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Recently there has been an increasing demand for technologies (automated and intelligent machines) that brings benefits to
organizations and society. Similar to the widespread use of personal computers in the past, today’s needs are towards
facilitating human-machine technology appropriation, especially in highly risky and regulated industries like robotics,
manufacturing, automation, military, finance, or healthcare. In this context, trust can be used as a critical element to instruct
how human-machine interaction should occur. Considering the context-dependency and multidimensional trust, this study
seeks to find a way to measure the effects of perceived trust in a collaborative robot (cobot), regardless of its literal credibility
as a real person. This article aims at translating, adapting, and validating a Human-Computer Trust Scale (HCTM) in human-
robot interaction (HRI) context and its application to cobots. The Human-Robot Interaction Trust Scale (HRITS) involved 239
participants and included eleven items. The 2nd order CFA with a general factor called “trust” have proven to be empirically
robust (CFI = :94; TLI = :93; SRMR = :04; and RMSEA = :05) [CR = :84; AVE = :58, and MaxRðHÞ = :92]; results indicated a
good measurement of the general factor trust, and the model satisfied the criteria for measure trust. An analysis of the
differences in perceptions of trust by gender was conducted using a t-test. This analysis showed that statistical differences by
gender exist (p = :04). This study’s results allowed for a better understanding of trust in HRI, specifically regarding cobots. The
validation of a Portuguese scale for trust assessment in HRI can give a valuable contribution to designing collaborative
environments between humans and robots.

1. Introduction

The adoption of the Industry 4.0 paradigm is viewed, by
industrial companies, as a way to improve efficiency, flexibil-
ity, agility, and resilience in the value chain. In the vertical and
horizontal integration processes, the companies relied on the
integration of the physical and virtual worlds through cyber-
physical systems and the interconnection of humans,
machines, and devices through the Internet of Things. How-
ever, manufacturing companies in Europe aremore conscious
and oriented towards the transition to the age of sustainable

well-being. Therefore, companies are now focused on the
well-being of workers, the need for social inclusion, and the
adoption of technologies to complement human capabilities
whenever possible [1]. Therefore, the technology-drivenmain
focus is giving place to a human-centric approach, which is
one of the most important characteristics of Industry 5.0.
Under this paradigm, the technologies should be selected
and adopted based on an ethical rationale of how those sup-
port human needs and not only based on a purely technical
or economic perspective. Thus, to design a safe and beneficial
working environment, it is critical to consider societal
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constraints and respect the human rights and the skill require-
ments for workers [2].

Technologies that involve human-machine interaction,
such as collaboration with robots and machines, are being
used to generate products and services. A collaborative
robot is one of the enabling technologies of Industry 4.0
[3] that has been receiving special attention due to its grow-
ing integration into the industry [4]. The combination of
the “strength and the efficiency of robots with the high
degree of dexterity and the cognitive capabilities of
humans” provides the desired flexibility [5] (p. 666). This
technology can interact with the operators in a shared
workspace [6], resulting in several benefits when compared
to traditional robots [7] such as improved ergonomics,
quality, and flexibility [8].

This level of interaction between humans and the cobot
raises a critical issue, trust. Trusting is the key to fostering
interaction between human and machine. The perceived
trust can dictate the trust’s depth and length in human-
robot interaction. Thus, there is a need to find trust reassur-
ance to regulatory practices in suing technological artefacts
such as cobots.

Trust in these contexts is understood not as a social
interaction mediated by robots but instead as a human-
machine interaction. It is a highly risky and regulated setting
where humans depend on robot actions to fulfil their goals.
Trust is seen as a key to improving operations and a feeling
of safety between robots and the operator [9]. Also, it is seen
as an attitude that an agent (robot) will help achieve an
individual’s goals in a situation characterized by uncertainty
and vulnerability.

Recently, we have seen efforts to understand the effects
of trust in various digital artefacts, including robotics and
artificial intelligence (AI). Some latest examples are “Trust-
worthy AI (TAI)” [10, 11], “Human-Centered AI” [12], or
“Ethical guidelines for Trustworthy AI” [13].

