
A Simulated
Annealing Approach
to Cryptogram
Classification
Guilherme Martins Amado
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
2022

Orientador
Rogério Reis, Faculdade de Ciências

Coorientador
António Machiavelo, Faculdade de Ciências

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

Declaração de honra

Eu, Guilherme Martins Amado, inscrito no Mestrado em Segurança Informática da Faculdade
de Ciências da Universidade do Porto declaro, nos termos do disposto na alínea a) do artigo 14.º
do Código Ético de Conduta Académica da U.Porto, que o conteúdo da presente dissertação de
tese reflete as perspetivas, o trabalho de investigação e as minhas interpretações no momento da
sua entrega.

Ao entregar esta dissertação de tese, declaro, ainda, que a mesma é resultado do meu próprio
trabalho de investigação e contém contributos que não foram utilizados previamente noutros
trabalhos apresentados a esta ou outra instituição.

Mais declaro que todas as referências a outros autores respeitam escrupulosamente as regras
da atribuição, encontrando-se devidamente citadas no corpo do texto e identificadas na secção de
referências bibliográficas. Não são divulgados na presente dissertação de tese quaisquer conteúdos
cuja reprodução esteja vedada por direitos de autor.

Tenho consciência de que a prática de plágio e auto-plágio constitui um ilícito académico.

Guilherme Martins Amado

Porto, 17 de Outubro de 2022

Abstract

In this work, we present a machine-learning model for cipher classification.

For a very long time, humanity has needed to send messages in secret. For just as long, there
has also been a need to reveal the contents of those secret messages from other parties. To ensure
that messages remained secret when intercepted, ciphers were invented. While older “classical”
ciphers are no longer in use, there is still much interest in developing tools that help crack these,
for both historical and recreational reasons.

Throughout history, multiple heuristics have been invented to help identify a given ciphered
text’s cipher. One can start to have an idea of which ciphers may have been used by looking
at the results of heuristics aimed at identifying different ciphers’ traces. To help with this task,
multiple cipher classifiers were created to provide an automatic educated guess. However, these
often rely on neural networks or only work for very particular variations of the ciphers, not giving
much control to the cryptanalyst.

In this work, we present a simulated annealing cipher classifier that, along with giving more
control to the cryptanalyst, also shows which heuristics are more helpful at cipher identification.
This opens up the possibility for the cryptanalyst to improve or discard certain heuristics
depending on their performance. To measure our model performance we built an example
program to identify 12 ciphers using 6 heuristics, whose performance was also measured. Our
example program correctly guesses the cipher used around 64% of the time, on average.

Finally, we make some observations regarding how well the classifier performed and how this
performance compares to our expectations. We also comment on how the classifier compares to
the state of the art, and on how our model could be improved upon.

i

Resumo

Neste trabalho apresentamos um modelo de machine-learning de classificador de cifras.

A humanidade tem, há muito tempo, a necessidade de enviar mensagens em segredo. Por
outro lado, quase tão velha é a necessidade de revelar o conteúdo dessas mensagens secretas por
adversários. Para garantir que as mensagens permanecessem secretas quando intercetadas, as
cifras foram inventadas. Embora cifras mais velhas (clássicas) tenham caído em desuso, há ainda
muito interesse em desenvolver ferramentas para descodificar estas sem a chave.

Ao longo dos tempos várias heurísticas foram inventadas para ajudar a identificar a cifra
usada num dado texto cifrado. Combinando os resultados de várias heurísticas cujo objetivo é
detetar traços de várias cifras, é possível começar a ter uma ideia de quais terão sido usadas.
Para ajudar nesta tarefa, vários classificadores de cifras automáticos foram criados para dar um
palpite instruído sobre qual cifra terá sido usada. No entanto, estes frequentemente utilizam
redes neuronais ou funcionam apenas para variações específicas de cifras para funcionar, não
dando muito controlo ao criptoanalista.

Neste trabalho apresentamos um classificador de cifras que usa “simulated-annealing” e
que, para além de dar mais controlo ao criptoanalista, também mostra quais heurísticas mais
contribuem para a identificação da cifra correta. Isto torna possível ao criptoanalista melhorar
ou até remover heurísticas consoante o seu desempenho no processo de identificação. Para medir
a performance do modelo construímos um programa exemplo, capaz de identificar até 12 cifras
usando 6 heurísticas, cuja performance também foi medida. O nosso modelo exemplo é capaz de
adivinhar corretamente a cifra usada 64% das vezes em média.

No final, fazemos algumas observações sobre a performance do classificador, e como esta
se compara às nossas expectativas iniciais de performance. Para além disto, também fazemos
considerações sobre de que forma e que o nosso modelo se compara ao estado-de-arte e de que
forma poderá ser melhorado.

iii

Agradecimentos

Em primeiro lugar, quero agradecer aos meus orientadores, o professor Rogério Reis e o professor
António Machiavelo, por todo apoio e paciência ao longo da tese. Estou certo que se tivessem
cabelos para puxar os teriam puxado muitas vezes.

Quero também agradecer à minha família por sempre se ter preocupado com a minha educação,
não foi barata!

Finalmente quero agradecer aos meus amigos: aos que fizeram tese ao mesmo tempo, e
procrastinaram comigo, e aos outros que fizeram os possíveis para que eu não procrastinasse.

v

Contents

Abstract i

Resumo iii

Agradecimentos v

1 Introduction 1

1.1 State of the art . 3

1.1.1 Tools and classifiers available on the Internet 3

1.2 Structure of the thesis . 7

2 Background 9

2.1 Terminology . 9

2.2 Enciphering methods of classical ciphers . 10

2.3 Cipher keys . 11

2.3.1 Tabula Recta . 12

2.3.2 5x5 Polybius square . 12

2.4 Caesar cipher . 14

2.5 Vigenère cipher . 15

2.6 Autokey ciphers . 15

2.7 Bifid cipher . 16

2.8 Trifid cipher . 18

2.9 Homophonic substitution ciphers . 19

vii

2.9.1 Numbered key cipher . 20

2.9.2 Chequerboard cipher . 20

2.10 Phillips cipher . 22

2.11 Playfair cipher . 23

2.12 Nihilist Substitution cipher . 24

2.13 Nihilist Transposition cipher . 25

3 Heuristics 27

3.1 Character frequency . 28

3.1.1 Alphabet size of the cryptogram . 29

3.1.2 Index of coincidence . 31

3.1.3 Detecting transpositions with character frequency 33

3.2 Discovering periodicity with the Index of Coincidence 36

3.2.1 Automatically detect periodicity . 37

3.3 Phillips signature . 41

3.3.1 Finding the period . 41

3.3.2 A better approach to find the period . 42

3.4 Non-connected digraphs . 45

3.4.1 Enumerating all possible cases for non-connected digraphs 46

3.4.2 Probability of character occurrence within a ciphering block 49

3.4.3 Probability of homogeneous non-connected digraph occurrences 51

3.4.4 Distribution of the standard deviation for non-connected digraphs 53

3.4.5 Building an heuristic for the non-connected digraphs strategy 55

4 Building an automated classifier for classical ciphers 57

4.1 Overview . 58

4.2 Automatic identification process . 59

4.3 Finding a good weight tuple . 60

4.3.1 Score interpretation . 61

viii

4.3.2 Tuple rating . 62

4.3.3 Weight mutation . 63

4.3.4 Simulated annealing approach . 63

4.3.5 Further improvements to the algorithm 66

5 Results 69

5.1 Setup for computing results . 69

5.2 Expectations . 71

5.3 Measuring the performance of the algorithm . 73

5.3.1 Algorithm convergence speed . 73

5.3.2 Tuple rating vs number of correct guesses 75

5.4 Comparing heuristics . 76

6 Conclusions 81

6.1 Expectations and Reality . 81

6.2 Comparing our model to the state of the art . 82

6.3 Further work . 83

A Box-and-whisker plots 85

B Code 87

Bibliography 163

ix

Chapter 1

Introduction

For thousands of years, there has been a need to send messages in secret. For just as long, there
have been third parties interested in the contents of those messages. To ensure that messages
remained private when intercepted, ciphers were invented.

Ciphers are used to encrypt information, that is, to transform information into a cryptogram,
making the message unreadable to everyone except the sender and intended receiver. This is done
by following a procedure that uses some sort of secret key. Using the same secret, the receiver can
revert the cryptogram back to the original message. This is called deciphering. In this context,
the only aim of encryption is to deny the intelligible content to a would-be interceptor [Gai89,
p. 10].

Cryptography refers to the study of systems for communication in the presence of adversaries,
and cryptanalysis refers to the science of breaking these systems [Riv91, p. 720]. Cryptology
is the union of both. As long as there has been Cryptography, there has been Cryptanalysis,
that is, the analysis of ciphers and cryptograms with the intention of deciphering the messages
without the key. To combat this, new “techniques” have been invented over the years, creating a
multitude of ciphers.

In the context of our work, we only look at older ciphers, specifically those that belong to
the field of classical cryptography. Unlike modern cryptography, where the ciphers deal with
complex bit operations, classical cryptography ciphers the texts by character, and using simpler
operations that can be done by hand. “Modern cryptography” as an area of scientific interest
appeared around the 1970s, and until then (classical) cryptography was mostly reserved for
military use.

However, there is still a lot of interest in the study of “classical” ciphers for multiple reasons.
Since these ciphers were originally made to hide military messages, one reason for interest is
that there are still many historical cryptograms to decipher [DS20, Dun20, Tom22]. Finding the
original content of these messages could improve our understanding of history.

The study of classical ciphers helps one to realise the flaws of older ciphers, making them

1

2 Chapter 1. Introduction

a good introduction to the study of cryptography. Because of this, classical ciphers are still
often present in capture-the-flag competitions. These are competitions for computer security
enthusiasts that consist in multiple puzzles where the players have to find “flags”, hidden in
vulnerable programs, websites, and, more relevant for our case, ciphered texts [ŠČVB21]. Players
often have to break classical ciphers in these challenges in order to find the flag.

Interest in cryptanalysis as an activity for educational and recreation purposes is not new.
For example, the American Cryptogram Association was founded in 1930 with the objective of
promoting Cryptology popularity. This association has been responsible for the publication of a
bimonthly periodic called “The Cryptogram” that includes articles and challenge cryptograms
for readers to break. Moreover, the association is also responsible for publishing “The ACA and
you”, a handbook in which, along with other resources, a summary of a panoply of ciphers is
given.

For all these reasons, there is a need for tools that can help cryptanalysts decipher cryptograms.
Provided the cipher used is already known to the cryptanalyst, there are many tools already
available online to help him “crack” the cipher. The self-titled “Cyber Swiss Army Knife”
CyberChef [Gov22], is one of those. It offers multiple mechanisms that allow one to “manipulate
data in complex ways without having to deal with complex tools or algorithms”, such as:

• Data formatting, such as encoding and decoding operations;

• Encryption and decryption operations of various ciphers;

• Operations related to modern cryptography, such as signing and signature verification;

• Arithmetic and logic operations;

• Networking related operations, such as changing the IP format;

• And many others.

Another popular website is dcode.fr [DCo22], which features tools to help puzzle enthusiasts solve
word games, mathematical games, and other types of puzzles. This website offers a vast collection
of cipher implementations, so that the user can play with them, as well as an explanation of how
each cipher of those works.

However, granted these tools are useful, the first task of the cryptanalyst is, more often
than not, to detect what was the cipher used in the production of a particular enciphered text.
Furthermore, while some tools already mentioned could be used to that end, these still heavily
rely on the human contribution, making what could be a small step in the deciphering process
more troublesome.

Therefore, a tool capable of automatically identifying the cipher used on a given text is
needed. In this work, we propose a model for such a tool. Although our approach is machine
learning, we use a different technique from the already existing written work which gives more
control to the user. An analysis of the existing state-of-the-art follows.

1.1. State of the art 3

1.1 State of the art

In our research, we tackle the problem of cipher identification by resorting to a machine learning
algorithm designed by us. Machine learning is a research field focused on analysing and building
methods that “learn”, that is, methods that use data to improve the performance of their
tasks. Machine learning is useful in cipher classification, since one can easily generate a lot of
cryptograms for an algorithm to learn from.

Regarding machine learning, there are two possible approaches to our problem: feature
engineering and feature learning. Feature engineering refers to the practise of constructing
suitable features from information that, by itself, could not be used to improve predictive
performance. Much of the actual effort in this approach often consists of designing preprocessing
mechanisms that can produce suitable features for the machine learning algorithm to use, rather
than designing the machine learning algorithm itself. This approach takes advantage of human
ingenuity and prior knowledge to compensate for the fact that current learning algorithms
have difficulties extracting and organising discriminative information from data [BCV13, p. 1].
Learning algorithms less dependent on feature engineering do not require so much time spent
on the designing of the features. This makes them highly desirable since new applications
can be built faster with them. This leads to feature learning, where the underlying idea is to
automatically discover the information needed for feature detection and classification of raw data.
This methodology allows the machine to learn the features without manual intervention.

However, in this work, we use a feature engineering approach, since, in this context, it has
the key benefit of allowing one to model features according to known cipher weaknesses in order
to train a machine learning algorithm [LKE+21, p. 118]. The work presented in [LMK+21] also
took a similar approach.

Unlike these, however, we do not use a neural network, and instead use simulated annealing.
The way our model is designed allows one to alter the importance given to each feature in the
cryptogram classification after training. This is unlike the previously mentioned neural network
approach, which works like a black box where the features are given as input. Because of this,
we have a greater control over our classifier.

With this work, we were hoping to be able to tell which features are more or less useful.
This can be helpful since one may be unsure of how effective a given feature is. We were also
hoping our model would allow us to know which features could be added to improve the model’s
performance.

1.1.1 Tools and classifiers available on the Internet

In order to find the current state-of-the-art on automatic cryptogram classifiers, we started by
searching classifiers available online, with the goal of finding related written work. Unfortunately
we were initially unsuccessful at finding related written-work, so we mostly focused on classifiers

4 Chapter 1. Introduction

available online with no written-work. Because of this, we also missed a chance to build on
what these projects had already achieved. Of the classifiers we found, we only found four worth
mentioning, since the overwhelming majority of the others suffered from the following two main
problems:

• The classifier was unable to classify any ciphers relevant for this work;

• There was no information about them available other than the code.

These projects were found by searching on GitHub and Google, using keywords such as “cipher
classifier” or “cipher identifier”. We only considered projects that had a clear explanation on how
to use them.

Enigmator The approach taken by this classifier [Cry17] is to check for the presence or lack
thereof of different attributes in the cryptogram. Some of these attributes are the cryptograms
alphabet size, the value of the index of coincidence and the existence of certain letters in the
cryptogram. This is done sequentially, and the classifier may attribute the cryptogram to a given
cipher known to produce the attributes already found without checking all the attributes the
classifier is prepared to identify. This means that one could produce cryptograms that can easily
fool the classifier, especially since one of the attributes taken into consideration is the presence
of certain letters as an indications of what ciphers may have been used. On the other hand, the
classifier is often sufficient to identify ciphers from capture-the-flag challenges. The classifier
includes the following ciphers:

Affine Beaufort Caesar Columnar transposition
Double transposition Gronsfeld Hill cipher (3x3) Input Autokey
Nihilist substitution Playfair Polybius cipher Railfence
Scytale Simple substitution Vigenère.

The code for this classifier is available online on GitHub.

Classifier available on dcode.fr One of the many tools available on the dcode.fr website is a
cipher classifier. We contacted the creator and maintainer of the classifier to ask some questions
about it, since at the time there was no information available, which has since been rectified.
Upon asking how the classifier worked, we were told that the classifier has a multilayer perceptron
neural network-type architecture, that is, a fully connected feedforward neural-network. This
type of neural-network is an example of feature learning. On the input layer of the network, the
coded messages are given, and each node of the output layer corresponds to a different cipher
available on the website. This classifier stands out for the very large number of ciphers it is
capable of identifying: around 200 different codes and ciphers.

When asked how the performance of the classifier is measured, and we were told that it is
using F1-score. The F1-score is a way of combining recall and precision to get a single measure

1.1. State of the art 5

which falls between recall and precision [Sas, p. 1]. These are, respectively:

Precision =
#of true positives

#of true positives + #of false positives
,

Recall =
#of true positives

#of true positives + #of false negatives
.

F1-score is the harmonic average between the two:

F1 − Score =
2 × Precision × Recall

Precision + Recall
.

Overall, this classifier scores around 0.8 using F1-score.

More ciphers are added regularly to the website and the training database is regularly updated.
We were also told that the network is trained on a personal computer and that it takes several
hours to train.

Boxentriq Another classifier that we found is one that is available on the boxentriq web-
site [Åhl22]. This classifier is capable of telling apart 25 different ciphers and codes. Among
these are the following classical ciphers:

ADFGVX ADFGX Atbash
Beaufort Beaufort autokey Bifid
Caesar Columnar transposition Four-square
Input autokey Monoalphabetic substitution Playfair
Railfence Two-square horizontal Two-square vertical
Vigenère.

Again, we contacted the creator of the classifier to ask if he could tell us how it worked. He
told us that it uses a random forest algorithm that takes less than an hour to train on a laptop,
with an accuracy of around 80%.

Cryptool and related written work Most of the written work we have found describes
a neural network approach to tackle the problem of cipher identification. Of these, the most
sophisticated approach we found is Cryptool NCID, which is available online and is described
in [LKE+21]. This classifier uses a neural network model capable of telling apart the following
56 ciphers, most of which are specified by the ACA and you:

6 Chapter 1. Introduction

Amsco Autokey Baconian Bazeries
Beaufort Bifid Cadenus Checkerboard
Cmbifid Columnar transposition Condi Digrafid
Four square Fractional morse Grandpré Grille
Gromark Gronsfeld Headlines Homophonic
Key phrase Mnmedinome Morbit Myskowski
Nicodemus Nihilist substitution Nihilist transposition Null
Numbered key Per. Gromark Phillips Phillips rc
Plaintext Playfair Pollux Porta
Portax Progkey Quagmire1 Quagmire2
Quagmire3 Quagmire4 Ragbaby Railfence
Redefence Route transposition Running key Seriated playfair
Slidefair Swagman Tridigital Trifid
Trisquare Two square Variant Vigenère.

The classifier has an accuracy of 80.24%. This work is a natural next step to that of Nuhn and
Knight [NK14], since it covers more ciphers and with better accuracy, using a similar model. In
the original paper, a comparison is made between different activation functions and results from
previous work, and it is shown how this classifier is better than the previous written-work.

Although it is not written-work [Cip22], shows that support vector machines can also be used
to classify ciphers.

The following table resumes the previously described differences between the classifiers.

Table 1.1: Comparison between the different classifiers found.

Ciphers covered Strategy for identification
dcode.fr Around 200 ciphers Neural Network

Enigmator
Common classical ciphers, encodings
and hashes

Short program that checks for dif-
ferent properties on the cryptogram
using if-else clauses

Boxentriq 25 common ciphers and encodings Random Forest
Cryptool 56 ciphers from the ACA and You Neural Network

Time spent in training
the classifier

Written work Learning type

dcode.fr Several hours No Feature Learning
Enigmator N/A No N/A
Boxentriq Less than an hour No Feature Engineering
Cryptool Several hours Yes Feature Engineering

1.2. Structure of the thesis 7

1.2 Structure of the thesis

Our work is structured as follows. In the next chapter, we start by giving the reader some
background on the ciphers we try to automatically identify using our classifier, as well as a short
historical background. We also show the differences between these ciphers, some of which are
exploited by our classifier later on. In addition, we present the terminology that we will use
throughout the rest of the work.

Chapter 3 covers the heuristics that the classifier uses to tell the ciphers apart. Heuristics
are key elements for the cipher classifier to work. Each heuristic attributes a property found in
the enciphered text to a group of ciphers. The classifier outputs the most likely cipher to have
been used by putting the heuristics guesses together. In this chapter we show how each heuristic
was built, using statistical observations of different properties found in the enciphered texts.

In Chapter 4, we explain how the classifier model works and how it is trained using simulated-
annealing, a machine learning technique. This training consists in finding a balance between the
importance given to each heuristic in the classifier result.

After this, in Chapter 5, we present our implementation of the designed model. We analyse
the training and classification performance of the implementation. In addition, we explain the
expectations that we had beforehand regarding the performance results, and the motives for
these expectations.

Finally, in Chapter 6 we draw some conclusions regarding both the expectations we had, how
our work compares to the state-of-the-art, and what we missed or could have been done better.

Chapter 2

Background

In this work, we present a program that automatically attempts to identify which cipher, from a
set of ciphers, was used to produce a given cryptogram. Given this, in this chapter, we present
the ciphers that we use in that program, along with some historical context of their use and
some known variations. We also present an overview of those ciphers characteristics, and how
these are exploited in our program.

We start by presenting the terminology that we use throughout this work. This is done to
avoid any confusion since in the cryptography field terminology varies from author to author,
and everyday words can assume a different meaning.

2.1 Terminology

This work focuses on the analysis of ciphers, specifically their classification. Ciphers are used to
modify secret messages in such a way that only the receiver, who knows what modifications were
done, can read them. This transformation follows an algorithm, that is, a series of precise steps
which are followed as a procedure. The input to this algorithm, that is, the original message, is
called plaintext. The output of the algorithm, that is, the ciphered message, is called cryptogram
or ciphertext. The process of transforming a plaintext into a ciphertext is called encipherment.
The reverse process, that is, the process of transforming the cryptogram into a plaintext, is called
decipherment.

The transformation from plaintext to ciphertext requires one key, a secret piece of information
shared between the correspondents. The encipherment process can be compared to that of
locking a message within a safe box using a key. Furthermore, in a general sense, using the same
plaintext with two different keys results in two different cryptograms. We use the words crack or
attack to designate the process of deciphering without knowing the key. Using the previous safe
box analogy, cracking would be the act of picking the lock of the box. The person that attempts
to crack a cipher is called the attacker.

9

10 Chapter 2. Background

Depending on the language used, plaintexts are written using a given set of characters. Here,
we call alphabet to the ordered set of all the characters that can make up a given domain. For
example, the cryptogram alphabet is the set comprised of all the characters of a given cryptogram.
For example, if one were to write messages using both English letters and digits, the plain
text alphabet would consist of all English letters and digits that could be used in a message.
Furthermore, if we ciphered the message using only digits as characters, the cryptogram alphabet
would be the set of all digits.

Some ciphers presented in this work rely on the alphabetic order at some point during the
enciphering process. However, it is also possible for the encipherer to use a permutation of the
alphabet instead. Should the encipherer keep this permutation a secret, the permutation works
as a key as well. For this reason, and for every cipher, we assume that instead of the alphabet in
its usual order, a secret permutation of the alphabet is used.

Symbols are the characters’ visual representation. It is important not to confuse symbols
with characters. For example, in the Roman language, the character for the eighth cardinal is
represented using four symbols: VIII.

The set of characters that can make up a plaintext for a given cipher is the plaintext
vocabulary. The set that can make up a ciphertext is the ciphertext vocabulary.

2.2 Enciphering methods of classical ciphers

Classical ciphers, in general, can be divided into three different types [Gai89, p. 1]:

Concealment ciphers Ciphers that disguise or hide the message within another message and
are intended to pass without raising suspicions of secret communication. This work does
not cover these.

Transposition ciphers Ciphers that employ a character-moving system, so that the ciphertext
constitutes a permutation of the plaintext.

Substitution ciphers Ciphers that replace the characters of the original messages with substi-
tutes, keeping the original order.

To add to these, there are combinations of types and combinations of different subtypes
belonging to the same type. In this work, we focus on transposition and substitution ciphers. We
can further divide substitution ciphers into the following five major ciphering techniques. The
reason these five were chosen is that they are the most prevalent among ciphers.

Monoalphabetic substitution This technique is a simple character substitution, and each
character is always substituted by the same character. The substituting characters can
have a different number of symbols than the plaintext characters. Each character is always
replaced by the same character, independently of its location in the ciphertext.

2.3. Cipher keys 11

Polyalphabetic substitution These ciphers assign an alphabet permutation to each character
position of the plaintext, and then cipher each character using a substitution that takes
into consideration the positions’ assigned permutation. Thus, generally speaking, the same
character at a different position is ciphered differently. Because of this, these ciphers are
harder to crack than monoalphabetic ones.

Homophonic substitution These are ciphers that, similarly to polyalphabetic ciphers, can
substitute the same character in different ways. However, unlike polyalphabetic ciphers,
these ciphers do it independently of where the characters are located in the plaintext.
Instead, the substitution is selected in a non-deterministic way, meaning that the encipherer
chooses what is the substitute in each instance.

Polygraphic substitution Ciphers in which groups of characters are replaced with other
groups of characters. Each sequence of characters has a pre-established replacement.

Fractional substitution These are ciphers that substitute each character with more than a
single character, expanding the text. After this expansion, the substitutes are broken and
these fractions are subject to further encipherment. An example of this are ciphers that
first expand the text by substituting letters for pairs of digits, and on a second phase,
convert the digits back to letters using a different method of grouping digits.

In Gaines’ book [Gai89], substitution ciphers are only divided into four major methods [Gai89,
p. 68]. However, we found it relevant to admit a fifth major method, homophonic substitution,
given its prevalence among many classical ciphers. Furthermore, this technique is also notably
good at hindering statistical analysis, making it more relevant in the context of this work.

Table 2.1 shows, for the ciphers that we cover in this work, what ciphering methods each
cipher uses.

2.3 Cipher keys

As previously mentioned in section 2.1, ciphers use a secret piece of information called the key.
Keys may be composed of a single component or multiple components. These components mainly
take shape as one of the following three forms:

• A keyword, that is, a phrase, word or code;

• A number, typically used as a shift or as a period;

• A table, filled with characters.

Since any alphabet permutation can be used other than the English alphabetic order, as
mentioned in section 2.1, we assume that the alphabet permutation used is always randomly

12 Chapter 2. Background

Table 2.1: Methods used in each cipher.

Ciphering methods

M
on

oa
lp

ha
be

tic
su

bs
tit

ut
io

n

H
om

op
ho

ni
c

su
bs

tit
ut

io
n

Po
ly

al
ph

ab
et

ic
su

bs
tit

ut
io

n

Po
ly

gr
ap

hi
c

su
bs

tit
ut

io
n

Fr
ac

tio
na

l
su

bs
tit

ut
io

n

Tr
an

sp
os

iti
on

C
ip

he
rs

Caesar X
Chequerboard X X
Numbered key X
Vigenère X
Autokey Input X
Autokey Output X
Phillips X
Nihilist substitution X
Playfair X
Bifid X X X
Trifid X X X
Nihilist
transposition

X

chosen. Since the procedure to make key-tables often relies on the alphabetic permutation in
some part of the process, this also applies to key-tables. We now present two of the most popular
kind of tables used as components of the key.

2.3.1 Tabula Recta

The tabula recta is a table that is filled with characters using the alphabet. The first line of
the table is the chosen alphabet permutation, and each row of the table is made by shifting the
previous one to the left one character. An example of a tabula recta is shown in Figure 2.1.
Ciphers that use a tabula recta are notably similar, as we will see later.

2.3.2 5x5 Polybius square

The Polybius square is a 5x5 table filled with different characters. Usually, ciphers use the
coordinates of the characters within the square to perform ciphering and deciphering operations.
Its creation is attributed to the ancient Greeks Cleoxenus and Democleitus and was later
further developed by the famous Greek historian Polybius, thus bearing his name [Pol89, p. 44].
Apparently, the square was first created for fire signalling, but later found its use both in

2.3. Cipher keys 13

M A R B L E X G J P T D C V I W Y Q F H Z O S U N K
MA R B L E X G J P T D C V I W Y Q F H Z O S U N K

M AR B L E X G J P T D C V I W Y Q F H Z O S U N K
M A RB L E X G J P T D C V I W Y Q F H Z O S U N K

M A R BL E X G J P T D C V I W Y Q F H Z O S U N K
M A R B LE X G J P T D C V I W Y Q F H Z O S U N K

M A R B L EX G J P T D C V I W Y Q F H Z O S U N K
M A R B L E XG J P T D C V I W Y Q F H Z O S U N K

M A R B L E X GJ P T D C V I W Y Q F H Z O S U N K
M A R B L E X G JP T D C V I W Y Q F H Z O S U N K

M A R B L E X G J PT D C V I W Y Q F H Z O S U N K
M A R B L E X G J P TD C V I W Y Q F H Z O S U N K

M A R B L E X G J P T DC V I W Y Q F H Z O S U N K
M A R B L E X G J P T D CV I W Y Q F H Z O S U N K

M A R B L E X G J P T D C VI W Y Q F H Z O S U N K
M A R B L E X G J P T D C V IW Y Q F H Z O S U N K

M A R B L E X G J P T D C V I WY Q F H Z O S U N K
M A R B L E X G J P T D C V I W YQ F H Z O S U N K

M A R B L E X G J P T D C V I W Y QF H Z O S U N K
M A R B L E X G J P T D C V I W Y Q FH Z O S U N K

M A R B L E X G J P T D C V I W Y Q F HZ O S U N K
M A R B L E X G J P T D C V I W Y Q F H ZO S U N K

M A R B L E X G J P T D C V I W Y Q F H Z OS U N K
M A R B L E X G J P T D C V I W Y Q F H Z O SU N K

M A R B L E X G J P T D C V I W Y Q F H Z O S UN K
M A R B L E X G J P T D C V I W Y Q F H Z O S U NK

M A R B L E X G J P T D C V I W Y Q F H Z O S U N K
M
A
R
B
L
E
X
G
J
P
T
D
C
V
I

W
Y
Q
F
H
Z
O
S
U
N
K

Figure 2.1: A Tabula Recta.

Telegraphy and Cryptography.

Given that the square only has 25 slots for characters, the English alphabet does not fit in it.
The usual solution is to combine the letters “I” and “J” in the same cell, given that the letter “J”
has a very low frequency and both letters look similar.

One way to fill the square, commonly used in the past, is to start by inserting a keyword,
removing character repetitions, and then filling the rest of the square with the remaining
characters of the alphabet in their usual order. Since there can be no repetitions, it can be
filled with characters in 25! different ways. The following are some examples of filling schemes.
Figure 2.2 displays an example of each of those schemes, using the keyword “triumvirate”.

Horizontal We start by filling in the square using the keyword from left to right and top to
bottom. Then we continue with the remaining alphabet characters.

Vertical Identical to the horizontal scheme, but first top to bottom and then left to right.

Horizontal serpentine Similar to the horizontal scheme, but the filling direction is inverted
in the even rows. We can also do this for the vertical scheme, making a vertical serpentine.

Clockwise spiral The outer squares are filled clockwise and the process is repeated for the
remaining inner squares in a spiral way. Again, first, the keyword characters are used and
only then the remaining alphabet. The spiral can also be done anticlockwise.

14 Chapter 2. Background

Some ciphers may number the rows and columns differently from the example in Figure 2.2,
or even use characters instead of numbers. An example of this occurs in the Phillips cipher
(Section 2.10).

Horizontal
1 2 3 4 5

1 T R I U M
2 V A E B C
3 D F G H K
4 L N O P Q
5 S W X Y Z

Vertical
1 2 3 4 5

1 T V D L S
2 R A F N W
3 I E G O X
4 U B H P Y
5 M C K Q Z

Horizontal Serpentine

1 2 3 4 5
1 T R I U M
2 C B E A V
3 D F G H K
4 Q P O N L
5 S W X Y Z

Clockwise Spiral

1 2 3 4 5
1 T R I U M
2 L N O P V
3 K Y Z Q A
4 H X W S E
5 G F D C B

Figure 2.2: Some Polybius square fill schemes.

2.4 Caesar cipher

Suetonius, a historian in ancient Rome, described a cipher used between Caesar and Cicero,
along with others [Kah96, p. 83–84]. In order to cipher, they would replace each letter of the
message with the one three places after in the alphabet to cipher their messages. Nowadays, this
ciphering method is commonly known as Caesar cipher, even if the distance used is other than
three [Kah96, p. 83–84]. A particular case is known as ROT13, in which the distance between
letters is exactly thirteen and the alphabet used is the English. The ROT47 is another known
case, where the ASCII alphabet is used with a distance of forty-seven.

The Caesar cipher is a rather weak cipher, since the number of possible keys is limited by the
size of the alphabet. Consequently, it is easy to attack this cipher using brute-force and this can
be done by hand. The cipher can also be recognised just by looking at the cryptogram, due to
the fact that the cipher does not properly hide the languages’ signature, even to the naked eye.

2.5. Vigenère cipher 15

2.5 Vigenère cipher

Vigenère was a French cryptographer, alchemist, and diplomat that lived during the 1500s.
Although he did invent a polyalphabetic ciphering method, his name has been wrongly associated
with another, weaker, polyalphabetic cipher [Kah96, p. 145]. The Vigenère cipher uses a Tabula
recta and a keyword to cipher and decipher. For each pair of characters plaintext/key, the
following process is repeated:

1. The intersection of the column with the plaintext character on top and the row with the
key character on the left is found, this being the corresponding ciphertext character;

2. The process is repeated for the next plaintext character.

3. When the keyword is used up, the cipher process starts from the beginning of the keyword.

The keyword can also be seen as a sequence of shift keys, where each character corresponds to a
different character shift, as in the Caesar’s cipher. Figure 2.3 shows an example for the plaintext
“Fortune favours the bold”, using the key “Password” and the tabula recta from Figure 2.1.

Plaintext: F O R T U N E F A V O U R S T H E B O L D
Keyword: P A S S W O R D P A S S W O R D P A S S W

Ciphertext: A S N X C H G B T I Q H Q Q C L I L Q M M

Figure 2.3: Vigenère ciphering example.

2.6 Autokey ciphers

Autokey ciphers can be described as ciphers in which the original key is expanded through a
cyclic process. Usually, in the ciphering process, after the initial key has been used, either the
plaintext or the ciphertext itself are used to cipher the next part of the cryptogram.

As stated before, the Vigenère cipher is wrongly attributed to Blaise de Vigenère. In reality,
Vigenère did create a similar polyalphabetic cipher, albeit more complex and harder to break.
This latter cipher was one of the first autokey ciphers [Kah96, p. 145]. It works like the Vigenère
cipher, but once the initial keyword has been used, the plaintext starts being used as key
throughout the entirety of the remaining text. We call this input autokey cipher. An example of
the cipher is shown in Figure 2.4, where the keyword “Password” is used to cipher the phrase
“Fortune favours the bold”, using the tabula recta from Figure 2.1.

