensitive cell is not being explicitly shared.
So, interference resulting from cell sharing is baked in the operational semantics of the
interference-sensitive cells as expressed by rules (1)-(3) of Def. 30.

Provided the usages are well-behavedaccording to to the setoverwhich the interference-
sensitive cells are defined, as formalised by coinductive Def. 31, it is possible to simulate
the basic full and empty cells of CLASS with interference-sensitive cells, as described by
Lemma 18.

Definition 31. Let 𝑆 ⊆ {𝑅 | 𝑅 ⊢ 𝑦 : ∧𝐴}. A process 𝑃, where either 𝑃 ⊢ 𝑥 : U 𝑓 𝐴 or
𝑃 ⊢ 𝑥 : U𝑒 𝐴, is 𝑆-preserving on 𝑥 iff the following hold

(a) If 𝑃
∗−→c 𝑄, 𝑄 ≡c take 𝑥(𝑦′);𝑄′ and 𝑅 ∈ 𝑆, then cut {{𝑦′/𝑦}𝑅 |𝑦′ | 𝑄′} is 𝑆-preserving on

𝑥.

(b) If 𝑃
∗−→c 𝑄 and 𝑄 ≡c put 𝑥(𝑦′.𝑄1);𝑄2, then {𝑦/𝑦′}𝑄1 ∈ 𝑆 and 𝑄2 is 𝑆-preserving on 𝑥.

If a process 𝑃 is 𝑆-preserving on 𝑥 and after some internal reductions it offers a take
action, then the continuation of the take action composed with an element from 𝑆 is also

145

CHAPTER 9. STRONG NORMALISATION

𝑆-preserving on 𝑥 (Def. 31(a)). Symmetrically, if 𝑃 offers a put action then the element put
is on the set 𝑆 and the continuation is still 𝑆-preserving (Def. 31(b)). A set of processes 𝑇
is 𝑆-preserving on 𝑥 if and only for all 𝑃 ∈ 𝑇, 𝑃 is 𝑆-preserving on 𝑥.

Intuitively a process 𝑃 that uses a cell 𝑥 is 𝑆-preserving on 𝑥 if it only puts values
from 𝑆 on cell 𝑥. The notion of 𝑆-preservation, parametric on any 𝑆, brings explicit the
conditions needed for safe interaction with a memory cell, subject to interference, while
ensuring a state invariant 𝑆 on the cell contents.

The notion of 𝑆-preserving is preserved by reduction
∗−→𝑐 , as expressed by the following

lemma.

Lemma 17. If 𝑃 is 𝑆-preserving on 𝑥 and 𝑃
∗−→𝑐 𝑄, then 𝑄 is 𝑆-preserving on 𝑥.

Proof. Immediate from Def. 31.

The following result sufficient conditions for simulating be basic reference cells using
the interference-sensitive cells. But before we need to introduce the notion of simulation.
A simulation 𝒮 is a binary relation on processes s.t. whenever (𝑃, 𝑄) ∈ 𝒮 and 𝑃 →c 𝑃

′

then there exists 𝑄′ s.t. 𝑄
+−→c 𝑄

′ and (𝑃′, 𝑄′) ∈ 𝒮. We say that 𝑃 simulates 𝑄 iff there
exists a simulation 𝒮 s.t. (𝑄, 𝑃) ∈ 𝒮.

Lemma 18. The following properties hold

(1) Let 𝑆 ⊆ {𝑅 | 𝑅 ⊢� 𝑦 : ∧𝐴}, 𝑃 ∈ 𝑆, 𝑄 ⊢� 𝑥 : U 𝑓 𝐴 and suppose 𝑄 is 𝑆-preserving on 𝑥.
Then, cut {cell 𝑥(𝑦.𝑃) |𝑥 | 𝑄} is simulated by cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄}.

(2) Let 𝑆 ⊆ {𝑅 | 𝑅 ⊢� 𝑦 : ∧𝐴}, 𝑄 ⊢� 𝑥 : U𝑒 𝐴 and 𝑄 suppose 𝑄 is 𝑆-preserving on 𝑥. Then,
cut {empty 𝑥 |𝑥 | 𝑄} is simulated by cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑄}.

Proof. Define
𝒮 ≜ 𝒮1 ∪ 𝒮2 ∪ 𝒮3

where

𝒮1 ≜ {(𝑀, 𝑁) | ∃𝑃 ∈ 𝑆, ∃𝑄 ⊢� 𝑥 : U 𝑓 𝐴. 𝑄 is 𝑆-preserving on 𝑥 and
𝑀 ≡c cut {cell 𝑥(𝑦.𝑃) |𝑥 | 𝑄} and 𝑁 ≡c cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄}}

𝒮2 ≜ {(𝑀, 𝑁) | ∃𝑄 ⊢� 𝑥 : U 𝑓 𝐴. 𝑄 is 𝑆-preserving on 𝑥 and
𝑀 ≡c cut {empty 𝑥 |𝑥 | 𝑄} and 𝑁 ≡c cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑄}}

𝒮3 ≜ {(𝑀, 𝑁) | 𝑀 ≡c 𝑁}

We prove that 𝒮 is a simulation, by performing case analysis first on (𝑀, 𝑁) ∈ 𝒮 and then
on 𝑀 →c 𝑀

′. Complete proof in Appendix E.

Crucially, the notion of 𝑆-preserving is preserved by concurrent share composition as
described by the following lemma

Lemma 19. If 𝑃 and 𝑄 are 𝑆-preserving on 𝑥, then share 𝑥 {𝑃 | | 𝑄} is 𝑆-preserving on 𝑥.

146

9.2. INTERFERENCE-SENSITIVE CELLS

Proof. By coinduction. We need to prove that share 𝑥 {𝑃 | | 𝑄} satisfies (a)-(b) of Def. 31.

(a) Let 𝑅 ∈ 𝑆 and suppose share 𝑥 {𝑃 | | 𝑄} ∗−→𝑐≡c take 𝑥(𝑦);𝑀.

The take on 𝑥 comes either from 𝑃 or𝑄. Suppose w.l.o.g. that it comes from 𝑃. Then

𝑃
∗−→𝑐≡c take 𝑥(𝑦);𝑃′ and 𝑀 ≡c share 𝑥 {𝑃′ | | 𝑄′}

where 𝑄
∗−→𝑐 𝑄

′.

We need to prove that cut {𝑅 |𝑦 | 𝑀} is 𝑆-preserving on 𝑥.

But

cut {𝑅 |𝑦 | 𝑀} ≡c cut {𝑅 |𝑦 | share 𝑥 {𝑃′ | | 𝑄′}} ≡c share 𝑥 {cut {𝑅 |𝑦 | 𝑃′} | | 𝑄′}

Since 𝑃 is 𝑆-preserving on 𝑥 and 𝑅 ∈ 𝑆, then Def. 31(a) implies that cut {𝑅 |𝑦 | 𝑃′}
is 𝑆-preserving on 𝑥.

Since 𝑄 is 𝑆-preserving on 𝑥 and 𝑄
∗−→𝑐 𝑄

′, then 𝑄′ is 𝑆-preserving on 𝑥 (by
Lemma 17).

By coinductive hypothesis we conclude that share 𝑥 {cut {𝑅 |𝑦 | 𝑃′} | | 𝑄′} is
𝑆-preserving on 𝑥.

(b) If 𝑃
∗−→𝑐 𝑄 and 𝑄 ≡c put 𝑥(𝑦.𝑄1);𝑄2, then 𝑄1 ∈ 𝑆 and 𝑄2 is 𝑆-preserving on 𝑥.

Suppose share 𝑥 {𝑃 | | 𝑄} ∗−→𝑐≡c put 𝑥(𝑦.𝑀1);𝑀2.

Suppose w.l.o.g. that 𝑃 ⊢ 𝑥 : U𝑒 𝐴, then the put comes from 𝑃.

Hence
𝑃
∗−→𝑐≡c put 𝑥(𝑦.𝑀1);𝑃′ and 𝑀 ≡c share 𝑥 {𝑃′ | | 𝑄′}

where 𝑄
∗−→𝑐 𝑄

′.

We need to prove that (i) 𝑀1 ∈ 𝑆 and that (ii) share 𝑥 {𝑃′ | | 𝑄′} is 𝑆-preserving on 𝑥.

(i) follows since 𝑃 is 𝑆-preserving on 𝑥 (Def. 31(b)).

Since 𝑃 is 𝑆-preserving on 𝑥 (Def. 31(b)), then 𝑃′ is 𝑆-preserving.

Since 𝑄 is 𝑆-preserving on 𝑥 and 𝑄
∗−→𝑐 𝑄

′, then 𝑄′ is 𝑆-preserving on 𝑥 (by
Lemma 17).

By coinductive hypothesis, share 𝑥 {𝑃′ | | 𝑄′} is 𝑆-preserving on 𝑥, hence (ii).

Since the potential interference resulting from cell sharing is absorbed by the opera-
tional semantics that characterises the interference-sensitive cells (Def. 30), we have the
following simulation property which allows us to reason compositionally about state
sharing, and with which we conclude this section.

Lemma 20. The following pair of simulations hold

147

CHAPTER 9. STRONG NORMALISATION

(1) Let 𝑃 ⊢� 𝑥 : U 𝑓 𝐴, 𝑄 ⊢� 𝑥 : U 𝑓 𝐴 and 𝑆 ⊆ {𝑅 | 𝑅 ⊢� 𝑦 : ∧𝐴}. Then,

par {(cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑃}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}
simulates

cut {cell 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃 | | 𝑄}}

(2) Let 𝑃 ⊢� 𝑥 : U𝑒 𝐴, 𝑄 ⊢� 𝑥 : U 𝑓 𝐴 and 𝑆 ⊆ {𝑅 | 𝑅 ⊢� 𝑦 : ∧𝐴}. Then,

par {(cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑃}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}
simulates

cut {empty 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃 | | 𝑄}}

Proof. Define
𝒮 ≜ 𝒮1 ∪ 𝒮2 ∪ 𝒮3

where

𝒮1 ≜ {(𝑀, 𝑁) | ∃𝑃 ⊢� 𝑥 : U 𝑓 𝐴, ∃𝑄 ⊢� 𝑥 : U 𝑓 𝐴. 𝑀 ≡c cut {cell 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃 | | 𝑄}}
and 𝑁 ≡c par {(cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑃}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}}

𝒮2 ≜ {(𝑀, 𝑁) | ∃𝑃 ⊢� 𝑥 : U𝑒 𝐴, ∃𝑄 ⊢� 𝑥 : U 𝑓 𝐴. 𝑀 ≡c cut {empty 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃 | | 𝑄}}
and 𝑁 ≡c par {(cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑃}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}}

𝒮3 ≜ {(𝑀, 𝑁) | ∃𝑃 ⊢� ∅; ∅, ∃𝒞∃𝒟 . 𝑀 ≡c 𝒞 ◦ 𝒟[𝑃] and 𝑁 ≡c par {𝒞[𝑃] | | 𝒟[𝑃]}}

We prove that 𝒮 is a simulation, by performing case analysis first on (𝑀, 𝑁) ∈ 𝒮 and then
on 𝑀 →c 𝑀

′. Complete proof in Appendix E.

9.3 Linear Logical Predicates for Strong Normalisation

The goal of this section is to introduce the linear logical predicates, used to establish our
strong normalisation result. In 9.3, we start by presenting some basic properties about SN
processes and then we introduce the orthogonal operation. This operation is then used to
define, later in 9.3, our basic logical predicates J𝑥 : 𝐴K𝜎, we then prove some properties.
We conclude in 9.3 with the proof of the Fundamental Lemma 27, from which our strong
normalisation result follows immediately (Theorem 5).

Orthogonal and Basic Properties

We start by stating some basic properties (Lemma 21) but first let us introduce a measure
on SN processes, which will be often used to prove properties about strong normalisation
by induction. For every process 𝑃 there is a finite (up to ≡c) number of processes 𝑄 for
which 𝑃 →c 𝑄. Hence, By König’s Lemma, for each SN process P there is a longest
→c-reduction sequence starting with 𝑃, we denote the length of this sequence by 𝑁(𝑃).

148

9.3. LINEAR LOGICAL PREDICATES FOR STRONG NORMALISATION

Lemma 21 (SN: Basic Properties). The following properties hold

(1) If 𝑃 is SN and 𝑃 ≡c 𝑄, then 𝑄 is SN.

(2) If 𝑃 is SN and 𝑃 →c 𝑄, then 𝑄 is SN.

(3) Suppose 𝑄 is SN whenever 𝑃 →c 𝑄. Then, 𝑃 is SN.

(4) If 𝑃 and 𝑄 are SN, then par {𝑃 | | 𝑄} is SN.

(5) If 𝑄 is SN and 𝑄 simulates 𝑃, then 𝑃 is SN.

Proof. All properties are easy to establish, in particular we have the following: in (1)
𝑁(𝑃) = 𝑁(𝑄), in (2) 𝑁(𝑄) = 𝑁(𝑃) − 1, in (3) 𝑁(𝑃) = (max {𝑄 | 𝑃 →c 𝑄}) + 1 and in (4)
𝑁(par {𝑃 | | 𝑄}) = 𝑁(𝑃) + 𝑁(𝑄).

We will now introduce the orthogonal, which will play a key role when defining logical
predicates for strong normalisation. As we will see, each logical predicate is defined by
taking the orthogonal of some set. In the following, we write 𝑃𝑥 to emphasise that 𝑥 is the
only free name of 𝑃.

Definition 32 (Orthogonal (−)⊥). Let 𝑆 be a subset of processes 𝑄𝑥 with a single free name 𝑥.
We define the orthogonal of 𝑆, written 𝑆⊥, by

𝑆⊥ ≜ {𝑃𝑥 | ∀𝑄𝑥 ∈ 𝑆. cut {𝑃𝑥 |𝑥 | 𝑄𝑥} is SN}

The orthogonal satisfies some well-known properties, as stated by the following lemma.

Lemma 22 (Orthogonal: Basic Properties). The following properties hold

(1) If 𝑃 ∈ 𝑆⊥ and 𝑃 ≡c 𝑄, then 𝑄 ∈ 𝑆⊥.

(2) If 𝑃 ∈ 𝑆⊥ and 𝑃 →c 𝑄 ,then 𝑄 ∈ 𝑆⊥.

(3) If 𝑆1 ⊆ 𝑆2, then 𝑆⊥2 ⊆ 𝑆⊥1

(4) 𝑆 ⊆ 𝑆⊥⊥.

(5) 𝑆⊥⊥⊥ = 𝑆⊥

(6) Let 𝒮 be a collection of sets. Then, (⋃𝒮)⊥ =
⋂
𝑆∈𝒮 𝑆

⊥.

(7) Let 𝒮 be a collection of sets 𝑆 s.t. 𝑆 = 𝑆⊥⊥, whenever 𝑆 ∈ 𝒮. Then, (⋂𝒮)⊥⊥ =
⋂𝒮.

Proof. (1) Follows by Lemma 21(1).

(2) Follows by Lemma 21(2).

149

CHAPTER 9. STRONG NORMALISATION

J𝑥 : 𝑋K𝜎 ≜ 𝜎(𝑋)[𝑥]
J𝑥 : 1K𝜎 ≜ {𝑃 | 𝑃 ≡c close 𝑥 and 𝑃 is SN}⊥⊥

J𝑥 : 𝐴 ⊗ 𝐵K𝜎 ≜ {𝑃 | ∃𝑃1 , 𝑃2. 𝑃 ≡c send 𝑥(𝑦.𝑃1);𝑃2 and 𝑃1 ∈ J𝑦 : 𝐴K𝜎 and 𝑃2 ∈ J𝑥 : 𝐵K𝜎}⊥⊥

J𝑥 : 𝐴 ⊕ 𝐵K𝜎 ≜ {𝑃 | ∃𝑄. (𝑃 ≡c 𝑥.inl;𝑄 and 𝑄 ∈ J𝑥 : 𝐴K𝜎) or (𝑃 ≡c 𝑥.inr;𝑄 and 𝑄 ∈ J𝑥 : 𝐵K𝜎)}⊥⊥

J𝑥 :!𝐴K𝜎 ≜ {𝑃 | ∃𝑄. 𝑃 ≡c !𝑥(𝑦);𝑄 and 𝑄 ∈ J𝑦 : 𝐴K𝜎}⊥⊥

J𝑥 : ∃𝑋.𝐴K ≜ {𝑃 | ∃𝑄, 𝑆 ∈ ℛ[− : 𝐵]. 𝑃 ≡c sendty 𝑥 𝐵;𝑄 and 𝑄 ∈ J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆]}⊥⊥

J𝑥 : �𝑋. 𝐴K𝜎 ≜ (⋂{𝑆 ∈ ℛ[− : �𝑋.𝐴] | unfold� 𝑥; J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆] ⊆ 𝑆})⊥⊥

J𝑥 : ∧𝐴K𝜎 ≜ {𝑃 | ∃𝑄. 𝑃 ≡c affine 𝑥;𝑄 and 𝑄 ∈ J𝑥 : 𝐴K𝜎}⊥⊥

J𝑥 : S 𝑓 𝐴K𝜎 ≜ {𝑃 | 𝑃 ≡c cell 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎) and 𝑃 is SN}⊥⊥

J𝑥 : S𝑒 𝐴K𝜎 ≜ {𝑃 | 𝑃 ≡c empty 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎) and 𝑃 is SN}⊥⊥

J𝑥 : 𝐴K𝜎 ≜ J𝑥 : 𝐴K⊥𝜎Figure 9.1: Logical predicate J𝑥 : 𝐴K𝜎.

(3) Suppose 𝑃 ∈ 𝑆⊥2 .

So let 𝑄 ∈ 𝑆1. Since 𝑆1 ⊆ 𝑆2, then 𝑄 ∈ 𝑆2. Since 𝑃 ∈ 𝑆⊥2 , then cut {𝑃 |𝑥 | 𝑄} is SN.

Thus, 𝑃 ∈ 𝑆⊥1 .

(4) Let 𝑃 ∈ 𝑆. We want 𝑃 ∈ 𝑆⊥⊥. Take 𝑄 ∈ 𝑆⊥. It suffices to show that cut {𝑃 |𝑥 | 𝑄} is
SN. It follows from 𝑄 ∈ 𝑆⊥ and 𝑃 ∈ 𝑆.

(5) From (2) and (3) follows 𝑆⊥⊥⊥ ⊆ 𝑆⊥. From (3) follows 𝑆⊥ ⊆ (𝑆⊥)⊥⊥ = 𝑆⊥⊥⊥.

(6) We prove that (i) (⋃𝒮)⊥ ⊆ ⋂
𝑆∈𝒮 𝑆

⊥ and (ii)
⋂
𝑆∈𝒮 𝑆

⊥ ⊆ (⋃𝒮)⊥.

(ii) follows immediately by Def. 32.

So let us consider (i).

Let 𝑆 ∈ 𝒮. Applying (3) to 𝑆 ⊆ ⋃𝒮 yields (⋃𝒮)⊥ ⊆ 𝑆⊥.

Then, (⋃𝒮)⊥ ⊆ ⋂
𝑆∈𝒮 𝑆

⊥.

(7) We have
(⋂𝒮)⊥⊥ = (⋂𝑆∈𝒮 𝑆)⊥⊥

= (⋂𝑆∈𝒮 𝑆
⊥⊥)⊥⊥ (𝑆 = 𝑆⊥⊥, whenever 𝑆 ∈ 𝒮)

= (⋃𝑆∈𝒮 𝑆
⊥)⊥⊥⊥ (from (6))

= (⋃𝑆∈𝒮 𝑆
⊥)⊥ (from (5))

=
⋂
𝑆∈𝒮 𝑆

⊥⊥ (from (6))
=

⋂
𝑆∈𝒮 𝑆 (𝑆 = 𝑆⊥⊥, whenever 𝑆 ∈ 𝒮)

150

9.3. LINEAR LOGICAL PREDICATES FOR STRONG NORMALISATION

Logical Predicates J𝑥 : 𝐴K𝜎

We will now introduce the logical predicates J𝑥 : 𝐴K𝜎 for strong normalisation. Since we
are working with polymorphic and inductive types, the definition is parametric on a map
𝜎 from type variables to reducibility candidates. So let us define reducibility candidates
first.

Definition 33 (Reducibility Candidates 𝑅[𝑥 : 𝐴]). Given a type 𝐴 and a name 𝑥 we define a
reducibility candidate at 𝑥 : 𝐴, denoted by 𝑅[𝑥 : 𝐴] as a set of SN processes 𝑃 ⊢ 𝑥 : 𝐴 which is
equal to its biorthogonal, i.e. 𝑅[𝑥 : 𝐴] = 𝑅[𝑥 : 𝐴]⊥⊥.

We let ℛ[− : 𝐴] be the set of all reducibility candidates 𝑅[𝑥 : 𝐴] for some name 𝑥.
Reducibility candidates are ordered by set-inclusion ⊆, the least candidate being ∅⊥⊥.

Definition 34 (Logical Predicate J𝑥 : 𝐴K𝜎). By induction on the type 𝐴, we define the sets
J𝑥 : 𝐴K𝜎 an shown in Fig. 9.1, such that J𝑥 : U 𝑓 𝐴K𝜎 and J𝑥 : U𝑒 𝐴K𝜎 are J− : ∧𝐴K-preserving
on 𝑥.The definition is direct for the positive types, the negative types are defined by the last clause,
by orthogonality.

For the positive types 𝐴, the predicate J𝑥 : 𝐴K𝜎 takes the biorthogonal of some
base set 𝑆 of processes 𝑃 that offer an action, further conditions then characterise the
process constituents of the actions. In the base cases close 𝑥, cell 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎) and
empty 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎), where the action does not have any further process constituents,
we simply require the action offering process to be SN.

The presence of duality give us some succinctness in the presentation of the logical
predicates, since, for the negative types 𝐴, the predicate J𝑥 : 𝐴K𝜎 is simply defined as the
biorthogonal of the logical predicate for its dual 𝐴 type. In fact, we can also establish this
property for the positive types (Lemma 23(4)), thereby lifting duality to the logical level
using the orthogonal operation. As a pleasant consequence we conclude immediately that
if 𝑃J𝑥 : 𝐴K𝜎 and 𝑄 ∈ J𝑥 : 𝐴K𝜎, then the resulting cut composition cut {𝑃 |𝑥 | 𝑄} is SN.

By exploiting the properties satisfied by the orthogonal (Lemma 22) we obtain a strategy
to establish the membership 𝑃 ∈ J𝑥 : 𝐴K𝜎. For the positive types we have J𝑥 : 𝐴K𝜎 = 𝑆⊥⊥,
for some set 𝑆. Since 𝑆 ⊆ 𝑆⊥⊥ (Lemma 22(4)), we can conclude that 𝑃 ∈ J𝑥 : 𝐴K𝜎, provided
we prove 𝑃 ∈ 𝑆. On the other hand, for the negative types we have J𝑥 : 𝐴K𝜎 = 𝑆⊥⊥⊥. But
since 𝑆⊥⊥⊥ = 𝑆⊥ (Lemma 22(5)), it is equivalent to prove that for all𝑄 ∈ 𝑆, cut {𝑃 |𝑥 | 𝑄} is
SN. These strategies will be applied throughout the proof of the Fundamental Lemma 27.

In all cases, with some exceptions, when defining J𝑥 : 𝐴K𝜎 we simply propagate map
𝜎 without modifications. The exceptions are the defining clauses corresponding to the
existential ∃𝑋.𝐴 and the inductive types �𝑋. 𝐴, in which we extend the map 𝜎 with an
assignment for the type variable 𝑋. Furthermore, the definition of the predicate for a
type variable J𝑥 : 𝑋K𝜎 picks the corresponding reducibility candidate 𝜎(𝑋) = 𝑅[𝑦 : 𝐵],
instantiated at name 𝑥: {𝑥/𝑦}𝑅[𝑦 : 𝐵].

151

CHAPTER 9. STRONG NORMALISATION

The definition of J𝑥 : �𝑋. 𝐴K𝜎 relies on the construction unfold� 𝑥; 𝑆, that for any set
𝑆, is defined according to

unfold� 𝑥; 𝑆 ≜ {𝑃 | ∃𝑄. 𝑃 ≡c unfold� 𝑥;𝑄 and 𝑄 ∈ 𝑆}

Similarly, given a set 𝑆, we define unfold� 𝑥;𝐴 by

unfold� 𝑥; 𝑆 ≜ {𝑃 | ∃𝑄. 𝑃 ≡c unfold� 𝑥;𝑄 and 𝑄 ∈ 𝑆}

The following lemma states some basic properties about the logical predicates.

Lemma 23 (Logical Predicates: Basic Properties). The following properties hold

(1) If 𝑃 ∈ J𝑥 : 𝐴K𝜎, then {𝑦/𝑥}𝑃 ∈ J𝑦 : 𝐴K𝜎.

(2) If 𝑃 ∈ J𝑥 : 𝐴K𝜎 and 𝑃 ≡c 𝑄, then 𝑄 ∈ J𝑥 : 𝐴K𝜎.

(3) If 𝑃 ∈ J𝑥 : 𝐴K𝜎 and 𝑃 →c 𝑄, then 𝑄 ∈ J𝑥 : 𝐴K𝜎.

(4) J𝑥 : 𝐴K𝜎 = J𝑥 : 𝐴K⊥𝜎 .

(5) J𝑥 : {𝐵/𝑋}𝐴K𝜎 = J𝑥 : 𝐴K𝜎[𝑋 ↦→J𝑥:𝐵K𝜎].

(6) J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆⊥] = J𝑥 : {𝑋/𝑋}𝐴K𝜎[𝑋 ↦→𝑆].

Proof. Property (1) is trivial. Properties (2) and(3) follows by Lemma 22(1) andLemma 22(2),
respectively. Property (4) follows directly by Def. 34 for half of the types. The remaining
half follows by Lemma 22(5). Properties (5) and (6) are straightforward by induction on
𝐴.

The logical predicates are preserved by name substitution, the congruence relation
≡c and the reduction relation→c (Lemma 23(1)-(3)). Property Lemma 23(4) relates the
logical predicates of duality related types, using the orthogonal. Lemma 23(5)-(6) relate
type variable substitution with the parametric map 𝜎.

We use the interference-sensitive reference cells (Def. 30) to define the logical predicates
J𝑥 : S 𝑓 𝐴K𝜎 and J𝑐 : S𝑒 𝐴K𝜎, for the state full and the state empty modalities, respectively.
This allows us to internalise state interference in the definition of the logical predicate
itself and, as consequence, we can reason compositionally about state sharing as witnessed
by the following lemma

Lemma 24. The following properties hold

(1) If 𝑃1 ∈ J𝑐 : U 𝑓 𝐴K𝜎 and 𝑃2 ∈ J𝑐 : U 𝑓 𝐴K𝜎, then share 𝑐 {𝑃1 | | 𝑃2} ∈ J𝑐 : U 𝑓 𝐴K𝜎.

(2) If 𝑃1 ∈ J𝑐 : U𝑒 𝐴K𝜎 and 𝑃2 ∈ J𝑐 : U𝑒 𝐴K𝜎, then share 𝑐 {𝑃1 | | 𝑃2} ∈ J𝑐 : U𝑒 𝐴K𝜎.

152

9.3. LINEAR LOGICAL PREDICATES FOR STRONG NORMALISATION

Proof. (1) By Def. 32 and Lemma 22(5) we have J𝑐 : U 𝑓 𝐴K = 𝑆⊥, where

𝑆 = {𝑄 | 𝑄 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K)𝜎}.

Let 𝑄 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K)𝜎.

We need to prove that cut {𝑄 |𝑐 | share 𝑐 {𝑃1 | | 𝑃2}} is SN.

By Lemma 20(1) we conclude that cut {𝑄 |𝑐 | share 𝑐 {𝑃1 | | 𝑃2}} is simulated by

par {(cut {𝑄 |𝑐 | 𝑃1}) | | (cut {𝑄 |𝑐 | 𝑃2})}

By hypothesis, 𝑃1 ∈ J𝑐 : U 𝑓 𝐴K𝜎, hence cut {𝑄 |𝑐 | 𝑃1} is SN.

By hypothesis, 𝑃2 ∈ J𝑐 : U 𝑓 𝐴K𝜎, hence cut {𝑄 |𝑐 | 𝑃2} is SN.

Then, par {(cut {𝑄 |𝑐 | 𝑃1}) | | (cut {𝑄 |𝑐 | 𝑃2})} is SN (Lemma 21(4)).

Therefore, cut {𝑄 |𝑐 | share 𝑐 {𝑃1 | | 𝑃2}} is SN (Lemma 21(5)).

By hypothesis, for any 𝑦, both 𝑃1 and 𝑃2 are J𝑦 : ∧𝐴K-preserving on 𝑐. Applying
Lemma 19, we conclude that share 𝑐 {𝑃1 | | 𝑃2} is also J𝑦 : ∧𝐴K-preserving on 𝑐.

(2) Similarly to (1), by applying the simulation Lemma 20(2).

We will now state some properties concerning the logical predicate for inductive types.
But first, let us introduce the following definition.

Definition 35 (𝜙𝐴(𝑆)). Suppose that 𝑋 occurs positively on 𝐴. Define

𝜙𝐴(𝑆) ≜ unfold� 𝑥; J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆]

J𝑥 : �𝑋. 𝐴K𝜎 is defined as the biorthogonal of the intersection of all 𝜙𝐴-closed sets 𝑆,
i.e. sets 𝑆 s.t. 𝜙𝐴(𝑆) ⊆ 𝑆. Since 𝜙𝐴 is monotonic (Lemma 25(1)), Knaster-Tarski theorem
implies that J𝑥 : �𝑋. 𝐴K𝜎 is the least fixed point of 𝜙𝐴 (Lemma 25(2)). Symmetrically, we
can obtain a greatest fixed point characterisation for J𝑥 : �𝑋. 𝐴K𝜎 (Lemma 25(3)). Applying
Kleene’s fixed point theorem we explicitly construct the fixed point of 𝜙𝐴 (Lemma 25(4)).

Lemma 25. The following properties hold

(1) The map 𝜙𝐴 is monotonic, i.e. 𝜙𝐴(𝑆1) ⊆ 𝜙𝐴(𝑆2), whenever 𝑆1 ⊆ 𝑆2.

(2) J𝑥 : �𝑋. 𝐴K𝜎 is the least fixed point of 𝜙𝐴.

(3) Let 𝜓𝐴(𝑆) ≜ 𝜙{𝑋/𝑋}𝐴(𝑆⊥)⊥. Then, J𝑥 : �𝑋. 𝐴K𝜎 is the greatest fixed point of 𝜓𝐴.

(4) J𝑥 : �𝑋. 𝐴K𝜎 =
⋃
𝑛∈N 𝜙

𝑛
𝐴
(∅⊥⊥).

(5) unfold� 𝑥; J𝑥 : {�𝑋. 𝐴/𝑋}𝐴K𝜎 ⊆ J𝑥 : �𝑋. 𝐴K𝜎.

153

CHAPTER 9. STRONG NORMALISATION

Proof. (1) We prove hypothesis (H1) if 𝑆1 ⊆ 𝑆2, then J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆1] ⊆ J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆2],
which implies (1).

The proof of (H1) is by induction on 𝐴, we handle some representative cases.

Case: 𝐴 = 𝑌.
There are two cases to consider, depending on whether (i) 𝑌 ≠ 𝑋 or (ii) 𝑌 = 𝑋.
If (i), then J𝑥 : 𝑌K𝜎[𝑋 ↦→𝑆1] = 𝜎(𝑌) = J𝑥 : 𝑌K𝜎[𝑋 ↦→𝑆2].
If (ii), then J𝑥 : 𝑋K𝜎[𝑋 ↦→𝑆1] = 𝑆1 ⊆ 𝑆2 = J𝑥 : 𝑋K𝜎[𝑋 ↦→𝑆2].
In either case (i)-(ii), J𝑥 : 𝑌K𝜎[𝑋 ↦→𝑆1] ⊆ J𝑥 : 𝑌K𝜎[𝑋 ↦→𝑆2].

Case: 𝐴 = 1.
We have J𝑥 : 1K𝜎[𝑋 ↦→𝑆1] = J𝑥 : 1K𝜎[𝑋 ↦→𝑆2].

Case: 𝐴 = 𝐴1 ⊗ 𝐴2.
By Def. 34,

J𝑥 : 𝐴1 ⊗ 𝐴2K𝜎[𝑋 ↦→𝑆] = 𝑓 (𝑆)⊥⊥

where

𝑓 (𝑆) ≜ {𝑃 | ∃𝑃1 , 𝑃2. 𝑃 ≈ send 𝑥(𝑦.𝑃1);𝑃2

and 𝑃1 ∈ J𝑦 : 𝐴1K𝜎[𝑋 ↦→𝑆] and 𝑃2 ∈ J𝑥 : 𝐴2K𝜎[𝑋 ↦→𝑆]}

Suppose that 𝑆1 ⊆ 𝑆2. I.h. applied to 𝐴1 and 𝐴2 yields 𝑓 (𝑆1) ⊆ 𝑓 (𝑆2).
Lemma 22(3) applied twice to 𝑓 (𝑆1) ⊆ 𝑓 (𝑆2) yields

J𝑥 : 𝐴1 ⊗ 𝐴2K𝜎[𝑋 ↦→𝑆1] = 𝑓 (𝑆1)⊥⊥ ⊆ 𝑓 (𝑆2)⊥⊥ = J𝑥 : 𝐴1 ⊗ 𝐴2K𝜎[𝑋 ↦→𝑆2]

Case: 𝐴 = �𝑌. 𝐵.
By Def. 34

J𝑥 : �𝑌. 𝐵K𝜎[𝑋 ↦→𝑆] = (
⋂

𝑓 (𝑆))⊥⊥

where

𝑓 (𝑆) ≜ {𝑇 ∈ ℛ[− : �𝑌.𝐵] | unfold� 𝑥; J𝑥 : 𝐵K𝜎[𝑋 ↦→𝑆,𝑌 ↦→𝑇] ⊆ 𝑇}

Suppose 𝑆1 ⊆ 𝑆2. Let 𝑇 ∈ 𝑓 (𝑆2). Then, unfold� 𝑥; J𝑥 : 𝐵K𝜎[𝑋 ↦→𝑆2 ,𝑌 ↦→𝑇] ⊆ 𝑇.
I.h. applied to 𝐵 yields unfold� 𝑥; J𝑥 : 𝐵K𝜎[𝑋 ↦→𝑆1 ,𝑌 ↦→𝑇] ⊆ unfold� 𝑥; J𝑥 :
𝐵K𝜎[𝑋 ↦→𝑆2 ,𝑌 ↦→𝑇].
By transitivity of ⊆, unfold� 𝑥; J𝑥 : 𝐵K𝜎[𝑋 ↦→𝑆1 ,𝑌 ↦→𝑇] ⊆ 𝑇.
Hence, 𝑇 ∈ 𝑓 (𝑆1).
This establishes 𝑓 (𝑆2) ⊆ 𝑓 (𝑆1).
Then,

⋂
𝑓 (𝑆1) ⊆

⋂
𝑓 (𝑆2).

Lemma 22(3) applied twice to
⋂
𝑓 (𝑆1) ⊆

⋂
𝑓 (𝑆2) yields

J𝑥 : �𝑌. 𝐵K𝜎[𝑋 ↦→𝑆1] = (
⋂

𝑓 (𝑆1))⊥⊥ ⊆ (
⋂

𝑓 (𝑆2))⊥⊥ = J𝑥 : �𝑌. 𝐵K𝜎[𝑋 ↦→𝑆2]

154

9.3. LINEAR LOGICAL PREDICATES FOR STRONG NORMALISATION

Case: 𝐴 = S 𝑓 𝐵.
By Def. 34

J𝑥 : S 𝑓 𝐵K𝜎[𝑋 ↦→𝑆] = 𝑓 (𝑆)⊥⊥

where
𝑓 (𝑆) ≜ {𝑃 | 𝑃 ≡c cell 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎[𝑋 ↦→𝑆])}

Suppose 𝑆1 ⊆ 𝑆2. We prove that 𝑓 (𝑆2)⊥ ⊆ 𝑓 (𝑆1)⊥.
Let 𝑄 ∈ 𝑓 (𝑆2)⊥. In order to show that 𝑄 ∈ 𝑓 (𝑆1)⊥ we must show that
cut {𝑃 |𝑥 | 𝑄} is SN, when 𝑃 ∈ 𝑓 (𝑆1).
We prove by induction on𝑁(𝑃)+𝑁(𝑄) that all the reductions cut {𝑃 |𝑥 | 𝑄} → 𝑅

are SN.
We handle only the interesting reduction, which corresponds to a cell-take
interaction on session 𝑥. Then

cut {𝑃 |𝑥 | 𝑄} ≡c cut {cell 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎[𝑋 ↦→𝑆1]) |𝑥 | take 𝑥(𝑦);𝑄′}
→c cut {empty 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎[𝑋 ↦→𝑆1]) |𝑥 | (cut {𝑃′ |𝑦 | 𝑄′})} = 𝑅

where𝑃 ≡c cell 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎[𝑋 ↦→𝑆1]),𝑄 ≡c take 𝑥(𝑦);𝑄′ and𝑃′ is some element
in J𝑦 : ∧𝐴K𝜎[𝑋 ↦→𝑆1]. By hypothesis, 𝑄 ∈ 𝑓 (𝑆2)⊥, hence

cut {cell 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎[𝑋 ↦→𝑆2]) |𝑥 | take 𝑥(𝑦);𝑄′}

is SN.
Then, all the reductions of cut {cell 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎[𝑋 ↦→𝑆2]) |𝑥 | take 𝑥(𝑦);𝑄′} are
SN, in particular the following reduction can be obtained, since 𝑃′ ∈ 𝑆1 ⊆ 𝑆2:

cut {cell 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎[𝑋 ↦→𝑆2]) |𝑥 | take 𝑥(𝑦);𝑄′}
→ cut {empty 𝑥(𝑦.J𝑦 : ∧𝐴K𝜎[𝑋 ↦→𝑆2]) |𝑥 | (cut {𝑃′ |𝑦 | 𝑄′})}

(2) By Def. 34

J𝑥 : �𝑋. 𝐴K𝜎 = (⋂{𝑆 ∈ ℛ[− : �𝑋.𝐴] | 𝜙𝐴(𝑆) ⊆ 𝑆})⊥⊥

Since a reducibility candidate is equal to its biorthogonal (Def. 33), we can write
J𝑥 : �𝑋. 𝐴K𝜎 in the alternative form (Lemma 22(7))

J𝑥 : �𝑋. 𝐴K𝜎 =
⋂
{𝑆 ∈ ℛ[− : �𝑋.𝐴] | 𝜙𝐴(𝑆) ⊆ 𝑆}

i.e. J𝑥 : �𝑋. 𝐴K𝜎 is the intersection of all 𝜙𝐴-closed sets in ℛ[− : �𝑋.𝐴].

We now prove the following propositions

(i) J𝑥 : �𝑋. 𝐴K𝜎 is 𝜙𝐴-closed, i.e. 𝜙𝐴(J𝑥 : �𝑋. 𝐴K𝜎) ⊆ J𝑥 : �𝑋. 𝐴K𝜎.
Let 𝑆 ∈ ℛ[− : �𝑋.𝐴] be a 𝜙𝐴-closed set.
By definition, we have (a) 𝜙𝐴(𝑆) ⊆ 𝑆 and (b) J𝑥 : �𝑋. 𝐴K𝜎 ⊆ 𝑆.

155

CHAPTER 9. STRONG NORMALISATION

Monotonicity of 𝜙𝐴 (1) applied to (b) yields 𝜙𝐴(J𝑥 : �𝑋. 𝐴K𝜎 ⊆ 𝜙𝐴(𝑆).
Hence, transitivity and (a) implies 𝜙𝐴(J𝑥 : �𝑋. 𝐴K𝜎) ⊆ 𝑆.
Since J𝑥 : �𝑋. 𝐴K𝜎 is the intersection of all 𝜙𝐴-closed sets in ℛ[− : �𝑋.𝐴], then
𝜙𝐴(J𝑥 : �𝑋. 𝐴K𝜎) ⊆ J𝑥 : �𝑋. 𝐴K𝜎.

(ii) J𝑥 : �𝑋. 𝐴K𝜎 ⊆ 𝜙𝐴(J𝑥 : �𝑋. 𝐴K𝜎).
Monotonicity of 𝜙𝐴 (1) applied to (i) yields 𝜙𝐴(𝜙𝐴(J𝑥 : �𝑋. 𝐴K𝜎) ⊆ 𝜙𝐴(J𝑥 :
�𝑋. 𝐴K𝜎), i.e. 𝜙𝐴(J𝑥 : �𝑋. 𝐴K𝜎) is 𝜙𝐴-closed.
Since J𝑥 : �𝑋. 𝐴K𝜎 is the intersection of all 𝜙𝐴-closed sets in ℛ[− : �𝑋.𝐴], then
J𝑥 : �𝑋. 𝐴K𝜎 ⊆ 𝜙𝐴(J𝑥 : �𝑋. 𝐴K𝜎).

Propositions (i) and (ii) imply that J𝑥 : �𝑋. 𝐴K𝜎 is a fixed point of 𝜙𝐴.

Let 𝑆 ∈ ℛ[− : �𝑋.𝐴] be any fixed point of 𝜙𝐴. Then, in particular, 𝑆 is 𝜙𝐴-closed,
hence J𝑥 : �𝑋. 𝐴K𝜎 ⊆ 𝜙𝐴.

Therefore, J𝑥 : �𝑋. 𝐴K𝜎 is the least fixed point of 𝜙𝐴.

(3) We need to prove the following propositions

(i) J𝑥 : �𝑋. 𝑋𝐴K𝜎 is a fixed point of 𝜓𝐴.
By (b), J𝑥 : �𝑋. {𝑋/𝑋}𝐴K𝜎 is a fixed point of 𝜙{𝑋/𝑋}𝐴

𝜙{𝑋/𝑋}𝐴(J𝑥 : �𝑋. {𝑋/𝑋}𝐴K𝜎) = J𝑥 : �𝑋. {𝑋/𝑋}𝐴K𝜎

hence, applying the orthogonal to both sides of the equation yields

𝜙{𝑋/𝑋}𝐴(J𝑥 : �𝑋. {𝑋/𝑋}𝐴K𝜎)⊥ = J𝑥 : �𝑋. {𝑋/𝑋}𝐴K⊥𝜎

Since J𝑥 : �𝑋. {𝑋/𝑋}𝐴K⊥𝜎 = J𝑥 : �𝑋. 𝑋𝐴K𝜎 (Lemma 23(4)) we can rewrite the
equation in the equivalent form

𝜙{𝑋/𝑋}𝐴(J𝑥 : �𝑋. 𝑋𝐴K⊥𝜎)⊥ = J𝑥 : �𝑋. 𝑋𝐴K𝜎

Then, J𝑥 : �𝑋. 𝑋𝐴K𝜎 is a fixed point of 𝜓𝐴.

(ii) If 𝑆 is a fixed point of 𝜓𝐴, then 𝑆 ⊆ J𝑥 : �𝑋. 𝑋𝐴K𝜎.
Suppose that 𝑆 is a fixed point of 𝜓𝐴, i.e.

𝜓𝐴(𝑆) = 𝜙{𝑋/𝑋}𝐴(𝑆
⊥)⊥ = 𝑆

Applying the orthogonal to both sides of the equation yields

𝜙{𝑋/𝑋}𝐴(𝑆
⊥)⊥⊥ = 𝑆⊥

Since 𝜙{𝑋/𝑋}𝐴(𝑆⊥) ⊆ 𝜙{𝑋/𝑋}𝐴(𝑆⊥)⊥⊥ (Lemma 22(4)), then

𝜙{𝑋/𝑋}𝐴(𝑆
⊥) ⊆ 𝑆⊥

156

9.3. LINEAR LOGICAL PREDICATES FOR STRONG NORMALISATION

i.e. 𝑆⊥ is a 𝜙{𝑋/𝑋}𝐴-closed set.
Then, by Def. 34

J𝑥 : �𝑋. {𝑋/𝑋}𝐴K𝜎 ⊆ 𝑆⊥

Applying the orthogonal to the inequation (Lemma 22(3)) yields

𝑆⊥⊥ ⊆ J𝑥 : �𝑋. {𝑋/𝑋}𝐴K⊥𝜎

Since 𝑆 ⊆ 𝑆⊥⊥ (Lemma 22(2)), we obtain

𝑆 ⊆ J𝑥 : �𝑋. {𝑋/𝑋}𝐴K⊥𝜎

Finally, since J𝑥 : �𝑋. {𝑋/𝑋}𝐴K⊥𝜎 = J𝑥 : �𝑋. 𝐴K𝜎 (Lemma 23(4)) we have

𝑆 ⊆ J𝑥 : �𝑋. 𝐴K𝜎

(4) We prove that
⋃
𝑛∈N 𝜙

𝑛
𝐴
(∅⊥⊥) is the least fixed point of 𝜙𝐴.

By (b) it follows that J𝑥 : �𝑋. 𝐴K𝜎 =
⋃
𝑛∈N 𝜙

𝑛
𝐴
(∅⊥⊥).

We need to prove the following propositions

(i)
⋃
𝑛∈N 𝜙

𝑛
𝐴
(∅⊥⊥) is a fixed point of 𝜙𝐴.

We have
𝜙𝐴(

⋃
𝑛∈N

𝜙𝑛𝐴(∅
⊥⊥)) =

⋃
𝑛>0

𝜙𝑛𝐴(∅
⊥⊥)

Since 𝜙0
𝐴
(∅⊥⊥) = ∅⊥⊥ is the least reducibility candidate, we have 𝜙0

𝐴
(∅⊥⊥) ⊆

𝜙𝑛
𝐴
(∅⊥⊥), for any 𝑛 > 0.

Then ⋃
𝑛>0

𝜙𝑛𝐴(∅
⊥⊥) =

⋃
𝑛∈N

𝜙𝑛𝐴(∅
⊥⊥)

Therefore
𝜙𝐴(

⋃
𝑛∈N

𝜙𝑛𝐴(∅
⊥⊥)) =

⋃
𝑛∈N

𝜙𝑛𝐴(∅
⊥⊥)

(ii) If 𝑆 is fixed point of 𝜙𝐴, then
⋃
𝑛∈N 𝜙

𝑛
𝐴
(∅⊥⊥) ⊆ 𝑆.

We that 𝜙𝑛
𝐴
(∅⊥⊥) ⊆ 𝑆, for all 𝑛 ∈ N. The proof is by induction on 𝑛.

Case: 𝑛 = 0.
Since 𝜙0

𝐴
(∅⊥⊥) = ∅⊥⊥ is the least reducibility candidate, 𝜙0

𝐴
(∅⊥⊥) ⊆ 𝑆.

Case: 𝑛 = 𝑚 + 1.
By i.h. we have

𝜙𝑚𝐴 (∅
⊥⊥) ⊆ 𝑆

Monotonicity of 𝜙𝐴 (1) implies

𝜙𝑚+1
𝐴 (∅⊥⊥)) ⊆ 𝜙(𝑆)

Since 𝜙(𝑆) = 𝑆, then
𝜙𝑚+1
𝐴 (∅⊥⊥)) ⊆ 𝑆

157

CHAPTER 9. STRONG NORMALISATION

(5) Let 𝑃 ≡c unfold� 𝑥;𝑃′, where 𝑃′ ∈ J𝑥 : {�𝑋. 𝐴/𝑋}𝐴K𝜎.

Let 𝐵 ≜ {𝑋/𝑋}𝐴, hence �𝑋. 𝐴 = �𝑋. 𝐵.

We prove that cut {𝑃 |𝑥 | 𝑄} is SN, for all 𝑄 ∈ J𝑥 : �𝑋. 𝐵K𝜎, by analysing all the
possible reductions of cut {𝑃 |𝑥 | 𝑄} and concluding that all of them are SN.

The critical reduction is the unfold-unfold interaction on session 𝑥, in which case
𝑄 ≡c unfold� 𝑥;𝑄′, and cut {𝑃 |𝑥 | 𝑄} →c cut {𝑃′ |𝑥 | 𝑄′}.

By (2) we conclude that 𝑄′ ∈ J𝑥 : {�𝑋. 𝐵/𝑋}𝐵K𝜎.

Since {�𝑋. 𝐴/𝑋}𝐴 = {�𝑋. 𝐵/𝑋}𝐵, we conclude that cut {𝑃′ |𝑥 | 𝑄′} is SN.

Extended Logical Predicate and Fundamental Lemma

The logical predicates J𝑥 : 𝐴K𝜎 introduced previously apply to processes that have a
single free name 𝑥. Now, we will extend the logical predicate to general typed processes
𝑃 ∈ J⊢� Δ;ΓK by composing it alongΔ andΓwith processes from the basic logical predicates
(Def. 34) and by replacing the free process variables by elements of the appropriate
reducibility candidate, according to the following definition.

Definition 36 (Extended Logical Predicate J⊢� Δ;ΓK𝜎). We define ℒJ⊢� Δ;ΓK𝜎 inductively on
Δ, Γ and � as the set of processes 𝑃 ⊢� Δ;Γ s.t.

𝑃 ∈ ℒJ⊢� ∅; ∅K𝜎 iff 𝑃 is SN.
𝑃 ∈ ℒJ⊢� Δ, 𝑥 : 𝐴;ΓK𝜎 iff ∀𝑄 ∈ J𝑥 : 𝐴K𝜎 . cut {𝑄 |𝑥 : 𝐴| 𝑃} ∈ ℒJ⊢∅ Δ;ΓK𝜎 .
𝑃 ∈ ℒJ⊢� Δ;Γ, 𝑥 : 𝐴K𝜎 iff ∀𝑄 ∈ J𝑦 : 𝐴K𝜎 . cut! {𝑦.𝑄 |𝑥 : 𝐴| 𝑃} ∈ ℒJ⊢∅ Δ;ΓK𝜎 .
𝑃 ∈ ℒJ⊢�,𝑋(𝑥, ®𝑦)↦→Δ′,𝑥:𝑌;Γ Δ;ΓK𝜎 iff ∀𝑄 ∈ 𝜎(𝑌). {𝑄/𝑋}𝑃 ∈ ℒJ⊢� Δ;ΓK𝜎 .

The base case ℒJ⊢� Δ;ΓK𝜎 corresponds to the set of closed well-typed SN processes.
We will now introduce some auxiliary definitions which allows us to give a more

succinct definition of ℒJ⊢∅ ∅; ∅K𝜎. We define the set JΔK𝜎 of linear logical contexts at Δ is
inductively by

J∅K𝜎 ≜ {−} JΔ, 𝑥 : 𝐴K𝜎 ≜ {cut {𝑃 |𝑥 : 𝐴| 𝒞} | 𝑃 ∈ J𝑥 : 𝐴K𝜎 and 𝒞 ∈ JΔK𝜎}

Similarly, we define the set JΓK!
𝜎 of unrestricted logical contexts at Γ inductively by

J∅K!
𝜎 ≜ {−} JΓ, 𝑦 : 𝐴K!

𝜎 ≜ {cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝒞} | 𝑃 ∈ J𝑦 : 𝐴K𝜎 and 𝒞 ∈ JΓK!
𝜎}

We extend 𝑁 from processes to contexts 𝒞 ∈ JΔK𝜎 by 𝑁(−) = 0 and 𝑁(cut {𝑃 |𝑥 | 𝒞′}) =
𝑁(𝑃) + 𝑁(𝒞′).

Given a map
� = 𝑋1(®𝑥1) ↦→ Δ1;Γ1 , . . . , 𝑋𝑛(®𝑥𝑛) ↦→ Δ𝑛 ;Γ𝑛

we define J�K𝜎 as the set of all substitution maps �′ s.t.

�′ = 𝑋1(®𝑥1) ↦→ 𝑄1 , . . . , 𝑋𝑛(®𝑥𝑛) ↦→ 𝑄𝑛

158

9.3. LINEAR LOGICAL PREDICATES FOR STRONG NORMALISATION

where 𝑄1 ∈ ℒJ⊢∅ Δ1;Γ1K𝜎 , . . . , 𝑄𝑛 ∈ ℒJ⊢∅ Δ𝑛 ;Γ𝑛K𝜎.
Then, Def. 36 is equivalent to the following

𝑃 ∈ ℒJ⊢� Δ;ΓK𝜎 iff ∀�′ ∈ J�K𝜎 ∀𝒞 ∈ JΔK𝜎 ∀𝒟 ∈ JΓK!
𝜎 . �
′(𝒞 ◦ 𝒟[𝑃]) is SN.

where we denote by �′(𝑃) the process obtained by substituting the variables in 𝑃 by
processes according to �′.

The following property establishes an equivalence between the extended logical pred-
icate and the basic logical predicates of Def. 34. In one direction it establishes that if
𝑃 ∈ ℒJ⊢∅ Δ, 𝑥 : 𝐴;ΓK𝜎, then we can cut the process along Δ and Γ and prove that the
resulting cut composition is an element of J𝑥 : 𝐴K𝜎.

Lemma 26. The following two propositions

(1) 𝑃 ∈ ℒJ⊢� Δ, 𝑥 : 𝐴;ΓK𝜎.

(2) For all 𝒞 ∈ JΔK𝜎 and𝒟 ∈ JΓK!
𝜎, 𝒞 ◦ 𝒟[𝑃] ∈ J𝑥 : 𝐴K𝜎.

are equivalent.

Proof. By Lemma 23(4).

Lemma 26 gives us a degree of freedom in the sense that we can choose an arbitrary
typed channel 𝑥 : 𝐴 from a nonempty linear typing context Δ of a typed process 𝑃 ⊢�
Δ;Γ and cut the remaining linear context. We conclude this section with the proof
of the Fundamental Lemma 27, from which strong normalisation (Theorem 5) follows
immediately.

Lemma 27 (Fundamental Lemma). If 𝑃 ⊢� Δ;Γ, then 𝑃 ∈ ℒJ⊢� Δ;ΓK𝜎.

Proof. By induction on the structure of a typing derivation for 𝑃 ⊢� Δ;Γ. Cases [Tcut],
[Tfwd], [Tcut!] follow immediately because J𝑥 : 𝐴K = J𝑥 : 𝐴K⊥. Case [T0] follows because
0 is SN and case [Tmix] follows because par {𝑃 | | 𝑄} is SN whenever 𝑃 and 𝑄 are SN. For
the positive types 𝐴, the logical predicate J𝑥 : 𝐴K𝜎 is defined as the biorthogonal of some
set 𝑆, hence for the typing rules that introduce a positive type𝐴 the strategy is to show that
the introduced action 𝑃 lies in 𝑆 ⊆ 𝑆⊥⊥. For the negative types 𝐴: J𝑥 : 𝐴K𝜎 = 𝑆⊥⊥⊥ = 𝑆⊥,
hence the strategy for the typing rules that that introduce an action 𝑄 that types with a
negative type 𝑥 : 𝐴 is to show that cut {𝑃 |𝑥 : 𝐴| 𝑄} is SN, for all 𝑃 ∈ 𝑆. Particularly, for
rule [Tcorec], where 𝐴 = �𝑋. 𝐵, we proceed by induction on the depth 𝑛 of unfolding,
since 𝑆

⋃
𝑛∈N 𝜙

𝑛
𝐵
(∅⊥⊥). Cases [Tcell] and [Tempty] follow by applying the simulations

Lemma 18(1)-(2). Cases [Tsh], [TshL], [TshR] follows after applying the decomposition of the
share as a mix as given by Lemma 20(1)-(2). We illustrate the proof with some cases. In the
cases in which the recursive map � that annotates the typing judgments 𝑃 ⊢� Δ;Γ plays
no role and is essentially propagated from the conclusion to the premises of the typing

159

CHAPTER 9. STRONG NORMALISATION

rule we omit it, working as if the process 𝑃 did not have any free recursion variable 𝑋.
Similarly for the map 𝜎 which annotates the logical predicates J𝑥 : 𝐴K𝜎. The complete
proof can be found in Appendix E.

