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A B S T R A C T   

In this paper, we propose an optimal hierarchical bi-directional aggregation algorithm for the electric vehicles 
(EVs) integration in the smart grid (SG) using Vehicle to Grid (V2G) technology through a network of Charging 
Stations (CSs). The proposed model forecasts the power demand and performs Day-ahead (DA) load scheduling 
in the SG by optimizing EVs charging/discharging tasks. This method uses EVs and CSs as the voltage and fre



quency stabilizing tools in the SG. Before penetrating EVs in the V2G mode, this algorithm determines the on 
arrival EVs State of Charge (SOC) at CS, obtains projected park/departure time information from EV owners, 
evaluates their battery degradation cost prior to charging. After obtaining all necessary data, it either uses EV in 
the V2G mode to regulates the SG or charge it according to the owner request but, it ensure desired SOC on 
departure. The robustness of the proposed algorithm has been tested by using IEEE-32 Bus-Bars based power 
distribution in which EVs are integrated through five CSs. Two intense case studies have been carried out for the 
appropriate performance validation of the proposed algorithm. Simulations are performed using electricity 
pricing data from PJM and to test the EVs behaviour 3 types of EVs having different specifications are penetrated. 
Simulation results have proved that the proposed model is capable of integrating EVs in the voltage and fre



quency stabilization and it also simultaneously minimizes approximately $1500 in term of charging cost for EVs 
contributing in the V2G mode each day. Particularly, during peak hours this algorithm provides effective grid 
stabilization services.   

1. Introduction 

From past decade the numbers of Electric Vehicles (EVs) are rapidly 
increasing all over the world, and electric cars are now being regarded as 
an alternative of the conventional Internal Combustion Engine Vehicles 
(ICEVs) [1]. By scientific studies it has been proved that in near future 
the growth of EVs with the current pace can help in countering growing 
fossil fuels shortages and global warming [2]. Several scientific surveys 
show that by the intelligent penetration of modem EVs in the power 
distribution system a renewable powered grid could be stabilized even 
their integration can also increase power generation proportion by the 
renewable resources [3]. Currently, researchers all over the world are in 
ager to develop robust techniques to penetrate plugged-in-EVs with both 
commercial and domestic chargers as the power storage devices. Many 
recent studies show that in any metropolitan area parked and plugged-in 
EVs can be used as the quick power storage resource. In past few years 
the energy storage capacity of the EV batteries has rapidly expanded, till 
this date, millions of all Electric Sports Utility Vehicles (SUVs) equipped 
with 80-100kWh batteries are already running on the roads worldwide 

[4]. It is evident that due to the recent advancements in EV industry, 
modern electric cars are not only capable of procuring energy from the 
grid for charging, besides, these cars can also supply energy in return to 
the grid in peak hours and could contribute in fulfilling the peak energy 
demands as the peaking plants. 

This phenomenon is known as the vehicle to grid (V2G) system [5]. 
Generally, V2G operation is carried out by using the pre-installed in
verters in the EVs when these are parked at the charging booths or 
through purposely installed mega chargers equipped with high rated 
inverters [6]. As a decentralization energy resource a fleet consists of 
few modern EVs can supply power backup in Mega-Watts (MW) to the 
grid. In literature, several algorithms are proposed with the motivation 
to practically implement the V2G technology. Some models show that it 
is possible to use modern EVs to stabilize the grid by the penetration of 
V2G system, but still the practical implementation of V2G technology is 
absent. Despite of the huge work still researchers are unable to practi
cally penetrate EVs in the SG as the power storage devices. However, it is 
an unneglectable fact that EVs could be used to stabilize the sever 
voltage fluctuations and frequency transients produced by the inter
mittent energy means [7]. Moreover, modern EVs could also act as the 
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spear energy reserve [8], peak load diverting devices [9] and as the 
frequency stabilization tools [10]. 

Out of these services, particularly EVs frequency stabilization capa
bility has obtained huge attention of the researchers all over the world 
[11]. Stable frequency exhibits a very important role in any power 
network. It is a defined mechanism that the range of frequency in any 
power system should be within the acceptable limits, even a slight 
change in frequency level can cause major failure of the whole power 

network and sometimes ends up as the national level breakouts [12]. 
Due to the abruptly responding capabilities of EVs chargers (approxi
mately 10 ms), EVs taking part in the up or down power regulation 
configurations can provide instantaneous response which make V2G 
system more effective as compare to the other methods, i.e., to start any 
synchronous machine consume much longer time than the EV power 
injection into the grid. Moreover, EVs could also be used as a separate 
power regulation source, i.e., in future due to massive EV numbers on 

Nomenclature 

List of indices 
i Index of the EVs charging stations (CSs) 
j Index of the Electric Vehicles (EVs) 
Bij Chemical properties of an EVj battery connected with CS i 

List of acronyms 
EVs Electric Vehicles 
CSs Charging stations 
DA Day-ahead 
TNO Transmission network operators 
I-Day Vehicle-to-grid Integration day. 
DR Demand Response 
DNO Distribution network operators 
mi n Minimal value 
s.t , Subjected to 
RP Reactive power 
SOC, s Battery state-of-charge (SOC) 
BDD, d Battery discharging depth 
ADC Average battery degradation cost 
DDF Function of the degradation density 
D DDF at SOC s. 
SolS “Solution sets” available for the optimization constraint 
G2V Flow of power from grid to EV 
V2G Flow of power from EV to grid. 
CAO Central Aggregation Office 

List of Variables 
SOCint

ij Primal state of charge of an EVj arrives at CS i 

SOCfin
ij 

State of charge of EVj at departure from CS i 
SOCi(t ) Maximal energy storage capacity of the EVj battery 
Eint

ij Initial amount of power supplied to the EVj by CS i at the 
start of charging 

Efin
ij 

Total power supplied by the CS i to EVj till departure 
Emax

ij Maximal rate of power which could be supplied by the CS i 
for charging all connected EVs 

Pup
ij
(t ) Reserve power supplying (up) signal from CAO to EVs and 

CSs for grid stabilization 
Pdown

ij
(t ) Receive power (down) signal from CAO to CSs for charging 

EVs. 
Pup

ij − new(t ) Updated reverse power supplying signal (up) signal from 
CAO to CS i and EVj 

Pdown
ij − new(t ) Updated again start obtaining power from the grid signal 

(down) signal from CAO to CS i and EVj 

Qij (t ) Maximal reactive-power delivering capacity of an EV fleet 
parked at CS i 

Qij − new(t ) Updated value of reactive-power backup available at CS i 
with the collaboration of EV fleet. 

Tarr
ij 

Arriving time of EVj at CS i 

Tdep
ij 

Departing time of EVj from CS i 

NCL Life-time charging/discharging cycles of an EV battery. 
$BT ,$BT

ij 
Overall battery degradation cost of EVj connected with CS i 

K,1,2(y) Number of objective-functions. 
y Set of optimal solutions. 
t Number of time slots. 
V i(t ) Nominal voltage value at charging hub CS i 
ΔV i(t ) Values of the uncertain voltage fluctuation at the charging 

hub of the CS i. 
Rr ef (t ) Reference value of the active power signals broadcasted by 

the TNO 
Qr ef (t ) Reference value of the total reactive power signals 

broadcasted by the DNO. 
Pup(t ) Maximal power supplied in reverse to the grid by CAO 

which is only obtained by the EVs fleet. 
Pdown(t ) Maximal power obtained by the CAO from the grid then 

supplied to CSs for charging EVs. 
Q(t ) Rated reactive power regulating capacity of the CAO 

considering power storage capacity of all connected EVs. 

List of constants and parameters 
Tset Set of time slots with similar energy prices. 
n Number of hourly time slots (sets of t ). 
S ij Maximal power supplied by the charger i to EVj . 
qij Nominal reverse reactive power delivering capacity of EV 

fleets connected with CSs. 
qmax , Qmax

ij
Maximal reactive power delivering capacity of an EV fleet 

with the collaboration of CS i. 
Qmax

i 
Maximal reactive power delivering capacity of the 
charging station i to the grid without EV support. 

pij Value of power consumed by all EVs connected with the CS 
i from the utility grid in real time (RT). 

α,β EVs and CSs battery coefficients. 
PB, PBij Price of battery modules connected in the EVj being 

charged by the CS i. 
η Overall efficiency of one complete charging/discharging 

cycle of an EVj . 
ηup

ij 
,ηdown

ij
Up/down charging/discharging efficiency of the EV fleet 
connected with CS i. 

$
up
Rwd, $down

Rwd Revenue earned by the CSs and EVs for providing up/ 
down power regulation services. 

Pmax
ij 

Maximal amount of active power supplied by all EVs and 
CSs back to the grid. 

$Q(t ) Revenue earned by the CSs and EVs by providing reactive 
power regulation services to the grid. 

gi, yi Conductance of the grid side transmission/ distribution 
lines or value of the reverse reactance of the charging 
station single connection node. 

NV Number of vehicles in the EV fleet which collaborates with 
CAO. 