Other than this cipher, Vigenère also developed another similar cipher, which we call output
autokey cipher. This cipher works similarly to the input autokey, but instead of using the
plaintext as the key, it uses the ciphertext. This has the advantage of using a key that “looks

16 Chapter 2. Background

Plaintext: F O R T U N E F A V O U R S T H E B O L D
Keyword: P A S S W O R D F O R T U N E F A V O U R

Ciphertext: A S N X C H G B H J U G K Z W D X Y Y A V

Figure 2.4: Input autokey example.

random”, meaning one cannot know the content of the message by having just the key. An
example is shown in Figure 2.5, where the same key and phrase from the previous example are
used.

Plaintext: F O R T U N E F A V O U R S T H E B O L D
Keyword: P A S S W O R D A S N X C H G B R P H B I

Ciphertext: A S N X C H G B R P H B I W Q S G C I G K

Figure 2.5: Output autokey example.

These ciphers are much less vulnerable to statistical analysis thanks to the key generation
process, which avoids the creation of patterns in the cryptogram.

2.7 Bifid cipher

The bifid cipher was invented by the French cryptographer Félix Marie Delastelle (1840-
1902) [Kah96, p. 243]. This cipher is a simple yet effective application of the fractional substitution
method. In fact, the name bifid comes from the French “bifide”, meaning “split in two”.

The bifid cipher uses a Polybius square as key, as well as an agreed period ℓ, normally greater
than six [MR07, p. 2]. First, the plaintext is divided into blocks of size ℓ. Then, for each block,
the coordinates of each plaintext character are written underneath it. Taking, for example, the
following text and Polybius square and ℓ = 9:

“Friends, Romans, countrymen, lend me your ears”

0 1 2 3 4
0 S H A K E
1 P R B C D
2 F G I L M
3 N O Q T U
4 V W X Y Z

one gets:

2.7. Bifid cipher 17

F R I E N D S R O / M A N S C O U N T /

2 1 2 0 3 1 0 1 3 2 0 3 0 1 3 3 3 3

0 1 2 4 0 4 0 1 1 4 2 0 0 3 1 4 0 3

R Y M E N L E N D / M E Y O U R E A R / S

1 4 2 0 3 2 0 3 1 2 0 4 3 3 1 0 0 1 0

1 3 4 4 0 3 4 0 4 4 4 3 1 4 1 4 2 1 0

In order to obtain the ciphertext, each block is recoded using the same square, by reading
pairs of coordinates horizontally, from left to right, as the following scheme suggests. If the
period is odd, the last coordinate of the first line is paired with the first coordinate of the second
line.

2 1 2 0 3 1 0 1 3

0 1 2 4 0 4 0 1 1

Thus, we would have the following coordinates.

21 20 31 01 30 12 40 40 11 /

20 30 13 33 34 20 03 14 03 /

14 20 32 03 11 34 40 34 04 /

20 43 31 00 14 43 14 14 21 /

00

Which would then be substituted by the corresponding characters in the square, resulting in
the following ciphertext.

GFOHNBVVRFNCTUFKDKDFQKRYVUEFXOSDYDDGS.

If the last block has a different size it is still ciphered using the same scheme. This means
that, should the last block have only one character, it remains unciphered. This can be avoided
by adding padding to the plaintext.

The name “bifid” is also used to describe the family of ciphers that form a pattern, constituted
by two substitution operations and two transposition operations [Wil39, p. 178]. The pattern is
as follows.

1. First, a process of substitution takes place, in which each plaintext character is replaced
by two components, of a “bipartite alphabet”. This is done so that each character is
represented by two symbols instead of just one, so that these can be split apart later.

2. Then, there is a process of transposition, in which the components originally paired together
are separated.

18 Chapter 2. Background

3. Next, a process of transposition takes place, in which the separated components are
combined to form new pairs.

4. Finally, there is a substitution in which each new pair of symbols is substituted back to
other alphabet, usually the original alphabet.

2.8 Trifid cipher

The trifid cipher is a fractional substitution cipher. It works similarly to the bifid cipher, but
instead of partitioning every character representation in two, it partitions in three, hence the
name. The cipher is in the “bifid family of ciphers” previously mentioned.

For this cipher, a 27 character alphabet is used, along with a period. This cipher requires a
tripartite alphabet since the cipher partitions the characters’ representations into three parts.
The cipher uses a table as a component of the key. The table is built as follows.

1. The first row of the table contains the characters of the original alphabet. To determine the
character order of the first row a keyword is picked, its repetitions are removed, and then
the remaining alphabet is added, analogous to what was done before with the Polybius
square.

2. Below each character is its respective substitution in the tripartite alphabet. This tripartite
alphabet is ternary, ranging from (0,0,0) to (2,2,2).

Figure 2.6 shows an example of a table for the keyword “Pompey Magnus”.

P O M E Y A G N U S B C D F H I J K L Q R T V W X Z #
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Figure 2.6: Trifid table example.

Although the table is a more convenient format, one can also visualize it as a three-dimensional
Polybius, as follows.

2.9. Homophonic substitution ciphers 19

P
000

S
001

L
002

E
010

D
011

T
012

G
020

I
021

X
022

O
100

B
101

Q
102

Y
110

F
111

V
112

N
120

J
121

Z
122

M
200

C
201

R
202

A
210

H
211

W
212

U
220

K
221

#
222

The following figure shows an example of the trifid cipher, where the phrase “Cease quoting
laws to us that have swords girt about us!” is ciphered using the previous table and a period of
8. In this example the letter “#” to separate the words in the plaintext.

Plaintext: CEASE#QU OTING#LA WS#TO#US
Ciphertext: SCLDIXLW NMLKXDER WRYNUGQX

Plaintext: #THAT#HA VE#SWORD S#GIRT#A BOUT#US
Ciphertext: ZUCFJIX# RIVISDRI IKL#ACMU SXSWQIX

Figure 2.7: Trifid cipher example.

2.9 Homophonic substitution ciphers

Generally speaking, a cipher is called homophonic when there are multiple alternatives to
substitute the same plaintext character. Until the invention of polyalphabetic ciphers, homophonic
ciphers were the most popular, and remained in use around three hundred years after the invention
of polyalphabetic ciphers [Kah96, p. 150]. This is explained by the fact that polyalphabetic
ciphers have certain features that made them inadequate to use when they were created, most
notably:

Slow to use At the time they were invented, ciphering was made by hand, with no help from
machines. Given their complexity, this made the process slow and error-prone.

Mistakes made them unreadable A ciphering error meant the message would be unreadable,
or at least part of it. This was very troublesome since it meant sending a messenger back

20 Chapter 2. Background

to retrieve a correctly ciphered message. On the other hand, homophonic ciphers are still
readable even if a character or two are mistaken.

Since each plaintext character can be substituted in multiple ways, it is important to avoid
ambiguity when ciphering. Ambiguity can occur if two different plaintext characters can be
substituted by the same character. This can severely hinder their decipherment. To avoid it,
the ciphertext vocabulary must be larger than the plaintext vocabulary, if they are equal in size
then it becomes just a monoalphabetic substitution.

Ambiguity may also take place if the substituting characters are represented by multiple
symbols, and some have more symbols than others. In that case, a character representation
cannot have as prefix another characters’ representation, otherwise, there can be ambiguity when
deciphering.

2.9.1 Numbered key cipher

The numbered key cipher is a homophonic cipher. The cipher substitutes characters using pairs
of digits, with some characters having more than one possible substitution. The substitutions
are determined in the following manner:

1. A keyword is picked. This can be a phrase, a word, etc., written using the plaintext
alphabet.

2. A string is made by appending the remainder alphabet characters not present in the
keyword to the keyword. Note that there can be character repetitions in the string if the
keyword has repetitions.

3. Each character of the string is then numbered consecutively, using two digits, starting
from 1. The numbering process can start somewhere in the middle of the string and wrap
around. We call this the numbered key.

4. To cipher, each character of the plaintext is substituted with one of its corresponding
numbers in the numbered key.

The process of creating a numbered a key can be seen in figure 2.8. Note that the letters “o”,
“r”, “c” and “i”, have multiple substitution options when ciphering.

To decipher, the substituting process is reversed.

2.9.2 Chequerboard cipher

The chequerboard cipher is a homophonic substitution cipher, which also has a monoalphabetic
substitution variant. We start by explaining the latter variant, since it is simpler. In this variant,

2.9. Homophonic substitution ciphers 21

Keyword: “I found Rome a city of bricks”

String: i f o u n d r o m e a c i t y o f b r i c k s g h l p q v w x y z

Numbered key:

i f o u n d r o m e a c i t y o
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

f b r i c k s g h l p q v w x z
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Figure 2.8: Example of a numbered key.

each character is substituted with its coordinates in the Polybius square. The coordinates of the
cells in the square do not have to be expressed as digits; in fact, using letters is common. It is
also possible to use a different vocabulary for rows and columns coordinates, for example, only
digits for rows and only letters for columns. An example of the cipher can be seen in Figure 2.9.

W H I T E
B A U G S T
L B C D E F
A H I K L M
C N O P Q R
K V W X Y Z

Plaintext: A P P L A U D A S I E X I T
Ciphertext: BW CI CI AT BW BH LI BW BT AH LT KI AH BE

Figure 2.9: Monoalphabetic chequerboard ciphering example.

The other, more complex, variant of the cipher allows each character coordinate to be
represented in multiple ways, meaning there can be multiple substitutions for the same character,
making it poligraphic. The order of each pair of substituting characters may also be switched, if
there are no characters whose coordinates, when switched, are equal to other character coordinates.
Figure 2.10 shows an example of this. Note that, since the rows and columns vocabulary is
completely distinct, it is possible to switch the order of the coordinates when ciphering without
risking any ambiguity.

22 Chapter 2. Background

B L A C K
W H I T E

0 5 A U G S T
1 6 B C D E F
2 7 H I K L M
3 8 N O P Q R
4 9 V W X Y Z

Plaintext: A P P L A U D A S I E X I T
Ciphertext: 5B I8 3A 2C 0B H5 A6 B5 C5 7H T6 A9 H2 5K

Figure 2.10: Homophonic chequerboard ciphering example.

2.10 Phillips cipher

The Phillips is a polyalphabetic cipher. It was “described in an early issue of The Cryptogram as
having been used for military purposes, and was called the Phillips system” [Gai89, p. 185]. The
cipher uses both a period ℓ and a Polybius square as key. It works as follows.

1. Each character is substituted by the one diagonally down to its right in the square. If the
character is at the border, the character at the other side is chosen, looping around.

2. After ℓ characters, the cipher changes the Polybius square, by moving a row down. This
is done seven times. First, the initial first row is moved, until it becomes the last. Then,
the initial second row, now the first, is moved until it becomes the fourth. At the eighth
iteration, instead of moving rows, the initial setup is restored and the process of moving
rows starts again. The changes in row order can be seen in table 2.2.

Table 2.2: Polybius square row order for each period in the Phillips cipher.

Polybius square iteration 1 2 3 4 5 6 7 8 9 = 1 10 = 2 . . .

Corresponding row order

1 2 2 2 2 3 3 3 1 2
2 1 3 3 3 2 4 4 2 1
3 3 1 4 4 4 2 5 3 3 . . .
4 4 4 1 5 5 5 2 4 4
5 5 5 5 1 1 1 1 5 5

Figure 2.11 shows a ciphering example of the phrase “Better a cautious commander, and not
a rash one” with a period of five.

2.11. Playfair cipher 23

1 2 3 4 5
1 A G R I P
2 B C D E F
3 H K L M N
4 O Q S T U
5 V W X Y Z

Plaintext: BETTE RACAU TIOUS COMMA
Ciphertext: KNZZN MKRKV ZUWVY LGUUW

Plaintext: NDERA NDNOT ARASH ONE
Ciphertext: OMNEC BTBWZ KMKEQ WOP

Figure 2.11: Phillips cipher example.

2.11 Playfair cipher

The Playfair cipher was invented in 1854 by Charles Wheatstone, an English scientist of the
Victorian era. However, the name that remained attached to the cipher is of his friend Lyon
Playfair, Baron of St. Andrews, who recommended it to high-ranking government and military
persons [Bau02, p. 62]. The cipher found use in multiple wars throughout the following decades.

The Playfair cipher is a poligraphic substitution cipher. The cipher uses a Polybius square as
key, preferably not filled with the horizontal filling scheme [Gai89, p. 200]. The Playfair cipher
enciphers the characters in pairs, using the following four rules.

1. Each pair must have two different characters. If two characters are the same, a “blank”
character has to be inserted between them. The “blank” character is a different character
from the ones it is separating. If the text has an uneven number of characters, a blank
should be inserted to make it even.

2. If the two characters are in the same column of the Polybius, each is substituted with the
one directly below it. The bottom cycles to the top.

3. If the two characters are in the same row, each is substituted with the character directly to
the right. The right cycles to the first character of the same row.

4. If both characters are in different rows and columns, they are substituted using the two
characters which form a rectangle with them. The first character is the one in the same
row as the first of the pair.

Note that the last three rules are cyclic. Thus, as long as the order 0-1-2-3-4 is maintained in
both columns and rows, it makes no difference shifting the columns or the rows [Gai89, p. 200].
For each key-square there are 5 possible column shifts and 5 possible row shifts, meaning that for
each key-square there are other 24 equivalent key-squares. Thus, instead of 25! possible different
key-squares for this cipher, there are 24!.

Figure 2.12 exhibits an example of the Playfair cipher. In the example, the phrase “let the

24 Chapter 2. Background

0 1 2 3 4
0 R U B I C
1 O N A D E
2 F G H K L
3 M P Q S T
4 V W X Y Z

Plaintext: LE TX TH ED IE BE CA ST
Ciphertext: TL QZ QL OE CD CA BE TM

Figure 2.12: Playfair cipher example.

die be cast” is ciphered using the given square. In the example, a blank is used to separate the
two T’s.

2.12 Nihilist Substitution cipher

The nihilist substitution cipher bears the name of the anarchistic opponents of the czarist
regime, who may have invented it [Kah96, p. 620]. It uses a Polybius square and a keyword as a
key. Originally, the Polybius square used was a 6x6 square, to encompass all the old Russian
characters.

The cipher works as follows. Each character of the plaintext is paired with a character of
the keyword, in order. When the keyword is used up it cycles back to the start of the keyword.
Then, the coordinates of each pair of characters are added, and used to substitute the plaintext
character. Since the cipher only uses pairs of digits to substitute, should the addition result be
between 100 and 110, the first digit is omitted in the ciphertext. To avoid any risk of ambiguity,
the coordinates should go from 1 to 5. This way, any number less than 11 can be identified as a
3-digit number whose first digit was ignored.

Figure 2.13 shows an example of the ciphering process. The rows in the example are,
respectively, the keyword, the plaintext, the keyword letters coordinates, the plaintext letters
coordinates and the ciphertext.

Some variations of the cipher include:

• Inversion of coordinates — instead of pairs of (row, column) the cipher uses (column, row);

• Different coordinate representations — the digits from 1 to 5 can be substituted with other
characters.

2.13. Nihilist Transposition cipher 25

1 2 3 4 5
1 S I M P L
2 E A B C D
3 F G H K N
4 O Q R T U
5 V W X Y Z

Plaintext: T H E E A R L Y B I R D
Keyword: E A S Y E A S Y E A S Y

44 33 21 21 22 43 15 54 23 12 43 25
+ 21 22 11 54 21 22 11 54 21 22 11 54

Ciphertext: 65 55 32 75 43 65 26 08 44 34 54 79

Figure 2.13: Nihilist substitution cipher example.

2.13 Nihilist Transposition cipher

This nihilist transposition cipher works as follows. First, a square is filled with the plaintext,
usually up to a hundred characters. If the text length is not a square number, blanks are used to
fill in the rest of the square. The rows and columns are numbered in ascending order, from 1 to
the length of the square side. The cipher key is a permutation of this sequence of numbers. For
a 4x4 square, a possible key would be 2-1-4-3, for example. In a first phase, the order of the
columns is switched in order to match the key, then, in a second phase, the same is done for the
rows. The final square contains the ciphertext.

1 2 3 4
1 L E N D
2 M E Y O
3 U R E A
4 R S X X

2 1 4 3
1 E L D N
2 E M O Y
3 R U A E
4 S R X X

2 1 4 3
2 E M O Y
1 E L D N
4 S R X X
3 R U A E

Figure 2.14: Nihilist transposition cipher example.

The process can also be done the other way around: the rows and columns are ordered using
the key and then switched to match the ascending order. An example of the ciphering process
can be seen in Figure 2.14, where the key is 2-1-4-3 is used with the plaintext “lend me your
ears”.

Other variants of the cipher exist. For example, in Gaines’ book [Gai89] a variant is described
where the text is partitioned to fit in multiple squares, that are then ciphered using the same

26 Chapter 2. Background

steps [Gai89, p. 17–24]. In this book it is also described the possibility of using a keyword instead
of a number sequence as key. Here, the letters of the keyword are numbered according to their
order of appearance in the alphabet, resulting in a number sequence, that is then used in a
similar way as described above.

Chapter 3

Heuristics

Ciphers are known to produce certain properties in their cryptograms that allow cipher identi-
fication. Thus, the fewer properties produced, and the less notable those produced, the better
the cipher. Some features specific to a language are called language signatures. Once a text is
ciphered, some of these features may remain evident depending on the cipher. We consider the
inability to hide the language signature a trait of the cipher as well.

To determine which cipher was used in a given cryptogram, we use heuristics. A heuristic is
an approach to a problem that follows a procedure, but, unlike an algorithm, an optimal solution
is not guaranteed. Instead, a heuristic finds a reasonably working solution not guaranteed to
be correct. In the context of cipher identification, heuristics are used to detect properties in
cryptograms. Since there can be false positives and false negatives, heuristics here are employed
as educated guesses as to what cipher was used. When compiling the results of different heuristics,
it is possible to form an idea of what cipher may have been used. This is the underlying idea of
the cipher classifier, on which this work is focused.

We use the following notation throughout this work.

C — The set of all ciphers; a cipher in C is denoted c.

x — A cryptogram.

P — The set of all plaintexts; a plaintext in P is denoted p.

Σ — The input alphabet of all ciphers; every plaintext is in Σ∗.

Γ — The output alphabet of all ciphers; every cryptogram is in Γ∗.

Let N be the set of the heuristics’ names and let n be a name in N . For each heuristic there
is a function tn(x), that attempts to recognize a given property in the cryptogram x, outputting
a threshold value v. Let m be a function that, given a name of a heuristic n and a value v,

27

28 Chapter 3. Heuristics

returns a set of ciphers C ′ known to produce the property the heuristic tries to detect, as follows:

m : N × R −→ 2C

n, v −→ C ′.
(3.1)

We define h, a function that encapsulates all heuristics, as follows. The function takes as input
the name of the heuristic and a cryptogram, and outputs a pair of elements. The first element of
this output pair is a value that is related to the probability that the property was produced by a
subset of ciphers, and the second element is that subset.

h : N × Γ∗ −→ [0, 1] × 2C

(n, x) −→

Pr

[
∃c ∈ m(n, tn(x)), ∃p ∈ P : x = c(p)

]
, m(n, tn(x))

 (3.2)

Here, we assume that no two ciphers create the same cryptogram with different or equal plaintexts.

In the future, we will use hn(x) to designate h(n, x). Moreover, we will use H to refer to the
set of all heuristics, that is, H = {hn| n ∈ N}.

In this chapter, we formulate heuristics, relying on observations made by finding patterns on
batches of cryptograms. To generate each batch of cryptograms, a batch of texts was sampled
from an English corpus of size 12MB. Then, each text was ciphered using the ciphers presented
in the previous chapter.

The sampled texts only contained characters belonging to the English alphabet. At this
point, it is important to recall the difference in terminology between characters and symbols,
previously established in Section 2.1. For ciphers using a Polybius square, the letter “i” was used
instead of the letter “j”.

Unless explicitly stated otherwise, each plaintext is 500 characters long. The alphabet
permutation, the Tabula Rectas, and the Polybius squares are random. For ciphers that require
a keyword, the keyword length ranges from 5 to 20 characters, and it is randomly generated. For
ciphers that have a period or a shift, it ranges from 5 to 20.

For the chequerboard cipher, only the last variant was used, and for the nihilist cipher, we
use the variant presented. For the Playfair cipher, we used “X” as the blank character.

3.1 Character frequency

There are many strategies in cryptoanalysis that rely on counting the characters of cryptograms.
Assuming that one knows the original language in which the plaintext was written, one can use
the character frequency of a cryptogram to infer which cipher may have been used.

An attacker does not know a priori how many symbols constitute each character, in order to
count the characters. Assuming that each character is composed of only one symbol is a good
start, especially since that is the usual for most ciphers.

3.1. Character frequency 29

3.1.1 Alphabet size of the cryptogram

The size of a cryptogram alphabet can be used to infer facts about its cipher. To denote the set
of characters in a cryptogram x, we use the notation α(x) throughout this work.

A cipher like the numbered key, whose codomain is the set of all digits, can easily be
distinguished from the others, even if the digits are disguised as letters, since each character is
composed of only one symbol, then no more than 10 different characters are used. Ciphers that
employ a Polybius square are limited to 25 different characters. Here, if the cryptogram has
more than 25 different characters, one can exclude these ciphers from having been used.

We devised an heuristic following this observation. We began by analysing how the ciphers
were distributed regarding the size of the cryptograms’ alphabet. For this, a set of 60000
cryptograms was used and the alphabet size of each cryptogram was calculated. In addition to
this set, we also computed a ten more to ensure that the results remained consistent. The graph
of the distribution for each cipher is shown in Figure 3.1. The graph is a box-and-whisker plot,
and an explanation for how these graphs work can be found in the Appendix A.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Alphabet size

Nihilist substitution

Numbered key

Chequerboard

Caesar

Nihilist transposition

Phillips

Playfair

Bifid

Input autokey

Vigenère

Output autokey

Trifid

C
ip

h
er

Figure 3.1: Box-and-whisker plots of the distribution of the cryptograms alphabet size of each
cipher.

To build an effective heuristic, each heuristic was separated into branches, each corresponding
to an interval of threshold values and a set of ciphers. The underlying idea is that if a value
is within a given interval, then the cryptogram used to produce the value was likely produced
with a cipher within the associated set of ciphers. Both the intervals and their associated sets of
ciphers were chosen taking into account the distribution of values for each cipher, presented in
Figure 3.1.

Table 3.1 shows the intervals and sets of ciphers chosen for this heuristic, along with a ratio
of how many values within each interval were produced with a cipher of the corresponding set.
Taking the case α(x) ≤ 9, for example, we see that approximately 99% of the alphabet size

30 Chapter 3. Heuristics

values within that interval were produced from nihilist substitution cryptograms. We can think
of the ratio as the accuracy of the chosen intervals and sets of ciphers.

Table 3.1: Performance measure of hα branches.

Ratio Interval Set of ciphers
0.987879 α(x) ≤ 9 {Nihilist substitution}
1.000000 α(x) = 10 {Numbered key, Nihilist substitution}
0.996214 α(x) = 20 {Chequerboard}
0.988422 21 ≤ α(x) < 24 {Caesar, Nihilist transposition}

0.990430 α(x) = 24
{

Nihilist transposition, Phillips
Caesar, Playfair

}

0.999280 α(x) = 25
{

Nihilist transposition, Phillips,
Caesar, Playfair, Bifid

}

0.965222 α(x) = 26
{

Vigenère, Input autokey,
Output autokey

}
1.000000 α(x) = 27 {Trifid}

In the previous table the value ranges of 1–7 and 11–19 were ignored, since there were very
few cryptograms within these ranges. Since the ratios are used in the heuristic we are about
to specify, we can also think of them as the performance measurement of each branch of the
heuristic. The heuristic follows:

hα : Γ∗ −→ [0, 1] × 2C

x −→

(0.98, {Nihilist substitution}), if α(x) ≤ 9
(1.00, {Numbered key, Nihilist substitution}), if α(x) = 10
(1.00, {Chequerboard}), if α(x) = 20
(1.00, {Caesar, Nihilist transposition}), if 21 ≤ α(x) < 24(

0.99,
{

Nihilist transposition, Phillips
Caesar, Playfair

})
, if α(x) = 24(

1.00,
{

Nihilist transposition, Phillips,
Caesar, Playfair, Bifid

})
, if α(x) = 25

(0.96, {Vigenere, Input autokey, Output autokey}), if α(x) = 26
(1.00, {Trifid}), if α(x) = 27
(0.00, ∅), otherwise.

It is important to note that this heuristic is only fit to be used in cryptograms produced with
texts of size approximately 500 or larger. This is because, for some ciphers, the least frequent
characters are so rare that, for smaller cryptograms, they may not show at all. It is easy to see
how this would affect an heuristic that relies on the size of the cryptograms’ alphabet.

As an example, Figure 3.2 shows the distributions of the size of the cryptograms’ alphabet
for a sample of 60000 cryptograms, each produced with a text of 100 characters. We can see that,

3.1. Character frequency 31

for almost all ciphers, the distribution range is larger, making the task of identifying ciphers
much harder one.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Alphabet size

Nihilist substitution

Numbered key

Chequerboard

Caesar

Nihilist transposition

Phillips

Playfair

Bifid

Input autokey

Vigenère

Output autokey

Trifid

C
ip

h
er

Figure 3.2: Distribution of alphabet size for cryptograms with only 100 characters.

3.1.2 Index of coincidence

The index of coincidence is the probability of drawing two equal letters by randomly selecting
two letters from a given text [MVOV97, p. 249]. This technique was first published by William
F. Friedman.

The index of coincidence, or IC, allows one to deduce the original language of a monoalphabetic
substitution cryptogram without deciphering it [Bau02, p. 302]. This is possible since every
language has a characteristic index of coincidence value, part of the language signature, that is
not hidden by a monoalphabetic substitution. The same applies to transposition ciphers, since
the characters are moved around, but their frequency remain the same. On the other hand,
polyalphabetic ciphers are known to hide the language signature more effectively, giving the text
a “random semblance” that hinders statistical analysis. Thus, the IC can be used to tell ciphers
apart, most notably monoalphabetic and transposition ciphers from polialphabetic ciphers.

The IC is calculated as follows. Let a represent a letter of the cryptogram alphabet and let
|x|a denote its absolute frequency in the cryptogram x. The probability of choosing character a

from ciphertext x is |x|a
|x| . The probability of picking it twice at different positions is |x|a(|x|a−1)

|x|(|x|−1) .
Thus, the index of coincidence is given by:

IC(x) =
∑

a∈α(x)

|x|a(|x|a − 1)
|x|(|x| − 1) ≈

∑
a∈α(x)

(|x|a
|x|

)2
. (3.3)

To observe the difference of IC between the ciphers we use in this thesis, a set of 60000
cryptograms was used, and each cryptogram IC was measured. With the calculated data, shown

32 Chapter 3. Heuristics

in Figure 3.3, it is possible to see the variation of the IC for each cipher. In addition to this
batch, the data was calculated for more batches to ensure that the results remained consistent.

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

Index of coincidence

Output autokey

Trifid

Input autokey

Vigenère

Bifid

Playfair

Phillips

Chequerboard

Nihilist transposition

Caesar

Nihilist substitution

Numbered key

C
ip

h
er

Figure 3.3: Index of coincidence distribution of each cipher.

Using the observed data, the following branches of the heuristic were made, shown in Table 3.2.
The table was computed similarly to Table 3.1. The reason why there is a 10% drop in performance

Table 3.2: Performance measure of hIC branches.

Ratio Interval Set of ciphers

0.999331 0 ≤ IC(x) < 0.055

Output autokey, Trifid, Input autokey,

Vigenère, Bifid, Playfair
Phillips, Chequerboard

0.899418 0.055 ≤ IC(x) < 0.11 {Chequerboard, Nihilist transposition, Caesar}
0.997904 0.11 ≤ IC(x) {Nihilist substitution, Numbered key}

for the second interval is that there are many outliers from the ciphers of the first set that end
up within the second interval. This is also the reason why we did not create more intervals.
Figure 3.4, shows the same data as Figure 3.3, but the outliers are included.

The chequerboard cipher is the only cipher featured in two different sets of the heuristic.
This is because its distribution is too close to 0.055, and by including it in only one of the sets,
the heuristic would miss a lot for that cipher cryptograms. This way, it is still possible to tell
the cipher apart from the last set of ciphers without making any compromise regarding the first
two sets.

The ratios presented were the best performance that we achieved by tuning the heuristic

3.1. Character frequency 33

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

Index of coincidence

Output autokey

Trifid

Input autokey

Vigenère

Bifid

Playfair

Phillips

Chequerboard

Nihilist transposition

Caesar

Nihilist substitution

Numbered key

C
ip

h
er

Figure 3.4: Index of coincidence distribution of each cipher, showing the outliers.

intervals and sets. The heuristic is as follows:

hIC : Γ∗ −→ [0, 1] × 2C

x 7−→

1.00,

Output autokey, Trifid,

Input autokey, Vigenère,
Bifid, Playfair,

Phillips, Chequerboard

 , if 0 ≤ IC(x) < 0.055

0.90,

Chequerboard,

Nihilist transposition,
Caesar

 , if 0.055 ≤ IC(x) < 0.11

(1.00, {Nihilist substitution, Numbered key}), if 0.11 ≤ IC(x).

3.1.3 Detecting transpositions with character frequency

The relative frequency of the characters is a characteristic of the language. If a cryptogram
character frequency is identical to that of the language, then the most likely cipher to have been
used is a nihilist transposition cipher, since this cipher does not hide the character frequency of
the language at all. Let fx(a) be the relative frequency of the character a in the cryptogram
x and fl(a) be the relative frequency of the character a in the language l. Let α(l) designate
the alphabet of the language l. The following function f calculates the mean of the squared
difference of the relative frequency of both language and cryptogram, in an attempt at measuring

34 Chapter 3. Heuristics

how much a cryptogram looks like a transposition.

f : Γ∗ −→ [0, 1]

x 7−→ 1 −
∑

a∈α(l)

|fx(a) − fl(a)|2

|α(l)|
.

In the function, the square is used to make it easier to tell apart the values of the nihilist-
transposition from the values of the other ciphers. Depending on the ciphers and languages
considered, one may need to increase this power, to make the difference of the function distribution
between ciphers more evident. We found the square to be sufficient in our case.

0.9970 0.9975 0.9980 0.9985 0.9990 0.9995 1.0000

f(x)

Caesar

Phillips

Playfair

Vigenère

Input autokey

Output autokey

Chequerboard

Trifid

Bifid

Nihilist transposition

Numbered key

Nihilist substitution

C
ip

h
er

Figure 3.5: Value distribution of function f for each cipher.

The function was applied to a batch of 60000 cryptograms, and the result distribution is
shown in figure 3.5. In addition to this, other batches were used to ensure that the data remained
consistent. Similarly to what was done for Table 3.1, Table 3.3 shows a possible separation of
the data into intervals and the effectiveness of this separation.

Table 3.3: Performance measurement of htrans branches.

Ratio Interval Set of ciphers

0.993372 0 ≤ f < 0.99955 C \
{

Nihilist transposition, Numbered key,
Nihilist substitution

}
0.991561 0.99955 ≤ f < 1 {Nihilist transposition}
1.000000 f = 1 {Numbered key, Nihilist substitution}

3.1. Character frequency 35

From this the heuristic follows:

htrans : Γ∗ −→ [0, 1] × 2C

x −→

0.99, C \

Nihilist transposition,

Numbered key,
Nihilist substitution

 , if 0 ≤ f < 0.99955

(0.99, {Nihilist transposition}), if 0.99955 ≤ f < 1

(1.00, {Numbered key, Nihilist substitution}), if f = 1.

Before settling with function f , we also attempted to use the following function f ′ instead:

f ′ : Γ∗ −→ [0, 1]

x 7−→ 1 −

∑

a∈α(l)

g(x, l, a)

|α(l)|

2

, where g(x, l, a) =

fx(a)
fl(a)

: fl(a) ≥ fx(a)

fl(a)
fx(a)

: fl(a) < fx(a).

This function calculates the mean of function g for all characters of the language. Function g

estimates how similar the frequency of a character of the cryptogram and the frequency of the
same character in the language are. The mean is squared so that the value of the function, when
applied to a transposition, is further apart from the value when applied to other ciphers. We
did not settle with this version since it did a poorer job at separating the nihilist-transposition
cryptograms from the others, which was our main goal. Figure 3.6 shows, for the same batch of
cryptograms, the distribution of the resulting values of f ′.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

f ′(x)

Caesar

Phillips

Playfair

Vigenère

Input autokey

Output autokey

Chequerboard

Trifid

Bifid

Nihilist transposition

Numbered key

Nihilist substitution

C
ip

h
er

Figure 3.6: Value distribution of the alternative function f ′ for each cipher.

36 Chapter 3. Heuristics

3.2 Discovering periodicity with the Index of Coincidence

Discovering if a cipher is periodic is essential towards identifying it. Some periodic ciphers
produce patterns on cryptograms that, once identified, can narrow down the group of ciphers
that may have produced them. One such cipher is the Vigenère cipher, on which we focus on
throughout this section.

Let x be a Vigenère cryptogram of size |x|. Let:

x = a0a1 . . . a|x|−1, where ai is the ith ciphered character.

A Vigenère with keyword of size ℓ, applies up to ℓ different Caesar cipher substitutions, each to a
different plaintext substring. The ith substring corresponds to the part of the text ciphered with
the ith keyword character, that is, all characters i modulo ℓ. One can visualise each substring as
the characters of a column, if the text was separated into ℓ columns, as follows.

x =

a0 a1 . . . aℓ−1

aℓ aℓ+1 . . . a2ℓ−1
...

...
...

a(k−1)ℓ a(k−1)ℓ+1 . . . akℓ−1

, k ∈ N

The cipher is periodic since two characters at distance ℓ are ciphered using the same character
of the key. Since the cipher is a polyalphabetic substitution cipher, its index of coincidence is
generally considerably lower than that of the original plaintext. However, if the cryptogram is
long enough, the index of coincidence of each substring should remain approximately the same
value of that of the original language. We denote the cryptogram restricted to the characters
in a given set of positions as x[set]. Let π be a given period. The mean of the IC values of all
columns is computed as follows:

ICcols : Γ∗ × N −→ Q+
0

(x, π) −→
π−1∑
j=0

IC (x[{i : i ≡ j (mod π) ∧ i ∈ {0, . . . , |x| − 1}}])
π

.