In 1996, Muir and Moray [14] proposed a scale to mea-
sure trust in automation. Since then, many studies have
emerged with a similar purpose of developing scales those
include empirically Derived (ED) [15], Human-Computer
Trust (HTC) [16], SHAPE Automation Trust Index (SATI)
[9, 17], Trust Perceived Scale-HRI [18, 19], and HRI Trust
Scale [20]. Those are examples of scales empirically devel-
oped to understand how trust is perceived in technologically
enhanced scenarios. Yet, these scales have their limitations.
The ED instrument, for instance, assesses trust in automa-
tion in general, not considering the system’s intricate inter-
actions with human-robot. The focus is on measuring the
propensity to trust than trust in a specific system. The
HTC showed agreement between items and target dimen-
sions but stopped confirming factor analysis. In the same
regard, the SATI scale neglected psychometric tests of con-
struct validity. In the Trust Perception Scale-HRI, the items
are based on data collected identifying robot features from
pictures and their perceived functional characteristics. While
the development of the scale was guided by the triadic
(human, robot, and environment) model of trust inspired
by Yagoda and Gillan [20], a factor analysis of the resulting
scale found four components corresponding roughly to

capability, behavior, task, and appearance. Capability and
behavior are two dimensions commonly considered in inter-
personal trust [21]. The HRI Trust Scale is incomplete as a
measure of trust and is intended to be paired with Rotter’s
interpersonal trust inventory when applied [22].

While considering context-dependency and multidimen-
sional trust, this study seeks to develop a scale to measure
the effects of the perceived trust of humans in a cobot,
regardless of its literal credibility as a real person. This study
aims at translating, adapting, and validating a Human-
Computer Trust Scale (HCTM) in human-robot interaction
(HRI) contexts and applies it to cobots.

The remainder of this paper is organized as follows:
Section 2 introduces the basic concepts of trust, human-
robot trust, and the adopted theoretical model. Section 3
describes the method. In Section 4, the results are presented.
Section 5 presents the discussion. Lastly, Section 6 concludes
this paper.

2. Theoretical Background

2.1. Trust. According to Lee et al. [23] (p. 683), “the quality,
depth, and length of the use of a technology or service are also
significantly affected by users’ trust in it.” Recent develop-
ments in artificial intelligence (AI) and machine learning
applications have led to an increasing interest from aca-
demics, government, and practitioners, in studying the effects
of trust in technology. The results of these studies culminate in
a range of critical views on how trust can be a crucial function
in society or its effects in leveraging digital interactions [24].
Nevertheless, trust complexity brought additional challenges,
like the failure to recognize its subjective and multidimen-
sional nature or lead to various interpretations and under-
standings of what it represents and its potential implications
[14, 25, 26]. Consequently, trust literature has an oversupply
of frameworks andmodels,making it challenging to recognize
how to use it to facilitate human-computer interactions
(HCIs) [27]. Recent studies in human-robot interaction
(HRI), such as Ullman and Malle [28], also present some
limitations [29] (e.g., they do not present in the study results
factors that measure trust applied to all robots; they are insen-
sitive to the context where the HRI occurs).

Additionally, today’s complex interaction context makes
it difficult to distinguish between characteristics of trusted
human, human-to-machine exchanges [27, 30–32].

These different perspectives and interpretations of trust
in technology and its possible implications make it difficult
for practitioners to undertake it when designing digital arte-
facts. Eventually, they avoid the subject and do not convey
trust values in their system design, both real and perceived.
Making it more accessible to deceptive and unethical busi-
ness practices takes upon the design, leading as well to trust
warranties that diminish trust in technology.

2.2. Human-Robot Trust. Trust has since long been
addressed in various disciplines (e.g., social psychology,
economy, philosophy, and industrial organization). Each
domain that explores trust, affects either an attitude, an
intention, or a behavior [14, 16].
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We see trust as the “willingness of a party to be vulnera-
ble to the actions of another party based on the expectation
that the other will perform a particular action necessary to
the trustor, irrespective of the ability to monitor or control
that other party” [25] (p. 712), as well as trust is a calculative
orientation towards risk [30]; by trusting, we assume a
potential gain, while by distrusting, we are avoiding a possi-
ble loss [33, 34].

Thus, a violation of trust usually does not lie in a single
isolated interpersonal event, for instance, a lack of coopera-
tion. Trusting is, therefore, a significant event that is likely
to have an impact on the parties and their relationship. Trust
is also transitive and changes over time. As automation and
artificial intelligence, robots are increasingly involved in the
community; ensuring trust in them is essential. Trust also
reflects a state of mind and confidence in one’s predisposi-
tion to trust another (robot intelligent machine). According
to Kuipers [24], trust is also related to ethics and society’s
welfare as it is a critical element to foster cooperation
between humans and robots. Trusting a robot can be a rein-
surance element supporting people’s decisions to engage and
cooperate towards an expected outcome.