NCS Number of charging stations associated with the CAO.  



roads, it will be a un-neglect able possibility to use EVs as the supple
mentary power stabilizers [13]. On the power distribution side of the 
gird, injection of the real time reactive power by EVs is considered as one 
of the most valuable contribution in the modern power networks, briefly 
explained in [14]. Integration of the reactive power (RP) by the V2G 
system, enables electricity supplying companies to further improve the 
quality of power with enhanced efficiency on both transmission and 
distribution sides which eliminates the chances of generator overloading 
[15]. In addition, controlled EVs charging/discharging does not cause 
any battery degradation even after thousands of cycles [16]. 

Moreover, due to the immense and vastly expanding renewable re
sources penetration in the smart gird, appropriate and efficiently 
manageable algorithms are now compulsorily required to guarantee the 
reliable and efficient working of the whole grid [17]. Further, with the 
assistance of conventional power generation resources, the loads having 
shift able properties i.e., like EVs charging/discharging could be diver
ted during both peak and off-peak hours using advance algorithms. Such 
algorithms can also contribute to the load management by providing 
services of utilizing backup energy means [18]. Therefore, to practically 
implement this phenomenon researcher all over the world are trying to 
find robust techniques to expand the power generation by intermittent 
resources with the help of EVs and other energy storage appliances [19]. 
However, modern EVs exhibits higher capability of providing grid 
levelling services on vast sale, because, a fleet comprised of 10–15 fleets 
can provide Megawatt Hour (MWH) amount of power backup instan
taneously [20]. 

In past decade, a network of advance metering infrastructure (AMI) 
has rapidly expanded and has enabled the broader scale integration of 
intermittent resources in the smart grids all over the world [21]. By 
using AMI, now any consumer can contribute as energy supplier in the 
energy market, by selling his domestically produced energy by roof 
mounted solar plants. Considering this concept, it is likely that with the 
expansion of EVs numbers, many consumers can use their EVs for this 
purpose [22]. Since, according to world transportation survey of past 
decade [23] about 90% EVs are driven for only about 2 h in a day, and 
stay parked during remaining hours. So during parked hours these could 
be used for voltage and frequency stabilization services or as an energy 
trading tool [24]. It is a general practice of power supplies all over the 
world that they divide a day into multiple time slots, and for each time 
slot per kWh price of electricity is different, in peak hours it is high as 
compared to the off peak hours. Therefore, a consumer can utilize his EV 
in such manner that he can charge his EV in off peak hours and could 
supply power back to the grid in peak hours, or vice versa [25]. The only 
threat which in future EVs will face is the threat of battery capacity 
degradation which is a major drawback of using EV in V2G and G2V 
mode [26,27]. Therefore, robust and intelligent techniques are required 
to be developed to reduce this threat and to optimally integrate EV in a 
smart grid as the grid stabilization tool, which is the basic motivation of 
this research work. Considering limitations of the upper stated research 
works, the proposed model is designed to overcome all these constraints 
effectively. Main contributions of this paper are as follows: 

• A deterministic non-linear programming (NLP) based V2G aggrega
tion framework termed as Central Aggregation Office (CAO) is pro
posed to regulate the uncertain voltage fluctuations and current 
transients in the smart grid introduced by renewables with the 
optimal integration of EVs in V2G or G2V modes. This framework 
consists of two layers and works in the hierarchical prospective 1) 
Upper Layer, 2) Lower Layer. The upper layer deals with the Day- 
ahead energy scheduling of the transmission side, while the lower 
layer deals with the real time load regulation of the distribution side 
of the gird.  

• Transmission Network Operators are referred as “Upper Layer”. Its 
responsibility is to forecast the amount of power which is required 
for trading in the DA energy market in contrast to the maximal power 
demand of the DA market. The advantage of this approach is, if the 

upper layer detects that the amount of power which will be available 
in the DA market would be insufficient to fulfill DA energy demand 
or it will be higher than the total power demand then to cope this 
contingency and to save power loss, it will abruptly define new 
optimal charging/discharging schedules for all associated EVs and 
broadcast this information as the updated regulation up/down sig
nals to the lower layer for engaging CSs and EVs. Hence, the differ
ence between power generation and demand is covered by utilizing 
EVs in the V2G or G2V mode.  

• The Distribution Network Operators (DNO) are termed as the “Lower 
Layer”. It deals with the “Real-Time” load regulation by optimally 
penetrating EVs in the V2G or G2V mode. This layer deals with the 
voltage and frequency abnormalities i.e., initially it prepares the 
voltage and frequency transients record in advance considering the 
past power generation fluctuations record introduced by the 
renewable resources according to the ecological factors and com
putes the amount of power required to counter these transients in 
advance to stabilize the grid. This layer is responsible of simulta
neously performing EVs charging/discharging tasks and the grid 
regulation in real time.  

• In the proposed framework we have particularly defined a separate 
strategy for minimizing the threat of battery degradation which in
forms all EV owners in advance before they are ready to offer their 
vehicles for the V2G operation. This method also integrates DC 
linking capacitor banks of thousands of Farads connected with the 
commercial EV chargers to provide instant voltage and reactive 
power support to the grid for shorter durations even if suitable 
number of EVs are not connected to the CSs network. This is also a 
major contribution of this paper, 

The performance of this model has been verified by intense simula
tions carried out on the 1EEE 32-Busbar based distribution network [54] 
as well as we have also performed several case studies to test the 
robustness of the proposed model. Test results show that our proposed 
hierarchical aggregation algorithm (CAO) minimizes the overall 
charging costs of all associated EVs who offer V2G services. It does not 
cause any energy storage capacity degradation to the used EV batteries. 
Despite providing instantaneous frequency regulation services to the 
grid thousands of times, the EV battery SOC capacity do not degrades to 
the danger level. Note. in rest of this paper the lower level approach is 
termed as the “V2G Integration day” and denoted by the “I-day”. 

The rest of the paper is arranged as follows, Section II covers the 
literature Survey, Section III, presents the basic architecture of the 
vehicle to grid aggregation system, Section IV, briefly explains the 
proposed V2G optimization constraint to integrated EVs in the grid. 
Section V, presents the structure of hierarchical model and high level 
controlling functions. Section VI, covers the case studies and simulation 
test results. In last Section VII, concludes this paper and presents the 
future work statement. 

1.1. Literature review 

In literature several techniques are proposed with the motivation of 
controlling sudden voltage/frequency transients and power blackouts. 
Because, in real world, a power grid faces severe transients due to any 
unexpected imbalance between demand and supply. For instance, if a 
higher rated electricity generator fails due to the sudden atmospheric 
temperature changes [28] and there is no backup power plant of similar 
rating is available for abrupt operation. In this case, the proportion of 
the power generation uncertainty extraordinary exceeds. Particularly 
due to such constraint, in a real-time market the energy procurement 
tariff could significantly increase, which can affect the energy tariff of 
the retail market. Sometimes, such transients occur frequently when 
most of the power grid is being fed by the renewable resources, i.e., by 
photovoltaic and wind energy, which might cause massive real-time cost 
fluctuations, and in certain scenarios, such constraints can cause 



breakdown of the complete power system [29]. 
Conversely, the mean reversion theory effectively informs retailers 

about the ratio between current power generation and consumption. 
Moreover, it also broadcasts updated energy pricing data which is pre
pared by considering the current weather report, renewable production 
proportion and after analyzing the power generation proportion of other 
sources currently being utilized, as well as, chances of occurring tran
sients and voltage imbalances or any other major constraint are also 
considered. In modern power networks, this data is sent as the average 
or mean values to the service operators and consumers by the central 
control office. Generally, before broadcasting this type of data to all 
stakeholders, first it is compared with the historic records to verify that 
either the current predictions are correct and will fully ensure consumer 
satisfaction and either this data will be helpful in maintaining power 
system stability or not [30]. In a broader prospective it is believed that 
despite of verification still unexpected transients may keep on occurring 
for longer periods due to the failure of any part of the power system 
which can eventually cause consumer dissatisfaction and the higher 
level power breakdown [31]. 

A comprehensive overview of the Demand Response (DR) techniques 
and its numerous classifications in the deregulated energy market is 
presented in [32]. In [33], authors compare multiple bidding procedures 
in the wholesale energy market where renewable resources and EVs are 
connected with the grid. This model only deals with the energy trading 
and does not propose any V2G aggregation framework. In [34], author 
presents a common approach for regulating EV charging through 
aggregator. Although the aggregation algorithm is proposed in this 
paper, but, this method only schedules EVs charging in off peak hours 
and does not consider EVs as the voltage or frequency stabilizers. In 
[35], authors claim of proposing robust EVs aggregation system how
ever they do not utilize full energy stored in EVs nor use V2G mode; they 
have just defined hours for EVs charging from 22:00 to 7:00am in the 
offline grid which makes it unfeasible for modern use. 

In [36], authors propose a ladder following multilevel programming 
based algorithm for consumers and retailers. They have deployed cur
rent energy cost broadcasting strategy for each consumer and expected 
that he will manage his own EV charging according to the broadcasted 
information, which increases the computational difficulties of the pro
posed algorithm. Although, this technique is decentralized, but despite 
still the upper level (managerial platform) of this algorithm must be 
informed about the EVs specifications and owner choice, which does not 
assure the consumer privacy. The same privacy violation issues are faced 
in [37]. In [38], authors have used known energy tariff model in the 
electricity supplying market, which is exactly the same policy used for 
thermal generators, but in this algorithm they have used this method as 
a communicator platform between aggregator and retailers which need 
an efficient communication network to work. Even a slight delay in 
communication system can cause major difference between demand and 
supply. 