Assuming x is a large enough cryptogram, if one were to calculate the value of ICcols for
multiple periods, the maximum value should occur for ℓ or one of its multiples. This would occur
since, for the correct period (or one of its multiples), the ICs summed in ICcols are calculated
over substrings ciphered with only one key each. Furthermore, the maximum value would be
close to that of the plaintext IC. Thus, we have that:

max({ICcols(x, π) : π ∈ {πmin, . . . , πmax}}) ∈ {ICcols(x, ℓ × k) : k ∈ N}, (3.4)

where πmin and πmax are the minimum and maximum periods one considers, respectively. The
larger the value of π, the more substrings the ciphertext is divided into. Since the IC generally
increases with fewer characters, the larger the value of π, the less useful the resulting value of
ICcols(x, π).

3.2. Discovering periodicity with the Index of Coincidence 37

2 5 10 15 20 25 30 35 40

Period

0.00

0.02

0.04

0.06

0.08

In
d

ex
of

co
in

ci
d

en
ce

Figure 3.7: Outcome of the period analysis using IC for a Vigenère cryptogram of key size 7.

Periodicity can be seen if one applies ICcols to every possible period of a Vigenère cryptogram.
This is shown in figure 3.7, where a Vigenère cryptogram of size 150, produced with a key of size
7, was used. In the figure, the peaks for each period are actually considerably higher than the
IC value of the original plaintext. This is because the cryptogram is short, meaning that each
substring is also short, which, as previously explained, increases the value of the IC. In spite
of this, as long as the cryptogram is not too short, this analysis works to show the periodicity.
Although ICcols does not always produce as clear results as the one seen in Figure 3.7, one can
expect it to work for most cryptograms.

Periodicity can be observed with these results, but we still need a reliable and automatic way
to tell if these results are periodic to model a heuristic after this observation.

3.2.1 Automatically detect periodicity

We begin by finding the likelihood that a cryptogram has a given period π, using the values
produced by ICcols for every possible period, calculated as before. The following steps are taken.

1. A list of IC values, one for each period, is computed for cryptogram x. Let listIC(x)

designate the resulting list of values, we have that:

listIC(x) = [ICcols(x, π) : π ∈ {πmin, . . . , πmax}]

2. Given a list and an integer l, we separate the list into windows of size l using the following
function:

windows(list, l) =

{
list[i, . . . , i + l] : i ∈

{
a × l : a ∈

{
0, . . . ,

⌊ |list|
l

⌋}}}
.

38 Chapter 3. Heuristics

This function is used to compute windows(listIC(x), π). To make things easier, we consider
the period of size 1 to have an index of coincidence of 0. Should one want to consider a
minimum possible period, the values up to that period are assumed to be 0 as well.

3. The maximum value of each window is computed.

4. Let index be a function that, given a number and a window, returns all indices of the
window with that number, with the indices starting at 0. Moreover, let win(x, π) designate
the set of windows resultant of calculating windows(listIC(x), π).

The following function likely serves to calculate the likelihood that a given period was
used in a given cryptogram. In the function, function index is used to find if at least one
of the maximums is in the last position, that is, the period. In our work, we borrow the
notation from [GKP94, p. 24]: if a condition enclosed in brackets is true, then the result is
1, otherwise it is 0.

The likelihood that period π was used in cryptogram x, likely(x, π), is defined as:

likely : Γ∗ × N −→ Q+
0

x, π −→ 1
|win(x, π)|

×
∑

w∈win(x,π)
[π − 1 ∈ index(max(w), w)] . (3.5)

These steps can be repeated for every possible period to find the most likely period. We
define the likelihood that a given cryptogram is periodic as equal to the likelihood of the most
likely period. The size of the period is inversely proportional to the number of windows, which
results in two scenarios:

1. For shorter periods the windows are smaller, and as a consequence also in a larger quantity,
which in turn increases the chance of finding maximums at positions not multiple of the
period. To prevent this unbalance for shorter periods, a minimum period πmin is established.

2. For larger periods, there are fewer windows, meaning there is less scrutiny and less
granularity in the resulting likelihood. A larger period needs fewer maximums at the right
positions to look very likely. On the other hand, each maximum holds more weight, thus, a
missed maximum results in a larger loss in likelihood. To avoid this, we define a likelihood
threshold lt, and preference is given to shorter periods that meet this threshold.

Following this observation, function ϕlikely is designed to calculate the likelihood that a given
cryptogram shows periodicity when ICcols is applied:

ϕlikely : Γ∗ −→ [0, 1]

x −→
{

likely(x, min({π : likely(x, π) ≥ lt})), if |{π : likely(x, π) ≥ lt}| > 0
0, otherwise,

with π ∈
{

πmin, . . . ,
⌊

|listIC (x)|
2

⌋}
. Note that ϕlikely only aims to find the most likely period up

to
⌊

|list|
2

⌋
. This is because at least two windows are necessary to consider a given period. Thus,

3.2. Discovering periodicity with the Index of Coincidence 39

if one wants to consider πmax as the highest possible period, one needs to calculate listIC(x) for
π ∈ {πmin, . . . , 2 × πmax} at least.

Figure 3.8 shows the results of the application of function ϕlikely to a set of 12000 cryptograms.
Here, lt = 1

2 was used, and one can see that it was good enough to separate most ciphers into
two groups. A higher value of lt worsens the results, meaning that it becomes harder to tell
ciphers apart, and that is why we settled for a lower value.

0.0 0.2 0.4 0.6 0.8 1.0

φlikely(x)

Nihilist transposition

Caesar

Input autokey

Output autokey

Phillips

Numbered key

Chequerboard

Playfair

Bifid

Trifid

Nihilist substitution

Vigenère

C
ip

h
er

Figure 3.8: Distribution of function ϕlikely for each cipher.

For many ciphers there are outliers at 0, which is to be expected given that if the function
does not find any periodicity it returns 0. After observing the results, and since these remain
consistent between different sets of cryptograms, we defined intervals and corresponding sets of
ciphers, and measured the performance of identification. For this purpose, a threshold of 0.7 was
used, as seen in Table 3.4.

Table 3.4: Performance measurement of hICperiod branches.

Ratio Interval Set of ciphers

0.943286 ϕlikely(x) < 0.7

Nihilist transposition, Caesar,
Input autokey, Output autokey,

Phillips, Numbered key, Chequerboard,
Playfair, Bifid, Trifid, Nihilist

substitution, Vigenère

0.557166 0.7 ≤ ϕlikely(x)

{
Bifid, Trifid, Nihilist substitution

Vigenère

}

Note that both Bifid and Trifid are included in both intervals, since these ciphers are hard to
distinguish from the others with the chosen threshold. In this way, the ciphers are not ignored,

40 Chapter 3. Heuristics

but no information is given about them either. From this, the heuristic follows:

hICperiod : Γ∗ −→ [0, 1] × 2C

x −→

0.94,

Nihilist transposition,
Caesar,

Input autokey,
Output autokey,

Phillips,
Numbered key,
Chequerboard,

Playfair,
Bifid,
Trifid,

Vigenère

, if ϕlikely(x) < 0.7

(
0.56,

{
Vigenère, Bifid, Trifid,
Nihilist substitution

})
, otherwise.

For the same batch used to specify the heuristic, for each computed ϕlikely, we also examined
the most likely periods. We assume that, if ϕlikely(x) = 0, then the cipher is not periodic.
Table 3.5 shows the percentage, for each cipher, of correctly guessed periods. The number of
correctly guessed non-periodic ciphers is also counted. In the table, one sees that there is a
correlation between the highest likelihoods and the number of correctly guessed periods. We can
also see that this strategy, by itself, is not very good at guessing which cryptograms do not have
any period. Looking at the table, we can see that with this strategy one can guess the period of

Table 3.5: Fraction of correctly guessed periods using the underlying strategy of ϕlikely.

Cipher Percentage
Vigenère 0.444

Nihilist substitution 0.441
Trifid 0.413
Bifid 0.412

Phillips 0.226
Input autokey 0.152

Output autokey 0.149
Nihilist transposition 0.102

Caesar 0.051
Checkerboard 0.038

Numbered key 0.033
Playfair 0.025

3.3. Phillips signature 41

both Trifid and Bifid ciphers almost as well as for the Vigenère. This was a surprising result for
us, and it is because the strategy worked so well for these two ciphers that we were unable to
put them in just one branch of the heuristic. Both ciphers hide the language signature much
more effectively than the Vigenère cipher, and, although they do not have a key changing system
like the autokey ciphers, we did not expect to find any relation between the index of coincidence
and the period length for them.

3.3 Phillips signature

The Phillips cipher is a periodic cipher, and although it is somewhat similar to the Vigenère
cipher, the previous approach is not effective against Phillips cryptograms. In this section,
we explain the reason for this, and how a similar approach (in the sense that we look at the
periodicity in a similar manner) can be used to tackle this specific cipher.

3.3.1 Finding the period

Since for the Vigenère cipher the IC approach to finding periodicity works as expected, we
start by drawing a comparison between the two ciphers. Both ciphers are made up of multiple
monoalphabetic substitutions, each with a different key. In the Vigenère cipher, although each
character has its own monoalphabetic substitution, this substitution is repeated every period
length. On the other hand, in the Phillips cipher, all characters within a period length block are
ciphered using the same monoalphabetic substitution. If a Vigenère cipher has a keyword of ℓ

characters, then, at most, there are ℓ different monoalphabetic substitutions occurring in the
text when the cipher is applied. On the other hand, in the Phillips cipher, there are at most 7
different monoalphabetic substitutions occurring in the text when the cipher is applied. This
is because, even though there are eight keys in rotation, two of these are equivalent, as seen in
Table 2.2.

Consider cj to be the monoalphabetic substitution with the jth key, ai to be the ciphertext
character at position i, and a′

i the character at the same position of the original plaintext. Let x

be a cryptogram of length kℓ, k ∈ N. To calculate ICcols(x, π) for a given period π, the text is
separated into substrings. Figure 3.9 shows the separation into columns for the Vigenère and
Phillips ciphers, respectively.

The underlying idea of ICcols is that, for the correct period, only one key is used for each
column. For the Phillips cipher, this does not happen at π = ℓ, but at π = 8ℓ. This may not be
very useful, given that 8ℓ can be a large number and the cryptogram may not be large enough to
see this. Another IC peak that can occur is at π = 4ℓ. In this case, although most substrings
are ciphered with more than one key, the first ℓ substrings are ciphered with only one, since the
first and fifth squares are equivalent keys. Both behaviours are shown in Figure 3.10, where the
function ICcols is applied to a cryptogram of size 1000, produced with period 5. Separating the

42 Chapter 3. Heuristics

c0(a′
0) c1(a′

1) . . . cℓ−1(a
′
ℓ−1)

c0(a′
ℓ) c1(a′

ℓ+1) . . . cℓ−1(a
′
2ℓ−1)

...
...

...
c0(a′

(k−1)ℓ) c1(a′
(k−1)ℓ+1) . . . cℓ(a

′
kℓ−1)

c(0 mod 8)(a
′
0) c(0 mod 8)(a

′
1) . . . c(0 mod 8)(a

′
ℓ−1)

c(1 mod 8)(a
′
ℓ) c(1 mod 8)(a

′
ℓ+1) . . . c(1 mod 8)(a

′
2ℓ−1)

...
...

...
c(ℓ−1 mod 8)(a

′
(k−1)ℓ) c(ℓ−1 mod 8)(a

′
(k−1)ℓ+1) . . . c(ℓ−1 mod 8)(a

′
kℓ−1)

Figure 3.9: Separation into columns for the Vigenère and for the Phillips ciphers, for π = ℓ.

2 5 10 15 20 25 30 35 40 45 50

Period

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

I
C
co
ls

(x
,p

)

Figure 3.10: Resulting values of ICcols applied to a Phillips cryptogram of period 5.

text into 8ℓ or 4ℓ columns leaves few characters per column. Therefore, the calculated IC of
each substring is often too inaccurate to draw conclusions. Thus, for shorter cryptograms this
observation is of little value, and a different, more precise approach is required to find the correct
period.

3.3.2 A better approach to find the period

Separating the text into ℓ substrings does not separate characters ciphered with different keys in
the Phillips cipher. However, it is possible to see in Figure 3.9 that for the ℓ columns, each row
only has one key.

If one concatenates the ciphertext characters of each kth row modulo eight, there are eight
strings of text, each the result of a monoalphabetic substitution of a different key. Similarly to
what was done before with ICcols, a method to find the period in a cryptogram using the rows

3.3. Phillips signature 43

instead follows:

ICpr : Γ∗ × N −→ Q+
0

(x, π) −→
∑

k ∈ {0, ..., 7}

IC
(
x
[
i :

⌊
i
π

⌋
mod 8 = k ∧ i ∈ {0, . . . , |x|}

])
π

,

where, pr stands for “phillips rows”. The fraction numerator in the expression is the measurement
of the Index of coincidence of row k.

Figure 3.11 shows this function applied to the same cryptogram used in Figure 3.10. Although
this strategy performs better than the previous one, it is not reliable enough for shorter
cryptograms, similarly to ICcols. Another problem with the function ICpr is that the IC

2 5 10 15 20 25 30 35 40 45 50

Period

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

I
C
p
r
(x
,p

)

Figure 3.11: Application of ICpr to a Phillips cryptogram of period 5.

peaks on multiples of the period are not as noticeable as the ones produced by ICcols, meaning
that using function likely, from the previous section, is unfeasible in this context. Even though
this is not a viable strategy to find the likelihood of periodicity, it is a viable strategy to find
the correct period, since the peak at the period is usually very noticeable. An alternative way
to calculate the likelihood of a given period for this cipher follows. We borrow the notation
from [GKP94, p. 24] once again.

likelyphillips : Γ∗ × N −→
{

0, 1
8 , 2

8 , 3
8 , 4

8 , 5
8 , 6

8 , 7
8 , 1

}

(x, π) −→

0, if IC(x) ≥ 0.065

∑
k ∈ {0, ..., π − 1}

[condition] × 1
8, otherwise,

where, condition =
(
IC

(
x
[{

i :
⌊

i
π

⌋
mod 8 = k ∧ i ∈ {0, . . . , |x|}

}])
≥ 0.065

)
.

Function likelyphillips separates the text into 8 strings of text, each ciphered with one of the 8
keys, and then counts how many of these had an IC inferior to that of the language. Given that

44 Chapter 3. Heuristics

the Phillips cipher is a polyalphabetic cipher, the function returns 0 if the IC, of the cryptogram
as a whole, has an IC equal or greater to that of the language. The highest likelihood among all
possible periods is used as the likelihood that the cryptogram was produced by a Phillips cipher.
From this, we specify function f as follows:

f : Γ∗ −→
{

0, 1
8 , 2

8 , 3
8 , 4

8 , 5
8 , 6

8 , 7
8 , 1

}
x −→ max ({likelyphillips(x, π) : π ∈ {πmin, . . . , πmax}}) ,

where πmin and πmax are the minimum and maximum periods one wants to consider, respectively.
Figure 3.12 shows the distribution of the results of f for each cipher, calculated over a batch of
60000 cryptograms. The figure shows there is a gap between the Phillips cipher and the other
ciphers. This analysis was done over multiple batches and remained consistent.

0.0 0.2 0.4 0.6 0.8 1.0

f(x)

Numbered key

Nihilist substitution

Caesar

Output autokey

Nihilist transposition

Input autokey

Vigenère

Trifid

Bifid

Playfair

Chequerboard

Phillips

C
ip

h
er

Figure 3.12: Distribution of results of function f .

Table 3.6 shows, similarly to what was done for the other heuristics, the branches we use in
the following heuristic and the performance that is expected from each. These results remained

Table 3.6: Performance measurement of hphillips branches.

Ratio Interval Set of ciphers

0.931587 f(x) < 0.12

Numbered key, Nihilist substitution, Caesar,

Output autokey, Nihilist transposition,
Input autokey, Vigenère, Trifid

0.599270 0.12 ≤ f(x) < 0.6 {Bifid, Playfair, Chequerboard}
0.893824 f(x) ≤ 1 {Phillips}

consistent between multiple batches. Thus, instead of having a heuristic that only tells apart the
Phillips cipher from the rest, we can create more branches to take advantage of the fact that

3.4. Non-connected digraphs 45

there are other ciphers that can also be told apart. The heuristic follows:

hphillips : Γ∗ −→ [0, 1] × 2C

x −→

0.93,

Numbered key, Nihilist

substitution, Caesar, Output
autokey, Nihilist transposition,
Input autokey, Vigenère, Trifid

 , if f(x) < 0.12

(
0.60,

{
Bifid, Playfair,
Chequerboard

})
, if 0.12 ≤ f(x) < 0.6

(0.89, {Phillips}) , if f(x) ≤ 1.

3.4 Non-connected digraphs

In this section, we present the approach originally described in [MR07], to find the period. Since
it was originally presented as a way to decrypt bifid cryptograms, we focus on this cipher before
expanding to other ciphers. You may recall from Section 2.7 that the bifid ciphers characters by
block, using the following scheme, shown in Table 3.7.

plaintext character σ0 σ1 σ2 . . . σℓ−3 σℓ−2 σℓ−1

first coordinate x0 x1 x2 . . . xℓ−3 xℓ−2 xℓ−1

second coordinate y0 y1 y2 . . . yℓ−3 yℓ−2 yℓ−1

↓

ciphertext character τ0 τ1 . . . τ ℓ−3
2

τ ℓ−1
2

τ ℓ+1
2

. . . τℓ−1

first coordinate x0 x2 . . . xℓ−3 xℓ−1 y1 . . . yℓ−2

second coordinate x1 x3 . . . xℓ−2 y0 y2 . . . yℓ−1

Table 3.7: bifid ciphering scheme for the odd period on a block of size ℓ.

The block size ℓ of a bifid cryptogram can be found by computing, for different distances
d, the frequency at which pairs of equal characters occur at a distance d. The name given to
two equal characters separated by a distance d is a non-connected digraph. The plot of this as a
function of d should result in a graph of approximately sinusoidal shape, with peaks at d = ℓ × k

for k ∈ N, as explained next. This occurs for both even and odd periods and what follows is an
explanation for the odd case.

46 Chapter 3. Heuristics

3.4.1 Enumerating all possible cases for non-connected digraphs

To facilitate the explanation, we start by counting all the possible cases of non-connected digraph
occurrences, depending on the position of the two characters of the digraph within the ciphered
block. Let B and A denote the segments Before and After the centre of the block, and C the
centre itself. We differentiate between these segments since there are noticeable differences
between them regarding the cryptogram:

• The segment Before is made up of only the first coordinates of the block characters;

• The segment Centre is made up of the last first coordinate and the first second coordinates
of the block characters;

• The segment After is made up of only the second coordinates of the block characters.

Taking into account that we are only considering odd periods, the B section consists of the
characters from index 0 to ℓ−1

2 , the Centre character is at ℓ−1
2 and the A segment consists of the

remainder characters up to ℓ. We refer to segments A and B as the halves.

Let j be a chosen index. We evaluate the probability that the character in position j and the
character in position j + d are the same, where d is the distance between these two characters.
We separate this analysis into four different cases:

MM — When the two chosen positions are both at the centre of the blocks;

HM — When one position is in one of the halves and the other at the centre;

HH — When the two chosen positions are in the same half;

HH’ — When both indexes are in different halves.

For each, we first layout the constraints that both j and j + d have to fulfil so that we
may count all possible positions for both characters. We then calculate, given a distance d, the
probability of each case, P (XY)

d , where XY ∈ {MM , HM , HH, HH ′}. This probability depends
only on d modulo ℓ. We do not consider the case d = 0 since the distance is always greater than
zero. On the other hand, we consider the case d = ℓ when calculating the probability, to cover
the case where the two characters have the same position within the blocks. There are a total of
ℓ cases: j ∈ {0, 1, . . . , ℓ − 1}, for d ∈ {d ∈ 1, 2, . . . , ℓ}.

MM We begin with the case where the two chosen positions are at the centre of the blocks.

In this case, j is at the centre and j + d is exactly at the block size distance. In other words,
d = ℓ with j at C. Since:

j =
ℓ − 1

2 ∧ j + d = ℓ +
ℓ − 1

2 =⇒ j =
ℓ − 1

2 ,

3.4. Non-connected digraphs 47

B C A B C A

j d

Figure 3.13: Both j and j + d are both at the centre of different blocks.

the probability that two characters are the same at a distance d for the MM scenario is:

P
(MM)
d =

{
0 if d < ℓ
1
ℓ if d = ℓ.

HM In this case, one of the characters is at the centre and the other in one of the other
segments. Figure 3.14 shows four possible scenarios (BC, CA, CB and AC), which can be reduced
to two cases: the case where the first letter is in one of the halves and the second at the centre
and the case where the first letter is at the centre, and the second in one of the halves. Thus, we

B C A

j d

B C A

j d

B C A B C A

j d

B C A B C A

j d

Figure 3.14: One of the positions is at the centre and the other is in one of the halves.

have the following intervals for j:(
ℓ − 1

2 < j < ℓ +
ℓ − 1

2 ∧ j + d = ℓ +
ℓ − 1

2

)
∨
(

j =
ℓ − 1

2 ∧ ℓ − 1
2 < j + d < ℓ +

ℓ − 1
2

)
,

which, since the first part of the second parcel is within the first part of the first parcel, and
since the second part of the first parcel is within the second part of the second parcel, can be
simplified to:

j + d = ℓ +
ℓ − 1

2 ∨ j =
ℓ − 1

2
Thus, we have that there are only two possible values for j. From this, the probability that one
character is in one of the halves and the other is in the middle, at a distance d, follows:

P
(HM)
d =

{ 2
ℓ if d < ℓ

0 if d = ℓ.

48 Chapter 3. Heuristics

HH In this case, both characters are in the same segment. As shown in Figure 3.15, there are
two possible cases. We may have two characters in segments within the same block or in two
separate blocks, as long as the distance between both characters is less than ℓ. From this we

B C A B C A

j d j d

B C A B C A

j d

j d

Figure 3.15: Both characters of the digraph are in the same segment.

deduce the following.

• If d ≤ ℓ−1
2 , we must have that:(

0 ≤ j <
ℓ − 1

2 ∧ j + d <
ℓ − 1

2

)
∨
(

ℓ − 1
2 < j < ℓ ∧ j + d < ℓ

)
.

By picking the elements, from each parcel, that most constrain j, one can reduce this to
the following: (

0 ≤ j <
ℓ − 1

2 − d

)
∨
(

ℓ − 1
2 < j < ℓ − d

)
,

Thus, the number of j’s that satisfy the above conditions is:(
ℓ − 1

2 − d

)
+

(
l − d − ℓ − 1

2 − 1
)
= ℓ − 2d − 1.

• On the other hand, if d > ℓ−1
2 , we have the following:(

0 ≤ j <
ℓ − 1

2 ∧ j + d < ℓ +
ℓ − 1

2

)
∨
(

ℓ − 1
2 < j < ℓ ∧ ℓ +

ℓ − 1
2 < d + j < 2ℓ

)
.

By picking the elements from each parcel that most constrain j, one can simplified this to:(
ℓ − d ≤ j <

ℓ − 3
2

)
∨
(

ℓ +
ℓ − 1

2 − d < j < ℓ

)
.

From this, one can calculate the cases for which j satisfies the conditions:(
d − ℓ − 1

2 − 1
)
+

(
d − ℓ − 1

2 − 1
)
= −ℓ + 2d − 1.

From this analysis it follows that:

P (HH)
d =

{
l−2d−1

ℓ if d ≤ ℓ−1
2

−l+2d−1
ℓ if ℓ−1

2 < d < ℓ
=

{
1 − 2d

ℓ − 1
ℓ if d ≤ ℓ−1

2
−1 + 2d

ℓ − 1
ℓ if ℓ−1

2 < d < ℓ,

which we can be summarised as:

P (HH)
d =

∣∣∣∣1 − 2d

ℓ

∣∣∣∣− 1
ℓ

.

3.4. Non-connected digraphs 49

HH’ This last case is the one where the two characters are in different segments of the block.
Either the first character is at B and the second at A, or the first is at A and the second at B.
Figure 3.16 shows the two possible scenarios.

B C A B C A

j d

B C A B C A

j d

Figure 3.16: The two different scenarios for characters in both halves.

For this case, we have the following:(
0 ≤ j <

ℓ − 1
2 ∧ ℓ − 1

2 < j + d < ℓ

)
∨
(

ℓ − 1
2 < j < ℓ ∧ ℓ ≤ j + d < ℓ +

ℓ − 1
2

)
.

As was done previously, one can simplify the expression to the most restrictive constraints on j.
In order to find the number of values of j that satisfy these conditions, we separate this into two
cases, d ≤ ℓ−1

2 and d > ℓ−1
2 , yielding:

(
ℓ−1

2 − d < j < ℓ−1
2

)
∨ (ℓ − d − 1 < j < ℓ) if d ≤ ℓ−1

2

(−1 < j < ℓ − d) ∨
(

ℓ−1
2 < j < ℓ + ℓ−1

2 − d
)

if d > ℓ−1
2 .

Therefore, the number of different j’s is:
(

ℓ−1
2 − ℓ−1

2 + d − 1
)
+ (ℓ − ℓ + d + 1 − 1) if d ≤ ℓ−1

2

(ℓ − d + 1 − 1) +
(
ℓ + ℓ−1

2 − d − ℓ−1
2 − 1

)
if d > ℓ−1

2

=

{
2d − 1 if d ≤ ℓ−1

2
2ℓ − 2d − 1 if d > ℓ−1

2 .

The probability of finding the same character in two different segments can now be determined
simply by dividing by the number of all possible positions by ℓ:

P (HH′)
d =

−1

ℓ +
2d
ℓ if d ≤ ℓ−1

2
−1

ℓ − 2d
ℓ if ℓ−1

2 < d < ℓ

0 if d = ℓ

=

 1 − 1
ℓ −

∣∣∣1 − 2d
ℓ

∣∣∣ if d < ℓ

0 if d = ℓ.

3.4.2 Probability of character occurrence within a ciphering block

To facilitate the following explanation, we introduce the following quantities. For α ∈ Σ let:

row(α) denote the row of the key table to which α belongs to;

col(α) denote the column of the key table to which α belongs to;

50 Chapter 3. Heuristics

p(α) the probability of occurrence of α in the text;

p(αβ) the probability of occurrence of the digraph αβ in the text;

αt the transposed of α, that is, the key-table entry that satisfies the condition:

row(αt) = col(α) ∧ col(αt) = row(α).

We also use the following notation:

• ρα =
∑

β∈row(α) p(β), the probability of a character in the same row (in the key-table) of
α occurring in the text.

• κα =
∑

β∈col(α) p(β), the probability of a character in the same column as α (in the
key-table) occurring in the text.

• Bα =
∑

β∈row(α),γ∈row(αt) p(βγ), the probability of digraph βγ occurring in the plaintext
in such a way that, when ciphered, a character becomes α in the first part of the block
(before the centre).

• Cα = ρακα, the probability of a digraph occurring in the plaintext in such a way that,
when ciphered, a character becomes α at the middle of the block.

• Aα =
∑

β∈col(α),γ∈col(αt) p(βγ), the probability of a digraph βγ occurring in such a way
that, when ciphered, a character becomes α at the last part of the block (after the centre).

Recalling from Table 3.7 the bifid ciphering scheme for odd periods, using the notation
introduced, we can determine the probability that the ith character of the ciphertext is equal
to a particular character α ∈ Σ. This probability depends on where character α occurs in
the ciphertext block. As shown in Table 3.8, we have three cases to take into account. Let
0 ≤ i, j < ℓ−1

2 , we have:

• the case where τi = α, that is, the case where the character occurs before the centre;

• the case where τ ℓ−1
2

= α, that is, the case where the character occurs at the centre;

• the case where τ ℓ−1
2 +j = α, that is, the case where the character occurs after the centre.

Table 3.8: Block division into 3 parts.

B C A︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
. . . τi . . . τ ℓ−1

2
. . . τ ℓ+1

2 +j . . .

. . . x2i . . . xℓ−1 . . . y2j−1 . . .

. . . x2i+1 . . . y0 . . . y2j . . .

3.4. Non-connected digraphs 51

For the first case, we have the following:

P (τi = α) = P(σ2i−1 ∈ row(α) ∧ σ2i ∈ row(αt)) = Bα. (3.6)

For the centre case, we have the following:

P
(
τ ℓ−1

2
= α

)
= P(σℓ ∈ row(α) ∧ σ1 ∈ col(α)) ≃ ρακα = Cα. (3.7)

The probability that both a character of the same row of α and a character of the same
column of α occur in the text in the two extremes of the block can be influenced by the language
itself, and thus the two events may not be independent. This is why ≃ is used instead of =
in 3.7.

For the last case, we have:

P
(
τ ℓ−1

2 +j = α
)
= P(σ2j ∈ col(αt) ∧ σ2j+1 ∈ col(α)) = Aα. (3.8)

3.4.3 Probability of homogeneous non-connected digraph occurrences

One can now calculate the probability that a non-connected digraph occurs in the ciphertext.
Let Pd denote the probability that two characters at a distance d are the same. We can express
this with the quantities defined previously, Bα, Cα, and Aα, as follows:

Pd =
∑

α

(
B2

α + A2
α

)
· P (HH)

d +
∑

α

C2
α · P (MM)

d

+
∑

α

Cα (Bα + Aα) · P (HM)
d +

∑
α

BαAα · P (HH′)
d . (3.9)

Note that the first parcel is the summation of the case where the non-connected digraph occurs in
the first halve,

∑
α B2

α · P (HH)
d , with the case where it occurs in the second halve,

∑
α A2

α · P (HH)
d .

We denote the coefficients of P (HH)
d , P (MM)

d , P (HM)
d , and P (HH′)

d by r, s, u, and v, respectively.

Recalling the probabilities from 3.4.1, for 1 ≤ d ≤ ℓ, we have:

P (HH)
d =

∣∣∣1 − 2d
ℓ

∣∣∣− 1
ℓ ,

P (MM)
d =

{
0 if d < ℓ
1
ℓ if d = ℓ,

P (HM)
d =

{ 2
ℓ if d < ℓ

0 if d = ℓ,

P (HH′)
d =

 1 − 1
ℓ −

∣∣∣1 − 2d
ℓ

∣∣∣ if d < ℓ

0 if d = ℓ,

which we can plug in the formula for Pd from 3.9, to obtain:

Pd =

r + 1

ℓ (2u − v − r) − 2d
ℓ (r − v) if d ≤ ℓ−1

2
2v − r + 1

ℓ (2u − v − r) + 2d
ℓ (r − v) if ℓ−1

2 < d < ℓ

r + 1
ℓ (s − r) if d = ℓ.

52 Chapter 3. Heuristics

Notice that:

• r − v =
∑

α

(
B2

α + A2
α − BαAα

)
=
∑

α

((
Bα − 1

2Aα

)2
+

3
4A2

α

)
≥ 0;

• Pi = Pℓ−i for i = 1, 2, . . . , ℓ−1
2 .

These two observations help one to better understand how Pd behaves. Thus, one concludes that:

P1 ≥ P2 ≥ · · · ≥ P ℓ−1
2

= P ℓ+1
2

≤ · · · ≤ Pℓ−2 ≤ Pℓ−1 = P1. (3.10)

P1 Pℓ−1

P ℓ−1
2

P ℓ+1
2

Pℓ

d

Pd

Figure 3.17: Expected behaviour of function Pd.

On the other hand,

ℓ(Pℓ − P1) = (ℓr + (s − r)) − (ℓr + (2u − v − r) − 2(r − v))

= 2r + s − 2u − v

=
∑

α

(2B2
α + 2A2

α + C2
α − 2CαBα − 2CαAα − BαAα).

This means that ℓ(Pℓ − P1) is of the form 2x2 + 2y2 + z2 − 2zx − 2zy − yx, which is not
positive definite, that is, a function that is always positive or equal to zero, as shown in [MR07,
p. 6]. However, for Pℓ − P2, we have the following.

ℓ(Pℓ − P2) = (ℓr + (s − r)) − (ℓr + (2u − v − r) − 4(r − v))

= 4r + s − 2u + 5v

=
∑

α

(
4B2

α + 4A2
α + C2

α − 2CαBα − 2CαAα + 5BαAα

)
.

Let f(x, y, z) = 4x2 + 4y2 + z2 − 2zx − 2zy + 5xy. We can verify that it is positive definite by
finding the critical points of f , using the gradient of f , and then checking the concavity at those
points, as follows.

∇f = 0 ⇐⇒

8x + 5y − 2z

5x + 8y − 2z

−2x − 2y + 2z

 =

0
0
0

 ⇐⇒

y = 0
x = 0
z = 0

=⇒ (0, 0, 0) is the only critical point.

3.4. Non-connected digraphs 53

By calculating the reduced row echelon form of the Hessian matrix, using the Gaussian
elimination technique, we can understand the function behaviour at the point (0, 0, 0).

Hessf(x, y, z) =

∂2f
∂x2

∂2f
∂y∂x

∂2f
∂z∂x

∂2f
∂x∂y

∂2f
∂y2

∂2f
∂z∂y

∂2f
∂x∂z

∂2f
∂y∂z

∂2f
∂z2

 =

8 5 −2
5 8 −2

−2 −2 2

The matrix above can be reduced to the identity matrix using Gaussian elimination, whose
function behaviour is known: the function is positive definite. Thus, the only critical point,
(0, 0, 0), is the minimum, and is also positive definite. A similar approach to ℓ(Pℓ − P1) does not
yield the same result.

This proves that f : d 7−→ Pd, evaluated over a bifid cryptogram of period ℓ, is approximately
a periodic function with period ℓ. For more details see [MR07].

3.4.4 Distribution of the standard deviation for non-connected digraphs

The strategy presented in the previous section does not always yield clear results. This subsection
covers a possible strategy to make the results clearer, to find the correct period, originally
presented in [MR07]. Figure 3.18 shows the function applied to two different bifid cryptograms,
both of size 500. While one can see that in the first cryptogram there is a period of 9, the second
cryptogram does not look periodic at all.

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

Figure 3.18: Results of applying f to two different bifid cryptograms with period 9.

Furthermore, for some cryptograms, the graph of the distribution function f : d 7−→ Pd is
especially flat, making the previous method useless. A better alternative is to take the function
f ′ : d 7−→ stdd, where stdd is the standard deviation of the frequencies of the non-connected
digraphs of distance d. The graph will usually reveal half of the period as its maximum value.
In Figure 3.19 we can see, for a bifid cryptogram of size 500, produced with period 12, the
non-connected digraphs approach and the standard deviation approach, respectively.

