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A B S T R A C T   

In recent years deep-learning techniques have been developed and applied to inspect cracks in RC structures. The 
accuracy of these techniques leads to believe that they may also be applied to the identification of other pa-
thologies. This article proposes a technique for automated detection of exposed steel rebars. The tools developed 
rely on convolutional neural networks (CNNs) based on transfer-learning using AlexNet. Experiments were 
conducted in large-scale structures to assess the efficiency of the method. To circumvent limitations on the 
proximity access to structures as large as the ones used in the experiments, as well as increase cost efficiency, the 
image capture was performed using an unmanned aerial system (UAS). The final goal of the proposed meth-
odology is to generate orthomosaic maps of the pathologies or structure 3D models with superimposed pa-
thologies. The results obtained are promising, confirming the high adaptability of CNN based methodologies for 
structural inspection.   

1. Introduction 

Reinforced concrete is one of the most common materials used 
worldwide on the construction of civil engineering structures. Its 
widespread utilization is a consequence of the combination of several 
important factors such as, among others, low to medium complexity of 
execution, workmanship expertise for common low-rise buildings, 
general durability and the ability of the material to be easily cast on the 
desired shapes [1]. In time, however, reinforced concrete structures 
inevitably begin to suffer from anomalies that compromise their dura-
bility and functionality. 

Generally, the main anomalies detected in reinforced concrete are 
cracks [2–4], efflorescences [5], corrosion of steel elements [6,7], 
delamination [8,9] and exposed steel rebar reinforcements [10,11]. 
Among these anomalies, the corrosion of rebar reinforcements is the 
main cause of damage and early failure of reinforced concrete structures 
[12]. Consequently, corrosion of rebar reinforcements must be detected 
through continuous monitoring of civil engineering structures and 
treated as early as possible in order to ensure their integrity. 

The corrosion of rebar reinforcements is typically examined by non- 
destructive evaluation technologies. Current bibliography and recent 
research mention several different studies on the detection of concrete 

reinforcements corrosion, with techniques based both on early stages 
without concrete delamination or exposed steel rebars and on advanced 
stages with concrete delamination accompanied by exposed steel rebars. 

The methods used for non-destructive evaluation of early-stage rebar 
reinforcement corrosion are mainly based on electromagnetic sensors. 
Devices emit an electromagnetic pulse and detect the magnetic field 
induced in metal objects allowing the determination of the location 
where the embedded metal becomes exposed. The most common tech-
niques involve the use of ultrasonic waves [13,14], Ground Penetrating 
Radar (GPR) [15,16], InfraRed Thermography (IRT) [17], gamma-ray 
radiography [18] or other electromagnetic sensors [19]. 

On advanced stages of deterioration visual inspection is the method 
normally used for detection, examination and assessment of the evolu-
tion of concrete structures pathologies. For visual inspection reports, 
images can be taken by handheld cameras or Unmanned Aerial Vehicles 
(UAVs). Inspectors visually evaluate defects based on experience, skill, 
and engineering discernment. Nonetheless, this process is subjective, 
laborious, time-consuming and hampered by the need for closed prox-
imity access to several parts of complex structures. 

Researchers and engineers have been proposing automated visual 
inspection methods based on recent developments on digital image 
processing techniques [20–23] and on artificial intelligence techniques 
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[24–28], in order to ensure safer, more efficient and economical struc-
tural assessment [29]. 

Digital image processing techniques deal with the problems of 
applying image filters in order to highlight surface non-uniformities. 
Nevertheless, the analysis of images with strong light or shadow cast-
ing present difficult or unsurmountable challenges that may hinder the 
application of these techniques. Furthermore, it is not generally an 
autonomous method, and the parameters of the several image filters that 
may be applied must be adjusted by the inspector. 

In contrast to digital image processing techniques, artificial intelli-
gence techniques allow autonomous identification of surface anomalies 
in the image, typically performed using deep learning. Deep learning has 
been particularly successful in surpassing human capabilities in visual 
image recognition, speech recognition and natural language processing. 
Convolutional Neural Networks (CNNs) are a class of deep neural net-
works sketched for processing structured arrays of data such as images, 
that have revolutionized autonomous image classification and object 
identification in the last decade. 

Fig. 1. General system description.  

Table 1 
Descriptions of the system components. 