In [39], an automatic load scheduling algorithm is designed partic
ularly this aggregator contribute in the day-ahead (DA) market and 
tends to enhance the consumer satisfaction level by reducing its own 
profit which is an un-implementable approach. A stochastic SCUC 
concept is proposed in [6], which considers reserve bids broadcasted by 
the retailer who have computed this using (Demand Side Management) 
DSM strategy, and it also uses arbitrary blackouts data of the wind 
production plants along with constraints of the transmission side, but 
the cost analysis of the conventional power plants is absent which does 
not provide accurate biding data to all stockholders. 

In [40,41], hierarchical DSM methods are designed to enhance the 
contribution of the intermittent resources by re-profiling the power 
demand. However, the practical feasibility of this work is absent and not 
studied. Particularly in. [42], a comprehensive study of the DSM based 
load scheduling is carried out which considers economy of the dis
patched power. In the proposed model authors have used multiple 
techniques to reliably integrate renewable resources in the grid, and 

used multi-technique method for the renewable integration but, this 
model needs extreme computation power for execution which makes it 
completely un-feasible for practical implementation. 

In [43] and [44], robust optimization (RO)-based techniques using 
DSM have been developed, which enables the decentralized structure of 
the dynamic market pricing. In both models authors have included, a 
two-stage marketing model as reference in which., consumers directly 
purchase electricity from the wholesale market, on the contemporary 
(most recent) tariff. However, after following this model in peak hours 
all consumers have to purchase the electricity on higher rates which is a 
common approach. Therefore, the main contribution of this work is 
absent and hard to grasp. 

In [45], a comprehensive study about the use of second hand bat
teries is carried out, in this research work authors have proposed that the 
used EV batteries could be employed as backup in the small scale energy 
storage unit with photovoltaic power generation plant. Authors used 
second hand batteries from five EVs to enhance the effectiveness of small 
scale power plant the results proved that second hand batteries could be 
a feasible option for energy storage in small scaled renewable power 
plants. In [46], a detailed review on the different charging schemes is 
discussed, authors have studied several prospects of EVs integration in 
the grid through V2G and proposed EVs could be used for better load 
management. In [47], a techno economic analysis of the EVs integration 
in smart grid by the V2G operation is discussed and in order to level the 
power demand and tariff as well as EVs integration in peak hours could 
also minimize the power generation by conventional power plants hence 
greenhouse gas emission could be reduced. In [48], A look-ahead risk- 
aversive based EVs load aggregation algorithm is proposed which en
ables V2G and G2V operation of EVs in the smart grid environment and 
increases revenue for EV owners and reduces voltage and current tran
sients introduced by the renewables. In [49], a real time controlling 
strategy for managing EVs in charging stations is proposed which is 
capable of balancing load on all three phases by the help of EVs. In [50], 
an EV aggregation planning model to provide ancillary services to the 
grid is proposed, which also regulates the operation of energy storage 
systems in smart grid. In [51], a user friendly aggregation model to 
integration EVs in the smart grid according to the consumer preferences 
is proposed which helps in regulating frequency transients by the EVs 
penetration as secondary power resource. In [52]-[53], authors have 
proposed smart grid regulation models for the ancillary services mar
kets, the proposed strategy penetrates EVs and energy storage systems in 
the smart grid to enhance the reliability of the grid where renewables are 
the major power producers. These methods aim to reduces energy cost in 
peak hours as well as also generate profits for EV owners. 

From the above discussion it is proved that still the practically 
implementable V2G regulation model is not proposed which could have 
been used for the grid stabilization on the broader scale. Therefore, in 
this paper we have proposed a robust V2G aggregation algorithm which 
does not only robustly regulate the EVs charging/discharging tasks, 
besides it also reduces their charging costs. Moreover, It also contributes 
in the voltage and frequency stabilization to the grid. This framework 
also provide assistance to both TNOs and DNOs while integrating the 
renewable resources in the grid on higher scale further detail of the 
proposed methodology is stated in next chapter III as follows: 

1.2. Basic architecture of the proposed V2G aggregation system 

1.2.1. Basic EV aggregation frameowrk 
In literature, various strategies for V2G aggregators have been pre

viously defined by the industrial and academic researchers all over the 
world [55]. The operation of every proposed framework mainly depends 
on the controlling strategy. In literature, enormous EVs aggregation 
models have been proposed with the motivation of minimizing the 
overall energy procurement costs for both EV owners and the energy 
suppliers. These models work on the bases of costs functions dealing 
with the already defined sets of power consumption costs of several 



utilities or govern the EVs charging costs according to the pre-defined 
values. Such methods commonly work by considering multiple ancil
lary services provided by or to the energy supplying markets i.e., power 
stabilization during peak hours, frequency or voltage regulation and 
overall charging and power procurement cost reduction. 

One of the previously developed EVs aggregation model in literature, 
is capable of both voltages and frequency regulation and presented in 
Fig. 1 [56]. Note in our model, a similar but much more sophisticated 
strategy has been proposed. As stated above, basic contribution of our 
proposed method is, it provides immense operational stability to the SG 
and the proposed algorithm could be governed with very little compu
tational power, which makes it easy to implement on higher rated power 
networks. Fig. 1 show all parts of the SG which are compulsory for 
regulating and maintaining the power flow between SG and EVs. In this 
figure the central aggregator receives all necessary data of the SG, which 
then manages the operation of whole power system. Besides the flow of 
information between DNO, TNO are also managed by the central ag
gregation office, which is also given in Fig. 1. After receiving all essential 
data, central aggregation system executes necessary actions to perform 
the EVs charging or discharging tasks and frequency or voltage regula
tion services. 

The power regulation and EVs charging/discharging operations are 
executed by considering the current per unit price of electricity in the 
wholesale energy market i.e., $/kWh and according to the action com
mands broadcasted by the central energy suppliers. For instance, in 
response to the voltage stabilization command which was broadcasted 
by the central transmission network operators (TNOs) or distribution 
network operators (DNOs) the proposed CAO frequently engages all 
available resources in real time and successfully provides voltage sta
bilization support to the grid. As stated above, in our model, only a 
central aggregation authority termed as “CAO” is responsible of gov
erning charging/discharging tasks of all associated EVs parked at 
different CSs. Note, the optimization model proposed in [56] also con
siders all of the above stated conditions to manage the operation of a SG 
but does not guarantee voltage or frequency regulation services. 

Therefore, in our model, the regulation commands are basically 
divided in two distinct categories, 1) “regulation down signal” whenever 
the amount of currently available power in the SG is in surplus, then 
CAO informs all associated EVs to acquire power for charging. Hence, in 
response of this command, EVs are charged. On the other hand, the 
“regulation up signal” is broadcasted whenever the amount of power 
available in the grid is lower than the total demand (demand is high 
from generation), in this situation, in order to level the difference be
tween demand and supply the energy is acquired by the connected V2G 

enabled EVs. Whenever EVs are connected to the chargers, these could 
be used for upper stated operations with the owner consent and in order 
to respond to the broadcasted commands by the central aggregators as 
presented in Fig. 2. 

As stated in all above references, EV owners can avail the opportu
nity of energy trading using vehicle to grid system, and aggregation 
models are responsible of distributing the generated profit between 
owners which they have earned by contributing to the grid stabilization 
requested by the TNO and DNO. Moreover, these models also provide 
several incentives to the owners in return of providing stabilization 
services to the SG, i.e., they can avail profits in term of lower charging 
costs. In order to provide power regulation services, each aggregator 
primarily exchange technical specifications data with all associated EVs 
by using bi-directional communication methods available on all CSs. 
Note, in our model, for simplicity, it has been assumed that all EVs are 
capable of providing grid regulation services but, this service will be 
only availed when these are connected with the commercial CSs. 

1.2.2. V2G System Architecture 
The primarily, proposed V2G methods were purposely designed to 

enable the bi-directional flow of power and these models were only able 
to charge EVs when owner were willing to follow the defined optimal 
schedules. In these models no such system was introduced to eliminate 
the chances of system overloading due to simultaneous charging of 
several EVs. But in the proposed model, a TNO or DNO can broadcast 
regulating up or regulation down action signal through modern 
communication networks. A most commonly used V2G system is shown 
in Fig. 3. In this system all CSs have been assigned the task of monitoring 
SOC levels of every EV individually when it arrives and connects with 
the charger and then stack those EVs in such manners that, whenever 
their services are required to the aggregator, they must have sufficient 
power available to contribute to the grid stabilization. 

Authors in [57] propose that there should be minimum over five 
hundred EVs compulsorily available at CSs in a metropolitan area for 
aggregation purposes i.e., in order to successfully control any voltage or 
frequency deviation occurs in the grid these EVs can act as backup. 
Because, a big EV fleet might contain MWhs capacity at any time which 
could be supplied back to the grid in just milliseconds. Moreover, in 
literature we have found that in some models even over two thousand 
EVs are used for this purpose [58]. Therefore, for practical imple
mentation of this approach we have primarily computed the energy 
storage capacity of currently available EVs in the worldwide market, we 
found that currently about one MWh energy could be stored in just 11 
Tesla P100D electric cars with 90% SOC levels [59], It is evident that 
currently over 1.4 million Tesla P100 EVs are actually available on roads 
worldwide [60]. In this scenario, it might be highly effective if gov
ernment authorities all over the world would install V2G capable 
chargers on each EV parking lots. According to a survey conducted by 
IEA in 2020 on Global EV Outlook [61], about 80 % EVs remain parked 
for over 90% time throughout their life. Besides, it is projected that 

Fig. 1. Proposed EVs aggregation framework which acts as the intermediary 
platform between electric cars and the central grid operators. 