The flattening of the distribution comes from the fact that pairs of characters not at distances
equal to half the period in the ciphertext (around half the period for odd periods) come from

54 Chapter 3. Heuristics

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

Figure 3.19: Usage of the standard deviation on a cryptogram that defeats the non-connected
digraphs method.

non-contiguous characters in the plaintext, as shown in Figure 3.20. However, for those distances,
the statistical peculiarities of the digraphs of the original language cause a slight increase of the
standard deviation.

x0 y0 x1 y1 x2 y2 x3 y3

x4 y4 x5 y5 x6 y6 x7 y7

x0 y0 x1 y1 x2 y2 x3

y3 x4 y4 x5 y5 x6 y6

x0 y0 x1 y1 x2 y2 x3

y3 x4 y4 x5 y5 x6 y6

Figure 3.20: Interference of coordinates for even (8 characters) and odd (7 characters) periods.

For odd periods, half-period would be a noninteger, and this has consequences on the
distribution of the standard-deviation. Instead of a singular maximum, as seen in Figure 3.19,
there are two consecutive peaks around the half-period. This is shown in Figure 3.21.

0 5 10 15 20 25 30 35 40 45 50

Figure 3.21: Standard deviation test for a cryptogram of period 7.

In [MR07] it is also shown how to determine the cipher key, but this is already beyond the
scope of this work.

3.4. Non-connected digraphs 55

3.4.5 Building an heuristic for the non-connected digraphs strategy

With what we have covered in this section, it is possible for one to build an heuristic that uses
the non-connected digraphs strategy to tell some ciphers apart. Consider the following function
ncd, which counts the frequency of non-connected digraphs for a given distance d in a given
cryptogram x.

ncd : Γ∗ × N −→ N

(x, d) −→
∑

i ∈ {0, ..., |x|−d}
[xi = xi+d].

Using function ncd one can calculate a list listncd, a list of frequencies for each possible period.
Let πmin and πmax denote, respectively, the minimum and maximum period we are considering,
then

listncd(x) = [ncd(x, π) : π ∈ {πmin, . . . , πmax}].

Having this list, one can check for periodicity, employing the same strategy as the one presented
in 3.2.1. Thus, one can use function ϕlikely again, using listncd instead of listIC .

Figure 3.22 shows the results of the application of function ϕlikely to a set of 60000 cryptograms.
Here, the likelihood threshold, lt, is equal to 6

10 . This value was picked for the threshold in an
attempt to separate the ciphers into different groups. Recall that the dots to the right of the
image are outliers, as explained in Appendix A.

0.0 0.2 0.4 0.6 0.8 1.0

φlikely(x)

Nihilist transposition

Phillips

Input autokey

Caesar

Output autokey

Playfair

Bifid

Trifid

Numbered key

Chequerboard

Nihilist substitution

Vigenère

C
ip

h
er

Figure 3.22: Likelihood distribution for non-connected digraphs.

The strategy does not seem very effective against bifid cryptograms, since many of these do
not show signs of periodicity when this strategy is used. However, the strategy is still useful for
other ciphers. Using the data shown in Figure 3.22, we came up with the following separation
of ciphers into branches, shown in Table 3.9, similarly to what was already done for the other
heuristics.

56 Chapter 3. Heuristics

Table 3.9: Performance measurement of hncd branches.

Percentage Interval Set of ciphers

0.598838 ϕlikely(x) = 0

Nihilist transposition, Phillips,
Input autokey, Output autokey,

Caesar, Playfair

0.727378 ϕlikely(x) ̸= 0

bifid, Trifid, Numbered key,

Chequerboard, Nihilist substitution,
Vigenère

From this, the heuristic follows:

hncd : Γ∗ −→ [0, 1] × 2C

x −→

0.60,

Nihilist transposition, Phillips,
Input autokey, Output autokey,

Caesar, Playfair

 , if ϕlikely(x) = 0

0.73,

bifid, Trifid, Numbered key,

Chequerboard, Nihilist substitution,
Vigenère

 , otherwise.

Similarly to what was done in 3.2.1, we examined the most likely periods to see how well the
strategy performs regarding finding the correct period. Table 3.10 shows the result for each cipher.
Even though the strategy does not perform well in finding the period of more complex ciphers, it
can be useful in finding some non-periodic ciphers, most notably the nihilist-transposition.

Table 3.10: Fraction of correctly guessed periods using the underlying strategy of ϕlikely.

Cipher Percentage
Nihilist transposition 0.9694

Caesar 0.7978
Playfair 0.7670

Vigenère 0.6770
Numbered key 0.6462
Chequerboard 0.6192

Nihilist substitution 0.4060
Trifid 0.1202
bifid 0.1046

Input autokey 0.0628
Output autokey 0.0440

Phillips 0.0120

Chapter 4

Building an automated classifier for
classical ciphers

The first step towards deciphering a cryptogram is to identify the cipher that was used to encrypt
it. Having identified the cipher, the attacker can attempt to crack the cryptogram, exploiting
the properties of the cipher. However, identifying the cipher used to produce a given cryptogram
is not an easy task, particularly for sophisticated ciphers whose properties are harder to spot on
a cryptogram.

In this chapter, we describe a program that automatically attempts to identify which cipher,
from a set of ciphers, was used to produce a given cryptogram. We call it the classifier program.
This is done using heuristics that indicate which set of ciphers may have been used to produce
the cryptogram. By combining all the heuristics’ guesses, it is possible to get an idea of what
ciphers were most likely used to produce the cryptogram. However, heuristics can differ in
both consistency, precision and splitting-ability. These are, respectively, how prone to fail, how
accurate and how capable of telling ciphers apart, each heuristic is. Since they differ in these
three attributes, it is necessary to attribute a weight to each heuristic accordingly. These weights
have to be fine-tuned beforehand so that the classifier can work properly, that is, have a good
chance at identifying ciphers.

Fine-tuning the heuristics’ weights is a difficult task. Because of this, we wrote another
program to help us find a good tuple of weights to be used by the classifier. This fine-tuning
program uses a simulated annealing strategy to find a good weight tuple. It rates the weight
tuples based on how good the classifier performs using each weight tuple. To measure the
performance, the program starts by generating a list of cryptograms. Then it counts the number
of correctly guessed ciphers of the cryptograms. As the program gets closer to finding a good
tuple of weights, more cryptograms are added so that the weight tuple is as good as possible.

For the program implementation, the set of ciphers used was exactly the one introduced in
Chapter 2, and the set of heuristics are the ones presented in Chapter 3.

57

58 Chapter 4. Building an automated classifier for classical ciphers

We start by presenting an overview of the classifier, followed by an explanation of how it
works. After this, we explain the other program, used to fine-tune the classifier.

4.1 Overview

We divide the classifier program into four different phases, as depicted in Figure 4.1.

Input
Heuristics weights

Cryptogram
Possible ciphers used

Calculating heuristics
for the cryptogram

Scoring the ciphers
with the calculated

heuristics

Output the ciphers
and their scores

in order

1 432

Figure 4.1: Inner stages of the identification process.

1 — Input

• The cryptogram whose corresponding cipher we want to guess. The cryptogram is
assumed to be in a standard format. In other words, every letter, digit or other symbol,
is considered part of the cryptogram alphabet past this phase. This also means that
the case variation should be discarded beforehand; otherwise, the uppercase and
lowercase of a letter will be interpreted as different characters.

• A set of ciphers the program can identify.

• A list of heuristics that the classifier program will use. Each heuristic gives an
indication of what subset of ciphers may have been used, from the set of ciphers the
program can identify.

• A weight for each heuristic. These weights indicate how significant each heuristic
is. Weights are used to find a balance between heuristics. Since heuristics differ in
accuracy, precision and splitting ability, as explained before at the start of the chapter,
it makes sense to give them more or less weight accordingly. Well-attributed weights
improve the quality of the programs results. The process used to find a good weight
tuple is explained in 4.3.

2 — Applying heuristics Each cipher induces properties on the cryptograms they produce.
Each heuristic, when applied to a cryptogram, detects whether the cryptogram exhibits a
given property. The result of each heuristic is a value that relates to the probability that
the property was produced by a subset of ciphers known to produce it.

3 — Scoring the ciphers The ciphers are scored according to the values calculated with the
heuristics and the weights of the heuristics used to find the properties.

4 — Output The list of possible ciphers used to create the cryptogram, from most to least
likely to have been used, and their respective score. Each score is a probability that the
corresponding cipher was used.

4.2. Automatic identification process 59

4.2 Automatic identification process

In this section, we explain how the classifier program works. The classifier program compiles the
results of different heuristics to form an idea of what cipher may have been used. You may recall
from 3.2 that the function that encapsulates all heuristics is as follows:

h : N × Γ∗ −→ [0, 1] × 2C

(n, x) −→

Pr
[
∃c ∈ m(n, tn(x)), ∃p ∈ P : x = c(p)

]
, m(n, tn(x))

,

where:

Γ is the output alphabet for all ciphers;

N is the set of all the heuristics’ names;

m is a function that takes a name of a heuristic n, and a threshold value of that heuristic
computed over the cryptogram tn(x), and outputs a set of ciphers likely to have been used
to produce x.

Since heuristics are not all equally effective, we can further improve our guessing ability by
introducing weights, one for each heuristic. The weights are values in [0, 1] and their sum should
be equal to 1.

Before explaining the automatic identification process, we present some notation that we will
use henceforth.

C — A set of ciphers; a cipher in C is denoted c.

p — A plaintext.

xc,p — The resulting cryptogram from applying a cipher c to the plaintext p; the same as c(p).

Σ — The input alphabet of all ciphers; every plaintext is in Σ∗.

Γ — The output alphabet of all ciphers; every cryptogram is in Γ∗.

H — The tuple of heuristics; a heuristic in H is denoted as h.

rh,x, Kh,x — When an heuristic h is applied to a cryptogram x it results in a tuple: a value
rh,x and a set of ciphers Kh,x. We also use rh,c,p to refer to the resulting value of applying
heuristic h to a cryptogram produced by computing c(p).

W — The tuple of weights, one for each heuristic; wh denotes the weight corresponding to
heuristic h.

S — The tuple of scores, one for each cipher. These express the likelihood of each cipher having
been used to produce the cryptogram. Moreover, we denote the score of cipher c as sc.

60 Chapter 4. Building an automated classifier for classical ciphers

The following entities are present for the program execution.

• A set C of ciphers possibly used to produce the cryptogram.

• The cryptogram, x.

• A tuple W of heuristic weights.

• A tuple of scores, S, one for each cipher. At the start of the identification, s = 1
|S| for any

s ∈ S.

The program starts by applying each heuristic to the given cryptogram. After calculating all the
resulting values, the program scores the ciphers.

The scoring works as follows: for each heuristic, if the cipher is within the resulting set of
ciphers Kh,x, then the resulting value rh,x is multiplied by that heuristic weight wh, and this is
added to the score of the cipher. If the cipher is not within Kh,x then nothing is added. This
can be expressed as:

sc,x =
∑
h∈H

{
rh,x · wh, if c ∈ Kh,x

0, otherwise.
(4.1)

Finally, the scores are normalised; that is, each score is divided by the sum of all scores.
Thus, each score is within [0, 1] and the sum of all scores is equal to one. The closer the score of
cipher c is to one, the more likely it is that x was ciphered using c.

The classifier then returns all the ciphers and their respective scores in descending order.

4.3 Finding a good weight tuple

As mentioned above, in Section 4.2, each heuristic has a corresponding weight. A poor
configuration of the weights will result in an inferior performance of the classifier program.
Finding a good tuple of weights is essential in order to identify the majority of cryptograms.

Heuristics differ in multiple factors, making the task of assigning weights difficult. We
narrowed these factors down to three main ones:

Consistency Heuristics are not perfect, and so sometimes they fail. Thus, one of the factors to
consider when giving weight to a heuristic is how often they fail. Failing a lot does not
necessarily mean that the heuristic is useless, as it can still be used if, for example, there is
no other heuristic detecting the same property. On the other hand, it may be pointless to
have the heuristic if there is another, more consistent heuristic, that attempts to detect the
same property in a similar way.

4.3. Finding a good weight tuple 61

Precision Each heuristic tries to assign the production of a given property in the cryptogram to
a subset of ciphers of those that the classifier can identify. These sets can vary in size, and
precision is related to the size of that set. Having two heuristics that attempt to detect the
same property, the one that can better narrow down the group of ciphers that produced
the property is better.

Splitting-ability If a heuristic is good at detecting some property but cannot be used to
distinguish between two ciphers, it is useless as long as identification depends on it for
distinguishing those two ciphers. Moreover, some heuristics may be added to the classifier
just to tell specific ciphers apart.

It can be hard to compare the consistency, precision, and splitting-ability of different heuristics,
especially if they measure different properties of different ciphers. Another factor to consider is
that although an heuristic can be consistent and detect a property that a cipher produces, it
may be the case that the cipher does not produce the property often enough to justify using the
heuristic to identify this cipher. The task of fine-tuning becomes even harder as more heuristics
are added. Given these difficulties, it makes sense to create a tool to help us find a well-balanced
weight tuple. In this section, we cover the core ideas for building this tool in 4.3.1, 4.3.2 and 4.3.3,
explain how to build it in 4.3.4 and how to further improve it in 4.3.5.

4.3.1 Score interpretation

The weights of the heuristics balance the importance of each heuristic in the identification process.
Because of this, and assuming the heuristics are adequate for the ciphers the program has to
identify, the weight tuple is the element that dictates how good of a performance the classifier
program will have at identifying.

Given this, it is necessary to find a method to rate how good a tuple is to find a working
one. In order to do this, one must first decide which information from the ciphers’ scores is to be
taken into account to define a weight tuple as good or bad, in other words, how the scores of
the ciphers are to be interpreted. This can be as simple as checking if the highest scored cipher
is the original cipher, or it can take into account other factors, such as the scoring of similar
ciphers or the number of ties in score. Thus, we define two possible systems, one more simple
and the other more complex.

A simple approach We start by considering the most basic system possible, one that only
recognizes a weight tuple as a good when it gives the highest scoring cipher to the original
cipher, namely using the function:

id1(xc,p, S) =

{
1 if max(S) = {sc},
0 otherwise.

The biggest problem with this approach is that, should the original cipher not be the given

62 Chapter 4. Building an automated classifier for classical ciphers

the highest score, it makes no difference whether it is the second highest scored or the one
with the lowest score. For both, the function returns 0.

Since ciphers share properties, ciphers that share a lot of properties with the original cipher
are bound to have a similar score to that of the original cipher. Furthermore, since the
heuristics that pick up on these properties are not infallible, it is possible that the highest
scoring cipher is not the original cipher but one that shares many properties with it.

Taking the cipher rank into account In order to fill this shortcoming, our second approach
takes the ranking of the original cipher into account. Given a cipher c and the list of scores
of all ciphers, S, let Rank(c, S) denote the position of cipher c score in the list, with the
values of S put in descending order. For the highest scored cipher, Rank(c, S) = 0, for the
second highest scored Rank(c, S) = 1, and so on. However, if there are any draws between
ciphers, the Rank of the set of ciphers with the same score value is the highest position
with that score value.

From this, we define the following function:

id2(xc,p, S) = 1 − Rank(c, S)

|C|
.

This function returns a greater value the lower the rank of the cipher, which gives us more
information about the quality of the scoring. Furthermore, it penalises draws, given that,
in the case of a draw, the highest rank is taken into account instead of the lowest.

4.3.2 Tuple rating

Having a function id to interpret if the scoring is good or bad, what follows is a method that
measures the performance of the classifier for a given weight tuple.

1. First, a list P of plaintexts is sampled from a corpus. These can vary in length, but should
be long enough to allow for any feasible kind of guessing.

2. The list P is used to produce a list of cryptograms, X, using a set of ciphers C, with keys
selected at random. To do this, the following function enc is used.

enc : C × P −→ Γ∗

(c, p) 7−→ c(p).

The function is applied to every plaintext in P each of the ciphers in C, producing |P | · |C|
cryptograms. We denote the list of cryptograms produced as X = Im(enc) = enc(C × P).

The heuristics are applied to each cryptogram, each resulting in a tuple of results. This
tuples are compiled into a list R of tuples of results. We denote the tuple of results
corresponding to the cryptogram x as Rx.

3. Finally, for each of the cryptograms in X, the classifier attempts to identify the producing
cipher. Let S designate a function that takes a tuple of weights and a set of heuristics

4.3. Finding a good weight tuple 63

results, calculates the scores using the two, and returns in a tuple, one for each cipher, as
explained in 4.2. It is possible to express how good a weight tuple is by the ratio between
the number of correctly guessed cryptograms and the total number of cryptograms, by:

Rating(W , R, X) =
∑

xc,p ∈ X ∧ Rxc,p ∈ R

id(xc,p, S(W , Rxc,p))

|X|
. (4.2)

The number of cryptograms must be large enough to make the rating accurate.

We call this procedure weight tuple rating. This, along with the weight mutation which we
describe next, is used as a tool to improve identification.

4.3.3 Weight mutation

By altering the way the weights are distributed, one can improve the classifier program
performance in identifying the ciphers. The improvement can be noted by using the previous
rating method to rate the tuple before and after the alteration. This allows one to see if the
change improved the tuple. The weights are changed in the following manner:

1. The weight tuple is rated.

2. One of the weights of the tuple is chosen at random, and a pre-defined increment value
is added to that weight. All weights are then divided by one plus the increment (i.e. the
weight distribution is normalised so that each weight remains within [0, 1]).

3. The new weight tuple is rated using the tuple rating method. We can now compare it to
the initial rating and check if there was an improvement in identification. If there was, we
use the new tuple instead.

The process described in step two is designated as weight mutation. When repeated, the
process converges towards a functioning weight tuple.

4.3.4 Simulated annealing approach

The technique previously presented in 4.3.3 is called simulated annealing and has many applica-
tions, as seen in [KGV83]. The following algorithm uses this technique to find a good weight
tuple for the classifier program with a given list of cryptograms.

To serve as input to the algorithm, a list of tuples of results of heuristics is calculated the
following way:

1. A list X of cryptograms is created, similarly to what was done before using function enc in
step 2 in Section 4.3.2.

64 Chapter 4. Building an automated classifier for classical ciphers

2. The heuristics are applied to each cryptogram and compiled into a list R, similar to what
was done before in step 2 in Section 4.3.2.

An illustration of the algorithm can be seen in Figure 4.2.

Does the new
set improve

the identification or is
within the acceptable

fallback (equal or
greater than

miv)?

Weight
mutation

Attempts to identify the
cryptograms upon which
the heuristic results were

computed

Yes

No

Return the
current tuple of

weights

Failed attempts = 0

Has the number of
attempts

been exceeded?

Yes

Current weights = new weights
Failed attempts = 0

Is the current
tuple's rating

different enough from
the mean of the

tuples inside
the window?

No

Yes

No
Failed attempts += 1

Figure 4.2: Simulated annealing algorithm.

The algorithm starts with the following entities.

• A list R of tuples of results from applying the heuristics to a list of cryptograms X, as
previously explained.

• A weight tuple W with w = 1
|W | , ∀w ∈ W .

• An acceptable fallback ratio. This is how much the tuple rating is allowed to get worse from
one weight tuple W , to the next W n. Between iterations, the following condition has to be
met:

afr ≥ 1 − Rating(W n, R, X)

Rating(W , R, X)
,

where afr is the acceptable fallback ratio. By allowing the tuples to get slightly worse, one
can avoid stopping the algorithm at a smaller rating local maximum.

• A sliding window of previous tuples. This is how many previous weight tuples the algorithm
takes into consideration to check if it has converged into a good weight tuple. The tuples
are kept in the window until they are no longer useful.

4.3. Finding a good weight tuple 65

• A minimum improvement value. This is a value used to check if the algorithm is still
converging or has stabilised. The algorithm stops if the current weight tuple rating minus
the average of ratings within the window is lower than that value, that is:

miv ≤ Rating(W , R, X) −

∑
W ′∈window

Rating(W ′, R, X)

|window|
,

where miv is the minimum improvement value.

• A maximum number of attempts the algorithm will try to improve a weight tuple by
mutation, before finally stopping.

• The increment given to a random weight for the tuple mutations.

After the above input is given, the algorithm proceeds with the following steps:

1. The initial weight tuple W is rated. The higher the value of Rating(W , R, X), the better
the starting weight tuple is;

2. The current tuple of weights is mutated using the input increment;

3. The new weight tuple, the mutation result, is rated. The algorithm then compares the
rating of the new tuple W n with the rating of the previous tuple W .

(a) If the rating of the new tuple is better, or at least within the acceptable fallback ratio,
two things can be done:

i. If the rating is close enough to the average of the ratings of the weight tuples
within the window (and the window is full), the algorithm considers the weight
tuple rating to have converged and returns it. To check if it is close enough, the
minimum improvement value is used as previously described;

ii. Otherwise, the search for a good tuple continues, using the mutated tuple, and
the old tuple is added to the window. If the window is already full, the oldest
tuple is discarded. The algorithm jumps back to step two, repeating the process
with the new set;

(b) On the other hand, if the rating is not within the acceptable fallback, the new tuple
is discarded. The algorithm then jumps back to step two and tries another mutation.
After the maximum number of attempts, the algorithm stops and returns the previous
tuple.

From now on, we call the above algorithm the simulated annealing application.

66 Chapter 4. Building an automated classifier for classical ciphers

4.3.5 Further improvements to the algorithm

The previously explained algorithm can calculate a good weight tuple. However, there is a risk
that the weight tuple obtained is only good for the given list. In order to solve this problem, one
can repeat the simulated annealing algorithm for a gradually growing sample of cryptograms.
At the same time, one can also gradually shrink the weight increment when a better rating is
not obtained. This enables the change to the weight tuples to become smaller as the algorithm
converges to a local maxima, giving it more precision. With this in mind, one can create an
improved algorithm that takes this into account. An illustration of this algorithm can be seen in
Figure 4.3.

Simulated annealing
algorithm

Has
the fine-tuning
algorithm failed

to improve N
consecutive

times?

Current tuple of weights =
New tuple of weights

No

Add cryptograms
and apply heuristics

Return current weight
tuple and respective rating

Yes

Was there
substantial

improvement (α)
in

 the rating?

No

Yes

Weight increment = Weight increment / 2

Figure 4.3: Fine-tuning algorithm.

The algorithm starts with the following entities present:

• The necessary input for the simulated annealing application, as before.

• A corpus to sample plaintexts from, the ciphers to produce the cryptograms, and the
heuristics to apply to the cryptograms.

• A value α of how much the ratings of the tuples must improve between iterations.

• A constant N , the maximum number of times the algorithm is allowed to fail consecutively
to achieve a substantial improvement in rating.

The algorithm proceeds as follows.

4.3. Finding a good weight tuple 67

1. Cryptograms are added to the list.

2. The simulated annealing application is run with the results from the previous step, the
current weight tuple, and the remainder of its input.

3. The current weight tuple is updated.

4. The new weight tuple rating is checked to see if there was a substantial improvement. There
is a substantial improvement if the following condition holds:

Rating(W ′, R, X) ≥ Rating(W , R, X) + α.

If there is substantial improvement the algorithm jumps back to step 1, adding more results
of heuristics to R.

If there is not, and it is the Nth consecutive time there is not, the algorithm stops, returning
the current weight tuple and its rating. If it is not the Nth consecutive time, the weight
increment is reduced to half, and the algorithm jumps back to step 2.

The reason the algorithm is allowed to fail up to N consecutive times is that it may be the
case the rating is not improving because the weight increment is too big. As the weight tuple
achieves a better rating and the number of cryptograms increases, finer adjustments are necessary
to continue improving. On the other hand, since more results are added every time there is
a significant improvement in rating, there is an assurance that the rating did not increase by
chance.

Chapter 5

Results

In this chapter, we present the following:

• The performance results obtained using the algorithm to compute the weight tuples. Given
that the fine-tuning algorithm improves the weight tuple based on the performance of the
classifier itself, just by analysing the results of the fine-tuning we can already have an idea
of how both the algorithm and the classifier perform;

• The input that is given to our setup to get the results, as well as some details regarding
the implementation of our classifier;

• An overview of how good the heuristics are at telling ciphers apart, focussing on their
precision and splitting-ability. This is in contrast to what was done in Section 4.3, where
we focussed on the consistency factor.

5.1 Setup for computing results

To put our classifier into action, we programmed the algorithm in Python along with the
generation of cryptograms. The language was chosen for its simplicity.

In our program we avoided the use of floating-point variables in order to avoid precision
loss in our calculations. Instead, we used rational numbers from the fractions Python module.
The downside of this is that operations with fractions take more time. Furthermore, after
operating (adding, multiplying, etc.) a lot of fractions, there is a tendency for the numerator
and denominator to become larger and larger, making the operations slower. This also makes it
impossible for the user to understand the order of magnitude of these values. For these reasons,
we did not fully remove floating-point usage from our code, but avoided it as much as possible
where it made sense to do so.

In order to make the observations that follow, the simulated annealing algorithm was run 200
times, 100 times for each of the two identification measurement functions. Information about

69

70 Chapter 5. Results

the algorithm performance was collected on each run of the algorithm and compiled into a data
set, which had 200 entries. Each entry had information of a different fine-tuning program run,
namely:

• The identification function;

• The elapsed time;

• The number of iterations to converge;

• The number of cryptograms used;

• The rating of the final weight tuple;

• The number of correct guesses for the final weight tuple;

• The number of correct guesses plus the number of ties at first place for the final weight
tuple;

• The weights of each heuristic in the final weight tuple.

The setup that follows is what we used to run the algorithm. The corpus used was the same
as that we used for our observations in Chapter 3. In Chapter 4, two types of input are presented
for the algorithm: the input necessary for the simulated annealing part of the algorithm and the
input of the fine-tuning part of the algorithm, the “outer layer”. The input to the fine-tuning
part of the algorithm was the following:

• Necessary improvement between iterations: 1
100 ;

• Number of simulated annealing attempts: 3;

• Initial weight increment: 1
6 , (= 1

|H|);

• Initial weights: 1
|C| for c ∈ C;

• Number of cryptograms added per iteration: 3600. This number comes from the fact that
for each iteration 300 texts are selected and each is ciphered with all ciphers in C, resulting
in 300 × 12 = 3600 cryptograms. The cryptograms that were added in the last iteration
of simulated annealing are not taken into account for our observations since they have no
impact on the results.

For the cryptogram generation of periodic ciphers, we defined the minimum period to be 5 and
the maximum 20. The size of the plaintexts used to create the cryptograms was 500. The input
for the simulated annealing part of the algorithm was the following:

• Acceptable fallback ratio: 1
20 ;

5.2. Expectations 71

• Size of the sliding window of the previous tuples: 12;

• Minimum improvement value: 1
200 ;

• Maximum number of attempts to improve the rating for simulated annealing: 3.

These inputs were chosen through trial and error, taking in consideration both the rating
and the amount of correctly identified cryptograms. The program runtime was also taken into
consideration.

5.2 Expectations

As explained in Section 1.1, we were optimistic that using our classifier we would be able to
tell which heuristics are more or less important in the identification process. This importance
is related to the consistency, precision, and splitting ability of the heuristic, as explained in
Section 4.3. Our previous analysis to each heuristic in Chapter 3 was mostly consistency-wise,
however, we can also speculate about the classifier performance regarding both precision and
splitting-ability. In this regard, Table 5.1 shows in which branches of the heuristics each cipher
is present. By comparing the columns of the table for each pair of ciphers, we can get an idea of

Table 5.1: Table showing the relation between the heuristics’ branches and the ciphers.

Ciphers

C
ae

sa
r

V
ig

en
èr

e

A
ut

ok
ey

In
pu

t

A
ut

ok
ey

O
ut

pu
t

B
ifi

d

Tr
ifi

d

N
um

be
re

d
ke

y

C
he

qu
er

bo
ar

d

Ph
ill

ip
s

Pl
ay

fa
ir

N
ih

ili
st

su
bs

tit
ut

io
n

N
ih

ili
st

Tr
an

sp
os

iti
on

H
eu

ri
st

ic
s

hα 4, 5, 6 7 7 7 6 8 2 3 5, 6 5, 6 1, 2 4, 5, 6
hIC 2 1 1 1 1 1 3 1, 2 1 1 3 2
htrans 1 1 1 1 1 1 3 1 1 1 3 2
hICperiod 1 2 1 1 1, 2 1, 2 1 1 1 1 2 1
hphillips 1 1 1 1 2 1 1 2 3 2 1 1
hncd 1 2 1 1 2 2 2 2 1 1 2 1

which ciphers the classifier may have the hardest time distinguishing. The more dissimilar two
columns of the table are, the easier it is to tell apart the ciphers of those columns, and vice versa.
Thus, it is easy to see that it will be impossible for the classifier to tell both autokey ciphers
apart, since none of our heuristics separates these ciphers into different branches. This, of course,
ignores the consistency factor of each heuristic, since it does not take into account how often the
heuristics fail.

72 Chapter 5. Results

Let bh,c denote the set of branches of heuristic h for which cipher c is in the branch set. To
create the heatmap shown in Figure 5.1, the following function heat was calculated for every
pair of ciphers, using the fact that the more similar the columns of the two ciphers are in the
table, the closer the value returned by the function is to 1, and vice versa.

heat : C × C −→ [0, 1]

(c1, c2) −→ 1
|H|

×
∑
h∈H

|bh,c1 ∩ bh,c2 |
|bh,c1 ∪ bh,c2 |

.

Looking at the heatmap, we can expect that the most difficult pairs to distinguish to be those
C

ae
sa

r

V
ig

en
èr

e

In
p

u
t

au
to

ke
y

O
u

tp
u

t
au

to
ke

y

B
ifi

d

P
h

il
li
p

s

C
h

eq
u

er
b

oa
rd

T
ri

fi
d

N
u

m
b

er
ed

ke
y

P
la

y
fa

ir

N
ih

il
is

t
su

b
st

it
u

ti
on

Cipher

Vigenère

Input autokey

Output autokey

Bifid

Phillips

Chequerboard

Trifid

Numbered key

Playfair

Nihilist substitution

Nihilist transposition

C
ip

h
er

0.33

0.67 0.67

0.67 0.67 1.00

0.31 0.58 0.42 0.42

0.42 0.75 0.58 0.58 0.67

0.33 0.33 0.33 0.33 0.25 0.42

0.42 0.42 0.42 0.42 0.67 0.50 0.33

0.61 0.33 0.67 0.67 0.50 0.42 0.17 0.42

0.61 0.33 0.67 0.67 0.67 0.42 0.17 0.58 0.83

0.17 0.50 0.17 0.17 0.25 0.42 0.75 0.17 0.00 0.00

0.83 0.17 0.50 0.50 0.14 0.25 0.33 0.25 0.44 0.44 0.17

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Heatmap showing the expected difficulty of telling apart each pair of ciphers.

with the darkest squares. Given that the heuristics generally achieved a good performance,
as shown in Chapter 3, we can, for the most part, ignore the consistency difference between
heuristics.

5.3. Measuring the performance of the algorithm 73

5.3 Measuring the performance of the algorithm

In this section, we measure the performance of the algorithm with respect to different factors.
For each of these factors, we also compare the two alternative functions, id1 and id2, that we use
to interpret the scores, as explained in Section 4.3.1. We draw this comparison on the basis of
the impact they make on the algorithm performance itself.

5.3.1 Algorithm convergence speed

Using the computed dataset, as described in Section 5.1, the distribution of the number of
iterations that the algorithm takes to converge was calculated. Since the algorithm only converges
as long as there is substantial improvement, this distribution shows the number of times that
cryptograms were added to the algorithm per run. Figure 5.2 shows this distribution. In the
distribution, we see that the algorithm generally converges faster for id2. We decided not to
compute a larger dataset since this would take a long time.

1 2 3 4 5 6

Iterations to converge

id1

id2F
u

n
ct

io
n

Figure 5.2: Comparison between functions regarding the number of iterations the algorithm
takes to converge.

Figure 5.3 shows the distribution of the algorithm run-time for each of the id functions,
run on a machine with a 2.300 GHz CPU. In the figure, one sees that for the function id2 the
algorithm has, generally speaking, a longer runtime. This is not surprising given that id2 does a
lot more operations than id1.

5 10 15 20 25 30 35

Runtime in minutes

id1

id2F
u

n
ct

io
n

Figure 5.3: Comparison between functions regarding the real time the algorithm takes to converge.

We used dPython to profile the code and verify this. We did this to two runs of the algorithm,
one using id1 and the other id2. We made sure to use two executions where the same number of

74 Chapter 5. Results

iterations of the algorithm occurred, in this case 3. Table 5.2 and 5.3 show the data for both id1

and id2, respectively. The following functions are present in the tables:

<module>— The entire program;

cipher_and_calc_heuristics— As the name indicates, the function that is called to
cipher and calculate the heuristics for all texts, when they are added to the algorithm;

get_weights_rating— Computes the rating of the weight tuple;

get_scores— Function that, given a weight tuple, calculates the cipher scores;

_add— Addition of fractions, which requires calculating the greatest common divisor;

id_1 and id_2— The id function used;

get_ranking— Computes the ciphers’ ranking, and is only called by id_2.

For each, the table shows:

1. Name of the function;

2. Number of times it was called during execution;

3. Time the function takes to execute — in milliseconds and in percentage relative to the
whole program;

4. Own time, that is, the time the function takes to execute, ignoring the time of the functions
called by that function — in milliseconds and in percentage relative to the whole program.

Both tables are sorted by time.

Table 5.2: Profiling results for id_1.

Function name Call count Time ms % Own time ms %
<module> 1 389962 100.00 4 0.00
cipher_and_calc_heuristics 600 256290 65.72 49 0.00
get_weights_rating 74 111573 28.61 781 0.00
get_scores 446400 89339 22.91 10163 0.03
_add 16251480 58693 15.05 29592 0.08
id_1 442800 20292 5.20 2096 0.01

Looking at the tables, one can see that:

• The majority of time is spent creating more cryptograms and computing the heuristics over
them in either case;

5.3. Measuring the performance of the algorithm 75

Table 5.3: Profiling results for id_2.

Function name Call count Time ms % Own time ms %
<module> 1 475235 100.00 3 0.00
cipher_and_calc_heuristics 600 242462 51.02 32 0.01
get_weights_rating 67 211221 44.45 774 0.16
id_2 424800 122336 25.74 874 0.18
get_ranking 428400 119568 25.16 5263 1.11
get_scores 428400 86855 18.28 9559 2.01
_add 15617784 57394 12.08 28400 5.98

• Function id2 spends about the same time with fractional operations as id1;

• The need to rank ciphers with function get_ranking is the biggest reason for id2 being
slower than id1, as expected.

Although we did not take advantage of this, one convenience of our fine-tuning program is
that it can be implemented to take advantage of threading. One way to do this is to run in
parallel the computation of the heuristics for different cryptograms, as well as the generation of
the cryptograms themselves.