Case [Tcut]:

𝑃1 ⊢ Δ1 , 𝑥 : 𝐴;Γ 𝑃2 ⊢ Δ2 , 𝑥 : 𝐴;Γ
cut {𝑃1 |𝑥 | 𝑃2} ⊢ Δ1 ,Δ2;Γ

Let 𝒞1 ∈ JΔ1K, 𝒞2 ∈ JΔ2K and𝒟 ∈ JΓK!.

We have

𝒞1 ◦ 𝒞2 ◦ 𝒟[cut {𝑃1 |𝑥 | 𝑃2}] ≡c cut {(𝒞1 ◦ 𝒟[𝑃1]) |𝑥 | (𝒞2 ◦ 𝒟[𝑃2])}

I.h. and Lemma 26 applied to 𝑃1 ⊢ Δ1 , 𝑥 : 𝐴;Γ yields 𝒞1 ◦ 𝒟[𝑃1] ∈ J𝑥 : 𝐴K.

I.h. and Lemma 26 applied to 𝑃2 ⊢ Δ2 , 𝑥 : 𝐴;Γ yields 𝒞2 ◦ 𝒟[𝑃2] ∈ J𝑥 : 𝐴K.

By applying Lemma 23(4) we conclude that cut {(𝒞1 ◦ 𝒟[𝑃1]) |𝑥 | (𝒞2 ◦ 𝒟[𝑃2])} is
SN.

Hence, 𝒞 ◦ 𝒟[cut {𝑃1 |𝑥 | 𝑃2}] is SN.

Case: [Tcorec]

{𝑥/𝑧}{ ®𝑦/ ®𝑤}𝑃′ ⊢�′ Δ′, 𝑥 : 𝐴;Γ �′ = �, 𝑌(𝑥, ®𝑦) ↦→ Δ′, 𝑥 : 𝑋;Γ

corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦] ⊢� Δ′, 𝑥 : �𝑋. 𝐴;Γ

Let 𝜌 ∈ J�K𝜎, 𝒞 ∈ JΔ′K𝜎 and𝒟 ∈ JΓK!
𝜎.

We prove that 𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] ∈ J𝑥 : �𝑋. 𝐴K𝜎.

By Lemma 26, this implies that corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦] ∈ ℒJ⊢� Δ′, 𝑥 : �𝑋. 𝐴;ΓK𝜎.

By Lemma 25(5), we have

J𝑥 : �𝑋. 𝐴K𝜎 =
⋂
𝑛∈N

𝜙𝑛
{𝑋/𝑋}𝐴

(∅⊥⊥)⊥

where 𝜙{𝑋/𝑋}𝐴(𝑆) ≜ unfold� 𝑥; J𝑥 : {𝑋/𝑋}𝐴K𝜎[𝑋 ↦→𝑆].

We prove (H1):

∀𝑛 ∈ N, ∀𝜌 ∈ J�K𝜎 , ∀𝒞 ∈ JΔ′K𝜎 , ∀𝒟 ∈ JΓK!
𝜎 .

𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] ∈ 𝜙𝑛
{𝑋/𝑋}𝐴

(∅⊥⊥)⊥

Proof of (H1) is by induction on 𝑛 ∈ N:

Case: 𝑛 = 0.
Follows because𝒞◦𝒟[𝜌(corec𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] ∈ ∅⊥ andsince𝜙0

{𝑋/𝑋}𝐴
(∅⊥⊥)⊥ =

∅⊥⊥⊥ = ∅⊥ (Lemma 22(5)).

160

9.3. LINEAR LOGICAL PREDICATES FOR STRONG NORMALISATION

Case: 𝑛 = 𝑚 + 1.
Let 𝑄 ∈ 𝜙𝑚+1

{𝑋/𝑋}𝐴
(∅⊥⊥).

Then 𝑄 ≡c unfold� 𝑥;𝑄′, where 𝑄′ ∈ J𝑥 : {𝑋/𝑋}𝐴K𝜎[𝑋 ↦→𝜓𝑚
𝐴
(∅⊥⊥)].

We prove (H2)

cut {𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] |𝑥 | 𝑄} is SN

by induction on 𝑁(𝒞) + 𝑁(𝜌) + 𝑁(𝑄).
Suppose that cut {𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] |𝑥 | 𝑄} →c 𝑅. There are
two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝒞, 𝜌 or 𝑄.

Case: (ii) 𝑅 is obtained by an interaction on session 𝑥.

Case (i) follows by inner inductive hypothesis (H2).

So let us consider case (ii). Then

cut {𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] |𝑥 | 𝑄}
≡c cut {𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] |𝑥 | unfold� 𝑥;𝑄′}
→c cut {𝒞 ◦ 𝒟[𝜌({𝑥/𝑧}{ ®𝑦/ ®𝑤}{corec 𝑌(𝑧, ®𝑤);𝑃′/𝑌}𝑃′)] |𝑥 | 𝑄′}
= cut {𝒞 ◦ 𝒟[𝜌′({𝑥/𝑧}{ ®𝑦/ ®𝑤}𝑃′)] |𝑥 | 𝑄′} = 𝑅

where 𝜌′ = 𝜌, 𝑌(𝑥, ®𝑦) ↦→ 𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′).
I.h. (H1) applied to 𝑚 yields

∀𝒞 ∈ JΔ′K, ∀𝒟 ∈ JΓK!.

𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] ∈ 𝜙𝑚
{𝑋/𝑋}𝐴

(∅⊥⊥)⊥

Hence, by Lemma 26, we obtain

𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦]) ∈ ℒJ⊢∅ Δ′, 𝑥 : 𝑋;ΓK𝜎[𝑋 ↦→𝜓𝑚
{𝑋/𝑋}𝐴

(∅⊥⊥)⊥]

Therefore, 𝜌′ ∈ J�′K𝜎.

Applying i.h. (outer i.h., fundamental lemma) to {𝑥/𝑧}{ ®𝑦/ ®𝑤}𝑃′ ⊢�′ Δ′, 𝑥 : 𝐴;Γ
and Lemma 26 yields 𝒞 ◦ 𝒟[𝜌′({𝑥/𝑧}{ ®𝑦/ ®𝑤}𝑃′)] ∈ J𝑥 : 𝐴K𝜎[𝑋 ↦→𝜓𝑚

𝐴
(∅⊥⊥)⊥].

Lemma 23(6) implies 𝒞 ◦ 𝒟[𝜌′({𝑥/𝑧}{ ®𝑦/ ®𝑤}𝑃′)] ∈ J𝑥 : {𝑋/𝑋}𝐴K𝜎[𝑋 ↦→𝜓𝑚
𝐴
(∅⊥⊥)].

By hypothesis, 𝑄′ ∈ J𝑥 : {𝑋/𝑋}𝐴K𝜎[𝑋 ↦→𝜓𝑚
𝐴
(∅⊥⊥)], hence by Lemma 23(3) we

obtain that 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude thatcut {𝒞◦𝒟[𝜌(corec𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] |𝑥 | 𝑄}
is SN.

Therefore, 𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] ∈ 𝜙𝑚+1
{𝑋/𝑋}𝐴

(∅⊥⊥)⊥.

161

CHAPTER 9. STRONG NORMALISATION

Case [Tsh]:
𝑃1 ⊢� Δ1 , 𝑐 : U 𝑓 𝐴;Γ 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ

share 𝑐 {𝑃 | | 𝑄} ⊢� Δ1 ,Δ2 , 𝑐 : U 𝑓 𝐴;Γ

Let 𝒞1 ∈ JΔ1K, 𝒞2 ∈ JΔ2K and𝒟 ∈ JΓK!.

We have
𝒞1 ◦ 𝒞2 ◦ 𝒟[share 𝑐 {𝑃1 | | 𝑃2}]
≡c share 𝑐 {𝒞1 ◦ 𝒟[𝑃1] | | 𝒞2 ◦ 𝒟[𝑃2]}

I.h. and Lemma 26 applied to 𝑃1 ⊢� Δ1 , 𝑐 : U 𝑓 𝐴;Γ yields 𝒞1 ◦ 𝒟[𝑃1] ∈ J𝑐 : U 𝑓 𝐴K.

I.h. and Lemma 26 applied to 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ yields 𝒞2 ◦ 𝒟[𝑃2] ∈ J𝑐 : U 𝑓 𝐴K.

By applying Lemma 24(1) we conclude that𝒞1◦𝒞2◦𝒟[share 𝑐 {𝑃1 | | 𝑃2}] ∈ J𝑐 : U 𝑓 𝐴K.

By Lemma 26, share 𝑐 {𝑃1 | | 𝑃2} ∈ ℒJ⊢� Δ1 ,Δ2 , 𝑐 : U 𝑓 𝐴;ΓK.

Cases: [TshL], [TshR]. Similarly to case [Tsh], by applying Lemma 24(2).

Case: [Tcell]
𝑃′ ⊢� Δ′, 𝑎 : ∧𝐴;Γ

cell 𝑐(𝑎.𝑃′) ⊢� Δ′, 𝑐 : S 𝑓 𝐴;Γ

Let 𝒞 ∈ JΔ′K,𝒟 ∈ JΓK! and 𝑄 ∈ J𝑐 : U 𝑓 𝐴K.

I.h. and Lemma 26 applied to 𝑃′ ⊢� Δ′, 𝑎 : ∧𝐴;Γ yields 𝒞 ◦ 𝒟[𝑃′] ∈ J𝑎 : ∧𝐴K.

Since 𝑄 ∈ J𝑐 : U 𝑓 𝐴K, then 𝑄 is J𝑎 : ∧𝐴K-preserving.

Hence, by Lemma 18(1), cut {cell 𝑐(𝑎.𝒞◦𝒟[𝑃′]) |𝑐 | 𝑄} is simulatedby cut {cell 𝑐(𝑎.J𝑎 :
∧𝐴K) |𝑐 | 𝑄}.

Since 𝑄 ∈ J𝑐 : U 𝑓 𝐴K = 𝑆⊥ where 𝑆 = {𝑅 | 𝑅 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K)}, then
cut {cell 𝑐(𝑎.J𝑎 : ∧𝐴K) |𝑐 | 𝑄} is SN.

Hence, cut {𝒞 ◦ 𝒟[cell 𝑐(𝑎.𝑃′)] |𝑐 | 𝑄} is SN.

Then, cell 𝑐(𝑎.𝑃′) ∈ ℒJ⊢� Δ′, 𝑐 : S 𝑓 𝐴;ΓK.

Case: [Tempty]

empty 𝑐 ⊢� 𝑐 : S𝑒 𝐴;Γ

Let𝒟 ∈ JΓK! and 𝑄 ∈ J𝑐 : U𝑒 𝐴K.

Since 𝑄 ∈ J𝑐 : U𝑒 𝐴K, then 𝑄 is J𝑎 : ∧𝐴K-preserving.

Hence, by Lemma 18(2), cut {empty 𝑐 |𝑐 | 𝑄} is simulated by cut {empty 𝑐(J𝑎 :
∧𝐴K.) |𝑐 | 𝑄}.

Since 𝑄 ∈ J𝑐 : U𝑒 𝐴K = 𝑆⊥ where 𝑆 = {𝑅 | 𝑅 ≡c empty 𝑐(J𝑎 : ∧𝐴K.}), then
cut {empty 𝑐(J𝑎 : ∧𝐴K.) |𝑐 | 𝑄} is SN.

Hence, cut {𝒟[empty 𝑐] |𝑐 | 𝑄} is SN.

Then, empty 𝑐 ∈ ℒJ⊢� 𝑐 : S𝑒 𝐴;ΓK.

162

9.3. LINEAR LOGICAL PREDICATES FOR STRONG NORMALISATION

Case: [Trelease]

release 𝑐 ⊢� 𝑐 : U 𝑓 𝐴;Γ

By Def. 32 and Lemma 22(5) we have J𝑥 : U 𝑓 𝐴K = 𝑆⊥, where

𝑆 = {𝑄 | 𝑄 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K)}.

Let𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K).

We prove that (H) cut {𝑄 |𝑐 | 𝒟[release 𝑐]} is SN, by induction on 𝑁(𝑄).

Suppose that cut {𝑄 |𝑐 | 𝒟[release 𝑐]} →c 𝑅. There are two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑐.

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii). Then

cut {𝑄 |𝑐 | 𝒟[release 𝑐]} ≡c 𝒟[cut {cell 𝑐(𝑎.J𝑎 : ∧𝐴K) |𝑐 | release 𝑐}] ∗−→c 𝒟[0] = 𝑅

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑐 | 𝒟[release 𝑐]} is SN.

Furthermore, release 𝑐 is vacuously J𝑦 : ∧𝐴K-preserving, for any 𝑦.

Therefore,𝒟[release 𝑐] ∈ J𝑥 : U 𝑓 𝐴K.

By Lemma 26, release 𝑐 ∈ ℒJ⊢� 𝑎 : U 𝑓 𝐴;ΓK.

Case: [Ttake]
𝑃′ ⊢� Δ′, 𝑎 : ∨𝐴, 𝑐 : U𝑒 𝐴;Γ

take 𝑐(𝑎);𝑃′ ⊢� Δ′, 𝑐 : U 𝑓 𝐴;Γ

By Def. 32 and Lemma 22(5) we have J𝑐 : U 𝑓 𝐴K = 𝑆⊥, where

𝑆 = {𝑄 | 𝑄 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K)}.

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K).

We prove that (H) cut {𝑄 |𝑐 | 𝒞◦𝒟[take 𝑐(𝑎);𝑃′]} is SN, by induction on𝑁(𝑄)+𝑁(𝒞).

Suppose that cut {𝑄 |𝑐 | 𝒞 ◦𝒟[take 𝑐(𝑎);𝑃′]} →c 𝑅. There are two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄 or 𝒞.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑐.

163

CHAPTER 9. STRONG NORMALISATION

Case (i) follows by inner inductive hypothesis (H). So let us consider case (ii). Then

cut {𝑄 |𝑐 | 𝒞 ◦ 𝒟[take 𝑐(𝑎);𝑃′]}
≡c cut {cell 𝑐(𝑎.J𝑎 : ∧𝐴K) |𝑐 | 𝒞 ◦ 𝒟[take 𝑐(𝑎);𝑃′]}
→c cut {cell 𝑐(𝑎.J𝑎 : ∧𝐴K) |𝑐 | (cut {𝑄′ |𝑎 | 𝒞 ◦ 𝒟[𝑃′]})} = 𝑅

where 𝑄′ ∈ J𝑎 : ∧𝐴K.

By Def. 32, J𝑐 : S 𝑓 𝐴K = 𝑆⊥⊥.

By Lemma 22(4), 𝑆 ⊆ 𝑆⊥⊥, hence cell 𝑐(𝑎.J𝑎 : ∧𝐴K) ∈ J𝑐 : S 𝑓 𝐴K.

Applying i.h. to 𝑃′ ⊢� Δ′, 𝑎 : ∨𝐴, 𝑐 : U𝑒 𝐴;Γ yields 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑐 | 𝒞 ◦ 𝒟[take 𝑐(𝑎);𝑃′]} is SN.

Now, we prove that 𝒞 ◦ 𝒟[take 𝑐(𝑎);𝑃′] is J𝑎 : ∧𝐴K𝜎-preserving, for any 𝑎. Let
𝑅 ∈ J𝑎 : ∧𝐴K. Applying i.h. to 𝑃′ ⊢� Δ′, 𝑎 : ∨𝐴, 𝑐 : U𝑒 𝐴;Γ we conclude that
cut {𝑅 |𝑎 | 𝒞 ◦ 𝒟[𝑃′]} ∈ J𝑐 : U𝑒 𝐴K, which implies that cut {𝑅 |𝑎 | 𝒞 ◦ 𝒟[𝑃′]} ∈ J𝑐 :
U𝑒 𝐴K and hence cut {𝑅 |𝑎 | 𝒞 ◦ 𝒟[𝑃′]} is J𝑎 : ∧𝐴K-preserving.

Therefore, 𝒞 ◦ 𝒟[take 𝑐(𝑎);𝑃′] ∈ J𝑐 : U 𝑓 𝐴K.

By Lemma 26, take 𝑐(𝑎);𝑃′ ∈ ℒJ⊢� Δ′, 𝑐 : U 𝑓 𝐴;ΓK.

Case: [Tput]
𝑃1 ⊢� Δ1 , 𝑎 : ∧𝐴;Γ 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ

put 𝑐(𝑎.𝑃1);𝑃2 ⊢� Δ1 ,Δ2 , 𝑐 : U𝑒 𝐴;Γ
By Def. 32 and Lemma 22(5) we have J𝑐 : U𝑒 𝐴K = 𝑆⊥, where

𝑆 = {𝑄 | 𝑄 ≡c empty 𝑐(J𝑎 : ∧𝐴K.}).

Let 𝒞1 ∈ JΔ1K, 𝒞2 ∈ JΔ2K and𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c empty 𝑐(J𝑎 : ∧𝐴K.).

We prove that (H) cut {𝑄 |𝑐 | 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2]} is SN, by induction on
𝑁(𝑄) + 𝑁(𝒞1) + 𝑁(𝒞2).

Suppose that cut {𝑄 |𝑐 | 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2]} →c 𝑅. There are two cases to
consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄, 𝒞1 or 𝒞2.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑐.

Case (i) follows by inner inductive hypothesis (H).So let us consider case (ii). Then

cut {𝑄 |𝑐 | 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2]}
≡c cut {empty 𝑐(J𝑎 : ∧𝐴K.) |𝑐 | 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2]}
≡c cut {empty 𝑐(J𝑎 : ∧𝐴K.) |𝑐 | put 𝑐(𝑎.𝒞1 ◦ 𝒟[𝑃1]);𝒞2 ◦ 𝒟[𝑃2]}
→c cut {cell 𝑐(𝑎.J𝑎 : ∧𝐴K) |𝑐 | 𝒞2 ◦ 𝒟[𝑃2]} = 𝑅 (*)

164

9.4. FURTHER DISCUSSION AND RELATED WORK

I.h. applied to 𝑃1 ⊢� Δ1 , 𝑎 : ∧𝐴;Γ yields 𝒞1 ◦ 𝒟[𝑃1] ∈ J𝑎 : ∧𝐴K, hence reduction step
(*).

By Def. 32, J𝑐 : S 𝑓 𝐴K = 𝑆⊥⊥.

By Lemma 22(4), 𝑆 ⊆ 𝑆⊥⊥, hence cell 𝑐(𝑎.J𝑎 : ∧𝐴K) ∈ J𝑐 : S 𝑓 𝐴K.

Applying i.h. to 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ yields 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑐 | 𝒞1 ◦ 𝒞2 ◦𝒟[put 𝑐(𝑎.𝑃1);𝑃2]}
is SN.

Now, we prove that 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2] is J𝑎 : ∧𝐴K-preserving, for any 𝑎.
Applying i.h. to 𝑃1 ⊢� Δ1 , 𝑎 : ∧𝐴;Γwe conclude that𝒞1◦𝒟[𝑃1] ∈ J𝑎 : ∧𝐴K. Applying
i.h. to 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ we conclude that 𝒞2 ◦ 𝒟[𝑃2] ∈ J𝑐 : U 𝑓 𝐴K, which implies
that 𝒞2 ◦ 𝒟[𝑃2] is J𝑎 : ∧𝐴K-preserving

Therefore, 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2] ∈ J𝑐 : U𝑒 𝐴K.

By Lemma 26, put 𝑐(𝑎.𝑃1);𝑃2 ∈ ℒJ⊢� Δ1 ,Δ2 , 𝑐 : U𝑒 𝐴;ΓK.

Theorem 5 (Strong Normalisation). If 𝑃 ⊢∅ ∅; ∅, then 𝑃 is SN.

Proof. Immediately by Lemma 27.

9.4 Further Discussion and Related Work

To the best of our knowledge, our work is the first proposal that integrates affine shared
state in the context of session-based interpretations of Linear Logic, and recursion, while
still guaranteeing a strong normalisation result. The proof of the result is based in the
technique of the linear logical relations, which we have scaled to accommodate shared
mutable state, handling state interference compositionally.

Several works exploit the technique of logical relations to establish strong normali-
sation in the context of concurrent process calculi [164, 135, 18, 121]. [18] proves strong
normalisation for a concurrent language with higher-order store with a type and effect
system that stratifies memory into regions so as to preclude circularities (such as the
Landin’s Knot), which could cause divergence. Interestingly, in our type system this
stratification is implicitly guaranteed by the acyclicity inherent to Linear Logic.

Linear logical relations for session-typed languages based on Intuitionistic Linear
Logic were studied in [121], and further extended in [32] to accommodate behavioural
polymorphism, in [146] to accommodate recursion, and in [149] to prove full abstraction
of an encoding between System F and a polymorphic session calculus. In [121], the linear

165

CHAPTER 9. STRONG NORMALISATION

logical predicates need to be explicitly defined for each session type constructor. On the
other hand, in our proof, since we are working in the realm of Classical Linear Logic, we
explore the relationship of duality on types [63, 9, 1]. As a consequence, in our case, the
definition of the basic logical predicates is given explicitly for only half of the connectives,
the remaining half being obtained by orthogonality.

Our linear logical predicates depend on the the auxiliary interference-sensitive refer-
ence cells, which internalise interference resultant from state sharing in their operational
semantics (Section 9.2) and which play a crucial role by allowing us to reason about state
sharing compositionally. Interestingly, [27] defines, in the context of spatial-behavioral
types for shared concurrency, a logical predicate which is also sensitive to possible inter-
ferences on the shared store, the definition relies on an interference-sensitive reduction.

As already discussed in the introduction, reduction → in CLASS is not strongly
normalising, essentially due to the idempotency of sum (𝑃 ≡ 𝑃 + 𝑃). Therefore, we have
established strong normalisation for the session-typed calculus CLASS with collapsing
reduction→c instead. However, this result should not be seen as being too restrictive,
as this implies a sort of strong normalisation result for reduction→ in CLASS, provided
applications of the idempotency law are controlled. That is, we conjecture that it should be
possible to simulate→-reductions of a process 𝑃 in CLASS by→c-reductions in multisets
of processes {𝑃1 , 𝑃2 , . . .} in CLASS. The crucial point is then that the multisets used for
the simulation are finite, provided applications of idempotency are bounded. This kind
of result, that relates a logically motivated reduction (in our case→) with a non-confluent
collapsing reduction (in our case→c) is established in [28] for a session-typed process
calculus with abortable computations. On the other hand, the session-typed calculus
CLASS is interesting of its own since it captures more faithfully the semantics of our
practical interpreter implementation (Chapter 5), where sums are also not present.

166

10

Conclusion

In this thesis, we developed CLASS, a core session-based language with a lightweight
substructural type system, that results from a principled extension of the propositions-as-
types correspondence with second-order classical linear logic. The typing rules for the
imperative fragment are inspired by those for the exponentials and sum connectives of
differential linear logic (DiLL), in particular state sharing corresponds to the computational
interpretation of cocontraction.

CLASS offers support for session-based communication, first-class higher-order ref-
erence cells with locks, dynamic state sharing, generic polymorphic algorithms, data
abstraction and primitive recursion, the pure fragment was presented in Chapter 2 and
the imperative fragment in Chapter 3.

CLASS expresses and types significant realistic programs, such as memory-efficient
linked data structures (linked lists, binary search trees) that support updates in-place,
shareable concurrent ADTs (counters, stacks, functional and imperative queues), resource
synchronisation methods (fork-joins, barriers, dining philosophers) and generic shared
corecursive protocols. All of these examples are guaranteed to be safe, purely by the
logical correspondence, several of which were presented in Chapter 4.

The feasibility of our propositions-as-types approach is witnessed by the implementa-
tion of a type checker and interpreter, written in Java, which we presented in Chapter 5.

As a consequence of its propositions-as-types logical foundations, CLASS provides
strong guarantees in a highly compositional way: well-typed CLASS programs never block
when executing (Chapter 6), the outcome of a program is independent of the order in
which instructions are executed (Chapter 7), each program has a normal reduced form that
summarises its behaviour (Chapter 8), each program is guaranteed to always terminate
(Chapter 9). Furthermore, we can reason about program behaviour in a very simple and
and algebraic-like way as we have illustrated with some examples.

We will now point out some future work. The session-typed language CLASS is already
quite expressive, as we have showed with several examples. The crisp conditions imposed
by cocontraction - that two concurrent threads, at at any given time, share only a single
cell - might appear, a priori, to be too limiting. But we have showed that its to possible

167

CHAPTER 10. CONCLUSION

to group the state shared by two threads in a single resource, as we did, for example, in
coding the solution to the dining philosophers problem (Example 4.3). However, in this
solution, the symmetry-breaker philosopher needs to traverse the whole passive shared
structure in order to acquire the first and last fork. An interesting research direction is
to investigate further type disciplines for CLASS that relax this condition and that allow
finer-grained resource-access policies to be expressed.

Arrays are fundamental blocks, used to give an efficient implementation of many
other data structures, such as lists, hash tables and queues, to name a few, due to the
constant-time random access to data elements they provide. CLASS allows us to code,
albeit inefficiently, arrays, for example, as we do in examples/state/arrays.clls, by repre-
senting arrays as functions on natural-valued indices. It would be interesting to study
how to provide support for primitive arrays with efficient constant-time access in the
implementation, compatible to those typed in the formal model.

CLASS already integrates shared mutable state with higher-order polymorphism and
inductive/coinductive types in the context of the propositions-as-types interpretation of
linear logic. The further integration with dependent types [148, 92] would allows us to
have a general theory for concurrent stateful session-based computation, based on linear
logic. This would allow us to express resource invariants and possibly notions of abstract
separation [93, 84, 52].

Overall, it would be very important to continue developing a practical full-fledged
programming language based on CLASS, providing strong guarantees at compile time.
Of course, this is an ambitious goal, that has been approached perhaps for decades. In
1972, Hoare [69] already mention that: “Parallel programs are particularly prone to time-
dependent errors, which either cannot be detected by program testing nor by run-time
checks. It is therefore very important that a high-level language designed for this purpose
should provide complete security against time-dependent errors by means of a compile-time
check”. This work intends to offer a valuable contribution towards that general goal.

168

Bibliography

[1] S. Abramsky. “Computational Interpretations of Linear Logic”. In: Theoret. Comput.
Sci. 111.1–2 (1993), pp. 3–57 (cit. on pp. 5, 48, 143, 166).

[2] S. Abramsky, S. J. Gay, and R. Nagarajan. “Interaction categories and the founda-
tions of typed concurrent programming”. In: NATO ASI DPD. 1996, pp. 35–113
(cit. on p. 48).

[3] A. Ahmed, M. Fluet, and G. Morrisett. “A step-indexed model of substructural
state”. In: Proceedings of the tenth ACM SIGPLAN international conference on Functional
programming. 2005, pp. 78–91 (cit. on pp. 10, 70).

[4] A. Ahmed, M. Fluet, and G. Morrisett. “L3: A Linear Language with Locations”.
In: Fundam. Inf. 77.4 (2007-12), pp. 397–449. issn: 0169-2968 (cit. on pp. 7, 70).

[5] J.-M. Andreoli. “Logic Programming with Focusing Proofs in Linear Logic”. In: J.
Log. Comput. 2.3 (1992), pp. 297–347 (cit. on p. 49).

[6] A. Asperti and L. Roversi. “Intuitionistic light affine logic”. In: ACM Transactions
on Computational Logic (TOCL) 3.1 (2002), pp. 137–175 (cit. on pp. 10, 58, 70).

[7] R. Atkey, S. Lindley, and J. G. Morris. “Conflation Confers Concurrency”. In: A
List of Successes That Can Change the World: Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday. Ed. by S. Lindley et al. Cham: Springer International
Publishing, 2016, pp. 32–55. isbn: 978-3-319-30936-1 (cit. on pp. 7, 70, 73, 123).

[8] M. van Atten. “The Development of Intuitionistic Logic”. In: The Stanford Encyclo-
pedia of Philosophy. Ed. by E. N. Zalta. Summer 2022. Metaphysics Research Lab,
Stanford University, 2022 (cit. on p. 3).

[9] D. Baelde. “Least and greatest fixed points in linear logic”. In: TOCL 13.1 (2012-01)
(cit. on pp. 20, 49, 143, 166).

[10] S. Balzer and F. Pfenning. “Manifest Sharing with Session Types”. In: Proc. ACM
Program. Lang. 1.ICFP (2017-08) (cit. on pp. 7, 11, 70, 71, 73, 76, 85, 95, 123).

169

BIBLIOGRAPHY

[11] S. Balzer, B. Toninho, and F. Pfenning. “Manifest Deadlock-Freedom for Shared
Session Types”. In: Programming Languages and Systems. Ed. by L. Caires. Cham:
Springer International Publishing, 2019, pp. 611–639. isbn: 978-3-030-17184-1 (cit.
on pp. 7, 65, 70, 71, 73, 109).

[12] H. P. Barendregt et al. The lambda calculus. Vol. 3. North-Holland Amsterdam, 1984
(cit. on p. 123).

[13] E. Beffara. “An Algebraic Process Calculus”. In: Proceedings of the 2008 23rd Annual
IEEE Symposium on Logic in Computer Science. LICS ’08. USA: IEEE Computer
Society, 2008, pp. 130–141. isbn: 9780769531830 (cit. on p. 123).

[14] G. Bellin and P. Scott. “On the 𝜋-Calculus and Linear Logic”. In: Theoret. Comput.
Sci. 135.1 (1994), pp. 11–65 (cit. on pp. 5, 48).

[15] G. Berry and G. Boudol. “The chemical abstract machine”. In: Theoretical computer
science 96.1 (1992), pp. 217–248 (cit. on p. 23).

[16] Y. Bertot and P. Castéran. Interactive theorem proving and program development: Coq’Art:
the calculus of inductive constructions. Springer Science & Business Media, 2013 (cit.
on p. 4).

[17] M. Boreale. “On the Expressiveness of Internal Mobility in Name-Passing Calculi”.
In: Proceedings of the 7th International Conference on Concurrency Theory. CONCUR
’96. Berlin, Heidelberg: Springer-Verlag, 1996, pp. 163–178. isbn: 3540616047
(cit. on p. 35).

[18] G. Boudol. “Typing termination in a higher-order concurrent imperative language”.
In: Information and Computation 208.6 (2010), pp. 716–736 (cit. on p. 165).

[19] A. Bove, P. Dybjer, and U. Norell. “A brief overview of Agda–a functional language
with dependent types”. In: International Conference on Theorem Proving in Higher
Order Logics. Springer. 2009, pp. 73–78 (cit. on p. 4).

[20] G. Bracha et al. “Making the future safe for the past: Adding genericity to the Java
programming language”. In: Acm sigplan notices 33.10 (1998), pp. 183–200 (cit. on
p. 4).

[21] S. Brookes and P. W. O’Hearn. “Concurrent separation logic”. In: ACM SIGLOG
News 3.3 (2016), pp. 47–65 (cit. on pp. 70, 76, 85).

[22] L. Caires and J. A. Pérez. “Multiparty Session Types Within a Canonical Binary
Theory, and Beyond”. In: Formal Techniques for Distributed Objects, Components, and
Systems. Ed. by E. Albert and I. Lanese. Cham: Springer International Publishing,
2016, pp. 74–95. isbn: 978-3-319-39570-8 (cit. on p. 6).

170

BIBLIOGRAPHY

[23] L. Caires and F. Pfenning. “Session Types as Intuitionistic Linear Propositions”. In:
CONCUR 2010 - Concurrency Theory. Ed. by P. Gastin and F. Laroussinie. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 222–236. isbn: 978-3-642-15375-
4 (cit. on pp. 6, 8, 12, 17, 19, 22, 24, 27, 35, 36, 48, 49, 65, 70, 71, 101, 108, 123, 125,
144).

[24] L. Caires, F. Pfenning, and B. Toninho. “Linear logic propositions as session types”.
In: Mathematical Structures in Computer Science 26.3 (2016), pp. 367–423 (cit. on pp. 8,
17, 19, 22, 48, 70, 71, 108, 125, 142, 144).

[25] L. Caires and H. T. Vieira. “Conversation Types”. In: Programming Languages and
Systems. Ed. by G. Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 285–300. isbn: 978-3-642-00590-9 (cit. on p. 108).

[26] L. Caires et al. Relational Parametricity for Polymorphic Session Types. Tech. rep.
CMU-CS-12-108. Carnegie Mellon Univ., 2012 (cit. on p. 109).

[27] L. Caires. “Spatial-behavioral types for concurrency and resource control in dis-
tributed systems”. In: Theoretical Computer Science 402.2-3 (2008), pp. 120–141
(cit. on p. 166).

[28] L. Caires and J. A. Pérez. “Linearity, Control Effects, and Behavioral Types”. In:
Proceedings of the 26th European Symposium on Programming Languages and Systems
- Volume 10201. Berlin, Heidelberg: Springer-Verlag, 2017, pp. 229–259. isbn:
9783662544334 (cit. on pp. 6, 10, 58, 70, 109, 166).

[29] L. Caires, F. Pfenning, and B. Toninho. “Linear logic propositions as session types”.
In: Mathematical Structures in Computer Science 26.3 (2016), pp. 367–423 (cit. on
p. 49).

[30] L. Caires, F. Pfenning, and B. Toninho. “Towards Concurrent Type Theory”. In:
Proceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and
Implementation. TLDI ’12. Philadelphia, Pennsylvania, USA: Association for
Computing Machinery, 2012, pp. 1–12. isbn: 9781450311205 (cit. on pp. 29, 33).

[31] L. Caires and J. C. Seco. “The Type Discipline of Behavioral Separation”. In:
Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’13. Rome, Italy: Association for Computing
Machinery, 2013, pp. 275–286. isbn: 9781450318327 (cit. on pp. 7, 70).

[32] L. Caires et al. “Behavioral Polymorphism and Parametricity in Session-Based
Communication”. In: Proceedings of the 22nd European Conference on Programming
Languages and Systems. ESOP’13. Rome, Italy: Springer-Verlag, 2013, pp. 330–349.
isbn: 9783642370359 (cit. on pp. 6, 143, 165).

[33] M. Carbone, K. Honda, and N. Yoshida. “Structured Interactional Exceptions in
Session Types”. In: CONCUR 2008. Vol. 5201. LNCS. Springer, 2008, pp. 402–417
(cit. on pp. 10, 70).

171

BIBLIOGRAPHY

[34] M. Carbone et al. “Coherence Generalises Duality: a logical explanation of multi-
party session types”. In: 27 International Conference on Concurrency Theory (CON-
CUR’16). Québec City, Canada, 2016-08 (cit. on p. 6).

[35] L. Cardelli and P. Wegner. “On understanding types, data abstraction, and poly-
morphism”. In: ACM Computing Surveys (CSUR) 17.4 (1985), pp. 471–523 (cit. on
pp. 18, 76, 79).

[36] R. F. Chen, S. Balzer, and B. Toninho. Ferrite: A Judgmental Embedding of Session
Types in Rust. 2022 (cit. on pp. 5, 95).

[37] A. Church and J. B. Rosser. “Some properties of conversion”. In: Transactions of the
American Mathematical Society 39.3 (1936), pp. 472–482 (cit. on p. 111).

[38] D. G. Clarke, J. M. Potter, and J. Noble. “Ownership Types for Flexible Alias
Protection”. In: Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. OOPSLA ’98. Vancouver, British
Columbia, Canada: Association for Computing Machinery, 1998, pp. 48–64. isbn:
1581130058 (cit. on pp. 5, 10, 70).

[39] E. Cooper et al. “Links: Web Programming Without Tiers”. In: Formal Methods
for Components and Objects. Ed. by F. S. de Boer et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 266–296. isbn: 978-3-540-74792-5 (cit. on p. 5).

[40] T. Coquand and G. Huet. “The calculus of constructions”. PhD thesis. INRIA,
1986 (cit. on p. 4).

[41] H. B. Curry. “Functionality in combinatory logic”. In: Proceedings of the National
Academy of Sciences 20.11 (1934), pp. 584–590 (cit. on p. 3).

[42] H. B. Curry et al. Combinatory logic. Vol. 1. North-Holland Amsterdam, 1958 (cit. on
p. 3).

[43] O. Dardha and S. J. Gay. “A New Linear Logic for Deadlock-Free Session-Typed
Processes”. In: Foundations of Software Science and Computation Structures. Ed. by C.
Baier and U. Dal Lago. Cham: Springer International Publishing, 2018, pp. 91–109.
isbn: 978-3-319-89366-2 (cit. on p. 108).

[44] O. Dardha and J. A. Pérez. “Comparing deadlock-free session typed processes”.
In: arXiv preprint arXiv:1508.06707 (2015) (cit. on p. 109).

[45] R. DeLine and M. Fähndrich. “Enforcing High-Level Protocols in Low-Level
Software”. In: Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation. PLDI ’01. Snowbird, Utah, USA: Association
for Computing Machinery, 2001, pp. 59–69. isbn: 1581134142 (cit. on p. 5).

[46] R. Demangeon, D. Hirschkoff, and D. Sangiorgi. “Mobile processes and termina-
tion”. In: Semantics and Algebraic Specification. Springer, 2009, pp. 250–273 (cit. on
p. 143).

172

BIBLIOGRAPHY

[47] F. Derakhshan and F. Pfenning. Circular Proofs as Session-Typed Processes: A Local
Validity Condition. 2019 (cit. on p. 49).

[48] M. Dezani-Ciancaglini and U. de’Liguoro. “Sessions and Session Types: an
Overview”. In: 6th Intl Workshop on Web Services and Formal Methods WS-FM’09.
Lecture Notes in Computer Science. Springer-Verlag, 2010 (cit. on p. 5).

[49] M. Dezani-Ciancaglini, U. de’Liguoro, and N. Yoshida. “On progress for structured
communications”. In: International Symposium on Trustworthy Global Computing.
Springer. 2007, pp. 257–275 (cit. on p. 108).

[50] E. W. Dĳkstra. “Cooperating sequential processes”. In: The origin of concurrent
programming. Springer, 1968, pp. 65–138 (cit. on p. 7).

[51] E. W. Dĳkstra. “Hierarchical ordering of sequential processes”. In: The origin of
concurrent programming. Springer, 1971, pp. 198–227 (cit. on pp. 14, 76, 82).

[52] T. Dinsdale-Young et al. “Views: Compositional Reasoning for Concurrent Pro-
grams”. In: Proceedings of POPL. 2013-01 (cit. on p. 168).

[53] T. Ehrhard. “An introduction to differential linear logic: proof-nets, models and
antiderivatives”. In: Mathematical Structures in Computer Science 28.7 (2018), pp. 995–
1060 (cit. on pp. 10, 12, 15, 18, 60, 65, 68, 70, 73, 109).

[54] T. Ehrhard and L. Regnier. “Differential Interaction Nets”. In: Theor. Comput. Sci.
364.2 (2006), pp. 166–195 (cit. on pp. 18, 123).

[55] T. Ehrhard and L. Regnier. “The differential lambda-calculus”. In: Theoretical
Computer Science 309.1-3 (2003), pp. 1–41 (cit. on p. 123).

[56] A. Filinski. “Linear continuations”. In: Proceedings of the 19th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 1992, pp. 27–38 (cit. on
p. 38).

[57] S. Fowler et al. “Exceptional asynchronous session types: session types without
tiers”. In: Proceedings of the ACM on Programming Languages 3.POPL (2019), pp. 1–29
(cit. on pp. 5, 10, 70).

[58] S. J. Gay and V. T. Vasconcelos. “Linear type theory for asynchronous session
types”. In: Journal of Functional Programming 20.1 (2010), pp. 19–50 (cit. on p. 48).

[59] G. Gentzen. “Investigations into Logical Deduction”. In: American Philosophical
Quarterly 1.4 (1964), pp. 288–306. issn: 00030481 (cit. on p. 124).

[60] E. Giachino, N. Kobayashi, and C. Laneve. “Deadlock analysis of unbounded
process networks”. In: International Conference on Concurrency Theory. Springer.
2014, pp. 63–77 (cit. on p. 109).

[61] J.-Y. Girard. “Linear Logic”. In: Theoret. Comput. Sci. 50.1 (1987), pp. 1–102 (cit. on
p. 48).

173

BIBLIOGRAPHY

[62] J.-Y. Girard. “Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur”. PhD thesis. Éditeur inconnu, 1972 (cit. on p. 4).

[63] J.-Y. Girard. “Linear logic”. In: Theoretical computer science 50.1 (1987), pp. 1–101
(cit. on pp. 20, 49, 143, 166).

[64] J.-Y. Girard. “Linear logic: its syntax and semantics”. In: London Mathematical
Society Lecture Note Series (1995), pp. 1–42 (cit. on pp. 5, 124).

[65] J.-Y. Girard. “On the unity of logic”. In: Annals of pure and applied logic 59.3 (1993),
pp. 201–217 (cit. on p. 48).

[66] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. USA: Cambridge University
Press, 1989. isbn: 0521371813 (cit. on pp. 5, 9, 24, 43).

[67] M. Hennessy and R. Milner. “Algebraic Laws for Nondeterminism and Concur-
rency”. In: J. ACM 32.1 (1985), pp. 137–161 (cit. on pp. 15, 68, 74).

[68] C. A. R. Hoare. “Monitors: An Operating System Structuring Concept”. In:
Commun. ACM 17.10 (1974), pp. 549–557 (cit. on pp. 7, 76, 85).

[69] C. A. R. Hoare. “Towards a theory of parallel programming”. In: The origin of
concurrent programming. Springer, 1972, pp. 231–244 (cit. on p. 168).

[70] J. S. Hodas. “Logic programming in intutionistic linear logic: Theory, design and
implementation”. In: PhD Thesis, University of Pennsylvania, Department of Computer
and Information Science (1994) (cit. on p. 142).

[71] J. S. Hodas and D. Miller. “Logic programming in a fragment of intuitionistic linear
logic”. In: Information and computation 110.2 (1994), pp. 327–365 (cit. on pp. 92, 94).

[72] K. Honda, N. Yoshida, and M. Carbone. “Multiparty asynchronous session types”.
In: POPL. 2008, pp. 273–284 (cit. on p. 5).

[73] K. Honda. “Types for dyadic interaction”. In: CONCUR’93. Ed. by E. Best. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 509–523. isbn: 978-3-540-47968-0
(cit. on pp. 5, 22, 48).

[74] K. Honda, V. T. Vasconcelos, and M. Kubo. “Language primitives and type
discipline for structured communication-based programming”. In: Programming
Languages and Systems. Ed. by C. Hankin. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 122–138. isbn: 978-3-540-69722-0 (cit. on pp. 5, 22).

[75] K. Honda and N. Yoshida. “On reduction-based process semantics”. In: Theoretical
Computer Science 151.2 (1995), pp. 437–486 (cit. on p. 23).

[76] W. A. Howard. “The formulae-as-types notion of construction”. In: To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism. Ed. by J. P. Seldin and
J. R. Hindley. Academic Press, 1980, pp. 479–490 (cit. on pp. 3, 48).

174

BIBLIOGRAPHY

[77] R. Hu, N. Yoshida, and K. Honda. “Session-based distributed programming in
Java”. In: European Conference on Object-Oriented Programming. Springer. 2008,
pp. 516–541 (cit. on p. 5).

[78] P. Hudak and J. H. Fasel. “A gentle introduction to Haskell”. In: ACM Sigplan
Notices 27.5 (1992), pp. 1–52 (cit. on p. 4).

[79] A. Igarashi et al. “Gradual session types”. In: Proceedings of the ACM on Programming
Languages 1.ICFP (2017), pp. 1–28 (cit. on p. 5).

[80] J. Jacobs, S. Balzer, and R. Krebbers. “Connectivity graphs: a method for proving
deadlock freedom based on separation logic”. In: Proc. ACM Program. Lang.
6.POPL (2022), pp. 1–33 (cit. on p. 70).

[81] T. B. L. Jespersen, P. Munksgaard, and K. F. Larsen. “Session types for Rust”. In:
Proceedings of the 11th acm sigplan workshop on generic programming. 2015, pp. 13–22
(cit. on p. 5).

[82] S. P. Jones. “Beautiful concurrency”. In: Beautiful Code: Leading Programmers Explain
How They Think (2007), pp. 385–406 (cit. on p. 109).

[83] S. P. Jones, A. Gordon, and S. Finne. “Concurrent Haskell”. In: POPL. Vol. 96.
Citeseer. 1996, pp. 295–308 (cit. on pp. 13, 74).

[84] R. Jung et al. “Iris from the ground up: A modular foundation for higher-order
concurrent separation logic”. In: Journal of Functional Programming 28 (2018), e20
(cit. on p. 168).

[85] R. Jung et al. “Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning”. In: ACM SIGPLAN Notices 50.1 (2015), pp. 637–650 (cit. on p. 7).

[86] S. Klabnik and C. Nichols. “The Rust Programming Language”. In: (2021) (cit. on
pp. 5, 13, 75, 86).

[87] N. Kobayashi. “A new type system for deadlock-free processes”. In: International
Conference on Concurrency Theory. Springer. 2006, pp. 233–247 (cit. on p. 108).

[88] N. Kobayashi. “A type system for lock-free processes”. In: Information and Compu-
tation 177.2 (2002), pp. 122–159 (cit. on p. 108).

[89] N. Kobayashi and C. Laneve. “Deadlock analysis of unbounded process networks”.
In: Information and Computation 252 (2017), pp. 48–70 (cit. on p. 109).

[90] W. Kokke, F. Montesi, and M. Peressotti. “Better late than never: a fully-abstract
semantics for classical processes”. In: Proceedings of the ACM on Programming
Languages 3.POPL (2019), pp. 1–29 (cit. on p. 48).

[91] W. Kokke, J. G. Morris, and P. Wadler. “Towards Races in Linear Logic”. In:
Coordination Models and Languages. Ed. by H. Riis Nielson and E. Tuosto. Cham:
Springer International Publishing, 2019, pp. 37–53. isbn: 978-3-030-22397-7 (cit. on
pp. 7, 17, 65, 70, 73, 108, 123).

175

BIBLIOGRAPHY

[92] N. R. Krishnaswami, P. Pradic, and N. Benton. “Integrating linear and dependent
types”. In: ACM SIGPLAN Notices 50.1 (2015), pp. 17–30 (cit. on p. 168).

[93] N. R. Krishnaswami et al. “Superficially Substructural Types”. In: Proceedings of the
17th ACM SIGPLAN International Conference on Functional Programming. ICFP ’12.
Copenhagen, Denmark: Association for Computing Machinery, 2012, pp. 41–54.
isbn: 9781450310543 (cit. on p. 168).

[94] N. Lagaillardie, R. Neykova, and N. Yoshida. “Stay safe under panic: Affine rust
programming with multiparty session types”. In: arXiv preprint arXiv:2204.13464
(2022) (cit. on p. 70).

[95] D. Lea. Concurrent programming in Java: design principles and patterns. Addison-
Wesley Professional, 2000 (cit. on p. 93).

[96] X. Leroy. “The CompCert C verified compiler: Documentation and user’s manual”.
PhD thesis. Inria, 2020 (cit. on p. 4).

[97] S. Lindley and J. G. Morris. “Embedding session types in Haskell”. In: ACM
SIGPLAN Notices 51.12 (2016), pp. 133–145 (cit. on p. 5).

[98] S. Lindley and J. G. Morris. “Embedding session types in Haskell”. In: 9th
International Symposium on Haskell, Haskell 2016. 2016, pp. 133–145 (cit. on p. 94).

[99] S. Lindley and J. G. Morris. “Talking bananas: structural recursion for session
types”. In: Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. Ed. by J. Garrigue,
G. Keller, and E. Sumii. ACM, 2016, pp. 434–447 (cit. on pp. 6, 49, 109).

[100] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University
Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/
master/template.pdf (cit. on p. ii).

[101] S. Lu et al. “Learning from mistakes: a comprehensive study on real world
concurrency bug characteristics”. In: ACM SIGARCH Computer Architecture News.
Vol. 36. 1. ACM. 2008, pp. 329–339 (cit. on p. 7).

[102] S. Marlow. Parallel and concurrent programming in Haskell: Techniques for multicore
and multithreaded programming. " O’Reilly Media, Inc.", 2013 (cit. on pp. 13, 74, 81).

[103] L. Meertens. “Algorithmics: Towards programming as a mathematical activity”.
In: (1986) (cit. on p. 4).

[104] F. Militão, J. Aldrich, and L. Caires. “Aliasing control with view-based typestate”.
In: Proceedings of the 12th Workshop on Formal Techniques for Java-Like Programs. 2010,
pp. 1–7 (cit. on p. 70).

[105] R. Milner et al. “A calculus of communicating systems”. In: (1980) (cit. on p. 48).

[106] R. Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University
Press, 1999 (cit. on p. 111).

176

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

BIBLIOGRAPHY

[107] R. Milner. “Functions as Processes”. In: Math. Struct. Comput. Sci. 2.2 (1992),
pp. 119–141 (cit. on p. 23).

[108] R. Milner, J. Parrow, and D. Walker. “A calculus of mobile processes, i”. In:
Information and computation 100.1 (1992), pp. 1–40 (cit. on p. 48).

[109] J. C. Mitchell and G. D. Plotkin. “Abstract types have existential type”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 10.3 (1988), pp. 470–
502 (cit. on pp. 4, 17, 18, 42, 43, 76, 79).

[110] D. Mostrous and V. T. Vasconcelos. “Affine Sessions”. In: Proc. of COORDINATION
2014. Vol. 8459. LNCS. Springer, 2014, pp. 115–130 (cit. on pp. 10, 70).

[111] L. d. Moura et al. “The Lean theorem prover (system description)”. In: International
Conference on Automated Deduction. Springer. 2015, pp. 378–388 (cit. on p. 4).

[112] A. Nanevski, J. G. Morrisett, and L. Birkedal. “Hoare type theory, polymorphism
and separation”. In: J. Funct. Program. 18.5-6 (2008), pp. 865–911 (cit. on pp. 7, 70).

[113] N. Ng, N. Yoshida, and K. Honda. “Multiparty Session C: Safe parallel pro-
gramming with message optimisation”. In: International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation. Springer. 2012, pp. 202–218
(cit. on pp. 5, 94).

[114] N. Ng et al. “Safe parallel programming with session java”. In: International
Conference on Coordination Languages and Models. Springer. 2011, pp. 110–126 (cit.
on p. 5).

[115] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: a proof assistant for higher-
order logic. Springer, 2002 (cit. on p. 4).

[116] P. W. O’Hearn and J. C. Reynolds. “From Algol to polymorphic linear lambda-
calculus”. In: J. ACM 47.1 (2000), pp. 167–223 (cit. on pp. 7, 70).

[117] M. Odersky et al. “An overview of the Scala programming language”. In: (2004)
(cit. on p. 4).

[118] C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998
(cit. on p. 77).

[119] M. Pagani and P. Tranquilli. “Parallel Reduction in Resource Lambda-Calculus”.
In: Programming Languages and Systems. Ed. by Z. Hu. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 226–242. isbn: 978-3-642-10672-9 (cit. on p. 123).

[120] M. Parigot. “Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical
Natural Deduction”. In: LPAR’92. 1992, pp. 190–201 (cit. on p. 4).

[121] J. A. Pérez et al. “Linear logical relations and observational equivalences for session-
based concurrency”. In: Information and Computation 239 (2014), pp. 254–302 (cit. on
pp. 20, 123, 143, 165).

177

BIBLIOGRAPHY

[122] F. Pfenning. “Structural Cut Elimination”. In: Proceedings of the 10th Annual IEEE
Symposium on Logic in Computer Science. LICS ’95. USA: IEEE Computer Society,
1995, p. 156. isbn: 0818670506 (cit. on pp. 20, 40, 49, 125, 142).

[123] F. Pfenning. Structural Cut Elimination in Linear Logic. Tech. rep. CARNEGIE-
MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, 1994
(cit. on pp. 20, 125, 142).

[124] F. Pfenning and D. Griffith. “Polarized Substructural Session Types”. In: Foun-
dations of Software Science and Computation Structures. Ed. by A. Pitts. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 3–22. isbn: 978-3-662-46678-0
(cit. on p. 71).

[125] G. D. Plotkin. “A Powerdomain Construction”. In: SIAM J. Comput. 5.3 (1976),
pp. 452–487 (cit. on p. 74).

[126] J. Polakow. “Embedding a full linear lambda calculus in Haskell”. In: ACM
SIGPLAN Notices 50.12 (2015), pp. 177–188 (cit. on p. 94).

[127] R. Pucella and J. A. Tov. “Haskell session types with (almost) no class”. In:
Proceedings of the first ACM SIGPLAN symposium on Haskell. 2008, pp. 25–36 (cit. on
p. 5).

[128] Z. Qian, G. A. Kavvos, and L. Birkedal. “Client-Server Sessions in Linear Logic”.
In: Proc. ACM Program. Lang. 5.ICFP (2021-08) (cit. on pp. 7, 11, 70, 72, 73, 108, 123).

[129] G. Restall. An introduction to substructural logics. Routledge, 2002 (cit. on p. 5).

[130] J. C. Reynolds. “Towards a theory of type structure”. In: Programming Symposium.
Springer. 1974, pp. 408–425 (cit. on p. 4).

[131] P. Rocha and L. Caires. “Propositions-as-Types and Shared State (Artifact)”. In:
(2021-05) (cit. on p. 18).

[132] P. Rocha and L. Caires. A Propositions-as-Types System for Shared State. Tech. rep.
NOVA Laboratory for Computer Science and Informatics, 2021-06 (cit. on p. 18).

[133] P. Rocha and L. Caires. CLASS: Classical Linear Logical with Affine Shared State
(Implementation). 2022 (cit. on pp. 19, 88).

[134] P. Rocha and L. Caires. “Propositions-as-Types and Shared State”. In: Proc. ACM
Program. Lang. 5.ICFP (2021-08) (cit. on pp. 18, 64, 70, 71).

[135] D. Sangiorgi. “Termination of processes”. In: Math. Struct. in Comp. Sci. 16.1
(2006), pp. 1–39 (cit. on p. 165).

[136] D. Sangiorgi. “The Name Discipline of Uniform Receptiveness”. In: Theor. Comput.
Sci. 221.1-2 (1999), pp. 457–493 (cit. on pp. 6, 42).

[137] D. Sangiorgi and D. Walker. PI-Calculus: A Theory of Mobile Processes. USA:
Cambridge University Press, 2001. isbn: 0521781779 (cit. on pp. 27, 101).

178

BIBLIOGRAPHY

[138] A. Scalas and N. Yoshida. “Lightweight session programming in scala”. In: (2016)
(cit. on p. 94).

[139] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard isomorphism. Elsevier,
2006 (cit. on p. 5).

[140] G. Steele. Common LISP: the language. Elsevier, 1990 (cit. on p. 4).

[141] J. Sunshine et al. “First-Class State Change in Plaid”. In: Proceedings of the 2011
ACM International Conference on Object Oriented Programming Systems Languages and
Applications. OOPSLA ’11. Portland, Oregon, USA: Association for Computing
Machinery, 2011, pp. 713–732. isbn: 9781450309400 (cit. on p. 7).

[142] M. Takahashi. “Parallel reductions in �-calculus”. In: Information and computation
118.1 (1995), pp. 120–127 (cit. on p. 123).

[143] B. Toninho. “A Logical Foundation for Session-Based Concurrent Computation”.
PhD thesis. NOVA School of Science and Technology, 2015-05 (cit. on p. 49).