Fig. 2. Layout of the regualtion carried out by the proposed aggregator based 
on recived up/down commands. 



worldwide the EV numbers will grow rapidly in next few years. There
fore, it will be a highly regarded initiative of the governments all over 
the world. Since, parked EVs could contribute to the grid stability and 
could also be used as the peaking plants in high demand hours [62]. 

It should be noted that, in contrast to the previous models in the 
proposed V2G framework CSs are directly governed by the central ag
gregation office through hierarchical optimization as presented in Fig. 3. 
In addition, the proposed EV aggregator not only controls the operation 
of all associated CSs besides, it is also responsible of coordinating and 
monitoring EVs arrival and departure times. Moreover, this aggregation 
framework also regulates the charging/ discharging tasks and prepares 
the transections record of any V2G service provided by an EV using real 
time pricing strategy on behalf of EV owner. For deep knowledge about 
this approach a reader can visit [63]. Moreover, this system also per
forms different tasks (i.e., fast charging, guarantee of the fully charged 
EV at departure) according to the EV owner request [64]. In addition, in 
this system, a CS is also able to directly monitor the EVs parking time 
and it also determines either a connected EV belongs to this particular 
area and prepares the record of its technical specification i.e., on arrival 
SOC level, anticipated departure/arrival times, total parked duration 
and requested eventual SOC at departure by the EV owners, which is 
than forwarded to the central aggregation authority for additional ac
tions. Commonly, this data is transmitted through batch mode, because, 
it is considered as the most effective medium of monitoring large 
number of EVs [65] as presented in Fig. 4. 

By deep analysis of Fig. 3, it could be analyzed, initially two types of 
information flows in any smart power system or smart grid. Primal is the 
informative data flow, and secondary is the flow of electricity. The 
informative data flow is commonly comprised of essential technical 
details, i.e., EV arrival SOC level information, energy cost data, real time 
pricing information and statistical generation data of the total energy 
production reserves [66]. In addition, in a smart power system horizon, 
smart grid operational information mainly depends on the current 
power demand and generation proportion information which is broad
casted by the TNO or DNO to the aggregation authorities, who further 
forwards this data to CSs and EVs for fulfilling the desired load regula
tion i.e., up/down tasks. For instance, these tasks might be a command 

of EVs discharging to resupply the stored power in EV batteries to the 
main utility SG. However, the availability time of each EV could be 
uncertain, therefore, it is very complex to compute. In order to predict, 
the arrival of hundreds of EVs, the real time transportation data of all 
associated EVs could be obtained and analyzed by using advance 
communication networks through central traffic agencies, a reader can 
visit [67] to obtain further information about this system. As an example 
we are explaining here, in United States typically an EV is only driven for 
an hour throughout the day [68]. It has been determined over 90% 
vehicles remain parked during most of the day. Hence we can conclude 
in parked hours EVs can provide enough energy storage space to the SG 
which could be utilized in peak hours as the replacement of peaking 
plants [69]. 

1.3. Proposed V2G scheduling optimization constraint 

By the upper discussion it has been proved that, in a smart grid 
scenario, EVs integration as the stabilization tool is only possible by 
introducing a robust EVs aggregation framework Besides aggregators 
also acts as the data interface between thousands of EVs and smart grid 
management. Note, the optimization and computational capability of 
the V2G scheduling constraint particularly depends on two distinct 
commands, primal is the cost reducing signal while the second is the cost 
increasing signal to consume/transmit power to/from the grid in $/kWh 
respectively. In this section, we have presented our main approach 
which we have implemented in this paper to obtain higher accuracy and 
robustness during the EVs working mode in V2G. In our proposed al
gorithm we have also included the battery degradation cost as well as 
the contemporary state of the SG is also considered. Optimal solution of 
the proposed optimization constraint is achieved which creates appro
priate charging/discharging scheduling strategies for all associated EVs 
and eventually reduces the overall operational cost i.e. charging cost for 
all EVs contribute in the V2G service. In addition, our proposed model 
also ensures the revenues for EV owners who offer their EVs for voltage 
and frequency regulation services to the SG. 

Fig. 3. Proposed V2G network architecture.  

Fig. 4. Operational time horizon of the V2G framework.  



1.3.1. Modelling of the EVs Scheduling Constraint 
In order to model the optimal V2G framework, we have used a full 

day scenario, which is divided into several hourly time slots i.e., 24 in 
total. These time slots are represented by variable Tset. In this research 
paper, we have divided a typical day into hourly time slots sets and each 
time slot set is denoted by n, and stacked in such manners that the 
duration of a time slot is computed by 24/n. Here, we infer the required 
power for charging/discharging an EV during a time slot remains similar 
throughout the time slot as shown in Fig. 4. In addition, the regulation 
down and regulation up command signals for a j th EV is broadcasted to 
i
th CS at time instance t and represented by the Pup

ij 
and Pdown

ij 
commands. 

The arriving interval of a j th EV is represented by Tarr
ij

, and it also denotes 

that time interval when the j th EV is plugged-in with ith CS. While the 
time of departure of j th EV is represented by Tdep

ij
. Note that, it also de

notes a time interval when the j th EV is departed from the i
th CS 

respectively. 
The overall operational time duration of a j th EV in V2G mode when 

connected with i
th CS is represented by Tij , this superscript denotes 

either EV is charged or discharged during V2G mode in the allocated 
time horizon. Because, we have divided a day into several hourly time 
slots, therefore, we can consider the EV parked time Tij as a stack of time 

slots between EVs arriving time Tarr
ij 

and departing time Tdep
ij

, as shown in 

Fig. 4. The primal SOC of an EVij , is represented by Eint
ij 

which shows the 
EV battery capacity on arrival Tarr

ij
. While, the overall (total) energy 

storage capacity of an EV battery is represented by Emax
ij

. For the practical 
implementation point of view, the amount of power which is stored in an 
EV battery at departure is denoted by Efin

ij
, and this is the final SOC value 

of an EV on the departure time Tdep
ij

. Note, the value of Efin
ij 

must be 
parallel to the owner requested value to fulfil his transportation needs. 

Moreover, the eventual amount of energy Efin
ij 

at departure should not 
be higher than the maximal EV energy storage capacity Emax

ij
. For prac

tical implementation we have inferred that, by analyzing the traffic data 
acquired by the traffic agencies, a CS can anticipate the most important 
data for next hourly slots i.e., it can anticipate arriving time of an EV, on 
arrival SOC level, and required rate of power which must be supplied to 
EV when it will start charging at CS. While, prior to the start of charging 
task for an EV at CS, vehicle owner provides information of the expected 
parked time and required eventual SOC level on departure. This is the 
responsibility of each CS to calculate the required amount of charging 
and discharging power for an EV during allocated or requested time 
horizon Tij . It has to be noted that the cost of regulation down and 
regulation up services for providing frequency and voltage stabilization 
during a particular time horizon are similar for all EVs on all CSs which 
are contributing in the V2G framework. The regulation of charging 
several EVs simultaneously is only carried out by temporal price varia
tions, but it is not comprised of separate price variations as given in [70]. 

1.3.2. Frequency Stabilization Model 
A key feature of the EVs penetration in the SG is, it increases the 

operation flexibility of the whole power network and helps in main
taining frequency within the acceptable limit through V2G framework. 
Moreover, due to vast scale deployment of the V2G framework, all 
associated EVs can provide instant backup against failure of any power 
plant by providing assistance in frequency regulation. In SG, EVs are 
integrated by the TNO for frequency regulation services. but, in order to 
complete this integration, aggregator acts as the intermediary platform 
and also prepares the financial transection record of any up and down 
regulation service provided by the vehicle and also prepares record of 
the forwarded profit in the owner bank account. Whenever, an EV is 
used for the grid regulation tasks, the rate of exchanged power must be 
within the desired limits otherwise, there is a possibility of fully depleted 

EV battery which can cause major storage degradation [71]. Therefore, 
whenever an EV is used in the V2G mode it is only discharged to certain 
level to reduce this threat. While, the EV owners must be paid according 
to the supplied power to the grid for frequency stabilization. Note, the 
amount of traded energy could be from few kW to several kW depending 
on the battery maximal SOC of an EV [72]. Table 2, shows the specifi
cation of currently available electric vehicles in the market as analyzed, 
Mustang Mach-E, Tesla model S (p100D), and Nissan Leaf 2020 car 
models are capable of providing thousands MW of backup to the grid 
and their integration into the V2G system will be a major achievement in 
near future. 

1.3.3. Votlage Stabilization Modelling 
In literature, several voltage stabilization models are given but, no 

one proposes that the DC linking capacitor banks of thousands of Farads 
connected with the commercial EV chargers could provide voltage and 
reactive power support to the grid for shorter durations even if suitable 
number of EVs are not connected to the CSs network. Therefore, as one 
of the main contributions of this paper, we have proposed the use of 
commercial EV chargers as the voltage transient’s stabilizers. The main 
motivation of utilizing higher rated capacitor banks connected with the 
EV chargers for voltage regulation is, it can reduce the use of EVs in the 
V2G mode. Hence, the threat of EV battery storage capacity degradation 
is reduced [59]. 