5.3.2 Tuple rating vs number of correct guesses

Using the dataset, we make a comparison between the rating and the number of correct guesses
for both functions id. Figure 5.4 shows a box plot of the rating distribution for the computed
tuple of weights. Figure 5.5 shows the distribution of the ratio between the number of correct
cipher guesses and the total number of guesses in the final iteration of the algorithm. It is
important to note that both distributions were taken from the same algorithm runs. Thus, for
each rating, there is a corresponding ratio of correct guesses. Also note that correct guesses here
do not include ties between ciphers at the first position.

0.5 0.6 0.7 0.8 0.9 1.0

Rating

id1

id2F
u

n
ct

io
n

Figure 5.4: Distribution of rating values.

Let cgc be a function that counts the number of correctly guessed cryptograms, tak-
ing as input the weight tuple and the heuristics results. We can define this function as
cgc(W , R) =

∑
xc,p∈X ∧ Rxc,p ∈R idi(xc,p, S(W , Rxc,p), i ∈ {1, 2}, taking advantage of the already

76 Chapter 5. Results

0.5 0.6 0.7 0.8 0.9 1.0

Correct guesses

id1

id2F
u

n
ct

io
n

Figure 5.5: Distribution of the ratio of correct guesses.

defined function id1 to count the number of correct guesses. Using the function, we can define
the ratio between the number of correctly guessed cryptograms and the total number of correctly
guessed cryptograms as cgd(W ,R)

|X| . With this, we can conclude that, for id1, the rating and the
number of correct guesses should be the same.

cgc(W , R)

|X|
=

∑
xc,p ∈ X ∧ Rxc,p ∈ R

id1(xc,p, S(W , Rxc,p))

|X|
=

∑
xc,p ∈ X ∧ Rxc,p ∈ R

id1(xc,p, S(W , Rxc,p))

|X|
= Rating(W , R, X)

Thus, the distribution of both ratings and correct guesses for id1 is the same.

Since the ratio of correct guesses was so low, we figured that, given that there were few
heuristics, there may have been many ties at the first position. In fact, if we account for the
ties in the first position as correct guesses, we can see that, for both functions, the algorithm is
capable of correctly identifying more than 70% cryptograms. Figure 5.6 shows this.

0.5 0.6 0.7 0.8 0.9 1.0

Correct guesses or ties at first position

id1

id2F
u

n
ct

io
n

Figure 5.6: Distribution of the ratio of correct guesses and ties at first position.

5.4 Comparing heuristics

The Figure 5.7 shows the distribution of the weights for each different score interpretation
function. All heuristics follow a normal distribution. In the figure, one can see that the weights
remain mostly the same between the functions id1 and id2. On the other hand, for the function
id1 the differences between the heuristics are much more noticeable, especially for the heuristic
hncd. This is to be expected since the function id1 penalises the heuristics much more for their
inaccuracy.

5.4. Comparing heuristics 77

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Value of the heuristic for id1

hncd

hphillips

hICperiod

hα

hic

htrans

H
eu

ri
st

ic

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Value of the heuristic for id2

hncd

hphillips

hICperiod

hα

hic

htrans

H
eu

ri
st

ic

Figure 5.7: Distribution of the weights of the heuristics using function id1, id2, respectively.

The figure shows that for both functions, hncd is, in general, given less weight. This is easily
explained by the fact that hncd is, of the presented heuristics, the least accurate. On the other
hand, hα is the one given more weight since not only is it very accurate, it also has more branches
than all the other heuristics.

Since every heuristic follows a normal distribution, we can use Pearson correlation coefficients
to try to find correlations between the heuristics. Correlation is a measure of a monotonic
association between two variables. A monotonic relationship between two variables is one of the
following:

• If one variable increases in value, so does the other;

• If one variable increases in value, the other decreases.

In this context, we attempt to find correlation between heuristics, meaning we are trying to find
any indication that any two heuristics have a monotonic relationship, in either direction. In the
direction where both values increase, we call it a positive correlation, and in the other direction,

78 Chapter 5. Results

we call it a negative correlation.

The degree to which the change in one continuous variable is associated with a change in
another continuous variable can mathematically be described in terms of the “covariance of the
variables” [SBS18, p. 1]. It is calculated as follows:

cov(X, Y) =
∑

x∈X ∧ y∈Y

(x − µX)(y − µY),

where µX and µY are the means of X and Y , respectively.

However, covariance depends on the scale of the variables. Thus, to facilitate interpretation,
a Pearson correlation coefficient is commonly used instead:

ρ(X, Y) =
cov(X, Y)

σXσY
,

where σX and σY are the standard deviation of X and Y , respectively. This coefficient values
range from 1 to -1:

• The closer to 1, the stronger the positive correlation is;

• The closer to -1, the stronger the negative correlation is;

• The closer to 0, in either direction, the less correlation there is.

Furthermore, it is generally agreed that values between -0.1 and 0.1 constitute a weak correlation,
and values lower than -0.9 or higher than 0.9 constitute a strong correlation [SBS18, p. 3].

It is important to note that the correlation coefficient does not take into consideration the
“strength of agreement” between variables. For example, two variables may correlate, but one
may always be significantly higher than the other.

However, the coefficient is only intended for linear relationships. We assume that any linear
combination of the normal distributions of the heuristics is normal, since these are all normal
distributions in [0, 1]. Thus, we have that the heuristics are jointly normal too. Since if there is
a relationship between jointly normally distributed data, it is always linear [Kut05, p. 81], we
can use the coefficient.

It is often hard to get a feel of what the coefficient represents in terms of how close to a linear
function the relationship between two variables is. To get that feel, one can plot the scatter-plot
of the two variables to see how much correlation there is between the two and examine it with
the naked eye [Kut05, p. 5]:

• If the dots are close to forming a line with positive slope, it is indicative of a positive
correlation;

• If the dots are close to forming a line with negative slope, it is indicative of a negative
correlation;

5.4. Comparing heuristics 79

• If the dots are scattered through the plot, then there is very weak or no correlation.

Figure 5.8 shows the scatter-plot for two different pairs for id1. The first pair, hphillips and
hICperiod has a coefficient of 0.01, and its scatter-plot shows no indication of correlation between
the two. The second pair, hα and hic has a coefficient of -0.43, and its scatter-plot shows some
indication of a negative correlation between the two, although it is still unclear.

0.0 0.1 0.2 0.3 0.4 0.5

hICperiod

0.0

0.1

0.2

0.3

0.4

0.5

h
p
h
il
li
p
s

0.0 0.1 0.2 0.3 0.4 0.5

hic

0.0

0.1

0.2

0.3

0.4

0.5

h
α

Figure 5.8: Two examples of scatter-plots with the heuristics values.

Finally, a Pearson correlation matrix can be computed, by calculating the coefficient for every
cipher pair. Figure 5.9 shows the matrices for the results of id1 and id2, respectively. Although

h
α

h
ic

h
I
C
p
er
io
d

h
n
cd

h
p
h
il
li
p
s

Heuristic

hic

hICperiod

hncd

hphillips

htrans

H
eu

ri
st

ic

-0.43

0.07 -0.30

-0.04 -0.28 0.15

0.17 -0.29 -0.01 -0.19

-0.38 -0.23 -0.42 -0.08 -0.37

h
α

h
ic

h
I
C
p
er
io
d

h
n
cd

h
p
h
il
li
p
s

Heuristic

hic

hICperiod

hncd

hphillips

htrans

H
eu

ri
st

ic

-0.29

-0.02-0.22

-0.13-0.28-0.29

0.03 -0.13-0.21-0.23

-0.41-0.19-0.15-0.07-0.38

−1.0

−0.5

0.0

0.5

1.0

Figure 5.9: Correlation matrices of id1 and id2, respectively.

80 Chapter 5. Results

the matrices differ from each other, no coefficient has a value significant enough to indicate there
is an evident correlation.

Chapter 6

Conclusions

6.1 Expectations and Reality

Our results were significantly better than the expectations presented in Section 5.2. To test how
well the ciphers were being identified by the classifier, we run the classifier with a weight tuple
found by the fine-tuning algorithm. We put the classifier to test against 3600 cryptograms, 300
for each cipher.

Figure 6.1 shows a heatmap, where each square shows the ratio between the number of
cryptograms of the row cipher misidentified with the column cipher and the total number of
cryptograms produced by the row cipher. Let misid be a function that, given a cipher c and a
cryptogram x, not produced with c, returns 1 if the classifier wrongly classifies x as having been
produced by cipher c, and 0 otherwise. We use the following function to produce the heatmap:

heat′ : C × C −→ [0, 1]

c1, c2 −→ 1
|Xc1 |

×
∑

x∈Xc1

misid(c2, x),

where Xc1 is the list of cryptograms whose original cipher was c1. Note that, since we include
draws of the highest score as incorrect guesses, for a cryptogram in a draw with more than 1
incorrect cipher, multiple ciphers will be counted as incorrectly guessed for that cryptogram.

The heat map shown in Figure 6.1 is significantly different from the one shown in Figure 5.1.
This is a testament to the accuracy of the heuristics, since even in cases where there is only one
heuristic to tell apart the two ciphers, it is sufficiently accurate for the classifier to be able to
tell them apart from each other in the majority of cases. An example of this is the Caesar and
Nihilist transposition ciphers: only 6% of the Nihilist transposition cryptograms were incorrectly
guessed as Caesars, and none were incorrectly guessed the other way around.

This data also allowed us to see that the relation between ciphers is not symmetric. For
example, only 31% of Vigenère cryptograms are incorrectly guessed as Input autokey cryptograms,
while 43% of Input autokey cryptograms are incorrectly guessed as Vigenères.

81

82 Chapter 6. Conclusions

C
ae

sa
r

V
ig

en
èr

e

In
p

u
t

au
to

ke
y

O
u

tp
u

t
au

to
ke

y

B
ifi

d

P
h

il
li
p

s

C
h

eq
u

er
b

oa
rd

T
ri

fi
d

N
u

m
b

er
ed

ke
y

P
la

y
fa

ir

N
ih

il
is

t
su

b
st

it
u

ti
on

N
ih

il
is

t
tr

an
sp

os
it

io
n

Guessed cipher

Caesar

Vigenère

Input autokey

Output autokey

Bifid

Phillips

Chequerboard

Trifid

Numbered key

Playfair

Nihilist substitution

Nihilist transposition

O
ri

gi
n

al
ci

p
h

er
0.01 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.31 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.43 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.40 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.03 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.42 0.00 0.00

0.19 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00

0.14 0.00 0.00 0.00 0.47 0.05 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00

0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.1: Heatmap showing the which ciphers were the hardest to tell apart for a computed
weight tuple.

6.2 Comparing our model to the state of the art

Unfortunately we only found related written work close to the end of our project, and by that
point our project had already deviated a lot from the written work. Because of this, we missed
an opportunity of picking a similar method of cryptogram generation to that of [LKE+21, p. 5],
that is, using the ciphers exactly as they are described in [Ame05] and ciphered the cryptograms
using random keywords, but filling in the remaining alphabet in its normal order. Furthermore,
our work is a different approach from that of the other projects presented in Chapter 1.1.

Our approach can not be fooled by the presence of certain symbols. This contrasts with
some of the presented projects in Chapter 1.1, which use the presence of certain symbols as an
indication of what cipher may have been used.

6.3. Further work 83

The analysis described in Section 6.1, together with the results obtained on the performance
of the classifier, allowed us to see that feature engineering is not a bad approach, since even
with a few heuristics, we can identify most of the 12 ciphers, some of which are quite difficult to
distinguish. To add to this, we are able to extract valuable information about the heuristics we
are using, such as how useful the heuristics are at telling the given ciphers apart. Moreover, our
approach allows one to see what heuristics could potentially improve the classifiers performance
if added, by examining information such as the heatmaps previously presented.

6.3 Further work

During this thesis there were many elements about which we would have liked to research further,
but for which we did not have the time to. Hoping that someone will continue the presented
work, a list of these follows, as well as an explanation of why this would be interesting.

Adding more ciphers Regarding our classifier, we think it would be interesting to expand it
to include all the ciphers of “The ACA and You” [Ame05], as described there, since this
would make it possible to compare its performance with the performance of [LKE+21].
This would mean updating the heuristics we present to include all ciphers and adding new
heuristics. We think it would be interesting if one could find heuristics capable of:

• distinguishing both autokeys;

• distinguishing the Bifid cipher from the CMBifid cipher.

In addition to this, updating the heuristics to work for any cryptogram length would also
be interesting.

Simplifying our model In Figure 5.2, it is shown that the average number of iterations, before
the algorithm stabilises, is only 2. Thus, we find that our model may be a bit over-engineered
and that one could probably produce a similar, simpler model, capable of achieving the
same results.

Guessing the family of ciphers We also think it would be interesting if the user were given
the most likely family of ciphers in addition to the most likely cipher. This could be
achieved by using a similar approach to ours, where instead of trying to identify the cipher,
the classifier would try to identify the family of ciphers. This would be useful when the
cipher is not included in the set of ciphers given to our classifier, since this second classifier
would give a broader idea of what ciphers may have been used.

Finding the period Similarly to the previous item, it would also be useful to have another
classifier for the period length. This would mean training a classifier that, instead of
identifying a cipher, tries to identify the period if there is one.

84 Chapter 6. Conclusions

Index of coincidence and bifid ciphers As explained at the end of 3.2.1, it is possible to
detect the period for both the Bifid and Trifid ciphers on certain occasions. We did not
research this further, but we think it would be interesting for someone to.

Appendix A

Box-and-whisker plots

Boxplots are a useful way of representing univariate data that follows a normal distribution. An
example of a boxplot is shown in Figure A.1. These plots are generally useful for depicting the
following properties of the data [dSS86, p. 29–30]:

Locality Where the values of the variables in the data are located;

Spread How much the data varies from the mean;

Asymmetries How distant the mean and the median are from each other. Usually, an
asymmetry in the data creates skewness, that is, the two tails of the Bell curve of the data
are different, not symmetric.

The following figure, taken from wikipedia’s page on Boxplots, shows the boxplot of a simple
normal distribution and how it relates to its Bell curve plot.

Q1 Q3

IQR

Median

Q3 + 1.5 × IQRQ1 1.5 × IQR−

0.6745 − σ 0.6745 σ 2.698 σ2.698 − σ

50%24.65% 24.65%

68.27% 15.73%15.73%

4 − σ 3 − σ 2 − σ 1 − σ 0 σ 1 σ 3 σ2 σ 4 σ

4 − σ 3 − σ 2 − σ 1 − σ 0 σ 1 σ 3 σ2 σ 4 σ

4 − σ 3 − σ 2 − σ 1 − σ 0 σ 1 σ 3 σ2 σ 4 σ

Figure A.1: Comparison between a box-and-whisker plot and a Bell curve.

85

86 Appendix A. Box-and-whisker plots

The vertical lines of the box in Figure A.1 correspond to, respectively:

Q1 The median of the lower half of the dataset, known as the first quartile;

Q2 The middle value of the dataset, known as the second quartile;

Q3 The median of the upper half of the dataset, known as the third quartile.

When the boxplot is shown vertically, these are, respectively, the bottom of the box, the middle
line, and the top of the box.

The difference between Q3 and Q1 is called Inter Quartile Range (IQR). The horizontal lines
on the side of the box are called whiskers. These are a step away from the box, where a step
corresponds to 1.5 × IQR, following Tukey’s suggested criteria for outliers [Tuk77, p. 44].

Values not within the whiskers are considered outliers, and small dots are sometimes used to
indicate their presence. The following figure shows an example featuring outliers.

0 2 4 6 8 10

Tip

Lunch

Dinner

T
im

e

Figure A.2: Two boxplots, each showing the distribution of tips for a different meal.

Appendix B

Code

Figure B.1 shows how the code for the classifier and the classifier fine-tuning programs should be
organised into folders to work as intended. The corpus one wants to use to sample plaintexts
from should be place inside the corpora folder.

thesis_code
classifier

classifier_tools.py
heuristics.py
input_objects.py
simulated_annealing.py
tuple_rating.py

coding
cipher.py
corpus.py
generatecrypto.py
handy_vars.py
polybius.py
statistics.py
tools.py

corpora
<corpus>

demonstration
algorithm_to_get_weights.py
cipher_classifier.py
create_example_cryptogram.py
sa_demonstration.py

Figure B.1: Folder hierarchy of the code.

Under the folder demonstration there are four different small programs to experiment
with the model, these are:

algorithm_to_get_weights.py— which is the fine-tuning program;

87

88 Appendix B. Code

sa_demonstration.py— which is the simulated-annealing part of the fine-tuning program;

create_example_cryptogram.py— which creates a cryptogram to be used as example by
the classifier;

cipher_classifier.py— which is the classifier program.

Before running any of these, one should make sure that the input is configured to one’s needs by
editing the file. To run any file one should do the following steps:

1. Run Python on the top folder of the repository;

2. Execute run import os within Python;

3. Execute run exec(open(’file_to_run’).read()), where file_to_run is the
file one wants to execute.

The code of each file follows.

thesis_code/classifier/classifier_tools.py� �
from fractions import Fraction

from pandas import DataFrame

from classifier.input_objects import SAInput, HInput, FTInput

from classifier.simulated_annealing import weight_training

from classifier.tuple_rating import get_ranking

def get_weights(

sa_input: SAInput, he_input: HInput, ft_input: FTInput, ciphers_tuple:

tuple[str]

) -> tuple[dict[str, Fraction], DataFrame, Fraction, float]:

" " "
Given the input , runs the a lgor i thm to c a l c u l a t e the weights and returns ,

along with the weights ,
a dataframe with the c ipher scores for each generated cryptogram , the

ra t ing and the e lapsed time
: param ft_input : The f ine −tuning input
: param sa_input : The simulated anneal ing input
: param he_input : The h e u r i s t i c s input
: param ciphers_tup le : The t u p l e o f c iphers to be considered
: return : Tuple with the weights ’ d ic t ionary , a dataframe , the ra t ing and

the e lapsed time , r e s p e c t i v e l y
" " "

calculated_weights, rating, calculated_heuristics_list, elapsed_time =

weight_training(

ft_input,

89

sa_input,

he_input,

ciphers_tuple

)

scores_df = DataFrame(columns=["original_cipher"] + list(ciphers_tuple))

for ch in calculated_heuristics_list:

scores_dict = ch.get_scores(ciphers_tuple, calculated_weights)

scores_df.loc[len(scores_df.index)] = [ch.original_cipher] +

[scores_dict[a] for a in ciphers_tuple]

return calculated_weights, scores_df, rating, elapsed_time

def scores_df_to_ranks_df(scores_df: DataFrame) -> DataFrame:

" " "
Takes the scores dataframe and turns i t in to a ranks dataframe .
This means i t s u b s t i t u t e s the scores with the ranking p o s i t i o n s .
: param scores_df : The scores dataframe
: return : The rankings dataframe
" " "
ranks_df = DataFrame(columns=scores_df.columns)

ciphers_list = list(scores_df.columns)[1:]

scores_dict = scores_df.to_dict(orient="index")

for i in range(len(scores_df.index)):

og_cipher = scores_dict[i].pop("original_cipher")

ranks = get_ranking(scores_dict[i])

new_row = [og_cipher] + [ranks[cipher] for cipher in ciphers_list]

ranks_df.loc[len(ranks_df.index)] = new_row

return ranks_df

def calc_correct_guesses(ranks_df: DataFrame) -> int:

" " "
Given a ranks dataframe c a l c u l a t e s how many correc t guesses there were .
: param ranks_df : The ranks dataframe
: return : The number of correc t guesses
" " "
correct_guesses = 0

for i, row in ranks_df.iterrows():

og_cipher = row["original_cipher"]

if row[og_cipher] == 0:

correct_guesses += 1

return correct_guesses

def calc_tied_guesses(ranks_df: DataFrame) -> int:

" " "
Given a ranks dataframe c a l c u l a t e s how many t i e s at f i r s t guess there were .
: param ranks_df : The ranks dataframe

90 Appendix B. Code

: return : The number of t i e s at f i r s t guess
" " "
ties = 0

ciphers = list(ranks_df.columns)[1:]

for i, row in ranks_df.iterrows():

og_cipher = row["original_cipher"]

min_pos = min([row[cipher] for cipher in ciphers])

if row[og_cipher] == min_pos and min_pos != 0:

ties += 1

return ties� �
thesis_code/classifier/heuristics.py� �
from fractions import Fraction

import pandas as pd

import coding.statistics

from classifier.input_objects import HInput

from coding import tools, handy_vars, corpus

from coding.generatecrypto import cipher_text_with_given_ciphers

from coding.statistics import calc_character_abs_frequency, calc_ic,

calc_character_rel_frequency

from coding.tools import split_text_into_list

def get_alphabet_and_split_text(text, symbols_per_character) ->

tuple[tuple[str], list[str]]:

" " "
Given a t e x t and the number of symbols per character re turns the a lphabe t

in a t u p l e and the t e x t in a l i s t .
: param t e x t : The t e x t
: param symbols_per_character : The number of symbols per character
: return : Tuple with the a lphabe t t u p l e and the t e x t l i s t
" " "
alphabet = tools.infer_alphabet_from_text(text, symbols_per_character)

split_text = split_text_into_list(text, alphabet)

return alphabet, split_text

def h_alpha(cryptogram_alphabet: tuple[str]) -> tuple[Fraction, list[str]]:

" " "
Heur i s t i c h_alpha : g iven the a lphabe t o f the cryptogram returns a t u p l e

with a va lue between 0 and 1 ,
and the l i s t o f r e l a t e d c iphers .
: param cryptogram_alphabet : The cryptogram ’ s a lphabe t
: return : Returns a va lue between 0 and 1 and a l i s t o f r e l a t e d c iphers
" " "
length = len(cryptogram_alphabet)

if length <= 9:

return Fraction(98, 100), ["nihilist-substitution"]

91

elif length == 10:

return Fraction(1), ["numbered-key", "nihilist-substitution"]

elif length == 20:

return Fraction(1), ["checkerboard"]

elif 21 <= length < 24:

return Fraction(1), ["caesar", "nihilist-transposition"]

elif length == 24:

return Fraction(99, 100), ["nihilist-transposition", "phillips",

"caesar", "playfair"]

elif length == 25:

return Fraction(1), ["nihilist-transposition", "phillips", "caesar",

"playfair", "bifid"]

elif length == 26:

return Fraction(96, 100), ["vigenere", "autokey-input",

"autokey-output"]

elif length == 27:

return Fraction(1), ["trifid"]

else:

return Fraction(0), []

def h_ic(index_of_coincidence: float) -> tuple[Fraction, list[str]]:

" " "
Heur i s t i c h_ic : g iven the index of coincidence of the cryptogram returns a

t u p l e with a va lue between 0 and 1 ,
and the l i s t o f r e l a t e d c iphers .
: param index_of_coincidence : The cryptogram index of coincidence
: return : Returns a va lue between 0 and 1 and a l i s t o f r e l a t e d c iphers
" " "
if Fraction(0) <= index_of_coincidence < Fraction(55, 1000):

return Fraction(1), ["autokey-output", "trifid", "autokey-input",

"vigenere",

"bifid", "playfair", "phillips", "checkerboard"]

elif Fraction(55, 1000) <= index_of_coincidence < Fraction(11, 100):

return Fraction(90, 100), ["checkerboard", "nihilist-transposition",

"caesar"]

elif Fraction(11, 100) <= index_of_coincidence:

return Fraction(1), ["nihilist-substitution", "numbered-key"]

def h_trans(cryptogram_char_rel_freq: dict[str, Fraction],

language_char_rel_freq: dict[str, Fraction]) -> tuple[Fraction,

list[str]]:

" " "
Heur i s t i c h_trans : g iven the cryptogram character r e l a t i v e frequency and

the language r e l a t i v e frequency
returns a t u p l e with a va lue between 0 and 1 ,
and the l i s t o f r e l a t e d c iphers .
: param cryptogram_char_rel_freq : A d ic t i onary with the r e l a t i v e frequency

of each character in the cryptogram
: param language_char_rel_freq : A d ic t i onary with the r e l a t i v e frequency of

92 Appendix B. Code

each character in the language
: return : Returns a va lue between 0 and 1 and a l i s t o f r e l a t e d c iphers
" " "
_sum = Fraction(0)

for character in cryptogram_char_rel_freq:

if character not in language_char_rel_freq.keys():

continue

a = language_char_rel_freq[character]

b = cryptogram_char_rel_freq[character]

_sum += abs(a - b) ** 2

_h_trans = 1 - (_sum / len(language_char_rel_freq.keys()))

if Fraction(0) <= _h_trans < Fraction(99955, 100000):

return Fraction(99, 100), ["caesar", "phillips", "playfair",

"vigenere", "autokey-input",

"autokey-output", "checkerboard", "trifid",

"bifid"]

elif Fraction(99955, 100000) <= _h_trans < Fraction(1):

return Fraction(99, 100), ["nihilist-transposition"]

elif _h_trans == Fraction(1):

return Fraction(1), ["numbered-key", "nihilist-substitution"]

def h_ic_period(split_text: list[str], alphabet: tuple[str], p_min: int, p_max:

int) -> tuple[Fraction, list[str]]:

" " "
Heur i s t i c h_icPeriod : g iven the t e x t in a l i s t , the a lphabe t and a minimum

and maximum period
returns a t u p l e with a va lue between 0 and 1 , and the l i s t o f r e l a t e d

c iphers .
: param s p l i t _ t e x t : A l i s t with the t e x t
: param alphabe t : The a lphabe t
: param p_min : The minimum period
: param p_max: The maximum period
: return : Returns a va lue between 0 and 1 and a l i s t o f r e l a t e d c iphers
" " "
periods_dict = coding.statistics.period_with_ic_cols(split_text, alphabet,

p_max * 2)

lt = Fraction(1, 2)

_, period_likelihood = coding.statistics.fi_likelihood(

[periods_dict[a] for a in range(p_max + 1)], p_min, p_max, lt

)

if period_likelihood < 0.7:

return Fraction(94, 100), ["caesar", "autokey-input", "autokey-output",

"bifid", "phillips", "checkerboard",

"trifid", "numbered-key", "playfair",

"nihilist-transposition"]

elif 0.7 <= period_likelihood:

return Fraction(56, 100), ["vigenere", "bifid", "trifid",

"nihilist-substitution"]

93

def h_phillips(split_text: list[str], alphabet: tuple[str]) -> tuple[Fraction,

list[str]]:

" " "
Heur i s t i c h _ p h i l l i p s : g iven the t e x t in a l i s t and the a lphabe t
re turns a t u p l e with a va lue between 0 and 1 , and the l i s t o f r e l a t e d

c iphers .
: param s p l i t _ t e x t : A l i s t with the t e x t
: param alphabe t : The a lphabe t
: return : Returns a va lue between 0 and 1 and a l i s t o f r e l a t e d c iphers
" " "
_, period_likelihood = coding.statistics.likely_phillips(split_text,

alphabet)

if period_likelihood < Fraction(12, 100):

return Fraction(93, 100), ["numbered-key", "nihilist-substitution",

"caesar", "autokey-output",

"nihilist-transposition", "autokey-input",

"vigenere", "trifid"]

elif Fraction(12, 100) <= period_likelihood < Fraction(6, 10):

return Fraction(6, 10), ["bifid", "playfair", "checkerboard"]

elif Fraction(6, 10) <= period_likelihood <= Fraction(1):

return Fraction(89, 100), ["phillips"]

def h_ncd(split_text: list[str], alphabet: tuple[str], p_min, p_max) ->

tuple[Fraction, list[str]]:

" " "
Heur i s t i c h_ncd : g iven the t e x t in a l i s t , the a lphabet , the maximum and

minimum periods ,
re turns a t u p l e with a va lue between 0 and 1 , and the l i s t o f r e l a t e d

c iphers .
: param s p l i t _ t e x t : A l i s t with the t e x t
: param alphabe t : The a lphabe t
: param p_min : The minimum period
: param p_max: The maximum period
: return : Returns a va lue between 0 and 1 and a l i s t o f r e l a t e d c iphers
" " "
dict_digraphs =

coding.statistics.calc_non_connected_digraphs_multiple_distances(split_text,

alphabet, p_max * 2)

df_aux = pd.DataFrame(data=list(dict_digraphs.items()), columns=["period",

"likelihood"])

lt = Fraction(6, 10)

_, period_likelihood =

coding.statistics.fi_likelihood(list(df_aux["likelihood"].values),

p_min, p_max, lt)

if period_likelihood == Fraction(0):

return Fraction(6, 10), ["nihilist-substitution", "phillips",

"autokey-input",

94 Appendix B. Code

"autokey-output", "caesar", "playfair"]

else:

return Fraction(73, 100), ["bifid", "trifid", "numbered-key",

"checkerboard",

"nihilist-substitution", "vigenere"]

class CalculatedHeuristics:

" " "
Object tha t ho lds the r e s u l t s o f the computed h e u r i s t i c s o f a cryptogram .
" " "

def __init__(

self,

text: str,

symbols_per_character: int,

min_period_guess: int,

max_period_guess: int,

heuristics_tuple,

original_cipher: str

):

" " "
Heur i s t i c s o b j e c t . This o b j e c t upon crea t ion c a l c u l a t e s the h e u r i s t i c s

o f a given t e x t .
The r e s u l t s can l a t e r be scored with the scoredHeur i s t i c s o b j e c t .
: param t e x t : The t e x t on which we want to c a l c u l a t e the h e u r i s t i c s
: param symbols_per_character : The number of symbols per character we

are cons ider ing
: param max_period_guess : The maximum guess for the period
: param heur i s t i c s_c ipher s_d ic t : Dict ionary tha t maps the h e u r i s t i c s to

the c iphers they a f f e c t
: param h e u r i s t i c s _ t u p l e : The h e u r i s t i c s we w i l l take in to cons idera t ion

(we may not want a l l o f them)
" " "

self.original_cipher: str = original_cipher

self.heuristics_tuple: tuple[str] = heuristics_tuple

self.heuristics_vals: dict[str, Fraction] = {}

self.heuristics_ciphers_affected: dict[str, list[str]] = {}

Variab les requ ired for mu l t i p l e h e u r i s t i c s (so we don ’ t repeat t h e i r
c a l c u l a t i o n)

cryptogram_alphabet, split_text = get_alphabet_and_split_text(text,

symbols_per_character)

cryptogram_char_abs_freq = calc_character_abs_frequency(split_text,

cryptogram_alphabet)

cryptogram_char_rel_freq =

calc_character_rel_frequency(cryptogram_char_abs_freq)

HEURISTICS PRE−CALCULATION

95

index of coincidence
ic = calc_ic(cryptogram_char_abs_freq, len(split_text))

HEURISTICS CALCULATION
for heuristic in heuristics_tuple:

val = Fraction(0)

ciphers_affected = ()

if heuristic == "h_alpha":

val, ciphers_affected = h_alpha(cryptogram_alphabet)

elif heuristic == "h_ic":

val, ciphers_affected = h_ic(ic)

elif heuristic == "h_ic_period":

val, ciphers_affected = h_ic_period(split_text,

cryptogram_alphabet, min_period_guess, max_period_guess)

elif heuristic == "h_ncd":

val, ciphers_affected = h_ncd(split_text, cryptogram_alphabet,

min_period_guess, max_period_guess)

elif heuristic == "h_phillips":

val, ciphers_affected = h_phillips(split_text,

cryptogram_alphabet)

elif heuristic == "h_trans":

val, ciphers_affected = h_trans(cryptogram_char_rel_freq,

coding.handy_vars.ENGLISH_LETTER_FREQ)

self.heuristics_vals[heuristic] = val

self.heuristics_ciphers_affected[heuristic] = ciphers_affected

def print(self):

for heuristic in self.heuristics_vals:

print(heuristic + ":", self.heuristics_vals[heuristic],

self.heuristics_ciphers_affected[heuristic][1])

def get_scores(

self,

ciphers_tuple: tuple[str],

weights_dict: dict[str, Fraction]

) -> dict[str, Fraction]:

" " "
Given the t u p l e o f c iphers and the weights , c a l c u l a t e s the score of

each c ipher .
: param ciphers_tup le : Tuple o f c iphers
: param weights_dic t : Weights d ic t ionary , h e u r i s t i c −> weight
: return : Score of each cipher , c ipher −> score
" " "
cipher_scores = {}

96 Appendix B. Code

for cipher in ciphers_tuple:

cipher_scores[cipher] = Fraction(0)

for heuristic in self.heuristics_tuple:

cur_weight = weights_dict[heuristic]

val_times_weight = self.heuristics_vals[heuristic] * cur_weight

for cipher in self.heuristics_ciphers_affected[heuristic]:

if cipher in ciphers_tuple:

cipher_scores[cipher] += val_times_weight

return cipher_scores

def cipher_and_calc_heuristics(

text: str,

symbols_per_character: int,

min_period_guess: int,

max_period_guess: int,

ciphers_tuple: tuple[str],

heuristics_tuple,

) -> list[CalculatedHeuristics]:

" " "
Given a t e x t c iphers i t with the given c iphers and c a l c u l a t e s the

h e u r i s t i c s fo r each cryptogram .
Returns a l i s t o f sa id c a l c u l a t e d h e u r i s t i c s .
: param ciphers_tup le : Ciphers to be used to crea te c iphered t e x t s to

c a l c u l a t e h e u r i s t i c s with
: param t e x t : The t e x t on which we want to c a l c u l a t e the h e u r i s t i c s
: param symbols_per_character : The number of symbols per character we are

cons ider ing
: param min_period_guess : The maximum guess for the period
: param max_period_guess : The maximum guess for the period
: param h e u r i s t i c s _ t u p l e : The h e u r i s t i c s we w i l l take in to cons idera t ion (we

may not want a l l o f them)
: return : Tuple o f h e u r i s t i c s c a l c u l a t e d from the var ious cryptogram
"" "
cryptograms_dict = cipher_text_with_given_ciphers(text, ciphers_tuple)

calculated_heuristics_list = []

for cipher in ciphers_tuple:

cryptogram = cryptograms_dict[cipher]

calculated_heuristics_list.append(

CalculatedHeuristics(

text=cryptogram,

symbols_per_character=symbols_per_character,

min_period_guess=min_period_guess,

max_period_guess=max_period_guess,

heuristics_tuple=heuristics_tuple,

original_cipher=cipher

)

)

return calculated_heuristics_list

97

def get_more_heuristics(

he: HInput,

ciphers_tuple: tuple[str, ...]