[144] B. Toninho, L. Caires, and F. Pfenning. “Higher-Order Processes, Functions, and
Sessions: A Monadic Integration”. In: Programming Languages and Systems. Ed. by
M. Felleisen and P. Gardner. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 350–369. isbn: 978-3-642-37036-6 (cit. on p. 6).

[145] B. Toninho, L. Caires, and F. Pfenning. Dependent Session Types via Intuitionistic
Linear Type Theory. Tech. rep. CMU-CS-11-139. Carnegie Mellon Univ., 2011 (cit. on
p. 109).

[146] B. Toninho, L. Caires, and F. Pfenning. “Corecursion and Non-divergence in
Session-Typed Processes”. In: TGC 2014. Ed. by M. Maffei and E. Tuosto. Vol. 8902.
Lecture Notes in Computer Science. Springer, 2014, pp. 159–175 (cit. on pp. 6, 109,
143, 165).

[147] B. Toninho, L. Caires, and F. Pfenning. “Corecursion and non-divergence in session-
typed processes”. In: International Symposium on Trustworthy Global Computing.
Springer. 2014, pp. 159–175 (cit. on p. 49).

[148] B. Toninho, L. Caires, and F. Pfenning. “Dependent Session Types via Intuition-
istic Linear Type Theory”. In: Proceedings of the 13th International ACM SIG-
PLAN Symposium on Principles and Practices of Declarative Programming. PPDP
’11. Odense, Denmark: Association for Computing Machinery, 2011, pp. 161–172.
isbn: 9781450307765 (cit. on pp. 6, 168).

[149] B. Toninho and N. Yoshida. “On Polymorphic Sessions and Functions: A Tale
of Two (Fully Abstract) Encodings”. In: ACM Trans. Program. Lang. Syst. 43.2
(2021-06). issn: 0164-0925 (cit. on pp. 6, 9, 24, 43, 111, 165).

[150] J. A. Tov and R. Pucella. “Practical Affine Types”. In: POPL 2011. 2011, pp. 447–458
(cit. on pp. 10, 70).

179

BIBLIOGRAPHY

[151] P. Tranquilli. “Confluence of pure differential nets with promotion”. In: Inter-
national Workshop on Computer Science Logic. Springer. 2009, pp. 500–514 (cit. on
p. 123).

[152] P. Tranquilli. “Intuitionistic differential nets and lambda-calculus”. In: Theoretical
Computer Science 412.20 (2011), pp. 1979–1997 (cit. on p. 123).

[153] V. T. Vasconcelos. “Fundamentals of session types”. In: Information and Computation
217 (2012), pp. 52–70. issn: 0890-5401 (cit. on p. 5).

[154] H. T. Vieira and V. T. Vasconcelos. “Typing progress in communication-centred
systems”. In: International Conference on Coordination Languages and Models. Springer.
2013, pp. 236–250 (cit. on p. 108).

[155] A. L. Voinea, O. Dardha, and S. J. Gay. “Resource sharing via capability-based
multiparty session types”. In: International Conference on Integrated Formal Methods.
Springer. 2019, pp. 437–455 (cit. on p. 70).

[156] P. Wadler. “Linear Types can Change the World!” In: Proceedings of the IFIP Working
Group 2.2, 2.3 Working Conference on Programming Concepts and Methods, 1990. Ed. by
M. Broy. North-Holland, 1990, p. 561 (cit. on pp. 5, 7).

[157] P. Wadler. “Propositions as Sessions”. In: Proceedings of the 17th ACM SIGPLAN In-
ternational Conference on Functional Programming. ICFP ’12. Copenhagen, Denmark:
Association for Computing Machinery, 2012, pp. 273–286. isbn: 9781450310543
(cit. on pp. 6, 8, 12, 17, 19, 22, 24, 27, 35, 48, 49, 65, 70, 71, 108, 123, 125, 144).

[158] P. Wadler. “Propositions as sessions”. In: Journal of Functional Programming 24.2-3
(2014), pp. 384–418 (cit. on p. 36).

[159] P. Wadler. “Propositions as types”. In: Communications of the ACM 58.12 (2015),
pp. 75–84 (cit. on p. 5).

[160] P. Wadler. “Propositions as types”. In: Commun. ACM 58.12 (2015), pp. 75–84
(cit. on p. 48).

[161] P. Wadler. Recursive types for free. 1990 (cit. on pp. 43, 44, 94).

[162] M. Willsey, R. Prabhu, and F. Pfenning. “Design and implementation of Concurrent
C0”. In: arXiv preprint arXiv:1701.04929 (2017) (cit. on p. 95).

[163] N. Yoshida. “Graph types for monadic mobile processes”. In: International Confer-
ence on Foundations of Software Technology and Theoretical Computer Science. Springer.
1996, pp. 371–386 (cit. on p. 108).

[164] N. Yoshida, M. Berger, and K. Honda. “Strong normalisation in the 𝜋-calculus”.
In: Information and Computation 191.2 (2004), pp. 145–202 (cit. on p. 165).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.10.16) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 180).

180

https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

A

Type Preservation

Notation

Before presenting the complete proofs of type preservation for structural congruence ≡
and reduction→ we introduce some handy notations that make the presentation of the
proofs more succinct.

State Flavours

We introduce two state flavours, namely 𝑒 (empty) and 𝑓 (full). If 𝒳 is a flavour, then the
metavariable type S𝒳 𝐴 denotes either the full cell modality S 𝑓 𝐴, if 𝒳 = 𝑓 , or either the
empty cell modality S𝑒 𝐴, if𝒳 = 𝑒. Similarly, U𝒳 𝐴 denotes either U 𝑓 𝐴, if𝒳 = 𝑓 , or U𝑒 𝐴,
if 𝒳 = 𝑒. Two flavours can be combined through a partial binary operation ⊕, defined by

𝑓 ⊕ 𝑓 ≜ 𝑓 𝑓 ⊕ 𝑒 ≜ 𝑒 𝑒 ⊕ 𝑓 ≜ 𝑒

The operation ⊕ is commutative and associative, furthermore the value of an expression
𝒳1 ⊕ . . . ⊕𝒳𝑛 is either 𝑓 , whenever all the 𝒳𝑖 are 𝑓 ; or 𝑒, in case one and only one of the 𝒳𝑖
is 𝑒.

With this notation at hand, we can succinctly group all the typing rules for sharing
([Tsh], [TshL], [TshR]) in a single typing rule schema

𝑃 ⊢� Δ′, 𝑐 : U𝒳1 𝐴;Γ 𝑄 ⊢� Δ, 𝑐 : U𝒳2 𝐴;Γ 𝒳1 ⊕ 𝒳2 = 𝒳
[TshX]

share 𝑐 {𝑃 | | 𝑄} ⊢� Δ′,Δ, 𝑐 : U𝒳 𝐴;Γ

Type Inversion

Often, in the following proofs of type preservation and progress, we appeal to inversion
principles for the typing relation. By inspecting the principal form, i.e. the outermost
constructor, of a process 𝑃 for which a typing judgement 𝑃 ⊢� Δ;Γ holds we can infer
some particularities of the typing contexts Δ and Γ. This works because, by inspecting
the principal form of the process 𝑃, we can infer which was the typing rule that was
applied to the root of a derivation tree for 𝑃 ⊢� Δ;Γ. For example, in a derivation for

181

APPENDIX A. TYPE PRESERVATION

par {𝑃1 | | 𝑃2} ⊢� Δ;Γ the last rule has to be [Tmix], from which we conclude that there there
are Δ1 ,Δ2 s.t. Δ = Δ1 ,Δ2, 𝑃1 ⊢� Δ1;Γ and 𝑃2 ⊢� Δ2;Γ. To make the presentation succinct,
in the following proofs, we refer to the corresponding inversion principle associated with
a typing rule adding the superscript −1 to the typing rule name. So, for [Tmix], it would
be [Tmix−1].

Auxiliary Lemmas

We state some auxiliary lemmas which are used during the proofs of type preservation. The
first lemma states that every subprocess of a well-typed process is well-typed. Furthermore,
if we replace a subprocess 𝑄 of a process a well-typed process 𝑃 by a subprocess 𝑄′ that
types with the same typing context as 𝑄, then the resulting substitution types with same
typing context as 𝑃.

Lemma 28. Suppose 𝒞[𝑃] ⊢� Δ;Γ, for some process context 𝒞. Then, there exists Δ′, Γ′ s.t.

• 𝑃 ⊢� Δ′;Γ.

• For all 𝑄 ⊢� Δ′;Γ′, 𝒞[𝑄] ⊢� Δ′;Γ′.

Proof. If 𝒞 = −, then simply pick Δ′ = Δ and Γ′ = Γ. The hypothesis for the cases in
which 𝒞 ≠ − is established by induction on the typing derivation tree that establishes
𝒞[𝑃] ⊢� Δ;Γ.

We illustrate with some cases.

Case: [T1].
From 𝒞[𝑃] = close 𝑥 we conclude that 𝒞 = − and 𝑃 = close 𝑥. Holds vacuously.

Case: [Tmix].
We have 𝒞[𝑃] ⊢� Δ1 ,Δ2;Γ, 𝒞[𝑃] = par {𝑃1 | | 𝑃2}, 𝑃1 ⊢� Δ1;Γ and 𝑃2 ⊢� Δ2;Γ.

Since 𝒞[𝑃] = par {𝑃1 | | 𝑃2}, either (i) 𝒞 = par {𝒞′ | | 𝑅} or (ii) 𝒞 = par {𝑅 | | 𝒞′}.

We consider (i) holds. The analysis is similar for (ii).

By applying the i.h. 𝒞′[𝑃] ⊢� Δ1;Γ we infer the existence of Δ′1 , Γ
′ s.t.

(a) 𝑃 ⊢� Δ′1;Γ′.

(b) 𝒞′[𝑄] ⊢� Δ1;Γ for all 𝑄′ ⊢� Δ′1;Γ′.

Let 𝑄′ ⊢� Δ′1;Γ′. From (b), 𝒞′[𝑄] ⊢� Δ1;Γ.

Applying [Tmix] to𝒞′[𝑄] ⊢� Δ1;Γ and𝑃2 ⊢� Δ2;Γ yields𝒞[𝑄] = par {𝒞′[𝑄] | | 𝑃2} ⊢�
Δ1 ,Δ2;Γ.

182

Some formulations of the session-based interpretations of Linear Logic (cf. Wadler’s
CP) have explicit typing rules for weakening and contraction of the exponential modalities
!, ?. In CLASS weakening and contraction are absorbed by the unrestricted typing context:
we can adjoin an arbitrary formula in Γ (Lemma 29([Tweaken]) or substitute the use of
one formula for another (Lemma 29([Tcontract]). Furthermore, we have a kind of reverse
weakening principle: if a formula is not being used in a derivation, we can remove it
from the unrestricted context (Lemma 29([Tstrength])), this property is often referred to
as strengthening.

Lemma 29. The following principles hold:

[Tweaken] If 𝑃 ⊢� Δ;Γ and 𝑥 ∉ dom(Δ) ∪ dom(Γ), then 𝑃 ⊢� Δ;Γ, 𝑥 : 𝐴.

[Tcontract] If 𝑃 ⊢� Δ;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴, then {𝑥/𝑦}𝑃 ⊢{𝑥/𝑦}� Δ;Γ, 𝑥 : 𝐴.

[Tstrength] If 𝑃 ⊢� Δ;Γ, 𝑥 : 𝐴 and 𝑥 ∉ fn(𝑃), then 𝑃 ⊢� Δ;Γ.

Proof. [Tweaken] By induction on derivation tree for 𝑃 ⊢� Δ;Γ. We illustrate with some
cases.

Case: [T0].
We have the conclusion 0 ⊢� ∅;Γ. By applying [T0] we obtain 0 ⊢� ∅;Γ, 𝑥 : 𝐴.

Case: [Tmix].
We have the conclusion par {𝑃1 | | 𝑃2} ⊢� Δ1 ,Δ2;Γ from the premisses𝑃1 ⊢� Δ1;Γ
and 𝑃2 ⊢� Δ2;Γ.

Applying i.h. to 𝑃1 ⊢� Δ1;Γ and 𝑃2 ⊢� Δ2;Γ yields 𝑃1 ⊢� Δ1;Γ, 𝑥 : 𝐴 and
𝑃2 ⊢� Δ2;Γ, 𝑥 : 𝐴, respectively.

Applying [Tmix] to𝑃1 ⊢� Δ1;Γ, 𝑥 : 𝐴 and𝑃2 ⊢� Δ2;Γ, 𝑥 : 𝐴yields par {𝑃1 | | 𝑃2} ⊢�
Δ1 ,Δ2;Γ, 𝑥 : 𝐴.

[Tcontract] By induction on derivation tree for 𝑃 ⊢� Δ;Γ. We illustrate with some cases.

Case: [Tmix].
We have the conclusion par {𝑃1 | | 𝑃2} ⊢� Δ1 ,Δ2;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 from the
premisses 𝑃1 ⊢� Δ1;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 and 𝑃2 ⊢� Δ2;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴.

Applying i.h. to 𝑃1 ⊢� Δ1;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 and 𝑃2 ⊢� Δ2;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 yields
{𝑥/𝑦}𝑃1 ⊢� Δ1;Γ, 𝑥 : 𝐴 and {𝑥/𝑦}𝑃2 ⊢� Δ2;Γ, 𝑥 : 𝐴, respectively.

Applying [Tmix] to {𝑥/𝑦}𝑃1 ⊢� Δ1;Γ, 𝑥 : 𝐴 and {𝑥/𝑦}𝑃2 ⊢� Δ2;Γ, 𝑥 : 𝐴 yields
par {{𝑥/𝑦}𝑃1 | | {𝑥/𝑦}𝑃2} ⊢� Δ1 ,Δ2;Γ, 𝑥 : 𝐴.

Finally, note that {𝑥/𝑦}(par {𝑃1 | | 𝑃2}) = par {{𝑥/𝑦}𝑃1 | | {𝑥/𝑦}𝑃2}.

Case: [Tcall].
There are three cases to consider, depending on wether the subject 𝑧 of the call
action is 𝑥, 𝑦 or neither 𝑥 nor 𝑦.

183

APPENDIX A. TYPE PRESERVATION

Case: 𝑧 ≠ 𝑥, 𝑦.
We have the conclusion call 𝑧(𝑤);𝑄 ⊢� Δ;Γ, from the premiss 𝑄 ⊢� Δ, 𝑤 :
𝐵;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴, 𝑧 : 𝐵.
Applying i.h. to 𝑄 ⊢� Δ, 𝑤 : 𝐵;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴, 𝑧 : 𝐵 yields {𝑥/𝑦}𝑄 ⊢� Δ, 𝑤 :
𝐵;Γ, 𝑥 : 𝐴, 𝑧 : 𝐵.
Applying [Tcall] to {𝑥/𝑦}𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴, , 𝑧 : 𝐵 yields call 𝑧(𝑤); {𝑥/𝑦}𝑄 ⊢�
Δ;Γ, 𝑥 : 𝐴, 𝑧 : 𝐵.
Finally, note that {𝑥/𝑦}(call 𝑧(𝑤);𝑄) = call 𝑧(𝑤); {𝑥/𝑦}𝑄.

Case: 𝑧 = 𝑥.
We have the conclusion call 𝑥(𝑤);𝑄 ⊢� Δ;Γ, from the premiss 𝑄 ⊢� Δ, 𝑤 :
𝐴;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴.
Applying i.h. to 𝑄 ⊢� Δ, 𝑤 : 𝐴;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 yields {𝑥/𝑦}𝑄 ⊢� Δ, 𝑤 :
𝐴;Γ, 𝑥 : 𝐴.
Applying [Tcall] to {𝑥/𝑦}𝑄 ⊢� Δ, 𝑤 : 𝐴;Γ, 𝑥 : 𝐴yields call 𝑥(𝑤); {𝑥/𝑦}𝑄 ⊢�
Δ;Γ, 𝑥 : 𝐴.
Finally, note that {𝑥/𝑦}(call 𝑥(𝑤);𝑄) = call 𝑥(𝑤); {𝑥/𝑦}𝑄.

Case: 𝑧 = 𝑦.
We have the conclusion call 𝑦(𝑤);𝑄 ⊢� Δ;Γ, from the premiss 𝑄 ⊢� Δ, 𝑤 :
𝐴;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴.
Applying i.h. to 𝑄 ⊢� Δ, 𝑤 : 𝐴;Γ, 𝑥 : 𝐴, 𝑦 : 𝐴 yields {𝑥/𝑦}𝑄 ⊢� Δ, 𝑤 :
𝐴;Γ, 𝑥 : 𝐴.
Applying [Tcall] to {𝑥/𝑦}𝑄 ⊢� Δ, 𝑤 : 𝐴;Γ, 𝑥 : 𝐴 (this time on 𝑥) yields
call 𝑥(𝑤); {𝑥/𝑦}𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴.
Finally, note that {𝑥/𝑦}(call 𝑦(𝑤);𝑄) = call 𝑥(𝑤); {𝑥/𝑦}𝑄.

[Tstrength] Similar to [Tweaken].

The proof of type preservation also depends on a couple of auxiliary properties, which
we will introduce now. The first (Lemma 30(1)) states that the domain of the linear typing
context with which a process 𝑃 types is always the same.

To introduce the second property (Lemma 30(2)) we need the following definition. Let
Δ,Δ′ be two partial maps from names to types. We say that Δ is contained in Δ′ up to usage
flavours iff the following hold

(1) if 𝑥 : 𝐴 ∈ Δ and 𝐴 ≠ U𝒳 𝐵, then 𝑥 : 𝐴 ∈ Δ′.

(2) if 𝑥 : U𝒳 𝐵, then 𝑥 : U𝒴 𝐵 ∈ Δ′ for some usage flavour𝒴.

We say that Δ and Δ′ are the same up to usage flavours iff Δ is contained in Δ′ up to to usage
flavours and vice-versa: Δ′ is contained in Δ up to usage flavours.

Lemma 30. The following properties hold

184

(1) If 𝑃 ⊢� Δ;Γ and 𝑃 ⊢� Δ′;Γ′ then dom(Δ) = dom(Δ′).

(2) Suppose 𝑃 ⊢� Δ;Γ, 𝑃 ⊢� Δ′;Γ and let Δ,Δ′ be the same up to usage flavours. Then, Δ = Δ′.

Proof. (1) By induction on 𝑃. We illustrate with some cases.

Case: 𝑃 = 0.
Applying [T0−1] to 0 ⊢� Δ;Γ yields Δ = ∅.
Applying [T0−1] to 0 ⊢� Δ;′ Γ′ yields Δ′ = ∅.
Then, dom(Δ) = ∅ = dom(Δ′).

Case 𝑃 = fwd 𝑥 𝑦.
By applying [Tfwd−1] to fwd 𝑥 𝑦 ⊢� Δ;Γ we infer the existence of 𝐴 s.t.
Δ = 𝑥 : 𝐴, 𝑦 : 𝐴.
By applying [Tfwd−1] to fwd 𝑥 𝑦 ⊢� Δ′;Γ we infer the existence of 𝐵 s.t.
Δ′ = 𝑥 : 𝐵, 𝑦 : 𝐵.
Then, dom(Δ) = {𝑥, 𝑦} = dom(Δ′).

Case: 𝑃 = par {𝑃1 | | 𝑃2}.
By applying [Tmix−1] to par {𝑃1 | | 𝑃2} ⊢� Δ;Γ we infer the existence of Δ1 ,Δ2

s.t. Δ = Δ1 ,Δ2, 𝑃1 ⊢� Δ1;Γ and 𝑃2 ⊢� Δ2;Γ.
By applying [Tmix−1] to par {𝑃1 | | 𝑃2} ⊢� Δ′;Γ′ we infer the existence of Δ′1 ,Δ

′
2

s.t. Δ′ = Δ′1 ,Δ
′
2, 𝑃1 ⊢� Δ′1;Γ′ and 𝑃2 ⊢� Δ′2;Γ′.

Applying i.h. to 𝑃1 ⊢� Δ1;Γ and 𝑃1 ⊢� Δ′1;Γ′ yields dom(Δ1) = dom(Δ′1).
Applying i.h. to 𝑃2 ⊢� Δ2;Γ′ and 𝑃2 ⊢� Δ′2;Γ′ yields dom(Δ2) = dom(Δ′2).
Then, dom(Δ) = dom(Δ1) ∪ dom(Δ2) = dom(Δ′1) ∪ dom(Δ′2) = dom(Δ′).

Case: 𝑃 = ?𝑥;𝑃′.
By applying [T?−1] to ?𝑥;𝑃 ⊢� Δ;Γ we infer the existence of Δ0 , 𝐴 s.t Δ = Δ0 , 𝑥 :
?𝐴 and 𝑃 ⊢� Δ0;Γ, 𝑥 : 𝐴.
By applying [T?−1] to ?𝑥;𝑃 ⊢� Δ′;Γ′ we infer the existence of Δ′0 , 𝐵 s.t Δ =

Δ′0 , 𝑥 :?𝐵 and 𝑃 ⊢� Δ′0;Γ′, 𝑥 : 𝐵.
Applying i.h. to 𝑃 ⊢� Δ0;Γ, 𝑥 : 𝐴 and 𝑃 ⊢� Δ′0;Γ′, 𝑥 : 𝐵 yields dom(Δ0) =
dom(Δ′0).
Then, dom(Δ) = dom(Δ0) ∪ {𝑥} = dom(Δ′0) ∪ {𝑥} = dom(Δ′).

(2) By induction on 𝑃 and case analysis on its principal form. We illustrate with some
cases.

Case 𝑃 = fwd 𝑥 𝑦.
By [Tfwd−1] and fwd 𝑥 𝑦 ⊢ Δ;Γ we conclude that Δ = 𝑥 : 𝐴, 𝑦 : 𝐴 for some type
𝐴. By [Tfwd−1] and fwd 𝑥 𝑦 ⊢ Δ′;Γ we conclude that Δ′ = 𝑥 : 𝐵, 𝑦 : 𝐵 for some
type 𝐵.
Either 𝐴 or 𝐴 is not an usage modality. Suppose w.l.o.g. that 𝐴 ≠ U𝒳 𝐵. Then
𝐴 = 𝐵 and, as consequence, 𝐴 = 𝐵.

185

APPENDIX A. TYPE PRESERVATION

Case 𝑃 = share 𝑥 {𝑃1 | | 𝑃2}.
By [Tsh−1] andshare 𝑥 {𝑃1 | | 𝑃2} ⊢� Δ;Γwe conclude thatexistsΔ1 ,Δ2 , 𝐴,𝒳1 ,𝒳2 ,𝒳
s.t. (1) 𝑃1 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ, (2) 𝑃2 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ, (3) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴
and (4) 𝒳1 ⊕ 𝒳2 = 𝒳.

By [Tsh−1] andshare 𝑥 {𝑃1 | | 𝑃2} ⊢� Δ′;Γwe conclude thatexistsΔ′1 ,Δ
′
2 , 𝐴

′,𝒳′1 ,𝒳
′
2 ,𝒳′

s.t. (1′) 𝑃1 ⊢� Δ′1 , 𝑥 : U𝒳′1 𝐴
′;Γ, (2′) 𝑃2 ⊢� Δ′2 , 𝑥 : U𝒳′2 𝐴

′;Γ, (3′) Δ′ = Δ′1 ,Δ
′
2 , 𝑥 :

U′𝒳 𝐴
′ and (4′) 𝒳′1 ⊕ 𝒳

′
2 = 𝒳′.

From (3), (3′) and sinceΔ,Δ′ are the same up to usage flavours we obtain𝐴 = 𝐴′.
Furthermore, since Δ1 = Δ ↾ (fn(𝑃1) \ {𝑥}) and Δ′1 = Δ′ ↾ (fn(𝑃1) \ {𝑥}), we
conclude that Δ1 ,Δ

′
1 are the same up to usage flavours. Similarly, we conclude

that Δ2 ,Δ
′
2 are the same up to usage flavours.

Applying the i.h. to 𝑃1, (1) and (1′) yields Δ1 = Δ′1 and 𝒳1 = 𝒳′1. Applying the
i.h. to 𝑃2, (2) and (2′) yields Δ2 = Δ′2 and 𝒳2 = 𝒳′2.

Therefore, 𝒳 = 𝒴 and Δ = Δ′.

We conclude this section with a couple of auxiliary results that state how substitution
(name by name, type variable by type, process variable by corecursive process definition)
affect the typing relation.

Lemma 31. The following properties hold

(1) If 𝑃 ⊢� Δ;Γ and 𝑥 ∉ dom(Δ) ∪ dom(Γ), then {𝑥/𝑦}𝑃 ⊢� {𝑥/𝑦}(Δ;Γ).

(2) If 𝑃 ⊢� Δ;Γ, then {𝐴/𝑋}𝑃 ⊢{𝐴/𝑋}� {𝐴/𝑋}(Δ;Γ).

(3) Suppose corec 𝑌(𝑧, ®𝑤);𝑃 [𝑧, ®𝑤] ⊢� Δ, 𝑧 : �𝑋. 𝐴;Γ, �′ = �′′, 𝑌(𝑧, ®𝑤) ↦→ Δ, 𝑧 : 𝑋;Γ for
some �′′ which extends �, and suppose 𝑄 ⊢�′ Δ′;Γ′. Then, {corec 𝑌(𝑧, ®𝑤);𝑃/𝑌}𝑄 ⊢�′′
{�𝑋. 𝐴/𝑋}(Δ′;Γ′).

Proof. Properties (1) and (2) are by induction on a derivation for 𝑃 ⊢� Δ;Γ.
Property (3) is by induction on a derivation for 𝑄 ⊢�′ Δ′, 𝑧 : 𝐵;Γ′. The only way of

introducing the type variable 𝑋 in the context Δ′;Γ′, with which 𝑄 types, is by appeal-
ing to rule [Tvar] on process variable 𝑌. Consequently, if process variable 𝑌 does not
occur free in 𝑄, then the property holds trivially since {corec 𝑌(𝑧, ®𝑤);𝑃/𝑌}𝑄 = 𝑄 and
{�𝑋. 𝐴/𝑋}(Δ′;Γ′) = Δ′;Γ′. We illustrate the proof with some cases:

Case: [Tvar].
Then

�′ = �′′, 𝑌(𝑧, ®𝑤) ↦→ Δ, 𝑧 : 𝑋;Γ
[Tvar]

𝑌(𝑥, ®𝑦) ⊢�′ { ®𝑦/ ®𝑤}(Δ, 𝑥 : 𝑋;Γ)

where 𝑄 = 𝑌(𝑥, ®𝑦).

186

By def.
{corec 𝑌(𝑧, ®𝑤);𝑃/𝑌}𝑌(𝑥, ®𝑦) = corec 𝑌(𝑧, ®𝑤);𝑃 [𝑥, ®𝑦]

Since, by hypothesis corec 𝑌(𝑧, ®𝑤);𝑃 [𝑧, ®𝑤] ⊢� Δ, 𝑧 : �𝑋. 𝐴;Γ and �′′ extends �, then
corec 𝑌(𝑧, ®𝑤);𝑃 [𝑧, ®𝑤] ⊢�′′ Δ, 𝑧 : �𝑋. 𝐴;Γ.

By name renaming, corec 𝑌(𝑧, ®𝑤);𝑃 [𝑥, ®𝑦] ⊢�′′ { ®𝑦/ ®𝑤}(Δ, 𝑥 : �𝑋. 𝐴;Γ).

Case: [Tmix].
Then

𝑄1 ⊢�′ Δ′1;Γ′ 𝑄2 ⊢�′ Δ′2;Γ′
[Tmix]

par {𝑄1 | | 𝑄2} ⊢�′ Δ′1 ,Δ
′
2 , ;Γ

′

where 𝑄 = par {𝑄1 | | 𝑄2} and Δ′ = Δ′1 ,Δ
′
2.

By def.

{corec𝑌(𝑧, ®𝑤);𝑃/𝑌}(par {𝑄1 | |𝑄2}) = par {({corec𝑌(𝑧, ®𝑤);𝑃/𝑌}𝑄1) | | ({corec𝑌(𝑧, ®𝑤);𝑃/𝑌}𝑄2)}

Applying i.h. to𝑄1 ⊢�′ Δ′1;Γ′ yields (a) {corec𝑌(𝑧, ®𝑤);𝑃/𝑌}𝑄1 ⊢�′′ {�𝑋. 𝐴/𝑋}(Δ′1;Γ′).

Applying i.h. to𝑄2 ⊢�′ Δ′2;Γ′ yields (b) {corec𝑌(𝑧, ®𝑤);𝑃/𝑌}𝑄2 ⊢�′′ {�𝑋. 𝐴/𝑋}(Δ′2;Γ′).

Applying [Tmix] to (a) and (b) yields

{corec 𝑌(𝑧, ®𝑤);𝑃/𝑌}(par {𝑄1 | | 𝑄2}) ⊢�′′ {�𝑋. 𝐴/𝑋}(Δ′1 ,Δ
′
2;Γ′)

Type Preservation

We prove type preservation Theorem 1. We start with the proof of type preservation for
structural congruence in 1(1)) and then we move to the proof of type preservation for
reduction 1(2)).

Theorem 1(1)). If 𝑃 ⊢� Δ;Γ and 𝑃 ≡ 𝑄, then 𝑄 ⊢� Δ;Γ.

Proof. By induction on a derivation tree for 𝑃 ≡ 𝑄 and case analysis on the root rule.
We consider an axiomatisation of ≡ equivalent to Definition 13 but in which we drop
rule [symm] 𝑃 ≡ 𝑄 ⊃ 𝑄 ≡ 𝑃 and assume that each commuting conversion holds from
left-to-right and right-to-left.

Case: [refl], 𝑃 ≡ 𝑃.
Follows immediately.

Case: [trans], 𝑃 ≡ 𝑄 and 𝑄 ≡ 𝑅 ⊃ 𝑃 ≡ 𝑅.

(1) 𝑄 ⊢� Δ;Γ (i.h., 𝑃 ⊢� Δ;Γ and 𝑃 ≡ 𝑄)
(2) 𝑅 ⊢� Δ;Γ (i.h., (1) and 𝑄 ≡ 𝑅)

187

APPENDIX A. TYPE PRESERVATION

Case: [cong], 𝑃 ≡ 𝑄 ⊃ 𝒞[𝑃] ≡ 𝒞[𝑄].

(1) 𝑃 ⊢� Δ′;Γ′, for some Δ′, Γ′ (Lemma 28 and 𝒞[𝑃] ⊢� Δ;Γ)
(2) 𝑄 ⊢� Δ′;Γ′ (i.h., (1) and 𝑃 ≡ 𝑄)
(3) 𝒞[𝑄] ⊢� Δ;Γ (Lemma 28, (1), (2) and 𝒞[𝑃] ⊢� Δ;Γ)

Case: [fwd], fwd 𝑥 𝑦 ≡ fwd 𝑦 𝑥.

(1) Δ = 𝑥 : 𝐴, 𝑦 : 𝐴 ([Tfwd−1] and fwd 𝑥 𝑦 ⊢� Δ;Γ)
(2) fwd 𝑦 𝑥 ⊢� 𝑦 : 𝐴, 𝑥 : 𝐴;Γ ([Tfwd])
(3) fwd 𝑦 𝑥 ⊢� Δ;Γ ((1) and (2))

Case: [M], par {𝑃 | | 𝑄} ≡ par {𝑄 | | 𝑃}.

(1) Δ = Δ1 ,Δ2 (2) 𝑃 ⊢� Δ1;Γ (3) 𝑄 ⊢� Δ2;Γ, for some Δ1 ,Δ2

([Tmix−1] and par {𝑃 | | 𝑄} ⊢� Δ;Γ)
(4) par {𝑄 | | 𝑃} ⊢� Δ2 ,Δ1;Γ ([Tmix], (3) and (2))
(5) par {𝑄 | | 𝑃} ⊢� Δ;Γ ((1) and (4))

Case: [C], cut {𝑃 |𝑥 : 𝐴| 𝑄} ≡ cut {𝑄 |𝑥 : 𝐴| 𝑃}.

(1) Δ = Δ1 ,Δ2 (2) 𝑃 ⊢� Δ1 , 𝑥 : 𝐴;Γ (3) 𝑄 ⊢� Δ2 , 𝑥 : 𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ;Γ)
(4) cut {𝑄 |𝑥 : 𝐴| 𝑃} ⊢� Δ2 ,Δ1;Γ ([Tcut], (3) and (2))
(5) cut {𝑄 |𝑥 : 𝐴| 𝑃} ⊢� Δ;Γ ((1) and (4))

Case: [Sh], share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑥 {𝑄 | | 𝑃}.

(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴 (2) 𝑃 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ
(3) 𝑄 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ (4) 𝒳1 ⊕ 𝒳2 = 𝒳, for some Δ1 ,Δ2

([Tsh−1] and share 𝑥 {𝑃 | | 𝑄} ⊢� Δ;Γ)
(5) 𝒳2 ⊕ 𝒳1 = 𝒳 (⊕ is commutative and (4))
(6) share 𝑥 {𝑄 | | 𝑃} ⊢� Δ2 ,Δ1 , 𝑥 : U𝒳 𝐴;Γ ([Tsh], (3),(2) and (5))
(7) share 𝑥 {𝑄 | | 𝑃} ⊢� Δ;Γ ((1) and (6))

Case: [Sm], 𝑃 + 𝑄 ≡ 𝑄 + 𝑃.

(1) 𝑃 ⊢� Δ;Γ (2) 𝑄 ⊢� Δ;Γ ([Tsum−1] and 𝑃 + 𝑄 ⊢� Δ;Γ)
(3) 𝑄 + 𝑃 ⊢� Δ;Γ ([Tsum], (2) and (1))

Case: [MM] left-to-right, par {𝑃 | | (par {𝑄 | | 𝑅})} ≡ par {(par {𝑃 | | 𝑄}) | | 𝑅}.

188

(1) Δ = Δ1 ,Δ2 (2) 𝑃 ⊢� Δ1;Γ (3) par {𝑄 | | 𝑅} ⊢� Δ2;Γ, for some Δ1 ,Δ2

([Tmix−1] and par {𝑃 | | (par {𝑄 | | 𝑅})} ⊢� Δ;Γ)
(4)Δ2 = Δ21 ,Δ22 (5)𝑄 ⊢� Δ21;Γ (6)𝑅 ⊢� Δ22;Γ, for some Δ21 ,Δ22 ([Tmix−1] and (3))
(7) par {𝑃 | | 𝑄} ⊢� Δ1 ,Δ21;Γ ([Tmix], (2) and (5))
(8) par {(par {𝑃 | | 𝑄}) | | 𝑅} ⊢� Δ1 ,Δ21 ,Δ22;Γ ([Tmix], (7) and (6))
(9) Δ1 ,Δ21 ,Δ22 = Δ ((1) and (4))
(10) par {(par {𝑃 | | 𝑄}) | | 𝑅} ⊢� Δ;Γ ((8) and (9))

Case: [MM] right-to-left, par {(par {𝑃 | | 𝑄}) | | 𝑅} ≡ par {𝑃 | | (par {𝑄 | | 𝑅})}. Similar to
case [MM] left-to-right.

Case: [SmSm] left-to-right, 𝑃 + (𝑄 + 𝑅) ≡ (𝑃 + 𝑄) + 𝑅.

(1) 𝑃 ⊢� Δ;Γ (2) 𝑄 + 𝑅 ⊢� Δ;Γ ([Tsum−1] and 𝑃 + (𝑄 + 𝑅) ⊢� Δ;Γ)
(3) 𝑄 ⊢� Δ;Γ (4) 𝑅 ⊢� Δ;Γ ([Tsum−1] and (2))
(5) 𝑃 + 𝑄 ⊢� Δ;Γ ([Tsum], (1) and (3))
(6) (𝑃 + 𝑄) + 𝑅 ⊢� Δ;Γ ([Tsum], (5) and (4))

Case: [SmSm] right-to-left, (𝑃 + 𝑄) + 𝑅 ≡ 𝑃 + (𝑄 + 𝑅). Similar to case [SmSm] left-to-
right.

Case: [CM] left-to-right, cut {𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ≡ par {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅}, 𝑥 ∈
fn(𝑄).

(1)Δ = Δ1 ,Δ2 (2) 𝑃 ⊢� Δ1 , 𝑥 : 𝐴;Γ (3) par {𝑄 | | 𝑅} ⊢� Δ2 , 𝑥 : 𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ⊢� Δ;Γ)
(4) Δ2 , 𝑥 : 𝐴 = Δ21 ,Δ22 (5) 𝑄 ⊢� Δ21;Γ (6) 𝑅 ⊢� Δ22;Γ, for some Δ21 ,Δ22

([Tmix−1] and (3))
(7) Δ21 = Δ′21 , 𝑥 : 𝐴, for some Δ′21 ((4), (5) and 𝑥 ∈ fn(𝑄))
(8) 𝑄 ⊢� Δ′21 , 𝑥 : 𝐴 ((5) and (7))
(9) cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1 ,Δ

′
21;Γ ([Tcut], (2), (8))

(10) par {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅} ⊢� Δ1 ,Δ
′
21 ,Δ22;Γ ([Tmix], (9) and (6))

(11) Δ1 ,Δ
′
21 ,Δ22 = Δ ((1), (4) and (7))

(12) par {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅} ⊢� Δ;Γ ((10) and (11))

Case: [CM] right-to-left, par {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅} ≡ cut {𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})}, 𝑥 ∈
fn(𝑄).

(1) Δ = Δ1 ,Δ2 (2) cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1;Γ (3) 𝑅 ⊢� Δ2;Γ, for some Δ1 ,Δ2

([Tmix−1] and par {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅} ⊢� Δ;Γ)
(4) Δ1 = Δ11 ,Δ12 (5) 𝑃 ⊢� Δ11 , 𝑥 : 𝐴;Γ (6) 𝑄 ⊢� Δ12 , 𝑥 : 𝐴;Γ, for some Δ11 ,Δ12

([Tcut−1] and (2))

189

APPENDIX A. TYPE PRESERVATION

(7) par {𝑄 | | 𝑅} ⊢� Δ12 , 𝑥 : 𝐴,Δ2;Γ ([Tmix], (6) and (3))
(8) cut {𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ⊢� Δ11 ,Δ12 ,Δ2;Γ ([Tcut], (5) and (7))
(9) Δ11 ,Δ12 ,Δ2 = Δ ((4) and (1))
(10) cut {𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ⊢� Δ;Γ ((8) and (9))

Case: [CC] left-to-right,

cut {𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑦 : 𝐵| 𝑅})} ≡ cut {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) |𝑦 : 𝐵| 𝑅}, 𝑥, 𝑦 ∈ fn(𝑄).

(1)Δ = Δ1 ,Δ2 (2)𝑃 ⊢� Δ1 , 𝑥 : 𝐴;Γ (3) cut {𝑄 |𝑦 : 𝐵| 𝑅} ⊢� Δ2 , 𝑥 : 𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑦 : 𝐵| 𝑅})} ⊢� Δ;Γ)
(4)Δ2 , 𝑥 : 𝐴 = Δ21 ,Δ22 (5)𝑄 ⊢� Δ21 , 𝑦 : 𝐵;Γ (6)𝑅 ⊢� Δ22 , 𝑦 : 𝐵;Γ, for some Δ21 ,Δ22

([Tcut−1] and (3))
(7) Δ21 = Δ′21 , 𝑥 : 𝐴, for some Δ′21 ((4), (5) and 𝑥 ∈ fn(𝑄))
(8) 𝑄 ⊢� Δ′21 , 𝑥 : 𝐴, 𝑦 : 𝐵;Γ ((5) and (7))
(9) cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1 ,Δ

′
21 , 𝑦 : 𝐵;Γ ([Tcut], (2), (8))

(10) cut {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) |𝑦 : 𝐵| 𝑅} ⊢� Δ1 ,Δ
′
21 ,Δ22;Γ ([Tcut], (9) and (6))

(11) Δ1 ,Δ
′
21 ,Δ22 = Δ ((1), (4) and (7))

(12) cut {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) |𝑦 : 𝐵| 𝑅} ⊢� Δ;Γ ((10) and (11))

Case: [CC] right-to-left,

cut {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) |𝑦 : 𝐵| 𝑅} ≡ cut {𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑦 : 𝐵| 𝑅})}, 𝑥, 𝑦 ∈ fn(𝑄).

(1)Δ = Δ1 ,Δ2 (2) cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1 , 𝑦 : 𝐵;Γ (3)𝑅 ⊢� Δ2 , 𝑦 : 𝐵;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) |𝑦 : 𝐵| 𝑅} ⊢� Δ;Γ)
(4)Δ1 , 𝑦 : 𝐵 = Δ11 ,Δ12 (5)𝑃 ⊢� Δ11 , 𝑥 : 𝐴Γ (6)𝑄 ⊢� Δ12 , 𝑥 : 𝐴;Γ, for some Δ11 ,Δ12

([Tcut−1] and (2))
(7) Δ12 = Δ′12 , 𝑦 : 𝐵, for some Δ′12 ((4), (6) and 𝑦 ∈ fn(𝑄))
(8) 𝑄 ⊢� Δ′12 , 𝑦 : 𝐵, 𝑥 : 𝐴;Γ ((6) and (7))
(9) cut {𝑄 |𝑦 : 𝐵| 𝑅} ⊢� Δ′12 , 𝑥 : 𝐴,Δ2;Γ ([Tcut], (8) and (3))
(10) cut {𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑦 : 𝐵| 𝑅})} ⊢� Δ11 ,Δ

′
12 ,Δ2;Γ ([Tcut], (5) and (9))

(11) Δ11 ,Δ
′
12 ,Δ2 = Δ ((1), (4) and (7))

(12) cut {𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑦 : 𝐵| 𝑅})} ⊢� Δ;Γ ((10) and (11))

Case: [CC!] left-to-right,

cut {𝑃 |𝑥 : 𝐴| (cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅})} ≡ cut! {𝑦.𝑄 |𝑧 : 𝐵| (cut {𝑃 |𝑥 : 𝐴| 𝑅})}, 𝑧 ∉

fn(𝑃).

(1)Δ = Δ1 ,Δ2 (2)𝑃 ⊢� Δ1 , 𝑥 : 𝐴;Γ (3) cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅} ⊢� Δ2 , 𝑥 : 𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {𝑃 |𝑥 : 𝐴| (cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅})} ⊢� Δ;Γ)
(4) 𝑄 ⊢� 𝑦 : 𝐵;Γ (5) 𝑅 ⊢� Δ2 , 𝑥 : 𝐴;Γ, 𝑧 : 𝐵 ([Tcut!−1] and (3))
(6) 𝑃 ⊢� Δ1 , 𝑥 : 𝐴;Γ, 𝑧 : 𝐵 (Lemma 29([Tweaken]), (2) and 𝑧 ∉ fn(𝑃))

190

(7) cut {𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ1 ,Δ2;Γ, 𝑧 : 𝐵 ([Tcut], (6) and (5))
(8) cut! {𝑦.𝑄 |𝑧 : 𝐵| (cut {𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ1 ,Δ2;Γ ([Tcut!], (4) and (7))
(9) cut! {𝑦.𝑄 |𝑧 : 𝐵| (cut {𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ ((1) and (8))

Case: [CC!] right-to-left,

cut! {𝑦.𝑄 |𝑧 : 𝐵| (cut {𝑃 |𝑥 : 𝐴| 𝑅})} ≡ cut {𝑃 |𝑥 : 𝐴| (cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅})}, 𝑧 ∉

fn(𝑃).

(1) 𝑄 ⊢� 𝑦 : 𝐵;Γ (2) cut {𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ;Γ, 𝑧 : 𝐵
([Tcut!−1] and cut! {𝑦.𝑄 |𝑧 : 𝐵| (cut {𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ)
(3)Δ = Δ1 ,Δ2 (4)𝑃 ⊢� Δ1 , 𝑥 : 𝐴;Γ, 𝑧 : 𝐵 (5)𝑅 ⊢� Δ2 , 𝑥 : 𝐴;Γ, 𝑧 : 𝐵, for some Δ1 ,Δ2

([Tcut!−1] and (2))
(6) cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅} ⊢� Δ2 , 𝑥 : 𝐴;Γ ([Tcut!], (1) and (5))
(7) 𝑃 ⊢� Δ1 , 𝑥 : 𝐴;Γ (Lemma 29([Tstrength], (4) and 𝑧 ∉ fn(𝑃))
(8) cut {𝑃 |𝑥 : 𝐴| (cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅})} ⊢� Δ1 ,Δ2;Γ ([Tcut], (7) and (5))
(9) cut {𝑃 |𝑥 : 𝐴| (cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅})} ⊢� Δ;Γ ((3) and (8))

Case: [C!M] left-to-right, cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ≡ par {(cut! {𝑦.𝑃 |𝑥 :
𝐴| 𝑄}) | | 𝑅}, 𝑥 ∉ fn(𝑅).

(1) 𝑃 ⊢� 𝑦 : 𝐴;Γ (2) par {𝑄 | | 𝑅} ⊢� Δ;Γ, 𝑥 : 𝐴
([Tcut!−1] and cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ⊢� Δ;Γ)
(3) Δ = Δ1 ,Δ2 (4) 𝑄 ⊢� Δ1;Γ, 𝑥 : 𝐴 (5) 𝑅 ⊢� Δ2;Γ, 𝑥 : 𝐴, for some Δ1 ,Δ2

([Tmix−1] and (2))
(5) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1;Γ ([Tcut!], (1) and (4))
(6) 𝑅 ⊢� Δ2;Γ (Lemma 29([Tstrength]), (5) and 𝑥 ∉ fn(𝑅))
(7) par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅} ⊢� Δ1 ,Δ2;Γ ([Tmix], (5) and (6))
(8) par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅} ⊢� Δ;Γ ((3) and (7))

Case: [C!M] right-to-left, par {(cut! {𝑦.𝑃 |𝑥 : 𝐴|𝑄}) | | 𝑅} ≡ cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})}, 𝑥 ∉

fn(𝑅).

(1) Δ = Δ1 ,Δ2 (2) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1;Γ (3) 𝑅 ⊢� Δ2;Γ
([Tmix−1] and par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅} ⊢� Δ;Γ)
(4) 𝑃 ⊢� 𝑦 : 𝐴;Γ (5) 𝑄 ⊢� Δ1;Γ, 𝑥 : 𝐴 ([Tcut!−1] and (2))
(6) 𝑅 ⊢� Δ2;Γ, 𝑥 : 𝐴 (Lemma 29([Tweaken]) and (3))
(7) par {𝑄 | | 𝑅} ⊢� Δ1 ,Δ2;Γ, 𝑥 : 𝐴 ([Tmix], (5) and (6))
(8) cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ⊢� Δ1 ,Δ2;Γ ([Tcut!], (4) and (7))
(9) cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ⊢� Δ;Γ ((1) and (8))

Case: [C!C!] left-to-right,

191

APPENDIX A. TYPE PRESERVATION

cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅})} ≡ cut! {𝑤.𝑄 |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})}, 𝑥 ∉

fn(𝑄), 𝑧 ∉ fn(𝑃).

(1) 𝑃 ⊢� 𝑦 : 𝐴;Γ (2) cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅} ⊢� Δ;Γ, 𝑥 : 𝐴
([Tcut!−1] and cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅})} ⊢� Δ;Γ)
(3) 𝑄 ⊢� 𝑤 : 𝐵;Γ, 𝑥 : 𝐴 (4) 𝑅 ⊢� Δ;Γ, 𝑥 : 𝐴, 𝑧 : 𝐵 ([Tcut!−1] and (2))
(5) 𝑃 ⊢� 𝑦 : 𝐴;Γ, 𝑧 : 𝐵 (Lemma 29([Tweaken]), (1) and 𝑧 ∉ fn(𝑃))
(6) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ;Γ, 𝑧 : 𝐵 ([Tcut!], (5) and (4))
(7) 𝑄 ⊢� 𝑤 : 𝐵;Γ (Lemma 29([Tstrength]), (3) and 𝑥 ∉ fn(𝑄)
(8) cut! {𝑤.𝑄 |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ ([Tcut!], (7) and (6))

Case: [C!C!] right-to-left,

cut! {𝑤.𝑄 |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ≡ cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅})}, 𝑥 ∉

fn(𝑄), 𝑧 ∉ fn(𝑃).

(1) 𝑄 ⊢� 𝑤 : 𝐵;Γ (2) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ;Γ, 𝑧 : 𝐵
([Tcut!−1] and cut! {𝑤.𝑄 |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ)
(3) 𝑃 ⊢� 𝑦 : 𝐴;Γ, 𝑧 : 𝐵 (4) 𝑅 ⊢� Δ;Γ, 𝑧 : 𝐵, 𝑥 : 𝐴 ([Tcut!−1] and (2))
(5) 𝑄 ⊢� 𝑤 : 𝐵;Γ, 𝑥 : 𝐴 (Lemma 29([Tweaken]), (1) and 𝑥 ∉ fn(𝑄))
(6) cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅} ⊢� Δ;Γ, 𝑥 : 𝐴 ([Tcut!], (5) and (4))
(7) 𝑃 ⊢� 𝑦 : 𝐴;Γ (Lemma 29([Tstrength]), (3) and 𝑧 ∉ fn(𝑃))
(8) cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅})} ⊢� Δ;Γ ([Tcut!], (7) and (6))

Case: [CSh] left-to-right, cut {𝑃 |𝑥 : 𝐴| share 𝑦 {𝑄 | | 𝑅}} ≡ share 𝑦 {cut {𝑃 |𝑥 :
𝐴| 𝑄} | | 𝑅}, 𝑥, 𝑦 ∈ fn(𝑄).

(1)Δ = Δ1 ,Δ2 (2)𝑃 ⊢� Δ1 , 𝑥 : 𝐴;Γ (3) share 𝑦 {𝑄 | | 𝑅} ⊢� Δ2 , 𝑥 : 𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {𝑃 |𝑥 : 𝐴| (share 𝑦 {𝑄 | | 𝑅})} ⊢� Δ;Γ)
(4) Δ2 , 𝑥 : 𝐴 = Δ21 ,Δ22 , 𝑦 : U𝒳 𝐵 (5) 𝑄 ⊢� Δ21 , 𝑦 : U𝒳1 𝐵;Γ
(6)𝑅 ⊢� Δ22 , 𝑦 : U𝒳2 𝐵;Γ (7)𝒳1⊕𝒳2 = 𝒳, for some Δ21 ,Δ22 , 𝐵,𝒳1 ,𝒳2 ,𝒳 ([Tsh−1] and (3))
(8) Δ21 = Δ′21 , 𝑥 : 𝐴, for some Δ′21 ((4), (5) and 𝑥 ∈ fn(𝑄))
(9) 𝑄 ⊢� Δ′21 , 𝑥 : 𝐴, 𝑦 : U𝒳1 𝐵;Γ ((5) and (8))
(10) cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1 ,Δ

′
21 , 𝑦 : U𝒳1 𝐵;Γ ([Tcut], (2), (9))

(11) share 𝑦 {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅} ⊢� Δ1 ,Δ
′
21 ,Δ22 , 𝑦 : U𝒳 𝐵;Γ ([Tsh], (10), (6) and (7))

(12) Δ1 ,Δ
′
21 ,Δ22 , 𝑦 : U𝒳 𝐵 = Δ ((1), (4) and (8))

(13) share 𝑦 {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅} ⊢� Δ;Γ ((11) and (12))

Case: [CSh] right-to-left, share 𝑦 {cut {𝑃 |𝑥 : 𝐴| 𝑄} | | 𝑅} ≡ cut {𝑃 |𝑥 : 𝐴| share 𝑦 {𝑄 | | 𝑅}}, 𝑥, 𝑦 ∈
fn(𝑄).

(1) Δ = Δ1 ,Δ2 , 𝑦 : U𝒳 𝐵 (2) cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1 , 𝑦 : U𝒳1 𝐵;Γ
(3) 𝑅 ⊢� Δ2 , 𝑦 : U𝒳2 𝐵;Γ (4) 𝒳1 ⊕ 𝒳2 = 𝒳, for some Δ1 ,Δ2 , 𝐵,𝒳1 ,𝒳2 ,𝒳

192

([Tsh−1] and share 𝑦 {cut {𝑃 |𝑥 : 𝐴| 𝑄} | | 𝑅} ⊢� Δ;Γ)
(5)Δ1 , 𝑦 : U𝒳1 𝐵 = Δ11 ,Δ12 (6)𝑃 ⊢� Δ11 , 𝑥 : 𝐴;Γ (7)𝑄 ⊢� Δ12 , 𝑥 : 𝐴;Γ, for some Δ11 ,Δ12

([Tcut−1] and (2))
(8) Δ12 = Δ′12 , 𝑦 : U𝒳1 𝐵, for some Δ′12 ((5), (7) and 𝑦 ∈ fn(𝑄))
(9) 𝑄 ⊢� Δ′12 , 𝑦 : U𝒳1 𝐵, 𝑥 : 𝐴;Γ ((7) and (8))
(10) share 𝑦 {𝑄 | | 𝑅} ⊢� Δ′12 , 𝑥 : 𝐴,Δ2 , 𝑦 : U𝒳 𝐵;Γ ([Tsh], (9), (3) and (4))
(11) cut {𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑦 : 𝐵| 𝑅})} ⊢� Δ11 ,Δ

′
12 ,Δ2 , 𝑦 : U𝒳 𝐵;Γ ([Tcut], (6) and (10))

(12) Δ11 ,Δ
′
12 ,Δ2 , 𝑦 : U𝒳 𝐵 = Δ ((1), (5) and (8))

(13) cut {𝑃 |𝑥 : 𝐴| (share 𝑦 {𝑄 | | 𝑅})} ⊢� Δ;Γ ((11) and (12))

Case: [ShM] left-to-right, share 𝑥 {𝑃 | | (par {𝑄 | | 𝑅})} ≡ par {share 𝑥 {𝑃 | | 𝑄} | | 𝑅}, 𝑥 ∈
fn(𝑄).
(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴 (2) 𝑃 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ
(3) par {𝑄 | | 𝑅} ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ (4) 𝒳1 ⊕ 𝒳2 = 𝒳, for some Δ1 ,Δ2 , 𝐴,𝒳1 ,𝒳2 ,𝒳
([Tsh−1] and share 𝑥 {𝑃 | | (par {𝑄 | | 𝑅})} ⊢� Δ;Γ)
(5) Δ2 , 𝑥 : U𝒳2 𝐴 = Δ21 ,Δ22 (6) 𝑄 ⊢� Δ21;Γ (7) 𝑅 ⊢� Δ22;Γ, for some Δ21 ,Δ22

([Tmix−1] and (3))
(8) Δ21 = Δ′21 , 𝑥 : U𝒳2 𝐴, for some Δ′21 ((5), (6) and 𝑥 ∈ fn(𝑄))
(9) 𝑄 ⊢� Δ′21 , 𝑥 : U𝒳2 𝐴 ((6) and (8))
(10) share 𝑥 {𝑃 | | 𝑄} ⊢� Δ1 ,Δ

′
21 , 𝑥 : U𝒳 𝐴;Γ ([Tsh], (2), (9) and (4))

(11) par {(share 𝑥 {𝑃 | | 𝑄}) | | 𝑅} ⊢� Δ1 ,Δ
′
21 ,Δ22 , 𝑥 : U𝒳 𝐴;Γ ([Tmix], (10) and (7))

(12) Δ1 ,Δ
′
21 ,Δ22 , 𝑥 : U𝒳 𝐴 = Δ ((1), (5) and (8))

(13) par {(share 𝑥 {𝑃 | | 𝑄}) | | 𝑅} ⊢� Δ;Γ ((11) and (12))

Case: [ShM] right-to-left, par {share 𝑥 {𝑃 | | 𝑄} | | 𝑅} ≡ share 𝑥 {𝑃 | | (par {𝑄 | | 𝑅})}, 𝑥 ∈
fn(𝑄).
(1) Δ = Δ1 ,Δ2 (2) share 𝑥 {𝑃 | | 𝑄} ⊢� Δ1;Γ (3) 𝑅 ⊢� Δ2;Γ, for some Δ1 ,Δ2

([Tmix−1] and par {(share 𝑥 {𝑃 | | 𝑄}) | | 𝑅} ⊢� Δ;Γ)
(4) Δ1 = Δ11 ,Δ12 , 𝑥 : U𝒳 𝐴 (5) 𝑃 ⊢� Δ11 , 𝑥 : U𝒳1 𝐴;Γ
(6)𝑄 ⊢� Δ12 , 𝑥 : U𝒳2 𝐴;Γ (7)𝒳1⊕𝒳2 = 𝒳, for some Δ11 ,Δ12 , 𝐴,𝒳1 ,𝒳2 ,𝒳 ([Tsh−1] and (2))
(8) par {𝑄 | | 𝑅} ⊢� Δ12 , 𝑥 : U𝒳2 𝐴,Δ2;Γ ([Tmix], (6) and (3))
(9) share 𝑥 {𝑃 | | (par {𝑄 | | 𝑅})} ⊢� Δ11 ,Δ12 ,Δ2 , 𝑥 : U𝒳 𝐴;Γ ([Tsh], (5) and (8))
(10) Δ11 ,Δ12 ,Δ2 , 𝑥 : U𝒳 𝐴 = Δ ((4) and (1))
(11) share 𝑥 {𝑃 | | (par {𝑄 | | 𝑅})} ⊢� Δ;Γ ((9) and (10))

Case: [ShC!] left-to-right, share 𝑥 {𝑃 | | (cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅})} ≡ cut! {𝑦.𝑄 |𝑧 :
𝐵| (share 𝑥 {𝑃 | | 𝑅})}, 𝑧 ∉ fn(𝑃).
(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴 (2) 𝑃 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ
(3) cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅} ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ (4)𝒳1⊕𝒳2 = 𝒳, for some Δ1 ,Δ2 , 𝐴,𝒳1 ,𝒳2 ,𝒳

193

APPENDIX A. TYPE PRESERVATION

([Tsh−1] and share 𝑥 {𝑃 | | (cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅})} ⊢� Δ;Γ)
(5) 𝑄 ⊢� 𝑦 : 𝐵;Γ (6) 𝑅 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ, 𝑧 : 𝐵 ([Tcut!−1] and (3))
(7) 𝑃 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ, 𝑧 : 𝐵 (Lemma 29([Tweaken]), (2) and 𝑧 ∉ fn(𝑃))
(8) share 𝑥 {𝑃 | | 𝑅} ⊢� Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴;Γ, 𝑧 : 𝐵 ([Tsh], (7), (6) and (4))
(9) cut! {𝑦.𝑄 |𝑧 : 𝐵| (share 𝑥 {𝑃 | | 𝑅})} ⊢� Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴;Γ ([Tcut!], (5) and (8))
(10) cut! {𝑦.𝑄 |𝑧 : 𝐵| (share 𝑥 {𝑃 | | 𝑅})} ⊢� Δ;Γ ((1) and (9))

Case: [ShC!] right-to-left,

cut! {𝑦.𝑄 |𝑧 : 𝐵| (share 𝑥 {𝑃 | | 𝑅})} ≡ share 𝑥 {𝑃 | | (cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅})}, 𝑧 ∉ fn(𝑃).

