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Abstract: The search for alternative and effective therapies to fight cancer is one of the main goals of
the pharmaceutical industry. Recently, ionic liquids (ILs) have emerged as potential therapeutic agents
with antitumor properties. The goal of this study was to synthesize and evaluate the bioactivity
of different ILs coupled with the active pharmaceutical ingredient (API) valproate (VPA) as an
antitumor agent. The toxicity of the prepared ionic liquids was evaluated by the MTT cell metabolic
assay in human neuroblastoma SH-SY5Y and human primary Gingival Fibroblast (GF) cell lines,
in which they showed inhibitory effects during the study period. In addition, low cytotoxicity
against GF cell lines was observed, suggesting that these compounds are not toxic to human cell lines.
[C2OHDMiM][VPA] demonstrated an outstanding antitumor activity against SH-SY5Y and lower
activity against the non-neoplastic GF line. The herein assessed compounds played an important
role in the modulation of the signaling pathways involved in the cellular behavior. This work also
highlights the potential of these ILs-API as possible antitumor agents.

Keywords: ionic liquids; valproic acid; active pharmaceutical ingredients; antitumor agents; neurob-
lastoma; signaling pathways

1. Introduction

In the last years, an increasing interest in ionic liquids (ILs) has been observed due
to their potential applications in biological and pharmaceutical sciences [1,2]. Typically,
ILs are organic salts constituted by large and asymmetric ions, in which their properties
can be tuned by wise pairing of their cations and anions [2–6]. In this context, these
compounds have attracted the interest of researchers and been applied in several fields,
such as engineering processes, new advanced lubricants, reaction media, extraction and
separation processes, electrochemistry, biotechnology and nanotechnology [7]. They are
also used to overcome solubilization problems of some pharmaceutical drugs [1,8,9] and,
more recently, have been exploited as alternative solvents, cosolvents and/or reagents to
synthesize active pharmaceutical ingredients (APIs) [10–12].

Most commercially available drugs used in medicine are solid substances, exhibiting
disadvantageous characteristics addressed to their physical state that affect their bioavail-
ability: polymorphism, low solubility and the need for stabilizing the amorphous forms,
which commonly tend to crystallize [2,13,14]. Moreover, the search for ways of improving
the therapeutical potential of pharmaceutical drugs has emerged [15], introducing ionic
liquids as a promising approach to develop new formulations through simple neutraliza-
tion reactions [13,16], as most drugs are either acidic or basic [13,16–24]. In fact, it has
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been reported that formulations based on ILs-API successfully eliminate the drawbacks of
the drug, i.e., mainly the existence of polymorphs and the low solubility in water [12,25],
contributing to enhance the drug delivery [26] and allowing, in some cases, the addition of
a second complementary function to the API [12,27,28].

Valproic acid, a derivative form of valeric acid, was firstly synthesized by Burton in
1882 and initially classified as an organic solvent. Nowadays, it is a drug used for neuro-
logic pathologies, epilepsy and bipolar disorder due to its neuro-protection action [29–32].
According to Jentink et al. [33], valproic acid has been considered teratogenic. In addition
to its teratogenicity, the effect of this pharmaceutical drug on cell cultures has aroused
the interest of this compound for therapeutic purposes in cancer [34]. Recent studies
conducted in vivo and in vitro have demonstrated the antitumor activity of valproic acid
on the modulation of numerous signaling pathways involved in the increase in apoptosis
and immunogenicity, inducing the differentiation and inhibition of cell proliferation, while
decreasing the angiogenic potential [34,35]. Moreover, due to its properties, valproic acid is
effective against several types of cancer, including neuroblastoma [36,37], since it impairs
growth and induces differentiation in human neuroblastoma cells in harmless concentra-
tions [35,37]. Therefore, there is currently a great interest in evaluating the physicochemical
interactions of ionic liquids and valproate [38–42]. However, the biological activity and
toxicity of these mixtures have never been investigated.