In order to achieve the desired power for voltage regulation from the 
EV chargers, we propose that the total value of reactive power which 
could be obtained from the EV chargers for voltage regulation is pro
portional to its own power delivery capacity to EV for charging. as well 
as it is also homologous to its own overall reactive power consumption 
capacity. Note, EV chargers can only provide voltage regulation support 
for shorter periods and their power injection depends on the nature of 
voltage transients. For better understanding it should be noted that, 
although EV charges could be used for voltage regulations for shorter 
durations but, if the voltage transients keep on occurring and the 
capacitor bank is fully depleted then the use of EV connected with this 
particular charger in the V2G mode could be restricted due to unregu
lated charging. Since, the grid reliability is the main priority and it re
mains the top priority in any situation. Therefore, in some cases EVs 
cannot achieve desired SOC level before departure. Thus, in quest to 
reduce such possibilities, the value of reactive power which could be 
supplied by an EV in such cases in contrast to the desired SOC level on 
departure is computed by following formulation [59]. 

q
ij
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S
2
ij − p2

ij

√

= qmax
ij

(1) 

Infer an EV is charging at a CS at maximal rated power and grid sends 
“provide reverse voltage support signal” to this charger. In this scenario, 
this charger cannot contribute to the voltage regulation services and 
cannot supply reactive power back to the grid. Conversely, if the amount 
of apparent power delivering capacity of this charger exceeds by the real 
time power pij which is being consumed by the EV from the main grid, 
then the amount of useable reactive power which may be supplied by the 
charger is computed by (1) 

Table 1 
Parameters of the Simulated Model.  

Parameter Value 

Number of aggregators 1 
Number of charging stations (CSs) 5 
Number of EVs per CS 210 
Efficiency of the EV charger Up (95%) – Down (90%) 
Rated charging capacity of a charger 8, 24 and 52 kW 
Total number of EVs 1050 
Aggregator power delivering capacity 3200 kVA  



1.3.4. Formulation of the Battery Degradation Cost Computing Model 
From deep literature survey we have determined that all Lithium-ion 

(Li-ion) batteries exhibit similar Battery Discharging Depth (BDD) and 
exhibits similar cycle life as presented in Fig. 5. Note, these statistics are 
computed from the empirical data-sheets of different Li-ion batteries. 
This analysis perfectly matches with the outcomes of following formu
lation (2) [73,74]. 

NCL(d ) =

(
a

d β

)

(2) 

In this formulation the superscript d is showing the overall depth of 
discharging of an EV battery after each charging/discharging cycle NCL. 
It has to be noted that, in this technique, the effect of ambient temper
ature on the battery degradation is neglected. The superscript a, β de
notes the coefficients of battery specifications, and could be determined 
by experiments and literature survey. For instance, a similar study has 
been carried out in ref [67], in this paper authors have proposed a 
comprehensive solution for computing the Average Degradation Cost 
(ADC) of a Lithium-ion battery considering its power transferring 
capability as follows; 

ADC(d ) =
RealpriceoftheEVbattery($/kWh)

TatalamountoftransferablepowerinC/Dcycle(kWh)

=
PB

NCL(d ) × 2 × d × Emax × η2 (3) 

where, PB denotes the price of battery, Emax denotes the maximal 
SOC capacity of a battery, and η denotes the battery efficiency of one full 
charging/discharging cycle. The number of these charging/discharging 
cycle NCL has been multiplied by 2. Because, a single battery cycle 
comprised of charging/discharging phases, and in these two phases 
similar amount of power is supplied to/from the EV battery. It has to be 
noted that, in upper equation ADC shows the degradation cost of the 
battery which completes a full cycle with a constant SOC level. 
Although, for EVs V2G framework in [65] a highly casual index knows as 
Degradation Density Function (DDF) has been defined which is used to 
compute even a minor change in battery SOC capacity. This could be 
computed by following formulation; 

ADC(d ) =
1
d

∫ 1

1− d

D(s)ds (4) 

where, D(s) denotes the ADC at SOC s. Because, ADC shows the 
average degradation cost which is denoted here by the superscript d , 
besides it might also be computed by applying Mathematical Integration 
on the D(s) function considering the upper and lower limits of the 

battery SOC and by dividing it by the whole span of integration. As 
stated above, the computed values of ADC could be correct only for 
particular SOC level, other than this, any other combination of battery 
charging/discharging can provide different results. Nevertheless, the 
actual cost of the battery degradation is computed by using the combi
nation of the following formulation [75]; 

$BT = Emax ×

∫ T

0
D(s(t ) ) ×

⃒
⃒
⃒
⃒
ds(t )

dt

⃒
⃒
⃒
⃒ (5) 

where, $BT is the overall degradation cost of the EV battery and T is 
the total size of time horizon. 

1.3.5. Formulaiton of the Proposed V2G Load Scheduling Methodology 
This section presents basic methodology of the proposed determin

istic non-linear programming (NLP) framework which is defined to 
govern the vehicle to grid (V2G) load scheduling operation. To acquire 
further knowledge about the NLP a reader can visit [76], here we are not 
discussing the NLP working in detail. The proposed methodology re
duces the threat of higher level battery degradation of EVs take part in 
the V2G services. Along with, it also enhances the profit for EV owners in 
such manners that primarily it computes the actual current market cost 
of electricity generation by conventional resources by using the equation 
(5) after that it fix a higher rate for V2G service provider EVs for peak 
demand hours, which is later payed to the owners. Thus, we can 
formulate the optimization constraint as; 

min
y
{(y) }

s.t., y ∈ SolS (6) 

The above formulation has been defined as the complex constraint 
comprised of two distinct objective functions, primal is the cost mini
mization function which deals with the electric vehicle energy storage 
capacity degradation K1(y) while second is the revenue enhancement 
function for the EV owners who have offered their EVs for power 
regulation services K2(y). Hence we can write, K(y) = K1(y) − K2(y) is a 
vector comprises of multi-objective functions which is purposely solved 
to obtain the optimal solution. In this equation, the superscript y shows 
the set of the optimum solutions (SolS) which has been determined by 
this constraint. The problem which we have optimized by this function is 
the random and unregulated EV charging and discharging cycle. 
Because, this is the biggest contingency cause EV energy storage ca
pacity degradation. 

Therefore, in the proposed model we have seriously focused on this 
constraint. It has to be noted that, in the proposed method, we have 
allocated equal responsibility to each objective function. Because, 
equally distributed responsibilities show comparative status of all 
objective functions during computation to overcome the uncertainty in 
EVs charging and discharging. The motivation of adopting this approach 
is to fairly determine the optimum solution using all available functions 
equally as defined in [33], [36], [37] and [39]. In addition, in quest to 
compute the globally optimum load scheduling for all associated EVs 
who contributes in the V2G operation during parked time at any CS, we 
infer, the primal SOC level SOCint

ij , the expected departure time Tdep
ij

, the 

arrival time Tarr
ij

, and SOC level at departure SOCfin
ij 

details of each 
vehicle are already known. In several previous models a similar 
approach has been used to find the optimum solution [3,30,40]. 

1.3.6. Formulation of the Objective Function (OF) 
For obtaining optimal solution, we have used upper defined opti

mization constraints in such manners that, in OF (Objective Function) 
K(y) and the variable s could be used to reduce the cost of energy storage 
capacity degradation in order to increase the revenue for EV owner after 
performing V2G operation for frequency and voltage regulation of the 
grid when it is parked. We have defined following OF constraints to 

Table 2 
Simulated EVs specifications.  

Electric Vehicle Model Rated battery SOC (kWh) Cost of Battery/kWh ($) 

Nissan Leaf (2020) 40 kWh 246$ 
Tesla Model S (p100d) 100 kWh 187$ 
Mustang Mach-E 68 kWh 206$  

Fig. 5. Anticipated Li-ion Batteries Degradation Depth (BDD) during life time.  



achieve the optimum solution. 

K1 =
∑NCS

i=1

∑NV

j=1
Tset

(⌊
Pdown

ij (t )
⌋
× ηdown

ij +Pup
ij
(t )/ηup

ij

)
× $BT

ij (t ) (7)  

K2 =
∑NCS

i=1

∑NV

j=1
Tset

(⌊
Pdown

ij (t )
⌋
× $down

Rwd +Pup
ij
(t ) × $

up
Rwd(t )

)
(8)  

min
Pup

ij
(t ),Pdown

ij
(t )

K = min
Pup

ij
(t ),Pdown

ij
(t )

(K1 − K2) (9)  

− Pmax
ij ≤ Pdown

ij (t ) ≤ 0 (10) 

Out of upper given constraint, the equation (10) defines the highest 
and lowest levels of the amount of power which is required for charging 
an EV and returned to the grid for regulation. 

0 ≤ Pup
ij
(t ) ≤ Pmax

ij (11) 

Note the constraint (11) defines the highest and lowest amount of 
power supplied to/from EV and grid. 