R. Santos et al.                                                                                                                                                                                                                                  



Automation in Construction 139 (2022) 104324

3

Image classification involves assigning class labels to an image, 
whereas object identification involves highlighting one or more objects 
in an image. A typical CNN can only determine the class of objects found 
in an image but not their location [30]. To overcome this challenge, 
Girshick et al [31] proposed a method that combine regions with CNNs, 
called R-CNNs. In R-CNNs the CNN is forced to focus on a single region 
of the larger image at each given time, carried on by a selective search 
technique for object detection, followed by a resizing algorithm forcing 
regions to be of equal size before they are fed to a R-CNN for object 

identification. 
However, research using CNNs normally require large amounts of 

carefully chosen data to train a network. When the amount of the 
training data is insufficient underfitting will likely occur, conducting to 
erroneous or sub-standard results [32]. Transfer learning techniques 
attempt to transfer knowledge from previous consolidated and trained 
CNNs to aid targeting new tasks when the latter has fewer high-quality 
training data thus avoiding possible underfitting problems [33]. 

AlexNet is a well-trained CNN, based on more than a million images 

Fig. 2. Methodology description.  

Fig. 3. Flowchart of the Image database constitution.  
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from the ImageNet database [34]. The network has a depth of eight 
layers, the first five being convolutional layers, and the last three fully 
connected layers. AlexNet can classify images into 1000 object cate-
gories, including keyboards, mouses, pencils, and many animals. The 
network has an image input size of 227 × 227 pixels. 

Dorafshan et al [35] show the superiority of the artificial intelligence 
approach using AlexNet network with transfer learning mode over 
digital image processing techniques for concrete crack detection. On 
their work the dataset was composed of 3420 sub-images of concrete 
cracks from a handheld camera. The digital image processing technique 
accurately detected about 79% of concrete cracks and was useful in 
detecting cracks coarser than 0.1 mm. In comparison, the AlexNet 
network, in transfer learning mode, accurately detected 86% of crack 
images and could detect cracks coarser than 0.04 mm. AlexNet network 
was chosen to develop this work due to its easy implementation after the 
releasing of so many deep learning libraries. Rubio et al [36] based on a 
database of images from a handheld camera of bridges in Niigata Pre-
fecture, Japan, developed a Fully Convolutional Network (FCN), a dense 
CNN without fully connected layers using VGG-16 network as the 
backbone, for detecting delamination and exposed steel rebars, showing 
a mean accuracy of 89.7% and 78.4%, respectively. Shin et al [11] 
proposed a model that can automatically classify different shapes and 
types of damage that occur on concrete surfaces in real conditions. To 
prepare the training dataset, Shin et al classified the data from a hand-
held camera into the following categories: crack (530), delamination 
(563), rebar exposure (268), leakage (208), as well as non-damage (412) 
images, through the Concrete Multi-Damage recognition neural network 
(CMDnet) designed on a VGG-16 network. Concrete surface multi- 
damage recognition using CMDnet achieved a 95.7% minimum proba-
bility of correct prediction, with a 98.9% accuracy. 

Advances in unmanned aerial systems (UAS) have produced low-cost 
and high-mobility UAVs, expanding their use on real-world applications 
including the civil engineering field [37–40]. UAVs allow surface visual 
inspections in large-scale civil engineering structures, permitting better 
results on the identification of anomalies [23]. In recent years, the 
application of Digital image processing techniques and CNNs in data 
images collected by UAVs, assisted on the implementation of efficient 
visual inspections, which have begun to attract researchers for more 
robust non-contact damage detection [41–45]. 

Ribeiro et al [23] describe a methodology for remote inspection of 
reinforced concrete structures using UAVs with the integration of results 
into BIM models based on advanced digital image processing techniques 
and the application of heuristic method for feature extraction. 
Alternatively, 

Rajadurai et al [43] focused on deep convolutional neural networks 
to detect and classify cracks through images taken from UAV by using 
transfer learning from AlexNet network. The trained model presented a 
prediction accuracy of 99.9%. Chaiyasarn et al [44] propose an auto-
mated crack detection system based on CNNs, along with UAV tech-
nology, applied in damage inspection. The 3D models created from the 
acquired and processed images can be used to archive structure prop-
erties, as well as to create an inspection report in a 3D model form with 

associated image locations to provide a better view for inspectors. 
Kumar et al [45] use a real-time multi-UAS approach to detect concrete's 
cracks and spalls, offering reliable performance with an accuracy of 
94.24% and an image processing in 0.033 s. 