) -> list[CalculatedHeuristics]:

" " "
Given a cleaned t e x t to sample from , crea te s n samples ,
c iphers them with a l l the c iphers and c a l c u l a t e s t h e i r h e u r i s t i c s .
: param he : An Heur i s t i c s Inpu t ob jec t , conta ining the input necessary
: param ciphers_tup le : Ciphers for which we w i l l c rea te a cryptogram
: return : L i s t with t u p l e o f h e u r i s t i c s for each t e x t
" " "

calculated_heuristics = []

texts_to_cipher = corpus.get_random_texts_from_file(

he.clean_corpus_path,

he.clean_corpus_length,

(he.min_text_length, he.max_text_length,),

he.n_texts

)

for i in range(len(texts_to_cipher)):

calculated_heuristics.extend(

cipher_and_calc_heuristics(

texts_to_cipher[i],

he.symbols_per_character,

he.min_period_guess,

he.max_period_guess,

ciphers_tuple,

he.heuristics_tuple

)

)

return calculated_heuristics� �
thesis_code/classifier/input_objects.py� �

from fractions import Fraction

from typing import Callable

class SAInput:

" " "
Object tha t s t o r e s the input used in the s imulated anneal ing part o f the

a lgor i thm .
" " "
def __init__(

self,

acceptable_fallback_ratio: Fraction,

minimum_improvement_value: Fraction,

max_failed_attempts_tolerated: int,

98 Appendix B. Code

ratings_window_size: int,

identification_function: Callable,

verbose: bool = False

):

" " "
Input for the simulated−anneal ing part o f the a lgor i thm
: param ratings_window_size : The s i z e o f the prev ious ra t ing s window
: param accep tab l e_fa l l back_ra t io : How much the weights are a l lowed to

worsen in percentage
: param minimum_improvement_value : How much the weights should improve

in percentage
: param max_fai led_attempts_tolerated : The number of f a i l e d attempts at

improving be fore f i n a l l y s topping
" " "
simulated anneal ing input
self.acceptable_fallback_ratio = acceptable_fallback_ratio

self.minimum_improvement_value = minimum_improvement_value

self.max_failed_attempts = max_failed_attempts_tolerated

self.ratings_window_size = ratings_window_size

self.identification_function = identification_function

self.verbose = verbose

class FTInput:

" " "
Object tha t s t o r e s the input used in the f ine −tuning part o f the a lgor i thm .
" " "
def __init__(

self,

necessary_improvement_between_iterations: Fraction,

max_failed_attempts: int,

weight_increment: Fraction,

initial_weights: dict[str, Fraction],

verbose: bool = False

):

" " "
Input for the f ine −tuning (overview) of the a lgor i thm .
: param necessary_improvement_between_iterations : The necessary

improvement in percentage
tha t has to occur during i t e r a t i o n s
: param max_failed_attempts : The maximum number the a lgor i thm w i l l f a i l

b e fore s topping
: param weight_increment : The increment given to the weights fo r the

mutations
: param i n i t i a l _ w e i g h t s : The i n i t i a l weights , should we want some
" " "
f ine −tuning input
self.necessary_improvement_between_iterations =

necessary_improvement_between_iterations

self.max_failed_attempts = max_failed_attempts

self.initial_weight_increment = weight_increment

99

self.initial_weights = initial_weights

self.verbose = verbose

class HInput:

" " "
Object tha t s t o r e s the input used for the h e u r i s t i c s .
" " "
def __init__(

self,

clean_corpus_path: str,

clean_corpus_length: int,

min_text_length: int,

max_text_length: int,

n_texts: int,

symbols_per_character: int,

min_period_guess: int,

max_period_guess: int,

heuristics_tuple: tuple[str, ...]

):

" " "
Input for the h e u r i s t i c s generated .
: param max_text_length : Maximum leng th for the t e x t
: param min_text_length : Minimum leng th for the t e x t
: param clean_corpus_length : Number of charac ters o f the corpus
: param clean_corpus_path : Path to corpus , a f t e r the corpus has been

cleaned of unwanted charac ters
: param n_texts : The number of t e x t s we want to sample
: param symbols_per_character : The number of symbols per character we

are cons ider ing
: param max_period_guess : The maximum guess for the period
: param heur i s t i c s_c ipher s_d ic t : Dict ionary tha t maps the h e u r i s t i c s to

the c iphers they a f f e c t
: param h e u r i s t i c s _ t u p l e : The h e u r i s t i c s we w i l l take in to cons idera t ion

(we may not want a l l o f them)
" " "

h e u r i s t i c s input
self.clean_corpus_path = clean_corpus_path

self.clean_corpus_length = clean_corpus_length

self.min_text_length = min_text_length

self.max_text_length = max_text_length

self.n_texts = n_texts

self.symbols_per_character = symbols_per_character

self.min_period_guess = min_period_guess

self.max_period_guess = max_period_guess

self.heuristics_tuple = heuristics_tuple� �
thesis_code/classifier/simulated_annealing.py� �
from __future__ import annotations

100 Appendix B. Code

import random

import time

from fractions import Fraction

from typing import Any

from classifier.heuristics import CalculatedHeuristics, get_more_heuristics

from classifier.input_objects import SAInput, HInput, FTInput

from classifier.tuple_rating import get_weights_rating

def mutate_weights(

weights_dict: dict[str, Fraction],

weight_increment: Fraction,

chosen_heuristic: str = None,

) -> dict[str, Fraction]:

" " "
Mutates a t u p l e o f weights . The change can be at most the va lue of

mutation_threshold .
: param weight_increment : How much we want to increase the chosen weight

be fore normal iz ing the weights
: param weights_dic t : Tuple with weights
: param chosen_heuris t ic : The h e u r i s t i c fo r which the weight should be

increased ; by d e f a u l t one i s picked at random
: return : Returns mutated weights .
" " "
mutated_weights_dict = weights_dict.copy()

if chosen_heuristic is None:

chosen_heuristic = random.choice(list(mutated_weights_dict))

sum_to_divide_with = Fraction(1) + weight_increment

mutated_weights_dict[chosen_heuristic] += weight_increment

for heuristic in mutated_weights_dict.keys():

mutated_weights_dict[heuristic] =

Fraction(mutated_weights_dict[heuristic], sum_to_divide_with)

return mutated_weights_dict

class RatingsWindow:

" " "
Object to hold the l a t e s t r a t ing s and act as a window .
" " "
def __init__(self, window_size: int):

self.window: list[Fraction, ...] = []

self.window_size: int = window_size

self.mean: Fraction = Fraction(0)

def push_rating(self, new_rating):

if len(self.window) < self.window_size:

101

we c a l c u l a t e l i k e t h i s to avoid re−adding every element to the
mean

given i t s very time−consuming using f r a c t i o n s
self.mean = (self.mean * len(self.window) + new_rating) /

(len(self.window) + 1)

self.window.append(new_rating)

else:

rating_to_be_removed = self.window[0]

we c a l c u l a t e l i k e t h i s to avoid re−adding every element to the
mean

given i t s very time−consuming using f r a c t i o n s
self.mean = (self.mean * self.window_size - rating_to_be_removed +

new_rating) / self.window_size

self.window = self.window[1:]

self.window.append(new_rating)

def get_mean(self) -> Fraction:

return self.mean

def get_last_rating(self) -> Fraction | None:

if self.window is []:

return None

else:

if len(self.window) == 0:

return Fraction(0)

else:

return self.window[len(self.window) - 1]

def is_the_window_full(self) -> bool:

return len(self.window) >= self.window_size

def print(self):

print("window of size", self.window_size, ":", self.window)

print(self.mean)

def is_within_afr_or_better(

acceptable_fallback_ratio: Fraction,

current_rating: Fraction,

previous_rating: Fraction

) -> bool:

" " "
Checks i f the ra t ing i s wi th in the accep tab l e f a l l b a c k r a t i o .
: param accep tab l e_fa l l back_ra t io : The va lue of the accep tab l e f a l l b a c k r a t i o
: param current_rat ing : The current ra t ing
: param previous_rat ing : The prev ious ra t ing
: return : True i f i s within , f a l s e otherwise
" " "
if previous_rating == 0:

return True

elif current_rating > previous_rating:

102 Appendix B. Code

return True

else:

return acceptable_fallback_ratio >= (1 - current_rating /

previous_rating)

def is_within_miv(

minimum_improvement_value: Fraction,

current_rating: Fraction,

ratings_window: RatingsWindow

) -> bool:

" " "
Checks i f the current ra t ing i s wi th in the minimum improvement va lue .
: param minimum_improvement_value : The minimum improvement va lue
: param current_rat ing : The current ra t ing
: param ratings_window : The window where the prev ious ra t ing s are s tored
: return : True i f i s within , f a l s e otherwise
" " "
return minimum_improvement_value <= current_rating -

ratings_window.get_mean()

def simulated_annealing(

calculated_heuristics_list: [CalculatedHeuristics, ...],

current_weight_increment: Fraction,

ciphers_tuple: tuple[str, ...],

initial_weights: dict[str, Fraction],

initial_rating: Fraction,

sa: SAInput,

) -> tuple[dict[str, Fraction], Fraction]:

" " "
Does the s imulated anneal ing part o f the a lgor i thm to f ind working weights

fo r the c l a s s i f i e r .
: param sa : Input o b j e c t fo r the simulated−anneal ing with the necessary input
: param i n i t i a l _ r a t i n g : The i n i t i a l ra t ing for the weights , so tha t we can

have a minimum to s t a r t from
: param current_weight_increment : Increment to be app l i ed during the weight

mutations
: param c a l c u l a t e d _ h e u r i s t i c s _ l i s t : A l i s t o f pre−c a l c u l a t e d h e u r i s t i c s over

cryptograms
: param ciphers_tup le : A t u p l e o f the c iphers to take in to cons idera t ion
: param i n i t i a l _ w e i g h t s : The i n i t i a l we ights fo r the s imulated anneal ing
: return : The r e s u l t i n g weights and t h e i r ra t ing
" " "
ratings_window = RatingsWindow(sa.ratings_window_size)

current_weights = initial_weights

current_rating = initial_rating

if sa.verbose:

print("initial weights for simulated annealing:")

for heuristic in initial_weights:

print(initial_weights[heuristic], heuristic)

103

print("==" * 20)

Fai led attempts = 0
failed_attempts = 0

while True:

g e t t i n g new weights through mutation
new_weights = mutate_weights(current_weights, current_weight_increment)

c a l c u l a t i n g the new ra t ing (i d e n t i f i c a t i o n attempt)
new_rating = get_weights_rating(

new_weights, calculated_heuristics_list, ciphers_tuple,

sa.identification_function

)

if sa.verbose:

for heuristic in new_weights.keys():

print(new_weights[heuristic], heuristic)

print("rating: ", new_rating, float(new_rating))

does the new s e t improve i d e n t i f i c a t i o n or i s wi th in an accep tab l e
f a l l b a c k ?

within_afr = is_within_afr_or_better(sa.acceptable_fallback_ratio,

new_rating, ratings_window.get_last_rating())

if sa.verbose: print("AFR", within_afr)

if within_afr:

i f i t does improve i d e n t i f i c a t i o n then . . .
current_weights = new_weights

current_rating = new_rating

failed_attempts = 0

if sa.verbose: print("FAILED =0")

i s the new s e t wi th in the minimum improvement va lue ?
within_miv = is_within_miv(sa.minimum_improvement_value,

new_rating, ratings_window)

window_full = ratings_window.is_the_window_full()

if sa.verbose: print("WINDOW FULL AND NOT MIV", window_full and not

within_miv)

if window_full and not within_miv:

if sa.verbose: print("SA STOPPED HERE")

return current_weights, current_rating

else:

ratings_window.push_rating(new_rating)

else:

i f i t does NOT improve i d e n t i f i c a t i o n then . . .
failed_attempts += 1

if sa.verbose: print("FAILED +1")

has the number of attempts been exceeded?
if failed_attempts > sa.max_failed_attempts:

return current_weights, current_rating

104 Appendix B. Code

if sa.verbose: print("==" * 20)

def weight_training(

ft: FTInput,

sa: SAInput,

he: HInput,

ciphers_tuple: tuple[str, ...],

) -> tuple[dict[str, Fraction], Fraction, list[Any], float]:

" " "
Trains a t u p l e o f weights
: param f t : The f ine −tuning input
: param sa : The simulated anneal ing input
: param he : The h e u r i s t i c s input
: param ciphers_tup le : The t u p l e o f c iphers
: return : Returns t u p l e with weights , t h e i r rat ing , the l i s t o f computed

h e u r i s t i c s o b j e c t s and the e lapsed time
" " "
start_time = time.time()

current_weights = ft.initial_weights

print(current_weights)

current_rating = Fraction(0)

current_weight_increment = ft.initial_weight_increment

failed_attempts = 0

calculated_heuristics_list = get_more_heuristics(he, ciphers_tuple)

while True:

if ft.verbose:

print("CURRENT RATING:", float(current_rating))

new_weights, new_rating = simulated_annealing(

calculated_heuristics_list,

current_weight_increment,

ciphers_tuple,

current_weights,

current_rating,

sa

)

checking to see i f the ra t ing has improved enough
if new_rating >= current_rating +

ft.necessary_improvement_between_iterations:

i f there was enough improvement . . .
current_weights = new_weights

current_rating = new_rating

calculated_heuristics_list += get_more_heuristics(he, ciphers_tuple)

failed_attempts = 0

else:

i f there was not enough improvement . . .

105

failed_attempts += 1

if failed_attempts >= ft.max_failed_attempts:

elapsed_time = time.time() - start_time

calculated_heuristics_list_actually_used =

calculated_heuristics_list[:-he.n_texts *
len(ciphers_tuple)]

return current_weights, current_rating,

calculated_heuristics_list_actually_used, elapsed_time

else:

current_weight_increment = Fraction(current_weight_increment, 2)� �
thesis_code/classifier/tuple_rating.py� �
from fractions import Fraction

from typing import Callable

from classifier.heuristics import CalculatedHeuristics

from coding.tools import get_reverse_dict

def id_1(original_cipher: str, scores: dict[str, Fraction]) -> Fraction:

" " "
The f i r s t eva lua t ion funct ion presented in the t h e s i s .
Only checks i f the o r i g i n a l c ipher i s one with the h i g h e s t score , does not

take t i e s in to account .
: param or ig ina l_c ipher : The o r i g i n a l c ipher
: param scores : The scores o f each c ipher
: return : 1 i f the h i g h e s t score i s the o r i g i n a l cipher , 0 otherwise
" " "
max_score = max(scores.values())

list_of_keys = list()

I t e r a t e over a l l the items in d i c t i onary to f ind keys with max va lue
for cipher, value in scores.items():

if value == max_score:

list_of_keys.append(cipher)

if len(list_of_keys) == 1:

if list_of_keys[0] == original_cipher:

pr in t (" h i g h e s t score c ipher : " , l i s t_of_keys [0])
return Fraction(1)

return Fraction(0)

def id_2(original_cipher: str, scores: dict[str, Fraction]) -> Fraction:

" " "
Improved eva lua t ion funct ion .
Ca lcu la t e s the 1 − (cipher_rank / how_many_ciphers_there_are) .
This means tha t the be s t returned va lue p o s s i b l e i s 1 , and the worst i s 1 /

how_many_ciphers_there_are .
: param or ig ina l_c ipher : The o r i g i n a l c ipher

106 Appendix B. Code

: param scores : The scores o f each c ipher
: return : The score as exp lained , 1 − (cipher_rank /

how_many_ciphers_there_are)
" " "
ranks = get_ranking(scores)

position = ranks[original_cipher]

return 1 - Fraction(position, len(scores.keys()))

def apply_identification_function(

heuristics: CalculatedHeuristics,

scores: dict[str, Fraction],

identification_function: Callable

) -> Fraction:

" " "
Ca lcu la t e s how good the weights are using the eva lua t ion funct ion passed .
: param i d e n t i f i c a t i o n _ f u n c t i o n : Chosen eva lua t ion funct ion for the scores
: param scores : The score of each c ipher
: param h e u r i s t i c s : Heur i s t i c s o b j e c t
: return : Value returned by the eva lua t ion funct ion for the computed scores
" " "
return identification_function(heuristics.original_cipher, scores)

def get_weights_rating(

weights_dict: dict[str, Fraction],

calculated_heuristics_list: list[CalculatedHeuristics],

ciphers_tuple: tuple[str],

identification_function

) -> Fraction:

" " "
Given the weights fo r the h e u r i s t i c s and a l i s t o f t u p l e s o f h e u r i s t i c s fo r

each cryptogram
returns the number of correc t cryptograms guessed out o f the given

cryptograms
(each cryptogram h e u r i s t i c i s a cryptogram) .
: param weights_dic t : Dict ionary of the weights o f the h e u r i s t i c s
: param c a l c u l a t e d _ h e u r i s t i c s _ l i s t : L i s t o f h e u r i s t i c s
: param ciphers_tup le : Ciphers for which we w i l l t r y to guess
: param i d e n t i f i c a t i o n _ f u n c t i o n : Chosen eva lua t ion funct ion for the scores
: return : Score of the s e t o f weights in the given h e u r i s t i c s
" " "
id_function_result = 0

for calculated_heuristics in calculated_heuristics_list:

scores = calculated_heuristics.get_scores(ciphers_tuple, weights_dict)

id_function_result +=

apply_identification_function(calculated_heuristics, scores,

identification_function)

107

return Fraction(id_function_result, len(calculated_heuristics_list))

def get_ranking(scores_dict: dict[str, Fraction]) -> dict[str, int]:

" " "
Given a d i c t i onary with scores o f each c ipher re turns the ranking of each

cipher ,
according to the d e f i n i t i o n of rank given in the t h e s i s .
: param scores_dic t : The d i c t i onary with the scores o f the ciphers , Cipher

−> Score
: return : A d ic t i onary with the ranking of each cipher , Cipher −> Rank
" " "
sorted_scores = list(set(scores_dict.values()))

sorted_scores.sort(reverse=True)

inv_dict = get_reverse_dict(scores_dict)

ranks = {}

cur_rank = 0

for score in sorted_scores:

ciphers_with_this_score = inv_dict[score]

for cipher in ciphers_with_this_score:

ranks[cipher] = cur_rank + len(ciphers_with_this_score) - 1

cur_rank += len(ciphers_with_this_score)

return ranks� �
thesis_code/coding/cipher.py� �
import collections

import random

from copy import deepcopy

from typing import Optional

from coding.polybius import Polybius, Polybius3d

from coding.tools import closest_perfect_square, split_text_into_list

def caesar_cipher(text: str, alphabetic_key: tuple[str, ...], shift: int) ->

str:

" " "
Given a t e x t re turns the t e x t c iphered with the caesar c ipher .
To decipher ins tead of the s h i f t g i v e i t the l eng th of the a lphabe t −

encrypt ion s h i f t
: param t e x t : Text to be c iphered / deciphered
: param alphabet ic_key : Alphabet order
: param s h i f t : S h i f t
: return : Ciphered/Deciphered t e x t
" " "

108 Appendix B. Code

ciphered = ""

text_list = split_text_into_list(text, alphabetic_key)

for character in text_list:

ciphered_index = (alphabetic_key.index(character) + shift) %

len(alphabetic_key)

ciphered = ciphered + alphabetic_key[ciphered_index]

return ciphered

def substitution_cipher(text: str, mapping: {str}) -> str:

" " "
Given a dic t ionary , with a mapping [character −> s u b s t i t u t i o n

character (s)] , a p p l i e s i t .
: param t e x t : Text to be c iphered / deciphered
: param mapping : Dict ionary with mapping
: return : Ciphered t e x t
" " "
return ’’.join([mapping[letter] for letter in split_text_into_list(text,

mapping.keys())])

def substitution_decipher(text: str, inv_mapping: {str}) -> str:

" " "
Given a dic t ionary , with a mapping [s u b s t i t u t i o n character (s) −>

character] , a p p l i e s i t .
: param t e x t : Text to decipher
: param inv_mapping : Dict ionary with mapping
: return : Deciphered t e x t
" " "
return ’’.join([inv_mapping[letter] for letter in

split_text_into_list(text, inv_mapping.keys())])

def homophonic_substitution_cipher(text: str, mapping: {set}) -> str:

" " "
S u b s t i t u t i o n c ipher tha t happens to be homophonic .
: param t e x t : Text to c ipher
: param mapping : Dict ionary with mapping [character −> s u b s t i t u t i o n

charac ters]
: return : Ciphered t e x t
" " "
ciphered = ""

text_list = split_text_into_list(text, mapping.keys())

for character in text_list:

s = mapping[character]

ciphered += random.sample(s, 1)[0]

return ciphered

109

def homophonic_substitution_decipher(text: str, inv_mapping: {str}) -> str:

" " "
S u b s t i t u t i o n c ipher tha t happens to be homophonic .
: param t e x t : Text to decipher
: param inv_mapping : Dict ionary with mapping [s u b s t i t u t i o n charac ters −>

character]
: return : Deciphered t e x t
" " "
ciphered = ""

text_list = split_text_into_list(text, inv_mapping)

for character in text_list:

ciphered += inv_mapping[character]

return ciphered

def vigenere_cipher_character(a: str, b: str, alphabetic_key: tuple[str, ...])

-> str:

" " "
Given 2 charac ters and an a l p h a b e t i c key re turns the c iphered r e s u l t .
To decipher ins tead of b g i ve i t the character in
[l eng th of the a l p h a b e t i c key − index of b]
: param a : P la in t e x t l e t t e r
: param b : Key l e t t e r
: param alphabet ic_key : Alphabet order
: return : Ciphered/Deciphered l e t t e r
" " "
a_index = alphabetic_key.index(a)

b_index = alphabetic_key.index(b)

c_index = (a_index + b_index) % len(alphabetic_key)

return alphabetic_key[c_index]

def vigenere_cipher(text: str, alphabetic_key: tuple[str, ...], key: tuple[str,

...]) -> str:

" " "
Ciphers the t e x t with a gener ic v igenere
: param t e x t : The t e x t to c ipher
: param alphabet ic_key : Alphabet order
: param key : Key used to c ipher in a l i s t format
: return : Ciphered t e x t
" " "
ciphered = ""

text_list = split_text_into_list(text, alphabetic_key)

i = 0

for text_character in text_list:

key_character = key[i % len(key)]

ciphered += vigenere_cipher_character(text_character, key_character,

alphabetic_key)

i += 1

110 Appendix B. Code

return ciphered

def vigenere_decipher(text: str, alphabetic_key: tuple[str, ...], key:

tuple[str, ...]) -> str:

" " "
Deciphers the t e x t with a gener ic v igenere .
: param t e x t : The t e x t to decipher
: param alphabet ic_key : Alphabet order
: param key : Key used to c ipher in a l i s t format
: return : Deciphered t e x t
" " "
deciphered = ""

text_list = split_text_into_list(text, alphabetic_key)

i = 0

for text_character in text_list:

key_character = key[i % len(key)]

necessary to decipher ins tead of c ipher ing
key_character_inv = alphabetic_key[

(len(alphabetic_key) - alphabetic_key.index(key_character)) %

len(alphabetic_key)

]

deciphered += vigenere_cipher_character(text_character,

key_character_inv, alphabetic_key)

i += 1

return deciphered

def autokey_output_fed_cipher(text: str, alphabetic_key: tuple[str, ...], key:

tuple[str]) -> str:

" " "
Ciphers the t e x t using v igenere autokey c i p h e r t e x t fed .
: param t e x t : The t e x t to c ipher
: param alphabet ic_key : Alphabet order
: param key : I n i t i a l key used to c ipher
: return : Ciphered t e x t
" " "
ciphered = []

text_list = split_text_into_list(text, alphabetic_key)

buffered_key = collections.deque(key)

for character in text_list:

c = vigenere_cipher_character(character, buffered_key[0],

alphabetic_key)

ciphered.append(c)

buffered_key.append(c)

buffered_key.popleft()

111

return ’’.join(ciphered)

def autokey_output_fed_decipher(text: str, alphabetic_key: tuple[str, ...],

key: tuple[str]) -> str:

" " "
Deciphers the t e x t using v igenere autokey c i p h e r t e x t fed .
: param t e x t : The t e x t to decipher
: param alphabet ic_key : Alphabet order
: param key : I n i t i a l key used to c ipher
: return : P la in t e x t with deciphered t e x t
" " "
deciphered = []

text_list = split_text_into_list(text, alphabetic_key)

buffered_key = collections.deque(key)

for character in text_list:

key_character_inv = alphabetic_key[

(len(alphabetic_key) - alphabetic_key.index(buffered_key[0])) %

len(alphabetic_key)

]

d = vigenere_cipher_character(character, key_character_inv,

alphabetic_key)

deciphered.append(d)

buffered_key.append(character)

buffered_key.popleft()

return ’’.join(deciphered)

def autokey_input_fed_cipher(text: str, alphabetic_key: tuple[str, ...], key:

tuple[str]) -> str:

" " "
Ciphers the t e x t using v igenere autokey p l a i n t e x t fed .
: param t e x t : The t e x t to c ipher
: param alphabet ic_key : Alphabet order
: param key : Beginning of the key used to c ipher
: return : Cipher tex t with c iphered t e x t
" " "

ciphered = []

text_list = split_text_into_list(text, alphabetic_key)

buffered_key = collections.deque(key)

i = 0

for character in text_list:

c = vigenere_cipher_character(character, buffered_key[0],

alphabetic_key)

ciphered.append(c)

buffered_key.append(text_list[i])

112 Appendix B. Code

buffered_key.popleft()

i += 1

return ’’.join(ciphered)

def autokey_input_fed_decipher(text: str, alphabetic_key: tuple[str, ...], key:

tuple[str]) -> str:

" " "
Deciphers the t e x t using v igenere autokey p l a i n t e x t fed .
: param t e x t : The t e x t to decipher
: param alphabet ic_key : Alphabet order
: param key : Beginning of the key used to c ipher
return : P la in t e x t with deciphered t e x t
" " "
deciphered = []

text_list = split_text_into_list(text, alphabetic_key)

buffered_key = collections.deque(key)

for character in text_list:

key_character_inv = alphabetic_key[

(len(alphabetic_key) - alphabetic_key.index(buffered_key[0])) %

len(alphabetic_key)

]

d = vigenere_cipher_character(character, key_character_inv,

alphabetic_key)

deciphered.append(d)

buffered_key.append(d)

buffered_key.popleft()

return ’’.join(deciphered)

def _bifid_periodless_cipher(text: str, polybius: Polybius) -> str:

" " "
Given a s t r i n g c iphers the s t r i n g with the p e r i o d l e s s b i f i d c ipher .
: param t e x t : The t e x t to c ipher
: param po l yb iu s : Tuple containing the po l yb iu s in d i c t i o n a r i e s (row and

column)
: return : The ciphered t e x t
" " "
size = len(text)

ciphered = []

for i in range(0, len(text) * 2, 2):

x = polybius.t[text[i % size]][i // size]

y = polybius.t[text[(i + 1) % size]][(i + 1) // size]

ciphered.append(polybius.t_inv[(x, y)])

return ’’.join(ciphered)

def _bifid_periodless_decipher(text: str, polybius: Polybius) -> str:

113

" " "
Given a s t r i n g dec iphers the s t r i n g with the p e r i o d l e s s b i f i d c ipher .
: param t e x t : The t e x t to decipher
: param po l yb iu s : Tuple containing the po l yb iu s in d i c t i o n a r i e s (row and

column)
: return : The deciphered t e x t
" " "
deciphered = []

size = len(text)

for i in range(0, len(text)):

x = polybius.t[text[i // 2]][i % 2]

y = polybius.t[text[(i + size) // 2]][(i + size) % 2]

deciphered.append(polybius.t_inv[(x, y)])

return ’’.join(deciphered)

def bifid_cipher(text: str, polybius: Polybius, period: int) -> str:

" " "
Ciphers the t e x t using the b i f i d c ipher .
: param t e x t : The t e x t to c ipher
: param po l yb iu s : Tuple containing the po l yb iu s in d i c t i o n a r i e s (row and

column)
: param period : The c ipher ’ s per iod
: return : The ciphered t e x t
" " "
last_block = len(text) % period

ciphered_text = ""

for p in range(0, len(text) - last_block, period):

ciphered_text += _bifid_periodless_cipher(text[p:(p + period)],

polybius)

if last_block > 0:

ciphered_text += _bifid_periodless_cipher(text[-last_block:], polybius)

return ciphered_text

def bifid_decipher(text: str, polybius: Polybius, period: int) -> str:

" " "
Deciphers the t e x t using the b i f i d c ipher .
: param t e x t : The t e x t to decipher
: param po l yb iu s : Tuple containing the po l yb iu s in d i c t i o n a r i e s (row and

column)
: param period : The c ipher ’ s per iod
: return : The deciphered t e x t
" " "
deciphered_text = ""

last_block = len(text) % period

for p in range(0, len(text) - last_block, period):

deciphered_text += _bifid_periodless_decipher(text[p:(p + period)],

polybius)

if last_block > 0:

deciphered_text += _bifid_periodless_decipher(text[-last_block:],

114 Appendix B. Code

polybius)

return deciphered_text

def _phillips_periodless_cipher(text: str, polybius: Polybius, dig_val: int) ->

str:

" " "
Given a s t r i n g c iphers / dec iphers the s t r i n g with the p h i l l i p s c ipher .
: param t e x t : The t e x t to c ipher / decipher
: param po l yb iu s : Tuple containing the po l yb iu s in d i c t i o n a r i e s (row and

column)
: param dig_val : 1 i f c ipher ing , −1 i f dec ipher ing
: return : The ciphered / deciphered t e x t
" " "
ciphered = []

for i in range(0, len(text)):

letter_xy = polybius.t[text[i]]

ciphered_letter_xy = ((letter_xy[0] + dig_val) % 5, (letter_xy[1] +

dig_val) % 5)

ciphered.append(polybius.t_inv[ciphered_letter_xy])

return ’’.join(ciphered)

def _phillips_move_row_down(polybius: Polybius, row: int) -> None:

" " "
Given a po l yb iu s t a b l e made with two d i c t i o n a r i e s and given a row , lowers

tha t row once .