0.05 ≤ SOCij (t )+

⎛

⎜
⎜
⎜
⎝

Pdown
ij × ηdown

ij

Pup
ij

ηup
ij

Emax
ij

⎞

⎟
⎟
⎟
⎠

× Tset ≤ 0.95 (12) 

The constraint (12) has been defined to compute the amount of en
ergy supplied in real time to/from the EV and grid. For computation of 
this constraint it is necessary that EVi SOC value after each time horizon 
t +Tset must be between 25% and 95% for reducing the threat of battery 
capacity degradation hence, the life of an EV battery increases. The 
battery SOC level is computed by following formulation; 

SOCint
ij +

∑Tdep
ij

Tarr
ij

(
Pdown

ij (t ) × ηdown − Pup
ij
(t )/ηup

Emax
ij

)

× Tset = SOCfin
ij

(13) 

The constraint (13) is defined to compute the amount of final 
transferred energy to all EVs. Note, to satisfy this constraint, it is 
compulsory for each EV to satisfy the eventual power requirements of all 
EVs. For instance, SOCfin

ij 
of all EVs (EVi ) should be equal to set values 

after supplying power to the grid through V2G mode. The main objective 
of this condition is to ensure enough SOC in EV batteries to easily fulfil 
daily transportation tasks. 

$BT
ij (t +Tset) = φij

×

⎡

⎣
β ×

{[
1 − SOCij (t + Tset)

]β− 1
−
[
1 − SOCij (t )

]β− 1
}

a

⎤

⎦

(14) 

where φij =
PBij

2×Emax
ij

×η2
ij 

We have defined the above constraints using the non-linear multi
variate programming constraint. The variables Pup

ij 
and Pdown

ij 
are 

considered as the decision rendering variables and show the total 
amount and delivery rate of power (t/kWh) assigned to each time slot 
for performing charging/ discharging tasks of all associated EVs. 

1.4. Modelling of the reactive power exchanging constraints and its 
Benefits. 

In this research work we have also focused on the reactive power 
injection into the grid. The key benefit of reactive power injection in the 
grid is, it provides instant backup against frequency transients by 
instantly engaging EVs using V2G framework. For global compliance, we 
have inferred all EVs are equipped with three-phase AC inverters, and 
having capability of supplying reactive power to the grid in reverse. The 
main advantage of using EVs for voltage stabilization in the grid could 
be computed by constraint (15), as follows; 

benefits =
∑Tdep

ij

Tarr
ij

Tset
[
Qij (t ) × $ij (t )

]
(15) 

It has to be noted, the rate of maximal exchange of active/reactive 
powers to the grid should be between the power delivering capacity of 
the EV chargers. It is calculated by S

2
ij from formulation (16), as 

follows; 
(

Pup
ij
(t ) + Pdwon

ij (t )
)2

+
(
Qij (t )

)2
≤ S

2
ij (16) 

Note we assumed that a charger while charging an EV can simulta
neously supply reactive power support for frequency stabilization to the 
grid. The maximal reactive power delivering capacity of a charger is 
denoted by Qmax

ij , which might be supplied by a charger with the 
collaboration of an EV and scripted as ij t h. The value of reactive power 
support is computed by constraint (17), as follows; 

0 ≤ Qij (t ) ≤ Qmax
ij (17)  

Qmax
ij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S
2
ij −

(
Pup

ij
(t ) + Pdown

ij (t )
)2

√

The maximal reactive power delivering capacity of a charger in 
reverse to the grid by using distribution system through CS i and the 
value of Qmax

ij could be computed by the constraint (18), as follows; 

Qmax
ij =

∑
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S
2
ij −

(
Pup

ij
(t ) + Pdown

ij (t )
)2

√

(18) 

The maximal voltage value (rated value) which can be supplied by 
the the grid is computed by formulation (19). Note, in this constraint, 
the variable ΔVi(t ) denotes the value of voltage transients and fluctua
tions of that connected point from where the CS i is being feed by the 
grid. The value of voltage transients in the power grid is calculated by 
considering the set points of the reactive/active powers for each EV 
(

Pup
ij
,Pdown

ij andQij

)
, as follows; 

ΔVi(t ) =
1

3 × Vi(t )

[
1
g

i

∑NV

j=1

(
Pup

ij
(t ) + Pdown

ij (t )
)
+

1
yi

∑NV

j=1

(
Qij (t )

)
]

(19) 

where the variables yi denotes the reactive power supplied back by 
the CSs, while g

i 
shows the conductance of the connection point of a CS 

with the main power distribution line. The variable Vi shows the value of 
voltages between phase and neutral at the nodal point of CSs. 

2. Propsoed hierarchical V2G optimization model 

The section explains the formulation of a high level supervisory 
method proposed for controlling and optimizing the V2G operation and 
grid stabilization using real time and Day-ahead (DA) load scheduling 
techniques. Specifically, the proposed hierarchical model successfully 
integrates EVs into the grid for voltage and frequency regulations. This 
hierarchical model is based on two layers; the upper is named as the 
“DA” (Day-ahead) load scheduling layer, while the lower is named as the 
“Real time V2G” (I-day) load scheduling layer as presented in the Fig. 6. 

2.1. Upper level DA load scheduling layer 

In order to effectively control the operation of the power grid, this 
layer primarily prepares the load schedule for optimizing power pro
curement in the DA market and implements through central aggregation 
system. This layer optimally defines the charging/discharging schedules 
for each associated EV for next full day i.e., for next 24 hourly time slots. 
Further details of this method could be obtained from ref [77,78]. In the 
previously developed models, the data of each EV i.e., its arrival and 



departure information Tarr
ij

, Tdep
ij 

and its primal SOC capacity SOCint
ij in the 

DA time horizon is hard to predict. Therefore, in the proposed method to 
minimize the use of computational power and to counter the data un
availability contingency, a separate V2G operation framework is 

proposed for the integration of EVs into the aggregator which uses EVs 
historical data to anticipate their next day behavior [78]. 

In the proposed framework, initially the DA regulation cost data is 
predicted, and it also obtains EVs arrival time, statistical information of 

Fig. 6. Complete operation architecutre of the proposed hierarchical model.  



all EVs, while the battery degradation cost computing constraints is 
employed to define the optimal charging/discharging schedule of all EVs 
for the next 24 hourly slots. Alongwith, it also predicts the roadmap for 
regulating the frequency and voltage variations that might occur during 
next 24 h and broadcast this schedule to both TNOs and DNOs for further 
implementation. For performance analysis, we have simulated this 
model in Matlab. By intensive simulations testing we have verified the 
robustness of the proposed EV aggregator by performing charging/dis
charging and also checked its capability of providing appropriate 
amount of power during each time slot by deploying the predicted 
regulation cost for next 24 hourly slots, EVs statistical data about 
arriving and departing during different hourly slots. The proposed DA 
load scheduling method not only minimizes the overall charging cost of 
an EV besides, it also reduces the threat of EV battery degradation cost 
using constraint (9) as defined in Fig. 6. 

2.1.1. Vehicle to grid Integration-Day (I-Day) Managing layer 
In order to manage the V2G operation effectively, we have proposed 

a separate I-Day management layer. Primarily, we have divided a day 
into 24 hourly slots i.e., and defined different sets of hourly slots Tset 
considering the offered price. The power consumption of each hourly 
slot is anticipated by analyzing the previous data. 

After that, a proper plan for the current day is prepared to success
fully govern the V2G operation for frequency and voltage regulation. 
Moreover, the EV availability information for smooth I-Day operation is 
also obtained by the DA layer. The I-Day operation is performed in 
following pattern, initially aggregator receives previous data of the 
voltage and frequency variations for reference Rr ef (t ) simultaneously it 
also obtains previous reactive power Qr ef (t ) data as reference which is 
then broadcasted by the TNO and DNO to the central aggregator. Fig. 6, 
presents a conceptual approach of the hour-ahead I-Day operation. 
Theoretical explanation of this model is given next;  

• Initially we have inferred that each associated EV broadcasts its 
technical data i.e., Tarr

ij
, Tdep

ij
, SOCint

ij , SOCfin
ij 

etc. to the central 
aggregator before plugging-in to the CS. Note, this technical data is 
updated whenever an hourly slot updates Tset . 

• The TNOs and DNOs broadcast gird side data of the total active/re
action powers reserves for reference i.e., Rr ef (t ) and Qr ef (t ) to the 
central aggregator.  

• In the next step, the current pricing data is broadcasted to the 
aggregator by the wholesale electricity market or by the price 
regulating market. 

After recovering data from each associated EV and electricity mar
ket, the central aggregator prepares a schedule to optimize the I-Day 
operation using constraint (9) which computes the cost of the battery 
degradation of all EVs. To optimize the charging/discharging operation 
of each individual EV, it computes the updated optimal schedule for all 
EVs Pup

ij
(t ), Pdown

ij
(t ), respectively. In last, grid deducts/supply required 

amount of power from/to the aggregator Pup(t ) and Pdown(t ). 
It has to be noted, if the amount of the newly consumed power by the 

grid is parallel or it is less than the requirement, then aggregator receives 
updated signal by the TNO. The updated schedules are communicated to 
all EVs, if power supplied by the EVs is enough or higher than the 
requested amount of power by the grid, than TNO sends the “regulation 
done” command to the aggregator. Note, when the gird regulation is 
successfully done, new schedule for I-Day regulation is computed by 
using constraint (19–20) and is than broadcasted to all EVs for the next 
operation. 