The lack of clear trust reinsurance elements in the inter-
action process can lead to miscommunications or trigger
adverse reactions between two entities: humans and automa-
tion/artificial intelligence machines. It can also injure the
relationship’s efficacy and effectiveness, for instance, dimin-
ishing cooperation between humans and machines. Hence,
the importance of understanding what are the trust reinsur-
ance elements humans value when interacting with these
machines, and ensuring that these values fit the technical
framework that people label, is a critical aspect. In other
words, the robot needs to learn, behave, and communicate
in the same way those other entities have done in the past.
Even though some researchers and practitioners can share
a different understanding of trust and its representation,
there is a need to have a measurement mechanism that can
assess the human perception of trust in technology in a
specific context.

2.3. Adopted Theoretical Model. The human-computer trust
model (HCTM) by Gulati et al. [35] is a result of an empir-
ical validation process with statistical modelling techniques.
They developed a model consisting of initial factors that
affect trust in technology based on a detailed scientific liter-
ature review. They also identified the main factors to predict
trust in technology with a certain degree of statistical
certainty. Those factors were identified [26]: reciprocity,
competence, benevolence, predictability, honesty, trust
predisposition, and willingness. To claim a high degree of
statistical certainty, the authors carried out four studies with
four different technologies: e-voting, Siri, homes for life, and
e-school [35–37]. They applied a novel technique, called
design fiction, allowing them to study trust perception with
technologies, or devices, that do not exist yet in the market
but would soon appear. The authors identified three factors
that can assess, with a high degree of statistical certainty,
trust in human-technology interactions: risk perception,
competency, and benevolence. The authors proposed a scale

with these three attributes, and they proved its statistical
validity in all four studies mentioned above [37].

Considering the results of Gulati et al. [35] studies, and
aware that trust assessment is context- and culture-depen-
dent, this study aims at assessing the factors that can predict
trust in human-robot interaction in the industrial context.
Thus, four assumptions that affect, or predict, user’s trust
when interacting with a robot were considered (Figure 1):

H1. Trust can be explained by risk perception in human-
robot interaction (HRI).

The perceived risk is measured by honesty and willing-
ness [35] when humans interact with the robot. The impact
of perceived risk on the degree of trust is relevant for under-
standing whether the user’s subjective view of the risk corre-
sponds to the safety level (i.e., objective risk) of HRI.
Undertrust and overtrust situations can be problematic in
the quality of HRI [18, 19] which can increase errors and
accidents in the workplace due to users’ misuse. The risk
perceived by the user must be compatible with the abilities
allowed by the interaction itself and not increase the proba-
bility risk of a cognitive bias leading to (1) the user’s decision
not to use cobot or (2) to the use of it in the wrong way. This
discrepancy between the perceived risk and security may
occur due to using the central concepts of interaction design
[38], the nonidentification of specific affordances, and the
nondetection of certain constraints for the user’s intended
actions regarding contingencies of the interaction. The ten-
dency is trust, at a given time, to be influenced by past expe-
riences and negative experiences, having more weight than
positive ones. Even though, over time and with repeated
interactions, the degree of trust stabilizes [39].

H2. Trust can be explained by benevolence in HRI.
In benevolence, the entrusted acts in the best interest of

those who trust [35], which proves to be relevant to trust,
facilitating the correct assessment of risk. Mcknight et al.
[32] refer that individuals who perceive a particular technol-
ogy as providing the necessary help will perceive fewer risks
and uncertainties in its use. Without this assessment, the
user will not have a perceived risk adequately informed,
and it is unlikely that the degree of confidence is at the opti-
mum. Schaefer [19] mentioned in his study that the amount
of feedback, availability of information, type of indication,
accuracy and truth of the input, and effective communica-
tion to minimize conflicting information for the operator
are factors related to the robot that influence the degree of
trust. Thus, benevolence starts from a base that the notion
of causality is closely linked to the concept of the gulf of
evaluation [38]—the effort that the user needs to make to
understand the state of the system.