(1) 𝑄 ⊢� 𝑦 : 𝐵;Γ (2) share 𝑥 {𝑃 | | 𝑅} ⊢� Δ;Γ, 𝑧 : 𝐵
([Tcut!−1] and cut! {𝑦.𝑄 |𝑧 : 𝐵| (share 𝑥 {𝑃 | | 𝑅})} ⊢� Δ;Γ)
(3) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴 (4) 𝑃 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ, 𝑧 : 𝐵
(5) 𝑅 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ, 𝑧 : 𝐵 (6) 𝒳1 ⊕ 𝒳2 = 𝒳, for some Δ1 ,Δ2 , 𝐴,𝒳1 ,𝒳2 ,𝒳
([Tsh−1] and (2))
(7) cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅} ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ ([Tcut!], (1) and (5))
(8) 𝑃 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ (Lemma 29([Tstrength]), (4) and 𝑧 ∉ fn(𝑃))
(9) share 𝑥 {𝑃 | | (cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅})} ⊢� Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴;Γ ([Tsh], (8), (7) and (6))
(10) share 𝑥 {𝑃 | | (cut! {𝑦.𝑄 |𝑧 : 𝐵| 𝑅})} ⊢� Δ;Γ ((3) and (9))

Case: [ShSh] left-to-right, share 𝑥 {𝑃 | | (share 𝑦 {𝑄 | | 𝑅})} ≡ share 𝑦 {(share 𝑥 {𝑃 | |𝑄}) | | 𝑅}, 𝑥, 𝑦 ∈
fn(𝑄).

(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴 (2) 𝑃 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ
(3) share 𝑦 {𝑄 | | 𝑅} ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ (4)𝒳1⊕𝒳2 = 𝒳, for some Δ1 ,Δ2 , 𝐴,𝒳1 ,𝒳2 ,𝒳
([Tsh−1] and share 𝑥 {𝑃 | | (share 𝑦 {𝑄 | | 𝑅})} ⊢� Δ;Γ)
(5) Δ2 , 𝑥 : U𝒳2 𝐴 = Δ21 ,Δ22 , 𝑦 : U𝒴 𝐵 (6) 𝑄 ⊢� Δ21 , 𝑦 : U𝒴1 𝐵;Γ
(7)𝑅 ⊢� Δ22 , 𝑦 : U𝒴2 𝐵;Γ (8)𝒴1⊕𝒴2 = 𝒴, for some Δ21 ,Δ22 ,𝒴1 ,𝒴2 ,𝒴 ([Tsh−1] and (3))
(9) Δ21 = Δ′21 , 𝑥 : U𝒳2 𝐴, for some Δ′21 ((5), (6) and 𝑥 ∈ fn(𝑄))
(10) 𝑄 ⊢� Δ′21 , 𝑥 : U𝒳2 𝐴, 𝑦 : U𝒴1 𝐵;Γ ((6) and (9))
(11) share 𝑥 {𝑃 | | 𝑄} ⊢� Δ1 ,Δ

′
21 , 𝑥 : U𝒳 𝐴, 𝑦 : U𝒴1 𝐵;Γ ([Tsh], (2), (10) an (4))

(12) share 𝑦 {(share 𝑥 {𝑃 | | 𝑄}) | | 𝑅} ⊢� Δ1 ,Δ
′
21 ,Δ22 , 𝑥 : U𝒳 𝐴, 𝑦 : U𝒴 𝐵;Γ

([Tsh], (11), (7) and (8))
(13) Δ1 ,Δ

′
21 ,Δ22 , 𝑥 : U𝒳 𝐴, 𝑦 : U𝒴 𝐵 = Δ ((1), (5) and (9))

(14) share 𝑦 {(share 𝑥 {𝑃 | | 𝑄}) | | 𝑅} ⊢� Δ;Γ ((11) and (12))

Case: [ShSh] right-to-left, share 𝑦 {(share 𝑥 {𝑃 | |𝑄}) | | 𝑅} ≡ share 𝑥 {𝑃 | | (share 𝑦 {𝑄 | | 𝑅})}, 𝑥, 𝑦 ∈
fn(𝑄).

(1) Δ = Δ1 ,Δ2 , 𝑦 : U𝒴 𝐵 (2) share 𝑥 {𝑃 | | 𝑄} ⊢� Δ1 , 𝑦 : U𝒴1 𝐵;Γ
(3) 𝑅 ⊢� Δ2 , 𝑦 : U𝒴2 𝐵;Γ (4) 𝒴1 ⊕ 𝒴2 = 𝒴, for some Δ1 ,Δ2 , 𝐵,𝒴1 ,𝒴2 ,𝒴

194

([Tsh−1] and share 𝑦 {(share 𝑥 {𝑃 | | 𝑄}) | | 𝑅} ⊢� Δ;Γ)
(5) Δ1 , 𝑦 : U𝒴1 𝐵 = Δ11 ,Δ12 , 𝑥 : U𝒳 𝐴 (6) 𝑃 ⊢� Δ11 , 𝑥 : U𝒳1 𝐴Γ

(7)𝑄 ⊢� Δ12 , 𝑥 : U𝒳2 𝐴;Γ (8)𝒳1⊕𝒳2 = 𝒳, for some Δ11 ,Δ12 , 𝐴,𝒳1 ,𝒳2 ,𝒳 ([Tsh−1] and (2))
(9) Δ12 = Δ′12 , 𝑦 : U𝒴1 𝐵, for some Δ′12 ((5), (7) and 𝑦 ∈ fn(𝑄))
(10) 𝑄 ⊢� Δ′12 , 𝑦 : U𝒴1 𝐵, 𝑥 : U𝒳2 𝐴;Γ ((7) and (9))
(11) share 𝑦 {𝑄 | | 𝑅} ⊢� Δ′12 , 𝑥 : U𝒳2 𝐴, 𝑦 : U𝒴 𝐵,Δ2;Γ ([Tsh], (10), (3) and (4))
(12) share 𝑥 {𝑃 | | (share 𝑦 {𝑄 | | 𝑅})} ⊢� Δ11 ,Δ

′
12 ,Δ2 , 𝑥 : U𝒳 𝐴, 𝑦 : U𝒴 𝐵;Γ

([Tsh], (6) and (11))
(13) Δ11 ,Δ

′
12 ,Δ2 , 𝑥 : U𝒳 𝐴, 𝑦 : U𝒴 𝐵 = Δ ((1), (5) and (9))

(14) share 𝑥 {𝑃 | | (share 𝑦 {𝑄 | | 𝑅})} ⊢� Δ;Γ ((12) and (13))

Case: [D-C!M] left-to-right,

cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ≡ par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})}.

(1) 𝑃 ⊢� 𝑦 : 𝐴;Γ (2) par {𝑄 | | 𝑅} ⊢� Δ;Γ, 𝑥 : 𝐴
([Tcut!−1] and cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ⊢� Δ;Γ)
(3) Δ = Δ1 ,Δ2 (4) 𝑄 ⊢� Δ1;Γ, 𝑥 : 𝐴 (5) 𝑅 ⊢� Δ2;Γ, 𝑥 : 𝐴, for some Δ1 ,Δ2

([Tmix−1] and (2))
(6) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1;Γ ([Tcut!], (1) and (4))
(7) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ2;Γ ([Tcut!], (1) and (5))
(8)par {(cut! {𝑦.𝑃 |𝑥 : 𝐴|𝑄}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ1 ,Δ2;Γ ([Tmix], (6) and (7))
(9) par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ ((3) and (8))

Case: [D-C!M] right-to-left,

par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ≡ cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})}.

(1) Δ = Δ1 ,Δ2 (2) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1;Γ (3) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢�
Δ2;Γ, for someΔ1 ,Δ2 ([Tmix−1] and par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ)
(4) 𝑃 ⊢� 𝑦 : 𝐴;Γ (5) 𝑄 ⊢� Δ1;Γ, 𝑥 : 𝐴 ([Tcut!−1] and (2))
(6) 𝑅 ⊢� Δ2;Γ, 𝑥 : 𝐴 ([Tcut!−1] and (3))
(7) par {𝑄 | | 𝑅} ⊢� Δ1 ,Δ2;Γ, 𝑥 : 𝐴 ([Tmix], (5) and (6))
(8) cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ⊢� Δ1 ,Δ2;Γ ([Tcut!], (4) and (7))
(9) cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ⊢� Δ;Γ ((1) and (8))

Case: [D-C!C] left-to-right,

cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑧 : 𝐵| 𝑅})} ≡ cut {(cut! {𝑦.𝑃 |𝑥 : 𝐴|𝑄}) |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 :
𝐴| 𝑅})}.

(1) 𝑃 ⊢� 𝑦 : 𝐴;Γ (2) cut {𝑄 |𝑧 : 𝐵| 𝑅} ⊢� Δ;Γ, 𝑥 : 𝐴
([Tcut!−1 and cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑧 : 𝐵| 𝑅})} ⊢� Δ;Γ)
(3)Δ = Δ1 ,Δ2 (4)𝑄 ⊢� Δ1 , 𝑧 : 𝐵;Γ, 𝑥 : 𝐴 (5)𝑅 ⊢� Δ2 , 𝑧 : 𝐵;Γ, 𝑥 : 𝐴, for someΔ1 ,Δ2

195

APPENDIX A. TYPE PRESERVATION

([Tcut!−1] and (2))
(6) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1 , 𝑧 : 𝐵;Γ ([Tcut!], (1) and (4))
(7) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ2 , 𝑧 : 𝐵;Γ ([Tcut!], (1) and (5))
(8) cut {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ1 ,Δ2;Γ
([Tcut], (6) and (7))
(9) cut {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ ((3) and (8))

Case: [D-C!C] right-to-left,

cut {(cut! {𝑦.𝑃 |𝑥 : 𝐴|𝑄}) |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ≡ cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑧 :
𝐵| 𝑅})}.

(1) Δ = Δ1 ,Δ2 (2) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1 , 𝑧 : 𝐵;Γ (3) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢�
Δ2 , 𝑧 : 𝐵;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ)
(4) 𝑃 ⊢� 𝑦 : 𝐴;Γ (5) 𝑄 ⊢� Δ1 , 𝑧 : 𝐵;Γ, 𝑥 : 𝐴 ([Tcut−1] and (2))
(6) 𝑅 ⊢� Δ2 , 𝑧 : 𝐵;Γ, 𝑥 : 𝐴 ([Tcut!−1] and (3))
(7) cut {𝑄 |𝑧 : 𝐵| 𝑅} ⊢� Δ1 ,Δ2;Γ, 𝑥 : 𝐴 ([Tcut], (5) and (6))
(8) cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑧 | 𝑅})} ⊢� Δ1 ,Δ2;Γ ([Tcut!], (4) and (7))
(9) cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut {𝑄 |𝑧 | 𝑅})} ⊢� Δ;Γ ((1) and (8))

Case: [D-C!C!] left-to-right,

cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅})} ≡ cut! {𝑤.(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) |𝑧 :
𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})}.

(1) 𝑃 ⊢� 𝑦 : 𝐴;Γ (2) cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅} ⊢� Δ;Γ, 𝑥 : 𝐴
([Tcut!−1] and cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅})} ⊢� Δ;Γ)
(3) 𝑄 ⊢� 𝑤 : 𝐵;Γ, 𝑥 : 𝐴 (4) 𝑅 ⊢� Δ;Γ, 𝑥 : 𝐴, 𝑧 : 𝐵 ([Tcut!−1] and (2))
(5) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� 𝑤 : 𝐵;Γ ([Tcut!] (1) and (3))
(6) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ;Γ, 𝑧 : 𝐵 ([Tcut!], (1) and (4))
(7) cut! {𝑤.(cut! {𝑦.𝑃 |𝑥 : 𝐴|𝑄}) |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ ([Tcut!], (5) and (6))

Case: [D-C!C!] right-to-left,

cut! {𝑤.(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ≡ cut! {𝑦.𝑃 |𝑥 :
𝐴| (cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅})}.

(1) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� 𝑤 : 𝐵;Γ (2) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ;Γ, 𝑧 : 𝐵
([Tcut!−1] and cut! {𝑤.(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) |𝑧 : 𝐵| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ)
(3) 𝑃 ⊢� 𝑦 : 𝐴;Γ (4) 𝑄 ⊢� 𝑤 : 𝐵;Γ, 𝑥 : 𝐴 ([Tcut!−1] and (1))
(5) 𝑅 ⊢� Δ;Γ, 𝑧 : 𝐵, 𝑥 : 𝐴 ([Tcut!−1] and (2))
(6) cut! {𝑤.𝑄 |𝑧 : 𝐵| 𝑅} ⊢� Δ;Γ, 𝑥 : 𝐴 ([Tcut!], (4) and (5))

196

(7) cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut! {𝑤.𝑄 |𝑧 | 𝑅})} ⊢� Δ;Γ ([Tcut!], (3) and (6))

Case: [D-C!Sh] left-to-right,

cut! {𝑦.𝑃 |𝑥 : 𝐴| share 𝑧 {𝑄 | | 𝑅}} ≡ share 𝑧 {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | (cut! {𝑦.𝑃 |𝑥 :
𝐴| 𝑅})}.

(1) 𝑃 ⊢� 𝑦 : 𝐴;Γ (2) share 𝑧 {𝑄 | | 𝑅} ⊢� Δ;Γ, 𝑥 : 𝐴
([Tcut!−1] and cut! {𝑦.𝑃 |𝑥 : 𝐴| (share 𝑧 {𝑄 | | 𝑅})} ⊢� Δ;Γ)
(3) Δ = Δ1 ,Δ2 , 𝑧 : U𝒴 𝐵 (4) 𝑄 ⊢� Δ1 , 𝑧 : U𝒴1 𝐵;Γ, 𝑥 : 𝐴
(5) 𝑅 ⊢� Δ2 , 𝑧 : U𝒴2 𝐵;Γ, 𝑥 : 𝐴 (6) 𝒴1 ⊕ 𝒴2 = 𝒴, for some Δ1 ,Δ2 , 𝐵,𝒴1 ,𝒴2 ,𝒴
([Tsh−1] and (2))
(7) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1 , 𝑧 : U𝒴1 𝐵;Γ ([Tcut!], (1) and (4))
(8) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ2 , 𝑧 : U𝒴2 𝐵;Γ ([Tcut!], (1) and (5))
(9) share 𝑧 {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ1 ,Δ2 , 𝑧 : U𝒴 𝐵;Γ
([Tsh], (7), (8) and (6))
(10) share 𝑧 {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ ((3) and (9))

Case: [D-C!Sh] right-to-left,

share 𝑧 {(cut! {𝑦.𝑃 |𝑥 : 𝐴|𝑄}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ≡ cut! {𝑦.𝑃 |𝑥 : 𝐴| share 𝑧 {𝑄 | | 𝑅}}.

(1) Δ = Δ1 ,Δ2 , 𝑧 : U𝒴 𝐵 (2) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1 , 𝑧 : U𝒴1 𝐵;Γ
(3) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ2 , 𝑧 : U𝒴2 𝐵;Γ (4)𝒴1⊕𝒴2 = 𝒴, for someΔ1 ,Δ2 , 𝐵,𝒴1 ,𝒴2 ,𝒴
([Tsh−1] and share 𝑧 {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅})} ⊢� Δ;Γ)
(5) 𝑃 ⊢� 𝑦 : 𝐴;Γ (6) 𝑄 ⊢� Δ1 , 𝑧 : U𝒴1 𝐵;Γ, 𝑥 : 𝐴 ([Tcut!−1] and (2))
(7) 𝑅 ⊢� Δ2 , 𝑧 : U𝒴2 𝐵;Γ, 𝑥 : 𝐴 ([Tcut!−1] and (3))
(8) share 𝑧 {𝑄 | | 𝑅} ⊢� Δ1 ,Δ2 , 𝑧 : U𝒴 𝐵;Γ, 𝑥 : 𝐴 ([Tsh], (6), (7) and (4))
(9) cut! {𝑦.𝑃 |𝑥 : 𝐴| (share 𝑧 {𝑄 | | 𝑅})} ⊢� Δ1 ,Δ2 , 𝑧 : U𝒴 𝐵;Γ ([Tcut!], (5) and (8))
(10) cut! {𝑦.𝑃 |𝑥 : 𝐴| (share 𝑧 {𝑄 | | 𝑅})} ⊢� Δ;Γ ((1) and (0)

Case: [C!Sm] left-to-right,

cut! {𝑦.𝑃 |𝑥 : 𝐴| (𝑄 + 𝑅)} ≡ (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) + (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅}).

(1)𝑃 ⊢� 𝑦 : 𝐴;Γ (2)𝑄 +𝑅 ⊢� Δ;Γ, 𝑥 : 𝐴 ([Tcut!−1] and cut! {𝑦.𝑃 |𝑥 : 𝐴| (𝑄 + 𝑅)} ⊢� Δ;Γ)
(3) 𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴 (4) 𝑅 ⊢� Δ;Γ, 𝑥 : 𝐴 ([Tsum−1] and (2))
(5) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ;Γ ([Tcut!], (1) and (3))
(6) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ;Γ ([Tcut!], (1) and (4))
(7) (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) + (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅}) ⊢� Δ;Γ ([Tsum], (5) and (6))

Case: [C!Sm] right-to-left,

(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) + (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅}) ≡ cut! {𝑦.𝑃 |𝑥 : 𝐴| (𝑄 + 𝑅)}.

197

APPENDIX A. TYPE PRESERVATION

(1) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ;Γ (2) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ;Γ
([Tsum−1] and (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}) + (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑅}) ⊢� Δ;Γ)
(3) 𝑃 ⊢� 𝑦 : 𝐴;Γ (4) 𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴 ([Tcut!−1] and (1))
(5) 𝑅 ⊢� Δ;Γ, 𝑥 : 𝐴 ([Tcut!−1] and (2))
(6) 𝑄 + 𝑅 ⊢� Δ;Γ, 𝑥 : 𝐴 ([Tsum], (4) and (5))
(8) cut! {𝑦.𝑃 |𝑥 : 𝐴| (𝑄 + 𝑅)} ⊢� Δ;Γ ([Tcut!], (3) and (6))

Case: [MSm] left-to-right, par {𝑃 | | (𝑄 + 𝑅)} ≡ (par {𝑃 | | 𝑄}) + (par {𝑃 | | 𝑅}).

(1) Δ = Δ1 ,Δ2 (2) 𝑃 ⊢� Δ1;Γ (3) 𝑄 + 𝑅 ⊢� Δ2;Γ for some Δ1 ,Δ2

([Tmix−1] and par {𝑃 | | (𝑄 + 𝑅)} ⊢� Δ;Γ)
(4) 𝑄 ⊢� Δ2;Γ (5) 𝑅 ⊢� Δ2;Γ ([Tsum−1] and (3))
(5) par {𝑃 | | 𝑄} ⊢� Δ1 ,Δ2;Γ ([Tmix], (2) and (4))
(6) par {𝑃 | | 𝑅} ⊢� Δ1 ,Δ2;Γ ([Tmix], (2) and (5))
(7) (par {𝑃 | | 𝑄}) + (par {𝑃 | | 𝑅}) ⊢� Δ1 ,Δ2;Γ ([Tsum], (5) and (6))
(8) (par {𝑃 | | 𝑄}) + (par {𝑃 | | 𝑅}) ⊢� Δ;Γ ((1) and (7))

Case: [MSm] right-to-left, (par {𝑃 | | 𝑄}) + (par {𝑃 | | 𝑅}) ≡ par {𝑃 | | (𝑄 + 𝑅)}.

(1) par {𝑃 | | 𝑄} ⊢� Δ;Γ (2) par {𝑃 | | 𝑅} ⊢� Δ;Γ
([Tsum−1] and (par {𝑃 | | 𝑄}) + (par {𝑃 | | 𝑅}) ⊢� Δ;Γ)
(3) Δ = Δ1 ,Δ2 (4) 𝑃 ⊢� Δ1;Γ (5) 𝑄 ⊢� Δ2;Γ, for some Δ1 ,Δ2 ([Tmix−1] and (1))
(6) Δ = Δ′1 ,Δ

′
2 (7) 𝑃 ⊢� Δ′1;Γ (8) 𝑅 ⊢� Δ′2;Γ, for some Δ′1 ,Δ

′
2 ([Tmix−1] and (2))

(9) Δ1 = Δ ↾ dom(Δ1) (10) Δ′1 = Δ ↾ dom(Δ′1) ((3) and (6))
(11) dom(Δ1) = dom(Δ′1) (Lemma 30(1), (4) and (7))
(12) Δ1 = Δ′1 ((9), (10) and (11))
(13) Δ2 = Δ′2 ((3), (6) and (12))
(14) 𝑅 ⊢� Δ2;Γ ((8) and (13))
(15) 𝑄 + 𝑅 ⊢� Δ2;Γ ([Tsum], (5) and (14))
(16) par {𝑃 | | (𝑄 + 𝑅)} ⊢� Δ1 ,Δ2;Γ ([Tmix], (4) and (15))
(17) par {𝑃 | | (𝑄 + 𝑅)} ⊢� Δ;Γ ((3) and (16))

Case: [CSm] left-to-right, cut {𝑃 |𝑥 : 𝐴| (𝑄 + 𝑅)} ≡ (cut {𝑃 |𝑥 : 𝐴| 𝑄}) + (cut {𝑃 |𝑥 :
𝐴| 𝑅}).

(1) Δ = Δ1 ,Δ2 (2) 𝑃 ⊢� Δ1 , 𝑥 : 𝐴;Γ (3) 𝑄 + 𝑅 ⊢� Δ2 , 𝑥 : 𝐴;Γ for some Δ1 ,Δ2

([Tcut!−1] and cut {𝑃 |𝑥 : 𝐴| (𝑄 + 𝑅)} ⊢� Δ;Γ)
(4) 𝑄 ⊢� Δ2 , 𝑥 : 𝐴;Γ (5) 𝑅 ⊢� Δ2 , 𝑥 : 𝐴;Γ ([Tsum−1] and (3))
(5) cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ1 ,Δ2;Γ ([Tcut], (2) and (4))
(6) cut {𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ1 ,Δ2;Γ ([Tcut], (2) and (5))
(7) (cut {𝑃 |𝑥 : 𝐴| 𝑄}) + (cut {𝑃 |𝑥 : 𝐴| 𝑅}) ⊢� Δ1 ,Δ2;Γ ([Tsum], (5) and (6))

198

(8) (cut {𝑃 |𝑥 : 𝐴| 𝑄}) + (cut {𝑃 |𝑥 : 𝐴| 𝑅}) ⊢� Δ;Γ ((1) and (7))

Case: [CSm] right-to-left, (cut {𝑃 |𝑥 : 𝐴| 𝑄}) + (cut {𝑃 |𝑥 : 𝐴| 𝑅}) ≡ cut {𝑃 |𝑥 :
𝐴| (𝑄 + 𝑅)}.

(1) cut {𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ;Γ (2) cut {𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ;Γ
([Tsum−1] and (cut {𝑃 |𝑥 : 𝐴| 𝑄}) + (cut {𝑃 |𝑥 : 𝐴| 𝑅}) ⊢� Δ;Γ)
(3)Δ = Δ1 ,Δ2 (4)𝑃 ⊢� Δ1 , 𝑥 : 𝐴;Γ (5)𝑄 ⊢� Δ2 , 𝑥 : 𝐴;Γ, for some Δ1 ,Δ2 ([Tcut!−1] and (1))
(6)Δ = Δ′1 ,Δ

′
2 (7)𝑃 ⊢� Δ′1 , 𝑥 : 𝐴;Γ (8)𝑅 ⊢� Δ′2 , 𝑥 : 𝐴;Γ, for some Δ′1 ,Δ

′
2 ([Tcut!−1] and (2))

(9) Δ1 = Δ ↾ dom(Δ1) (10) Δ′1 = Δ ↾ dom(Δ′1) ((3) and (6))
(11) dom(Δ1) = dom(Δ′1) (Lemma 30(1), (4) and (7))
(12) Δ1 = Δ′1 ((9), (10) and (11))
(13) Δ2 = Δ′2 ((3), (6) and (12))
(14) 𝑅 ⊢� Δ2 , 𝑥 : 𝐴;Γ ((8) and (13))
(15) 𝑄 + 𝑅 ⊢� Δ2 , 𝑥 : 𝐴;Γ ([Tsum], (5) and (14))
(16) cut {𝑃 |𝑥 : 𝐴| (𝑄 + 𝑅)} ⊢� Δ1 ,Δ2;Γ ([Tcut], (4) and (15))
(17) cut {𝑃 |𝑥 : 𝐴| (𝑄 + 𝑅)} ⊢� Δ;Γ ((3) and (16))

Case: [ShSm] left-to-right, share 𝑥 {𝑃 | | (𝑄 + 𝑅)} ≡ (share 𝑥 {𝑃 | | 𝑄}) + (share 𝑥 {𝑃 | | 𝑅}).

(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴 (2) 𝑃 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ
(3) 𝑄 + 𝑅 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ (4) 𝒳1 ⊕ 𝒳2 = 𝒳, for some Δ1 ,Δ2 , 𝐴

([Tsh−1] and share 𝑥 {𝑃 | | (𝑄 + 𝑅)} ⊢� Δ;Γ)
(5) 𝑄 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ (6) 𝑅 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ ([Tsum−1], (3))
(7) share 𝑥 {𝑃 | | 𝑄} ⊢� Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴;Γ ([Tsh], (2), (5) and (4))
(8) share 𝑥 {𝑃 | | 𝑅} ⊢� Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴;Γ ([Tsh], (2), (6) and (4))
(9) (share 𝑥 {𝑃 | |𝑄}) + (share 𝑥 {𝑃 | | 𝑅}) ⊢� Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴;Γ ([Tsum], (7) and (8))
(10) (share 𝑥 {𝑃 | | 𝑄}) + (share 𝑥 {𝑃 | | 𝑅}) ⊢� Δ;Γ ((1) and (9))

Case: [ShSm] right-to-left, (share 𝑥 {𝑃 | | 𝑄}) + (share 𝑥 {𝑃 | | 𝑅}) ≡ share 𝑥 {𝑃 | | (𝑄 + 𝑅)}.

(1) share 𝑥 {𝑃 | | 𝑄} ⊢� Δ;Γ (2) share 𝑥 {𝑃 | | 𝑅} ⊢� Δ;Γ
([Tsum−1] and (share 𝑥 {𝑃 | | 𝑄}) + (share 𝑥 {𝑃 | | 𝑅}) ⊢� Δ;Γ)
(3) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴 (4) 𝑃 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ
(5)𝑄 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ (6)𝒳1⊕𝒳2 = 𝒳, for some Δ1 ,Δ2 , 𝐴,𝒳1 ,𝒳2 ,𝒳 ([Tsh−1] and (1))
(7) Δ = Δ′1 ,Δ

′
2 , 𝑥 : U𝒴 𝐵 (8) 𝑃 ⊢� Δ′1 , 𝑥 : U𝒴1 𝐵;Γ

(9)𝑅 ⊢� Δ′2 , 𝑥 : U𝒴2 𝐵;Γ (10)𝒴1⊕𝒴2 = 𝒴, for some Δ′1 ,Δ
′
2 , 𝐵,𝒴1 ,𝒴2 ,𝒴 ([Tsh−1] and (2))

(11) Δ1 = Δ ↾ dom(Δ1) (12) Δ′1 = Δ ↾ dom(Δ′1) (13) 𝐴 = 𝐵 (14) 𝒳 = 𝒴
((3) and (7))
(15) dom(Δ1) = dom(Δ′1) (Lemma 30(1), (4) and (8))
(16) Δ1 = Δ′1 ((11), (12) and (15))

199

APPENDIX A. TYPE PRESERVATION

(17)𝒳1 = 𝒴1 (Lemma 30(2), (4), (8), (16) and (13))
(18) 𝒳2 = 𝒴2 ((6), (10), (14) and (17))
(19) Δ2 = Δ′2 ((3), (7) and (16))
(20) 𝑅 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ ((9),(13), (18) and (19))
(21) 𝑄 + 𝑅 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ ([Tsum], (5) and (20))
(22) share 𝑥 {𝑃 | | (𝑄 + 𝑅)} ⊢� Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴;Γ ([Tsh], (4), (21) and (6))
(23) share 𝑥 {𝑃 | | (𝑄 + 𝑅)} ⊢� Δ;Γ ((3) and (22))

Case: [RSh] left-to-right, share 𝑥 {release 𝑥 | | 𝑃} ≡ 𝑃.

(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴 (2) release 𝑥 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ
(3) 𝑃 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ (4) 𝒳1 ⊕ 𝒳2 = 𝒳, for some Δ1 ,Δ2 , 𝐴,𝒳1 ,𝒳2 ,𝒳
([Tsh−1] and share 𝑥 {release 𝑥 | | 𝑃} ⊢� Δ;Γ)
(5) Δ1 = ∅ (6) 𝒳1 = 𝑓 ([Tfree−1] and (2))
(7) 𝑃 ⊢� Δ1 ,Δ2 , 𝑥 : U𝒳2 𝐴;Γ ((3) and (5))
(8) 𝒳 = 𝒳2 ((4) and (6))
(9) 𝑃 ⊢� Δ;Γ ((1), (7) and (8))

Case: [RSh] right-to-left, 𝑃 ≡ share 𝑥 {release 𝑥 | | 𝑃}.

(1) Δ = Δ′, 𝑥 : U𝒳 𝐴, for some Δ′, 𝐴,𝒳 (Def. 13 (proviso of [RSh]) and 𝑃 ⊢� Δ;Γ)
(2) 𝑃 ⊢� Δ′, 𝑥 : U𝒳 𝐴;Γ ((1) and 𝑃 ⊢� Δ;Γ
(3) release 𝑥 ⊢� 𝑥 : U 𝑓 𝐴;Γ ([Trelease])
(4) share 𝑥 {release 𝑥 | | 𝑃} ⊢� Δ′, 𝑥 : U𝒳 𝐴;Γ ([Tsh], (3), (2) and 𝑓 ⊕ 𝒳 = 𝒳
(5) share 𝑥 {release 𝑥 | | 𝑃} ⊢� Δ;Γ ((1) and (4))

Case: [TSh] left-to-right,

share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2)}
≡ take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} + take 𝑥(𝑦2); share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2}

.

(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴 (2) take 𝑥(𝑦1);𝑃1 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ
(3) take 𝑥(𝑦2);𝑃2 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ (4) 𝒳1 ⊕ 𝒳2 = 𝒳, for some Δ1 ,Δ2 , 𝐴,𝒳1 ,𝒳2 ,𝒳
([Tsh−1] and share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2} ⊢� Δ;Γ)
(5) 𝑃1 ⊢� Δ1 , 𝑥 : U𝑒 𝐴, 𝑦1 : ∨𝐴;Γ (6) 𝒳1 = 𝑓 ([Ttake−1] and (2))
(7) 𝑃2 ⊢� Δ2 , 𝑥 : U𝑒 𝐴, 𝑦2 : ∨𝐴;Γ (8) 𝒳2 = 𝑓 ([Ttake−1] and (3))
(9) share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} ⊢� Δ1 ,Δ2 , 𝑥 : U𝑒 𝐴, 𝑦1 : ∨𝐴;Γ ([Tsh],(5), (3), (8) and 𝑒 ⊕ 𝑓 = 𝑒)
(10) take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} ⊢� Δ1 ,Δ2 , 𝑥 : U 𝑓 𝐴;Γ ([Ttake] and (9))
(11) share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2} ⊢� Δ1 ,Δ2 , 𝑦2 : ∨𝐴, 𝑥 : U𝑒 𝐴;Γ ([Tsh], (2), (6), (7) and 𝑓 ⊕ 𝑒 = 𝑒)
(12) take 𝑥(𝑦2); share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2} ⊢� Δ1 ,Δ2 , 𝑥 : U 𝑓 𝐴;Γ ([Ttake] and (11))
(13) take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} +

200

take 𝑥(𝑦2); share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2} ⊢� Δ1 ,Δ2 , 𝑥 : U 𝑓 𝐴;Γ ([Tsum], (10) and (12))
(14) take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} +
take 𝑥(𝑦2); share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2} ⊢� Δ;Γ ((1), (4), (6), (8), 𝑓 ⊕ 𝑓 = 𝑓 and (13))

Case: [TSh] right-to-left,𝑃 ≡ share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2},
where𝑃 = take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} + take 𝑥(𝑦2); share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2}.
Provisos: 𝑦1 ∈ fn(𝑃1) and 𝑦2 ∈ fn(𝑃2).

(1) take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} ⊢� Δ;Γ
(2) take 𝑥(𝑦2); share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2} ⊢� Δ;Γ ([Tsum−1] and 𝑃 ⊢� Δ;Γ)
(3) Δ = Δ1 , 𝑥 : U 𝑓 𝐴 (4) share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} ⊢� Δ1 , 𝑥 : U𝑒 𝐴, 𝑦1 : ∨𝐴;Γ
([Ttake−1] and (1))
(5) Δ1 , 𝑦1 : ∨𝐴 = Δ11 ,Δ12 (6) 𝑃1 ⊢� Δ11 ,U𝑒 𝐴;Γ (7) take 𝑥(𝑦2);𝑃2 ⊢� Δ12 , 𝑥 :
U 𝑓 𝐴;Γ ([Tsh−1] and (4))
(8) Δ11 = Δ′11 , 𝑦1 : ∨𝐴 ((5), (6) and 𝑦1 ∈ fn(𝑃1))
(9) 𝑃1 ⊢� Δ′11 , 𝑦1 : ∨𝐴, 𝑥 : U𝑒 𝐴;Γ ((6) and (8))
(10) take 𝑥(𝑦1);𝑃1 ⊢� Δ′11 , 𝑥 : U 𝑓 𝐴;Γ ([Ttake] and (9))
(11) share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2} ⊢� Δ′11 ,Δ12 , 𝑥 : U 𝑓 𝐴;Γ
([Tsh], (10), (7) and 𝑓 ⊕ 𝑓 = 𝑓)
(12) Δ′11 ,Δ12 , 𝑥 : U 𝑓 𝐴 = Δ ((3), (5) and (8))
(13) share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2} ⊢� Δ;Γ ((11) and (12))

Case: [PSh] left-to-right, share 𝑥 {put 𝑥(𝑦.𝑃);𝑄 | | 𝑅} ≡ put 𝑥(𝑦.𝑃); share 𝑥 {𝑄 | | 𝑅}.

(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝒳 𝐴 (2) put 𝑥(𝑦.𝑃);𝑄 ⊢� Δ1 , 𝑥 : U𝒳1 𝐴;Γ
(3) 𝑅 ⊢� Δ2 , 𝑥 : U𝒳2 𝐴;Γ (4) 𝒳1 ⊕ 𝒳2 = 𝒳, for some 𝐴,Δ1 ,Δ2 ,𝒳1 ,𝒳2 ,𝒳
([Tsh−1] and share 𝑥 {put 𝑥(𝑦.𝑃);𝑄 | | 𝑅} ⊢� Δ;Γ)
(5) 𝒳1 = 𝑒 (6) Δ1 = Δ11 ,Δ12 (7) 𝑃 ⊢� Δ11 , 𝑦 : ∧𝐴;Γ (8) 𝑄 ⊢� Δ12 , 𝑥 : U 𝑓 𝐴;Γ
([Tput−1] and (2))
(9) 𝒳2 = 𝑓 (10) 𝒳 = 𝑒 ((4) and (5))
(10) share 𝑥 {𝑄 | | 𝑅} ⊢� Δ12 ,Δ2 , 𝑥 : U 𝑓 𝐴;Γ ([Tsh], (8), (3), (9) and 𝑓 ⊕ 𝑓 = 𝑓)
(11) put 𝑥(𝑦.𝑃); share 𝑥 {𝑄 | | 𝑅} ⊢� Δ11 ,Δ12 ,Δ2 , 𝑥 : U𝑒 𝐴;Γ ([Tput], (7) and (10))
(12) Δ11 ,Δ12 ,Δ2 , 𝑥 : U𝑒 𝐴 = Δ ((1), (6) and (10))
(13) put 𝑥(𝑦.𝑃); share 𝑥 {𝑄 | | 𝑅} ⊢� Δ;Γ ((11) and (12))

Case: [PSh] right-to-left, put 𝑥(𝑦.𝑃); share 𝑥 {𝑄 | | 𝑅} ≡ share 𝑥 {put 𝑥(𝑦.𝑃);𝑄 | | 𝑅}.

(1) Δ = Δ1 ,Δ2 , 𝑥 : U𝑒 𝐴 (2) 𝑃 ⊢� Δ1 , 𝑦 : ∧𝐴;Γ
(3) share 𝑥 {𝑄 | | 𝑅} ⊢� Δ2 , 𝑥 : U 𝑓 𝐴;Γ, for some Δ1 ,Δ2 , 𝐴

([Tput−1] and put 𝑥(𝑦.𝑃); share 𝑥 {𝑄 | | 𝑅} ⊢� Δ;Γ)
(4) Δ2 = Δ21 ,Δ22 (5) 𝑄 ⊢� Δ21 , 𝑥 : U𝒳1 𝐴;Γ

201

APPENDIX A. TYPE PRESERVATION

(6)𝑅 ⊢� Δ22 , 𝑥 : U𝒳2 𝐴;Γ (7)𝒳1⊕𝒳2 = 𝑓 , for some Δ21 ,Δ22 ,𝒳1 ,𝒳2 ([Tsh−1] and (3))
(8) 𝒳1 = 𝑓 = 𝒳2 ((7))
(9) put 𝑥(𝑦.𝑃);𝑄 ⊢� Δ1 ,Δ21 , 𝑥 : U𝑒 𝐴;Γ ([Tput], (2), (5) and (8))
(10) share 𝑥 {put 𝑥(𝑦.𝑃);𝑄 | | 𝑅} ⊢� Δ1 ,Δ21 ,Δ22 , 𝑥 : U𝑒 𝐴;Γ ([Tsh], (9), (6), (8) and 𝑒 ⊕ 𝑓 = 𝑒)
(11) Δ1 ,Δ21 ,Δ22 , 𝑥 : U𝑒 𝐴 = Δ ((1) and (4))
(12) share 𝑥 {put 𝑥(𝑦.𝑃);𝑄 | | 𝑅} ⊢� Δ;Γ ((10) and (11))

Case: [0M] left-to-right, par {𝑃 | | 0} ≡ 𝑃.

(1) Δ = Δ1 ,Δ2 (2) 𝑃 ⊢� Δ1;Γ (3) 0 ⊢� Δ3;Γ, for some Δ1 ,Δ2

([Tmix−1] and par {𝑃 | | 0} ⊢� Δ;Γ)
(4)Δ3 = ∅ ([T0−1] and (3))
(5)Δ = Δ1 ((1) and (4))
(6)𝑃 ⊢� Δ;Γ ((2) and (5))

Case: [0M] right-to-left, 𝑃 ≡ par {𝑃 | | 0}.

(1) 0 ⊢� ∅;Γ ([T0])
(2) par {𝑃 | | 0} ⊢� Δ;Γ ([Tmix], 𝑃 ⊢� Δ;Γ and (1))

Case: [0Sm] left-to-right, 0 + 0 ≡ 0.

(1) 0 ⊢� Δ;Γ ([Tsum−1] and 0 + 0 ⊢� Δ;Γ)

Case: [0Sm] right-to-left, 0 ≡ 0 + 0.

(1) 0 + 0 ⊢� Δ;Γ ([Tsum] and 0 ⊢� Δ;Γ)

Theorem 1(2)). If 𝑃 ⊢� Δ;Γ and 𝑃 → 𝑄, then 𝑄 ⊢� Δ;Γ.

Proof. By induction on a derivation tree for 𝑃 → 𝑄 and case analysis on the root rule.

Case: [fwd], cut {fwd 𝑥 𝑦 |𝑦 : 𝐴| 𝑃} → {𝑥/𝑦}𝑃.

(1) Δ = Δ1 ,Δ2 (2) fwd 𝑥 𝑦 ⊢� Δ1 , 𝑦 : 𝐴;Γ (3) 𝑃 ⊢� Δ2 , 𝑦 : 𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {fwd 𝑥 𝑦 |𝑦 : 𝐴| 𝑃} ⊢� Δ;Γ)
(4) Δ1 , 𝑦 : 𝐴 = 𝑥 : 𝐵, 𝑦 : 𝐵, for some 𝐵 ([Tfwd−1] and (2))
(5) Δ1 = 𝑥 : 𝐴 and 𝐴 = 𝐵 ((4))
(6) {𝑥/𝑦}𝑃 ⊢� Δ2 , 𝑥 : 𝐴;Γ (Lemma 31(1) and (3))
(7) {𝑥/𝑦}𝑃 ⊢� Δ2 ,Δ1;Γ ((5) and (6))
(8) {𝑥/𝑦}𝑃 ⊢� Δ;Γ ((1) and (7))

202

Case: [1⊥], cut {close 𝑥 |𝑥 : 1| wait 𝑥;𝑃} → 𝑃.

(1)Δ = Δ1 ,Δ2 (2) close 𝑥 ⊢� Δ1 , 𝑥 : 1;Γ (3)wait 𝑥;𝑃 ⊢� Δ2 , 𝑥 : ⊥;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {close 𝑥 |𝑥 : 1| wait 𝑥;𝑃} ⊢� Δ;Γ)
(3) Δ1 = ∅ ([T1−1] and (2))
(4) 𝑃 ⊢� Δ2;Γ ([T⊥−1] and (3))
(5) 𝑃 ⊢� Δ;Γ ((1), (3) and (4))

Case: [⊗O],

cut {send 𝑥(𝑦.𝑃);𝑄 |𝑥 : 𝐴 ⊗ 𝐵| recv 𝑥(𝑧);𝑅} → cut {𝑄 |𝑥 : 𝐵| (cut {𝑃 |𝑦 :
𝐴| {𝑦/𝑧}𝑅})}.

(1) Δ = Δ1 ,Δ2 (2) send 𝑥(𝑦.𝑃);𝑄 ⊢� Δ1 , 𝑥 : 𝐴 ⊗ 𝐵;Γ (3) recv 𝑥(𝑧);𝑅 ⊢� Δ2 , 𝑥 :
𝐴O 𝐵;Γ
for some Δ1 ,Δ2 ([Tcut−1] and cut {send 𝑥(𝑦.𝑃);𝑄 |𝑥 : 𝐴 ⊗ 𝐵| recv 𝑥(𝑧);𝑅} ⊢� Δ;Γ)
(4) Δ1 = Δ11 ,Δ12 (5) 𝑃 ⊢� Δ11 , 𝑦 : 𝐴;Γ (6) 𝑄 ⊢� Δ12 , 𝑥 : 𝐵;Γ, for some Δ11 ,Δ12

([T⊗−1] and (2))
(7) 𝑅 ⊢� Δ2 , 𝑧 : 𝐴, 𝑥 : 𝐵;Γ ([TO−1] and (3))
(8) {𝑦/𝑧}𝑅 ⊢� Δ2 , 𝑦 : 𝐴, 𝑥 : 𝐵;Γ (Lemma 31(1) and (7))
(9) cut {𝑃 |𝑦 : 𝐴| {𝑦/𝑧}𝑅} ⊢� Δ11 ,Δ2 , 𝑥 : 𝐵;Γ ([Tcut], (5) and (8))
(10) cut {𝑄 |𝑥 : 𝐵| (cut {𝑃 |𝑦 : 𝐴| {𝑦/𝑧}𝑅})} ⊢� Δ12 ,Δ11 ,Δ2;Γ ([Tcut], (6) and (9))
(11) cut {𝑄 |𝑥 : 𝐵| (cut {𝑃 |𝑦 : 𝐴| {𝑦/𝑧}𝑅})} ⊢� Δ;Γ ((1), (4) and (10))

Case: [N⊕𝑙], cut {case 𝑥 {|inl : 𝑃 | inr : 𝑄} |𝑥 : 𝐴N 𝐵| 𝑥.inl;𝑅} → cut {𝑃 |𝑥 : 𝐴| 𝑅}.

(1) Δ = Δ1 ,Δ2 (2) case 𝑥 {|inl : 𝑃 | inr : 𝑄} ⊢� Δ1 , 𝑥 : 𝐴N 𝐵;Γ
(3) 𝑥.inl;𝑅 ⊢� Δ2 , 𝑥 : 𝐴 ⊕ 𝐵;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {case 𝑥 {|inl : 𝑃 | inr : 𝑄} |𝑥 : 𝐴N 𝐵| 𝑥.inl;𝑅} ⊢� Δ;Γ
(4) 𝑃 ⊢� Δ1 , 𝑥 : 𝐴 (5) 𝑄 ⊢� Δ1 , 𝑥 : 𝐵;Γ ([TN−1] and (2))
(6) 𝑅 ⊢� Δ2 , 𝑥 : 𝐴;Γ (T⊕−1

𝑙
] and (3))

(7) cut {𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ1 ,Δ2;Γ ([Tcut], (4) and (6))
(8) cut {𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ;Γ ((1) and (7))

Case: [N⊕𝑟], cut {case 𝑥 {|inl : 𝑃 | inr : 𝑄} |𝑥 : 𝐴N 𝐵| 𝑥.inr;𝑅} → cut {𝑄 |𝑥 : 𝐵| 𝑅}.

(1) Δ = Δ1 ,Δ2 (2) case 𝑥 {|inl : 𝑃 | inr : 𝑄} ⊢� Δ1 , 𝑥 : 𝐴N 𝐵;Γ
(3) 𝑥.inr;𝑅 ⊢� Δ2 , 𝑥 : 𝐴 ⊕ 𝐵;Γ, for some Δ1 ,Δ2

(Tcut−1] and cut {case 𝑥 {|inl : 𝑃 | inr : 𝑄} |𝑥 : 𝐴N 𝐵| 𝑥.inl;𝑅} ⊢� Δ;Γ
(4) 𝑃 ⊢� Δ1 , 𝑥 : 𝐴 (5) 𝑄 ⊢� Δ1 , 𝑥 : 𝐵;Γ ([TN−1] and (2))
(6) 𝑅 ⊢� Δ2 , 𝑥 : 𝐵;Γ ([T⊕−1

𝑟] and (3))
(7) cut {𝑄 |𝑥 : 𝐵| 𝑅} ⊢� Δ1 ,Δ2;Γ ([Tcut], (5) and (6))

203

APPENDIX A. TYPE PRESERVATION

(8) cut {𝑃 |𝑥 : 𝐴| 𝑅} ⊢� Δ;Γ ((1) and (7))

Case: [!?], cut {!𝑥(𝑦);𝑃 |𝑥 :!𝐴| ?𝑥;𝑄} → cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}.

(1) Δ = Δ1 ,Δ2 (2) !𝑥(𝑦);𝑃 ⊢� Δ1 , 𝑥 :!𝐴;Γ
(3) ?𝑥;𝑄 ⊢� Δ2 , 𝑥 :?𝐴;Γ, for some Δ1 ,Δ2 ([Tcut−1] and cut {!𝑥(𝑦);𝑃 |𝑥 :!𝐴| ?𝑥;𝑄} ⊢� Δ;Γ
(4) Δ1 = ∅ (5) 𝑃 ⊢� 𝑦 : 𝐴;Γ ([T!−1] and (2))
(6) 𝑄 ⊢� Δ2;Γ, 𝑥 : 𝐴 ([T?−1] and (3))
(7) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ2;Γ ([Tcut!], (5) and (6))
(8) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ;Γ ((1), (4) and (7))

Case: [call], cut! {𝑦.𝑃 |𝑥 : 𝐴| call 𝑥(𝑧);𝑄} → cut {{𝑧/𝑦}𝑃 |𝑧 : 𝐴| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄})}.

(1) 𝑃 ⊢� 𝑦 : 𝐴;Γ (2) call 𝑥(𝑧);𝑄 ⊢� Δ;Γ, 𝑥 : 𝐴
([Tcut!−1] and cut! {𝑦.𝑃 |𝑥 : 𝐴| call 𝑥(𝑧);𝑄} ⊢� Δ;Γ
(3) 𝑄 ⊢� Δ, 𝑧 : 𝐴;Γ, 𝑥 : 𝐴 ([Tcall−1] and (2))
(4) cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ⊢� Δ, 𝑧 : 𝐴;Γ ([Tcut!], (1) and (3))
(5) {𝑧/𝑦}𝑃 ⊢� 𝑧 : 𝐴;Γ (Lemma 31(1) and (1))
(6) cut {{𝑧/𝑦}𝑃 |𝑧 : 𝐴| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄})} ⊢� Δ;Γ ([Tcut], (5) and (4))

Case: [∃∀], cut {sendty 𝑥 𝐴;𝑃 |𝑥 : ∃𝑋.𝐵| recvty 𝑥(𝑋);𝑄} → cut {𝑃 |𝑥 : {𝐴/𝑋}𝐵| {𝐴/𝑋}𝑄}.

(1) Δ = Δ1 ,Δ2 (2) sendty 𝑥 𝐴;𝑃 ⊢� Δ1 , 𝑥 : ∃𝑋.𝐵;Γ
(3) recvty 𝑥(𝑋);𝑄 ⊢� Δ2 , 𝑥 : ∀𝑋.𝐵;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {sendty 𝑥 𝐴;𝑃 |𝑥 : ∃𝑋.𝐵| recvty 𝑥(𝑋);𝑄} ⊢� Δ;Γ
(4) 𝑃 ⊢� Δ1 , 𝑥 : {𝐴/𝑋}𝐵;Γ ([T∃−1] and (2))
(5) 𝑄 ⊢� Δ2 , 𝑥 : 𝐵;Γ ([T∀−1] and (3))
(6) {𝐴/𝑋}𝑄 ⊢� Δ2 , 𝑥 : {𝐴/𝑋}𝐵;Γ (Lemma 31(2) and (5))
(7) {𝐴/𝑋}𝑄 ⊢� Δ2 , 𝑥 : {𝐴/𝑋}𝐵;Γ ({𝐴/𝑋}𝐵 = {𝐴/𝑋}𝐵 and (6))
(8) cut {𝑃 |𝑥 : {𝐴/𝑋}𝐵| {𝐴/𝑋}𝑄} ⊢� Δ1 ,Δ2;Γ ([Tcut], (4) and (7))
(9) cut {𝑃 |𝑥 : {𝐴/𝑋}𝐵| {𝐴/𝑋}𝑄} ⊢� Δ;Γ ((1) and (8))

Case: [��] , cut {unfold� 𝑥;𝑃 |𝑥 : �𝑋. 𝐴| unfold� 𝑥;𝑄} → cut {𝑃 |𝑥 : {�𝑋. 𝐴/𝑋}𝐴| 𝑄}.

(1) Δ = Δ1 ,Δ2 (2) unfold� 𝑥;𝑃 ⊢� Δ1 , 𝑥 : �𝑋. 𝐴;Γ
(3)unfold� 𝑥;𝑄 ⊢� Δ2 , 𝑥 : �𝑋. {𝑋/𝑋}𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {unfold� 𝑥;𝑃 |𝑥 : �𝑋. 𝐴| unfold� 𝑥;𝑄} ⊢ Δ;Γ)
(4) 𝑃 ⊢� Δ1 , 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ ([T�−1] and (2))
(5) 𝑄 ⊢� Δ2 , 𝑥 : {�𝑋. {𝑋/𝑋}𝐴/𝑋}({𝑋/𝑋}𝐴);Γ ([T�−1] and (3))
(6) 𝑄 ⊢� Δ2 , 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ ((5) and (*)
(7) cut {𝑃 |𝑥 : {�𝑋. 𝐴/𝑋}𝐴| 𝑄} ⊢� Δ1 ,Δ2;Γ ([Tcut], (5) and (6))

204

(8) cut {𝑃 |𝑥 : {�𝑋. 𝐴/𝑋}𝐴| 𝑄} ⊢� Δ;Γ ((7) and (1))

To obtain (*):

{�𝑋. {𝑋/𝑋}𝐴/𝑋}({𝑋/𝑋}𝐴) = {�𝑋. {𝑋/𝑋}𝐴/𝑋}𝐴)
= {(�𝑋. {𝑋/𝑋}{𝑋/𝑋}𝐴)/𝑋}𝐴
= {(�𝑋. {𝑋/𝑋}{𝑋/𝑋}𝐴)/𝑋}𝐴)
= {(�𝑋. {𝑋/𝑋}{𝑋/𝑋}𝐴)/𝑋}𝐴)
= {�𝑋. 𝐴/𝑋}𝐴

Case: [corec],

cut {unfold� 𝑥;𝑃 |𝑥 : �𝑋. 𝐴| corec 𝑌(𝑧, ®𝑤);𝑄 [𝑥, ®𝑦]}
→ cut {𝑃 |𝑥 : {�𝑋. 𝐴/𝑋}𝐴| 𝜎({corec 𝑌(𝑧, ®𝑤);𝑄/𝑌}𝑄)}

where 𝜎 is the substitution map given by 𝜎 = {𝑥/𝑧}{ ®𝑦/ ®𝑤}.