Neuroblastoma (NB) is the most common extracranial solid tumor in infants and
children. It is classified as a neuroendocrine cancer, commonly located in the adrenal
medulla, although it can arise in any place where sympathetic neural tissue is found [43].
In fact, half of these tumors occur in infants, accounting for approximately 15% of pediatric
cancer deaths. Patients classified as high risk, according to their histological and biological
characteristics, comprise about 50% of the new NB cases each year. These patients usually
require an aggressive therapeutic strategy, which includes radiotherapy, surgery, high
doses of chemotherapy with stem cell transplantation and other therapeutical approaches
to increase survival rates [44]. It is known that the neuroblastoma tumorigenesis and
malignant transformations are associated to the expression of certain signaling pathways’
precursors and their dominance, which, in addition to the decrease in normal cellular
senescence or apoptosis, are related to cell survival [45]. Moreover, the main signaling
pathways involved in NB include transcription factors, kinases and cell-cycle regulators.
Therefore, the manipulation of these signaling pathways can positively contribute to the
reduction of the NB’s malignant potential [43] and the search for new promising alternatives
to treat this disease is essential.

The potential of ILs-API to act as antitumor agents in certain cancers has recently been
described [46–50]. Indeed, tumor heterogeneity, one of the major challenges in cancer treat-
ment, can be surpassed with the development of suitable nanocarriers [51], in which ionic
liquids can be involved by promoting the transport of APIs [26]. In addition, ILs-API can
also contribute in cancer-combination therapy [52]. Previous studies on the antimicrobial
activity against resistant bacteria have shown that these compounds may also promote a
specific interaction in combination therapy by achieving a complementary function [20,53].
Thus, the scope of this work is focused on the development of new ionic liquids based
on valproate (VPA), which is the anion form of valproic acid (2-propylpentanoic acid),
and aims to describe their biological properties in brain metabolism. Several formula-
tions based on the following organic cations were synthesized and fully characterized
(Figure 1): (2-hydroxyethyl)trimethylammonium 2-propylpentanoate or cholinium val-
proate, [Ch][VPA]; 1-hexadecylpyridinium 2-propylpentanoate or cetylpyridinium val-
proate, [C16Pyr][VPA]; 1-ethyl-3-methylimimidazolium 2-propylpentanoate, [EMiM][VPA];
1-(2-hydroxyethyl)-3-methylimidazolium 2-propylpentanoate, [C2OHMiM][VPA]; 1-(2-
hydroxyethyl)-2,3-dimethylimidazolium 2-propylpentanoate, [C2OHDMiM][VPA]; and
1-(2-methoxyethyl)-3-methylimidazolium 2-propylpentanoate, [C3OMiM][VPA]. Further
bioactivity studies on neuroblastoma were conducted with four inhibitors: U0126, PDTC,
SP600125 and Sb202190, being the inhibitors of the MEK, NFkB, JNK and p38 pathways,
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respectively. It is worth noting that this approach would only slightly modulate valproate
properties without changing its core chemical structure, which is crucial since chemically
modified derivatives can have different activity profiles [34].

Future Pharm. 2022, 2,  3 
 

 

methylimidazolium 2-propylpentanoate, [C2OHMiM][VPA]; 1-(2-hydroxyethyl)-2,3-
dimethylimidazolium 2-propylpentanoate, [C2OHDMiM][VPA]; and 1-(2-methoxyethyl)-
3-methylimidazolium 2-propylpentanoate, [C3OMiM][VPA]. Further bioactivity studies 
on neuroblastoma were conducted with four inhibitors: U0126, PDTC, SP600125 and 
Sb202190, being the inhibitors of the MEK, NFkB, JNK and p38 pathways, respectively. It 
is worth noting that this approach would only slightly modulate valproate properties 
without changing its core chemical structure, which is crucial since chemically modified 
derivatives can have different activity profiles [34]. 

 
Figure 1. Structure, yield and physical state of the synthesized ionic liquids based on VPA. 