H3. Trust can be explained by competence in HRI.
Competence is the notion of functionality closely linked

to the concept of the gulf of execution [38] in an attempt to
understand how the object operates. This aspect affects the
notion of control, which can decrease the user’s confidence
by not understanding the interaction and, consequently,
not trusting what they do not fully understand. In this sense,
lack of control can even increase human stress [40]. Messeri
et al. [41] demonstrate that in HRI the robot’s leadership
increases the user’s physiological and psychological stress
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when the robot is being led. Phillips et al. [42] demonstrate
in their study the importance of a robot being reliable/capa-
ble in the user’s confidence. This fact is reinforced by the
reliability when reliability is defined by the reduction of
errors of the automaton itself [21]. This fact can also be
linked to emotional factors, such as comfort with automa-
tion [21], since it considers the degree of control the user
has over the object, the degree of familiarity and proximity
to it, and the similarity of intention.

H4. Trust can be explained by reciprocity in HRI.
The notion of reciprocity is related to the emotional sat-

isfaction factor. For instance, as Gulati et al. [36] explained,
if human users feel that technology is helpful, they will
respond positively by adopting and using it in the system
and developing a symbiotic relationship with the system.
So, the concept of reciprocity can be fundamentally related
to a degree of cooperation between two parties or even in
fostering greater proximity and familiarity with the technol-
ogy in an interaction process and eventually affecting the
desire of using the robot itself. Using Guo and Yang’s [43]
analysis, this fact can stabilize the degree of trust of human
employees, not allowing negative experiences that can
impact HRI. Although the reciprocity attribute has no statis-
tical significance in all four of Gulati et al.’s studies [35, 36],
it was considered valid in the two studied contexts. Thus,
this construct in this study model was considered an essen-
tial aspect of the application context (HRI).

3. Materials and Methods

3.1. Study Design and Sample. The study design is descrip-
tive, observational, and cross-sectional. A nonprobabilistic
and convenience sample collected by the snowball method
was used. A total of 239 participants, 123 (51.5%) females
and 116 (48.5%) males, aged between 18 and 27 years old
completed the survey. This sample included university
students from management, engineering, and industrial
management areas. Data were collected between February
2020 and April 2020. Most of the participants did not report
significant knowledge about cobots, and for that reason, the
cobot concept was explained before the survey application.
At the beginning of each survey, participants were advised
to see a video and read the user story provided before
answering the questions. The video aimed at illustrating
the use of cobots in real scenarios, where human collaborates

with cobots in an industrial context. These collaborative
scenarios are related to assembly and package tasks, as well
as safety issues (e.g., collisions). In this context, a collabora-
tive workspace is where the cobot and human share the same
space and execute the tasks at the same time [44]. For partic-
ipants to quickly establish a parallel between the technical
artefact and their perceptions of trust, it was used as a stim-
ulus, the concept of Technology probe and design fiction
[45], also known, in psychology, as vignette-based study
(quantitative) [46]. The use of technological probes helped
participants visualize better what current cobot technology
forms might look like. Contrary to science fiction, which
presents something that does not exist, the selected video
illustrated a collaboration between an industrial robot and
an industrial worker. It allowed the participants to imagine
what type of human-robot interactions might look like. This
method also enabled participants to probe, explore, and
critique possible future interactions with collaborative robots
in an industrial context [47]. The video was carefully
selected to ensure that the message provided was neutral.
The vignette technique is used in social science to explore
perceptions, opinions, beliefs, and attitudes to depict scenar-
ios and situations [48].

3.2. Instrument. The HCTM is a scale of trust that focuses on
the human-artefact relationship. This scale was thoroughly
empirically ascertained in diverse, human-artefact complex
settings [35–37]. In this study, the users’ trust in HRI context
includes AI and robotic elements. The HCTM scale is a self-
administered scale composed by 11 items that are divided in
four subscales: risk perception (3 items—inverted items in
this subscale), competency (3 items), benevolence (3 items),
and reciprocity (2 items). Individuals respond to the constit-
uent items of the four subscales mentioned above using a
five-point Likert scale (1–“strongly disagree” to 5–“strongly
agree”). In Table 1, the original HCTM can be seen. With
the intention to make this scale easy to use, Gulati et al.
[35] present the scale using placeholders (they refer to the
ellipsis (…) as a placeholder). This placeholder needs to be
filled in by the user of the scale. For instance, in items 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, and 11, the placeholder needs to be
replaced with the artefact with which the user of the scale
intends to measure trust, in this case cobots. Considering
that this scale was adapted for a new context, it was given
the name of Human-Robot Interaction Trust Scale (HRITS).