: param row : The row to be moved down
"" "
x = row % 4

for y in range(0, 5):

letra1 = polybius.t_inv[(x, y)]

letra2 = polybius.t_inv[((x + 1) % 5, y)]

polybius.t_inv[(x, y)] = letra2

polybius.t_inv[((x + 1) % 5, y)] = letra1

polybius.t[letra1] = ((x + 1) % 5, y)

polybius.t[letra2] = (x, y)

def phillips_cipher(text: str, polybius: Polybius, period: int) -> str:

polybius2 = deepcopy(polybius)

ciphered_text = ""

row = 0

last_row_to_switch = 4

counter = 1

for p in range(0, len(text), period):

ciphered_text += _phillips_periodless_cipher(text[p:p + period],

polybius2, 1)

_phillips_move_row_down(polybius2, row)

115

row += 1

counter += 1

if counter % 8 == 1: # 8 i s the number of t a b l e s
polybius2 = deepcopy(polybius)

last_row_to_switch = 4

row = 0

if last_row_to_switch == 0:

last_row_to_switch = 4

if row == last_row_to_switch:

row = 0

last_row_to_switch = last_row_to_switch - 1

return ciphered_text

def phillips_decipher(text: str, polybius: Polybius, period: int) -> str:

polybius2 = deepcopy(polybius)

deciphered_text = ""

row = 0

last_row_to_switch = 4

counter = 1

for p in range(0, len(text), period):

deciphered_text += _phillips_periodless_cipher(text[p:p + period],

polybius2, -1)

_phillips_move_row_down(polybius2, row)

row += 1

counter += 1

if counter % 8 == 1: # 8 i s the number of t a b l e s
polybius2 = deepcopy(polybius)

last_row_to_switch = 4

row = 0

if last_row_to_switch == 0:

last_row_to_switch = 4

if row == last_row_to_switch:

row = 0

last_row_to_switch = last_row_to_switch - 1

return deciphered_text

def checkerboard_cipher(text: str, polybius: Polybius) -> str:

" " "
Given a s t r i n g c iphers the s t r i n g with the checkerboard c ipher .
: param t e x t : The t e x t to c ipher
: param po l yb iu s : Tuple containing the po l yb iu s in d i c t i o n a r i e s (row and

column)
: return : The ciphered t e x t
" " "

def get_checkerboard_indexes(horizontal_keywords: [str], vertical_keywords:

[str]) -> tuple:

k_letters_row = {}

k_letters_col = {}

116 Appendix B. Code

for i in range(5):

letter_list = [word[i] for word in horizontal_keywords]

k_letters_col[i] = letter_list

for i in range(5):

letter_list = [word[i] for word in vertical_keywords]

k_letters_row[i] = letter_list

return k_letters_col, k_letters_row

checkerboard_indexes = get_checkerboard_indexes(polybius.col_words,

polybius.row_words)

keyword_letters_col = checkerboard_indexes[0]

keyword_letters_row = checkerboard_indexes[1]

ciphered = []

for letter in text:

(x, y) = polybius.t[letter]

ciphered.append(random.choice(keyword_letters_row[x]))

ciphered.append(random.choice(keyword_letters_col[y]))

return ’’.join(ciphered)

def checkerboard_decipher(text: str, polybius: Polybius) -> str:

" " "
Given a s t r i n g dec iphers the s t r i n g with the checkerboard c ipher .
: param t e x t : The t e x t to decipher
: param po l yb iu s : Tuple containing the po l yb iu s in d i c t i o n a r i e s (row and

column)
: return : The deciphered t e x t
" " "

def get_checkerboard_indexes_inv(horizontal_keywords: [str],

vertical_keywords: [str]) -> tuple:

k_letters_row_inv = {}

k_letters_col_inv = {}

for i in range(5):

letter_list = [word[i] for word in horizontal_keywords]

for letter in letter_list:

k_letters_col_inv[letter] = i

for i in range(5):

letter_list = [word[i] for word in vertical_keywords]

for letter in letter_list:

k_letters_row_inv[letter] = i

return k_letters_col_inv, k_letters_row_inv

checkerboard_indexes_inv = get_checkerboard_indexes_inv(polybius.col_words,

polybius.row_words)

keyword_letters_col_inv = checkerboard_indexes_inv[0]

keyword_letters_row_inv = checkerboard_indexes_inv[1]

deciphered = []

for i in range(0, len(text), 2):

letter_for_row = text[i]

letter_for_col = text[i + 1]

117

row = keyword_letters_row_inv[letter_for_row]

col = keyword_letters_col_inv[letter_for_col]

deciphered.append(polybius.t_inv[(row, col)])

return ’’.join(deciphered)

def _trifid_periodless_cipher(text: str, polybius: Polybius3d) -> str:

" " "
Given a s t r i n g c iphers the s t r i n g with the p e r i o d l e s s t r i f i d c ipher .
: param t e x t : The t e x t to c ipher
: param po l yb iu s : 3 dimensional po l y b iu s
: return : The ciphered t e x t
" " "
size = len(text)

ciphered = []

for i in range(0, len(text) * 3, 3):

x = polybius.t[text[i % size]][i // size]

y = polybius.t[text[(i + 1) % size]][(i + 1) // size]

z = polybius.t[text[(i + 2) % size]][(i + 2) // size]

ciphered.append(polybius.t_inv[(x, y, z)])

return ’’.join(ciphered)

def _trifid_periodless_decipher(text: str, polybius: Polybius3d) -> str:

" " "
Given a s t r i n g dec iphers the s t r i n g with the p e r i o d l e s s t r i f i d c ipher .
: param t e x t : The t e x t to decipher
: param po l yb iu s : 3 dimensional po l y b iu s
: return : The deciphered t e x t
" " "
deciphered = []

size = len(text)

for i in range(0, len(text)):

x = polybius.t[text[i // 3]][i % 3]

y = polybius.t[text[(i + size) // 3]][(i + size) % 3]

z = polybius.t[text[(i + 2 * size) // 3]][(i + 2 * size) % 3]

deciphered.append(polybius.t_inv[(x, y, z)])

return ’’.join(deciphered)

def trifid_cipher(text: str, polybius: Polybius3d, period: int) -> str:

" " "
Ciphers the t e x t using the t r i f i d c ipher .
: param t e x t : The t e x t to c ipher
: param po l yb iu s : 3 dimensional po l y b iu s
: param period : The c ipher ’ s per iod
: return : Cipher tex t with c iphered t e x t
" " "
last_block = len(text) % period

ciphered_text = ""

for p in range(0, len(text) - last_block, period):

118 Appendix B. Code

ciphered_text += _trifid_periodless_cipher(text[p:(p + period)],

polybius)

if last_block > 0:

ciphered_text += _trifid_periodless_cipher(text[-last_block:], polybius)

return ciphered_text

def trifid_decipher(text: str, polybius: Polybius3d, period: int) -> str:

" " "
Deciphers the t e x t using the t r i f i d c ipher .
: param t e x t : The t e x t to decipher
: param po l yb iu s : 3 dimensional po l y b iu s
: param period : The c ipher ’ s per iod
: return : The deciphered t e x t
" " "
deciphered_text = ""

last_block = len(text) % period

for p in range(0, len(text) - last_block, period):

deciphered_text += _trifid_periodless_decipher(text[p:(p + period)],

polybius)

if last_block > 0:

deciphered_text += _trifid_periodless_decipher(text[-last_block:],

polybius)

return deciphered_text

def numbered_key_cipher(text: str, key: tuple) -> str:

" " "
Ciphers the t e x t using the numbered key c ipher .
: param t e x t : The t e x t to c ipher
: param key : Tuple with the d i c t i o n a r i e s
: return : The ciphered t e x t
" " "
ciphered = []

t = key[0]

for letter in text:

numbers = t[letter]

chosen_number = random.choice(numbers)

if chosen_number < 10:

ciphered.append(str(0))

ciphered.append(str(chosen_number))

return ’’.join(ciphered)

def numbered_key_decipher(text: str, key: tuple) -> str:

" " "
Deciphers the t e x t using the numbered key c ipher .
: param t e x t : The t e x t to decipher
: param key : Tuple with the d i c t i o n a r i e s
: return : The deciphered t e x t
" " "

119

deciphered = []

t_inv = key[1]

for i in range(0, len(text), 2):

number = int(text[i:i + 2])

deciphered.append(t_inv[number])

return ’’.join(deciphered)

def playfair_cipher(text: str, polybius: Polybius, blank_char: str) -> str:

" " "
Ciphers with the p l a y f a i r c ipher . The f i l l e r char i s used to separate pa i r s

o f equa l l e t t e r s .
: param t e x t : Text to c ipher
: param po l yb iu s : Tuple containing the po l yb iu s in d i c t i o n a r i e s (row and

column)
: param blank_char : Char to use to separate equa l l e t t e r s
: return : Ciphered t e x t
" " "
ciphered = ""

for i in range(0, len(text) - 1, 2):

if text[i] == text[i + 1]:

text = text[:i + 1] + blank_char + text[i + 1:]

if len(text) % 2 != 0:

text += blank_char

for i in range(0, len(text), 2):

coord1 = polybius.t[text[i]]

coord2 = polybius.t[text[i + 1]]

if coord1[0] == coord2[0]:

ciphered += polybius.t_inv[(coord1[0], (coord1[1] + 1) % 5)]

ciphered += polybius.t_inv[(coord2[0], (coord2[1] + 1) % 5)]

elif coord1[1] == coord2[1]:

ciphered += polybius.t_inv[((coord1[0] + 1) % 5, coord1[1])]

ciphered += polybius.t_inv[((coord2[0] + 1) % 5, coord2[1])]

else:

ciphered += polybius.t_inv[(coord1[0], coord2[1])]

ciphered += polybius.t_inv[(coord2[0], coord1[1])]

return ciphered

def playfair_decipher(text: str, polybius: Polybius) -> str:

" " "
Decipher with the p l a y f a i r dec ipher . There can be some res idue from the

f i l l e r charac ters .
: param t e x t : Text to decipher
: param po l yb iu s : Tuple containing the po l yb iu s in d i c t i o n a r i e s (row and

column)
: return : Deciphered t e x t

120 Appendix B. Code

" " "
deciphered = ""

for i in range(0, len(text), 2):

coord1 = polybius.t[text[i]]

coord2 = polybius.t[text[i + 1]]

if coord1[0] == coord2[0]:

deciphered += polybius.t_inv[(coord1[0], (coord1[1] - 1) % 5)]

deciphered += polybius.t_inv[(coord2[0], (coord2[1] - 1) % 5)]

elif coord1[1] == coord2[1]:

deciphered += polybius.t_inv[((coord1[0] - 1) % 5, coord1[1])]

deciphered += polybius.t_inv[((coord2[0] - 1) % 5, coord2[1])]

else:

deciphered += polybius.t_inv[(coord1[0], coord2[1])]

deciphered += polybius.t_inv[(coord2[0], coord1[1])]

return deciphered

def nihilist_substitution_cipher(text: str, polybius: Polybius, key: tuple[str,

...]) -> str:

" " "
Ciphers using the n i h i l i s t s u b s t i t u t i o n c ipher .
: param t e x t : Text to c ipher
: param po l yb iu s : Polyb ius to be used
: param key : Keyword to be used
: return : Ciphered t e x t
" " "

def add_indexes(first: tuple[int, int], second: tuple[int, int]) -> str:

" " "
Adds indexes given as t u p l e s . Also transforms 105 to 05 , fo r example ,

during the c a l c u l a t i o n s .
: param f i r s t : F i r s t t u p l e
: param second : Second t u p l e
: return : Tuple r e s u l t a n t o f add i t ion
" " "
first = int(str(first[0]) + str(first[1]))

second = int(str(second[0]) + str(second[1]))

r = first + second

if r >= 100:

r_aux = str(r)

return r_aux[1:]

elif r < 10:

return "0" + str(r)

else:

return str(r)

key_indexes = [(polybius.t[letter][0] + 1, polybius.t[letter][1] + 1) for

letter in key]

121

ciphered_list = [add_indexes((polybius.t[text[i]][0] + 1,

polybius.t[text[i]][1] + 1), key_indexes[i % len(key)])

for i in range(len(text))]

return "".join(ciphered_list)

def nihilist_substitution_decipher(text: str, polybius: Polybius, key:

tuple[str, ...]) -> str:

" " "
Deciphers with the n i h i l i s t s u b s t i t u t i o n decipher .
: param t e x t : Text to be deciphered
: param po l yb iu s : Polyb ius used to c ipher
: param key : Keyword used to c ipher
: return : Deciphered t e x t
" " "

def sub_indexes(first: tuple[int, int], second: tuple[int, int]) ->

tuple[int, int]:

" " "
Sub trac t s indexes given as t u p l e s . Also transforms 05 to 105 , fo r

example , during the c a l c u l a t i o n s .
: param f i r s t : F i r s t t u p l e
: param second : Second t u p l e
: return : Tuple r e s u l t a n t o f the sub t rac t i on
" " "
transforming to i n t s
first = int(str(first[0]) + str(first[1]))

second = int(str(second[0]) + str(second[1]))

checking i f b i g ge r than 100 , s ince 105 , fo r example , would be
c iphered to 05 ins tead of 105

if first <= 10:

first = int("10" + str(first))

r = first - second

transforming back to t u p l e s o f coord inates
real_indexes = int(str(r)[0]), int(str(r)[1])

return real_indexes

key_indexes = [polybius.t[letter] for letter in key]

deciphered = ""

for i in range(0, len(text), 2):

coord = int(text[i]), int(text[i + 1])

k = key_indexes[(i // 2) % len(key)]

k = (k[0] + 1, k[1] + 1)

indexes = sub_indexes(coord, k)

indexes = indexes[0] - 1, indexes[1] - 1

122 Appendix B. Code

deciphered += polybius.t_inv[indexes]

return deciphered

def nihilist_transposition_cipher(text: str, alphabet: tuple[str, ...], key:

tuple[int, ...],

blank_character: Optional[str] = None) -> str:

" " "
Ciphers using the t rans po s i t i on c ipher .
: param alphabe t : The a lphabe t to be used . A l l the charac ters should have

the same number of symbols .
: param t e x t : The t e x t to c ipher / decipher
: param key : The key to be used − should be an array of i n t e g e r s in some

order from 0 to square_len − 1
: param blank_character : Character to f i l l the r e s t o f the message with , to

the s i z e o f the square − by d e f a u l t i t ’ s f i l l e d with random charac ters
: return : The r e s u l t i n g t e x t
" " "
import math

text_list = split_text_into_list(text, alphabet)

adding ex tra chars to the t e x t i f needed
n_missing_chars = closest_perfect_square(len(text_list)) - len(text_list)

extra_chars = []

if n_missing_chars > 0:

if blank_character is None:

extra_chars = [random.choice(alphabet) for _ in

range(n_missing_chars)]

else:

extra_chars = [blank_character for _ in range(n_missing_chars)]

text_list = text_list + extra_chars

square_side_len = math.ceil(math.sqrt(len(text_list)))

ordering by rows
ordered_by_rows = [text_list[row_number * square_side_len:(row_number + 1)

* square_side_len] for row_number in key]

ordering by c o l s
ordered_by_rows_and_cols = [[] for _ in range(square_side_len)]

for col_number in range(square_side_len):

for row in ordered_by_rows:

ordered_by_rows_and_cols[col_number].append(row[key[col_number]])

put t ing every th ing toge ther
ciphered = ""

for i in range(square_side_len):

for j in range(square_side_len):

ciphered += ordered_by_rows_and_cols[j][i]

123

return ciphered

def nihilist_transposition_decipher(text: str, alphabet: tuple[str, ...], key:

tuple[int, ...]) -> str:

" " "
Deciphers using the t rans po s i t i on c ipher .
: param alphabe t : The a lphabe t to be used . A l l the charac ters should have

the same number of symbols .
: param t e x t : The t e x t to c ipher / decipher
: param key : The key to be used − should be an array of i n t e g e r s in some

order from 0 to square_len − 1
: return : The r e s u l t i n g t e x t
" " "
import math

text_list = split_text_into_list(text, alphabet)

square_side_len = math.ceil(math.sqrt(len(text_list)))

ordering by rows
ordered_by_rows = [text_list[row_number * square_side_len:(row_number + 1)

* square_side_len] for row_number in key]

ordering by c o l s
ordered_by_rows_and_cols = [[] for _ in range(square_side_len)]

for col_number in range(square_side_len):

for row in ordered_by_rows:

ordered_by_rows_and_cols[col_number].append(row[key[col_number]])

put t ing every th ing toge ther
ciphered = ""

for i in range(square_side_len):

for j in range(square_side_len):

ciphered += ordered_by_rows_and_cols[j][i]

return ciphered� �
thesis_code/coding/corpus.py� �
import os

import random

def clean_text(

text: str, alphabet: tuple[str]

) -> str:

" " "
Given a t e x t and an a lphabe t re turns the t e x t in lowercase and removes any

character not in the a lphabe t .
: param t e x t : The t e x t to c lean
: param alphabe t : The accepted a lphabe t

124 Appendix B. Code

: return : The c lean t e x t
" " "
clean = [item.lower() for item in text]

clean = [c for c in clean if c in alphabet]

return ’’.join(clean)

def clean_corpus(

corpus_path: str, alphabet: tuple[str], clean_corpus_path: str

) -> int:

" " "
Given the path for a f i l e with a corpus , c l eans i t with the given a lphabe t

[see c lean_text ()] and outputs i t to
the given output path . Returns the number of charac ters in the new f i l e .
: param corpus_path : Path for the input f i l e
: param alphabe t : Alphabet to c lean corpus with
: param clean_corpus_path : Path for the output
: return : The number of charac ters in the output ted f i l e
" " "
if os.path.isfile(corpus_path):

reading the o r i g i n a l t e x t
input_file = open(corpus_path, "r")

input_text = input_file.read()

cleaning the t e x t
output_text = clean_text(input_text, alphabet)

wri t ing to f i l e
output_file = open(clean_corpus_path, "w")

output_file.write(output_text)

output_file.close()

return len(output_text)

else:

raise Exception("File not found!")

def get_random_texts_from_file(

file_path: str, file_length: int, text_length: int | tuple[int, int] |

list[int, int], n_texts: int = 1

) -> dict[int, str]:

" " "
Given the path to a f i l e re turns a l i s t o f random s t r ing s , with the given

parameters .
: param f i l e_pa th : The path to the f i l e
: param f i l e _ l e n g t h : The l eng th of the f i l e
: param tex t_ leng th : The l eng th of the tex t , can be a s i n g l e int ,
or two i n t s in a t u p l e for a random leng th wi th in tha t i n t e r v a l

: param n_texts : Number of t e x t s
: return : L i s t with t e x t s
" " "
text_list = {}

125

with open(file_path, "r") as text_file:

for i in range(n_texts):

g e t t i n g the t e x t l eng th
if type(text_length) is int:

sample_length = text_length

elif type(text_length) is list:

sample_length = random.randint(text_length[0], text_length[1])

elif type(text_length) is tuple:

sample_length = random.randint(text_length[0], text_length[1])

g e t t i n g a random place to s t a r t the t e x t
start_index = random.randint(0, file_length - sample_length)

end_index = start_index + sample_length

g e t t i n g the t e x t and appending to the l i s t
text_file.seek(start_index)

text_sample = text_file.read(end_index - start_index)

text_list[i] = text_sample

return text_list

def get_random_text_from_file(

file_path: str, file_length: int, text_length: int | tuple[int, int] |

list[int, int]

) -> str:

" " "
Given the path to a f i l e re turns a random str ing , with the given parameters .
: param f i l e_pa th : The path to the f i l e
: param f i l e _ l e n g t h : The l eng th of the f i l e
: param tex t_ leng th : The l eng th of the tex t , can be a s i n g l e int ,
or two i n t s in a t u p l e for a random leng th wi th in tha t i n t e r v a l

: return : S tr ing with t e x t
" " "
return get_random_texts_from_file(file_path, file_length, text_length, 1)[0]

def get_number_of_chars_in_file(

file_path: str

) -> int:

" " "
Given a f i l e re turns the number of charac ters wi th in the f i l e .
: param f i l e_pa th : The path to the f i l e
: return : The number of charac ters in the f i l e
" " "
file = open(file_path, "r")

data = file.read()

length = len(data)

file.close()

return length� �
thesis_code/coding/generatecrypto.py

126 Appendix B. Code

� �
import random

from random import randint

from typing import Optional, Union

import numpy

from coding.polybius import Polybius, Polybius3d

import coding.handy_vars as handy_vars

from coding.tools import closest_perfect_square

d e f a u l t s f o r generator func t ions
DEFAULT_PERMUTE_ALPHABET = True

DEFAULT_ALPHABET = list(handy_vars.ENGLISH_ALPHABET)

DEFAULT_ALPHABET_POLYBIUS = list(handy_vars.ENGLISH_ALPHABET_NO_J)

DEFAULT_ALPHABET_TRIFID = list(handy_vars.ENGLISH_ALPHABET_27)

DEFAULT_MIN_KEY_LENGTH = 5

DEFAULT_MAX_KEY_LENGTH = 20 # the max l eng th i t s e l f can be used
DEFAULT_BLANK_CHARACTER = "x"

def create_caesar_cryptogram(

text: str,

alphabetic_key_list: Optional[list[str]] = None,

permute_alphabet: Optional[bool] = DEFAULT_PERMUTE_ALPHABET,

key: Optional[int] = None

) -> tuple[str, tuple[str, ...], int]:

" " "
Creates a cryptogram using the caesar c ipher .
: param t e x t : Text to c ipher
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET
: param permute_alphabet : True to permute , f a l s e otherwise
: param key : Key i f you want to de f ine one , o therwise a random w i l l be chosen
: return : Tuple with (c iphered tex t , Alphabet ic key , key)
" " "
s e t t i n g the a lphabe t
alphabetic_key_list = alphabetic_key_list if alphabetic_key_list else

DEFAULT_ALPHABET

permuting the a l p h a b e t i c key i f necessary
if permute_alphabet:

random.shuffle(alphabetic_key_list)

alphabetic_key = tuple(alphabetic_key_list)

s e t t i n g the s h i f t i f necessary
if key is None:

key = randint(1, len(alphabetic_key_list) - 1) # s t a r t s in 1 , ends in
len (a lphabet ic_key) − 1

from coding.cipher import caesar_cipher

ciphertext = caesar_cipher(text, alphabetic_key, key)

return ciphertext, alphabetic_key, key

127

def create_vigenere_cryptogram(

text: str,

alphabetic_key_list: Optional[list[str, ...]] = None,

permute_alphabet: Optional[bool] = DEFAULT_PERMUTE_ALPHABET,

key: Optional[tuple[str, ...]] = None,

key_len: Optional[int] = None,

) -> tuple[str, tuple[str, ...], tuple[str, ...]]:

" " "
Creates a cryptogram using the v igenere c ipher .
: param t e x t : The t e x t to c ipher
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET
: param permute_alphabet : True to permute , f a l s e otherwise
: param key : Keyword , None i s a random one with s i z e key_len
: param key_len : S i ze for the random key , None ranges from

DEFAULT_MIN_KEY_LENGTH to DEFAULT_MAX_KEY_LENGTH
: return : Tuple with (c iphered tex t , key , a l p h a b e t i c key)
" " "
s e t t i n g the a lphabe t
alphabetic_key_list = alphabetic_key_list if alphabetic_key_list else

DEFAULT_ALPHABET

permuting the a l p h a b e t i c key i f necessary
if permute_alphabet:

alphabetic_key_list = list(alphabetic_key_list)

random.shuffle(alphabetic_key_list)

alphabetic_key = tuple(alphabetic_key_list)

s e t t i n g the key
if key is None:

if key_len is None:

key_len = randint(DEFAULT_MIN_KEY_LENGTH, DEFAULT_MAX_KEY_LENGTH)

key = tuple(numpy.random.choice([char for char in alphabetic_key],

size=key_len, replace=True))

from coding.cipher import vigenere_cipher

ciphertext = vigenere_cipher(text, alphabetic_key, key)

return ciphertext, alphabetic_key, key

def create_autokey_cryptogram(

text: str,

mode: Optional[str] = "input",

alphabetic_key_list: Optional[list[str, ...]] = None,

permute_alphabet: Optional[bool] = DEFAULT_PERMUTE_ALPHABET,

key: Optional[Union[tuple[str, ...], str]] = None,

key_len: Optional[int] = None

) -> tuple[str, tuple[str, ...], tuple[str, ...]]:

" " "

128 Appendix B. Code

Creates a cryptogram using the autokey c iphers .
: param t e x t : Text to c ipher
: param mode : " input " for autokey p l a i n t e x t fed ; " output " fo r autokey

c i p h e r t e x t fed
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET
: param permute_alphabet : True to permute , f a l s e otherwise
: param key : Keyword , None i s a random one with s i z e key_len
: param key_len : S i ze for the random key , None ranges from

DEFAULT_MIN_KEY_LENGTH to DEFAULT_MAX_KEY_LENGTH
: return : Tuple with (c iphered tex t , a l p h a b e t i c key , key)
" " "
if mode not in ["input", "output"]:

raise Exception("Invalid mode")

s e t t i n g the a lphabe t
alphabetic_key_list = alphabetic_key_list if alphabetic_key_list else

DEFAULT_ALPHABET

permuting the a l p h a b e t i c key i f necessary
if permute_alphabet:

alphabetic_key_list = list(alphabetic_key_list)

random.shuffle(alphabetic_key_list)

alphabetic_key = tuple(alphabetic_key_list)

s e t t i n g the key
if key is None:

if key_len is None:

key_len = randint(DEFAULT_MIN_KEY_LENGTH, DEFAULT_MAX_KEY_LENGTH)

key = tuple(numpy.random.choice([char for char in alphabetic_key],

size=key_len, replace=True))

ciphertext = ""

if mode == "input":

from coding.cipher import autokey_input_fed_cipher

ciphertext = autokey_input_fed_cipher(text, alphabetic_key, key)

elif mode == "output":

from coding.cipher import autokey_output_fed_cipher

ciphertext = autokey_output_fed_cipher(text, alphabetic_key, key)

return ciphertext, alphabetic_key, key

def create_bifid_cryptogram(

text: str,

polybius: Optional[Polybius] = None,

keyword: Optional[tuple[str, ...]] = None,

alphabetic_key_list: Optional[list[str, ...]] = None,

permute_alphabet: Optional[bool] = DEFAULT_PERMUTE_ALPHABET,

period: Optional[int] = None

) -> tuple[str, Polybius, int]:

129

" " "
Creates a cryptogram using the b i f i d c ipher .
: param t e x t : Text to c ipher
: param po l yb iu s : A po l yb iu s to use , None to generate a random one
: param keyword : I n i t i a l i z a t i o n key for the Polyb ius
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET_POLYBIUS
: param permute_alphabet : True to permute , f a l s e otherwise
: param period : The period for the cipher , None ranges from

DEFAULT_MIN_KEY_LENGTH to DEFAULT_MAX_KEY_LENGTH
: return : Tuple with (c iphered tex t , po lyb ius , per iod)
" " "

s e t t i n g the po l yb iu s
if polybius is None:

polybius = get_polybius(permute_alphabet, keyword, alphabetic_key_list)

s e t t i n g the period
if period is None:

period = randint(DEFAULT_MIN_KEY_LENGTH, DEFAULT_MAX_KEY_LENGTH)

from coding.cipher import bifid_cipher

ciphertext = bifid_cipher(text, polybius, period)

return ciphertext, polybius, period

def create_phillips_cryptogram(

text: str,

polybius: Optional[Polybius] = None,

keyword: Optional[tuple[str, ...]] = None,

alphabetic_key_list: Optional[list[str, ...]] = None,

permute_alphabet: Optional[bool] = DEFAULT_PERMUTE_ALPHABET,

period: Optional[int] = None

) -> tuple[str, Polybius, int]:

" " "
Creates a cryptogram using the p h i l l i p s c ipher .
: param t e x t : Text to c ipher
: param po l yb iu s : A po l yb iu s to use , None to generate a random one
: param keyword : I n i t i a l i z a t i o n key for the Polyb ius
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET_POLYBIUS
: param permute_alphabet : True to permute , f a l s e otherwise
: param period : The period for the cipher , None ranges from

DEFAULT_MIN_KEY_LENGTH to DEFAULT_MAX_KEY_LENGTH
: return : Tuple with (c iphered tex t , Polybius , per iod)
" " "
s e t t i n g the a lphabe t
alphabetic_key_list = alphabetic_key_list if alphabetic_key_list else

DEFAULT_ALPHABET_POLYBIUS

s e t t i n g the po l yb iu s

130 Appendix B. Code

if polybius is None:

polybius = get_polybius(permute_alphabet, keyword, alphabetic_key_list)

s e t t i n g the period
if period is None:

period = randint(DEFAULT_MIN_KEY_LENGTH, DEFAULT_MAX_KEY_LENGTH)

from coding.cipher import phillips_cipher

ciphertext = phillips_cipher(text, polybius, period)

return ciphertext, polybius, period

def create_trifid_cryptogram(

text: str,

polybius3d: Optional[Polybius3d] = None,

keyword: Optional[tuple[str, ...]] = None,

alphabetic_key_list: Optional[list[str, ...]] = None,

permute_alphabet: Optional[bool] = DEFAULT_PERMUTE_ALPHABET,

period: Optional[int] = None

) -> tuple[str, Polybius3d, int]:

" " "
Creates a cryptogram using the t r i f i d c ipher .
: param t e x t : Text to c ipher
: param po lyb ius3d : A (3−dimensional) po l y b iu s to use , None to generate a

random one
: param keyword : I n i t i a l i z a t i o n key for the Polyb ius
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET_TRIFID
: param permute_alphabet : True to permute , f a l s e otherwise
: param period : The period for the cipher , None ranges from

DEFAULT_MIN_KEY_LENGTH to DEFAULT_MAX_KEY_LENGTH
: return : Tuple with (c iphered tex t , Polybius , per iod)
" " "
s e t t i n g the a lphabe t
alphabetic_key_list = alphabetic_key_list if alphabetic_key_list else

DEFAULT_ALPHABET_TRIFID

s e t t i n g the three−dimensional po l y b iu s
if polybius3d is None:

polybius3d = get_polybius3d(permute_alphabet, keyword,

alphabetic_key_list)

if period is None:

period = randint(DEFAULT_MIN_KEY_LENGTH, DEFAULT_MAX_KEY_LENGTH)

from coding.cipher import trifid_cipher

ciphertext = trifid_cipher(text, polybius3d, period)

return ciphertext, polybius3d, period

def create_checkerboard_cryptogram(

text: str,

131

polybius: Optional[Polybius] = None,

keyword: Optional[tuple[str, ...]] = None,

alphabetic_key_list: Optional[list[str, ...]] = None,

permute_alphabet: Optional[bool] = DEFAULT_PERMUTE_ALPHABET

) -> tuple[str, Polybius]:

" " "
Creates a cryptogram using the checkerboard c ipher .
: param t e x t : Text to c ipher
: param po l yb iu s : A po l yb iu s to use , None to generate a random one .
Should have indexes a t t r i b u t e d or e l s e random ones w i l l be a t t r i b u t e d .
: param keyword : I n i t i a l i z a t i o n key for the Polyb ius
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET_POLYBIUS
: param permute_alphabet : True to permute , f a l s e otherwise
: return : Tuple with (c iphered tex t , Polyb ius)
" " "
s e t t i n g the po l yb iu s
if polybius is None:

polybius = get_polybius(permute_alphabet, keyword, alphabetic_key_list)

if polybius.has_indexes() is False:

necessary to s e t up a l i s t to use for the indexes
if alphabetic_key_list is None:

alphabetic_key_list = DEFAULT_ALPHABET_POLYBIUS

alphabet2 = alphabetic_key_list.copy()

random.shuffle(alphabet2)

alphabet2 = "".join(alphabet2)

hor = [alphabet2[:5], alphabet2[5:10]]

ver = [alphabet2[10:15], alphabet2[15:20]]

polybius.add_indexes(hor, ver)

from coding.cipher import checkerboard_cipher

ciphertext = checkerboard_cipher(text, polybius)

return ciphertext, polybius

def create_numbered_key_cryptogram(

text: str,

keyword: Optional[tuple] = None,

key_len: Optional[int] = None,

alphabetic_key_list: Optional[list[str, ...]] = None,

permute_alphabet: Optional[bool] = DEFAULT_PERMUTE_ALPHABET

) -> tuple[str, tuple]:

" " "
Ciphers using the numbered key c ipher

: param t e x t : Text to c ipher
: param keyword : I n i t i a l i z a t i o n key for the numbered key
: param permute_alphabet : True i f you wish the a lphabe t to be permuted ,

132 Appendix B. Code

False otherwise
: param key_len : S i ze for the random key , None ranges from

DEFAULT_MIN_KEY_LENGTH to DEFAULT_MAX_KEY_LENGTH
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET
: return : The ciphered tex t , numbered key
" " "
s e t t i n g the a lphabe t
alphabetic_key_list = alphabetic_key_list if alphabetic_key_list else

DEFAULT_ALPHABET

permuting the a l p h a b e t i c key i f necessary
if permute_alphabet:

random.shuffle(alphabetic_key_list)

if keyword is None:

if key_len is None:

key_len = randint(DEFAULT_MIN_KEY_LENGTH, DEFAULT_MAX_KEY_LENGTH)

keyword = tuple(numpy.random.choice(alphabetic_key_list, size=key_len,

replace=True))

from coding.tools import get_numbered_key

numbered_key = get_numbered_key(keyword, alphabetic_key_list, randint(1,

len(alphabetic_key_list) - 1))

from coding.cipher import numbered_key_cipher

ciphertext = numbered_key_cipher(text, numbered_key)

return ciphertext, numbered_key

def create_playfair_cryptogram(text: str,

polybius: Optional[Polybius] = None,

keyword: Optional[tuple[str, ...]] = None,

alphabetic_key_list: Optional[list[str, ...]] =

None,

permute_alphabet: Optional[bool] =

DEFAULT_PERMUTE_ALPHABET,

blank_character: Optional[str] =

DEFAULT_BLANK_CHARACTER

) -> tuple[str, Polybius, str]:

" " "
Creates a cryptogram using the p l a y f a i r c ipher .
: param t e x t : Text to c ipher
: param po l yb iu s : A po l yb iu s to use , None to generate a random one .
: param keyword : I n i t i a l i z a t i o n key for the Polyb ius
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET_POLYBIUS
: param permute_alphabet : True to permute , f a l s e otherwise
: param blank_character : Character to use as b lank character , d e f a u l t uses

DEFAULT_BLANK_CHARACTER
: return : Tuple with (c iphered tex t , po lyb ius , b lank character)
" " "

133

s e t t i n g the po l yb iu s
if polybius is None:

polybius = get_polybius(permute_alphabet, keyword, alphabetic_key_list)

from coding.cipher import playfair_cipher

ciphertext = playfair_cipher(text, polybius, blank_character)

return ciphertext, polybius, blank_character

def create_nihilist_substitution_cryptogram(

text: str,

polybius: Optional[Polybius] = None,

key: Optional[tuple[str, ...]] = None,

key_len: Optional[int] = None,

keyword: Optional[tuple[str, ...]] = None,

alphabetic_key_list: Optional[list[str, ...]] = None,

permute_alphabet: Optional[bool] = DEFAULT_PERMUTE_ALPHABET

) -> tuple[str, Polybius, tuple[str, ...]]:

" " "
Creates a cryptogram using the n i h i l i s t s u b s t i t u t i o n c ipher .
: param t e x t : Text to c ipher
: param po l yb iu s : A po l yb iu s to use , None to generate a random one .
: param key : Key to be used when c ipher ing
: param key_len : S i ze for the random key , None ranges from

DEFAULT_MIN_KEY_LENGTH to DEFAULT_MAX_KEY_LENGTH
: param keyword : I n i t i a l i z a t i o n key for the Polyb ius
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET_POLYBIUS
: param permute_alphabet : True to permute , f a l s e otherwise
: return : Tuple with (c ipher t ex t , po lyb ius , key)
" " "
s e t t i n g the a lphabe t
alphabetic_key_list = alphabetic_key_list if alphabetic_key_list else

DEFAULT_ALPHABET_POLYBIUS

s e t t i n g the po l yb iu s
if polybius is None:

polybius = get_polybius(permute_alphabet, keyword, alphabetic_key_list)

if key is None:

from coding.tools import get_random_string

if key_len is None:

key_len = randint(DEFAULT_MIN_KEY_LENGTH, DEFAULT_MAX_KEY_LENGTH)

key = get_random_string(alphabetic_key_list, key_len)

from coding.cipher import nihilist_substitution_cipher

ciphertext = nihilist_substitution_cipher(text, polybius, key)

return ciphertext, polybius, key

def create_nihilist_transposition_cryptogram(

134 Appendix B. Code

text: str,

key: Optional[tuple[int, ...]] = None,

alphabetic_key_list: Optional[list[str, ...]] = None,

blank_character: str = DEFAULT_BLANK_CHARACTER

) -> tuple[str, tuple[str, ...], tuple[int, ...]]:

" " "
Creates a cryptogram using the n i h i l i s t t r anspo s i t i on c ipher .
: param blank_character : Character to use as b lank character , d e f a u l t uses

DEFAULT_BLANK_CHARACTER
: param t e x t : Text to c ipher
: param key : Key to be used when c ipher ing
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET
: return : Tuple with (c ipher t ex t , po lyb ius , t r ans po s i t i on key)
" " "
from coding.cipher import nihilist_transposition_cipher

s e t t i n g the a lphabe t
alphabetic_key_list = alphabetic_key_list if alphabetic_key_list else

DEFAULT_ALPHABET

alphabetic_key = tuple(alphabetic_key_list)

next_square = closest_perfect_square(len(text))

from math import sqrt, ceil

square_len = ceil(sqrt(next_square))

if key is None:

key_list = list(range(0, square_len))

random.shuffle(key_list)

key = tuple(key_list)

ciphertext = nihilist_transposition_cipher(text, alphabetic_key, key,

blank_character)

return ciphertext, tuple(alphabetic_key_list), key

def cipher_text_with_given_ciphers(

text: str,

ciphers_tuple: tuple[str, ...],

period_or_key_len=None

) -> dict[str, str]:

" " "
Given a t e x t re turns a t u p l e o f the t e x t c iphered with each c ipher
: param t e x t : The t e x t we want c iphered
: param ciphers_tup le : L i s t with c iphers to be used
: param period_or_key_len : In teger with the period l eng th or for a random

key l eng th
: return : Tuple o f c iphered t e x t
" " "
alphabet_list = list(handy_vars.ENGLISH_ALPHABET)

alphabet_list_polybius = list(handy_vars.ENGLISH_ALPHABET_NO_J)

alphabet_list_trifid = list(handy_vars.ENGLISH_ALPHABET_27)