(1) Δ = Δ1 ,Δ2 (2) unfold� 𝑥;𝑃 ⊢� Δ1 , 𝑥 : �𝑋. 𝐴;Γ
(3) corec 𝑌(𝑧, ®𝑤);𝑄 [𝑥, ®𝑦] ⊢� Δ2 , 𝑥 : �𝑋. {𝑋/𝑋}𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {unfold� 𝑥;𝑃 |𝑥 : �𝑋. 𝐴| corec 𝑌(𝑥, ®𝑦);𝑄} ⊢ Δ;Γ)
(4) 𝑃 ⊢� Δ1 , 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ ([T�−1] and (2))
(5) �′ = �, 𝑌(𝑧, ®𝑤) ↦→ 𝜎−1(Δ2 , 𝑧 : 𝑋;Γ) (6) 𝑄 ⊢�′ 𝜎−1(Δ2 , 𝑧 : {𝑋/𝑋}𝐴;Γ)
([Tcorec−1] and (3))
(7) {corec 𝑌(𝑧, ®𝑤);𝑄/𝑌}𝑄 ⊢� 𝜎−1(Δ2 , 𝑥 : {�𝑋. {𝑋/𝑋}𝐴/𝑋}({𝑋/𝑋}𝐴);Γ)
(Lemma 31(3), (3), (5) and (6))
(8) 𝜎({corec 𝑌(𝑧, ®𝑤);𝑄/𝑌}𝑄) ⊢� Δ2 , 𝑥 : {�𝑋. {𝑋/𝑋}𝐴/𝑋}({𝑋/𝑋}𝐴);Γ
((7) and since 𝜎−1 is the inverse of 𝜎
(9) 𝜎({corec𝑌(𝑥, ®𝑦);𝑄/𝑌}𝑄) ⊢� Δ2 , 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ ((8) and (*) from case [��] above)
(10) cut {𝑃 |𝑥 : {�𝑋. 𝐴/𝑋}𝐴| {corec𝑌(𝑥, ®𝑦);𝑄/𝑌}𝑄} ⊢� Δ1 ,Δ2;Γ ([Tcut], (4) and (9))
(11) cut {𝑃 |𝑥 : {�𝑋. 𝐴/𝑋}𝐴| {corec 𝑌(𝑥, ®𝑦);𝑄/𝑌}𝑄} ⊢� Δ;Γ ((1) and (10))

Case: [∧∨d], cut {affine®𝑐,®𝑎 𝑎;𝑃 |𝑎 : ∧𝐴| discard 𝑎} → par {release ®𝑐 | | discard ®𝑎}.

(1)Δ = Δ1 ,Δ2 (2) affine®𝑐,®𝑎 𝑎;𝑃 ⊢� Δ1 , 𝑣 : ∧𝐴;Γ (3)discard 𝑎 ⊢� Δ2 , 𝑣 : ∨𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {affine®𝑐,®𝑎 𝑎;𝑃 |𝑎 : ∧𝐴| discard 𝑎} ⊢� Δ;Γ
(4)Δ1 = ®𝑐 : U 𝑓

®𝐵, ®𝑎 : ∨ ®𝐶 (5)𝑃 ⊢� Δ1 , 𝑎 : 𝐴;Γ, for some ®𝑐, ®𝐵, ®𝑎, ®𝐶 ([Taffine−1] and (2))
(6) Δ2 = ∅ ([Tdiscard−1] and (3))
(7) par {release ®𝑐 | | discard ®𝑎} ⊢� ®𝑐 : U 𝑓

®𝐵, ®𝑎 : ∨ ®𝐶;Γ
([Tmix], [Tdiscard] and [Trelease])
(8) ®𝑐 : U 𝑓

®𝐵, ®𝑎 : ∨ ®𝐶 = Δ ((1), (4) and (6))
(9) par {release ®𝑐 | | discard ®𝑎} ⊢� Δ;Γ ((7) and (8))

205

APPENDIX A. TYPE PRESERVATION

Case: [∧∨u], cut {affine®𝑐,®𝑎 𝑎;𝑃 |𝑎 : ∧𝐴| use 𝑎;𝑄} → cut {𝑃 |𝑎 : 𝐴| 𝑄}.

(1) Δ = Δ1 ,Δ2 (2) affine®𝑐,®𝑎 𝑎;𝑃 ⊢� Δ1 , 𝑣 : ∧𝐴;Γ
(3) use 𝑎;𝑄 ⊢� Δ2 , 𝑣 : ∨𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {affine®𝑐,®𝑎 𝑎;𝑃 |𝑎 : ∧𝐴| use 𝑎;𝑄} ⊢� Δ;Γ
(4)Δ1 = ®𝑐 : U 𝑓

®𝐵, ®𝑎 : ∨ ®𝐶 (5)𝑃 ⊢� Δ1 , 𝑎 : 𝐴;Γ, for some ®𝑐, ®𝐵, ®𝑎, ®𝐶 ([Taffine−1] and (2))
(6) 𝑄 ⊢� Δ2 , 𝑎 : 𝐴;Γ ([Tuse−1] and (3))
(7) cut {𝑃 |𝑎 : 𝐴| 𝑄} ⊢� Δ1 ,Δ2;Γ ([Tcut], (5) and (6))
(8) cut {𝑃 |𝑎 : 𝐴| 𝑄} ⊢� Δ;Γ ((1) and (7))

Case: [S 𝑓 U 𝑓 f], cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| release 𝑐} → cut {𝑃 |𝑎 : ∧𝐴| discard 𝑎}.

(1) Δ = Δ1 ,Δ2 (2) cell 𝑐(𝑎.𝑃) ⊢� Δ1 , 𝑐 : S 𝑓 𝐴;Γ
(3) release 𝑐 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ, for someΔ1 ,Δ2

([Tcut−1] and cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| release 𝑐} ⊢� Δ;Γ)
(4) 𝑃 ⊢� Δ1 , 𝑎 : ∧𝐴;Γ ([Tcell−1] and (2))
(5) Δ2 = ∅ ([Tfree−1] and (3))
(6) discard 𝑎 ⊢� 𝑎 : ∨𝐴;Γ ([Tdiscard])
(7) cut {𝑃 |𝑎 : ∧𝐴| discard 𝑎} ⊢� Δ1;Γ ([Tcut], (4) and (6))
(8) Δ = Δ1 ((1) and (5))
(9) cut {𝑃 |𝑎 : ∧𝐴| discard 𝑎} ⊢� Δ;Γ ((7) and (8))

Case: [S 𝑓 U 𝑓 t],

cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| take 𝑐(𝑎′);𝑄} → cut {{𝑎′/𝑎}𝑃 |𝑎′ : ∧𝐴| (cut {empty 𝑐 |𝑐 :
S𝑒 𝐴| 𝑄})}.

(1) Δ = Δ1 ,Δ2 (2) cell 𝑐(𝑎.𝑃) ⊢� Δ1 , 𝑐 : S 𝑓 𝐴;Γ
(3) take 𝑐(𝑎′);𝑄 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ, for someΔ1 ,Δ2

([Tcut−1] and cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| take 𝑐(𝑎′);𝑄} ⊢� Δ;Γ)
(4) 𝑃 ⊢� Δ1 , 𝑎 : ∧𝐴;Γ ([Tcell−1] and (2))
(5) 𝑄 ⊢� Δ2 , 𝑎 : ∨𝐴, 𝑐 : U𝑒 𝐴;Γ ([Ttake−1] and (3))
(6) empty 𝑐 ⊢� 𝑐 : S𝑒 𝐴;Γ ([Tempty])
(7) cut {empty 𝑐 |𝑐 : S𝑒 𝐴| 𝑄} ⊢� Δ2 , 𝑎 : ∨𝐴;Γ ([Tcut], (6) and (5))
(8) {𝑎′/𝑎}𝑃 ⊢� Δ1 , 𝑎 :′ ∧𝐴;Γ (Lemma 29(Tsubs) and (4))
(9) cut {{𝑎′/𝑎}𝑃 |𝑎′ : ∧𝐴| (cut {empty 𝑐 |𝑐 : S𝑒 𝐴| 𝑄})} ⊢� Δ1 ,Δ2;Γ ([Tcut], (8) and (7))
(10) cut {{𝑎′/𝑎}𝑃 |𝑎′ : ∧𝐴| (cut {empty 𝑐 |𝑐 : S𝑒 𝐴| 𝑄})} ⊢� Δ;Γ ((1) and (9))

Case: [S𝑒 U𝑒], cut {empty 𝑐 |𝑐 : S𝑒 𝐴| put 𝑐(𝑎.𝑃);𝑄} → cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| 𝑄}.

(1) Δ = Δ1 ,Δ2 (2) empty 𝑐 ⊢� Δ1 , 𝑐 : S𝑒 𝐴;Γ
(3) put 𝑐(𝑎.𝑃);𝑄 ⊢� Δ2 , 𝑐 : U𝑒 𝐴;Γ, for some Δ1 ,Δ2

([Tcut−1] and cut {empty 𝑐 |𝑐 : S𝑒 𝐴| put 𝑐(𝑎.𝑃);𝑄} ⊢� Δ;Γ)

206

(4) Δ1 = ∅ ([Tempty−1] and (2))
(5)Δ2 = Δ21 ,Δ22 (6)𝑃 ⊢� Δ21 , 𝑎 : ∧𝐴;Γ (7)𝑄 ⊢� Δ22 , 𝑐 : U 𝑓 𝐴;Γ ([Tput−1] and (3))
(8) cell 𝑐(𝑎.𝑃) ⊢� Δ21 , 𝑐 : S 𝑓 𝐴;Γ ([Tcell] and (6))
(9) cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| 𝑄} ⊢� Δ21 ,Δ22;Γ ([Tcut], (8) and (7))
(10) Δ = Δ21 ,Δ22 ((1), (4) and (5))
(11) cut {cell 𝑐(𝑎.𝑃) |𝑐 : S 𝑓 𝐴| 𝑄} ⊢� Δ;Γ ((9) and (10))

Case: [≡], 𝑃 ≡ 𝑃′ and 𝑃′→ 𝑄′ and 𝑄′ ≡ 𝑄 ⊃ 𝑃 → 𝑄.

(1) 𝑃′ ⊢� Δ;Γ (Theorem 1(1)), 𝑃 ⊢� Δ;Γ and 𝑃 ≡ 𝑃′)
(2) 𝑄′ ⊢� Δ;Γ (i.h., (1) and 𝑃′→ 𝑄′)
(3) 𝑄 ⊢� Δ;Γ (Theorem 1(1)), (2) and 𝑄′ ≡ 𝑃)

Case: [cong], 𝑃 → 𝑄 ⊃ 𝒞[𝑃] → 𝒞[𝑄].

(1) 𝑃 ⊢� Δ′;Γ′, for some Δ′, Γ′ (Lemma 28 and 𝒞[𝑃] ⊢� Δ;Γ)
(2) 𝑄 ⊢� Δ′;Γ′ (i.h., (1) and 𝑃 → 𝑄)
(3) 𝒞[𝑄] ⊢� Δ;Γ (Lemma 28 , (1), (2) and 𝒞[𝑃] ⊢� Δ;Γ)

207

B

Progress

We prove properties Lemma 3(1)-(7) of the observability predicate. Then, we conclude
with the proof of liveness Lemma 4.

Lemma 3(1). Let 𝑃 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ and 𝑄 ⊢ Δ′, 𝑥 : U 𝑓 𝐴;Γ be processes for which 𝑃 ↓𝑥:act and
𝑄 ↓𝑥:act. Then, share 𝑥 {𝑃 | | 𝑄} ↓𝑥:act.

Proof. By double induction on derivation trees for 𝑃 ↓𝑥:act and 𝑄 ↓𝑥:act. For the base cases
we apply either one of ≡ rules [RSh] or [TSh] in order to expose an observable action. For
the inductive cases we consider that we are given a derivation tree for 𝑃 ↓𝑥 . This is w.l.o.g.
since share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑥 {𝑄 | | 𝑃}. For cases [mix], [cut], [cut!], [share] we commute
the share on 𝑥 with the principal form of 𝑃 by applying either ≡ rule [ShM], [CSh], [ShC!],
[ShSh] or [ShSm]. The inductive case [≡] follows immediately because the relation ≡ is a
congruence, i.e. satisfies ≡ rule [cong].

Case: The root rule of both 𝑃 ↓𝑥:act and 𝑄 ↓𝑥:act is [act]. We have

𝑠(𝒜) = 𝑥
[act]

𝒜 ↓𝑥:act

𝑠(ℬ) = 𝑥
[act]

ℬ ↓𝑥:act

where 𝑃 = 𝒜 and 𝑄 = ℬ.

Since the subject of both actions 𝒜 ,ℬ - 𝑥 - has the type U 𝑓 𝐴 (in the linear typing
context), we conclude that𝒜, ℬ are either release or take actions.

Case: 𝒜 = release 𝑥.
By applying ≡ rule [RSh] we obtain

share 𝑥 {𝑃 | | 𝑄} = share 𝑥 {release 𝑥 | | 𝑄} ≡ 𝑄

Hence

share 𝑥 {𝑃 | | 𝑄} ≡ 𝑄

...

𝑄 ↓𝑥:act [≡]
share 𝑥 {𝑃 | | 𝑄} ↓𝑥:act

208

Case: ℬ = release 𝑥. Similar to case𝒜 = release 𝑥.

Case: 𝒜 = take 𝑥(𝑦);𝑃′ and ℬ = take 𝑥(𝑧);𝑄′.
By applying ≡ rule [TSh] we obtain

share 𝑥 {take 𝑥(𝑦);𝑃′ | | take 𝑥(𝑧);𝑄′} ≡ take 𝑥(𝑦);𝑅1 + take 𝑥(𝑧);𝑅2, where

𝑅1 = share 𝑥 {𝑃′ | | take 𝑥(𝑧);𝑄′}
𝑅2 = share 𝑥 {take 𝑥(𝑧);𝑃′ | | 𝑄′} (≡ [TSh])

Hence

share 𝑥 {𝑃 | | 𝑄} ≡ take 𝑥(𝑦);𝑅1 + take 𝑥(𝑧);𝑅2

𝑠(take 𝑥(𝑦);𝑅1) = 𝑥
[act]

take 𝑥(𝑦);𝑅1 ↓𝑥:act
[sum]

(take 𝑥(𝑦);𝑅1 + take 𝑥(𝑧);𝑅2) ↓𝑥:act
[≡]

share 𝑥 {𝑃 | | 𝑄} ↓𝑥:act

In fact, there is other possible derivation for share 𝑥 {𝑃 | | 𝑄} ↓𝑥:act

share 𝑥 {𝑃 | | 𝑄} ≡ take 𝑥(𝑧);𝑅2 + take 𝑥(𝑦);𝑅1

𝑠(take 𝑥(𝑧);𝑅2) = 𝑥
[act]

take 𝑥(𝑧);𝑅2 ↓𝑥:act [sum]
(take 𝑥(𝑧);𝑅2 + take 𝑥(𝑦);𝑅1) ↓𝑥:act

[≡]
share 𝑥 {𝑃 | | 𝑄} ↓𝑥:act

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [mix].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [mix]. We have

𝑃1 ↓𝑥:act [mix]
(par {𝑃1 | | 𝑃2}) ↓𝑥:act

where 𝑃 = par {𝑃1 | | 𝑃2}.

Since par {𝑃1 | | 𝑃2} ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ we conclude that exists a partition Δ1 ,Δ2 of Δ
for which 𝑃1 ⊢ Δ1 , 𝑥 : U 𝑓 𝐴;Γ and 𝑃2 ⊢ Δ2;Γ. Observe that 𝑥 lies in the linear typing
context of 𝑃1 and not of 𝑃2, because 𝑃1 ↓𝑥:act.

We have

share 𝑥 {𝑃 | | 𝑄} = share 𝑥 {(par {𝑃1 | | 𝑃2}) | | 𝑄}
≡ par {share 𝑥 {𝑃1 | | 𝑄}︸ ︷︷ ︸

𝑅

| | 𝑃2} (≡ [ShM], 𝑥 ∈ fn(𝑃1))

By induction on 𝑃1 ↓𝑥 and 𝑄 ↓𝑥 we conclude that 𝑅 ↓𝑥:act.

Hence

share 𝑥 {𝑃 | | 𝑄} ≡ par {𝑅 | | 𝑃2}
𝑅 ↓𝑥:act [mix]

(par {𝑅 | | 𝑃2}) ↓𝑥:act
[≡]

(share 𝑥 {𝑃 | | 𝑄}) ↓𝑥:act

209

APPENDIX B. PROGRESS

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [cut].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [cut]. We have

𝑃1 ↓𝑥:act 𝑦 ≠ 𝑥
[cut]

cut {𝑃1 |𝑦 | 𝑃2} ↓𝑥:act
𝑠

where 𝑃 = cut {𝑃1 |𝑦 | 𝑃2}.

Since cut {𝑃1 |𝑦 | 𝑃2} ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ we conclude that exists a partition Δ1 ,Δ2 of Δ
and a type 𝐵 for which 𝑃1 ⊢ Δ1 , 𝑦 : 𝐵, 𝑥 : U 𝑓 𝐴;Γ and 𝑃2 ⊢ Δ2 , 𝑦 : 𝐵;Γ. Observe that
𝑥 lies in the linear typing context of 𝑃1 and not of 𝑃2, because 𝑃1 ↓𝑥:act.

We have

share 𝑥 {𝑃 | | 𝑄} = share 𝑥 {(cut {𝑃1 |𝑦 | 𝑃2}) | | 𝑄}
≡ cut {share 𝑥 {𝑃1 | | 𝑄}︸ ︷︷ ︸

𝑅

|𝑦 | 𝑃2} (≡ [CSh], 𝑥, 𝑦 ∈ fn(𝑃1))

By induction on 𝑃1 ↓𝑥:act and 𝑄 ↓𝑥:act we conclude that (share 𝑥 {𝑃1 | | 𝑄}) ↓𝑥:act.

Hence

share 𝑥 {𝑃 | | 𝑄} ≡ cut {𝑅 |𝑦 | 𝑃2}
𝑅 ↓𝑥 𝑦 ≠ 𝑥

[cut]
(cut {𝑅 |𝑦 | 𝑃2}) ↓𝑥:act

[≡]
(share 𝑥 {𝑃 | | 𝑄}) ↓𝑥:act

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [cut!].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [cut!]. We have

𝑃2 ↓𝑥:act 𝑧 ≠ 𝑥
[cut!]

cut! {𝑦.𝑃1 |𝑧 : 𝐵| 𝑃2} ↓𝑥:act

where 𝑃 = cut! {𝑦.𝑃1 |𝑧 : 𝐵| 𝑃2}.

Since cut! {𝑦.𝑃1 |𝑧 : 𝐵| 𝑃2} ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ we conclude that 𝑃1 ⊢ 𝑦 : 𝐵;Γ and
𝑃2 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ, 𝑧 : 𝐵 .

We have

share 𝑥 {𝑃 | | 𝑄} = share 𝑥 {(cut! {𝑦.𝑃1 |𝑧 : 𝐵| 𝑃2}) | | 𝑄}
≡ cut! {𝑦.𝑃1 |𝑧 : 𝐵| (share 𝑥 {𝑃2 | | 𝑄})︸ ︷︷ ︸

𝑅

} (≡ [ShC!] 𝑧 ∉ fn(𝑄))

By induction on 𝑃2 ↓𝑥:act and 𝑄 ↓𝑥:act we conclude that 𝑅 ↓𝑥:act.

Hence

share 𝑥 {𝑃 | | 𝑄} ≡ cut! {𝑦.𝑃1 |𝑧 | 𝑅}
𝑅 ↓𝑥:act 𝑧 ≠ 𝑥

[cut!]
(cut! {𝑦.𝑃1 |𝑧 | 𝑅}) ↓𝑥:act

[≡]
(share 𝑥 {𝑃 | | 𝑄}) ↓𝑥:act

210

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [share].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [share]. We have

𝑃1 ↓𝑥:act 𝑦 ≠ 𝑥
[share]

share 𝑦 {𝑃1 | | 𝑃2} ↓𝑥:act

where 𝑃 = share 𝑦 {𝑃1 | | 𝑃2}.

The root rule of a derivation for share 𝑦 {𝑃1 | | 𝑃2} ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ can be either [Tsh],
[TshL] or [TshR]. We assume w.l.o.g. it is [Tsh]. The proof works in the same way
for the other cases [TshL] and [TshR].

By inverting [Tsh] on share 𝑦 {𝑃1 | | 𝑃2} ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ we conclude that exists
a partition Δ1 ,Δ2 of Δ, a type 𝐵 for which 𝑃1 ⊢ Δ1 , 𝑦 : U 𝑓 𝐵, 𝑥 : U 𝑓 𝐴;Γ and
𝑃2 ⊢ Δ2 , 𝑦 : U 𝑓 𝐵;Γ. Observe that 𝑥 lies in the linear typing context of 𝑃1 and not of
𝑃2, because 𝑃1 ↓𝑥:act.

We have

share 𝑥 {𝑃 | | 𝑄} = share 𝑥 {share 𝑦 {𝑃1 | | 𝑃2} | | 𝑄}
≡ share 𝑦 {share 𝑥 {𝑃1 | | 𝑄}︸ ︷︷ ︸

𝑅

| | 𝑃2} (≡ [ShSh], 𝑥, 𝑦 ∈ fn(𝑃1))

By induction on 𝑃1 ↓𝑥:act and 𝑄 ↓𝑥:act we conclude that (share 𝑥 {𝑃1 | | 𝑄}) ↓𝑥:act.
Hence

share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑦 {𝑅 | | 𝑃2}
𝑅 ↓𝑥:act 𝑦 ≠ 𝑥

[share]
(share 𝑦 {𝑅 | | 𝑃2}) ↓𝑥:act

[≡]
(share 𝑥 {𝑃 | | 𝑄}) ↓𝑥:act

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [sum].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [sum]. We have

𝑃1 ↓𝑥:act [sum]
𝑃1 + 𝑃2 ↓𝑥:act

where 𝑃 = 𝑃1 + 𝑃2.

Since 𝑃1 + 𝑃2 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ we conclude that 𝑃1 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ and 𝑃2 ⊢ Δ, 𝑥 :
U 𝑓 𝐴;Γ.

We have

share 𝑥 {𝑃 | | 𝑄} = share 𝑥 {(𝑃1 + 𝑃2) | | 𝑄}
≡ share 𝑥 {𝑃1 | | 𝑄}︸ ︷︷ ︸

𝑅

+ share 𝑥 {𝑃2 | | 𝑄} (≡ [D-ShSm])

By induction on 𝑃1 ↓𝑥:act and 𝑄 ↓𝑥:act we conclude that 𝑅 ↓𝑥:act.

211

APPENDIX B. PROGRESS

Hence

share 𝑥 {𝑃 | | 𝑄} ≡ 𝑅 + share 𝑥 {𝑃2 | | 𝑄}
𝑅 ↓𝑥:act [sum]

(𝑅 + share 𝑥 {𝑃2 | | 𝑄}) ↓𝑥:act [≡]
(share 𝑥 {𝑃 | | 𝑄}) ↓𝑥:act

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [≡].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [≡]. We have

𝑃 ≡ 𝑃′ 𝑃′ ↓𝑥:act [≡]
𝑃 ↓𝑥:act

Since 𝑃 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ, 𝑃 ≡ 𝑃′ and structural congruence preserves typing (Theo-
rem 1), then 𝑃′ ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ.

By induction on 𝑃′ ↓𝑥:act , 𝑄 ↓𝑥:act, we conclude that share 𝑥 {𝑃′ | | 𝑄} ↓𝑥:act.

Observe that

share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑥 {𝑃′ | | 𝑄} (≡ [cong])

Hence

share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑥 {𝑃′ | | 𝑄} share 𝑥 {𝑃′ | | 𝑄} ↓𝑥:act [≡]
share 𝑥 {𝑃 | | 𝑄} ↓𝑥:act

Lemma 3(2). Let𝑃 ⊢ Δ, 𝑥 : U𝑒 𝐴;Γ,𝑄 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ. If𝑃 ↓𝑥:𝑎𝑐𝑡 , then share 𝑥 {𝑃 | | 𝑄} ↓𝑥:𝑎𝑐𝑡 .

Proof. By induction on the structure of a derivation for 𝑃 ↓𝑥:𝑎𝑐𝑡 and case analysis on the
root rule. The base case [act] follows by applying ≡ rule [PSh] in order to expose the put
action. For the inductive cases [mix], [cut], [cut!], [share], [sum] and [≡] see the proof of
Lemma 3(1).

Case: The root rule of both 𝑃 ↓𝑥:act is [act]. We have

𝑠(𝒜) = 𝑥
[act]

𝒜 ↓𝑥:act

where 𝑃 = 𝒜.

Since the subject of action𝒜- 𝑥 - has the type U𝑒 𝐴 (in the linear typing context), we
conclude that𝒜 is a put action, i.e. 𝒜 = put 𝑥(𝑦.𝑃1);𝑃2 for some 𝑦, 𝑃1 , 𝑃2.

By applying ≡ rule [PSh] we obtain

share 𝑥 {put 𝑥(𝑦.𝑃1);𝑃2 | | 𝑄} ≡ put 𝑥(𝑦.𝑃1); share 𝑥 {𝑃2 | | 𝑄}︸ ︷︷ ︸
𝑅

(≡ [PSh])

212

Hence

share 𝑥 {𝑃 | | 𝑄} ≡ put 𝑥(𝑦.𝑅);
𝑠(put 𝑥(𝑦.𝑃1);𝑅) = 𝑥

[act]
put 𝑥(𝑦.𝑃1);𝑅 ↓𝑥:act

[≡]
share 𝑥 {𝑃 | | 𝑄} ↓𝑥:act

Lemma 3(3). Let𝑃 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ,𝑄 ⊢ Δ, 𝑥 : U𝑒 𝐴;Γ. If𝑄 ↓𝑥:𝑎𝑐𝑡 , then share 𝑥 {𝑃 | |𝑄} ↓𝑥:𝑎𝑐𝑡 .

Proof. Applying Lemma 3(2) to 𝑄 ⊢ Δ, 𝑥 : U𝑒 𝐴;Γ and 𝑃 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ yields
share 𝑥 {𝑄 | | 𝑃} ↓𝑥:act.

By ≡ rule [Sh] we have share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑥 {𝑄 | | 𝑃}.
Hence,

share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑥 {𝑄 | | 𝑃} share 𝑥 {𝑄 | | 𝑃}𝑥 : act
[≡]

(share 𝑥 {𝑃 | | 𝑄}) ↓𝑥:act

Lemma 3(4). Let 𝑃 ⊢ Δ, 𝑥 : 𝐴;Γ and𝑄 ⊢ Δ′, 𝑥 : 𝐴;Γ be processes for which 𝑃 ↓𝑥:act and𝑄 ↓𝑥:act.
Then, cut {𝑃 |𝑥 | 𝑄} reduces.

Proof. By double induction on derivation trees for 𝑃 ↓𝑥:act and 𝑄 ↓𝑥:act. For the base cases
we apply one of the principal cut reductions. For the inductive cases we consider that we
are given a derivation tree for 𝑃 ↓𝑥 . This is w.l.o.g. since cut {𝑃 |𝑥 | 𝑄} ≡ cut {𝑄 |𝑥 | 𝑃}.
For cases [mix], [cut], [cut!], [share] we commute the cut on 𝑥 with the principal form of
𝑃 by applying either ≡ rule [CM], [CC], [CC!], [CSh] or [CSm]. The inductive case 𝑃 ↓𝑥
rule [≡] follows immediately because the relation→ is closed by structural congruence,
i.e. satisfies→ rule [≡].

Case: The root rule of both 𝑃 ↓𝑥 and 𝑄 ↓𝑥 is [act]. We have

𝑠(𝒜) = 𝑥
[act]

𝒜 ↓𝑥
𝑠(ℬ) = 𝑥

[act]
ℬ ↓𝑥

where 𝑃 = 𝒜 and 𝑄 = ℬ.

Since 𝒜 ⊢ Δ, 𝑥 : 𝐴;Γ and ℬ ⊢ Δ, 𝑥 : 𝐴;Γ we conclude that 𝒜 ,ℬ is a pair of dual
actions with the same subject. Hence, cut {𝑃 |𝑥 | 𝑄} reduces by applying one of the
principal cut reductions.

For example, if 𝐴 = ⊥, we have

𝒜 = close 𝑥 and ℬ = wait 𝑥;𝑄′

Consequently

cut {close 𝑥 |𝑥 | wait 𝑥;𝑄′} → 𝑄′ (→ [1⊥])

213

APPENDIX B. PROGRESS

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [mix].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [mix]. We have

𝑃1 ↓𝑥 [mix]
(par {𝑃1 | | 𝑃2}) ↓𝑥

where 𝑃 = par {𝑃1 | | 𝑃2}.

Since par {𝑃1 | | 𝑃2} ⊢ Δ, 𝑥 : 𝐴;Γ we conclude that there exists a partition Δ1 ,Δ2 of Δ
s.t. 𝑃1 ⊢ Δ1 , 𝑥 : 𝐴;Γ and 𝑃2 ⊢ Δ2;Γ. Observe that 𝑥 lies in the linear typing context of
𝑃1 and not of 𝑃2, because 𝑃1 ↓𝑥 .

Then

cut {𝑃 |𝑥 | 𝑄} = cut {(par {𝑃1 | | 𝑃2}) |𝑥 | 𝑄}
≡ par {(cut {𝑃1 |𝑥 | 𝑄}) | | 𝑃2} (≡ [CM], 𝑥 ∈ fn(𝑃1))

By induction on 𝑃1 ↓𝑥 and 𝑄 ↓𝑥 we conclude that cut {𝑃1 |𝑥 | 𝑄}, and hence
par {(cut {𝑃1 |𝑥 | 𝑄}) | | 𝑃2}, reduces.

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [cut].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [cut]. We have

𝑃1 ↓𝑥 𝑦 ≠ 𝑥
[cut]

(cut {𝑃1 |𝑦 | 𝑃2}) ↓𝑥

where 𝑃 = cut {𝑃1 |𝑦 | 𝑃2}.

Since cut {𝑃1 |𝑦 | 𝑃2} ⊢ Δ, 𝑥 : 𝐴;Γ we conclude that there exists a partition Δ1 ,Δ2 of
Δ and a type 𝐵 s.t. 𝑃1 ⊢ Δ1 , 𝑥 : 𝐴, 𝑦 : 𝐵;Γ and 𝑃2 ⊢ Δ2 , 𝑦 : 𝐵;Γ. Observe that 𝑥 lies in
the linear typing context of 𝑃1 and not of 𝑃2, because 𝑃1 ↓𝑥 .

Then

cut {𝑃 |𝑥 | 𝑄} = cut {(cut {𝑃1 |𝑦 | 𝑃2}) |𝑥 | 𝑄}
≡ cut {(cut {𝑃1 |𝑥 | 𝑄}) |𝑦 | 𝑃2} (≡ [CC], 𝑥, 𝑦 ∈ fn(𝑃1))

By induction on 𝑃1 ↓𝑥 and 𝑄 ↓𝑥 we conclude that cut {𝑃1 |𝑥 | 𝑄}, and hence
cut {(cut {𝑃1 |𝑥 | 𝑄}) |𝑦 | 𝑃2}, reduces.

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [cut!].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [cut!]. We have

𝑃2 ↓𝑥 𝑧 ≠ 𝑥
[cut!]

(cut! {𝑦.𝑃1 |𝑧 | 𝑃2}) ↓𝑥

where 𝑃 = cut! {𝑦.𝑃1 |𝑧 | 𝑃2}.

214

Since cut! {𝑦.𝑃1 |𝑧 | 𝑃2} ⊢ Δ, 𝑥 : 𝐴;Γ we conclude that there exists a type 𝐵 s.t.
𝑃1 ⊢ 𝑦 : 𝐵;Γ and 𝑃2 ⊢ Δ, 𝑥 : 𝐴;Γ, 𝑧 : 𝐵.

Then

cut {𝑃 |𝑥 | 𝑄} = cut {(cut! {𝑦.𝑃1 |𝑧 | 𝑃2}) |𝑥 | 𝑄}
≡ cut! {𝑦.𝑃1 |𝑧 | (cut {𝑃2 |𝑥 | 𝑄})} (≡ [CC!], 𝑧 ∉ fn(𝑄))

By induction on 𝑃2 ↓𝑥 and 𝑄 ↓𝑥 we conclude that cut {𝑃2 |𝑥 | 𝑄}, and hence
cut! {𝑦.𝑃1 |𝑧 | (cut {𝑃2 |𝑥 | 𝑄})}, reduces.

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [share].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [share]. We have

𝑃1 ↓𝑥 𝑦 ≠ 𝑥
[share]

(share 𝑦 {𝑃1 | | 𝑃2}) ↓𝑥
where 𝑃 = share 𝑦 {𝑃1 | | 𝑃2}.
The root rule of a derivation for share 𝑦 {𝑃1 | | 𝑃2} ⊢ Δ, 𝑥 : 𝐴;Γ can be either [Tsh],
[TshL] or [TshR]. We assume w.l.o.g. it is [Tsh]. The proof works in the same way
for the other cases [TshL] and [TshR].

By inverting [Tsh] on share 𝑦 {𝑃1 | | 𝑃2} ⊢ Δ, 𝑥 : 𝐴;Γwe conclude that exists a partition
Δ1 ,Δ2 of Δ, a type 𝐵 for which 𝑃1 ⊢ Δ1 , 𝑦 : U 𝑓 𝐵, 𝑥 : 𝐴;Γ and 𝑃2 ⊢ Δ2 , 𝑦 : U 𝑓 𝐵;Γ.
Observe that 𝑥 lies in the linear typing context of 𝑃1 and not of 𝑃2, because 𝑃1 ↓𝑥:act.

Then

cut {𝑃 |𝑥 | 𝑄} = cut {(share 𝑦 {𝑃1 | | 𝑃2}) |𝑥 | 𝑄}
≡ share 𝑦 {(cut {𝑃1 |𝑥 | 𝑄}) | | 𝑃2} (≡ [CSh], 𝑥, 𝑦 ∈ fn(𝑃1))

By induction on 𝑃1 ↓𝑥 and 𝑄 ↓𝑥 we conclude that cut {𝑃1 |𝑥 | 𝑄}, and hence
share 𝑦 {(cut {𝑃1 |𝑥 | 𝑄}) | | 𝑃2}, reduces.

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [sum].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [sum]. We have

𝑃1 ↓𝑥 [sum]
(𝑃1 + 𝑃2) ↓𝑥

where 𝑃 = 𝑃1 + 𝑃2.

Since 𝑃1 + 𝑃2 ⊢ Δ, 𝑥 : 𝐴;Γ we conclude that 𝑃1 ⊢ Δ, 𝑥 : 𝐴;Γ and 𝑃2 ⊢ Δ, 𝑥 : 𝐴;Γ.

Then

cut {𝑃 |𝑥 | 𝑄} = cut {(𝑃1 + 𝑃2) |𝑥 | 𝑄}
≡ (cut {𝑃1 |𝑥 | 𝑄}) + (cut {𝑃2 |𝑥 | 𝑄}) (≡ [D-CSm])

By induction on 𝑃1 ↓𝑥 and 𝑄 ↓𝑥 we conclude that cut {𝑃1 |𝑥 | 𝑄}, and hence
(cut {𝑃1 |𝑥 | 𝑄}) + (cut {𝑃2 |𝑥 | 𝑄}), reduces.

215

APPENDIX B. PROGRESS

Case: Either the root rule of 𝑃 ↓𝑥:act or the root rule of 𝑄 ↓𝑥:act is [≡].
Suppose w.l.o.g. that the root rule of 𝑃 ↓𝑥:act is [≡]. We have

𝑃 ≡ 𝑃′ 𝑃′ ↓𝑥
𝑃 ↓𝑥

Observe that since 𝑃 ⊢ Δ, 𝑥 : 𝐴;Γ, 𝑃 ≡ 𝑃′ and structural congruence preserves typing
(Theorem 1), then 𝑃′ ⊢ Δ, 𝑥 : 𝐴;Γ.

By induction on 𝑃′ ↓𝑥 , 𝑄 ↓𝑥 we conclude that cut {𝑃′ |𝑥 | 𝑄} reduces. Since
cut {𝑃 |𝑥 | 𝑄} ≡ cut {𝑃′ |𝑥 | 𝑄}, cut {𝑃 |𝑥 | 𝑄} reduces as well (rule→ [≡]).

Lemma 3(5)). Let 𝑃 ⊢ Δ, 𝑥 : 𝐴;Γ, 𝑄 ⊢ Δ′, 𝑥 : 𝐴;Γ be processes for which 𝑃 ↓𝑥:fwd. Then,
cut {𝑃 |𝑥 | 𝑄} reduces.

Proof. By induction on a derivation trees for 𝑃 ↓𝑥:fwd. We handle the base case, which
follows by applying the principal cut conversion→ [fwd]. For the inductive cases see the
proof of Lemma 3(4).

Case [fwd]
We have

[fwd]
fwd 𝑥 𝑦 ↓𝑥

where 𝑃 = fwd 𝑥 𝑦.

Then

cut {fwd 𝑥 𝑦 |𝑥 | 𝑄} ≡ cut {fwd 𝑦 𝑥 |𝑥 | 𝑄} (≡ [fwd])

→ {𝑦/𝑥}𝑄 (→ [fwd])

Lemma 3(6). Let 𝑃 ⊢ 𝑦 : 𝐴;Γ and 𝑄 ⊢ Δ;Γ, 𝑥 : 𝐴 be processes for which 𝑄 ↓𝑥 . Then,
cut! {𝑦.𝑃 |𝑥 | 𝑄} reduces.

Proof. By induction on a derivation tree for 𝑄 ↓𝑥 and case analysis on the root rule. The
base case [act] follows by applying the principal cut conversion→ [call]. The inductive
cases [mix], [cut], [cut!], [share] and [sum] follow by distributing the unrestricted cut over
the arguments of 𝑄 (with ≡ rules [D-C!M], [D-C!C], [D-C!C!], [D-C!Sh] or [C!Sm]) and
then apply the inductive hypothesis. The inductive case [≡] follows because reduction→
is closed by structural congruence, i.e. satisfies rule→ [≡].

216

Case: The root rule of 𝑄 ↓𝑥 is [act]. We have

𝑠(𝒜) = 𝑥

𝒜 ↓𝑥

where 𝑄 = 𝒜.

Since𝒜 ⊢ Δ;Γ, 𝑥 : 𝐴, we have𝒜 = call 𝑥(𝑧);𝑄′, for some 𝑄′. Hence

cut! {𝑦.𝑃 |𝑥 | call 𝑥(𝑧);𝑄′} → cut {{𝑧/𝑦}𝑃 |𝑧 | (cut! {𝑦.𝑃 |𝑥 | 𝑄′})} (→ [call])

Case: The root rule of 𝑄 ↓𝑥 is [mix]. We have

𝑄1 ↓𝑥
(par {𝑄1 | | 𝑄2}) ↓𝑥

where 𝑄 = par {𝑄1 | | 𝑄2}.

Since par {𝑄1 | | 𝑄2} ⊢ Δ;Γ, 𝑥 : 𝐴, there exists a partition Δ1 ,Δ2 of Δ for which
𝑄1 ⊢ Δ1;Γ, 𝑥 : 𝐴 and 𝑄2 ⊢ Δ2;Γ, 𝑥 : 𝐴 .

We have

cut! {𝑦.𝑃 |𝑥 | 𝑄} = cut! {𝑦.𝑃 |𝑥 | (par {𝑄1 | | 𝑄2})}
≡ par {(cut! {𝑦.𝑃 |𝑥 | 𝑄1}) | | (cut! {𝑦.𝑃 |𝑥 | 𝑄2})} (≡ [D-C!M])

By induction on𝑄1 ↓𝑥 we conclude that cut! {𝑦.𝑃 |𝑥 | 𝑄1}, and hence cut! {𝑦.𝑃 |𝑥 | 𝑄},
reduces.

Case: The root rule of 𝑄 ↓𝑥 is [cut]. We have

𝑄1 ↓𝑥 𝑧 ≠ 𝑥

(cut {𝑄1 |𝑧 | 𝑄2}) ↓𝑥

where 𝑄 = cut {𝑄1 |𝑧 | 𝑄2}.

Since cut {𝑄1 |𝑧 | 𝑄2} ⊢ Δ;Γ, 𝑥 : 𝐴, there exists a partition Δ1 ,Δ2 of Δ and a type 𝐵
for which 𝑄1 ⊢ Δ1 , 𝑧 : 𝐵;Γ, 𝑥 : 𝐴 and 𝑄2 ⊢ Δ2 , 𝑧 : 𝐵;Γ, 𝑥 : 𝐴.

We have

cut! {𝑦.𝑃 |𝑥 | 𝑄} = cut! {𝑦.𝑃 |𝑥 | (cut {𝑄1 |𝑧 | 𝑄2})}
≡ cut {(cut! {𝑦.𝑃 |𝑥 | 𝑄1}) |𝑧 | (cut! {𝑦.𝑃 |𝑥 | 𝑄2})} (≡ [D-C!C])

By induction on𝑄1 ↓𝑥 we conclude that cut! {𝑦.𝑃 |𝑥 | 𝑄1}, and hence cut! {𝑦.𝑃 |𝑥 | 𝑄},
reduces.

217

APPENDIX B. PROGRESS

Case: The root rule of 𝑄 ↓𝑥 is [cut!]. We have

𝑄2 ↓𝑥 𝑧 ≠ 𝑥

(cut! {𝑤.𝑄1 |𝑧 | 𝑄2}) ↓𝑥

where 𝑄 = cut! {𝑤.𝑄1 |𝑧 | 𝑄2}.

Since cut! {𝑤.𝑄1 |𝑧 | 𝑄2} ⊢ Δ;Γ, 𝑥 : 𝐴, we conclude that exists a type 𝐵 for which
𝑄1 ⊢ 𝑤 : 𝐵;Γ, 𝑥 : 𝐴 and 𝑄2 ⊢ Δ;Γ, 𝑧 : 𝐵, 𝑥 : 𝐴.

We have

cut! {𝑦.𝑃 |𝑥 | 𝑄} = cut! {𝑦.𝑃 |𝑥 | (cut! {𝑤.𝑄1 |𝑧 | 𝑄2})}
≡ cut! {𝑤.(cut! {𝑦.𝑃 |𝑥 | 𝑄1}) |𝑧 | (cut! {𝑦.𝑃 |𝑥 | 𝑄2})} (≡ [D-C!C!])

By induction on𝑄2 ↓𝑥 we conclude that cut! {𝑦.𝑃 |𝑥 | 𝑄2}, and hence cut! {𝑦.𝑃 |𝑥 | 𝑄},
reduces.

Case: The root rule of 𝑄 ↓𝑥 is [share]. We have

𝑄1 ↓𝑥 𝑧 ≠ 𝑥

(share 𝑧 {𝑄1 | | 𝑄2}) ↓𝑥

where 𝑄 = share 𝑧 {𝑄1 | | 𝑄2}.

Since share 𝑧 {𝑄1 | |𝑄2} ⊢ Δ;Γ, 𝑥 : 𝐴, there are state flavours𝒳1 ,𝒳2 ,𝒳 and a partition
Δ1 ,Δ2 , 𝑧 : U𝒳 𝐵 of Δ for which 𝑄1 ⊢ Δ1 , 𝑧U𝒳1 𝐵;Γ, 𝑥 : 𝐴,𝑄2 ⊢ Δ2 , 𝑧 : U𝒳2 𝐵;Γ, 𝑥 : 𝐴
and 𝒳1 ⊕ 𝒳2 = 𝒳.

The root rule of a derivation for share 𝑦 {𝑃1 | | 𝑃2} ⊢ Δ;Γ, 𝑥 : 𝐴 can be either [Tsh],
[TshL] or [TshR]. We assume w.l.o.g. it is [Tsh]. The proof works in the same way
for the other cases [TshL] and [TshR].

By inverting [Tsh] on share 𝑦 {𝑃1 | | 𝑃2} ⊢⊢ Δ;Γ, 𝑥 : 𝐴 we conclude that exists a
partition Δ1 ,Δ2 of Δ, a type 𝐵 for which 𝑃1 ⊢ Δ1 , 𝑦 : U 𝑓 𝐵;Γ, 𝑥 : 𝐴 and 𝑃2 ⊢ Δ2 , 𝑦 :
U 𝑓 𝐵;Γ, 𝑥 : 𝐴.

We have

cut! {𝑦.𝑃 |𝑥 | 𝑄} = cut! {𝑦.𝑃 |𝑥 | (share 𝑧 {𝑄1 | | 𝑄2})}
≡ share 𝑧 {(cut! {𝑦.𝑃 |𝑥 | 𝑄1}) | | (cut! {𝑦.𝑃 |𝑥 | 𝑄2})} (≡ [D-C!Sh])

By induction on𝑄1 ↓𝑥 we conclude that cut! {𝑦.𝑃 |𝑥 | 𝑄1}, and hence cut! {𝑦.𝑃 |𝑥 | 𝑄}
reduces.

Case: The root rule of 𝑄 ↓𝑥 is [sum]. We have

𝑄1 ↓𝑥
(𝑄1 + 𝑄2) ↓𝑥

218

where 𝑄 = 𝑄1 + 𝑄2.

Since par {𝑄1 | | 𝑄2} ⊢ Δ;Γ, 𝑥 : 𝐴, then 𝑄1 ⊢ Δ;Γ, 𝑥 : 𝐴 and 𝑄2 ⊢ Δ;Γ, 𝑥 : 𝐴.

We have

cut! {𝑦.𝑃 |𝑥 | 𝑄} = cut! {𝑦.𝑃 |𝑥 | (𝑄1 + 𝑄2)}
≡ (cut! {𝑦.𝑃 |𝑥 | 𝑄1}) + (cut! {𝑦.𝑃 |𝑥 | 𝑄2}) (≡ [D-C!Sm])

By induction on𝑄1 ↓𝑥 we conclude that cut! {𝑦.𝑃 |𝑥 | 𝑄1}, and hence cut! {𝑦.𝑃 |𝑥 | 𝑄},
reduces.

Case: The root rule of 𝑄 ↓𝑥 is [≡]. We have

𝑄 ≡ 𝑄′ 𝑄′ ↓𝑥
𝑄 ↓𝑥

Observe that since 𝑄 ⊢ Δ;Γ, 𝑥 : 𝐴, 𝑄 ≡ 𝑄′ and structural congruence preserves
typing (Theorem 1), we have 𝑄′ ⊢ Δ;Γ, 𝑥 : 𝐴.

By induction on𝑄′ ↓𝑥 we conclude thatcut! {𝑦.𝑃 |𝑥 |𝑄′} reduces. Since cut! {𝑦.𝑃 |𝑥 |𝑄} ≡
cut! {𝑦.𝑃 |𝑥 | 𝑄′}, cut! {𝑦.𝑃 |𝑥 | 𝑄} reduces as well (→ rule [≡]).

Lemma 3(7). Let 𝑃 ⊢ Δ, 𝑥 : 𝐴;Γ and suppose that 𝐴 ≠ S𝒳 𝐵. If 𝑃 ↓𝑥:fwd, then either (i) 𝑃 ↓𝑦:fwd

for some 𝑦 : 𝐴 ∈ Δ or (ii) 𝑃 reduces.

Proof. The proof is by structural induction on the derivation tree 𝑃 ↓𝑥:fwd and case analysis
on the root rule.

Case: The root rule of 𝑃 ↓𝑥:fwd is [fwd].
We have

[fwd]
fwd 𝑥 𝑦 ↓𝑥:fwd

where 𝑃 = fwd 𝑥 𝑦.

By inversion on fwd 𝑥 𝑦 ⊢ Δ, 𝑥 : 𝐴;Γ we conclude that Δ = 𝑦 : 𝐴 .

Observe that

fwd 𝑥 𝑦 ≡ fwd 𝑦 𝑥 (≡ [fwd])

Then

fwd 𝑥 𝑦 ≡ fwd 𝑦 𝑥
[fwd]

fwd 𝑦 𝑥 ↓𝑦:fwd
[≡]

fwd 𝑥 𝑦 ↓𝑦:fwd

219

APPENDIX B. PROGRESS

Case: The root rule of 𝑃 ↓𝑥:fwd is [mix].
We have

𝑃1 ↓𝑥:fwd [mix]
(par {𝑃1 | | 𝑃2}) ↓𝑥:fwd

where 𝑃 = par {𝑃1 | | 𝑃2}.

By inversion on the typing judgment par {𝑃1 | | 𝑃2} ⊢ Δ, 𝑥 : 𝐴;Γ we conclude that
exists a partition Δ1 ,Δ2 of Δ s.t. 𝑃1 ⊢ Δ1 , 𝑥 : 𝐴;Γ and 𝑃2 ⊢ Δ2;Γ. Observe that 𝑥 lies
in the linear typing context of 𝑃1 and not of 𝑃2 because 𝑃1 ↓𝑥 .

By induction on 𝑃1 ↓𝑥:fwd, we conclude that either (i) 𝑃1 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ1

or (ii) 𝑃1 reduces.

Case (i) 𝑃1 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ1.
Then

𝑃1 ↓𝑦:fwd
[mix]

(par {𝑃1 | | 𝑃2}) ↓𝑦:fwd

Furthermore, since 𝑦 : 𝐴 ∈ Δ1 and Δ = Δ1 ,Δ2, then 𝑦 : 𝐴 ∈ Δ.

Case (ii) 𝑃1 reduces.
Since reduction is a congruence, then par {𝑃1 | | 𝑃2} reduces as well.

Case: The root rule of 𝑃 ↓𝑥:fwd is [cut].
We have

𝑃1 ↓𝑥:fwd 𝑧 ≠ 𝑥
[cut]

(cut {𝑃1 |𝑧 | 𝑃2}) ↓𝑥:fwd

where 𝑃 = cut {𝑃1 |𝑧 | 𝑃2}.

By inversion on the typing judgment cut {𝑃1 |𝑧 | 𝑃2} ⊢ Δ, 𝑥 : 𝐴;Γ we conclude
that exists a partition Δ1 ,Δ2 of Δ and a type 𝐵 s.t. 𝑃1 ⊢ Δ1 , 𝑥 : 𝐴, 𝑧 : 𝐵;Γ and
𝑃2 ⊢ Δ2 , 𝑧 : 𝐵;Γ. Observe that 𝑥 lies in the linear typing context of 𝑃1 and not of 𝑃2

because 𝑃1 ↓𝑥 .

By induction on 𝑃1 ↓𝑥:fwd, we conclude that either (i) 𝑃1 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈
Δ1 , 𝑧 : 𝐵 or (ii) 𝑃1 reduces. There are three cases to consider, depending on wether
(i-i) 𝑦 ≠ 𝑧 or (i-ii) 𝑦 = 𝑧.

Case (i-i) 𝑃1 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ1.
Then

𝑃1 ↓𝑦:fwd 𝑦 ≠ 𝑧
[cut]

(cut {𝑃1 |𝑧 | 𝑃2}) ↓𝑦:fwd

Furthermore, since 𝑦 : 𝐴 ∈ Δ1 and Δ = Δ1 ,Δ2, then 𝑦 : 𝐴 ∈ Δ.

220

Case (i-ii) 𝑃1 ↓𝑧:fwd and 𝑦 = 𝑧.
By Lemma 3(5), we conclude that cut {𝑃1 |𝑧 | 𝑃2} reduces.

Case (ii) 𝑃1 reduces.
Since reduction is a congruence, then cut {𝑃1 |𝑧 | 𝑃2} reduces as well.

Case: The root rule of 𝑃 ↓𝑥:fwd is [cut!].
We have

𝑃1 ↓𝑥:fwd 𝑧 ≠ 𝑥
[cut!]

(cut! {𝑤.𝑃1 |𝑧 | 𝑃2}) ↓𝑥:fwd

where 𝑃 = cut! {𝑤.𝑃1 |𝑧 | 𝑃2}.

By inversion on the typing judgment cut! {𝑤.𝑃1 |𝑧 | 𝑃2} ⊢ Δ, 𝑥 : 𝐴;Γ we conclude
that exists a type 𝐵 s.t. 𝑃1 ⊢ 𝑤 : 𝐵;Γ and 𝑃2 ⊢ Δ, 𝑥 : 𝐴;Γ, 𝑧 : 𝐵 .

By induction on 𝑃2 ↓𝑥:fwd, we conclude that either (i) 𝑃2 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ or
(ii) 𝑃2 reduces.

Case (i) 𝑃2 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ. Then

𝑃2 ↓𝑦:fwd 𝑦 ≠ 𝑧
[cut!]

(cut! {𝑤.𝑃1 |𝑧 | 𝑃2}) ↓𝑦:fwd

Case (ii) 𝑃2 reduces.
Since reduction is a congruence, then cut! {𝑤.𝑃1 |𝑧 | 𝑃2} reduces as well.

Case: The root rule of 𝑃 ↓𝑥:fwd is [share].
We have

𝑃1 ↓𝑥:fwd 𝑧 ≠ 𝑥
[share]

(share 𝑧 {𝑃1 | | 𝑃2}) ↓𝑥:fwd

where 𝑃 = share 𝑧 {𝑃1 | | 𝑃2}.

The root rule of a derivation for share 𝑦 {𝑃1 | | 𝑃2} ⊢ Δ, 𝑥 : 𝐴;Γ can be either [Tsh],
[TshL] or [TshR]. We assume w.l.o.g. it is [Tsh]. The proof works in the same way
for the other cases [TshL] and [TshR].

By inverting [Tsh] on share 𝑦 {𝑃1 | | 𝑃2} ⊢ Δ, 𝑥 : 𝐴;Γwe conclude that exists a partition
Δ1 ,Δ2 of Δ, a type 𝐵 for which 𝑃1 ⊢ Δ1 , 𝑧 : U 𝑓 𝐵, 𝑥 : 𝐴;Γ and 𝑃2 ⊢ Δ2 , 𝑧 : U 𝑓 𝐵;Γ.
Observe that 𝑥 lies in the linear typing context of 𝑃1 and not of 𝑃2, because 𝑃1 ↓𝑥:act.

By induction on 𝑃1 ↓𝑥:fwd, we conclude that either (i) 𝑃1 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈
Δ1 , 𝑧 : U 𝑓 𝐵 or (ii) 𝑃1 reduces.

Notice that, by hypothesis, 𝐴 ≠ U 𝑓 𝐵. Hence, 𝑦 : 𝐴 ∈ Δ1.

There are then two cases to consider.

221

APPENDIX B. PROGRESS

Case (i) 𝑃1 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ1.
Then

𝑃1 ↓𝑦:fwd 𝑦 ≠ 𝑧
[share]

(share 𝑧 {𝑃1 | | 𝑃2}) ↓𝑦:fwd

Case (ii) 𝑃1 reduces
Since reduction is a congruence, then share 𝑧 {𝑃1 | | 𝑃2} reduces as well.

Case: The root rule of 𝑃 ↓𝑥:fwd is [sum].
We have

𝑃1 ↓𝑥:fwd [sum]
(par {𝑃1 | | 𝑃2}) ↓𝑥:fwd

where 𝑃 = 𝑃1 + 𝑃2.