Risk perception

Competency

Benevolence

Reciprocity

Trust

H2

H3

H4

H1

Figure 1: Theoretical model for trust in HRI.
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3.3. Translation and Validation Procedure. The current
study builds on prior works [35, 37, 49] and focuses on
translating, adapting, and empirically ascertaining which
attributes of the model hold in human-robot interactions.
The study was carried out following the process outlined
by M. Hill and A. Hill’s [50] and Tsang et al.’s [51] guide-
lines. This process is divided into stage 1, adaptation and
translating of the scale, and stage 2, procedures to validate
the scale (see Figure 2).

Regarding cultural adaptation, with the authors’ permis-
sion of the original scale, the HCTM was translated from
English into Portuguese by two independent native Portu-
guese translators. Subsequently, a synthesis of the translations
was made and submitted in two rounds to a committee of
experts (CE) of four professionals with at least five years of
research experience to review and evaluate the semantic
equivalence. One of the original authors of the HCTM was
part of the CE. The experts were also asked to make com-
ments and suggestions for adapting the items so that they
would be understandable and applicable in the Portuguese
context. Once the recommendations made by the CE had
been consolidated and agreement had been reached among
the experts, the preliminary version obtained was backtrans-
lated by two bilingual native English translators and com-
pared with the original text. With this initial version, the
pilot test was carried out in personwith sixteen university stu-
dents. These individuals were subsequently excluded from
participating in the main study. Instead, they were provided
with the HRITS scale, a sociodemographic information form,
and another way to report their comments on the scale. This
pilot test was used to establish whether the scale could be
satisfactorily understood and completed by all students and
estimate the completion time required, and for this, we used

the think-aloud protocol [52]. The items reported as difficult
to understand weremodified in the final version of the instru-
ment. The final version HRITS is in Table 1.

3.4. Data Analysis. The psychometric characteristics of the
HRITS (construct validity factorial, convergent, discrimi-
nant, and reliability) were evaluated and published [53]. In
addition, another assessment was performed using a facto-
rial validity analysis estimated using confirmatory analysis
(CFA) with the AMOS software (v.26, SPSS Inc., Chicago,
IL) using the maximum likelihood (ML) method.

To contribute to the objective of this study and in accor-
dance to Yasir [54], Confirmatory Factor Analysis (CFA)
was used. CFA was selected considering that the aim was
to test a proposed theory [55, 56]. Additionally, CFA is a
technique intended for large samples where the n of 100 is
usually the reference for the minimum number of cases
required. All CFA application requirements were fulfilled,
including the position of outliers.

To assess the adjustment of the model, the criteria of
Brown [57] and Kline [58] were considered. The quality of
the model’s fit to the data was assessed using the Chi-
squared (χ2), standardized root mean square residual
(SRMR), comparative fit index (CFI), Tucker-Lewis index
(TLI), and root mean square error of approximation
(RMSEA) with confidence interval 90%. The adjustment
was considered adequate when χ2 reveals a statistically non-
significant value, SRMR < :08, CFI and TLI ≥ :90, and
RMSEA < :10 [57, 58]. The factor weights (α) of the items
in the HRITS were evaluated and considered adequate if α
≥ :45 [59]. After adjusting the model to the data, a second-
order hierarchical model (SOHM) was also tested, proposing
a general factor called “trust.”

Identify trust construct
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Reliability and validity
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Figure 2: The adaptation, translation, and validation process.
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Finally, convergent validity was assessed through average
variance extracted (AVE ≥ :50). The reliability of the instru-
ment was estimated from the composite reliability (CR).
Values equal to or higher than .70 were indicative of
adequate reliability.

To investigate differences in trust perceptions in the rela-
tionship between humans and robots (HRI) by gender, inde-
pendent t-test was used the with the SPSS software (v.26,
SPSS Inc., Chicago, IL).

4. Results

In the first step, the CFA was performed to confirm the 4-
factor structure. As can be seen in Table 2, model fit indexes
showed that the 4-factor model resulting from CFA: χ2ð
38:06Þ = 75:94, SRMR = :06, TLI = :91, CFI = :94, RMSEA
= :07, and CI90% (.04–.09). In Figure 3, the results obtained
for factor loadings were also adequate for all items. The
intercorrelations between the four factors are reported in
Table 2. From the correlated four-factor CFA, the model-
implied interscale correlations between the 4 factors ranged
from .18 to .49 (p < :01).