The present article proposes an innovative contribution to some as-
pects: the creation of a CNN exclusively dedicated to the identification of 
exposed steel rebars based on a large number of images (20k) with 
variable lighting exposures, simultaneously integrating the use of UAVs 
in the methodology of exposed steel rebar detection. Two large struc-
tures under real environmental conditions, namely an industrial build-
ing and a telecommunications tower, are presented as case studies. 
Additionally, the authors have created orthoimage mosaics with 
georeferenced identification of the surface anomalies, a feature not 
included on any document mentioned in the consulted bibliography. 

2. Methodology for automatic detection of exposed steel rebars 

2.1. General description 

The proposed methodology for automatic detection of exposed steel 
rebars in RC structures is based on a video system installed on an UAV, 
also known as drone, supported by advanced image processing tech-
niques based on Artificial Intelligence (AI) (Fig. 1). The images collected 
by the UAV video system are georeferenced based on the drone built-in 
GPS, which may eventually be aided by a Real Time Kinematic (RTK) 
position correction system, should the need arise. The AI image pro-
cessing techniques are based on Convolutional Neural Networks (CNNs) 
that can detect exposed steel rebars on each processed image. On a 
second phase, a georeferenced orthophoto mosaic were built merging 
the several individual images. The UAV video system, together with the 
CNN image postprocessing, proved to be robust enough to provide 
successful results under the external environmental conditions existing 
during the image acquisition campaigns, particularly under low/me-
dium winds and variable lightning exposure including shadows. 

2.2. Equipment 

Table 1 illustrates the specifications of two UAVs from DJI, which 
were used as part of the system components in the proposed 
methodology. 

The DJI Matrice 600 Pro is a hexacopter with a maximum recom-
mended take-off weight of 15.5 kg, a maximum horizontal speed of 65 
km/h, a maximum service ceiling of 2500 m above sea level and an 
estimated flight autonomy of approximately 32 min (per battery set). 
The camera installed in the drone has a gimbal mounted DJI Zenmuse 
X5, with a 4/3” CMOS sensor and a resolution of 16 Megapixels. The 
gimbal ensures image stabilization along the three axes. The visualiza-
tion of the images and the remote control of the drone were carried out 
by means of a DJI Matrice 600 Series remote controller and a high- 
resolution tactile DJI Crystal Sky monitor, with internal image storage 
capacity. 

The DJI Mavic Mini is a quadcopter with a maximum recommended 

Fig. 4. Network architecture. L#: Operation layers; C#: Convolution operations; P#: Max pooling operations; CCN: Cross-channel normalization; FC#: Fully con-
nected layers. 
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Table 2 
CNN layer description.  

Layers / Description Schematic representation 

INPUT: At the beginning 
of the process, the 
input image is divided 
into pixels. For a black 
and white image, each 
pixel is assigned a 
value between 0 and 
255, corresponding to 
the black and white 
colours respectively, 
where in between 
these values there is a 
grey scale. A colour 
image is represented 
by a three- 
dimensional matrix, 
so that it is possible to 
store the combination 
of the three colours of 
the RGB scale. 

CONVOLUTION: The 
purpose of 
convolution is to 
extract features from 
the input image. It is a 
mathematical 
operation that has as 
input data, an image 
matrix and a filter 
matrix. The filter 
matrix runs through 
the entire image 
matrix, resulting in a 
smaller dimension 
matrix that will be 
easier to process. 
Convolution of an 
image with different 
filters can identify 
characteristics such as 
colours, gradient, 
orientation and 
borders. 

RELU: ReLU stands for 
“rectified linear 
units”. In this layer the 
function f (x) = max 
(0,x) is applied. The 
purpose of this layer is 
to introduce non- 
linearity to the 
network. Since most 
complex problems are 
nonlinear, it is 
important to use this 
activation function. 

POOLING: After 
extracting features 
through the 
convolution layer, the 
resulting feature map 
is passed to the 
Pooling layer 
immediately after 

(continued on next page) 
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take-off weight of 249 g, a maximum horizontal speed of 14 km/h, a 
maximum service ceiling of 3000 m above sea level and an estimated 
flight autonomy of approximately 30 min (per battery set). The drone 
has a native gimbal mounted camera, with internal stabilizers that 
cannot be disabled and a 12 Megapixels resolution 1/2.3” CMOS sensor. 