By inversion on the typing judgment 𝑃1 + 𝑃2 ⊢ Δ, 𝑥 : 𝐴;Γ we conclude that 𝑃1 ⊢
Δ, 𝑥 : 𝐴;Γ and 𝑃2 ⊢ Δ, 𝑥 : 𝐴;Γ.

By induction on 𝑃1 ↓𝑥:fwd, we conclude that either (i) 𝑃1 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ or
(ii) 𝑃1 reduces.

Case (i) 𝑃1 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ.
Then

𝑃1 ↓𝑦:fwd
[sum]

(𝑃1 + 𝑃2) ↓𝑦:fwd

Case (ii) 𝑃1 reduces.
Since reduction is a congruence, then 𝑃1 + 𝑃2 reduces as well.

Case: The root rule of 𝑃 ↓𝑥:fwd is [≡].
We have

𝑃 ≡ 𝑄 𝑄 ↓𝑥:fwd [≡]
𝑃 ↓𝑥:fwd

Since 𝑃 ⊢ Δ, 𝑥 : 𝐴;Γ and 𝑃 ≡ 𝑄, then 𝑄 ⊢ Δ, 𝑥 : 𝐴;Γ.

By induction on 𝑄 ↓𝑥:fwd we conclude that either (i) 𝑄 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ or
(ii) 𝑄 reduces.

Case (i) 𝑄 ↓𝑦:fwd for some 𝑦 : 𝐴 ∈ Δ.
Then

𝑃 ≡ 𝑄 𝑄 ↓𝑦:fwd
[≡]

𝑃 ↓𝑦:fwd

222

Case (ii) 𝑄 reduces.
Since reduction is closed by structural congruence, then 𝑃 reduces as well.

Lemma 4. Let 𝑃 ⊢∅ Δ;Γ be such that 𝑃 is live. Either 𝑃 ↓𝑥 , for some 𝑥, or 𝑃 reduces.

Proof. The proof is by structural induction on derivation tree for𝑃 ⊢∅ Δ;Γ and case analysis
on the root rule.

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [T0].
We have

[T0]
0 ⊢∅ ∅;Γ

where 𝑃 = 0. Holds vacuously because 0 is not live.

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [Tfwd].
We have

[Tfwd]
fwd 𝑥 𝑦 ⊢∅ 𝑥 : 𝐴, 𝑦 : 𝐴;Γ

Then

[fwd]
(fwd 𝑥 𝑦) ↓𝑥

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [T1].
We have

[T1]
close 𝑥 ⊢∅ 𝑥 : 1;Γ

where 𝑃 = close 𝑥. Observe that close 𝑥 is an action. Then

𝑠(close 𝑥) = 𝑥
[act]

close 𝑥 ↓𝑥

Similarly for the the other rules which introduce an action: [T⊥], [T⊗], [TO], [T⊕𝑙],
[T⊕𝑟], [TN], [T?], [T!], [Tcall], [T∃], [T∀], [Tcorec], [T�], [T�], [Taffine], [Tuse], [Tdis-
card], [Tcell], [Tempty], [Trelease], [Ttake], [Tput].

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [Tvar].
We have

� = �′, 𝑋(®𝑦) ↦→ Δ′;Γ′
[Tvar]

𝑋(®𝑥) ⊢∅ { ®𝑥/®𝑦}(Δ′;Γ′)

where 𝑃 = 𝑋(®𝑥). Holds vacuously because assumes a nonempty � context.

223

APPENDIX B. PROGRESS

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [Tmix].
We have

𝑃1 ⊢∅ Δ1;Γ 𝑃2 ⊢∅ Δ2;Γ
[Tmix]

par {𝑃1 | | 𝑃2} ⊢∅ Δ1 ,Δ2;Γ

where 𝑃 = par {𝑃1 | | 𝑃2} and Δ = Δ1 ,Δ2.

Since par {𝑃1 | | 𝑃2} is live, then either 𝑃1 is live or 𝑃2 is live.

Suppose w.l.o.g. that 𝑃1 is live. By induction on 𝑃1 ⊢∅ Δ1;Γ we conclude that either
𝑃1 ↓𝑥 or 𝑃1 reduces.

Case 𝑃1 ↓𝑥
Then

𝑃1 ↓𝑥 [mix]
(par {𝑃1 | | 𝑃2}) ↓𝑥

Case 𝑃1 reduces
Then, par {𝑃1 | | 𝑃2} reduces because of→ rule [cong].

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [Tcut].
We have

𝑃1 ⊢∅ Δ1 , 𝑥 : 𝐴;Γ 𝑃2 ⊢∅ Δ2 , 𝑥 : 𝐴;Γ
[cut]

cut {𝑃1 |𝑥 | 𝑃2} ⊢∅ Δ1 ,Δ2;Γ

where 𝑃 = cut {𝑃1 |𝑥 | 𝑃2} and Δ = Δ1 ,Δ2.

Since both 𝑃1 and 𝑃2 have a nonempty linear typing context, we conclude that both
𝑃1 and 𝑃2 are live (lemma 1).

By applying the i.h. to 𝑃1 ⊢∅ Δ1 , 𝑥 : 𝐴;Γ and 𝑃2 ⊢∅ Δ2 , 𝑥 : 𝐴;Γ we conclude that

• 𝑃1 ↓𝑦 or 𝑃1 reduces, and

• 𝑃2 ↓𝑧 or 𝑃2 reduces

We have the following cases to consider

Case (𝑃1 ↓𝑦 and 𝑦 ≠ 𝑥) or (𝑃2 ↓𝑧 and 𝑧 ≠ 𝑥)
Suppose w.l.o.g. that 𝑃1 ↓𝑦 and 𝑦 ≠ 𝑥.

Then

𝑃1 ↓𝑦 𝑦 ≠ 𝑥
[cut]

(cut {𝑃1 |𝑥 | 𝑃2}) ↓𝑦

Case 𝑃1 ↓𝑥 and 𝑃2 ↓𝑥
We have the following two cases

224

Case 𝑃1 ↓𝑥:fwd or 𝑃2 ↓𝑥:fwd

Suppose w.l.o.g. that 𝑃1 ↓𝑥:fwd.
Then, by lemma 3(3), we conclude that cut {𝑃1 |𝑥 | 𝑃2} reduces.

Case 𝑃1 ↓𝑥:act and 𝑃2 ↓𝑥:act

Then, by lemma 3(2), we conclude that cut {𝑃1 |𝑥 | 𝑃2} reduces.

Case 𝑃1 reduces or 𝑃2 reduces
Because of→ rule [cong], cut {𝑃1 |𝑥 | 𝑃2} reduces.

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [Tcut!].
We have

𝑃1 ⊢∅ 𝑦 : 𝐵;Γ 𝑃2 ⊢∅ Δ;Γ, 𝑥 : 𝐴
[cut!]

cut! {𝑦.𝑃1 |𝑥 | 𝑃2} ⊢∅ Δ;Γ

where 𝑃 = cut! {𝑦.𝑃1 |𝑥 | 𝑃2}.

Since cut! {𝑦.𝑃1 |𝑥 | 𝑃2} is live, then 𝑃2 is live.

By induction on 𝑃2 ⊢∅ Δ;Γ, 𝑥 : 𝐴 we conclude that either 𝑃2 ↓𝑧 or 𝑃2 reduces.

Case 𝑃2 ↓𝑧 and 𝑧 ≠ 𝑥

Then

𝑃2 ↓𝑧 𝑧 ≠ 𝑥
[cut!]

(cut! {𝑦.𝑃1 |𝑥 | 𝑃2}) ↓𝑧

Case 𝑃2 ↓𝑥
Then, cut! {𝑦.𝑃1 |𝑥 | 𝑃2} reduces (lemma 3(4)).

Case 𝑃2 reduces
Because of→ rule [cong], cut! {𝑦.𝑃1 |𝑥 | 𝑃2} reduces.

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [Tsh].
We have

𝑃1 ⊢∅ Δ1 , 𝑥 : U 𝑓 𝐴;Γ 𝑃2 ⊢∅ Δ2 , 𝑥 : U 𝑓 𝐴;Γ
[Tsh]

share 𝑥 {𝑃1 | | 𝑃2} ⊢∅ Δ1 ,Δ2 , 𝑥 : U 𝑓 𝐴;Γ

where 𝑃 = share 𝑥 {𝑃1 | | 𝑃2} and Δ = Δ1 ,Δ2 , 𝑥 : U 𝑓 𝐴.

Since both 𝑃1 and 𝑃2 type with a nonempty linear context and an empty �, then both
𝑃1 and 𝑃2 are live (Lemma 1).

By applying the i.h. to 𝑃1 ⊢∅ Δ1 , 𝑥 : U 𝑓 𝐴;Γ and 𝑃2 ⊢∅ Δ2 , 𝑥 : U 𝑓 𝐴;Γ we conclude
both

• 𝑃1 ↓𝑦 or 𝑃1 reduces, and

• 𝑃2 ↓𝑧 or 𝑃2 reduces

225

APPENDIX B. PROGRESS

We have the following cases to consider.

Case A (𝑃1 ↓𝑦 and 𝑦 ≠ 𝑥) or (𝑃2 ↓𝑧 and 𝑧 ≠ 𝑥)
Suppose w.l.o.g. that 𝑃1 ↓𝑦 and 𝑦 ≠ 𝑥.
Then

𝑃1 ↓𝑦 𝑦 ≠ 𝑥
[share]

(share 𝑥 {𝑃1 | | 𝑃2}) ↓𝑦
Case B 𝑃1 ↓𝑥 and 𝑃2 ↓𝑥

We have the following two cases.

Case B1 𝑃1 ↓𝑥:fwd or 𝑃2 ↓𝑥:fwd

Suppose w.l.o.g. that 𝑃1 ↓𝑥:fwd.
Observe that 𝑥 occurs typed by U 𝑓 𝐴 in the linear typing context of 𝑃1.
Hence, we can apply Lemma 3(7) in order to conclude that either (i) 𝑃1 ↓𝑦
for 𝑦 ≠ 𝑥 or (ii) 𝑃1 reduces. If (i) go to case A. If (ii), go to case C.

Case B2 𝑃1 ↓𝑥:act and 𝑃2 ↓𝑥:act.
Then (share 𝑥 {𝑃1 | | 𝑃2}) ↓𝑥 (Lemma 3(1)).

Case C 𝑃1 reduces or 𝑃2 reduces
Because of→ rule [cong], share 𝑥 {𝑃1 | | 𝑃2} reduces.

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [TshL].
We have

𝑃1 ⊢∅ Δ1 , 𝑥 : U𝑒 𝐴;Γ 𝑃2 ⊢∅ Δ2 , 𝑥 : U 𝑓 𝐴;Γ
[TshL]

share 𝑥 {𝑃1 | | 𝑃2} ⊢∅ Δ1 ,Δ2 , 𝑥 : U𝑒 𝐴;Γ
where 𝑃 = share 𝑥 {𝑃1 | | 𝑃2} and Δ = Δ1 ,Δ2 , 𝑥 : U𝑒 𝐴.

By applying the i.h. to 𝑃1 ⊢∅ Δ1 , 𝑥 : U𝑒 𝐴;Γ we conclude that either 𝑃1 ↓𝑦 or 𝑃1

reduces.

We have the following cases to consider.

Case A 𝑃1 ↓𝑦 and 𝑦 ≠ 𝑥

Then

𝑃1 ↓𝑦 𝑦 ≠ 𝑥
[share]

(share 𝑥 {𝑃1 | | 𝑃2}) ↓𝑦
Case B 𝑃1 ↓𝑥

We have the following two cases.

Case B1 𝑃1 ↓𝑥:fwd

Suppose w.l.o.g. that 𝑃1 ↓𝑥:fwd.
Observe that 𝑥 occurs typed by U𝑒 𝐴 in the linear typing context of 𝑃1.
Hence, we can apply Lemma 3(7) in order to conclude that either (i) 𝑃1 ↓𝑦
for 𝑦 ≠ 𝑥 or (ii) 𝑃1 reduces. If (i) go to case A. If (ii), go to case C.

226

Case B2 𝑃1 ↓𝑥:act.
Then (share 𝑥 {𝑃1 | | 𝑃2}) ↓𝑥 (Lemma 3(2)).

Case C 𝑃1 reduces or 𝑃2 reduces
Because of→ rule [cong], share 𝑥 {𝑃1 | | 𝑃2} reduces.

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [TshR].
Similar to case [TshL].

Case: The root rule of 𝑃 ⊢∅ Δ;Γ is [Tsum].
We have

𝑃1 ⊢∅ Δ;Γ 𝑃2 ⊢∅ Δ;Γ
[Tsum]

𝑃1 + 𝑃2 ⊢∅ Δ;Γ

where 𝑃 = 𝑃1 + 𝑃2.

Since 𝑃1 + 𝑃2 is live, then either 𝑃1 is live or 𝑃2 is live.

Assume w.l.o.g. that 𝑃1 is live. By induction on 𝑃1 ⊢∅ Δ;Γ we conclude that either
𝑃1 ↓𝑥 or 𝑃1 reduces.

Case 𝑃1 ↓𝑥
Then

𝑃1 ↓𝑥 [sum]
(𝑃1 + 𝑃2) ↓𝑥

Case 𝑃1 reduces
Then, 𝑃1 + 𝑃2 reduces because of→ rule [cong].

227

C

Confluence

Diamond Property for→𝑑

We prove Lemma 6 and Lemma 7.

Lemma 6 (Predex Decomposition). For each process 𝑃 ⊢� Δ;Γ there are predexes 𝑅1 , . . . , 𝑅𝑘

and a static context 𝒞 such that 𝑃 ≡𝑑 𝒞[𝑅1 , . . . , 𝑅𝑘] and 𝒞 ↛.

Proof. By induction on the structure of the typing derivation tree for 𝑃 ⊢ Δ;Γ. We perform
case analysis on the root rule.

Case: [T0]
Then 𝒞 = − and 𝑘 = 0.

Similar analysis for the rules which introduce an action or a forwarder or the recurion
process variable.

Case: [Tmix]
Let 𝑃 = par {𝑃1 | | 𝑃2}.

By i.h., 𝑃1 ≡𝑑 𝐶1[𝑅1 , . . . , 𝑅𝑝] and 𝑃2 ≡𝑑 𝐶2[𝑆1 , . . . , 𝑆𝑞], where 𝒞1 ↛𝑑 and 𝒞2 ↛𝑑.

Let 𝒞 = par {𝒞1 | | 𝒞2}.

We have 𝑃 ≡𝑑 𝒞[𝑅1 , . . . 𝑅𝑝 , 𝑆1 , . . . , 𝑆𝑞], with 𝑘 = 𝑝 + 𝑞.

Furthermore, since 𝒞1 ↛𝑑 and 𝒞2 ↛𝑑, then 𝒞 ↛𝑑.

Case: [Tsum]
Let 𝑃 = 𝑃1 + 𝑃2.

By i.h., 𝑃1 ≡𝑑 𝐶1[𝑅1 , . . . , 𝑅𝑝] and 𝑃2 ≡𝑑 𝐶2[𝑆1 , . . . , 𝑆𝑞], where 𝒞1 ↛𝑑 and 𝒞2 ↛𝑑.

Let 𝒞 = 𝒞1 + 𝒞2.

We have 𝑃 ≡𝑑 𝒞[𝑅1 , . . . 𝑅𝑝 , 𝑆1 , . . . , 𝑆𝑞], with 𝑘 = 𝑝 + 𝑞.

Furthermore, 𝒞 ↛𝑑.

228

Case: [Tsh]
Let 𝑃 = share 𝑥 {𝑃1 | | 𝑃2}.

By i.h., 𝑃1 ≡𝑑 𝐶1[𝑅1 , . . . , 𝑅𝑝] and 𝑃2 ≡𝑑 𝐶2[𝑆1 , . . . , 𝑆𝑞], where 𝒞1 ↛𝑑 and 𝒞2 ↛𝑑.

Let 𝒞 = share 𝑥 {𝒞1 | | 𝒞2}.

We have 𝑃 ≡𝑑 𝒞[𝑅1 , . . . 𝑅𝑝 , 𝑆1 , . . . , 𝑆𝑞], with 𝑘 = 𝑝 + 𝑞.

Furthermore, since 𝒞1 ↛𝑑 and 𝒞2 ↛𝑑, then 𝒞 ↛𝑑.

Cases: [TshL], [TshR]
Similar to case [Tsh].

Case: [Tcut]
Let 𝑃 = cut {𝑃1 |𝑥 | 𝑃2}.

By i.h., 𝑃1 ≡𝑑 𝐶1[𝑅1 , . . . , 𝑅𝑝] and 𝑃2 ≡𝑑 𝐶2[𝑆1 , . . . , 𝑆𝑞], where 𝒞1 ↛𝑑 and 𝒞2 ↛𝑑.

We have the following cases to consider.

Case: Either 𝒞1 = 𝒞′1[fwd 𝑥 𝑧] for some 1 ≤ 𝑖 ≤ 𝑝 and static context 𝒞′1 or 𝒞2 =

𝒞′2[fwd 𝑥 𝑧] for some 1 ≤ 𝑗 ≤ 𝑞 and static context 𝒞′2.
Suppose w.l.o.g. that 𝒞1 = 𝒞′1[fwd 𝑥 𝑧] for some 1 ≤ 𝑖 ≤ 𝑝 and static context 𝒞′1
We have two cases to consider, depending on whether (i) fwd 𝑥 𝑧 is guarded
by either a share or (ii) not.

If (i), then cut cut {𝑃1 |𝑥 | 𝑃2} does not yield a predex. So simply let 𝒞 =

cut {𝒞1 |𝑥 | 𝒞2}.
Suppose (ii). Then

𝑃 = cut {𝑃1 |𝑥 | 𝑃2}
≡𝑑 cut {𝒞′1[𝑅1 , . . . , 𝑅𝑝 , fwd 𝑥 𝑧] |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]}
≡𝑑 𝒞′1[𝑅1 , . . . , 𝑅𝑝 , cut {fwd 𝑥 𝑧 |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]}]

with 𝑘 = 𝑝.

Observe that cut {fwd 𝑥 𝑧 |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]} is a predex.

Case: Either𝑅𝑖 = cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]} or𝑄 𝑗 = cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]}
for some 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞.

Suppose w.l.o.g. that 𝑅𝑖 = cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]}.
We have two cases to consider, depending on whether(i) fwd 𝑥 𝑧 is guarded by
either a share in 𝒞1 or (ii) not.

If (i), then cut cut {𝑃1 |𝑥 | 𝑃2} does not yield a predex. Let simply 𝒞 =

cut {𝒞1 |𝑥 | 𝒞2}.

229

APPENDIX C. CONFLUENCE

Suppose (ii). Then

𝑃 = cut {𝑃1 |𝑥 | 𝑃2}
≡𝑑 cut {𝒞1[𝑅1 , . . . , cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]}, . . . , 𝑅𝑝] |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]}
≡𝐷 𝒞1[𝑅1 , . . . , cut {cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]} |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]}, . . . , 𝑅𝑝]

with 𝑘 = 𝑝.

Observe that cut {cut {fwd 𝑥 𝑧 |𝑧 | 𝒟[𝑀1 , . . . , 𝑀𝑛]} |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]} is a
predex.

Case: There is no 𝒞′1 s.t. 𝒞1 ≡𝑑 𝒞′1[𝒜], for some static context where 𝑠(𝒜) = 𝑥 and
the hole in 𝒞′1 is not guarded by a share on 𝑥.
Then, the cut cut {𝑃1 |𝑥 | 𝑃2} does not yield a predex.

Case: There is no 𝒞′2 s.t. 𝒞2 ≡𝑑 𝒞′2[𝒜], for some static context where 𝑠(𝒜) = 𝑥 and
the hole in 𝒞′2 is not guarded by a share on a 𝑥.
Then, the cut cut {𝑃1 |𝑥 | 𝑃2} does not yield a predex.

Case: 𝒞1 ≡𝑑 𝒞′1[𝒜], 𝒞2 ≡𝑑 𝒞′2[ℬ], 𝑠(𝒜) = 𝑠(ℬ) = 𝑥, 𝒞′1 , 𝒞
′
2 are static contexts in

which the holes are not guarded by share operations on 𝑥.
Then

𝑃 = cut {𝑃1 |𝑥 | 𝑃2}
≡𝑑 cut {𝒞′1[𝒜 , 𝑅1 , . . . , 𝑅𝑝] |𝑥 | 𝒞′2[ℬ , 𝑆1 , . . . , 𝑆𝑞]}
≡𝑑 𝒞′1[cut {𝒜 |𝑥 | 𝒞′2[ℬ , 𝑆1 , . . . , 𝑆𝑞]}, 𝑅1 , . . . , 𝑅𝑝]
≡𝑑 𝒞′1[𝒞

′
2[cut {𝒜 |𝑥 | ℬ}, 𝑆1 , . . . 𝑆𝑞], 𝑅1 , . . . , 𝑅𝑝]

Case: [Tcut!]

Let 𝑃 = cut! {𝑦.𝑃1 |𝑥 | 𝑃2}.

By i.h., 𝑃2 ≡𝑑 𝐶2[𝑆1 , . . . , 𝑆𝑞], where 𝒞2 ↛𝑑.

Observe that 𝑥 occurs guarded in 𝑆𝑖 , for all 1 ≤ 𝑖 ≤ 𝑞.

We have two cases to consider, depending on whether (i) 𝑥 does not occur unguarded
in 𝒞2 or (ii) 𝑥 occurs unguarded in 𝒞2.

Suppose (i). Then

𝑃 = cut! {𝑦.𝑃1 |𝑥 | 𝑃2}
≡𝑑 cut! {𝑦.𝑃1 |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]}

Let 𝒞 = cut! {𝑦.𝑃1 |𝑥 | 𝒞2}.

230

Suppose (ii). Then

𝑃 = cut! {𝑦.𝑃1 |𝑥 | 𝑃2}
≡𝑑 cut! {𝑦.𝑃1 |𝑥 | 𝒞2[𝑆1 , . . . , 𝑆𝑞]}
= cut! {𝑦.𝑃1 |𝑥 | 𝒞′2[call 𝑥(𝑦1);𝑄1 , . . . , call 𝑥(𝑦𝑛);𝑄𝑛 , 𝑀1 , . . . , 𝑀𝑚 , 𝑆1 , . . . , 𝑆𝑞]}

(where 𝑥 ∉ n(𝒞′2))

≡𝑑 𝒞′2[𝑄′1 , . . . , 𝑄
′
𝑛 , 𝑀

′
1 , . . . , 𝑀

′
𝑚 , 𝑆

′
1 , . . . , 𝑆

′
𝑞]

where 𝑄′
𝑖
= cut! {𝑦.𝑃1 |𝑥 | 𝑄𝑖}, 𝑀′𝑖 = cut! {𝑦.𝑃1 |𝑥 | 𝑀𝑖} and 𝑆′

𝑖
= cut! {𝑦.𝑃1 |𝑥 | 𝑆𝑖}.

Let𝒞 = �𝑥1 . . . 𝑥𝑛𝑦1 . . . 𝑦𝑞 .𝒞′2[𝑥1 , . . . , 𝑥𝑛 , 𝑀
′
1 , . . . , 𝑀

′
𝑚 , cut! {𝑦.𝑃1 |𝑥 | 𝑦1}, . . . , cut! {𝑦.𝑃1 |𝑥 | 𝑦𝑞}].

Lemma 7 (Diamond Property for→ −𝑑, Restricted to Predexes). Let 𝑃 be a predex s.t.
𝑃 →𝑑 𝑄 and 𝑃 →𝑑 𝑅. Either 𝑄 ≡𝑑 𝑅 or there exists 𝑆 s.t. both 𝑄 →𝑑 𝑆 and 𝑅→𝑑 𝑆.

Proof. By induction on the structure of the predex 𝑃.

Case: cut {𝒜 |𝑥 | ℬ}.
There is an unique →𝑑-reduction modulo structural congruence ≡𝑑, hence the
conclusion is immediate.

Case: cut! {𝑦.𝑃 |𝑥 | call 𝑥(𝑦);𝑄}.
There is an unique →𝑑-reduction modulo structural congruence ≡𝑑, hence the
conclusion is immediate.

Case: cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅𝑛]}.
Since 𝒞 ↛𝑑, the →𝑑-reductions of cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅𝑛]} are either
obtained by→𝑑-reducing one of the predexes 𝑅𝑖 or by→𝑑-reducing the cut on name
𝑦 with the forwarder fwd 𝑥 𝑦. Consequently, we have the following cases to consider

Case: 𝑄 and 𝑅 are obtained by→𝑑-reducing distinct predexes 𝑅𝑖 , 𝑅 𝑗 .
Suppose w.l.o.g. that 𝑖 < 𝑗. We have

𝑄 ≡𝑑 cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅
′
𝑖 , . . . , 𝑅 𝑗 , . . . , 𝑅𝑛]} and

𝑅 ≡𝑑 cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅𝑖 , . . . , 𝑅
′
𝑗 , . . . , 𝑅𝑛]}

where 𝑅𝑖 →𝑑 𝑅
′
𝑖
and 𝑅 𝑗 →𝑑 𝑅

′
𝑗
.

Let 𝑆 = cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅
′
𝑖
, . . . , 𝑅′

𝑗
, . . . , 𝑅𝑛]}.

Then, both 𝑄 →𝑑 𝑆 and 𝑅→𝑑 𝑆.

Case: 𝑄 and 𝑅 are obtained by→𝑑-reducing the same predex 𝑅𝑖 .
We have

𝑄 ≡𝑑 cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅
′
𝑖 , . . . , 𝑅𝑛]}

231

APPENDIX C. CONFLUENCE

and
𝑄 ≡𝑑 cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅

′′
𝑖 , . . . , 𝑅𝑛]}

where 𝑅𝑖 →𝑑 𝑅
′
𝑖
and 𝑅𝑖 →𝑑 𝑅

′′
𝑖
.

By applying the i.h. to 𝑅𝑖 we conclude that either (1) 𝑅𝑖 ≡𝑑 𝑅′′𝑖 or (2) exists 𝑆𝑖
s.t. both 𝑅′

𝑖
→𝑑 𝑆𝑖 and 𝑅′′

𝑖
→𝑑 𝑆𝑖 .

Suppose (1). Then 𝑄 ≡𝑑 𝑅.

Suppose (2). Let 𝑆 = cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑆𝑖 , . . . , 𝑅𝑛]}. Then, both
𝑄 →𝑑 𝑆 and 𝑅→𝑑 𝑆.

Case: One of 𝑄, 𝑅 is obtained by →𝑑-reducing the cut on name 𝑦, the other by
→𝑑-reducing one predex 𝑅𝑖 .

Suppose w.l.o.g. that𝑄 is obtained by→𝑑-reducing the cut on name 𝑦 and that
𝑅 is obtained by→𝑑-reducing a predex 𝑅𝑖 . Then

𝑄 ≡𝑑 ({𝑥/𝑦}𝒞)[{𝑥/𝑦}𝑅1 , . . . , {𝑥/𝑦}𝑅𝑖 , . . . , {𝑥/𝑦}𝑅𝑛] and

𝑅 ≡𝑑 cut {fwd 𝑥 𝑦 |𝑦 | 𝒞[𝑅1 , . . . , 𝑅
′
𝑖 , . . . , 𝑅𝑛]}

where 𝑅𝑖 →𝑑 𝑅
′
𝑖
.

We have {𝑥/𝑦}𝑅𝑖 →𝑑 {𝑥/𝑦}𝑅′𝑖 .
Let 𝑆 = ({𝑥/𝑦}𝒞)[{𝑥/𝑦}𝑅1 , . . . , {𝑥/𝑦}𝑅′𝑖 , . . . , {𝑥/𝑦}𝑅𝑛]. Both 𝑄 →𝑑 𝑆 and
𝑅→𝑑 𝑆.

Case: cut {𝐶[𝑅1] . . . [𝑅𝑚] |𝑥 | cut {fwd 𝑥 𝑦 |𝑦 | 𝐷[𝑅1] . . . [𝑅𝑛]}}.
Similar to previous case.

Factorisation of→→ through→𝑑

We prove Lemma 9.

Lemma 9(1).
∑𝒮(𝑃) ≡ 𝑃, for all 𝑃.

Proof. By structural induction on 𝑃 and case analysis on its principal form.

Case: Let 𝑃 = 𝒳, where𝒳 is either the inaction process, a forwarder, an action or a process
variable.
We have ∑

𝒮(𝒳) =
∑
{𝒳} (Def. 23, [𝒮0])

= 𝒳

232

Case: 𝑃 = par {𝑃1 | | 𝑃2}.
Suppose 𝒮(𝑃1) = {𝑃 𝑖1}𝑖∈ℐ and 𝒮(𝑃2) = {𝑃 𝑗2} 𝑗∈𝒥 .

Then ∑
𝒮(par {𝑃1 | | 𝑃2}) =

∑
𝑖∈ℐ , 𝑗∈𝒥

(par {𝑃 𝑖1 | | 𝑃
𝑗

2}) (Def. 23, [𝒮M])

≡ par {(
∑
𝑖∈ℐ

𝑃 𝑖1) | | (
∑
𝑗∈𝒥

𝑃
𝑗

2)} (≡ rules of +)

≡ par {𝑃1 | | 𝑃2} (i.h. applied to 𝑃1 and 𝑃2)

Cases: 𝑃 = cut {𝑃1 |𝑥 | 𝑃2} and 𝑃 = cut! {𝑦.𝑃1 |𝑥 | 𝑃2}. Similar to case 𝑃 = par {𝑃1 | | 𝑃2}
above.

Case: 𝑃 = 𝑃1 + 𝑃2.
Suppose 𝒮(𝑃1) = {𝑃 𝑖1}𝑖∈ℐ and 𝒮(𝑃2) = {𝑃 𝑗2} 𝑗∈𝒥 .

Then ∑
𝒮(𝑃1 + 𝑃2) =

∑
(𝒮(𝑃1) ∪ 𝒮(𝑃2)) (Def. 23, [𝒮Sm])

≡ (
∑
𝑖∈ℐ

𝑃 𝑖1) + (
∑
𝑗∈𝒥

𝑃
𝑗

2) (≡ rules of +)

≡ 𝑃1 + 𝑃2 (i.h. applied to 𝑃1 and 𝑃2)

Case: 𝑃 = share 𝑥 {𝑃1 | | 𝑃2}.

We prove first the following auxiliary hypothesis

(H)
∑ℐ𝑥(𝑃, 𝑄) ≡ share 𝑥 {𝑃 | | 𝑄}, for all 𝑃, 𝑄.
The definition of the interleaving ℐ𝑥(𝑃, 𝑄)map (Def. 23) is split into two cases,
whether (i) 𝑃 and 𝑄 both offer a take action with subject 𝑥 or (ii) not.
If (ii), ℐ𝑥(𝑃, 𝑄) = {share 𝑥 {𝑃 | | 𝑄}}, hence (H) follows immediately.
Suppose (i). Then, 𝑃 ≡𝑑 𝒞[take 𝑥(𝑦);𝑃′] and 𝑄 ≡𝑑 𝒟[take 𝑥(𝑧);𝑄′], for some
static contexts 𝒞 ,𝒟, where the hole is not guarded by a sum or share on 𝑥.
Then∑

ℐ𝑥(𝒞[take 𝑥(𝑦);𝑃′],𝒟[take 𝑥(𝑧);𝑄′])

= 𝒞 ◦ 𝒟[take 𝑥(𝑦); share 𝑥 {𝑃′ | | 𝑄}] + 𝒞 ◦ 𝒟[take 𝑥(𝑧); share 𝑥 {𝑃 | | 𝑄′}]
≡ 𝒞 ◦ 𝒟[take 𝑥(𝑦); share 𝑥 {𝑃′ | | 𝑄} + take 𝑥(𝑧); share 𝑥 {𝑃 | | 𝑄′}]

(≡ distributive laws over sum)

≡ 𝒞 ◦ 𝒟[share 𝑥 {take 𝑥(𝑦);𝑃′ | | take 𝑥(𝑧);𝑄′}] (≡ law [TSh])

≡ share 𝑥 {𝒞[take 𝑥(𝑦);𝑃′] | | 𝒟[take 𝑥(𝑧);𝑄′]}
(≡ laws [CSh], [ShC!] ,[ShM], [ShSh])

= share 𝑥 {𝑃 | | 𝑄}

233

APPENDIX C. CONFLUENCE

We continue with the proof of our main Lemma. Suppose 𝒮(𝑃1) =
∑
𝑖∈ℐ 𝑃

𝑖
1 and

𝒮(𝑃2) =
∑
𝑗∈𝒥 𝑃

𝑗

2.

Then ∑
𝒮(share 𝑥 {𝑃1 | | 𝑃2}) =

∑
(

⋃
𝑖∈ℐ , 𝑗∈𝒥

ℐ𝑥(𝑃 𝑖1 , 𝑃
𝑗

2)) (Def. 23, [𝒮Sh])

≡
∑

𝑖∈ℐ , 𝑗∈𝒥
(
∑
ℐ𝑥(𝑃 𝑖1 , 𝑃

𝑗

2))

≡
∑

𝑖∈ℐ , 𝑗∈𝒥
share 𝑥 {𝑃 𝑖1 | | 𝑃

𝑗

2} (hypothesis (H))

≡ share 𝑥 {(
∑
𝑖∈ℐ

𝑃 𝑖1) | | (
∑
𝑗∈𝒥

𝑃
𝑗

2)} (≡ laws of sum)

≡ share 𝑥 {𝑃1 | | 𝑃2} (i.h. applied to 𝑃1 and 𝑃2)

We introduce the following auxiliary notation which will be useful in the proof of the
following lemma.

Definition 37 (𝒮 ∼ 𝒯). Given two mutisets of processes 𝒮 ,𝒯 we write 𝒮 ∼ 𝒯 iff

(i) For all 𝑃 ∈ 𝒮, there exists 𝑄 ∈ 𝒯 s.t. 𝑃 ≡𝑑 𝑄.

(ii) For all 𝑃 ∈ 𝒯 , there exists 𝑄 ∈ 𝒮 s.t. 𝑃 ≡𝑑 𝑄.

It is immediate to check that ∼ is an equivalence relation. Then, we can succinctly
write the statement of Lemma 9(2) in the following way

Lemma 9(2). If 𝑃 ≡ 𝑄, then 𝒮(𝑃) ∼ 𝒮(𝑄).

Proof. By induction on the structure of a derivation tree for 𝑃 ≡ 𝑄 and by case analysis
on the root rule. Some cases of ≡ immediately follow because they are also contained
in ≡𝑑 and therefore we can apply the conversion pointwise to the multiset 𝒮(𝑃) (and
symmetrically to 𝒮(𝑄)), e.g. ≡ law [M] that expresses the commutativity of the mix
construct. Other cases follow because the two multisets 𝒮(𝑃) and 𝒮(𝑄) are the same, e.g.
≡ law [Sm]. We perform case analysis on the root rule of the derivation tree for ≡.

Case: [refl] 𝑃 ≡ 𝑃.
Follows because ∼ is reflexive.

Case: [symm] 𝑃 ≡ 𝑄 ⊃ 𝑄 ≡ 𝑃.
Follows by i.h., applied to 𝑃 ≡ 𝑄, and symmetry of ∼.

Case: [trans] 𝑃 ≡ 𝑄 and 𝑄 ≡ 𝑅 ⊃ 𝑃 ≡ 𝑅.
Follows by i.h., applied to both 𝑃 ≡ 𝑄 and 𝑄 ≡ 𝑅, and transitivity of ∼.

234

Case: [cong] 𝑃 ≡ 𝑄 ⊃ 𝒞[𝑃] ≡ 𝒞[𝑄].
Follows by i.h., applied to 𝑃 ≡ 𝑄, followed by induction on 𝒞.

Case: [M] par {𝑃 | | 𝑄} ≡ par {𝑄 | | 𝑃}.
We prove Def. 37(i). Proof of Def. 37(ii) is similar.

Suppose 𝑀 ∈ 𝒮(par {𝑃 | | 𝑄}).

Then, 𝑀 = par {𝑃′ | | 𝑄′} where 𝑃′ ∈ 𝒮(𝑃) and 𝑄′ ∈ 𝒮(𝑄).

By applying ≡𝑑 rule [M] we obtain par {𝑃′ | | 𝑄′} ≡𝑑 par {𝑄′ | | 𝑃′}.

Furthermore, par {𝑄′ | | 𝑃′} ∈ 𝒮(par {𝑄′ | | 𝑃′}).

Case: [CM] cut {𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})} ≡ par {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅}.
We prove Def. 37(i). Proof of Def. 37(ii) is similar.

Suppose 𝑀 ∈ 𝒮(cut {𝑃 |𝑥 : 𝐴| (par {𝑄 | | 𝑅})}).

Then, 𝑀 = cut {𝑃′ |𝑥 : 𝐴| (par {𝑄′ | | 𝑅′})}, where 𝑃′ ∈ 𝒮(𝑃), 𝑄′ ∈ 𝒮(𝑄′) and
𝑅′ ∈ 𝒮(𝑅).

By applying≡𝑑 rule [CM] we obtain cut {𝑃′ |𝑥 : 𝐴| (par {𝑄′ | | 𝑅′})} ≡𝑑 par {(cut {𝑃′ |𝑥 :
𝐴| 𝑄′}) | | 𝑅′}.

Furthermore, par {(cut {𝑃′ |𝑥 : 𝐴| 𝑄′}) | | 𝑅′} ∈ 𝒮(par {(cut {𝑃 |𝑥 : 𝐴| 𝑄}) | | 𝑅}).

Cases: [C], [fwd], [0M], [MM], [CC], [CC!], [C!M], [C!C!], [D-C!M], [D-C!C], [D-C!C!]
follow pointwise application of corresponding ≡𝑑 rule. Similar to case [CM] above.

Case: [0Sm] 0 + 0 ≡ 0.
We have 𝒮(0 + 0) = {0, 0} and 𝒮(0) = {0}. Follows immediately.

Case: [Sm] 𝑃 +𝑄 ≡ 𝑄 + 𝑃.
Follows by commutativity of multiset union

𝒮(𝑃 +𝑄) = 𝒮(𝑃) ∪ 𝒮(𝑄) = 𝒮(𝑄) ∪ 𝒮(𝑃) = 𝒮(𝑄 + 𝑅)

Case: [SmSm] 𝑃 + (𝑄 + 𝑅) ≡ (𝑃 +𝑄) + 𝑅.
Follows by associativity of multiset union

𝒮(𝑃 + (𝑄 + 𝑅)) = 𝒮(𝑃) ∪ 𝒮(𝑄) ∪ 𝒮(𝑅) = 𝒮((𝑃 +𝑄) + 𝑅).

Case: [Sh] share 𝑥 {𝑃 | | 𝑄} ≡ share 𝑥 {𝑄 | | 𝑃}.
Follows because ℐ𝑥(𝑃′, 𝑄′) ∼ ℐ𝑥(𝑄′, 𝑃′), for all 𝑃′, 𝑄′.

Case: [CSh] cut {𝑃 |𝑥 : 𝐴| share 𝑦 {𝑄 | | 𝑅}} ≡ share 𝑦 {cut {𝑃 |𝑥 : 𝐴| 𝑄} | | 𝑅}.

Follows because

{cut {𝑃′ |𝑥 | 𝑀} | 𝑀 ∈ ℐ𝑦(𝑄′, 𝑅′)} ∼ ℐ𝑦(cut {𝑃′ |𝑥 | 𝑄′}, 𝑅′)

for all 𝑃′, 𝑄′, 𝑅′.

235

APPENDIX C. CONFLUENCE

Cases: [ShC!], [ShM], [ShSh] are similar to case [CSh] above.

Case: [MSm] par {𝑃 | | (𝑄 + 𝑅)} ≡ (par {𝑃 | | 𝑄}) + (par {𝑃 | | 𝑅}).
Suppose 𝒮(𝑃) = {𝑃𝑖}𝑖∈ℐ , 𝒮(𝑄) = {𝑄 𝑗} 𝑗∈𝒥 and 𝒮(𝑅) = {𝑅𝑘}𝑘∈𝒦 .

Then

𝒮(par {𝑃 | | (𝑄 + 𝑅)}) =
{par {𝑃𝑖 | | 𝑄 𝑗}}𝑖∈ℐ , 𝑗∈𝒥 ∪ {par {𝑃𝑖 | | 𝑅𝑘}}𝑖∈ℐ ,𝑘∈𝒦 = 𝒮((par {𝑃 | | 𝑄}) + (par {𝑃 | | 𝑅}))

Cases: [CSm], [C!Sm], [ShSm] are similar to case [MSm] above.

Case: [TSh]

share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2}
≡ take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} + take 𝑥(𝑦2); share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2}

Follows immediately since

𝒮(share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2})
= 𝒮(take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2} + take 𝑥(𝑦2); share 𝑥 {take 𝑥(𝑦1);𝑃1 | | 𝑃2})

Case: [RSh] share 𝑥 {release 𝑥 | | 𝑃} ≡ 𝑃.
We prove Def. 37(i). Proof of Def. 37(ii) is similar.

Suppose 𝑀 ∈ 𝒮(share 𝑥 {release 𝑥 | | 𝑃}).

Then, 𝑀 = share 𝑥 {release 𝑥 | | 𝑃′} where 𝑃′ ∈ 𝒮(𝑃).

By applying ≡𝑑 rule [FSh] we obtain share 𝑥 {release 𝑥 | | 𝑃′} ≡𝑑 𝑃′.

Case: [PSh] share 𝑥 {put 𝑥(𝑦.𝑃);𝑄 | | 𝑅} ≡ put 𝑥(𝑦.𝑃); share 𝑥 {𝑄 | | 𝑅}.
Similar to case [RSh] above.

Lemma 9(3). Let 𝒮(𝑃) = {𝑃𝑖}𝑖∈ℐ . If 𝑃 →→ 𝑄, then exists {𝑄𝑖 𝑗}𝑖∈ℐ , 𝑗∈𝒥𝑖 s.t. 𝑄 ≡ ∑
𝑖∈ℐ , 𝑗∈𝒥𝑖 𝑄𝑖 𝑗

and for all 𝑖 ∈ ℐ , 𝑗 ∈ 𝒥𝑖 , either 𝑃𝑖 ≡𝑑 𝑄𝑖 𝑗 or 𝑃𝑖 →𝑑 𝑄𝑖 𝑗 .

Proof. By induction on the structure of a derivation tree for 𝑃 →→ 𝑄. The principal cut
reductions are handled straightforwardly since they do not involve sums, hence in those
cases 𝒮(𝑃) is simply the singleton {𝑃}. Furthermore, all the principal cut reductions are
also valid rules of→𝑑. Case [cong] is handled by applying pointwise the congruence rule.
Case [+par] is straightforward by invoking the inductive hypothesis on both summands
𝑃1 and 𝑃2 of 𝑃 = 𝑃1 + 𝑃2. Case [≡] follows by Lemma 9(2). We perform case analysis on
the root rule of→→.

236

Case: [1⊥] cut {close 𝑥 |𝑥 | wait 𝑥;𝑃′} →→ 𝑃′.

We have 𝒮(cut {close 𝑥 |𝑥 | wait 𝑥;𝑃′}) = {cut {close 𝑥 |𝑥 | wait 𝑥;𝑃′}}.

By→𝑑 rule [1⊥] we obtaincut {close 𝑥 |𝑥 | wait 𝑥;𝑃′} →𝑑 𝑃
′.

Cases: [fwd], [⊗O], [N⊕𝑙], [N⊕𝑟], [!?], [call], [∃∀],[��], [corec], [∧∨u], [S 𝑓 U 𝑓 f], [S 𝑓 U 𝑓 t],[S𝑒 U𝑒]
are handled similarly to case [1⊥] above.

Case: [cong].
By convenience we consider a distinct but equivalent axiomatisation of→→ in which
rule [cong] is replaced by an explicit congruence law for each static constructor. We
illustrate for the mix, left argument:

𝑃 →→ 𝑃′

par {𝑃 | | 𝑄} →→ par {𝑃′ | | 𝑄}

Suppose 𝒮(𝑃) = {𝑃𝑖}𝑖∈ℐ and 𝒮(𝑄) = {𝑄 𝑗} 𝑗∈𝒥 .

I.h. applied to 𝑃 →→ 𝑃′ yields the existence of {𝑃′
𝑖𝑘
}𝑖∈ℐ ,𝑘∈𝒦𝑖 s.t. 𝑃′ ≡ ∑

𝑖∈ℐ ,𝑘∈𝒦𝑖 𝑃
′
𝑖𝑘

and for all 𝑖 ∈ ℐ , 𝑘 ∈ 𝒦𝑖 , 𝑃𝑖 (→𝑑 ∪ ≡𝑑) 𝑃′𝑖𝑘 .

Consider the set {par {𝑃′
𝑖𝑘
| | 𝑄 𝑗}}𝑖∈ℐ ,𝑘∈𝒦𝑖 , 𝑗∈𝒥 .

Notice that ∑
𝑖∈ℐ ,𝑘∈𝒦𝑖 , 𝑗∈𝒥

par {𝑃𝑖𝑘 | | 𝑄 𝑗} ≡ par {(
∑

𝑖∈ℐ ,𝑘∈𝒦𝑖

𝑃𝑖𝑘) | | (
∑
𝑗∈𝒥

𝑄 𝑗)}

≡ par {𝑃′ | | 𝑄}

Furthermore, by applying either →𝑑 rule [cong] or ≡𝑑 rule [cong] pointwise we
conclude that for all 𝑖 ∈ ℐ , 𝑘 ∈ 𝒦𝑖 , 𝑗 ∈ 𝒥 , par {𝑃𝑖 | | 𝑄 𝑗} (→𝑑 ∪ ≡𝑑) par {𝑃′

𝑖𝑘
| | 𝑄 𝑗}.

Case [+par] 𝑃 →→ 𝑃′, 𝑄 →→ 𝑄′ ⊃ 𝑃 +𝑄 →→ 𝑃′ +𝑄′.
Suppose 𝒮(𝑃) = {𝑃𝑖}𝑖∈ℐ and 𝒮(𝑄) = {𝑄 𝑗} 𝑗∈𝒥 .

By applying i.h. on 𝑃 →→ 𝑃′ we conclude that exists {𝑃′
𝑖𝑘
}𝑖∈ℐ ,𝑘∈𝒦𝑖 s.t. 𝑃′ ≡∑

𝑖∈ℐ ,𝑘∈𝒦𝑖 𝑃
′
𝑖𝑘

and 𝑃𝑖 (≡𝑑 ∪ →𝑑) 𝑃′𝑖𝑘 , for all 𝑖 ∈ ℐ , 𝑘 ∈ 𝒦𝑖 .

By applying i.h. on 𝑄 →→ 𝑄′ we conclude that exists {𝑄′
𝑗𝑙
} 𝑗∈𝒥 ,𝑙∈ℒ 𝑗 s.t. 𝑄′ ≡∑

𝑗∈𝒥 ,𝑙∈ℒ 𝑗 𝑄
′
𝑗𝑙

and 𝑄 𝑗 (≡𝑑 ∪ →𝑑)𝑄′𝑗𝑙 , for all 𝑗 ∈ 𝒥 , 𝑙 ∈ ℒ 𝑗 .

Furthermore

(
∑

𝑖∈ℐ ,𝑘∈𝒦𝑖

𝑃′𝑖𝑘) + (
∑

𝑗∈𝒥 ,𝑙∈ℒ 𝑗

𝑄′𝑗𝑙) ≡ 𝑃
′ +𝑄′

237

APPENDIX C. CONFLUENCE

Case [≡] 𝑃 ≡ 𝑃′→→ 𝑄′ ≡ 𝑄 ⊃ 𝑃 →→ 𝑄.
Suppose 𝒮(𝑃) = {𝑃𝑖}𝑖∈ℐ and 𝒮(𝑃′) = {𝑃′

𝑖′}𝑖′∈ℐ′.

By applying i.h. on 𝑃′ →→ 𝑄′ we conclude that exists {𝑄′
𝑖′ 𝑗′}𝑖′∈ℐ′, 𝑗′∈𝒥 ′𝑖′ s.t. 𝑄′ ≡∑

𝑖′∈ℐ′, 𝑗′∈𝒥 ′
𝑖′
𝑄′
𝑖′ 𝑗′ and 𝑃′

𝑖
(→𝑑 ∪ ≡𝑑) 𝑄′𝑖′ 𝑗′, for all 𝑖′ ∈ ℐ′, 𝑗′ ∈ 𝒥 ′

𝑖′ .

Define𝒦𝑖 = {𝑖′ ∈ ℐ′ | 𝑃𝑖 ≡𝑑 𝑃′𝑖′} and𝒦−1
𝑖′ = {𝑖 ∈ ℐ | 𝑖′ ∈ 𝒦𝑖}.

By definition, 𝐾−1
𝑖′ = {𝑖 ∈ ℐ | 𝑃𝑖 ≡𝑑 𝑃′𝑖′}.

Since 𝑃 ≡ 𝑃′, Lemma 9(2) implies that both𝒦𝑖 and𝒦−1
𝑖

are nonempty.

Define the multiset {𝑅𝑖𝑖′ 𝑗′}𝑖∈ℐ ,𝑖′∈𝒦𝑖 , 𝑗′∈𝒥 ′𝑖′ by 𝑅𝑖𝑖′ 𝑗′ ≜ 𝑄′𝑖′ 𝑗′.

Notice that for all 𝑖 ∈ ℐ , 𝑖′ ∈ 𝒦𝑖 , 𝑗′ ∈ 𝒥 ′𝑖′ we have 𝑃𝑖 ≡𝑑 𝑃′𝑖 and 𝑃′
𝑖
(→𝑑 ∪ ≡𝑑) 𝑄′𝑖′ 𝑗′ =

𝑅𝑖𝑖′ 𝑗′, hence 𝑃𝑖 (→𝑑 ∪ ≡𝑑) 𝑅𝑖𝑖′ 𝑗′.

Furthermore ∑
𝑖∈ℐ ,𝑖′∈𝒦𝑖 , 𝑗′∈𝒥 ′𝑖′

𝑅𝑖𝑖′ 𝑗′ =
∑

𝑖′∈ℐ′,𝑖∈𝒦−1
𝑖′ , 𝑗

′∈𝒥 ′
𝑖′

𝑅𝑖𝑖′ 𝑗′

=
∑

𝑖′∈ℐ′, 𝑗′∈𝒥 ′
𝑖′

(
∑
𝑖∈𝒦−1

𝑖′

𝑅𝑖𝑖′ 𝑗′)

≡
∑

𝑖′∈ℐ′, 𝑗′∈𝒥 ′
𝑖′

𝑄′𝑖′ 𝑗′ (idempotency of sum)

≡ 𝑄′ ≡ 𝑄

238

D

Cut Normalisation

We prove the Share Expansion Lemma 14 and the Cut Normalisation Lemma 15. But
before, some useful notation: we annotate (by subscripting) the typing rules [TX] that
type an action with the subject 𝑥 of the introduced action [TX]𝑥 . So, for example, for the
action release

[Trelease]𝑥release 𝑥 ⊢ 𝑥 : U 𝑓 𝐴;Γ

Lemma 3 (Share Expansion). Let 𝑃 and 𝑄 be processes s.t. 𝑄 ⊢ Δ′, 𝑥 : U 𝑓 𝐴;Γ and either
𝑃 ⊢ Δ,U𝑒 𝐴;Γ or 𝑃 ⊢ Δ, 𝑥 : U 𝑓 𝐴;Γ. Then, one of the following hypothesis hold

(i) There is a process 𝑅 s.t. share 𝑥 {𝑃 | | 𝑄} ≈ 𝑅 and #(share 𝑥 {𝑃 | | 𝑄}) > #𝑅.

(ii) There are processes 𝑅, 𝑆 s.t share 𝑥 {𝑃 | | 𝑄} ≈ 𝑅 + 𝑆 and #(share 𝑥 {𝑃 | | 𝑄}) > #𝑅, #𝑆.

(iii) There is a process 𝑅 s.t. share 𝑥 {𝑃 | | 𝑄} ≈ share 𝑥 {fwd 𝑥 𝑦 | | 𝑅}.

Proof. The proof is by induction on the sum of depths of the type derivation trees of 𝑃
and 𝑄. We perform case analysis on the root rule of each tree.

Case Exclusions. Typing rules [T0], [T1], [T!], [Tdiscard], [Tempty] and [Trelease]𝑦 ,
[Ttake]𝑦 , [Tput]𝑦 where 𝑦 ≠ 𝑥, as well as [T⊥]𝑥 , [T⊗]𝑥 , [TO]𝑥 , [T⊕𝑙]𝑥 , [T⊕𝑟]𝑥 , [TN]𝑥 , [T?]𝑥 ,
[Tcall]𝑥 , [Tcell]𝑥 are all excluded because they type a process with a linear typing context
that cannot possibly contain 𝑥 : U 𝑓 𝐴 or 𝑥 : U𝑒 𝐴.

The remaining cases are organised in the following groups

Group A: Both derivations have as root rule [Ttake]𝑥 .

Group B: One of the root rules is [Tput]𝑥 .

Group C: One of the root rules is [Trelease]𝑥 .

Group D: One of the root rules is either [T⊥]𝑦 , [T⊗]𝑦 , [TO]𝑦 , [T⊕𝑙]𝑦 , [T⊕𝑟]𝑦 , [TN]𝑦 , [T?]𝑦 ,
[Tcall]𝑦 , [Taffine]𝑦 , [Tuse]𝑦 , [Tcell]𝑦 , [Ttake]𝑦 or [Tput]𝑦 , where 𝑦 ≠ 𝑥.

Group E: One of the root rules is either [Tmix], [Tcut], [Tcut!], [Tsh], [TshL] or [TshR].

Group F: One of the root rules is [Tsum].

239

APPENDIX D. CUT NORMALISATION

Group G: One of the root rules is [Tfwd].

We consider w.l.o.g. (since share 𝑥 {𝑃 | | 𝑄} ≈ share 𝑥 {𝑄 | | 𝑃}) that Groups C-G
apply to 𝑃.

Group A: Suppose 𝑃 = take 𝑥(𝑦);𝑃′ and 𝑄 = take 𝑥(𝑦);𝑄′.

Applying ≡ rule [TSh] yields

share 𝑥 {take 𝑥(𝑦);𝑃′ | | take 𝑥(𝑧);𝑄′}
≡ take 𝑥(𝑦); share 𝑥 {𝑃′ | | take 𝑥(𝑧);𝑄′} + take 𝑥(𝑧); share 𝑥 {take 𝑥(𝑦);𝑃′ | | 𝑄′}

We have

#share 𝑥 {take 𝑥(𝑦);𝑃′ | | 𝑄} = (1 + #𝑃′) × #𝑄

= #𝑄 + #𝑃′ × #𝑄

> 1 + #𝑃′ × #𝑄 (Lemma 13 implies #𝑄 > 1)

= #take 𝑥(𝑦); (share 𝑥 {𝑃′ | | 𝑄})

Similarly, one may derive

#share 𝑥 {𝑃 | | take 𝑥(𝑧);𝑄′} < #take 𝑥(𝑧);𝑄′(share 𝑥 {𝑃 | | 𝑄′})

Therefore, (ii) holds.

Group B: Only 𝑃 can type with an empty usage, hence 𝑃 = put 𝑥(𝑦.𝑃1);𝑃2.