Pup
ij new = Pup

ij
−

(
Rr ef (t ) − Pup(t )

NV

)

ifRr ef (t ) > 0 (20)  

Pdown
ij new = Pdwon

ij −

(
Rr ef (t ) − Pdwon(t )

NV

)

ifRr ef (t ) < 0 (21) 

Upon completion of the voltage or frequency regulation task, using 
constraint (17) the aggregator again computes the updated value of the 
total amount of reactive power that could be supplied by the charger Q ij 

back to grid. This acquired data is than forwarded to TNO, which takes 
further action to deduct spear reactive power Q ij (t ) from the chargers 
about which the aggregators had broadcasted the deduction signal. If 
this amount of energy is insufficient (lower or parallel) for grid regu
lation, then the DNO broadcasts new Q

r ef (t ) signal to the aggregator 
which then further transmits this signal to all CSs. Conversely, if the 
supplied energy by the chargers though aggregator is sufficient (higher 
than Q r ef (t )) for grid stabilization, then the TNO forwards regulation is 
done signal to the aggregator and vice versa, after completing this 
operation aggregator again computes the new regulation schedule by 
using constraint (22) which is than broadcasted to all CSs. 

Q jj new(t ) = Q jj (t ) −
Q (t ) − Q

r ef (t )

NCS
(22) 

Upon completion of the regulation task, the upper computation is 
repeated again for next time slot Tset. 

SImulations Analysis 
To check the performance of the proposed framework, we have 

carried out two case studies, the detail of these tests is as follows; 

o Case 1: Note, in this analysis, we have used EVs only for the fre
quency regulation. In addition, to deeply verify the performance of 
the proposed model during providing frequency regulation services, 
further two scenarios have been tested: 1) the grid regulation and 
EVs charging/discharging scheduling is performed without consid
ering the cost of battery degradation, 2) for counter analysis, the cost 
of the battery degradation is included.  

o Case 2: Note in this test, we have inferred all EVs provide support for 
both voltage and frequency regulation to the grid. In this case, the 
simulated data has been acquired by the PJM which is a credible 
source visit ref [79,80,82]. The simulated test bench is based on 32- 
busbar power distribution network connected with 4 adjacent radial 
power delivering networks as shown in Fig. 7, in the single-line 
diagram. 

Basic model of the simulated power distribution system has been 
acquired by the ref [27]. In quest to analyze the V2G optimization 
capability of the proposed model, we have purposely selected random 
locations for the charging stations (CSs) connection in the distribution 
network. The CSs are connected on following nodes “9, 16, 20, 22 and 
32” of the power distribution network. The time of EV arrival and 

Fig. 7. Diagram of the IEEE 32 bubar power distribution network.  



departure and the primal state of charge (SOC) values are determined by 
employing the Gaussian-Distribution method proposed in ref [37]. In 
this test, it is assumed that all EV owners want to charge their EVs to 
80% before departure. In order to satisfy EV owners it is ensured that 
upon departure each EV will be 80% charged which will be enough for 
one-day transportation [80,81]. The simulation test has been carried out 
for 24 hourly slots (full-day) in which each technical information is 
updated after 30 min. In this scenario, 1050 electric vehicles are pene
trated and stacked in five clusters to ensure their easy access to CSs. 
Table 1, presents the technical parameters of the simulated model. 

Note, in simulated model three distinct types of EVs have been in
tegrated, 1) Tesla Model S P100D, 2) Mustang Mach-E 2020 model and 
3) Nissan-Leaf 2020 model. Technical specifications of these cars bat
teries are given in Table 2; Moreover, the Fig. 8 shows the determined 
set points of the power dispatch in the DA market, obtained considering 
the forecasted data of EVs penetration in the DA scenario as shown in 
Fig. 9. Note, the data acquired form ref [51] has been simulated in real 
time, because it corresponds to contemporary information of the grid 
power consumption and variations as shown in Fig. 10, while the offered 
cost to EV owners for providing the up/down regulation services is 
shown in Fig. 11. Note, this is the revenue of the owners in term of 
providing regulation services which will be paid to EV owner as a 
reward. 

To verify the quality of service provided by the proposed aggregation 
framework, we have compared the amount of power supplied by the EV 
fleet for the grid stabilization in response the requested up/down 
regulation signals which were broadcasted by the TNO. Result of this 
comparison is given in Fig. 12. 

By the deep analysis of Fig. 12, we have determined that the pro
posed model has supplied a significant amount of power to the grid to 
smoothen the frequency and voltage variations in response to the TNO 
reverse power supplying signal which was sent to the proposed central 
aggregation framework for performing the grid regulation task. Fig. 13, 
presents statistics of the total amount of reactive power which is sup
plied by the central aggregator to the DNO for controlling the voltage 
fluctuations in response to the reverse reactive power supplying signal. 
Fig. 14 show the quality of voltage that has been regulated by the 
aggregator by providing instant reactive support in reverse. 

By the upper discussion, it is proved that our proposed aggregation 
framework exhibits capability of injecting significant amount of power 
into the grid for smoothening the voltage and frequency transients, 
which enhances the reliability and sustainability of the grid as shown in 
Fig. 15. For deeper analysis we have further enhanced the voltage 
regulation capability test of our model under extreme voltage fluctua
tions on the Node 1. In Fig. 16, the comparison of voltage transients at 
Node 1 with and without our model is given. It is determined that due to 
the unregulated voltage fluctuations the nominal voltage value of the 
grid can easily decrease from the set limit and even it can also cause 

higher voltage fluctuations as a chain reaction. On the other hand, our 
proposed aggregation model regulates the grid and even in case of se
vere voltage transients it has restricted voltage decrease from the set 
limit. Note, the voltage transients’ statistics given in Fig. 16 are deter
mined by the proposed DA load scheduling model. It is anticipated that, 
if the reactive power support of the aggregator is absent, then grid can 
face sever voltage unbalance, mainly this contingency will cause under- 
voltage on several occasions in a day. Hence this comparison shows that, 
injection of reactive power provided by the proposed CAO model in 
reverse to the grid can regulate voltage and frequency transients which 
increases the quality of service of a grid where most of the power is being 
generated and supplied by the renewable resources Fig. 8. DA available rated power capaciy estmiation for completing the all EVs 

charging according to the scheduled load. 

Fig. 9. Forecasted EVs penetration schedule by the proposed hierarchical 
model for the DA market. 

Fig. 10. V2G integration day (I-day) regulation command broadcasted by the 
TNO Rref . 

Fig. 11. Anticpated up/down power regualtion cost for 05 December 
2020 [51] 



Furthermore, we have also analyzed the aggregator performance for 
managing the voltage transients at the nodal points of charging stations 
i.e. at nodes 9, 16, 20, 22 and 32 where the 1–5 CSs are connected, this 
result is shown in Fig. 17. Similar to previous case, the effectiveness of 
injecting reactive power into the grid is clearly seen. We have analyzed 
that the reactive power injected by the aggregator provides stable 
voltage to all CSs and keep the voltages value within 0.95 per-unit (pu) 
to 1.045pu at all charging stations connection (Nodal) points. Mathe
matically this combination is defined as 0.95pu ≤ Vj ≤ 1.045pu, where 
i = 1 : 5. 

A determined schedule by the proposed model for 24 h of an electric 

vehicle (EV) is shown in Fig. 18. As analyzed, this EV owner have strictly 
followed this schedule and obtained desired 80% charged EV battery on 
departure. By comparison of two profiles, we came to understand that 
the results of the V2G revenue computing function which neglects the 
degradation cost of the EV battery is completely different from our 
function which considers the degradation cost and generates much more 
profit for the EV owner in contrast and ensures safe charging/dis
charging of the EVs and minimizes the SOC capacity degradation threat 

In addition, we have also verified the EVs managing capacity of all 5 
CSs that how all associated 1050 EVs are managed after implementing 
our proposed model, Note, for batter performance evaluation in simu
lation testing we have assigned 210 EVs to each CS. The statistics of EVs 

Fig. 12. Provided frequency stabaliztion service to the grid by the V2G ag
gregation framwork. 

Fig. 13. Total amount of reactive power available at CAO in backup which 
might be supplied to the grid in reverse for regulation. 

Fig. 14. Amount of reactive power supplied in reverse by EVs to the grid using 
V2G during I-Day in response to the DNO Qref regulation signal. 

Fig. 15. Rreactive power regualtion service provided by the CAO to the grid.  

Fig. 16. Votlage regulation service provided by the CAO at Node 1 of the IEEE 
32 busbar distribution system given in Fig. 7. 

Fig. 17. The regualted votlage transients of the CSs 1, CS 2, CS 3, CS 4 and Cs 5 
on the connections nodes 9, 16, 20, 22 and 32, review Fig. 7. 



SOC levels associated with all 5 CSs are shown in Fig. 19. It could be 
analyzed in Fig. 19, from 1 to 210 EVs have been affectively managed by 
the CS. 1, from 211 to 420 EVs are managed by the CS. 2, from 421 to 
630 EVs are managed by the CS. 3, while EVs from 630 to 840 are 
managed by the CS. 4 and EVs from 841 to 1050 are managed by the CS. 
5 respectively. By deep analysis of Fig. 19, we have concluded that, by 
the implementation of our proposed EVs aggregation model, each CS has 
fulfilled the requests of all associated EVs and ensures that each EV will 
depart with the desired SOC level. It is determined that on departure 
each EV which has participated in the V2G mode is 80% charged which 
is sufficient for transportation purposes for most of the owners for one 
day. 