For the studies conducted, the precision obtained by the native GNSS 
systems on both UAVs used was deemed sufficient, since all image 
capture campaigns were conducted on open-wide areas with a robust 
GNSS signal. Should the need arise, other vehicles with RTK assisted 
geolocation might be used. Presently, this technology is not available on 
any of the drones used (DJI Mavic Mini and DJI Matrice 600 Pro). 

3. Region convolutional neural network (R-CNN) for exposed 
steel rebar detection 

3.1. Process description 

The process of creating an efficient neural network has two essential 
steps: the constitution of a database of images and the training and 
validation of the network. The quality of the database is probably the 

most important factor and should cover, whenever possible, the most 
varied scenarios that can be found in a real environment. Hence, a well- 
graded diversified database has much more chances of success on the 
detection and identification of whatever features it is designed for when 
applied to real situations. 

Another important decision to consider is the choice between a pre- 
trained network or the creation of a network from scratch. The disad-
vantage of creating one's own network is the need for a very large 
database to achieve a minimally satisfactory efficiency rate, which is 
why pre-trained networks are usually chosen. There are several pre- 
trained networks of different architectures that can be implemented, 
and, as a rule, the most efficient ones require more processing capacity, 
leading to longer training times. The training parameters also have some 
influence on the final efficiency, as these parameters must include the 
percentage of the database that the user intends to reserve for training 
and validation, the learning rate, the maximum number of epochs and 
the batch size. An entire dataset that is passed forward and backward 
through the neural network is considered an epoch. Since one epoch is 
normally too big to be fed to the computer on one single instance it is 
normally divided into several smaller batches, called mini-batches. 

Table 2 (continued ) 

Layers / Description Schematic representation 

applying a rectified 
linear activation 
function. This layer 
reduces the dimension 
of the input, 
extracting the most 
dominant 
information, so it is 
possible to reduce the 
necessary 
computational load, 
maintaining the CNN 
training process 
efficiency. The most 
used types are Max 
Pooling and Average 
Pooling. 

FULLY CONECTED 
LAYER: This layer is 
used for the 
classification of the 
characteristics 
extracted in the 
previous layers. 
Resultant maps are 
converted to vectors 
and their 
characteristics are 
combined to create a 
classifier. 
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With the network chosen well-trained, an automatic damage detec-
tion can be performed as illustrated in Fig. 2. However, the methodology 
proposed in this work consists on the application of a neural network for 
the detection of exposed steel rebars in a real environment, using the 
AlexNet pre-trained network and a database developed by the authors. 
High resolution close captured images of the entire structure under 

inspection were used and processed through a sliding window by the 
trained CNN. The sliding window parsed each image 227 × 227 pixels at 
a time, darkening the image in regions where no exposed rebars were 
found and keeping the remaining areas unaltered. The images were 
subsequently stitched together to form a georeferenced map high-
lighting the anomalies found. 

Fig. 5. CNN training and validation flowchart.  
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In terms of performance evaluation of CNNs, four metrics are nor-
mally used (Accuracy, Precision, Recall and F1 Score). Accuracy (Eq. 
(1)) is a statistical measure which is defined as the quotient of correct 
predictions made divided by the sum of all predictions. Precision (Eq. 
(2)) is the ratio of the correctly identified positive cases to all the pre-
dicted positive cases. Recall (Eq. (3)), also known as sensitivity, is the 
ratio of the correctly identified positive cases to all the actual positive 
cases. At last, F1 score (Eq. (4)) conveys the balance between the pre-
cision and the recall. 

Accuracy =
TN + TP

TN + TP + FN + FP
× 100 (1)  

Precision =
TP

TP + FP
× 100 (2)  

Recall =
TP

TP + FN
× 100 (3)  

Fig. 6. Training loss and validating loss over training epochs.  