As can be seen in Table 2, most of the correlations were
moderate. The risk perception, competency, benevolence,
and reciprocity subscales showed problems concerning the
reliability: .73, .66, .65, and .58, respectively (CR < 0:70),
and convergent validity: .48, .39, .39, and .41, respectively
(AVE < 0:50). For these reasons it was performed a 2nd
order CFA.

In the 2nd order CFA (Table 3, Figure 4), a model with
the same 11 observed variables and a general factor called
“trust” was tested. For this second model, the CR was 0.84,
AVE was .58, and MaxR(H) was .92. The hypotheses (H1,
H2, H3, and H4) proposed in the Section 2.3. were con-
firmed. The results showed a good model fit for the present
sample (χ2 ð40:06Þ = 80:96; p ≤ :001; SRMR = :06; TLI = :90;
CFI = :93; RMSEA = :07; and CI90% (.05–.09)).

Table 4 presented the means, standard deviations, skew-
ness, and kurtosis of each item of the HRITS in general and
by gender. Considering global score, benevolence subscale
had the items with the highest scores. This trend was also
verified for male and female.

To identify possible differences between gender in the
trust perception, an independent t-test was used. Statistically
significant differences were identified between gender in
global score (p = :04). Male had more trust in the relation-
ship between humans and collaborative robots (M = 3:79)

than the female (M = 3:66) (see Table 5). Only for compe-
tence subscale, there were verified statically significant differ-
ences between male and female. Competence score was 3.82
for male and 3.56 for female (see Table 5).

The HRITS has good psychometric properties. All items
of general factor trust model had high factor loadings that
suggested a stronger factor contribution to those variable
(risk perception = :40; benevolence = :77; competence = :93;
and reciprocity = :83). The results regarding the CR
(CR = :84) suggested that the items of the HRITS are homo-
geneous for the sample under study. The analysis of the
responses regarding risk perceived, benevolence, compe-
tence, and reciprocity was also performed. Through analys-
ing the obtained values, it is possible to verify that the
benevolence subscale was where the individuals responded
with higher values, and the risk perceived the worst.

5. Discussion

The inappropriate application of trust in technology results
in misuse, abuse, or disuse of that robot [60]. As remarked
before, trust is a key for sustainable relations, even those
with a robot [24]. Trust can be a risk reassurance between
a trustor and a trustee (e.g., HRI) [36, 61]. However, what
is not clear is how to measure the trust of humans and
robots (cobots) when working together. Understanding the
factors that influence the levels of perception of trust in
HRI is very important to ensure that our design propositions
can communicate signs of being trustworthy [21]. It is
important to ensure an adequate balance between peoples’
commitments and their predisposition to interact/collabo-
rate with automated AI machines (robots). Although there
are tools capable of measuring trust in HRI, most of them
have problems related to the trust assessment, since they
are used in the context of automation in general and not
applied to cobots in particular. Some of the existing scales
that measure trust in the HRI need more robust statistical
analysis [15–17].

Overall, the results of this study provide preliminary
evidence that the HRITS scale is a useful and psychomet-
rically sound instrument to assess users’ trust in HRI con-
text. The 2nd-order CFA is a technique for interpreting
multidimensional scales by bringing various dimensions
under the rubric of a common higher-level factor. Gener-
ally, 2nd-order CFA provides a better theoretical explana-
tion of the data than 1st-order CFA, because while 1st-
order CFA leaves the meaning of the correlations between
the factors unexplained, 2nd-order CFA considers theoreti-
cally these correlations [62]. So, the results of the 2nd con-
firmatory factorial analysis supported the H1, H2, H3, and
H4 described in Section 2.3.

Benevolence was the subscale with the highest scores. In
case of innovative interfirm networks, the benevolence-
based trust works as a performance facilitator, promoting
honest communication and knowledge sharing and success-
ful collaboration, in general [63]. Toreini et al. [64] consider
that benevolence or integrity assessments can only be carried
out indirectly by the entity that develops or applies the AI-

Table 2: Intercorrelations between the four factors from 1st-order
CFA.

Trust 1 2 3 4

Risk perception (RP) (1) 1 .103 .293∗∗ .183∗∗

Benevolence (BEN) (2) 1 .487∗∗ .451∗∗

Competency (COM) (3) 1 .436∗∗

Reciprocity (REC) (4) 1
∗p < :05; ∗∗p < :01; ∗∗∗p < :001.
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based solution, given that personal data protection issues
may arise.