Further by the deep analysis of Fig. 19 it has also been analyzed that 
each CS has managed EVs charging/discharging according to the 
owners’ choice. Each CS has successfully accommodated assigned EVs 
during different hourly slots of the day and effectively dealt with 210 
EVs charging while simultaneously using some of the EVs in the V2G 
mode. The SOC level of each arriving EV was different, and accommo
dated according to their owner request. Those EVs who have taken part 
in the V2G mode were initially charged over 80% with the consent of EV 
owners, considering their requested departure time. Note that those EVs 
who have taken part in the V2G mode were charged on priority by the 
proposed algorithm to ensure proper backup to cope any voltage or 
frequency contingency on the power grid side if occurs uncertainly. If 
the additional stored energy in the EVs is not used for regulation services 
during parked hours, then this surplus energy was supplied to other EVs 
for charging, but, stopped supply when SOC level dropped to 80%. 
Whereas, other EVs who were not taking part in the V2G mode were 
charged according to their arrival queue. i.e., first come first serve policy 

was adopted for such vehicles. 
Moreover, we have further extended this test in order to the collect 

data about the generated revenue for EV owners who have contributed 
in the V2G service. In addition, we have also tested the vast scale impact 
of V2G service on the EV battery energy storage degradation and 
analyzed by the implementation of our proposed model the threat of 
large scale battery degradation for all EVs is also reduced. Table 3, show 
the statistics of EV operational cost with our proposed model in contrast 
to the battery degradation statistics acquired after testing unregulated 
EVs charging/discharging; 

In addition, Table 3 also provides statistics of the daily operational 
cost of one EV which has been determined by using two different ap
proaches i.e., 1) without considering EV battery degradation cost and 2) 
with EV battery degradation cost. It has been analyzed that the total 
operational cost (charging cost) of one EV with the consideration of 
degradation cost is decreased in contrast to the opposite case, because in 
this case aggregator has to strictly follow the defined charging/dis
charging SOC limits for each vehicle. However, with the degradation 
cost consideration the total cost of using an EV in the V2G cost is 
increased, since in this mode instead of using a single EV an aggregator 
has to use multiple EVs. Hence, it is proved that, when the degradation 
cost is included in the optimization problem the overall operational cost 
of the EV when it is in the G2V mode is reduced, while the V2G cost is 
increased. Another reason of increasing the V2G cost is, currently bat
terers are the most expansive part of an EV. Unregulated use of an EV in 
the V2G model will rapidly decrease its energy storage capacity [24]. 
Therefore, V2G mode is expansive. However, when we compare nominal 
daily V2G cost with fossil fuel based peaking plants, this cost is signifi
cantly low [30]. Hence, we can conclude that although, currently as 
compared to the G2V, the cost of V2G mode is high but in the long term 
this approach will generate financial benefits to the central grid as well 
[38]. 

Table 4, presents the statistics of the battery capacity degradation 
cost, the cost for charging an EV, and the total operational cost of an EV 
when V2G mode is not active. It is evaluated that, the battery loses about 
$0.062 worth of energy storage capacity each day due to the daily one 
complete charging/discharging cycle. Which is lower than $0.44 
degradation cost when the V2G mode is active. 

To further check the operational cost difference of a single EV using 
our model in contrast to the commonly used EVs charging strategies, we 
have performed an operational cost comparison. Results of this com
parison are shown in Fig. 20. Note, this comparison has been performed 
with and without considering the cost of battery degradation for the 
currently in use charging regulation strategy as well as the results of our 
proposed mathematical model implementation are also included. It is 
observed the total cost of charging an EV is significantly reduced by our 
proposed EV aggregation framework in contrast to the commonly used 
method (i.e., the charging cost is reduced from $1.50/day without V2G 
use to $0.33/day with V2G use). This price drop is seen because of the 
EV contribution in the grid stabilization which generates profit for this 
particular EV and it is compensated in term of charging cost. Results of 
this comparison are listed in Table 5. By the results of table 5, we can 

Fig. 18. State of charge (SOC) of an EV which is connected at CS 2 on the 
busbar 16. 

Fig. 19. Different State of Charge (SOC) levels of all modelled EVs managed by 
5 CSs. This EVs charging station stack has been acqureid from Fig. 7. 

Table 3 
Daily EV operation cost comparison in the V2G mode of our proposed degra
dation model in contrast to the without degradation method.  

EV operation cost ($) Without considering battery 
degradation cost 

With considering 
degradation cost 

Cost of battery 
degradation ($/day)  

− 0.4970  − 0.4347 

Grid to vehicle (G2V) 
cost ($/day)  

− 0.0282  − 0.0275 

Vehicle to grid (V2G) 
cost ($/day)  

+0.1650  +0.1430 

Total operation cost 
$/day  

− 0.3602  − 0.3192  



conclude that, by providing frequency services to the grid through V2G 
framework an EV can earn revenue and economic benefits in term of the 
total charging cost. Conversely, by providing voltage regulation service 
to the grid an aggregator can earn suitable revenue.Fig. 21. 

In order to test the capability of limiting the threat of energy storage 
capacity degradation proportion of the proposed model, we have per
formed a lifetime degradation depth comparison with [78]. For this test 
the charging/discharging of an EV who has randomly perfumed V2G 
and G2V operations for 12 years is tested under both models. Test results 
show that under our proposed model even after 12 years this EV has only 
lost about 10% energy storage capacity. In contrast, under the method 
proposed in [83] similar EV has lost over 38% energy storage capacity 
which is huge. It means that under real life conditions the method 
proposed in [83] would perform worse. This comparison also proves 
that our proposed model is capable of protecting EV from severe battery 
capacity degradation and could also extend its life span. 

3. Conclusion 

In this research paper, we have proposed a novel and robust central 
aggregation hierarchical V2G optimization algorithm to easily integrate 
thousands of EVs in the smart grid. By optimal integration of thousands 
of EVs in the V2G framework this model provides voltage and frequency 
regulation services to the grid. Particularly, this model provides backup 
support for those grids where most of the power is being generated by 
the renewables, which ensures reliable operation of the whole power 

system and helps in maintaining power quality. This model also generate 
revenue for central aggregation office (CAO) and for the EV owners who 
provide their EVs for V2G operation. In addition, the proposed optimi
zation model is capable of performing DA load scheduling of all asso
ciated EVs besides it also consistently evaluates the real time 
performance of all parts of the grid by taking feedback from monitoring 
and controlling devices. The proposed CAO model also determines any 
minor contingency that could hinder the implementation of the defined 
optimal load schedule to regulate EVs charging/discharging. If any 
contingency i.e., frequency and voltage fluctuations uncertainly occurs 
in its response the CAO takes all necessary actions to counter such 
constraints, which enhance the economic outcomes and grid stability 
which is the main contribution of this paper. 

Moreover, to further improve the grid operation, the proposed model 
increases the optimization capability of the whole power system. It 
provides authority to both TNO and DNO of controlling and maintaining 
the voltage and frequency transients introduced due the power gener
ation fluctuations of renewable resources within the acceptable range by 
the assistance of CAO. In addition, the cost of battery energy storage 
capacity degradation particularly for V2G contributing EVs is also 
considered. To reduce the threat of massive battery degradation, this 
optimization model considers the per cycle (charging/discharging) en
ergy storage capacity degradation cost separately when EVs are being 
used in the V2G mode. In addition, performance of the proposed model 
has been validated by intense simulation testing carried out by acquiring 
the real world renewable power generation and cost data by PJM [82]. 
Simulation results clearly shows the effectiveness of the proposed model 
while providing voltage and frequency stabilizing services to the grid 
under adverse conditions and smoothly performs charging/discharging 
tasks of all associated EVs. The proposed scheme could be implemented 
for managing the real-time V2G operation on broader scale in any 
country of the world. 

Future work 
In future research, we will further extend this model in such manners 

that, a separate ageing constraint will be integrated in the proposed 
hierarchical model to test the long term V2G operation impact on the Li- 
ion batteries. A more refined model will be developed to anticipate the 
more accurate EVs behavior in the DA market by using the PJM and 
European power generation and consumption data. 
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Table 4 
Daily cost of charging an EV.  

EV operation cost ($) Total cost ($) 

Battery degradation cost ($/day)  − 0.062 
Cost of charging ($/day)  − 1.432 
Total cost ($/day)  − 1.494  

Fig. 20. Daily EVs charging cost comparison of the proposed model (black) 
without degradation model (green) and unreglated charging (gray). 

Table 5 
Daily statistics of the voltage regulation support provided by the proposed 
aggregator (CAO) to the grid.  

Daily EV operational cost ($) Voltage regulation 
cost ($) 

Frequency regulation 
cost ($) 

Daily regulation revenue 
($/day)  

+1092.24 +169.50 

Daily regulation cost ($/day)  − 998.37 0 
Daily profit ($/day)  +92.42 +169.50 
Overall aggregator revenue 

($/day)  
+262.8  

Fig. 21. Battery Degradation depth comparisons with [83].  
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