Fig. 7. Trained CNN application on reinforced concrete structures  
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F1 Score = 2 ×
Recall × Precision
Recall + Precision

× 100 (4)  

where:  

• TP (True Positives) indicates, in this case, the number of exposed 
steel rebars successfully detected by the algorithm;  

• TN (True Negative) indicates the number of no exposed steel rebars 
successfully detected by the algorithm;  

• FP (False Positives) indicates the number of no exposed steel rebars 
that are falsely detected as exposed rebars;  

• FN (False Negative) indicates the number of exposed steel rebars that 
the algorithm did not recognize as exposed rebars. 

3.2. Image database 

The development of the exposed steel rebar automatic detection tool, 
started with the acquisition of images of both pathology ridden and 
intact concrete. It involved capturing images in real context and 
obtaining online images. The images obtained in real context were 
captured using a smartphone camera with a resolution of 4000 × 3000 
pixels, a DJI Mavic Mini drone camera with a resolution of 4000 × 2250 
pixels, a DJI Zenmuse X5 camera with a resolution of 4608 × 3452 and 
also a Canon EOS 250d professional camera with a resolution of 4000 ×
3000 pixels. The images were captured from several structures in the 
district of Porto, Portugal, and taken at several angles, distances, and 
different times of the day in order to cover a large diversity of image 
capture situations. 

Images were then subdivided into 227 × 227 pixel sub images as this 
is the pre-defined image input for the pre-trained network used in this 
work. All images which were not considered valid for classification after 
division were discarded. 

Finally, it was also necessary to use Data Augmentation techniques in 
order to obtain enough images for a robust classifier. Training images 
can be increased in number by geometric transformations, blur and 
changes in the colour scale. As for geometric transformations, rotations, 
translations and reflections can be applied to the original image in order 
to take into account the variation of the direction and the angle at which 
an image can be obtained. The application of blur simulates image 
capture conditions of insufficient light or motion, while changes in the 
colour scale, are intended to take into consideration variations in white 
balance or brightness and colour of the pictures. 

The applied transformations allowed a seven-fold increase of the 
original database size, obtaining a sufficient number of valid images for 
training the CNN. At the end of the process, 40 k images were obtained, 
20 k of exposed reinforcement and 20 k of intact concrete. Fig. 3 illus-
trates the process of the database constitution. 

3.3. Training and validation 

The Deep Learning Toolbox from Matlab©, in which some of the 
most popular convolutional neural network algorithms are imple-
mented, was used to perform the CNN training. CNNs use 2D convolu-
tional layers which makes its architecture ideal for processing 2D data 
such as images. 

Additionally, CNNs eliminate the need to perform a manual feature 
extraction, doing it automatically through the provided images. This 
automatic extraction makes the Deep Learning model highly reliable for 
object classification and require less pre-processing when compared to 
other image classification algorithms. The example of a CNN architec-
ture applied to the recognition of characteristics in images can be found 
on Fig. 4. 

In the Matlab© Deep Learning Toolbox there are 20 algorithms of 
convolutional neural networks embedded, including the most popular 
like AlexNet, GoogleNet, Resnet and VGG-19 networks. These networks 
differ from each other in the design of their architectures, varying the 
number of layers, parameters, size of the input data and disk occupation 
resulting in networks that behave differently and consequently give 
different results, with different training times and problem solution 
precision. 

CNNs use the predictions from the layers to produce a final output 
that presents a vector of probability scores to represent the likelihood 
that a specific feature belongs to a certain class. 

Besides the input, there are four types of layers for AlexNet and most 
of the CNNs used today: the convolutional layer, the pooling layer, the 

Fig. 8. Industrial building, view from the bridge over the Ave River.  

Fig. 9. Aerial view of the studied structure.  
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ReLU correction layer and the fully connected layer. Table 2 describes 
the transformations that occur in the layers. 

It was decided to use the AlexNet pre-trained network for the 
training of the CNN. In the absence of previous collected data for this 
particular problem, the decision for choosing this network was based on 
the analysis of studies in which similar problems are solved. Özgenel & 
Sorguç [46] did a comparison of the performance of seven highly 
acknowledged pretrained convolutional neural networks on crack 
detection in buildings. Tests were performed with Alexnet, GoogleNet, 
ResNet50, ResNet101, ResNet152, VGG16 and VGG19. The results 
reveal that all networks had scored over 90% in accuracy, with AlexNet 
scoring in the middle tier of these results. However, on what concerns 
the training time, AlexNet revealed to be over nine times faster than the 

second fastest option. Similar results are reported in [45]. 
As the CNN AlexNet is configured for one thousand categories, it was 

necessary to make small changes to its layers in order to classify only two 
categories. For each category, the images were subdivided, with 80% 
used for training the CNN and 20% reserved for validation. Fig. 5 shows, 
schematically, how the process of training a robust classifier works. 