Applying ≡ rule [PSh] yields

share 𝑥 {put 𝑥(𝑦.𝑃1);𝑃2 | | 𝑄} ≈ put 𝑥(𝑦.𝑃1); share 𝑥 {𝑃1 | | 𝑄}

And

#share 𝑥 {put 𝑥(𝑦.𝑃1);𝑃2 | | 𝑄} = (1 + #𝑃1 × #𝑃2) × #𝑄

= #𝑄 + #𝑃1 × #𝑃2 × #𝑄

> 1 + #𝑃1 × #𝑃2 × #𝑄 (Lemma 13 implies #𝑄 > 1)

= #put 𝑥(𝑦.𝑃1); share 𝑥 {𝑃1 | | 𝑄}

Therefore, (i) holds.

Group C: Applying ≡ rule [RSh] yields

share 𝑥 {release 𝑥 | | 𝑄} ≈ 𝑄

240

And

#share 𝑥 {release 𝑥 | | 𝑄} = #release 𝑥 × #𝑄

= 2 × #𝑄

> #𝑄 (Lemma 13 implies #𝑄 > 0)

Therefore, (i) holds.

Group D: We illustrate with cases [T⊥] and [TN].

Case [T⊥]
Suppose 𝑃 = wait 𝑦;𝑃′. Applying ≈ rule [Sh⊥] yields

share 𝑥 {wait 𝑦;𝑃′ | | 𝑄} ≈ wait 𝑦; share 𝑥 {𝑃′ | | 𝑄}

. And

#(share 𝑥 {wait 𝑦;𝑃′ | | 𝑄}) = (1 + #𝑃′) × #𝑄

= #𝑄 + #𝑃′ × #𝑄

> 1 + #𝑃′ × #𝑄 (Lemma 13 implies #𝑄 > 1)

= #(wait 𝑦; (share 𝑥 {𝑃′ | | 𝑄}))

Case [TN]
Suppose 𝑃 = case 𝑦 {|inl : 𝑃1 | inr : 𝑃2}. Applying ≈ rule [ShN] yields

share 𝑥 {case 𝑦 {|inl : 𝑃1 | inr : 𝑃2} | |𝑄} ≈ case 𝑦 {|inl : share 𝑥 {𝑃1 | |𝑄} | inr : share 𝑥 {𝑃2 | |𝑄}}

. And

#(share 𝑥 {case 𝑦 {|inl : 𝑃1 | inr : 𝑃2} | | 𝑄}) = (1 + #𝑃1 + #𝑃2) × #𝑄

= #𝑄 + #𝑃1 × #𝑄 + #𝑃2 × #𝑄

> 1 + #𝑃1 × #𝑄 + #𝑃2 × #𝑄 (Lemma 13 implies #𝑄 > 1)

= #(case 𝑦 {|inl : share 𝑥 {𝑃1 | | 𝑄} | inr : share 𝑥 {𝑃2 | | 𝑄}})

Group E: We illustrate with case [Tmix].

Suppose 𝑃 = par {𝑃1 | | 𝑃2} for some 𝑃1 , 𝑃2.We assume w.l.o.g. that 𝑥 ∈ fn(𝑃1) instead
of 𝑥 ∈ fn(𝑃2).

Applying ≡ rule [ShM] yields

share 𝑥 {(par {𝑃1 | | 𝑃2}) | | 𝑄} ≈ par {share 𝑥 {𝑃1 | | 𝑄} | | 𝑃2}

By induction we conclude that one of the following hypothesis hold

241

APPENDIX D. CUT NORMALISATION

Case (i): There is 𝑅 s.t. share 𝑥 {𝑃1 | | 𝑄} ≈ 𝑅 and #(share 𝑥 {𝑃1 | | 𝑄}) > #𝑅
Then

share 𝑥 {(par {𝑃1 | | 𝑃2}) | | 𝑄} ≈ par {𝑅 | | 𝑃2}

and

#(share 𝑥 {par {𝑃1 | | 𝑃2} | | 𝑄}) = #(par {𝑃1 | | 𝑃2}) × #𝑄

= #𝑃1 × #𝑃2 × #𝑄

= #𝑃1 × #𝑄 × #𝑃2

= #(share 𝑥 {𝑃1 | | 𝑄}) × #𝑃2

> #𝑅 × #𝑃2 (since #(share 𝑥 {𝑃1 | | 𝑄}) > #𝑅)

= #(par {𝑅 | | 𝑃2})

So hypothesis (i) holds.

Case (ii): There are 𝑅, 𝑆 s.t. share 𝑥 {𝑃1 | | 𝑄} ≈ 𝑅 + 𝑆 and #(share 𝑥 {𝑃1 | | 𝑄}) >
#𝑅, #𝑆.
Then

share 𝑥 {(par {𝑃1 | | 𝑃2}) | | 𝑄} ≈ par {(𝑅 + 𝑆) | | 𝑃2}
≈ (par {𝑅 | | 𝑃2}) + (par {𝑆 | | 𝑃2})

We can obtain (derivation similar to Case (i) above)

#(share 𝑥 {(par {𝑃1 | | 𝑃2}) | | 𝑄}) > #(par {𝑅 | | 𝑃2}), #(par {𝑆 | | 𝑃2})

So hypothesis (ii) holds.

Case (iii): There is R s.t. share 𝑥 {𝑃1 | | 𝑄} ≈ share 𝑥 {fwd 𝑥 𝑦 | | 𝑅}.
Then

share 𝑥 {(par {𝑃1 | | 𝑃2}) | | 𝑄} ≈
par {share 𝑥 {fwd 𝑥 𝑦 | | 𝑅} | | 𝑃2} ≈ share 𝑥 {fwd 𝑥 𝑦 | | (par {𝑅 | | 𝑃2})}

So hypothesis (iii) holds.

Group F: We have 𝑃 = 𝑃1 + 𝑃2.

Applying ≡ rule [ShSm] yields

share 𝑥 {𝑃1 + 𝑃2 | | 𝑄} ≈ share 𝑥 {𝑃1 | | 𝑄} + share 𝑥 {𝑃2 | | 𝑄}

We have

#(share 𝑥 {𝑃1 + 𝑃2 | | 𝑄}) = #(𝑃1 + 𝑃2) × #𝑄

= (#𝑃1 + #𝑃2) × #𝑄

= #𝑃1 × #𝑄 + #𝑃2 × #𝑄

> #𝑃1 × #𝑄 (#𝑃2 , #𝑄 > 0)

= #(share 𝑥 {𝑃1 | | 𝑄})

242

Similarly, one can derive

#(share 𝑥 {𝑃1 + 𝑃2 | | 𝑄}) > #(share 𝑥 {𝑃2 | | 𝑄})

Therefore, hypothesis (ii) holds.

Group G: We have 𝑃 = fwd 𝑥 𝑦. Hypothesis (iii) holds.

Lemma 32 (Cut Normalisation). The following two hypothesis hold

𝐻1(𝐴, 𝑃, 𝑄): Suppose 𝑃 ⊢ Δ′, 𝑥 : 𝐴;Γ, 𝑄 ⊢ Δ, 𝑥 : 𝐴;Γ are normal processes. There exists a
normal process 𝑅 s.t. cut {𝑃 |𝑥 : 𝐴| 𝑄} ≈ 𝑅.

𝐻2(𝐴, 𝑃, 𝑄) Suppose 𝑃 ⊢ 𝑦 : 𝐴;Γ and 𝑄 ⊢ Δ;Γ, 𝑥 : 𝐴 are normal processes. There exists a
normal process 𝑅 s.t. cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄} ≈ 𝑅.

Proof. The proof is by mutual induction. More precisely, by lexicographical induction:
first on 𝐴 (ordered by <, Def. 28), then on the hypothesis being proved - we consider
𝐻1 < 𝐻2 - and finally on the #-measure of the cut.

Since 𝐻1 < 𝐻2, we can appeal to 𝐻1(𝐴, 𝑃, 𝑄)when proving 𝐻2(𝐴, 𝑃, 𝑄). To justify the
inductive call we use the following notation

(𝐴, 𝐻𝑖 , 𝑃, 𝑄) → (𝐵, 𝐻𝑗 , 𝑅, 𝑆)

which means that we are proving hypothesis 𝐻𝑖(𝐴, 𝑃, 𝑄) and that somewhere during the
proof we appeal to hypothesis𝐻𝑗(𝐵, 𝑅, 𝑆). The inductive call must respect the lexicograph-
ical order.

Proof of 𝐻1(𝐴, 𝑃, 𝑄): We perform case analysis on the root rules of derivation trees for
𝑃 ⊢ Δ′, 𝑥 : 𝐴;Γ and 𝑄 ⊢ Δ, 𝑥 : 𝐴;Γ.

Case Exclusions. Typing rules [Tcall]𝑥 and [T0], [T1]𝑦 , [T!]𝑦 ,[Tdiscard]𝑦 , [Tempty]𝑦 ,
and [Trelease]𝑦 , where 𝑦 ≠ 𝑥, are excluded because they type a process with a
linear typing context that cannot possibly contain 𝑥 : 𝐴 or 𝑥 : 𝐴. Typing rule
[Tcut!] is excluded since we are assuming that both 𝑃 and𝑄 are in normal form. The
remaining cases are organised in the following groups

Group A: Each root rule is either [T1]𝑥 , [T⊥]𝑥 , [T⊗]𝑥 , [TO]𝑥 , [T⊕𝑙]𝑥 , [T⊕𝑟]𝑥 , [TN]𝑥 ,
[T!]𝑥 , [T?]𝑥 , [Taffine]𝑥 , [Tuse]𝑥 , [Tdiscard]𝑥 , [Tcell]𝑥 , [Trelease]𝑥 , [Ttake]𝑥 or
[Tput]𝑥 .

Group B: One of the root rules is either [T⊥]𝑦 [T⊗]𝑦 [TO]𝑦 , [T⊕𝑙]𝑦 , [T⊕𝑟]𝑦 [TN]𝑦
[T?]𝑦 , [Tcall]𝑦 ,[Taffine]𝑦 , [Tuse]𝑦 , [Tcell]𝑦 , [Ttake]𝑦 or [Tput]𝑦 , with 𝑦 ≠ 𝑥.

Group C: One of the root rules is either [Tmix], [Tsum] or [Tsh]𝑦 , [TshL]𝑦 or [TshR]𝑦
with 𝑦 ≠ 𝑥.

243

APPENDIX D. CUT NORMALISATION

Group D : One of the root rules is either [Tcell]𝑥 or [Tempty]𝑥 , the other is either
[Tsh]𝑥 , [TshL]𝑥 or [TshR]𝑥 .

Group E : One of the root rules is [Tcut].

Group A Since the name 𝑥 is typed by 𝐴 in 𝑃 and by 𝐴 in 𝑄 we conclude that the
introduced actions must be dual. Therefore, we are able to apply one of the
principal cut reductions. We perform case analysis on 𝐴. We illustrate with
some representative cases.

Case 𝐴 = 1.
We have

wait 𝑥; ⊢ 𝑥 : 1;Γ
𝑄0 ⊢ Δ;Γ

wait 𝑥;𝑄0 ⊢ Δ, 𝑥 : ⊥;Γ
where 𝑃 = close 𝑥, Δ = ∅ and 𝑄 = wait 𝑥;𝑄0.
Then

cut {close 𝑥 |𝑥 : 1| wait 𝑥;𝑄0} → 𝑄0 (→ [1⊥])

By hypothesis, 𝑄, and hence 𝑄0, is normal.
Case 𝐴 = 𝐴1 ⊗ 𝐴2.

We have

𝑃1 ⊢ Δ′1 , 𝑦 : 𝐴1;Γ 𝑃2 ⊢ Δ′2 , 𝑥 : 𝐴2;Γ

send 𝑥(𝑦.𝑃1);𝑃2 ⊢ Δ′1 ,Δ
′
2 , 𝑥 : 𝐴1 ⊗ 𝐴2;Γ

𝑄′ ⊢ Δ, 𝑥 : 𝐴2 , 𝑦 : 𝐴1;Γ

recv 𝑥(𝑦);𝑄′ ⊢ Δ, 𝑥 : 𝐴1 O 𝐴2

where 𝑃 = send 𝑥(𝑦.𝑃1);𝑃2, Δ′ = Δ′1 ,Δ
′
2 and 𝑄 = recv 𝑥(𝑧);𝑄′.

Then

cut {send 𝑥(𝑦.𝑃1);𝑃2 |𝑥 : 𝐴1 ⊗ 𝐴2 | recv 𝑥(𝑧);𝑄′}
→ cut {𝑃2 |𝑥 : 𝐴2 | (cut {𝑃1 |𝑦 : 𝐴1 | {𝑦/𝑧}𝑄′})} (→ [⊗O])

≈ cut {𝑃2 |𝑥 : 𝐴2 | 𝑅1}, for some normal 𝑅1

(i.h. (𝐴1 ⊗ 𝐴2 , 𝐻1 ,−,−) → (𝐴1 , 𝐻1 ,−,−))

≈ 𝑅, for some normal 𝑅 (i.h. (𝐴1 ⊗ 𝐴2 , 𝐻1 ,−,−) → (𝐴2 , 𝐻1 ,−,−))

Case 𝐴 =!𝐵
We have

𝑃′ ⊢ 𝑦 : 𝐵;Γ

!𝑥(𝑦);𝑃′ ⊢ 𝑥 :!𝐵;Γ
𝑄′ ⊢ Δ;Γ, 𝑥 : 𝐵

?𝑥;𝑄′ ⊢ Δ, 𝑥 :?𝐵;Γ
where 𝑃 = !𝑥(𝑦);𝑃′, Δ′ = ∅ and 𝑄 = ?𝑥;𝑄′.
Then

cut {!𝑥(𝑦);𝑃′ |𝑥 :!𝐵| ?𝑥;𝑄′}
→ cut! {𝑦.𝑃′ |𝑥 : 𝐵| 𝑄′} (→ [!?])

≈ 𝑅, for some normal 𝑅 (induction (!𝐵, 𝐻1 ,−,−) → (𝐵, 𝐻2 ,−,−))

244

Case 𝐴 = S 𝑓 𝐵.
We have

𝑃′ ⊢ Δ′, 𝑦 : ∧𝐵;Γ

cell 𝑥(𝑦.𝑃′) ⊢ Δ′, 𝑥 : S 𝑓 𝐵;Γ

where 𝑃 = cell 𝑥(𝑦.𝑃′).
The U 𝑓 𝐵 modality can be introduced by two possible rules: [Trelease]𝑥 or
[Ttake]𝑥 .

Case [Trelease]𝑥 .
We have

release 𝑥 ⊢ 𝑥 : U 𝑓 𝐵;Γ

where 𝑄 = release 𝑥.
Then

cut {cell 𝑥(𝑦.𝑃′) |𝑥 : S 𝑓 𝐵| release 𝑥}
→ cut {𝑃 |𝑦 : ∧𝐵| discard 𝑦} (→ [S 𝑓 U 𝑓 r])

≈ 𝑅, for some normal 𝑅 (induction (S 𝑓 𝐵,−,−,−) → (∧𝐵,−,−,−))

Case [Ttake]𝑥 .
We have

𝑄′ ⊢ Δ, 𝑧 : ∨𝐵, 𝑥 : U𝑒 𝐵;Γ

take 𝑥(𝑧);𝑄′ ⊢ Δ, 𝑥 : U 𝑓 𝐵;Γ

where 𝑄 = take 𝑥(𝑧);𝑄′.
Then

cut {cell 𝑥(𝑦.𝑃′) |𝑥 : S 𝑓 𝐵| take 𝑥(𝑧);𝑄′}
→ cut {{𝑧/𝑦}𝑃′ |𝑧 : ∧𝐵| (cut {empty 𝑥 |𝑥 : S𝑒 𝐵| 𝑄′})}

(→ [S 𝑓 U 𝑓 t])

≈ cut {{𝑧/𝑦}𝑃′ |𝑧 : ∧𝐵| 𝑅′}, for some normal 𝑅′

(i.h. (S 𝑓 𝐵, 𝐻1 , 𝑃, 𝑄) → (S𝑒 𝐵, 𝐻1 , empty 𝑥, 𝑄′))

≈ 𝑅, for some normal 𝑅 (induction (S 𝑓 𝐵,−,−,−) → (∧𝐵,−,−,−))

Case 𝐴 = S𝑒 𝐵.
We have

empty 𝑥 ⊢ 𝑥 : S𝑒 𝐵;Γ
𝑄1 ⊢ Δ1 , 𝑧 : ∧𝐵;Γ 𝑄2 ⊢ Δ, 𝑥 : S 𝑓 𝐵;Γ

put 𝑥(𝑦.𝑄1);𝑄2 ⊢ Δ1 ,Δ2 , 𝑥 : S𝑒 𝐵;Γ

where 𝑃 = empty 𝑥, Δ′ = ∅,𝑄 = put 𝑥(𝑧.𝑄1);𝑄2 and Δ = Δ1 ,Δ2.

245

APPENDIX D. CUT NORMALISATION

Then

cut {empty 𝑥 |𝑥 : S𝑒 𝐵| put 𝑥(𝑧.𝑄1);𝑄2}
→ cut {cell 𝑥(𝑧.𝑄1) |𝑥 : S 𝑓 𝐵| 𝑄2} (→ [S𝑒 U𝑒]])

≈ 𝑅, for some normal 𝑅
(induction (S𝑒 𝐵, 𝐻1 , empty 𝑥, put 𝑥(𝑧.𝑄1);𝑄2) → (S 𝑓 𝐵, 𝐻1 , cell 𝑥(𝑧.𝑄1), 𝑄2))

The inductive call is justified by

#(cut {empty 𝑥 |𝑥 | wrt 𝑥(𝑧.𝑄1);𝑄2})
= #empty 𝑥 × #wrt 𝑥(𝑧.𝑄1);𝑄2

= 2 × (1 + #𝑄1 × #𝑄2)
= 2 + 2 × #𝑄1 × #𝑄2

> (2 × #𝑄1) × #𝑄2

= (#𝑄1 + #𝑄1) × #𝑄2

> (1 + #𝑄1) × #𝑄2 (Lemma 13 implies #𝑄1 > 1)

= #(cut {cell 𝑥(𝑧.𝑄1) |𝑥 | 𝑄2})

Group B All of these cases introduce an action with subject 𝑦 ≠ 𝑥 and are handled
by applying one of the ≈ conversions of Fig. 8.2, which commute a cut with
an action. We obtain a cut which is #-smaller than the initial cut for which the
hypothesis is being proved, which allow us to make an inductive call. We will
illustrate with case [T⊥]𝑦 .

Case [T⊥]𝑦 .
We have

𝑄′ ⊢ Δ0 , 𝑥 : 𝐴;Γ

wait 𝑦;𝑄′ ⊢ Δ0 , 𝑥 : 𝐴, 𝑦 : ⊥;Γ

where 𝑄 = wait 𝑦;𝑄′ and Δ = Δ0 , 𝑦 : ⊥.
Then

cut {𝑃 |𝑥 : 𝐴| wait 𝑦;𝑄′} ≈ wait 𝑦; (cut {𝑃 |𝑥 : 𝐴| 𝑄′}) (figure 8.2, [⊥])

≈ wait 𝑦; (𝑅), for some normal 𝑅
(i.h. (𝐴, 𝐻1 , 𝑃,wait 𝑦;𝑄′) → (𝐴, 𝐻1 , 𝑃, 𝑄

′))

Group C Cases of this group are handled by applying one of the ≡ conversions
[CM], [CSh] or [CSm] that commute a cut with the static constructs mix, share
and sum. We obtain a #-smaller cut (two, in case of [Tsum]) which allow us
to make an inductive call. We illustrate with cases [Tmix] and [Tsum]. Case
[Tshare]𝑦 is handled similarly to [Tmix].

246

Case [Tmix].
We have

𝑃1 ⊢ Δ′1 , 𝑥 : 𝐴;Γ 𝑃2 ⊢ Δ′2;Γ

par {𝑃1 | | 𝑃2} ⊢ Δ′1 ,Δ
′
2 , 𝑥 : 𝐴;Γ

where 𝑃 = par {𝑃1 | | 𝑃2} and Δ′ = Δ′1 ,Δ
′
2. We assume w.l.o.g., since

par {𝑃1 | | 𝑃2} ≡ par {𝑃2 | | 𝑃1}, that 𝑥 ∈ fn(𝑃1).
Then

cut {(par {𝑃1 | | 𝑃2}) |𝑥 : 𝐴| 𝑄} ≡ par {(cut {𝑃1 |𝑥 : 𝐴| 𝑄}) | | 𝑃2}
(≡ [CM])

≈ par {𝑅 | | 𝑃2}, for some normal 𝑅
(i.h (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , 𝑃1 , 𝑄))

Case [Tsum]. We have

𝑃1 ⊢ Δ′, 𝑥 : 𝐴;Γ 𝑃2 ⊢ Δ′, 𝑥 : 𝐴;Γ
𝑃1 + 𝑃2 ⊢ Δ′, 𝑥 : 𝐴;Γ

where 𝑃 = 𝑃1 + 𝑃2.
Then

cut {(𝑃1 + 𝑃2) |𝑥 : 𝐴| 𝑄} ≡ (cut {𝑃1 |𝑥 : 𝐴| 𝑄}) + (cut {𝑃2 |𝑥 : 𝐴| 𝑄})
(≡ [CSm])

≈ 𝑅1 + (cut {𝑃2 |𝑥 : 𝐴| 𝑄}), for some normal 𝑅1

(i.h. (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , 𝑃1 , 𝑄))

≈ 𝑅1 + 𝑅2, for some normal 𝑅1

(induction (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , 𝑃2 , 𝑄))

Group D Suppose that one of the root rules is [Tcell]𝑥 and the other [Tshare]𝑥 . The
other cases are handled similarly.
We have

𝑃′ ⊢ Δ, 𝑦 : ∧𝐵;Γ

cell 𝑥(𝑦.𝑃′) ⊢ 𝑥 : S 𝑓 𝐵;Γ

𝑄1 ⊢ Δ′1 , 𝑥 : U 𝑓 𝐵;Γ 𝑄2 ⊢ Δ′2 , 𝑥 : U 𝑓 𝐵;Γ

share 𝑥 {𝑄1 | | 𝑄2} ⊢ Δ′1 ,Δ
′
2 , 𝑥 : U 𝑓 𝐵;Γ

where 𝑃 = cell 𝑥(𝑦.𝑃′), 𝑄 = share 𝑥 {𝑄1 | | 𝑄2}, Δ′ = Δ′1 ,Δ
′
2 and 𝐴 = S 𝑓 𝐵.

By a applying Lemma 14 to hypothesis 𝑄1 ⊢ Δ′1 , 𝑥 : U 𝑓 𝐵;Γ and 𝑄2 ⊢ Δ′2 , 𝑥 :
U 𝑓 𝐵;Γ we conclude that one of the following cases hold

Case (i): There is 𝑄′ s.t. 𝑄 ≈ 𝑄′ and #𝑄 > #𝑄′.
Then

cut {𝑃 |𝑥 : 𝐴| 𝑄} ≈ cut {𝑃 |𝑥 : 𝐴| 𝑄′}
≈ 𝑅, for some normal 𝑅

(i.h. (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , 𝑃, 𝑄
′))

247

APPENDIX D. CUT NORMALISATION

Case (ii): Exists 𝑅1 , 𝑅2 s.t. 𝑄 ≈ 𝑅1 + 𝑅2 and #𝑄 > #𝑅1 , #𝑅2.
Then

cut {𝑃 |𝑥 : 𝐴| 𝑄} ≈ cut {𝑃 |𝑥 : 𝐴| (𝑅1 + 𝑅2)}
≈ (cut {𝑃 |𝑥 : 𝐴| 𝑅1}) + (cut {𝑃 |𝑥 : 𝐴| 𝑅2})
≈ 𝑆1 + (cut {𝑃 |𝑥 : 𝐴| 𝑅2}), for some normal 𝑆2

(i.h. (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , 𝑃, 𝑅1))

≈ 𝑆1 + 𝑆2, for some normal 𝑆2

(i.h. (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , 𝑃, 𝑅2))

Case (iii): Exists 𝑄′ s.t. 𝑄 ≈ share 𝑥 {fwd 𝑥 𝑧 | | 𝑄′}
Then

cut {𝑃 |𝑥 : 𝐴| 𝑄} ≈ cut {cell 𝑥(𝑦.𝑃′) |𝑥 : 𝐴| share 𝑥 {fwd 𝑥 𝑧 | | 𝑄′}}

and cut {cell 𝑥(𝑦.𝑃′) |𝑥 : 𝐴| share 𝑥 {fwd 𝑥 𝑧 | | 𝑄′}} is an open cell.

Observe that the transformations of Lemma 14 neither introduce newer cuts
nor do they interfere with the existing ones. As as consequence, the processes
obtained by applying the lemma are still normal.

Group E [Tcut]
The cut must be an open cell. Suppose it is a full open cell, the strategy is
similar if it is an empty open cell.

We have

𝑃 = cut {cell 𝑦(𝑧.𝑃1) |𝑦 : 𝐵| share 𝑦 {fwd 𝑦 𝑤 | | 𝑃2}}

There are two hypothesis to consider, depending on whether (i) 𝑤 ≠ 𝑥 or (ii)
𝑤 = 𝑥.

Case (i) 𝑤 ≠ 𝑥

Then

cut {𝑃 |𝑥 : 𝐴| 𝑄}
= cut {(cut {cell 𝑦(𝑧.𝑃1) |𝑦 : 𝐵| share 𝑦 {fwd 𝑦 𝑤 | | 𝑃2}}) |𝑥 : 𝐴| 𝑄}
≈ cut {cell 𝑦(𝑧.𝑃1) |𝑦 : 𝐵| share 𝑦 {fwd 𝑦 𝑤 | | cut {𝑃2 |𝑥 : 𝐴| 𝑄}}}
≈ cut {cell 𝑦(𝑧.𝑃1) |𝑦 : 𝐵| share 𝑦 {fwd 𝑦 𝑤 | | 𝑅}}, for some normal 𝑅

(i.h. (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , 𝑃2 , 𝑄))

248

Case (ii) 𝑤 = 𝑥

Since 𝑦 and 𝑥 occur in a forwarder, we have 𝐵 = 𝐴. Then

cut {𝑃 |𝑥 : 𝐴| 𝑄}
= cut {(cut {cell 𝑦(𝑧.𝑃1) |𝑦 : 𝐴| share 𝑦 {fwd 𝑦 𝑥 | | 𝑃2}}) |𝑥 : 𝐴| 𝑄}
≈ cut {cell 𝑦(𝑧.𝑃1) |𝑦 : 𝐴| share 𝑦 {{𝑦/𝑥}𝑄 | | 𝑃2}}
≈ 𝑅, for some normal 𝑅

(i.h. (𝐴, 𝐻1 , 𝑃, 𝑄) → (𝐴, 𝐻1 , cell 𝑦(𝑧.𝑃1), share 𝑦 {{𝑦/𝑥}𝑄 | | 𝑃2}))

The following justifies the inductive call

#(cut {𝑃 |𝑥 | 𝑄}) = #𝑃 × #𝑄

= #(cut {cell 𝑦(𝑧.𝑃1) |𝑦 | share 𝑦 {fwd 𝑦 𝑥 | | 𝑃2}}) × #𝑄

= #cell 𝑦(𝑧.𝑃1) × #fwd 𝑦 𝑥 × #𝑃2 × #𝑄

> #cell 𝑦(𝑧.𝑃1) × #𝑃2 × #𝑄 (since fwd 𝑦 𝑥 = 2)

= #cell 𝑦(𝑧.𝑃1) × #𝑃2 × #({𝑦/𝑥}𝑄)
= #(cut {cell 𝑦(𝑧.𝑃1) |𝑦 | share 𝑦 {{𝑦/𝑥}𝑄 | | 𝑃2}})

Proof of 𝐻2

The proof is by case analysis on the root rule of derivation tree for 𝑄 ⊢ Δ;Γ, 𝑥 : 𝐴.
Case [Tcut!] is excluded since, by hypothesis, 𝑄 is normal. The remaining cases are
organised in the following groups

Group A: The root rule is either [T0], [T1], [Tfwd], [Tdiscard], [Trelease] or [Tempty].

Group B: The root rule is [Tcall]𝑥 .

Group C: The root rule is [Tcall]𝑦 , with 𝑦 ≠ 𝑥 or [T⊥], [T⊗], [TO], [T⊕𝑙], [T⊕𝑟], [TN],
[T!], [T?], [Taffine], [Tuse], [Tcell], [Ttake] or [Tput].

Group D: The root rules is either [Tmix], [Tsh], [TshL], [TshR] or [Tsum].

Group E: The root rule is [Tcut].

Group A These cases are handled by applying one of the ≈ discarding principles
[C!0], [C!1], [C!fwd] or [C!free], [C!discard], [C!release] or [C!empty]. We
illustrate for case [T0].

Case [T0].
We have

0 ⊢ ∅;Γ

Applying ≈ [C!0] yields cut! {𝑦.𝑃 |𝑥 : 𝐴| 0} ≈ 0 and, by Def. 25, 0 is normal.

249

APPENDIX D. CUT NORMALISATION

Group B We have

𝑄′ ⊢ Δ, 𝑧 : 𝐴;Γ, 𝑥 : 𝐴

call 𝑥(𝑧);𝑄′ ⊢ Δ;Γ, 𝑥 : 𝐴

where 𝑄 = call 𝑥(𝑧);𝑄′.
Then

cut! {𝑦.𝑃 |𝑥 : 𝐴| call 𝑥(𝑧);𝑄′} → cut {{𝑧/𝑦}𝑃 |𝑧 : 𝐴| (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄′})}
(→ [call])

≈ cut {{𝑧/𝑦}𝑃 |𝑧 : 𝐴| 𝑅′}, for some normal 𝑅′

(i.h. (𝐴, 𝐻2 , 𝑃, 𝑄) → (𝐴, 𝐻2 , 𝑃, 𝑄
′))

≈ 𝑅, for some normal 𝑅
(i.h. (𝐴, 𝐻2 ,−,−) → (𝐴, 𝐻1 ,−,−))

Group C The cases of this group are handled by applying one ≈ conversions of
Fig. 8.3 that commute an unrestricted cut with an action. We illustrate with
case [T⊥].

Case [T⊥].
We have

𝑄′ ⊢ Δ′;Γ, 𝑥 : 𝐴

wait 𝑦;𝑄′ ⊢ Δ′, 𝑦 : ⊥;Γ, 𝑥 : 𝐴

where 𝑄 = wait 𝑦;𝑄′ and Δ = Δ′, 𝑦 : ⊥.
Then

cut! {𝑦.𝑃 |𝑥 : 𝐴| wait 𝑦;𝑄′} ≈ wait 𝑦; (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄′}) (≈ [C!⊥])

≈ wait 𝑦;𝑅, for some normal 𝑅
(i.h. (𝐴, 𝐻2 , 𝑃, 𝑄) → (𝐴, 𝐻2 , 𝑃, 𝑄

′))

Group D These cases are handled by applying one of the ≡ conversions [C!M],
[C!Sh] or [C!Sm] that distribute an unrestricted cut over either a mix, a share
or a sum. Then we make two inductive calls. We illustrate with case [Tmix].

Case [Tmix].
We have

𝑄1 ⊢ Δ1;Γ, 𝑥 : 𝐴 𝑄2 ⊢ Δ2;Γ, 𝑥 : 𝐴

par {𝑄1 | | 𝑄2} ⊢ Δ1 ,Δ2;Γ, 𝑥 : 𝐴

where 𝑄 = par {𝑄1 | | 𝑄2} and Δ = Δ1 ,Δ2.

250

Then

cut! {𝑦.𝑃 |𝑥 : 𝐴| (par {𝑄1 | | 𝑄2})} ≡ par {(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄1}) | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄2})}
(≡ [C!M])

≈ par {𝑅1 | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄2})}, for some normal 𝑅1

(i.h. (𝐴, 𝐻2 , 𝑃, 𝑄) → (𝐴, 𝐻2 , 𝑃, 𝑄1))

≈ par {𝑅1 | | 𝑅2}, for some normal 𝑅2

(i.h. (𝐴, 𝐻2 , 𝑃, 𝑄) → (𝐴, 𝐻2 , 𝑃, 𝑄1))

Group E [Tcut]
We have

𝑄 = cut {cell 𝑧(𝑤.𝑄1) |𝑧 | share 𝑧 {fwd 𝑧 𝑢 | | 𝑄2}}

Then

cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄}
= cut! {𝑦.𝑃 |𝑥 : 𝐴| (cut {cell 𝑧(𝑤.𝑄1) |𝑧 | share 𝑧 {fwd 𝑧 𝑢 | | 𝑄2}})}
≈ cut {cell 𝑧(𝑤.(cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄1})) |𝑧 | share 𝑧 {fwd 𝑧 𝑢 | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄2})}}
≈ cut {𝑅1 |𝑧 | share 𝑧 {fwd 𝑧 𝑢 | | (cut! {𝑦.𝑃 |𝑥 : 𝐴| 𝑄2})}}, for some normal 𝑅1

(i.h. (𝐴, 𝐻2 , 𝑃, 𝑄) → (𝐴, 𝐻2 , 𝑃, 𝑄1))

≈ cut {𝑅1 |𝑧 | share 𝑧 {fwd 𝑧 𝑢 | | 𝑅2}}, for some normal 𝑅2

(i.h.(𝐴, 𝐻2 , 𝑃, 𝑄) → (𝐴, 𝐻2 , 𝑃, 𝑄2))

251

E

Strong Normalisation

Relations ≡c and→c

Definition 38 (≡c). The relation ≡c is the least relation in CLASS s.t. the following holds

• ≡c satisfies all the rules listed in Fig. 2.2.

• ≡c satisfies all the rules listed in Fig. 3.2 with the exception of [Sm], [0Sm], [SmSm], [MSm],
[CSm], [C!Sm], [ShSm] and [TSh].

• ≡c satisfies all the rules listed in Figs. 8.1, 8.2, 8.3 and E.1.

• ≡c satisfies the congruence rule [TShC]

share 𝑥 {take 𝑥(𝑦1);𝑃1 | | take 𝑥(𝑦2);𝑃2} ≡c take 𝑥(𝑦1); share 𝑥 {𝑃1 | | take 𝑥(𝑦2);𝑃2}

Definition 39 (Collapsing Reduction→c). Reduction→c is the least relation in CLASS s.t.
the following holds

• →c satisfies all the rules listed in Fig. 2.3, except [≡].

• →c satisfies all the rules listed in Fig. 3.3.

• →c satisfies rule [≡c]
𝑃 ≡c 𝑃

′ 𝑃′→c 𝑄
′ 𝑄′ ≡c 𝑄

𝑃 →c 𝑄

Interference-Sensitive Cells, Simulation Properties

Lemma 18. The following properties hold

252

par {𝑃 | | wait 𝑦;𝑄} ≡c wait 𝑦; par {𝑃 | | 𝑄} [M⊥]

par {𝑃 | | send 𝑦(𝑧.𝑄1);𝑄2} ≡c send 𝑦(𝑧.(par {𝑃 | | 𝑄1}));𝑄2[M⊗1]

par {𝑃 | | send 𝑦(𝑧.𝑄1);𝑄2} ≡c send 𝑦(𝑧.𝑄1); par {𝑃 | | 𝑄2}[M⊗2]

par {𝑃 | | recv 𝑦(𝑧);𝑄} ≡c recv 𝑦(𝑧); par {𝑃 | | 𝑄} [MO]

par {𝑃 | | 𝑦.inl;𝑄} ≡c 𝑦.inl; par {𝑃 | | 𝑄} [M⊕𝑙]

par {𝑃 | | 𝑦.inr;𝑄} ≡c 𝑦.inr; par {𝑃 | | 𝑄} [M⊕𝑟]

par {𝑃 | | case 𝑦 {|inl : 𝑄1 | inr : 𝑄2}}
≡c case 𝑦 {|inl : par {𝑃 | | 𝑄1} | inr : par {𝑃 | | 𝑄2}} [M&]

par {𝑃 | | ?𝑦;𝑄} ≡c ?𝑦; par {𝑃 | | 𝑄} [M?]

par {𝑃 | | call 𝑦(𝑧);𝑄} ≡c call 𝑦(𝑧); par {𝑃 | | 𝑄} [MCall]

par {𝑃 | | sendty 𝑦 𝐴;𝑄} ≡c sendty 𝑦 𝐴; par {𝑃 | | 𝑄} [M∃]

par {𝑃 | | recvty 𝑦(𝑋);𝑄} ≡c recvty 𝑦(𝑋); par {𝑃 | | 𝑄} [M∀]

par {𝑃 | | unfold� 𝑦;𝑄} ≡c unfold� 𝑦; par {𝑃 | | 𝑄} [M�]

par {𝑃 | | unfold� 𝑦;𝑄} ≡c unfold� 𝑦; par {𝑃 | | 𝑄} [M�]

par {𝑃 | | affine 𝑦;𝑄} ≡c affine 𝑦; par {𝑃 | | 𝑄} [MAffine]

par {𝑃 | | use 𝑦;𝑄} ≡c use 𝑦; par {𝑃 | | 𝑄} [MUse]

par {𝑃 | | cell 𝑦(𝑧.𝑄)} ≡c cell 𝑦(𝑧.par {𝑃 | | 𝑄}) [MCell]

par {𝑃 | | take 𝑦(𝑧);𝑄} ≡c take 𝑦(𝑧); par {𝑃 | | 𝑄} [MTake]

par {𝑃 | | put 𝑦(𝑧.𝑄1);𝑄2} ≡c put 𝑦(𝑧.(par {𝑃 | | 𝑄1}));𝑄2[MPut1]

par {𝑃 | | put 𝑦(𝑧.𝑄1);𝑄2} ≡c put 𝑦(𝑧.𝑄1); par {𝑃 | | 𝑄2}[MPut2]

Figure E.1: Mix-action commuting conversions ≡c.

(1) Let 𝑆 ⊆ {𝑅 | 𝑅 ⊢� 𝑦 : ∧𝐴}, 𝑃 ∈ 𝑆, 𝑄 ⊢� 𝑥 : U 𝑓 𝐴 and suppose 𝑄 is 𝑆-preserving on 𝑥.
Then, cut {cell 𝑥(𝑦.𝑃) |𝑥 | 𝑄} is simulated by cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄}.

(2) Let 𝑆 ⊆ {𝑅 | 𝑅 ⊢� 𝑦 : ∧𝐴}, 𝑄 ⊢� 𝑥 : U𝑒 𝐴 and 𝑄 suppose 𝑄 is 𝑆-preserving on 𝑥. Then,
cut {empty 𝑥 |𝑥 | 𝑄} is simulated by cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑄}.

253

APPENDIX E. STRONG NORMALISATION

Proof. Define
𝒮 ≜ 𝒮1 ∪ 𝒮2 ∪ 𝒮3

where

𝒮1 ≜ {(𝑀, 𝑁) | ∃𝑃 ∈ 𝑆, ∃𝑄 ⊢� 𝑥 : U 𝑓 𝐴. 𝑄 is 𝑆-preserving on 𝑥 and
𝑀 ≡c cut {cell 𝑥(𝑦.𝑃) |𝑥 | 𝑄} and 𝑁 ≡c cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄}}

𝒮2 ≜ {(𝑀, 𝑁) | ∃𝑄 ⊢� 𝑥 : U 𝑓 𝐴. 𝑄 is 𝑆-preserving on 𝑥 and
𝑀 ≡c cut {empty 𝑥 |𝑥 | 𝑄} and 𝑁 ≡c cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑄}}

𝒮3 ≜ {(𝑀, 𝑁) | 𝑀 ≡c 𝑁}

We prove that 𝒮 is a simulation. Suppose (𝑀, 𝑁) ∈ 𝒮 and 𝑀 →c 𝑀
′. We perform first

case analysis on (𝑀, 𝑁) ∈ 𝒮.

Case: (𝑀, 𝑁) ∈ 𝒮1. Then
𝑀 ≡c cut {cell 𝑥(𝑦.𝑃) |𝑥 | 𝑄}

and
𝑁 ≡c cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄}

where 𝑃 ∈ 𝑆 and 𝑄 ⊢� 𝑥 : U 𝑓 𝐴.

We perform case analysis on the reduction 𝑀 →c 𝑀
′.

Case: Internal reduction of 𝑄.

Then
𝑀′ ≡c cut {cell 𝑥(𝑦.𝑃) |𝑥 | 𝑄′}

Let
𝑁′ ≜ cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄′}

Then, 𝑁 →c 𝑁
′ and (𝑀′, 𝑁′) ∈ 𝒮1.

Case: Cell-take interaction on session 𝑥.

Then, 𝑄 ≡c take 𝑥(𝑦);𝑄′ and

𝑀′ ≡c cut {empty 𝑥 |𝑥 | (cut {𝑅 |𝑦 | 𝑄′})}

where 𝑅 ∈ 𝑆.
Since, by hypothesis, 𝑄 ⊢� 𝑥 : U 𝑓 𝐴 and 𝑄 ≡c take 𝑥(𝑦);𝑃′, then 𝑄′ ⊢� 𝑥 :
U𝑒 𝐴, 𝑦 : ∨𝐴. Since 𝑅 ∈ 𝑆, then 𝑅 ⊢� 𝑦 : ∧𝐴, hence cut {𝑅 |𝑦 | 𝑃′} ⊢� 𝑥 : U𝑒 𝐴

is 𝑆-preserving (Def. 31(a)).
Let

𝑁′ ≜ cut {empty 𝑥(𝑦.𝑆) |𝑥 | (cut {𝑅 |𝑦 | 𝑄′})}

Then, 𝑁 →c 𝑁
′ and (𝑀′, 𝑁′) ∈ 𝒮2.

254

Case: Cell-release interaction on session 𝑥.
Then, 𝑄 ≡c 𝒞[release 𝑥] and

𝑀 ≡c cut {cell 𝑥(𝑦.𝑃) |𝑥 | 𝒞[release 𝑥]}
→c 𝒞[cut {𝑃 |𝑦 | discard 𝑦}]

Let
𝑁′ ≜ 𝒞[cut {𝑃 |𝑦 | discard 𝑦}]

Then, since 𝑃 ∈ 𝑆:

𝑁 ≡c cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝒞[release 𝑥]}
→c 𝒞[cut {𝑃 |𝑦 | discard 𝑦}] = 𝑁′

and (𝑀′, 𝑁′) ∈ 𝒮3.

Case: (𝑀, 𝑁) ∈ 𝒮2. Then
𝑀 ≡c cut {empty 𝑥 |𝑥 | 𝑄}

and
𝑁 ≡c cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑄}

where 𝑄 ⊢� 𝑥 : U 𝑓 𝐴.

We perform case analysis on the reduction 𝑀 →c 𝑀
′.

Case: Internal reduction of 𝑄.

Then
𝑀′ ≡c cut {empty 𝑥 |𝑥 | 𝑄′}

Let
𝑁′ ≜ cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑄′}

Then, 𝑁 →c 𝑁
′ and (𝑀′, 𝑁′) ∈ 𝒮2.

Case: Cell-put interaction on session 𝑥.
Then, 𝑄 ≡c put 𝑥(𝑦.𝑄1);𝑄2.
By hypothesis, 𝑄 ⊢� 𝑥 : U𝑒 𝐴, hence 𝑄2 ⊢� 𝑥 : U 𝑓 𝐴.
Furthermore, since 𝑄 is 𝑆-preserving on 𝑥, then 𝑄1 ∈ 𝑆 and 𝑄2 is 𝑆-preserving
on 𝑥 (Def. 31(b)).
Then

𝑀′ ≡c cut {cell 𝑥(𝑦.𝑄1) |𝑥 | 𝑄2}

Let
𝑁′ ≜ cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄2}

Then, 𝑁 →c 𝑁
′ and (𝑀′, 𝑁′) ∈ 𝒮1.

255

APPENDIX E. STRONG NORMALISATION

Case: (𝑀, 𝑁) ∈ 𝒮3.
Trivial since 𝑀 ≡c 𝑁 .

Lemma 20. The following pair of simulations hold

(1) Let 𝑃 ⊢� 𝑥 : U 𝑓 𝐴, 𝑄 ⊢� 𝑥 : U 𝑓 𝐴 and 𝑆 ⊆ {𝑅 | 𝑅 ⊢� 𝑦 : ∧𝐴}. Then,

par {(cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑃}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}
simulates

cut {cell 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃 | | 𝑄}}

(2) Let 𝑃 ⊢� 𝑥 : U𝑒 𝐴, 𝑄 ⊢� 𝑥 : U 𝑓 𝐴 and 𝑆 ⊆ {𝑅 | 𝑅 ⊢� 𝑦 : ∧𝐴}. Then,

par {(cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑃}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}
simulates

cut {empty 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃 | | 𝑄}}

Proof. Define
𝒮 ≜ 𝒮1 ∪ 𝒮2 ∪ 𝒮3

where

𝒮1 ≜ {(𝑀, 𝑁) | ∃𝑃 ⊢� 𝑥 : U 𝑓 𝐴, ∃𝑄 ⊢� 𝑥 : U 𝑓 𝐴. 𝑀 ≡c cut {cell 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃 | | 𝑄}}
and 𝑁 ≡c par {(cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑃}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}}

𝒮2 ≜ {(𝑀, 𝑁) | ∃𝑃 ⊢� 𝑥 : U𝑒 𝐴, ∃𝑄 ⊢� 𝑥 : U 𝑓 𝐴. 𝑀 ≡c cut {empty 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃 | | 𝑄}}
and 𝑁 ≡c par {(cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑃}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}}

𝒮3 ≜ {(𝑀, 𝑁) | ∃𝑃 ⊢� ∅; ∅, ∃𝒞∃𝒟 . 𝑀 ≡c 𝒞 ◦ 𝒟[𝑃] and 𝑁 ≡c par {𝒞[𝑃] | | 𝒟[𝑃]}}

We prove that 𝒮 is a simulation. Suppose (𝑀, 𝑁) ∈ 𝒮 and 𝑀 →c 𝑀
′. We perform first

case analysis on (𝑀, 𝑁) ∈ 𝒮.

Case: (𝑀, 𝑁) ∈ 𝒮1. Then

𝑀 ≡c cut {cell 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃 | | 𝑄}}

and
𝑁 ≡c par {(cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑃}) | | (cut {𝑆 |𝑥 | 𝑄})}

where 𝑃 ⊢� 𝑥 : U 𝑓 𝐴 and 𝑄 ⊢� 𝑥 : U 𝑓 𝐴.

We perform case analysis on the reduction 𝑀 →c 𝑀
′.

Case: Internal reduction of either 𝑃 or 𝑄.
Suppose w.l.o.g. that 𝑀 →c 𝑀

′ is obtained by an internal reduction 𝑃 →c 𝑃
′.

Then
𝑀′ ≡c cut {cell 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃′ | | 𝑄}}

256

Let

𝑁′ ≜ par {(cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑃′}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}

Then, 𝑁 →c 𝑁
′ and (𝑀′, 𝑁′) ∈ 𝒮1.

Case: Cell-take interaction on session 𝑥.
Suppose w.l.o.g. that the interaction occurs between the cell and 𝑃.
Then, 𝑃 ≡c take 𝑥(𝑦);𝑃′ and

𝑀′ ≡c cut {empty 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {cut {𝑅 |𝑦 | 𝑃′} | | 𝑄}}

where 𝑅 ∈ 𝑆.
Since, by hypothesis, 𝑃 ⊢� 𝑥 : U 𝑓 𝐴 and 𝑃 ≡c take 𝑥(𝑦);𝑃′, then 𝑃′ ⊢� 𝑥 :
U𝑒 𝐴, 𝑦 : ∨𝐴. Since 𝑅 ∈ 𝑆, then 𝑅 ⊢� 𝑦 : ∧𝐴, hence cut {𝑅 |𝑦 | 𝑃′} ⊢� 𝑥 : U𝑒 𝐴.
Let

𝑁′ ≜ par {(cut {empty 𝑥(𝑦.𝑆) |𝑥 | (cut {𝑅 |𝑦 | 𝑃′})}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}

Then, 𝑁 →c 𝑁
′ and (𝑀′, 𝑁′) ∈ 𝒮2.

Case: Cell-release interaction on session 𝑥.
Both 𝑃 ≡c release 𝑥 and 𝑄 ≡c release 𝑥, i.e. 𝑃 ≡ 𝒞[release 𝑥] and 𝑄 ≡c

𝒟[release 𝑥], for some static contexts 𝒞 ,𝒟.
Then

𝑀 ≡c cut {cell 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝒞[release 𝑥] | | 𝒟[release 𝑥]}}
≡c 𝒞 ◦ 𝒟[cut {cell 𝑥(𝑦.𝑆) |𝑥 | release 𝑥}]
→c 𝒞 ◦ 𝒟[cut {𝑅 |𝑦 | discard 𝑦}]

where 𝑅 ∈ 𝑆.
Let

𝑁′ ≜ par {𝒞[cut {𝑅 |𝑦 | discard 𝑦}] | | 𝒟[cut {𝑅 |𝑦 | discard 𝑦}]}

Then 𝑁
2−→c 𝑁

′ and (𝑀′, 𝑁′) ∈ 𝒮3.

Case: (𝑀, 𝑁) ∈ 𝒮2. Then

𝑀 ≡c cut {empty 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃 | | 𝑄}}

and

𝑁 ≡c par {(cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑃}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}

where 𝑃 ⊢� 𝑥 : U𝑒 𝐴 and 𝑄 ⊢� 𝑥 : U 𝑓 𝐴.

We perform case analysis on the reduction 𝑀 →c 𝑀
′.

257

APPENDIX E. STRONG NORMALISATION

Case: Internal reduction of either 𝑃 or 𝑄.
Suppose w.l.o.g. that 𝑀 →c 𝑀

′ is obtained by an internal reduction 𝑃 →c 𝑃
′.

Then
𝑀′ ≡c cut {empty 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃′ | | 𝑄}}

Let

𝑁′ ≜ par {(cut {empty 𝑥(𝑦.𝑆) |𝑥 | 𝑃′}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}

Then, 𝑁 →c 𝑁
′ and (𝑀′, 𝑁′) ∈ 𝒮2.

Case: Cell-put interaction on session 𝑥.
Then, 𝑃 ≡c put 𝑥(𝑦.𝑃1);𝑃2.

By hypothesis, 𝑃 ⊢� 𝑥 : U𝑒 𝐴, hence 𝑃2 ⊢� 𝑥 : U 𝑓 𝐴.

Then
𝑀′ ≡c cut {cell 𝑥(𝑦.𝑆) |𝑥 | share 𝑥 {𝑃2 | | 𝑄}}

Let

𝑁′ ≜ par {(cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑃2}) | | (cut {cell 𝑥(𝑦.𝑆) |𝑥 | 𝑄})}

Then, 𝑁 →c 𝑁
′ and (𝑀′, 𝑁′) ∈ 𝒮1.

Case: (𝑀, 𝑁) ∈ 𝒮3.
Then

𝑀 ≡c 𝒞 ◦ 𝒟[𝑃]

and
𝑁 ≡c par {𝒞[𝑃] | | 𝒟[𝑃]}

where 𝑃 ⊢� ∅; ∅.

We perform case analysis on the reduction 𝑀 →c 𝑀
′.

Case: Internal reduction of either 𝒞 or𝒟.

Suppose w.l.o.g. that 𝒞 →c 𝒞′. Then

𝑀′ ≡c 𝒞′ ◦ 𝒟[𝑃]

Let
𝑁′ ≜ par {𝒞′[𝑃] | | 𝒟[𝑃]}

Then, 𝑁 →c 𝑁
′ and (𝑀′, 𝑁′) ∈ 𝒮3.

258

Case: Internal reduction of 𝑃.
Suppose 𝑃 →c 𝑃

′.
Then

𝑀 ≡c 𝒞 ◦ 𝒟[𝑃′]

Let 𝑁′ ≜ par {𝒞[𝑃′] | | 𝒟[𝑃′]}.
Then, 𝑁

2−→c 𝑁
′ and (𝑀′, 𝑁′) ∈ 𝒮3.

Fundamental Lemma

Lemma Fundamental Lemma 27. If 𝑃 ⊢� Δ;Γ, then 𝑃 ∈ ℒJ⊢� Δ;ΓK𝜎.

Proof. By induction on the structure of a typing derivation for 𝑃 ⊢� Δ;Γ. Cases [Tcut],
[Tfwd], [Tcut!] follow immediately because J𝑥 : 𝐴K = J𝑥 : 𝐴K⊥. Case [T0] follows because
0 is SN and case [Tmix] follows because par {𝑃 | | 𝑄} is SN whenever 𝑃 and 𝑄 are SN. For
the positive types 𝐴, the logical predicate J𝑥 : 𝐴K𝜎 is defined as the biorthogonal of some
set 𝑆, hence for the typing rules that introduce a positive type𝐴 the strategy is to show that
the introduced action 𝑃 lies in 𝑆 ⊆ 𝑆⊥⊥. For the negative types 𝐴: J𝑥 : 𝐴K𝜎 = 𝑆⊥⊥⊥ = 𝑆⊥,
hence the strategy for the typing rules that that introduce an action 𝑄 that types with a
negative type 𝑥 : 𝐴 is to show that cut {𝑃 |𝑥 : 𝐴| 𝑄} is SN, for all 𝑃 ∈ 𝑆. Particularly, for
rule [Tcorec], where 𝐴 = �𝑋. 𝐵, we proceed by induction on the depth 𝑛 of unfolding,
since 𝑆

⋃
𝑛∈N 𝜙

𝑛
𝐵
(∅⊥⊥). Cases [Tcell] and [Tempty] follow by applying the simulations

Lemma 18(1)-(2). Cases [Tsh], [TshL], [TshR] follows after applying the decomposition of the
share as a mix as given by Lemma 20(1)-(2). We illustrate the proof with some cases. In the
cases in which the recursive map � that annotates the typing judgments 𝑃 ⊢� Δ;Γ plays
no role and is essentially propagated from the conclusion to the premises of the typing
rule we omit it, working as if the process 𝑃 did not have any free recursion variable 𝑋.
Similarly for the map 𝜎 which annotates the logical predicates J𝑥 : 𝐴K𝜎.

Case: [T0]:

0 ⊢ ·;Γ

Let 𝒞! ∈ JΓK!.

Then, 𝒞![0] is SN.

Case [Tmix]:

𝑃1 ⊢ Δ1;Γ 𝑃2 ⊢ Δ2;Γ
par {𝑃1 | | 𝑃2} ⊢ Δ1 ,Δ2;Γ

Let 𝒞 ∈ JΔ1 ,Δ2K and𝒟 ∈ JΓK!.

259

APPENDIX E. STRONG NORMALISATION

We have

𝒞 ◦ 𝒟[par {𝑃1 | | 𝑃2}] ≡c par {(𝒞1 ◦ 𝒟[𝑃1]) | | (𝒞2 ◦ 𝒟[𝑃2])}

where 𝒞1 ∈ JΔ1K and 𝒞2 ∈ JΔ2K.

I.h. applied to 𝑃1 ⊢ Δ1;Γ yields 𝒞1 ◦ 𝒟[𝑃1] is SN.

I.h. applied to 𝑃2 ⊢ Δ2;Γ yields 𝒞2 ◦ 𝒟[𝑃2] is SN.

By applying Lemma 21(4) we conclude that par {(𝒞1 ◦ 𝒟[𝑃1]) | | (𝒞2 ◦ 𝒟[𝑃2])} is SN.

Hence, 𝒞 ◦ 𝒟[par {𝑃1 | | 𝑃2}] is SN.

Case [Tfwd]:

fwd 𝑥 𝑦 ⊢ 𝑥 : 𝐴, 𝑦 : 𝐴;Γ

Let 𝒞 ∈ J𝑥 : 𝐴, 𝑦 : 𝐴K and𝒟 ∈ JΓK!.