2. Materials and Methods 
2.1. Synthesis of ILs-API 

In this work, several ionic liquids based on VPA with different cations were 
synthesized by the neutralization method, as previously reported [51], following the 
reaction Scheme 1. Each of the commercially available bromide or chloride organic salts 
were firstly converted into hydroxide, through an Amberlyst anion-exchange resin (A26-
OH), to then be neutralized with an equimolar amount of VPA [16,54]. This synthetic 
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2. Materials and Methods
2.1. Synthesis of ILs-API

In this work, several ionic liquids based on VPA with different cations were synthe-
sized by the neutralization method, as previously reported [51], following the reaction
Scheme 1. Each of the commercially available bromide or chloride organic salts were firstly
converted into hydroxide, through an Amberlyst anion-exchange resin (A26-OH), to then
be neutralized with an equimolar amount of VPA [16,54]. This synthetic method allowed
the preparation of the ILs-API in high quantitative yields and purity levels, as confirmed
further by elemental analysis, 1H and 13C-NMR. In addition, 1H-NMR provided informa-
tion related to the complete deprotonation of VPA and the expected cation/anion ratio (1:1).
Further experimental and characterization details are available in Supplementary Materials
(Section 1, Figures S1–S18 for NMR and IR spectra).
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2.2. Cell Culture Studies at Therapeutic Dosage

In order to compare the cell viability obtained for ILs-API on the SH-SY5Y and GF cell
lines with the plasma valproate, MTT assays were performed at concentrations suitable and
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harmless to patients (Table 1). These tests, which are widely used to assess that parameter,
rely on the activity of mitochondrial enzymes and only viable cells originate a positive
result. For the experimental procedure, see Supplementary Materials (Section 2).

Table 1. Therapeutic dosage of valproate drug.

Cell Line
Tested

Concentrations
(mol dm−3)

Tested
Concentrations

(mg L−1)

Therapeutic
Dosage

(mg L−1)
Reference

SH-SY5Y 10−7–10−2 0.01442–1442
50–100 [55]

GF 10−5–10−1 1.442–14,421

The therapeutic dosage represents the tested concentration range of valproate in
plasma. Concentrations lower than the therapeutic level were also tested, aiming to mimic
the drug concentrations in the tumor environment. In general, the results discussed here
reveal that the studied ILs-API interact with the cellular behavior, even for dosages below
the concentration found in the plasma of patients treated with valproate.

3. Results and Discussion
3.1. Viability and Cellular Proliferation: ILs-API Bioactivity in Neoplastic Human Tumor Cell Line
SH-SY5Y and Non-Neoplastic Gingival Fibroblasts (GF)

To gather information about the possibility of the prepared ILs-API act as antitumor
agents, MTT metabolic assays were performed, allowing to determine the IC50 and EC50,
i.e., the drug’s concentration needed to reduce by half the cellular metabolic activity and
cell viability, in the cell line SH-SY5Y and in Gingival Fibroblasts (GF). The results collected
on days 1 and 3 are displayed in Table 2.

Table 2. Antitumor activity (IC50 and EC50) of the prepared formulations in the neoplastic human
tumor cell line SH-SY5Y on days 1 and 3, as well as non-neoplastic Gingival Fibroblasts on day 1.

Compound

IC50 (µM) EC50 (µM)

GF SH-SY5Y GF SH-SY5Y

Day 1 Day 1 Day 3 Day 1 Day 1 Day 3

VPA 1 294.2 0.633 n.d. 299.3 60.72 n.d.
[Ch][VPA] n.d. 0.049 n.d. n.d. 0.158 3528

[C16Pyr][VPA] 75.54 1.408 1.411 76.07 4.358 1.681
[EMiM][VPA] 1058 1.038 n.d. >1058 0.086 126.0

[C2OHMiM][VPA] 23.66 31.09 3560 27.42 21.03 2.824
[C2OHDMiM][VPA] n.d. 0.263 227.8 n.d. 6.000 44.58

[C3OMiM][VPA] 1374 0.646 n.d. >1374 27.30 14.71
1 VPA was used as control. n.d.—not determined in the concentration range tested.