The training was performed on a medium range computer with the 
following characteristics: Processor: i5–7500, Graphics Card: GTX 1050 
2GB, Motherboard: ASUS H110M-K, RAM: HyperX Fury DDR4 8GB 
(2400 MHz), Hard Drives: Kingston SSD 120GB and TOSHIBA HDD 1 TB 
and OS: Windows 10 64bit. The network training took about 8 h and 
resulted in an accuracy of 99.1%. As shown in Fig. 6, solid orange light 
curves and dashed dark black lines represent the training loss and 

Fig. 10. Identification of the inspection regions.  
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validating loss, respectively during the interactions into the 8 epochs. In 
this case, the validating loss performed close to the training loss to 
ensure that the parameters of the CNN were not overfit during the 
training progress. The metrics discussed above (see Section 3.1), 
namely, the accuracy, precision, recall, and F1 score achieved results of 
97.6%, 98.9%, 97.4%, and 98.1%, respectively. 

3.4. Application and georeferenced images with marked steel rebars 

Having a CNN well-trained with satisfactory results, it became 
necessary to develop an application to evaluate test images in order to 
prove the real efficiency of the CNN. An algorithm was developed in 
Matlab© capable of processing input images, regardless of the original 
resolution, by processing consecutive fractions of each image. As 
explained before, a sliding window traverses the image at strides of 227 

Fig. 11. Image processing in Region A. a) subregion A1; b) subregion A2; c) subregion A3.  
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pixels, both horizontally and vertically, darkening the image in the 
fractions where the classifier does not find anomalies, thus highlighting 
the areas with anomalies in the processed image. 

The various images captured in the studied structures were processed 
and stitched to form a georeferenced map with the anomalies found, 
using the software Image Compositor Editor©. The process of creating 
the georeferenced map is illustrated in Fig. 7. 

4. Case studies 

4.1. Silo structure 

4.1.1. Description 
The first case study is an industrial building, located in Vila do 

Conde, Portugal, next to the bank of the Ave River and about two kil-
ometres from the Atlantic Ocean. It is a large building, about 20 m wide, 
100 m long and 35 m high, built entirely in reinforced concrete (Fig. 8). 
The building, now abandoned, belonged to the company “Prazol”, that 
was once dedicated to grinding, treating, and storing of seeds and 

cooking oils. The company went into decline at the end of the 20th 
century and was closed before the end of the century. The industrial 
complex in which the studied building is integrated, is now in an 
advanced state of degradation. 

4.1.2. Application 
Image capturing was carried out in July 2020, in the late afternoon. 

The conditions for using the UAV were close to ideal, since it was a 
sunny day with calm winds, and with plenty of light. For security rea-
sons, entrance to the industrial complex was forbidden, due to the 
advanced state of degradation of the structure and facilities. This limi-
tation determined that the capture zone should be limited to the West 
side of the structure in order to safely operate the drone. Fig. 9 shows an 
aerial view of the structure with the position of the drone pilots and the 
locations chosen for image capturing. 

On the silo, images were captured in two different locations, both in 
the West side of the structure. Fig. 10 shows the inspection regions 
where the images were captured. From left to right, on the second silo 
cell the grey rectangle marks Region A and on the last silo cell the yellow 

Fig. 12. Inspection of region A: original stitched image vs stitched image with marked steel rebars.  
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Fig. 13. Image processing in Region B. a) subregion B1; b) subregion B2; c) subregion B3.  
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Fig. 14. Inspection of region B: original stitched image vs stitched image with marked steel rebars.  

Fig. 15. Aerial view of the Telecommunications tower.  
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rectangle marks Region B. 
Fig. 11 presents three examples of the application of the exposed 

rebar detection tool applied to images on region A. 
Fig. 12 shows the aggregated image before and after processing, in 

which false positives found are highlighted in green. Exposed rebars 
have been highlighted in red for increased visibility. 