We have

𝒞 ◦ 𝒟[fwd 𝑥 𝑦] ≡c 𝒟[cut {𝑃 |𝑥 | (cut {𝑄 |𝑦 | fwd 𝑥 𝑦})}]

where 𝑃 ∈ J𝑥 : 𝐴K and 𝑄 ∈ J𝑦 : 𝐴K.

We prove that (H) 𝒟[cut {𝑃 |𝑥 | (cut {𝑄 |𝑦 | fwd 𝑥 𝑦})}] is SN, by induction on
𝑁(𝑃) +𝑁(𝑄). Suppose that𝒟[cut {𝑃 |𝑥 | (cut {𝑄 |𝑦 | fwd 𝑥 𝑦})}] →c 𝑅. There are
two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑃 or 𝑄.

Case: (ii) 𝑅 is obtained by an interaction with with the forwarder fwd 𝑥 𝑦 on either
session 𝑥 or 𝑦.

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii). Suppose w.l.o.g. that 𝑅 is obtained by an interaction with
the forwarder fwd 𝑥 𝑦 on session 𝑦. Then 𝑅 ≡c 𝒟[cut {𝑃 |𝑥 | {𝑥/𝑦}𝑄}].

By Lemma 23(1), {𝑥/𝑦}𝑄 ∈ J𝑥 : 𝐴K.

By Lemma 23(4), cut {𝑃 |𝑥 | {𝑥/𝑦}𝑄} is SN.

By Lemma 21(3), cut {𝑃 |𝑥 | (cut {𝑄 |𝑦 | fwd 𝑥 𝑦})} is SN.

Hence, 𝒞 ◦ 𝒟[fwd 𝑥 𝑦] is SN.

Case [Tcut]:

𝑃1 ⊢ Δ1 , 𝑥 : 𝐴;Γ 𝑃2 ⊢ Δ2 , 𝑥 : 𝐴;Γ
cut {𝑃1 |𝑥 | 𝑃2} ⊢ Δ1 ,Δ2;Γ

Let 𝒞1 ∈ JΔ1K, 𝒞2 ∈ JΔ2K and𝒟 ∈ JΓK!.

260

We have

𝒞1 ◦ 𝒞2 ◦ 𝒟[cut {𝑃1 |𝑥 | 𝑃2}] ≡c cut {(𝒞1 ◦ 𝒟[𝑃1]) |𝑥 | (𝒞2 ◦ 𝒟[𝑃2])}

I.h. and Lemma 26 applied to 𝑃1 ⊢ Δ1 , 𝑥 : 𝐴;Γ yields 𝒞1 ◦ 𝒟[𝑃1] ∈ J𝑥 : 𝐴K.

I.h. and Lemma 26 applied to 𝑃2 ⊢ Δ2 , 𝑥 : 𝐴;Γ yields 𝒞2 ◦ 𝒟[𝑃2] ∈ J𝑥 : 𝐴K.

By applying Lemma 23(4) we conclude that cut {(𝒞1 ◦ 𝒟[𝑃1]) |𝑥 | (𝒞2 ◦ 𝒟[𝑃2])} is
SN.

Hence, 𝒞 ◦ 𝒟[cut {𝑃1 |𝑥 | 𝑃2}] is SN.

Case [Tcut!]:

𝑃1 ⊢ 𝑦 : 𝐴;Γ 𝑃2 ⊢ Δ;Γ, 𝑥 : 𝐴

cut! {𝑦.𝑃1 |𝑥 | 𝑃2} ⊢ Δ;Γ

Let 𝒞 ∈ JΔK and𝒟 ∈ JΓK!.

We have

𝒞 ◦ 𝒟[cut! {𝑦.𝑃1 |𝑥 | 𝑃2}] ≡c 𝒞 ◦ (cut! {𝑦.𝒟[𝑃1] |𝑥 | 𝒟})[𝑃2]

I.h. and Lemma 26 applied to 𝑃1 ⊢ 𝑦 : 𝐴;Γ yields𝒟[𝑃1] ∈ J𝑦 : 𝐴K.

Then, cut! {𝑦.𝒟[𝑃1] |𝑥 | 𝒟} ∈ JΓ, 𝑥 : 𝐴K!.

I.h. applied to 𝑃2 ⊢ Δ;Γ, 𝑥 : 𝐴 yields 𝒞 ◦ (cut! {𝑦.𝒟[𝑃1] |𝑥 | 𝒟})[𝑃2] is SN.

Hence, 𝒞 ◦ 𝒞![cut! {𝑦.𝑃1 |𝑥 | 𝑃2}] is SN.

Case [Tvar]:
� = �′, 𝑋(𝑥, ®𝑦) ↦→ Δ, 𝑥 : 𝑌;Γ

𝑋(𝑧, ®𝑤) ⊢� { ®𝑤/®𝑦}(Δ, 𝑧 : 𝑌;Γ)
Let 𝜌 ∈ J�K𝜎. Then, 𝜌 = 𝜌′, 𝑋(𝑥, ®𝑦) ↦→ 𝑄 where 𝑄 ∈ ℒJ⊢∅ Δ, 𝑥 : 𝑌;ΓK𝜎 and 𝜌′ ∈ J�′K𝜎.

We have
𝜌(𝑋(𝑧, ®𝑤)) = {𝑧/𝑥}{ ®𝑤/®𝑦}𝑄

Since 𝑄 ∈ ℒJ⊢∅ Δ, 𝑥 : 𝑌;ΓK𝜎, then {𝑧/𝑥}{ ®𝑤/®𝑦}𝑄 ∈ ℒJ⊢∅ { ®𝑤/®𝑦}(Δ, 𝑧 : 𝑌;Γ)K.

Hence, 𝑋(𝑧, ®𝑤) ∈ ℒJ⊢� { ®𝑤/®𝑦}(Δ, 𝑧 : 𝑌;Γ)K.

Case [Tsh]:
𝑃1 ⊢� Δ1 , 𝑐 : U 𝑓 𝐴;Γ 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ

share 𝑐 {𝑃 | | 𝑄} ⊢� Δ1 ,Δ2 , 𝑐 : U 𝑓 𝐴;Γ

Let 𝒞1 ∈ JΔ1K, 𝒞2 ∈ JΔ2K and𝒟 ∈ JΓK!.

We have
𝒞1 ◦ 𝒞2 ◦ 𝒟[share 𝑐 {𝑃1 | | 𝑃2}]
≡c share 𝑐 {𝒞1 ◦ 𝒟[𝑃1] | | 𝒞2 ◦ 𝒟[𝑃2]}

261

APPENDIX E. STRONG NORMALISATION

I.h. and Lemma 26 applied to 𝑃1 ⊢� Δ1 , 𝑐 : U 𝑓 𝐴;Γ yields 𝒞1 ◦ 𝒟[𝑃1] ∈ J𝑐 : U 𝑓 𝐴K.

I.h. and Lemma 26 applied to 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ yields 𝒞2 ◦ 𝒟[𝑃2] ∈ J𝑐 : U 𝑓 𝐴K.

By applying Lemma 24(1) we conclude that𝒞1◦𝒞2◦𝒟[share 𝑐 {𝑃1 | | 𝑃2}] ∈ J𝑐 : U 𝑓 𝐴K.

By Lemma 26, share 𝑐 {𝑃1 | | 𝑃2} ∈ ℒJ⊢� Δ1 ,Δ2 , 𝑐 : U 𝑓 𝐴;ΓK.

Case: [TshL]
𝑃1 ⊢� Δ1 , 𝑐 : U𝑒 𝐴;Γ 𝑃2 ⊢� Δ, 𝑐 : U 𝑓 𝐴;Γ

share 𝑐 {𝑃1 | | 𝑃2} ⊢� Δ1 ,Δ2 , 𝑐 : U𝑒 𝐴;Γ

Let 𝒞1 ∈ JΔ1K, 𝒞2 ∈ JΔ2K and𝒟 ∈ JΓK!. We have

𝒞1 ◦ 𝒞2 ◦ 𝒟[share 𝑐 {𝑃1 | | 𝑃2}]
≡c share 𝑐 {𝒞1 ◦ 𝒟[𝑃1] | | 𝒞2 ◦ 𝒟[𝑃2]}

I.h. and Lemma 26 applied to 𝑃1 ⊢� Δ1 , 𝑐 : U𝑒 𝐴;Γ yields 𝒞1 ◦ 𝒟[𝑃1] ∈ J𝑐 : U𝑒 𝐴K.

I.h. and Lemma 26 applied to 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ yields 𝒞2 ◦ 𝒟[𝑃2] ∈ J𝑐 : U 𝑓 𝐴K.

By applying Lemma 24(2) we conclude that𝒞1◦𝒞2◦𝒟[share 𝑐 {𝑃1 | | 𝑃2}] ∈ J𝑐 : U𝑒 𝐴K.

By Lemma 26, share 𝑐 {𝑃1 | | 𝑃2} ∈ ℒJ⊢� Δ1 ,Δ2 , 𝑐 : U𝑒 𝐴;ΓK.

Case: [TshL]. Similarly to case [TshR].

Case: [T1]

close 𝑥 ⊢� 𝑥 : 1;Γ

By def. 32
J𝑥 : 1K ≜ 𝑆⊥⊥, where
𝑆 = {𝑄 ⊢ 𝑥 : 1 | 𝑄 ≡c close 𝑥}.

Let𝒟 ∈ JΓK!. We have𝒟[close 𝑥] ≈ close 𝑥. Hence,𝒟[close 𝑥] ∈ 𝑆.

By Lemma 22(4), 𝑆 ⊆ 𝑆⊥⊥, thus𝒟[close 𝑥] ∈ J𝑥 : 1K.

Lemma 26 implies that close 𝑥 ∈ ℒJ𝑥 : 1;ΓK.

Case: [T⊗]
𝑃1 ⊢� Δ1 , 𝑦 : 𝐴;Γ 𝑃2 ⊢� Δ2 , 𝑥 : 𝐵;Γ

send 𝑥(𝑦.𝑃1);𝑃2 ⊢� Δ1 ,Δ2 , 𝑥 : 𝐴 ⊗ 𝐵;Γ

By def. 32, J𝑥 : 𝐴 ⊗ 𝐵K = 𝑆⊥⊥, where

𝑆 = {𝑄 | ∃𝑄1 , 𝑄2. 𝑄 ≡c send 𝑥(𝑦.𝑄1);𝑄2 and 𝑄1 ∈ J𝑦 : 𝐴K and 𝑄2 ∈ J𝑥 : 𝐵K}.

Let 𝒞 ∈ JΔ1 ,Δ2K and𝒟 ∈ JΓK!. We have

𝒞 ◦ 𝒟[send 𝑥(𝑦.𝑃1);𝑃2] ≡c send 𝑥(𝑦.𝒞1 ◦ 𝒟[𝑃1]);𝒞2 ◦ 𝒟[𝑃2]

262

where 𝒞1 ∈ JΔ1K and 𝒞2 ∈ JΔ2K.

I.h. and Lemma 26 applied to 𝑃1 ⊢� Δ1 , 𝑦 : 𝐴;Γ yields 𝒞1 ◦ 𝒟[𝑃1] ∈ J𝑦 : 𝐴K.

I.h. and Lemma 26 applied to 𝑃2 ⊢� Δ2 , 𝑥 : 𝐵;Γ yields 𝒞2 ◦ 𝒟[𝑃2] ∈ J𝑥 : 𝐵K.

Hence, 𝒞 ◦ 𝒟[send 𝑥(𝑦.𝑃1);𝑃2] ∈ 𝑆.

By Lemma 22(4), 𝑆 ⊆ 𝑆⊥⊥, thus 𝒞 ◦ 𝒟[send 𝑥(𝑦.𝑃1);𝑃2] ∈ J𝑥 : 𝐴 ⊗ 𝐵K.

Lemma 26 implies that send 𝑥(𝑦.𝑃1);𝑃2 ∈ ℒJ⊢� Δ1 ,Δ2 , 𝑥 : 𝐴 ⊗ 𝐵;ΓK.

Case: [T⊕𝑙]
𝑃1 ⊢� Δ′, 𝑥 : 𝐴;Γ

𝑥.inl;𝑃1 ⊢� Δ′, 𝑥 : 𝐴 ⊕ 𝐵;Γ

By def. 32, J𝑥 : 𝐴 ⊕ 𝐵K = 𝑆⊥⊥, where

𝑆 = {𝑄 | ∃𝑄′. (𝑄 ≡c 𝑥.inl;𝑄′ and 𝑄′ ∈ J𝑥 : 𝐴K) or (𝑄 ≡c 𝑥.inr;𝑄′ and 𝑄′ ∈ J𝑥 : 𝐵K)}.

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK!. We have

𝒞 ◦ 𝒟[𝑥.inl;𝑃1] ≡c 𝑥.inl;𝒞 ◦ 𝒟[𝑃1]

I.h. and Lemma 26 applied to 𝑃1 ⊢� Δ′, 𝑥 : 𝐴;Γ yields 𝒞 ◦ 𝒟[𝑃1] ∈ J𝑥 : 𝐴K.

Hence, 𝒞 ◦ 𝒟[𝑥.inl;𝑃1] ∈ 𝑆.

By Lemma 22(4), 𝑆 ⊆ 𝑆⊥⊥, thus 𝒞 ◦ 𝒟[𝑥.inl;𝑃1] ∈ J𝑥 : 𝐴 ⊕ 𝐵K.

Lemma 26 implies that 𝑥.inl;𝑃1 ∈ ℒJ⊢� Δ′, 𝑥 : 𝐴 ⊕ 𝐵;ΓK.

Case: [T⊕𝑟]. Similarly to case [T⊕𝑙].

Case: [T!]
𝑃′ ⊢� 𝑦 : 𝐴;Γ

!𝑥(𝑦);𝑃′ ⊢� 𝑥 : !𝐴;Γ

By def. 32, J𝑥 :!𝐴K = 𝑆⊥⊥, where

𝑆 = {𝑄 | ∃𝑄′. 𝑄 ≡c !𝑥(𝑦);𝑄′ and 𝑄′ ∈ J𝑦 : 𝐴K}.

Let𝒟 ∈ JΓK!. We have
𝒟[!𝑥(𝑦);𝑃′] ≡c !𝑥(𝑦);𝒟[𝑃′]

I.h. and Lemma 26 applied to 𝑃′ ⊢� 𝑦 : 𝐴;Γ yields𝒟[𝑃′] ∈ J𝑦 : 𝐴K.

Hence,𝒟[𝑃′] ∈ 𝑆.

By Lemma 22(4), 𝑆 ⊆ 𝑆⊥⊥, thus𝒟[𝑃′] ∈ J𝑥 :!𝐴K.

Lemma 26 implies that !𝑥(𝑦);𝑃′ ∈ ℒJ ⊢� 𝑥 : !𝐴;ΓK.

263

APPENDIX E. STRONG NORMALISATION

Case: [T∃]
𝑃′ ⊢� Δ, 𝑥 : {𝐵/𝑋}𝐴;Γ

[T∃]
sendty 𝑥 𝐵;𝑃′ ⊢� Δ, 𝑥 : ∃𝑋.𝐴;Γ

By def. 32, J𝑥 : ∃𝑋.𝐴K = 𝑆⊥⊥, where

𝑆 = {𝑄 | ∃𝑄′, 𝑆′ ∈ ℛ[− : 𝐵]. 𝑄 ≡c sendty 𝑥 𝐵;𝑄′ and 𝑄′ ∈ J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆′]}.

Let 𝒞 ∈ JΔK and𝒟 ∈ JΓK!. We have

𝒞 ◦ 𝒟[sendty 𝑥 𝐵;𝑃′] ≡c sendty 𝑥 𝐵;𝒞 ◦ 𝒟[𝑃′]

I.h. and Lemma 26 applied to 𝑃′ ⊢� Δ, 𝑥 : {𝐵/𝑋}𝐴;Γ yields𝒞◦𝒟[𝑃′] ∈ J𝑥 : {𝐵/𝑋}𝐴K.

By Lemma 23(5), 𝒞 ◦ 𝒟[𝑃′] ∈ J𝑥 : 𝐴K𝜎[𝑋 ↦→J𝑥:𝐵K].

Hence, 𝒞 ◦ 𝒟[sendty 𝑥 𝐵;𝑃′] ∈ 𝑆.

By Lemma 22(4), 𝑆 ⊆ 𝑆⊥⊥, thus 𝒞 ◦ 𝒟[sendty 𝑥 𝐵;𝑃′] ∈ J𝑥 : ∃𝑋.𝐴K.

Lemma 26 implies that sendty 𝑥 𝐵;𝑃′ ∈ ℒJ ⊢� Δ, 𝑥 : ∃𝑋.𝐴;ΓK.

Case: [T�]
𝑃′ ⊢� Δ′, 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ

unfold� 𝑥;𝑃′ ⊢� Δ′, 𝑥 : �𝑋. 𝐴;Γ

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK!. We have

𝒞 ◦ 𝒟[unfold� 𝑥;𝑃′] ≡c unfold� 𝑥;𝒞 ◦ 𝒟[𝑃′]

I.h. and Lemma 26 applied to 𝑃′ ⊢� Δ′, 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ yields 𝒞 ◦ 𝒟[𝑃′] ∈ J𝑥 :
{�𝑋. 𝐴/𝑋}𝐴K.

By Lemma 25(2), J𝑥 : �𝑋. 𝐴K = unfold� 𝑥; J𝑥 : {�𝑋. 𝐴/𝑋}𝐴K𝜎, hence𝒞◦𝒟[unfold� 𝑥;𝑃′] ∈
J𝑥 : �𝑋. 𝐴K𝜎.

Lemma 26 implies that unfold� 𝑥;𝑃′ ∈ ℒJ⊢� Δ′, 𝑥 : �𝑋. 𝐴;ΓK.

Case: [T�]
𝑃′ ⊢� Δ′, 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ

unfold� 𝑥;𝑃′ ⊢� Δ′, 𝑥 : �𝑋. 𝐴;Γ

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK!. We have

𝒞 ◦ 𝒟[unfold� 𝑥;𝑃′] ≡c unfold� 𝑥;𝒞 ◦ 𝒟[𝑃′]

I.h. and Lemma 26 applied to 𝑃′ ⊢� Δ′, 𝑥 : {�𝑋. 𝐴/𝑋}𝐴;Γ yields 𝒞 ◦ 𝒟[𝑃′] ∈ J𝑥 :
{�𝑋. 𝐴/𝑋}𝐴K.

By Lemma 25(5), unfold� 𝑥; J𝑥 : {�𝑋. 𝐴/𝑋}𝐴K𝜎 ⊆ J𝑥 : �𝑋. 𝐴K𝜎, hence 𝒞 ◦
𝒟[unfold� 𝑥;𝑃′] ∈ J𝑥 : �𝑋. 𝐴K𝜎.

Lemma 26 implies that unfold� 𝑥;𝑃′ ∈ ℒJ⊢� Δ′, 𝑥 : �𝑋. 𝐴;ΓK.

264

Case: [Taffine]
𝑃′ ⊢� ®𝑐 : U 𝑓

®𝐵, ®𝑎 : ∨ ®𝐶, 𝑥 : 𝐴;Γ

affine 𝑥;𝑃′ ⊢� ®𝑐 : U 𝑓
®𝐵, ®𝑎 : ∨ ®𝐶, 𝑎 : ∧𝐴;Γ

By def. 32, J𝑥 : ∧𝐴K = 𝑆⊥⊥, where

𝑆 = {𝑄 | ∃𝑄′. 𝑄 ≡c affine 𝑥;𝑄′ and 𝑄′ ∈ J𝑥 : 𝐴K}.

Let 𝒞 ∈ J®𝑐 : U 𝑓
®𝐵, ®𝑎 : ∨ ®𝐶K and𝒟 ∈ JΓK!. We have

𝒞 ◦ 𝒟[affine 𝑥;𝑃′] ≡c affine 𝑥;𝒞 ◦ 𝒟[𝑃′]

I.h. and Lemma 26 applied to𝑃′ ⊢� ®𝑐 : U 𝑓
®𝐵, ®𝑎 : ∨ ®𝐶, 𝑥 : 𝐴;Γ yields𝒞◦𝒟[𝑃′] ∈ J𝑥 : 𝐴K.

Hence, 𝒞 ◦ 𝒟[affine 𝑥;𝑃′] ∈ 𝑆.

By Lemma 22(4), 𝑆 ⊆ 𝑆⊥⊥, thus 𝒞 ◦ 𝒟[affine 𝑥;𝑃′] ∈ J𝑥 : ∧𝐴K.

Lemma 26 implies that affine 𝑥;𝑃′ ∈ ℒJ⊢� ®𝑐 : U 𝑓
®𝐵, ®𝑎 : ∨ ®𝐶, 𝑥 : 𝐴;ΓK.

Case: [Tcell]
𝑃′ ⊢� Δ′, 𝑎 : ∧𝐴;Γ

cell 𝑐(𝑎.𝑃′) ⊢� Δ′, 𝑐 : S 𝑓 𝐴;Γ

Let 𝒞 ∈ JΔ′K,𝒟 ∈ JΓK! and 𝑄 ∈ J𝑐 : U 𝑓 𝐴K.

I.h. and Lemma 26 applied to 𝑃′ ⊢� Δ′, 𝑎 : ∧𝐴;Γ yields 𝒞 ◦ 𝒟[𝑃′] ∈ J𝑎 : ∧𝐴K.

Since 𝑄 ∈ J𝑐 : U 𝑓 𝐴K, then 𝑄 is J𝑎 : ∧𝐴K-preserving.

Hence, by Lemma 18(1), cut {cell 𝑐(𝑎.𝒞◦𝒟[𝑃′]) |𝑐 | 𝑄} is simulatedby cut {cell 𝑐(𝑎.J𝑎 :
∧𝐴K) |𝑐 | 𝑄}.
Since 𝑄 ∈ J𝑐 : U 𝑓 𝐴K = 𝑆⊥ where 𝑆 = {𝑅 | 𝑅 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K)}, then
cut {cell 𝑐(𝑎.J𝑎 : ∧𝐴K) |𝑐 | 𝑄} is SN.

Hence, cut {𝒞 ◦ 𝒟[cell 𝑐(𝑎.𝑃′)] |𝑐 | 𝑄} is SN.

Then, cell 𝑐(𝑎.𝑃′) ∈ ℒJ⊢� Δ′, 𝑐 : S 𝑓 𝐴;ΓK.

Case: [Tempty]

empty 𝑐 ⊢� 𝑐 : S𝑒 𝐴;Γ

Let𝒟 ∈ JΓK! and 𝑄 ∈ J𝑐 : U𝑒 𝐴K.

Since 𝑄 ∈ J𝑐 : U𝑒 𝐴K, then 𝑄 is J𝑎 : ∧𝐴K-preserving.

Hence, by Lemma 18(2), cut {empty 𝑐 |𝑐 | 𝑄} is simulated by cut {empty 𝑐(J𝑎 :
∧𝐴K.) |𝑐 | 𝑄}.
Since 𝑄 ∈ J𝑐 : U𝑒 𝐴K = 𝑆⊥ where 𝑆 = {𝑅 | 𝑅 ≡c empty 𝑐(J𝑎 : ∧𝐴K.}), then
cut {empty 𝑐(J𝑎 : ∧𝐴K.) |𝑐 | 𝑄} is SN.

Hence, cut {𝒟[empty 𝑐] |𝑐 | 𝑄} is SN.

Then, empty 𝑐 ∈ ℒJ⊢� 𝑐 : S𝑒 𝐴;ΓK.

265

APPENDIX E. STRONG NORMALISATION

Case: [T⊥]
𝑃′ ⊢� Δ′;Γ

wait 𝑥;𝑃′ ⊢� Δ′, 𝑥 : ⊥;Γ

By Def. 32 and Lemma 22(5) we have J𝑥 : ⊥K = 𝑆⊥, where

𝑆 = {𝑄 ⊢ 𝑥 : 1 | 𝑄 ≡c close 𝑥}.

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c close 𝑥.

We prove that (H) cut {𝑄 |𝑥 | 𝒞 ◦𝒟[wait 𝑥;𝑃′]} is SN, by induction on 𝑁(𝑄)+𝑁(𝒞).

Suppose that cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[wait 𝑥;𝑃′]} →c 𝑅. There are two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄 or 𝒞.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑥.

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii). Then

cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[wait 𝑥;𝑃′]} ≡c cut {close 𝑥 |𝑥 | 𝒞 ◦ 𝒟[wait 𝑥;𝑃′]} →c 𝒞 ◦ 𝒟[𝑃′] = 𝑅

Applying i.h. to 𝑃′ ⊢� Δ′;Γ yields 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[wait 𝑥;𝑃′]} is SN.

Therefore, 𝒞 ◦ 𝒟[wait 𝑥;𝑃′] ∈ J𝑥 : ⊥K.

By Lemma 26, wait 𝑥;𝑃′ ∈ ℒJ⊢� Δ′, 𝑥 : ⊥;ΓK.

Case: [TO]
𝑃′ ⊢� Δ′, 𝑧 : 𝐴, 𝑥 : 𝐵;Γ

recv 𝑥(𝑧);𝑃′ ⊢� Δ′, 𝑥 : 𝐴O 𝐵;Γ

By Def. 32 and Lemma 22(5) we have J𝑥 : 𝐴O 𝐵K = 𝑆⊥, where

𝑆 = {𝑄 | ∃𝑄1 , 𝑄2. 𝑄 ≡c send 𝑥(𝑦.𝑄1);𝑄2 and 𝑄1 ∈ J𝑦 : 𝐴K and 𝑄2 ∈ J𝑥 : 𝐵K}.

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c send 𝑥(𝑦.𝑄1);𝑄2 and 𝑄1 ∈ J𝑦 : 𝐴K and 𝑄2 ∈ J𝑥 : 𝐵K.

We prove that (H) cut {𝑄 |𝑥 | 𝒞◦𝒟[recv 𝑥(𝑧);𝑃′]} is SN, by induction on𝑁(𝑄)+𝑁(𝒞).

Suppose that cut {𝑄 |𝑥 | 𝒞 ◦𝒟[recv 𝑥(𝑧);𝑃′]} →c 𝑅. There are two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄 or 𝒞.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑥.

266

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii). Then

cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[recv 𝑥(𝑧);𝑃′]} ≡c cut {send 𝑥(𝑦.𝑄1);𝑄2 |𝑥 | 𝒞 ◦ 𝒟[recv 𝑥(𝑧);𝑃′]}
→c cut {𝑄2 |𝑥 | (cut {𝑄1 |𝑦 | 𝒞 ◦ 𝒟[{𝑦/𝑧}𝑃′]})} = 𝑅

Applying i.h. to {𝑦/𝑧}𝑃′ ⊢� Δ′, 𝑦 : 𝐴, 𝑥 : 𝐵;Γ yields 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[recv 𝑥(𝑧);𝑃′]} is SN.

Therefore, 𝒞 ◦ 𝒟[recv 𝑥(𝑧);𝑃′] ∈ J𝑥 : 𝐴O 𝐵K.

By Lemma 26, recv 𝑥(𝑧);𝑃′ ∈ ℒJ⊢� Δ′, 𝑥 : 𝐴O 𝐵;ΓK.

Case: [TN]
𝑃1 ⊢� Δ′, 𝑥 : 𝐴;Γ 𝑃2 ⊢� Δ′, 𝑥 : 𝐵;Γ

case 𝑥 {|inl : 𝑃1 | inr : 𝑃2} ⊢� Δ′, 𝑥 : 𝐴N 𝐵;Γ

By Def. 32 and Lemma 22(5) we have J𝑥 : 𝐴N 𝐵K = 𝑆⊥, where

𝑆 = {𝑄 | ∃𝑄′. (𝑄 ≡c 𝑥.inl;𝑄′ and 𝑄′ ∈ J𝑥 : 𝐴K) or (𝑄 ≡c 𝑥.inr;𝑄′ and 𝑄′ ∈ J𝑥 : 𝐵K)}.

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Suppose that 𝑄 ≡c 𝑥.inl;𝑄′ and 𝑄′ ∈ J𝑥 : 𝐴K. The case in which choice is right is
handled similarly.

We prove that (H) cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[case 𝑥 {|inl : 𝑃1 | inr : 𝑃2}]} is SN, by induction
on 𝑁(𝑄) + 𝑁(𝒞).

Suppose that cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[case 𝑥 {|inl : 𝑃1 | inr : 𝑃2}]} →c 𝑅. There are two
cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄 or 𝒞.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑥.

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii).

cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[case 𝑥 {|inl : 𝑃1 | inr : 𝑃2}]}
≡c cut {𝑥.inl;𝑄1 |𝑥 | 𝒞 ◦ 𝒟[case 𝑥 {|inl : 𝑃1 | inr : 𝑃2}]}
→c cut {𝑄1 |𝑥 | 𝒞 ◦ 𝒟[𝑃1]} = 𝑅

Applying i.h. to 𝑃1 ⊢� Δ′, 𝑥 : 𝐴;Γ yields 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[case 𝑥 {|inl : 𝑃1 | inr :
𝑃2}]} is SN.

267

APPENDIX E. STRONG NORMALISATION

Therefore, 𝒞 ◦ 𝒟[case 𝑥 {|inl : 𝑃1 | inr : 𝑃2}] ∈ J𝑥 : 𝐴N 𝐵K.

By Lemma 26, case 𝑥 {|inl : 𝑃1 | inr : 𝑃2} ∈ ℒJ⊢� Δ′, 𝑥 : 𝐴N 𝐵;ΓK.

Case: [T?]
𝑃′ ⊢� Δ′;Γ, 𝑥 : 𝐴

?𝑥;𝑃′ ⊢� Δ′, 𝑥 : ?𝐴;Γ

By Def. 32 and Lemma 22(5) we have J𝑥 : ?𝐴K = 𝑆⊥, where

𝑆 = {𝑄 | ∃𝑄′. 𝑄 ≡c !𝑥(𝑦);𝑄′ and 𝑄′ ∈ J𝑦 : 𝐴K}.

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c !𝑥(𝑦);𝑄′ and 𝑄′ ∈ J𝑦 : 𝐴K.

We prove that (H) cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[?𝑥;𝑃′]} is SN, by induction on 𝑁(𝑄) + 𝑁(𝒞).

Suppose that cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[?𝑥;𝑃′]} →c 𝑅. There are two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄 or 𝒞.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑥.

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii). Then

cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[?𝑥;𝑃′]}
≡c cut {!𝑥(𝑦);𝑄′ |𝑥 | 𝒞 ◦ 𝒟[?𝑥;𝑃′]}
→c cut! {𝑦.𝑄′ |𝑥 | 𝒞 ◦ 𝒟[𝑃′]} = 𝑅

Applying i.h. to 𝑃′ ⊢� Δ′;Γ, 𝑥 : 𝐴 yields 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[?𝑥;𝑃′]} is SN.

Therefore, 𝒞 ◦ 𝒟[?𝑥;𝑃′] ∈ J𝑥 : ?𝐴K.

By Lemma 26, ?𝑥;𝑃′ ∈ ℒJ⊢� Δ′, 𝑥 : ?𝐴;ΓK.

Case: [Tcall]
𝑃′ ⊢� Δ, 𝑧 : 𝐴;Γ′, 𝑥 : 𝐴

call 𝑥(𝑧);𝑃′ ⊢� Δ;Γ′, 𝑥 : 𝐴

Let 𝒞 ∈ JΔK and 𝒟 ∈ JΓ′, 𝑥 : 𝐴K!. We prove that (H) 𝒞 ◦ 𝒟[call 𝑥(𝑧);𝑃′] is SN, by
induction on 𝑁(𝒞).

Suppose that 𝒞 ◦ 𝒟[call 𝑥(𝑧);𝑃′] →c 𝑅. There are two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of𝒞.

Case: (ii) 𝑅 is obtained by an interaction on session 𝑥.

268

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii). Then

𝒞 ◦ 𝒟[call 𝑥(𝑧);𝑃′]
≡c cut! {𝑦.𝑄 |𝑥 | 𝒞 ◦ 𝒟′[call 𝑥(𝑧);𝑃′]}
→c (cut {{𝑧/𝑦}𝑄 |𝑧 | 𝒞}) ◦ (cut! {𝑦.𝑄 |𝑥 | 𝒟′})[𝑃′] = 𝑅

Since𝒟 ∈ JΓ′, 𝑥 : 𝐴K!, then𝒟′ ∈ JΓ′K! and 𝑄 ∈ J𝑦 : 𝐴K.

By Lemma 23(1), {𝑧/𝑦}𝑄 ∈ J𝑧 : 𝐴K.

Then, cut {{𝑧/𝑦}𝑄 |𝑧 | 𝒞} ∈ JΔ, 𝑧 : 𝐴K and cut! {𝑦.𝑄 |𝑥 | 𝒟′} ∈ JΓ′, 𝑥 : 𝐴K!.

Applying i.h. to 𝑃′ ⊢� Δ, 𝑧 : 𝐴;Γ′, 𝑥 : 𝐴 yields 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that 𝒞 ◦ 𝒟[call 𝑥(𝑧);𝑃′] is SN.

Thus, call 𝑥(𝑧);𝑃′ ∈ ℒJ⊢� Δ;Γ′, 𝑥 : 𝐴K.

Case: [T∀]
𝑃′ ⊢� Δ′, 𝑥 : 𝐴;Γ

recvty 𝑥(𝑋);𝑃′ ⊢� Δ′, 𝑥 : ∀𝑋.𝐴;Γ

By Def. 32 and Lemma 22(5) we have J𝑥 : ∀𝑋.𝐴K = 𝑆⊥, where

𝑆 = {𝑄 | ∃𝑄′, 𝑆′ ∈ ℛ[− : 𝐵]. 𝑄 ≡c sendty 𝑥 𝐵;𝑄′ and 𝑄′ ∈ J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆′]}.

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c sendty 𝑥 𝐵;𝑄′ and 𝑄′ ∈ J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆′], for some 𝑆′ ∈ ℛ[− : 𝐵].

We prove that (H) cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[recvty 𝑥(𝑋);𝑃′]} is SN, by induction on
𝑁(𝑄) + 𝑁(𝒞).

Suppose that cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[recvty 𝑥(𝑋);𝑃′]} →c 𝑅. There are two cases to
consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄 or 𝒞.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑥.

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii). Then

cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[recvty 𝑥(𝑋);𝑃′]} ≡c cut {sendty 𝑥 𝐵;𝑄′ |𝑥 | 𝒞 ◦ 𝒟[recvty 𝑥(𝑋);𝑃′]}
→c cut {𝑄′ |𝑥 | 𝒞 ◦ 𝒟[{𝐵/𝑋}𝑃′]} = 𝑅

Applying i.h. to {𝐵/𝑋}𝑃′ ⊢� Δ′, 𝑥 : {𝐵/𝑋}𝐴;Γ andLemma 26 yields𝒞◦𝒟[{𝐵/𝑋}𝑃′] ∈
J𝑥 : {𝐵/𝑋}𝐴K.

269

APPENDIX E. STRONG NORMALISATION

By Lemma 23(5), 𝒞 ◦ 𝒟[{𝐵/𝑋}𝑃′] ∈ J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆′].

Since 𝑄′ ∈ J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆′] and 𝒞 ◦𝒟[{𝐵/𝑋}𝑃′] ∈ J𝑥 : 𝐴K𝜎[𝑋 ↦→𝑆′], Lemma 23(4) yields
that 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑥 | 𝒞 ◦ 𝒟[recvty 𝑥(𝑋);𝑃′]} is
SN.

Therefore, 𝒞 ◦ 𝒟[recvty 𝑥(𝑋);𝑃′] ∈ J𝑥 : ∀𝑋.𝐴K.

By Lemma 26, recvty 𝑥(𝑋);𝑃′ ∈ ℒJ⊢� Δ′, 𝑥 : ∀𝑋.𝐴;ΓK.

Case: [Tcorec]

{𝑥/𝑧}{ ®𝑦/ ®𝑤}𝑃′ ⊢�′ Δ′, 𝑥 : 𝐴;Γ �′ = �, 𝑌(𝑥, ®𝑦) ↦→ Δ′, 𝑥 : 𝑋;Γ

corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦] ⊢� Δ′, 𝑥 : �𝑋. 𝐴;Γ

Let 𝜌 ∈ J�K𝜎, 𝒞 ∈ JΔ′K𝜎 and𝒟 ∈ JΓK!
𝜎.

We prove that 𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] ∈ J𝑥 : �𝑋. 𝐴K𝜎.

By Lemma 26, this implies that corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦] ∈ ℒJ⊢� Δ′, 𝑥 : �𝑋. 𝐴;ΓK𝜎.

By Lemma 25(5), we have

J𝑥 : �𝑋. 𝐴K𝜎 =
⋂
𝑛∈N

𝜙𝑛
{𝑋/𝑋}𝐴

(∅⊥⊥)⊥

where 𝜙{𝑋/𝑋}𝐴(𝑆) ≜ unfold� 𝑥; J𝑥 : {𝑋/𝑋}𝐴K𝜎[𝑋 ↦→𝑆].

We prove (H1):

∀𝑛 ∈ N, ∀𝜌 ∈ J�K𝜎 , ∀𝒞 ∈ JΔ′K𝜎 , ∀𝒟 ∈ JΓK!
𝜎 .

𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] ∈ 𝜙𝑛
{𝑋/𝑋}𝐴

(∅⊥⊥)⊥

Proof of (H1) is by induction on 𝑛 ∈ N:

Case: 𝑛 = 0.
Follows because𝒞◦𝒟[𝜌(corec𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] ∈ ∅⊥ andsince𝜙0

{𝑋/𝑋}𝐴
(∅⊥⊥)⊥ =

∅⊥⊥⊥ = ∅⊥ (Lemma 22(5)).

Case: 𝑛 = 𝑚 + 1.
Let 𝑄 ∈ 𝜙𝑚+1

{𝑋/𝑋}𝐴
(∅⊥⊥).

Then 𝑄 ≡c unfold� 𝑥;𝑄′, where 𝑄′ ∈ J𝑥 : {𝑋/𝑋}𝐴K𝜎[𝑋 ↦→𝜓𝑚
𝐴
(∅⊥⊥)].

We prove (H2)

cut {𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] |𝑥 | 𝑄} is SN

by induction on 𝑁(𝒞) + 𝑁(𝜌) + 𝑁(𝑄).
Suppose that cut {𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] |𝑥 | 𝑄} →c 𝑅. There are
two cases to consider:

270

Case: (i) 𝑅 is obtained by an internal reduction of either 𝒞, 𝜌 or 𝑄.
Case: (ii) 𝑅 is obtained by an interaction on session 𝑥.

Case (i) follows by inner inductive hypothesis (H2).
So let us consider case (ii). Then

cut {𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] |𝑥 | 𝑄}
≡c cut {𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] |𝑥 | unfold� 𝑥;𝑄′}
→c cut {𝒞 ◦ 𝒟[𝜌({𝑥/𝑧}{ ®𝑦/ ®𝑤}{corec 𝑌(𝑧, ®𝑤);𝑃′/𝑌}𝑃′)] |𝑥 | 𝑄′}
= cut {𝒞 ◦ 𝒟[𝜌′({𝑥/𝑧}{ ®𝑦/ ®𝑤}𝑃′)] |𝑥 | 𝑄′} = 𝑅

where 𝜌′ = 𝜌, 𝑌(𝑥, ®𝑦) ↦→ 𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′).
I.h. (H1) applied to 𝑚 yields

∀𝒞 ∈ JΔ′K, ∀𝒟 ∈ JΓK!.

𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] ∈ 𝜙𝑚
{𝑋/𝑋}𝐴

(∅⊥⊥)⊥

Hence, by Lemma 26, we obtain

𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦]) ∈ ℒJ⊢∅ Δ′, 𝑥 : 𝑋;ΓK𝜎[𝑋 ↦→𝜓𝑚
{𝑋/𝑋}𝐴

(∅⊥⊥)⊥]

Therefore, 𝜌′ ∈ J�′K𝜎.
Applying i.h. (outer i.h., fundamental lemma) to {𝑥/𝑧}{ ®𝑦/ ®𝑤}𝑃′ ⊢�′ Δ′, 𝑥 : 𝐴;Γ
and Lemma 26 yields 𝒞 ◦ 𝒟[𝜌′({𝑥/𝑧}{ ®𝑦/ ®𝑤}𝑃′)] ∈ J𝑥 : 𝐴K𝜎[𝑋 ↦→𝜓𝑚

𝐴
(∅⊥⊥)⊥].

Lemma 23(6) implies 𝒞 ◦ 𝒟[𝜌′({𝑥/𝑧}{ ®𝑦/ ®𝑤}𝑃′)] ∈ J𝑥 : {𝑋/𝑋}𝐴K𝜎[𝑋 ↦→𝜓𝑚
𝐴
(∅⊥⊥)].

By hypothesis, 𝑄′ ∈ J𝑥 : {𝑋/𝑋}𝐴K𝜎[𝑋 ↦→𝜓𝑚
𝐴
(∅⊥⊥)], hence by Lemma 23(3) we

obtain that 𝑅 is SN.
In either case (i)-(ii), 𝑅 is SN.
By applying Lemma 21(3) we conclude thatcut {𝒞◦𝒟[𝜌(corec𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] |𝑥 | 𝑄}
is SN.
Therefore, 𝒞 ◦ 𝒟[𝜌(corec 𝑌(𝑧, ®𝑤);𝑃′ [𝑥, ®𝑦])] ∈ 𝜙𝑚+1

{𝑋/𝑋}𝐴
(∅⊥⊥)⊥.

Case: [Tdiscard]

discard 𝑎 ⊢� 𝑎 : ∨𝐴;Γ

By Def. 32 and Lemma 22(5) we have J𝑥 : ∨𝐴K = 𝑆⊥, where

𝑆 = {𝑄 | ∃𝑄′. 𝑄 ≡c affine 𝑎;𝑄′ and 𝑄′ ∈ J𝑎 : 𝐴K}.

Let𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c affine 𝑎;𝑄′ and 𝑄′ ∈ J𝑎 : 𝐴K.

We have cut {𝑄 |𝑎 | 𝒟[discard 𝑎]} ≡c cut {𝑄 |𝑎 | discard 𝑎}.

We prove that (H) cut {𝑄 |𝑎 | discard 𝑎} is SN, by induction on 𝑁(𝑄).

Suppose that cut {𝑄 |𝑎 | discard 𝑎} →c 𝑅. There are two cases to consider:

271

APPENDIX E. STRONG NORMALISATION

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑎.

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii). Then

cut {𝑄 |𝑎 | discard 𝑎} ≡c cut {affine 𝑎;𝑄′ |𝑎 | discard 𝑎} →c 0 = 𝑅

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑎 | discard 𝑎} is SN.

Therefore, discard 𝑎 ∈ J𝑥 : ∨𝐴K, hence𝒟[discard 𝑎] ∈ J𝑥 : ∨𝐴K (Lemma 23(2)).

By Lemma 26, discard 𝑎 ∈ ℒJ⊢� 𝑎 : ∨𝐴;ΓK.

Case: [Tuse]
𝑃′ ⊢� Δ′, 𝑎 : 𝐴;Γ

use 𝑎;𝑃′ ⊢� Δ′, 𝑎 : ∨𝐴;Γ

By Def. 32 and Lemma 22(5) we have J𝑥 : ⊥K = 𝑆⊥, where

𝑆 = {𝑄 | ∃𝑄′. 𝑄 ≡c affine 𝑎;𝑄′ and 𝑄′ ∈ J𝑎 : 𝐴K}.

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then 𝑄 ≡c affine 𝑎;𝑄′, where 𝑄′ ∈ J𝑎 : 𝐴K.

We prove that (H) cut {𝑄 |𝑎 | 𝒞 ◦𝒟[use 𝑎;𝑃′]} is SN, by induction on 𝑁(𝑄) +𝑁(𝒞).

Suppose that cut {𝑄 |𝑎 | 𝒞 ◦ 𝒟[use 𝑎;𝑃′]} →c 𝑅. There are two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄 or 𝒞.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑥.

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii). Then

cut {𝑄 |𝑎 | 𝒞 ◦ 𝒟[use 𝑎;𝑃′]} ≡c cut {affine 𝑎;𝑄′ |𝑎 | 𝒞 ◦ 𝒟[use 𝑎;𝑃′]}
→c (cut {𝑄′ |𝑎 | 𝒞}) ◦ 𝒟[𝑃′] = 𝑅

Applying i.h. to 𝑃′ ⊢� Δ′, 𝑎 : 𝐴;Γ yields 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑎 | 𝒞 ◦ 𝒟[use 𝑎;𝑃′]} is SN.

Therefore, 𝒞 ◦ 𝒟[use 𝑎;𝑃′] ∈ J𝑎 : ∨𝐴K.

By Lemma 26, use 𝑎;𝑃′ ∈ ℒJ⊢� Δ′, 𝑎 : 𝐴;ΓK.

272

Case: [Trelease]

release 𝑐 ⊢� 𝑐 : U 𝑓 𝐴;Γ

By Def. 32 and Lemma 22(5) we have J𝑥 : U 𝑓 𝐴K = 𝑆⊥, where

𝑆 = {𝑄 | 𝑄 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K)}.

Let𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K).

We prove that (H) cut {𝑄 |𝑐 | 𝒟[release 𝑐]} is SN, by induction on 𝑁(𝑄).

Suppose that cut {𝑄 |𝑐 | 𝒟[release 𝑐]} →c 𝑅. There are two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑐.

Case (i) follows by inner inductive hypothesis (H).

So let us consider case (ii). Then

cut {𝑄 |𝑐 | 𝒟[release 𝑐]} ≡c 𝒟[cut {cell 𝑐(𝑎.J𝑎 : ∧𝐴K) |𝑐 | release 𝑐}] ∗−→c 𝒟[0] = 𝑅

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑐 | 𝒟[release 𝑐]} is SN.

Furthermore, release 𝑐 is vacuously J𝑦 : ∧𝐴K-preserving, for any 𝑦.

Therefore,𝒟[release 𝑐] ∈ J𝑥 : U 𝑓 𝐴K.

By Lemma 26, release 𝑐 ∈ ℒJ⊢� 𝑎 : U 𝑓 𝐴;ΓK.

Case: [Ttake]
𝑃′ ⊢� Δ′, 𝑎 : ∨𝐴, 𝑐 : U𝑒 𝐴;Γ

take 𝑐(𝑎);𝑃′ ⊢� Δ′, 𝑐 : U 𝑓 𝐴;Γ

By Def. 32 and Lemma 22(5) we have J𝑐 : U 𝑓 𝐴K = 𝑆⊥, where

𝑆 = {𝑄 | 𝑄 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K)}.

Let 𝒞 ∈ JΔ′K and𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c cell 𝑐(𝑎.J𝑎 : ∧𝐴K).

We prove that (H) cut {𝑄 |𝑐 | 𝒞◦𝒟[take 𝑐(𝑎);𝑃′]} is SN, by induction on𝑁(𝑄)+𝑁(𝒞).

Suppose that cut {𝑄 |𝑐 | 𝒞 ◦𝒟[take 𝑐(𝑎);𝑃′]} →c 𝑅. There are two cases to consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄 or 𝒞.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑐.

273

APPENDIX E. STRONG NORMALISATION

Case (i) follows by inner inductive hypothesis (H). So let us consider case (ii). Then

cut {𝑄 |𝑐 | 𝒞 ◦ 𝒟[take 𝑐(𝑎);𝑃′]} ≡c cut {cell 𝑐(𝑎.J𝑎 : ∧𝐴K) |𝑐 | 𝒞 ◦ 𝒟[take 𝑐(𝑎);𝑃′]}
→c cut {cell 𝑐(𝑎.J𝑎 : ∧𝐴K) |𝑐 | (cut {𝑄′ |𝑎 | 𝒞 ◦ 𝒟[𝑃′]})} = 𝑅

where 𝑄′ ∈ J𝑎 : ∧𝐴K.

By Def. 32, J𝑐 : S 𝑓 𝐴K = 𝑆⊥⊥.

By Lemma 22(4), 𝑆 ⊆ 𝑆⊥⊥, hence cell 𝑐(𝑎.J𝑎 : ∧𝐴K) ∈ J𝑐 : S 𝑓 𝐴K.

Applying i.h. to 𝑃′ ⊢� Δ′, 𝑎 : ∨𝐴, 𝑐 : U𝑒 𝐴;Γ yields 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑐 | 𝒞 ◦ 𝒟[take 𝑐(𝑎);𝑃′]} is SN.

Now, we prove that 𝒞 ◦ 𝒟[take 𝑐(𝑎);𝑃′] is J𝑎 : ∧𝐴K-preserving, for any 𝑎. Let
𝑅 ∈ J𝑎 : ∧𝐴K. Applying i.h. to 𝑃′ ⊢� Δ′, 𝑎 : ∨𝐴, 𝑐 : U𝑒 𝐴;Γ we conclude that
cut {𝑅 |𝑎 | 𝒞 ◦ 𝒟[𝑃′]} ∈ J𝑐 : U𝑒 𝐴K, which implies that cut {𝑅 |𝑎 | 𝒞 ◦ 𝒟[𝑃′]} ∈ J𝑐 :
U𝑒 𝐴K and hence cut {𝑅 |𝑎 | 𝒞 ◦ 𝒟[𝑃′]} is J𝑎 : ∧𝐴K-preserving.

Therefore, 𝒞 ◦ 𝒟[take 𝑐(𝑎);𝑃′] ∈ J𝑐 : U 𝑓 𝐴K.

By Lemma 26, take 𝑐(𝑎);𝑃′ ∈ ℒJ⊢� Δ′, 𝑐 : U 𝑓 𝐴;ΓK.

Case: [Tput]
𝑃1 ⊢� Δ1 , 𝑎 : ∧𝐴;Γ 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ

put 𝑐(𝑎.𝑃1);𝑃2 ⊢� Δ1 ,Δ2 , 𝑐 : U𝑒 𝐴;Γ

By Def. 32 and Lemma 22(5) we have J𝑐 : U𝑒 𝐴K = 𝑆⊥, where

𝑆 = {𝑄 | 𝑄 ≡c empty 𝑐(J𝑎 : ∧𝐴K.}).

Let 𝒞1 ∈ JΔ1K, 𝒞2 ∈ JΔ2K and𝒟 ∈ JΓK! and 𝑄 ∈ 𝑆.

Then, 𝑄 ≡c empty 𝑐(J𝑎 : ∧𝐴K.).

We prove that (H) cut {𝑄 |𝑐 | 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2]} is SN, by induction on
𝑁(𝑄) + 𝑁(𝒞1) + 𝑁(𝒞2).

Suppose that cut {𝑄 |𝑐 | 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2]} →c 𝑅. There are two cases to
consider:

Case: (i) 𝑅 is obtained by an internal reduction of either 𝑄, 𝒞1 or 𝒞2.

Case: (ii) 𝑅 is obtained by an interaction on cut session 𝑐.

Case (i) follows by inner inductive hypothesis (H).So let us consider case (ii). Then

cut {𝑄 |𝑐 | 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2]}
≡c cut {empty 𝑐(J𝑎 : ∧𝐴K.) |𝑐 | 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2]}
≡c cut {empty 𝑐(J𝑎 : ∧𝐴K.) |𝑐 | put 𝑐(𝑎.𝒞1 ◦ 𝒟[𝑃1]);𝒞2 ◦ 𝒟[𝑃2]}
→c cut {cell 𝑐(𝑎.J𝑎 : ∧𝐴K) |𝑐 | 𝒞2 ◦ 𝒟[𝑃2]} = 𝑅 (*)

274

I.h. applied to 𝑃1 ⊢� Δ1 , 𝑎 : ∧𝐴;Γ yields 𝒞1 ◦ 𝒟[𝑃1] ∈ J𝑎 : ∧𝐴K, hence reduction step
(*).

By Def. 32, J𝑐 : S 𝑓 𝐴K = 𝑆⊥⊥.

By Lemma 22(4), 𝑆 ⊆ 𝑆⊥⊥, hence cell 𝑐(𝑎.J𝑎 : ∧𝐴K) ∈ J𝑐 : S 𝑓 𝐴K.

Applying i.h. to 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ yields 𝑅 is SN.

In either case (i)-(ii), 𝑅 is SN.

By applying Lemma 21(3) we conclude that cut {𝑄 |𝑐 | 𝒞1 ◦ 𝒞2 ◦𝒟[put 𝑐(𝑎.𝑃1);𝑃2]}
is SN.

Now, we prove that 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2] is J𝑎 : ∧𝐴K-preserving, for any 𝑎.
Applying i.h. to 𝑃1 ⊢� Δ1 , 𝑎 : ∧𝐴;Γwe conclude that𝒞1◦𝒟[𝑃1] ∈ J𝑎 : ∧𝐴K. Applying
i.h. to 𝑃2 ⊢� Δ2 , 𝑐 : U 𝑓 𝐴;Γ we conclude that 𝒞2 ◦ 𝒟[𝑃2] ∈ J𝑐 : U 𝑓 𝐴K, which implies
that 𝒞2 ◦ 𝒟[𝑃2] is J𝑎 : ∧𝐴K-preserving

Therefore, 𝒞1 ◦ 𝒞2 ◦ 𝒟[put 𝑐(𝑎.𝑃1);𝑃2] ∈ J𝑐 : U𝑒 𝐴K.

By Lemma 26, put 𝑐(𝑎.𝑃1);𝑃2 ∈ ℒJ⊢� Δ1 ,Δ2 , 𝑐 : U𝑒 𝐴;ΓK.

275

Pe
dr

o
Ro

ch
a

C
LA

SS
:A

Lo
gi

ca
lF

ou
nd

at
io

n
fo

r
Ty

pe
fu

lP
ro

gr
am

m
in

g
w

ith
Sh

ar
ed

St
at

e
20

22

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures

	1 Introduction
	1.1 Propositions-as-Types
	1.2 Session Types and Linear Logic
	1.3 Shared State
	1.4 A Taste of CLASS
	1.5 Contributions and Outline

	I The Concurrent Programming Language CLASS
	2 The Basic Language CLL
	2.1 Introduction
	2.2 Process Calculus and Operational Semantics
	2.3 Type System
	2.4 Further Discussion and Related Work

	3 CLASS: Classic Linear Logic with Affine Shared State
	3.1 Introduction
	3.2 Process Calculus and Operational Semantics
	3.3 Type System
	3.4 Further Discussion and Related Work

	4 Programming in CLASS
	4.1 Linked Lists, Update In-Place
	4.2 A Concurrent Imperative Queue
	4.3 Dining Philosophers
	4.4 A Shared Resource-Invariant Toggle
	4.5 A Barrier for N threads

	5 Language Implementation CLLSj
	5.1 Introduction
	5.2 Hello World: A Concurrent Counter
	5.3 Type Checker and Interpreter
	5.4 Further Discussion and Related Work

	II Metatheory of CLASS
	6 Safety: Type Preservation and Progress
	6.1 Introduction
	6.2 Type Preservation
	6.3 Progress
	6.4 Further Discussion and Related Work

	7 Confluence
	7.1 Introduction
	7.2 The Reduction Relation d
	7.3 Factorisation of 1mu through d
	7.4 Diamond Property for []*
	7.5 Further Discussion and Related Work

	8 Cut Normalisation
	8.1 The Relation : A Complete Set of Commuting Conversions
	8.2 Share Expansion and Cut Normalisation
	8.3 Some Corollaries
	8.4 Further Discussion and Related Work

	9 Strong Normalisation
	9.1 Introduction
	9.2 Interference-Sensitive Cells
	9.3 Linear Logical Predicates for Strong Normalisation
	9.4 Further Discussion and Related Work

	10 Conclusion
	Bibliography
	A Type Preservation
	B Progress
	C Confluence
	D Cut Normalisation
	E Strong Normalisation

	Back Matter
	Back Cover
	Spine