Regarding the IC50 obtained for the SH-SY5Y cell line, on day 1, both [Ch][VPA] and
[C2OHDMiM][VPA] exhibited the lowest values, indicating the highest toxicity, when
compared with the control. Moreover, the remaining ionic liquids were classified according
to their toxicity, in which the latter revealed the less promising result: [C3OMiM][VPA] >
[EMiM][VPA] > [C16Pyr][VPA] > [C2OHMiM][VPA]. On day 3, [C16Pyr][VPA] presented
higher toxicity, followed by [C2OHDMiM][VPA]. Furthermore, with the exception of
[C2OHMiM][VPA], the other ILs-API, as well as the control, did not display any IC50 in the
tested concentration range (10−7 to 10−2 M). For EC50, the results are in accordance with
the IC50 assays on both days 1 and 3, being, in general, align to those already reported in
literature [50,56]. In fact, the highest toxicity of [Ch][VPA] was unexpected as choline is
considered an essential nutrient for normal cell metabolism. Therefore, low toxicity against
the tumor cell line was foreseen and further studies need to be performed to understand its
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mechanism. On the other hand, [C2OHDMiM][VPA] presented strong antitumor activity,
as described in previous works [57,58].

Concerning the values collected for Gingival Fibroblasts, it was possible to conclude
that VPA is one of the most toxic compounds studied herein. However, the highest cyto-
toxicity values were exhibited for [C16Pyr][VPA] and [C2OHMiM][VPA]. On the contrary,
[Ch][VPA] and [C2OHDMiM][VPA] proved to be the least toxic ones. The last two were
not anticipated since imidazolium and phosphonium derivatives have high toxicity, as
previously reported [50,59].

Moreover, the comparison between the IC50 values of both neoplastic (SH-SY5Y) and
non-neoplastic (GF) cells lines was performed. In general, the results obtained for SH-SY5Y
are lower than those collected for the GF cell line, with the exception of [C2OHMiM][VPA].

Overall, the formulations assessed in this work showed low IC50 and EC50 values,
inferring the potential of the prepared ILs-API as valid alternatives to cancer therapies.

3.2. Structural Activity Relationship of Human Tumor Cell Line SH-SY5Y

In this work, the bioactivity of several ionic liquids, as well as the original API, was
studied, allowing to conclude that some structures are more toxic than others. The strength
and stability associated to the interactions between the organic cations and valproate anion
can be an explanation for the different antitumor activity values found on each prepared
IL-API (Table 2).

In fact, it is known that long alkyl chains, as present in the cation [C16Pyr][VPA], can
be responsible for higher toxicity levels, being these cations referred as the most toxic to
the cells [1,53,56,58,60–63]. Some authors justified this toxicity with a modification of the
lipid membrane’s physical properties and permeability, as the alkyl lengthening promotes
the increasing of the compounds’ lipophilic nature, as well as the interactions between
the phospholipid bilayer and the hydrophobic domains of the membrane proteins, which
might lead to the dissolution of the membrane’s physiological functions and, ultimately,
to cell death [64]. However, these results were only observed after 3 days. On day 1, both
cations exhibited low antitumor activity against SH-SY5Y.

In addition, organic cations containing aromatic rings, such as imidazolium, also
contribute to the increase of the compound toxicity [65]. This characteristic was registered
on [C2OHDMiM][VPA], which was characterized as one of the most toxic ionic liquids
herein synthetized. The presence of hydroxyl groups (units that interact electrostatically
with the valproate anion) and two methyl moieties in its structure, as well as the struc-
tural similarity between imidazolium-based ionic liquids and detergents, pesticides and
antibiotics, are associated to the higher toxicity observed, as their mechanism of action
can be responsible for the lipid membrane disruption [58,64,66]. Nonetheless, on the first
day of supplementation, [C2OHMiM][VPA] exhibited the lowest antitumor activity, an
unexpected occurrence as its structure also allows for the formation of hydrogen bridges
between the hydroxyl group and valproate. Finally, on the same day, the antitumor activity
of the cation [C3OMiM] was higher than [EMiM].

On the contrary, [Ch] was expected to be, among several cations, one of the least
toxic because it is an essential nutrient, as previously mentioned. However, on day 1, this
IL presented high cytotoxicity values, possibly, due to the established hydrogen bridges
between the -OH group and the anion. Therefore, this result was not in agreement with
the literature and further studies should be performed in order to understand this toxicity
behavior.