In total, 4 false positives were found in the stitched image, with the 
accuracy of the network in this image being 98.33%, which is higher 
than the validation efficiency. The false positives found appear in areas 
of advanced delamination, but still without exposed rebars, leading the 
network to erroneously classify these positions. 

Fig. 13 shows again three examples of the application of the same 
tool applied to Region B. 

Fig. 14 shows the aggregated images before and after processing, in 
which the false positives found are again highlighted in green and the 
exposed rebars highlighted in red. 

In this stitched image, only one false positive was found, with the 
network accuracy in this image being 99.60%, which is also higher than 
the validation efficiency. Apart from a small crack in the right side of the 
inspection region, there are no obvious reasons why the network failed 
in this position. The most likely cause appears to be that the network has 
mixed up the small dark spot of the crack with the beginning of an 
exposed rebar. 

4.2. Telecommunications tower 

4.2.1. Description 
The Monte da Virgem telecommunications tower is a transmission 

tower built by Altice/Portugal Telecom in 1995 and located in Vila Nova 
de Gaia, in the north of Portugal. The structure of the tower consists of a 
126 m high RC shaft and a 51 m high metallic mast, for a total height of 
177 m. It is the highest structure of its kind in Portugal (Fig. 15). 

The RC shaft has the shape of a hyperboloid of revolution, with a 
circular hollow section and a diameter varying between 14.3 m, at the 
base, and 7.7 m at the top. The shaft includes five technical floors, 
materialized by prestressed concrete cantilever slabs. The technical 
floors are located between the heights of 94.9 m and 112 m, measured to 
the base of the shaft, with two of these closed with external walls, while 
the three remaining floors are open and protected with balcony railings. 
The metallic mast on top consists of a spatial lattice composed of three 
sections along its height. 

4.2.2. Application 
Similar to the silo case study, the photographs were taken at the 

communications tower and processed afterwards. However, the number 
of photographs was not sufficient to map a continuous region of interest, 
mostly due to flight conditions hampered by strong winds at the moment 
of the photograph capture. Three photographs are presented for the 
application of the tool on the tower. Fig. 16 frames the images in the 
structure while Fig. 17 shows the obtained results. 

5. Conclusions 

This article describes the implementation of a technique for con-
tactless inspection of reinforced concrete structures using unmanned 
aerial vehicles, with the purpose of automatically detect exposed rein-
forcement rebars and create orthoimage mosaics with georeferenced 
identification of this pathology on concrete wall images. 

The proposed technique relies on a two-stage strategy where, on the 
first stage, images are acquired using drones in order to create a set of 
images that will later be merged on an orthomosaic representation of a 
building façade. On a second stage, images are analysed using artificial 
intelligence algorithms based on deep learning, which, in this particular 
implementation, rely on Region-Convolutional Neural Networks (R- 
CNNs) based on the AlexNet CNN. This approach has the advantage of 
being able to automatically identify the existence or absence of exposed 
steel rebars and simultaneously obtain a representation of their location 
superimposed on the orthomosaic of the façade. 

The algorithm was implemented using the Deep Learning Toolbox 
from Matlab© and required the acquisition and processing of a large 
number of images (20 K images) in order to build a well-graded, 
diversified image database covering various scenarios found in a real 
environment. This image database served both as the training and 
validation core for the applied neural network. 

The metrics applied to evaluate the performance of the CNN based on 
the validation subset composed of about 20% of the number of collected 
images, included measurements on the accuracy, precision, sensitivity 
(normally named Recall) and balance between precision and sensitivity 
(normally named F1 score). These metrics achieved consistent results of 
97.6%, 98.9%, 97.4%, and 98.14%, respectively, for each of the previ-
ously mentioned criteria. The training process resulted on a 99.1% 
accuracy. 

For the two case studies presented, a silo and a telecommunications 
tower, and for the regions analysed in each case, the accuracy obtained 
was consistent, if not better, than the results of the evaluation metrics 
applied. 

For future developments, the authors are considering the advantages 
of upgrading the proposed methodology replacing the sliding windows 
method with a selective search or image pyramids for object detection. 
Other improvements considered include the instance segmentation of 
multiple concrete damage based on Mask R-CNN and U-Net techniques. 
Additionally, some specific field applications will be carried out to 
evaluate the potential for metric characterization of anomalies. 

Fig. 16. Telecommunication tower inspection sub-regions.  
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