Additionally, the results demonstrated that male hadmore
trust in cobots than women, which was also found by Sheehan
[65] in a study that verified that female consumers had greater
trust concerns than men and were less likely to engage in pur-
chasing over the web. Buchan et al. [66] compared choices in
the Investment Game between men and women and found

that men trust more than women. A possible reason for this
could be the fact that women are more anxious than men
about IT use, reducing their self-effectiveness and increasing
perceptions of IT requiring greater effort [67], and the
“impostor syndrome.” This syndrome—or a fear of failure—-
has a real impact on women, and men’s reactions to women’s
discomfort with technology is often mocking or dismissive,
making many women more reluctant to engage [68].

Table 3: Summary of results of model fit indexes from 1st- and 2nd-order CFA.

Model χ2 SRMR TLI CFI RMSEA Confidence interval (90%)

Four-factor structure (11 items) 1st-order CFA 75.94∗∗∗df = 38:06 .06 .91 .94 .07 .04-.09

General trust-factor structure (11 items) 2nd-order CFA 80.96∗∗∗df = 40:06 .06 .90 .93 .07 .05-.09
∗p < :05; ∗∗p < :01; ∗∗∗p < :001. df: degree of freedom.
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Table 4: Summary of the results of the descriptive analysis from 1st- and 2nd-order CFA.

Item Global score (n = 239) Male score (n = 123) Female score (n = 116)
M SD Sk Ku M SD Sk Ku M SD Sk Ku

Risk perception

Item 1–rp01 3.21 1.05 -.29 -.53 3.22 1.10 -.46 -.67 3.19 1.00 -.09 -.31

Item 2–rp02 2.77 1.05 .17 -.66 2.71 1.03 .28 -.54 2.82 1.06 .08 -.72

Item 3–rp03 3.85 .80 -.63 .74 3.86 .74 -.67 1.37 3.85 0.85 -.59 .35

Benevolence

Item 4–ben01 4.26 .86 -1.63 3.70 4.26 .88 -.1.64 3.59 4.27 .84 -.1.64 4.01

Item 5–ben02 4.13 .87 -1.11 1.46 4.19 .86 -1.45 2.77 4.07 .87 -.83 .55

Item 6–ben03 3.65 .91 -.51 .06 3.82 .84 -.63 .49 3.49 .95 -.37 -.17

Competence

Item 7–com01 3.74 .90 -.52 .20 3.90 .84 -.61 .49 3.59 .94 -.40 .05

Item 8–com02 3.85 .82 -.49 .34 4.05 .72 -.36 -.15 3.66 .87 -.43 .32

Item 9–com03 3.52 .85 -.18 .02 3.59 .87 -.23 -.17 3.46 .83 -.16 .29

Reciprocity 3.84 .82 -.76 1.26

Item 10–rec01 3.94 .82 -.78 1.17 4.04 .80 -.82 1.22 4.00 .91 -.85 .69

Item 11–rec02 4.00 .88 -.94 1.14 4.00 .84 -1.06 1.86 3.19 1.00 -.09 -.31

M: mean; SD: standard deviation; Sk: skewness; Ku: kurtosis.
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6. Conclusions

This study was carried out to perform the translation and
cultural adaptation of the Portuguese version of the
HRITS scale and examine its psychometric properties
among a sample of university students, to obtain a scale
with good properties.

Considering previous works [35–37], this study showed
that the model HCTM is consistent with the nature of the
construct (or factor) in human-robot interactions.

The results of the confirmatory factorial analysis of the
general factor trust model provided satisfactory fit indexes
in terms of convergent reliability and internal consistency.

Although HRITS scale seems to be a valuable tool to
assess trust in HRI in industrial settings, the participants of
this study were selected by convenience and their character-
istics can limit the generalization of the findings. Moreover,
the HRITS can be enriched by including other dimensions
(factors), for example, moral aspects and cognitive and emo-
tional trust [28, 69]. Additionally, to test divergent validity it
would be interesting to use other trust scales.

In future research, we suggest to explore, in more
detail, cultural and gender effects on trust in technology.
As suggested by Ajenaghughrure et al. [70], the develop-
ment of longitudinal studies (using HRITS) to capture user
trust dynamics through time, exploring novel approaches
to measure unobtrusively variations, could be done in
future research.
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