3.3. Cell-Signaling Pathways in Cellular Behavior of Human Tumor Cell Line SH-SY5Y

Several cell viability tests were performed to study the influence of different inhibitors
(U0126, PDTC, SP600125 and Sb202190) in four cell-signaling pathways (MEK, NFkB, JNK
and p38) on the SH-SY5Y cell lines. Figure 2 plots the results obtained.
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Regarding the first inhibitor tested, U0126, it was observed that it did not promote any
change on the MEK pathway, meaning that this pathway was not involved in the cellular
response in any of the experimental conditions tested. This indicates that ILs-API did not
significantly affect the MEK signaling pathway of NB SH-SY5Y cells.

On the other hand, the PDTC inhibitor led to a decrease in the cell viability in all
conditions tested, except for the cultures supplemented with [Ch][VPA]. This effect was also
visible for the cells treated with [C16Pyr][VPA] on day 3 that revealed a similar behavior to
the negative control. For the other ionic liquids, the reduction in the cellular viability was
more accentuated. Therefore, this study allows to conclude that ILs-API do not interfere
with the NFkB pathway, which plays a significant role in the cellular behavior.

Concerning the inhibitor SP600125, the imidazolium derivatives [C2OHMiM][VPA],
[C3OMiM][VPA] and [C2OHDMiM][VPA] influenced the JNK pathway on day 3 since a
decrease in cellular viability was observed. For day 1, no significant differences between
these compounds were registered.

Finally, the Sb202190 inhibitor exclusively modified the cell response in cultures
supplemented with [EMiM][VPA], resulting in an increase on viability and contrary to what
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was observed for the negative control. For this reason, the presence of this IL influenced
the p38 pathway.

Through this section, it is possible to conclude that the inhibitors U0126 and SP600125
did not promote significant changes in the cell viability during the experiment period.
However, PDTC decreased the cell viability between days 1 and 3 of the culture in all the
studied compounds, whereas Sb202190 revealed an increase during the same period.

4. Conclusions

In this work, one tumor cell line of NB (SH-SY5Y) and GF were used as an in vitro
study model to characterize the effect in cell metabolism of several ionic liquids based on
valproate anion, allowing for the comparison in terms of toxicity between neoplastic cells
and non-neoplastic cells. The latter was used as a control, which helped to understand if
the results are tumor-specific or a consequence of general cytotoxicity. Moreover, this study
also aimed to evaluate the influence of these compounds in different signaling pathways,
which are important for the behavior of tumor cells. The cations assessed herein were
selected due to their biocompatibility, being already applied in the pharmaceutical area.
The signaling pathways were chosen according to the previous literature related to NB
tumorigenesis.

The cellular viability tests revealed that some of the compounds possess higher cy-
totoxicity than VPA, demonstrating that the antitumor activity can be attributed to the
presence of the organic cation. In addition, the prepared ionic liquids showed low cytotoxi-
city and high selectivity against the GF and SH-SY5Y cell lines, respectively, suggesting that
the compounds are not toxic for human cell lines. [C2OHDMiM][VPA] stood out as one
of the most interesting formulations, exhibiting high antitumor activity and low toxicity
to non-neoplastic cells during the overall treatment period. These results highlight this
compound as a possible antitumor agent. Nonetheless, further studies are needed to fully
understand the action mechanism of ILs-API since it is a crucial aspect for the development
of novel antitumor agents, as well as for studying their effect on other tumor cell lines.

Regarding the influence on the four studied inhibitors, the ionic liquids synthetized
herein revealed the ability to modulate the signaling pathways in SH-SY5Y cells, which
enhances, once again, their potential as antitumor agents and opens new possibilities for
novel therapies.

This work also highlights the importance of the wise combination between the cation
and anion on the preparation of ILs with specific biological activity and cytotoxicity that
are key steps when developing novel therapeutic drugs.
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13C NMR spectrum in CD3OD. Figure S6. [C16Pyr][VPA] IR spectrum in KBr. Figure S7. [EMiM][VPA]
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