135

if len(alphabet_list) == 25:

alphabet_list_polybius = alphabet_list

if len(alphabet_list) == 27:

alphabet_list_trifid = alphabet_list

ciphers_and_cryptograms = {cipher: "" for cipher in ciphers_tuple}

for cipher in ciphers_tuple:

if cipher == "caesar":

ciphers_and_cryptograms[cipher] = create_caesar_cryptogram(

text,

alphabetic_key_list=alphabet_list,

key=period_or_key_len

)[0]

elif cipher == "vigenere":

ciphers_and_cryptograms[cipher] = create_vigenere_cryptogram(

text,

alphabetic_key_list=alphabet_list,

key_len=period_or_key_len

)[0]

elif cipher == "autokey-input":

ciphers_and_cryptograms[cipher] = create_autokey_cryptogram(

text,

mode="input",

alphabetic_key_list=alphabet_list,

key_len=period_or_key_len

)[0]

elif cipher == "autokey-output":

ciphers_and_cryptograms[cipher] = create_autokey_cryptogram(

text,

mode="output",

alphabetic_key_list=alphabet_list,

key_len=period_or_key_len

)[0]

elif cipher == "bifid":

ciphers_and_cryptograms[cipher] = create_bifid_cryptogram(

text.replace("j", "i"),

alphabetic_key_list=alphabet_list_polybius,

period=period_or_key_len

)[0]

elif cipher == "phillips":

ciphers_and_cryptograms[cipher] = create_phillips_cryptogram(

text.replace("j", "i"),

alphabetic_key_list=alphabet_list_polybius,

period=period_or_key_len

)[0]

elif cipher == "checkerboard":

ciphers_and_cryptograms[cipher] = create_checkerboard_cryptogram(

text.replace("j", "i"),

alphabetic_key_list=alphabet_list_polybius

)[0]

136 Appendix B. Code

elif cipher == "trifid":

ciphers_and_cryptograms[cipher] = create_trifid_cryptogram(

text,

alphabetic_key_list=alphabet_list_trifid,

period=period_or_key_len

)[0]

elif cipher == "numbered-key":

ciphers_and_cryptograms[cipher] = create_numbered_key_cryptogram(

text,

alphabetic_key_list=alphabet_list,

key_len=period_or_key_len

)[0]

elif cipher == "playfair":

ciphers_and_cryptograms[cipher] = create_playfair_cryptogram(

text.replace("j", "i"),

alphabetic_key_list=alphabet_list_polybius

)[0]

elif cipher == "nihilist-substitution":

ciphers_and_cryptograms[cipher] =

create_nihilist_substitution_cryptogram(

text.replace("j", "i"),

alphabetic_key_list=alphabet_list_polybius,

key_len=period_or_key_len

)[0]

elif cipher == "nihilist-transposition":

ciphers_and_cryptograms[cipher] =

create_nihilist_transposition_cryptogram(

text,

alphabetic_key_list=alphabet_list

)[0]

else:

Exception("CIPHER DOESNT EXIST")

return ciphers_and_cryptograms

def get_polybius(

permute_alphabet: bool = True,

keyword: Optional[tuple[str, ...]] = None,

alphabetic_key_list: Optional[list[str, ...]] = None

) -> ’Polybius’:

" " "
Method to generate a random po lyb iu s according to the given input .
: param permute_alphabet : True to permute , f a l s e otherwise
: param keyword : I n i t i a l i z a t i o n key for the Polyb ius
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET_POLYBIUS
: return : Generated po l yb iu s
" " "
alphabetic_key_list = alphabetic_key_list if alphabetic_key_list else

DEFAULT_ALPHABET_POLYBIUS

137

permuting the a l p h a b e t i c key i f necessary
if permute_alphabet:

alphabetic_key_list = list(alphabetic_key_list)

random.shuffle(alphabetic_key_list)

alphabetic_key = tuple(alphabetic_key_list)

return Polybius.horizontal_from_keyword(

keyword,

alphabetic_key,

forbidden_characters="j",

)

def get_polybius3d(

permute_alphabet: bool = True,

keyword: Optional[tuple[str, ...]] = None,

alphabetic_key_list: Optional[list[str, ...]] = None

) -> ’Polybius3d’:

" " "
Method to generate a random (3−dimensional) po l y b iu s according to the given

input .
: param permute_alphabet : True to permute , f a l s e otherwise
: param keyword : I n i t i a l i z a t i o n key for the Polyb ius
: param a lphabe t i c_key_l i s t : The a lphabe t l i s t in i t s order − None uses

DEFAULT_ALPHABET_POLYBIUS
: return : Generated po l yb iu s
" " "
permuting the a l p h a b e t i c key i f necessary
if permute_alphabet:

alphabetic_key_list = list(alphabetic_key_list)

random.shuffle(alphabetic_key_list)

alphabetic_key = tuple(alphabetic_key_list)

s e t t i n g the po l yb iu s
polybius3d = Polybius3d.from_keyword(

keyword,

alphabetic_key,

)

return polybius3d� �
thesis_code/coding/handy_vars.py� �

" " "
This f i l e contains a c o l l e c t i o n of handy reoccurr ing v a r i a b l e s .
" " "
from fractions import Fraction

MONOALPHABETIC_MIN_IC: Fraction = Fraction(57, 1000) #0.057

ENGLISH_ALPHABET: tuple[str, ...] = \

(’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’,

138 Appendix B. Code

’k’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’,

’z’)

ENGLISH_ALPHABET_NO_J: tuple[str, ...] = \

(’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’,

’k’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’,

’z’)

ENGLISH_ALPHABET_27: tuple[str, ...] = \

(’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’,

’k’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’,

’z’, ’#’)

PORTUGUESE_ALPHABET: tuple[str, ...] = \

(’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’,

’k’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’,

’z’)

ALL_CRYPTOGRAMS_ALPHABET: tuple[str, ...] = (’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’,

’h’, ’i’, ’j’,

’k’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’,

’r’, ’s’, ’t’, ’u’, ’v’, ’w’,

’x’, ’y’,

’z’, ’#’,

’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,

’8’, ’9’, ’0’)

ENGLISH_LETTER_FREQ = {

’a’: Fraction(41, 500),

’b’: Fraction(3, 200),

’c’: Fraction(7, 250),

’d’: Fraction(43, 1000),

’e’: Fraction(13, 100),

’f’: Fraction(11, 500),

’g’: Fraction(1, 50),

’h’: Fraction(61, 1000),

’i’: Fraction(7, 100),

’j’: Fraction(3, 2000),

’k’: Fraction(77, 10000),

’l’: Fraction(1, 25),

’m’: Fraction(3, 125),

’n’: Fraction(67, 1000),

’o’: Fraction(3, 40),

’p’: Fraction(19, 1000),

’q’: Fraction(19, 20000),

’r’: Fraction(3, 50),

’s’: Fraction(63, 1000),

’t’: Fraction(91, 1000),

’u’: Fraction(7, 250),

’v’: Fraction(49, 5000),

’w’: Fraction(3, 125),

139

’x’: Fraction(3, 2000),

’y’: Fraction(1, 50),

’z’: Fraction(37, 50000)

}

#
ENGLISH_LETTER_FREQ: d i c t [s t r , f l o a t] = { ’a ’ : 8 .2 , ’ b ’ : 1 .5 , ’ c ’ : 2 .8 , ’ d ’ :

4 .3 , ’ e ’ : 13 ,
’ f ’ : 2 .2 , ’ g ’ : 2 , ’ h ’ : 6 .1 , ’ i ’ : 7 ,

’ j ’ : 0 .15 ,
’ k ’ : 0.77 , ’ l ’ : 4 , ’m ’ : 2 .4 , ’n ’ :

6 .7 , ’ o ’ : 7 .5 ,
’p ’ : 1 .9 , ’ q ’ : 0.095 , ’ r ’ : 6 , ’ s ’ :

6 .3 , ’ t ’ : 9 .1 ,
’u ’ : 2 .8 , ’ v ’ : 0 .98 , ’w ’ : 2 .4 , ’ x ’ :

0 .15 , ’ y ’ : 2 ,
’ z ’ : 0.074}

PORTUGUESE_LETTER_FREQ: dict[str, float] = {’a’: 13.49, ’b’: 1.01, ’c’: 3.75,

’d’: 4.21, ’e’: 14.07,

’f’: 1.07, ’g’: 1.08, ’h’: 1.22,

’i’: 5.67, ’j’: 0.30,

’k’: 0.13, ’l’: 3, ’m’: 5.07, ’n’:

5.02, ’o’: 10.44,

’p’: 3.01, ’q’: 1.10, ’r’: 6.73,

’s’: 7.35, ’t’: 5.07,

’u’: 4.57, ’v’: 1.72, ’w’: 0.05,

’x’: 0.28, ’y’: 0.04,

’z’: 0.45}

ALL_HEURISTICS_TUPLE = (

"h_alpha",

"h_ic",

"h_ic_period",

"h_ncd",

"h_phillips",

"h_trans",

)

ALL_CIPHERS_TUPLE = (

"caesar",

"vigenere",

"autokey-input",

"autokey-output",

"bifid",

"phillips",

"checkerboard",

"trifid",

"numbered-key",

"playfair",

140 Appendix B. Code

"nihilist-substitution",

"nihilist-transposition",

)

ALL_CIPHERS_TUPLE_NICE_NAME = (

"Caesar",

"Vigenere",

"Input autokey",

"Output autokey",

"Bifid",

"Phillips",

"Chequerboard",

"Trifid",

"Numbered key",

"Playfair",

"Nihilist substitution",

"Nihilist transposition",

)

CIPHERS_NICE_NAME_DICT = {

’caesar’: ’Caesar’,

’vigenere’: ’Vigenere’,

’autokey-input’: ’Input autokey’,

’autokey-output’: ’Output autokey’,

’bifid’: ’Bifid’,

’phillips’: ’Phillips’,

’checkerboard’: ’Chequerboard’,

’trifid’: ’Trifid’,

’numbered-key’: ’Numbered key’,

’playfair’: ’Playfair’,

’nihilist-substitution’: ’Nihilist substitution’,

’nihilist-transposition’: ’Nihilist transposition’

}

PERIODIC_CIPHERS_TUPLE = (

"vigenere",

"autokey-input",

"autokey-output",

"bifid",

"phillips",

"trifid",

"nihilist-substitution"

)

NON_PERIODIC_CIPHERS_TUPLE = (

"caesar",

"checkerboard",

"numbered-key",

"playfair",

141

"nihilist-transposition"

)� �
thesis_code/coding/polybius.py� �
from typing import Optional

class Polybius:

def __init__(

self,

content: tuple[str, ...],

col_words: Optional[list[str, ...]] = None,

row_words: Optional[list[str, ...]] = None

):

self.t = {}

self.t_inv = {}

for i in range(25):

current_tuple = (i // 5, i % 5)

self.t[content[i]] = current_tuple

self.t_inv[current_tuple] = content[i]

self.row_words = row_words

self.col_words = col_words

@classmethod

def from_content_list(

cls,

content: tuple[str],

col_words: Optional[list[str]] = None,

row_words: Optional[list[str]] = None

):

" " "
Constructs a Polyb ius square from the 25 f i r s t symbols o f a given l i s t .
Does not check for repeat s .
: param content : The charac ters to f i l l the square with
: param col_words : The words to f i l l the h o r i z o n t a l indexes much l i k e

for the checkerboard c ipher
: param row_words : The words to f i l l the v e r t i c a l indexes much l i k e for

the checkerboard c ipher
: return : Polyb ius square with given charac ters
" " "
return cls(content, row_words=row_words, col_words=col_words)

@classmethod

def horizontal_from_keyword(

cls,

keyword: tuple[str, ...],

alphabetic_key: tuple[str, ...],

col_words: Optional[tuple[str]] = None,

142 Appendix B. Code

row_words: Optional[tuple[str]] = None,

forbidden_characters: Optional[str] = None,

) -> ’Polybius’:

" " "
Construction of a po l yb iu s square using the usual h o r i z o n t a l method .
: param keyword : Keyword to i n i t i a t e the Polyb ius
: param alphabet ic_key : The a lphabe t to f i l l the Polyb ius
: param col_words : The words to f i l l the h o r i z o n t a l indexes much l i k e

for the checkerboard c ipher
: param row_words : The words to f i l l the v e r t i c a l indexes much l i k e for

the checkerboard c ipher
: param forbidden_characters : Characters we don ’ t want to inc lude in the

Polyb ius
: return :
" " "
from coding.tools import get_alphabet_with_key

content = get_alphabet_with_key(keyword, alphabetic_key)

if forbidden_characters is not None:

content = "".join([a for a in content if a not in

forbidden_characters])

return cls(content, row_words=row_words, col_words=col_words)

def print_polybius(self) -> None:

" " "
Prints the Polyb ius square .
" " "
for i in range(5):

for j in range(5):

print(self.t_inv[(i, j)], end=" ")

print()

if self.row_words is not None and self.col_words is not None:

print("HORIZONTAL WORDS:", self.col_words)

print("VERTICAL WORDS:", self.row_words)

def has_indexes(self) -> bool:

return self.col_words is not None and self.row_words is not None

def add_indexes(

self,

col_words: list[str],

row_words: list[str]

):

self.col_words = col_words

self.row_words = row_words

class Polybius3d:

def __init__(

self,

content: tuple[str, ...]

143

):

a = 0

b = 0

c = 0

self.t = {}

self.t_inv = {}

for letter in content:

self.t[letter] = (a, b, c)

self.t_inv[(a, b, c)] = letter

c += 1

c = c % 3

if c % 3 == 0:

b += 1

b = b % 3

if b % 3 == 0 and c % 3 == 0:

a += 1

@classmethod

def from_keyword(

cls,

keyword: tuple[str, ...],

alphabet: tuple[str, ...],

) -> ’Polybius3d’:

from coding.tools import get_alphabet_with_key

content = get_alphabet_with_key(keyword, alphabet)

return cls(content)� �
thesis_code/coding/statistics.py� �
from fractions import Fraction

from numbers import Number

from typing import TypeVar, Any

import numpy as np

import pandas

import coding.handy_vars

from coding.tools import get_ith_blocks_flatten, get_ith_blocks

T = TypeVar(’T’) # Declare type v a r i a b l e

def calc_non_connected_digraphs_frequency(

split_text: list[str],

alphabet: tuple[str],

distance: int

) -> dict[str, int]:

" " "

144 Appendix B. Code

For a given dis tance , c a l c u l a t e s the frequency for which a non−connected
digraph occurs for each l e t t e r .

: param s p l i t _ t e x t : Text in a l i s t format
: param alphabe t : The a lphabe t used
: param dis tance : Distance between d i f f e r e n t charac ters
: return : Dict ionary with f r equenc i e s
" " "
count = {}

for i in range(0, len(alphabet)):

count[alphabet[i]] = 0

for i in range(0, len(split_text) - distance):

if split_text[i] == split_text[i + distance]:

count[split_text[i]] += 1

return count

def calc_non_connected_digraphs_multiple_distances(

split_text: list[str],

alphabet: tuple[str],

max_distance: int

) -> dict[int, int]:

" " "
From 1 to a given maximum distance , c a l c u l a t e s the frequency for which

non−connected digraphs occur .
: param s p l i t _ t e x t : Text in l i s t format
: param alphabe t : The a lphabe t used
: param max_distance : Maximum dis tance between non−connected digraphs tha t

w i l l be taken in to account
− must be grea te r than 0
: return : Dict ionary with f r equenc i e s sums
" " "
count = {0: 0, 1: 0}

for distance in range(2, max_distance + 1):

count[distance] = sum(calc_non_connected_digraphs_frequency(split_text,

alphabet, distance).values())

return count

def calc_non_connected_digraphs_standard_deviation(

split_text: list[str],

alphabet: tuple[str],

max_distance: int

) -> dict[int, float]:

" " "
Given the max d i s tance between non−connected digraphs to examine ,
c a l c u l a t e s the standard dev ia t i on for each dis tance ,
in an e f f o r t to b e t t e r expose the key s i z e period for cer ta in c iphers .
: param s p l i t _ t e x t : The t e x t in a l i s t format
: param alphabe t : The a lphabe t o f the t e x t ’ s language

145

: param max_distance : Maximum dis tance between non−connected
digraphs tha t w i l l be taken in to account − must be grea te r than 0
: return : Dict ionary with the standard dev ia t i on for each
d i s tance wi th in the given l i m i t
" " "
results = {}

for distance in range(1, max_distance + 1):

count = calc_non_connected_digraphs_frequency(split_text, alphabet,

distance)

mean = sum(count.values())

mean = mean / len(count)

squared_differences_sum = 0

for key in count.keys():

squared_difference = (count[key] - mean) ** 2

squared_differences_sum += squared_difference

almost = squared_differences_sum / (len(count) - 1)

results[distance] = almost ** (1 / 2)

return results

def calc_character_abs_frequency(

split_text: list[Any, ...],

alphabet: tuple[Any, ...] = None

) -> dict[Any, int]:

" " "
Returns a d i c t i onary with ab so lu t e f r equenc i e s o f each character in the

a lphabe t .
: param alphabe t : The a lphabe t i f you want to ensure a l l charac ters are in

the frequency d i c t i onary
: param s p l i t _ t e x t : Text as a l i s t o f charac ters
: return : Dict ionary with the format (character −> r e s p e c t i v e ab so lu t e

frequency)
" " "
if alphabet is not None:

frequency_dict = {a: 0 for a in alphabet}

else:

frequency_dict = {}

for char in split_text:

if char not in frequency_dict.keys():

frequency_dict[char] = 1

else:

frequency_dict[char] += 1

return frequency_dict

def calc_character_rel_frequency(absolute_frequency: dict[Any, int]) ->

dict[Any, Fraction]:

frequencies_sum = sum(absolute_frequency.values())

146 Appendix B. Code

return {char: Fraction(absolute_frequency[char], frequencies_sum) for char

in absolute_frequency}

def calc_ic(abs_frequency: dict[str, int], text_length: int) -> float:

" " "
Ca lcu la t e s the index of coincidence of a t e x t g iven the character ab so lu t e

f r equenc i e s .

: param abs_frequency : Character ab so lu t e f r equenc i e s ’ d i c t i onary
: param tex t_ leng th : The l eng th of the tex t , needed for the c a l c u l a t i o n of

the IC
: return : IC in a Fraction
" " "
aux = text_length * (text_length - 1) # len (t e x t) ∗ (l en (t e x t) − 1)
addition = 0

for letter in abs_frequency:

addition += abs_frequency[letter] * (abs_frequency[letter] - 1)

return addition / aux

def sort_for_plot(df: pandas.DataFrame, to_sort, sort_by, how_to_sort: str) ->

list[Any]:

" " "
Returns a t t r i b u t e s sor ted according to input .
Options are " lower_quar t i l e " , " upper_quart i l e " , " lower_whisker " ,

" upper_whisker " , "min" , "max" , "mean" , " median " .
: param df : The dataframe
: param to_sort : Columns with a t t r i b u t e s we want sor ted
: param sort_by : Column with the va lues with which to sor t
: param how_to_sort : Options are " lower_quar t i l e " , " upper_quart i le " ,

" lower_whisker " , " upper_whisker " , "min" , "max" , "mean" , " median "
: return : L i s t with sor ted a t t r i b u t e s
" " "
attributes_and_vals = {}

for attribute in df[to_sort].unique():

df_aux = df[df[to_sort] == attribute]

data = df_aux[sort_by].copy().astype(float)

upper_quartile = np.percentile(data, 75)

lower_quartile = np.percentile(data, 25)

if how_to_sort == "lower_quartile":

attributes_and_vals[attribute] = lower_quartile

continue

elif how_to_sort == "upper_quartile":

attributes_and_vals[attribute] = upper_quartile

continue

elif how_to_sort == "min":

attributes_and_vals[attribute] = df_aux[sort_by].min()

continue

147

elif how_to_sort == "max":

attributes_and_vals[attribute] = df_aux[sort_by].max()

continue

elif how_to_sort == "mean":

attributes_and_vals[attribute] = df_aux[sort_by].mean()

continue

elif how_to_sort == "median":

attributes_and_vals[attribute] = df_aux[sort_by].median()

continue

the only th ing l e f t are whiskers , t ha t requ i re some ex tra c a l c u l a t i o n
iqr = upper_quartile - lower_quartile

upper_whisker = data[data <= upper_quartile + 1.5 * iqr].max()

lower_whisker = data[data >= lower_quartile - 1.5 * iqr].min()

if how_to_sort == "lower_whisker":

attributes_and_vals[attribute] = lower_whisker

elif how_to_sort == "upper_whisker":

attributes_and_vals[attribute] = upper_whisker

else:

raise Exception("INVALID SORT!")

sorted_attributes = sorted(attributes_and_vals,

key=attributes_and_vals.get, reverse=False)

return sorted_attributes

def period_with_ic_cols(split_text: list[str], alphabet: tuple[str],

max_period_guess: int) -> dict[int, float]:

" " "
Calcu la tes , f o r a given tex t , the l i k e l i h o o d of each period using the index

of coincidence .
: param s p l i t _ t e x t : The t e x t in a l i s t
: param alphabe t : The a lphabe t
: param max_period_guess : The maximum period tha t may have been used
: return : Returns d i c t i onary with the l i k e l i h o o d for each period
" " "
periods_list = [i for i in range(2, max_period_guess + 1)]

periods_dict = {0: 0.0, 1: 0.0}

for period in periods_list:

mean_ic = 0.0

for i in range(0, period):

text_from_column = get_ith_blocks_flatten(split_text, i, 1, period)

column_abs_frequency =

calc_character_abs_frequency(text_from_column, alphabet)

ic = calc_ic(column_abs_frequency, len(text_from_column))

mean_ic += float(ic)

mean_ic = mean_ic / period # c a l c u l a t i n g the mean
periods_dict[period] = mean_ic

148 Appendix B. Code

return periods_dict

def fi_likelihood(

list_of_values: list[Number],

min_period: int = 5,

max_period: int = 20,

min_likelihood: Fraction = Fraction(90, 100)

) -> tuple[int, Fraction]:

" " "
Given a l i s t o f va lues in a dataframe , searches for a period using

i n c r e a s i n g l y b i g ge r windows .
Here i t i s expected for the peaks to occur at the l a s t p lace of the window .
: param l i s t_o f_va lues : L i s t with va lues
: param min_period : A minimum period , should there be one . By de fau l t , i t i s

5 .
: param max_period : A maximum period , should there be one . By de fau l t , i t i s

20.
: param min_like l ihood : The minimum l i k e l i h o o d to stop searching .
: return : Returns the period guess and i t s l i k e l i h o o d
" " "
best_likelihood = Fraction(0)

for p in range(min_period, max_period + 1):

We c a l c u l a t e the max for every p va lues (l e t s c a l l t h i s a b lock) .
I f the maxes are e q u i d i s t a n t (have the same pos i t i on in each b lock) ,
then there should be a period .
likelihood = get_period_likelihood(list_of_values, p)

if likelihood > best_likelihood:

best_likelihood = likelihood

I f the l i k e l i h o o d meets our th re sho l d we return the period .
if likelihood >= min_likelihood:

return p, likelihood

I f no period was detected , the period returned i s 0 with a l i k e l i h o o d of 0
return 0, Fraction(0)

def get_period_likelihood(

list_of_values: list[Number], period: int

) -> Fraction:

" " "
Given a l i s t o f va lues and a period returns the l i k e l i h o o d of tha t period .
: param l i s t_o f_va lues : L i s t with numeric va lues
: param period : The period we want to obta in the l i k e l i h o o d of
: return : The l i k e l i h o o d
" " "
We c a l c u l a t e the max for every period number of va lues (l e t s c a l l t h i s a

b lock) .
I f the maxes are e q u i d i s t a n t (have the same pos i t i on in each b lock) ,

149

then there should be a period .
blocks_list = get_ith_blocks(list_of_values, 1, period, period)

popularity = 0

for block in blocks_list:

block_max = max(block)

if block[period - 1] == block_max:

popularity += 1

likelihood = Fraction(popularity, len(blocks_list))

return likelihood

def period_with_ic_phillips(split_text: list[str], alphabet: tuple[str],

min_period_guess: int = 2,

max_period_guess: int = 20) -> dict[int, float]:

" " "
Function tha t attempts to guess the p h i l l i p s period using the i c .
: param s p l i t _ t e x t : The t e x t in a l i s t
: param alphabe t : The a lphabe t
: param min_period_guess : The maximum period
: param max_period_guess : The minimum period
: return : A d ic t i onary with the i c for each period
" " "
periods_dict = {0: 0.0, 1: 0.0}

for period in list(range(min_period_guess, max_period_guess + 1)):

mean_ic = 0.0

for i in range(0, 8):

text_from_square = get_ith_blocks_flatten(split_text, i * period,

period, period * 8)

if not text_from_square:

break

column_abs_frequency =

calc_character_abs_frequency(text_from_square, alphabet)

ic = calc_ic(column_abs_frequency, len(text_from_square))

mean_ic += ic

mean_ic = mean_ic / 8

periods_dict[period] = mean_ic

return periods_dict

def likely_phillips(

split_text: list[str],

alphabet: tuple[str],

min_monoalphabetic_ic: Fraction =

coding.handy_vars.MONOALPHABETIC_MIN_IC,

min_period_guess: int = 5,

max_period_guess: int = 20

) -> tuple[int, Fraction]:

150 Appendix B. Code

" " "
Ca lcu la t e s how l i k e l y i t i s f o r the t e x t to have been ciphered with the

p h i l l i p s c ipher .
: param s p l i t _ t e x t : The t e x t in a l i s t
: param alphabe t : The a lphabe t
: param min_monoalphabetic_ic : The minimum index of coincidence for a

monoalphabetic c iphers
: param min_period_guess : The minimum period
: param max_period_guess : The maximum period
: return : The most l i k e l y per iod to have been used and how l i k e l y i t i s ;
i f i t i s not l i k e l y i t re turns a period of 0 and a l i k e l i h o o d of 0
" " "

text_abs_freq = calc_character_abs_frequency(split_text, alphabet)

text_ic = calc_ic(text_abs_freq, len(split_text))

if text_ic >= coding.handy_vars.MONOALPHABETIC_MIN_IC:

return 0, Fraction(0)

period_likelihood = {}

for period in range(min_period_guess, max_period_guess + 1):

n_of_ics = 0

for i in range(0, 8):

text_from_square = get_ith_blocks_flatten(split_text, i * period,

period, period * 8)

if not text_from_square:

break

column_abs_frequency =

calc_character_abs_frequency(text_from_square, alphabet)

ic = calc_ic(column_abs_frequency, len(text_from_square))

if ic >= min_monoalphabetic_ic:

n_of_ics += 1

period_likelihood[period] = Fraction(n_of_ics, 8)

for a in per iod_ l i k e l i hood . keys () :
pr in t (a , f l o a t (pe r iod_ l i k e l i hood [a]))
best_period = max(period_likelihood, key=period_likelihood.get)

best_likelihood = period_likelihood[best_period]

return best_period, best_likelihood� �
thesis_code/coding/tools.py� �
import math

import os

import typing

for gener ic o b j e c t s
from fractions import Fraction

from typing import TypeVar

import pandas as pd

151

from pandas import DataFrame

T = TypeVar(’T’) # Declare type v a r i a b l e
A = TypeVar(’A’) # Declare type v a r i a b l e

def get_alphabet_with_key(key: tuple[str, ...], alphabet: tuple[str, ...]) ->

tuple[str, ...]:

" " "
Given a keyword and an a lphabe t c rea te s a new a lphabe t tha t s t a r t s with the

key ,
s i m i l a r l y to what most po l y b iu s schemes do .
: param key : The keyword
: param alphabe t : The a lphabe t
: return : The new a lphabe t order
" " "
key_with_no_repetitions = []

if key is not None:

key_with_no_repetitions = list(dict.fromkeys(key))

return tuple(key_with_no_repetitions + [letter for letter in alphabet if

letter not in key_with_no_repetitions])

def get_numbered_key(key: typing.Iterable[str], alphabet: list[str], start_pos:

int) -> tuple:

" " "
Given a keyword and an a lphabe t re turns two t r a n s l a t i o n t a b l e s fo r the key

concatenatedf
with the a lphabe t with a s h i f t so tha t i t s t a r t s in i n i t i a l _ p o s .

: param key : The keyword
: param alphabe t : The a lphabe t
: param start_pos : The s t a r t i n g po s i t i on for the numeration
: return : A d ic t i onary with the format l e t t e r −> pos i t i on x and an

i d e n t i c a l inver t ed d i c t i onary .
" " "

new_key = [a for a in key]

new_key = new_key + [letter for letter in alphabet if letter not in key]

new_key = new_key[-start_pos:] + new_key[:-start_pos]

t = {}

for letter in new_key:

t[letter] = []

t_inv = {}

for i in range(len(new_key)):

t[new_key[i]].append(i)

t_inv[i] = new_key[i]

return t, t_inv

def get_ith_letters(text, where_to_start, period) -> str:

152 Appendix B. Code

" " "
Returns a l l l e t t e r s tha t show in a given period .
: param t e x t : The t e x t
: param where_to_start : The index of where i t should s t a r t
: param period : The period
: return : S tr ing with the concatenated l e t t e r s
" " "
return ’’.join([text[i] for i in range(where_to_start, len(text), period)])

def get_ith_blocks_flatten(

elements_list: list[T],

where_to_start: int,

block_size: int,

period: int,

allow_last_block_of_different_length: bool = False

) -> list[T]:

" " "
Returns b l o c k s o f e lements o f the given s i z e wi th in a given period .
: param e lements_ l i s t : The l i s t o f e lements
: param where_to_start : The index of where i t should s t a r t
: param b lock_s i ze : S i ze o f each b lock every period
: param period : The period
: param al low_las t_b lock_of_di f ferent_length : True to ge t the l a s t b lock ,

even i f i t i s o f d i f f e r e n t l eng th
: return : L i s t o f b locks , f l a t t e n e d
" " "
end = len(elements_list) - ((len(elements_list) - where_to_start) %

block_size)

list_of_blocks = []

for i in range(where_to_start, end, period):

if i + block_size > end and not allow_last_block_of_different_length:

break

block = elements_list[i: i + block_size]

for b in block:

list_of_blocks.append(b)

return list_of_blocks

return [
t e x t _ l i s t [i : i + b lock_s i ze]
for i in range (where_to_start , l en (t e x t _ l i s t) − (l en (t e x t _ l i s t) %

b lock_s i ze) , per iod)]

def get_ith_blocks(

elements_list: list[typing.Any],

where_to_start: int,

block_size: int,

period: int,

allow_last_block_of_different_length: bool = False

) -> list[list[typing.Any]]:

153

" " "
Returns b l o c k s o f e lements o f the given s i z e wi th in a given period .
: param e lements_ l i s t : The l i s t o f e lements
: param where_to_start : The index of where i t should s t a r t
: param b lock_s i ze : S i ze o f each b lock every period
: param period : The period
: param al low_las t_b lock_of_di f ferent_length : True to ge t the l a s t b lock ,

even i f i t i s o f d i f f e r e n t l eng th
: return : L i s t o f b locks , each b lock i s a l i s t wi th in
" " "
end = len(elements_list) - ((len(elements_list) - where_to_start) %

block_size)

list_of_blocks = []

for i in range(where_to_start, end, period):

if i + block_size > end and not allow_last_block_of_different_length:

break

block = elements_list[i: i + block_size]

list_of_blocks.append(block)

return list_of_blocks

def infer_alphabet_from_text(text: str, symbols_per_character: int) ->

tuple[str, ...]:

" " "
Given a t e x t re turns a l l the d i f f e r e n t charac ters wi th in .
: param t e x t : The t e x t
: param symbols_per_character : Number of symbols per character
sometimes i t makes sense to consider mu l t i p l e charac ters a s i n g l e symbol .
: return : The a lphabe t
" " "
from ordered_set import OrderedSet

letters = OrderedSet(text[i:i + symbols_per_character] for i in range(0,

len(text), symbols_per_character))

return tuple(letters) # we preserve the order , might come in handy

def get_reverse_dict(dict_to_reverse: dict[T, A]) -> dict[A, list[T]]:

" " "
Given a map rever se s i t .
: param dict_to_reverse : The d i c t i onary to reverse
: return : Reversed d i c t i onary
" " "
inv_map = {}

for k, v in dict_to_reverse.items():

inv_map[v] = inv_map.get(v, []) + [k]

return inv_map

def get_random_string(alphabet: typing.Union[tuple[str, ...], list[str, ...]],

size: int) -> str:

154 Appendix B. Code

" " "
Returns a random s t r i n g of the given a lphabe t with the given s i z e
: param alphabe t : The a lphabe t fo r the s t r i n g
: param s i z e : The s i z e o f the random s t r i n g
: return : Random s t r i n g
" " "
import numpy

return ’’.join(numpy.random.choice(list(alphabet), size=size, replace=True))

def closest_perfect_square(number: int):

f i r s t we check i f i t i s a l ready a square
square_root = number ** 0.5

modulus_1 = square_root % 1

is_perfect_square = modulus_1 == 0

if is_perfect_square:

return number

else:

the next square i s c a l c u l a t e d otherwise
next_n = math.floor(math.sqrt(number)) + 1

return next_n * next_n

def split_text_into_list(text: str, alphabet: tuple[str] | list[str]) ->

list[str]:

" " "
S p l i t s the t e x t in to a l i s t o f charac ters o f the a lphabe t .
This i s needed s ince we may consider a character to have mu l t i p l e symbols
: param t e x t : The t e x t to s p l i t
: param alphabe t : The a lphabe t to be used
: return : L i s t o f charac ters
" " "
text_position = 0

text_list = []

while text_position != len(text):

no_corresponding_char = True

for alphabet_character in alphabet:

text_character = text[text_position:text_position +

len(alphabet_character)]

if text_character == alphabet_character:

text_list.append(text_character)

text_position += len(text_character)

no_corresponding_char = False

if no_corresponding_char:

sani ty check to see i f there are charac ters in the t e x t not
present in the a lphabe t

raise Exception("There are characters in the text that are not in

the alphabet.")

155

return text_list

def check_current_dir(expected_parent_dir: str) -> bool:

" " "
Method that , g iven a d irec tory , checks i f the program i s being run from

said d i r e c to ry .
Usefu l g iven tha t Pycharm seems to be unable to save the d e f a u l t working

d irec tory , which i s q u i t e annoying .
: param expected_parent_dir : The d i r e c t o ry one i s expec t ing the program to

be run from .
: return : True i f the d i r e c t o ry i s the expected one , f a l s e otherwise
" " "
ge t current d i r e c t o ry
path = os.getcwd()

current_dir = os.path.basename(path)

compare the two
return current_dir == expected_parent_dir

def filter_with_condition_function(df: DataFrame, condition_function:

typing.Callable, column: str) -> DataFrame:

" " "
Given a dataframe and a funct ion tha t g iven a value , re turns a boolean ,

f i l t e r s using the funct ion .
The rows whose va lues in the column , when app l i ed the funct ion are true ,

are kept in the returned dataframe .
The other rows are ignored .
: param df : The dataframe to f i l t e r
: param condi t ion_funct ion : The boolean funct ion
: param column : The column of d f where the va lues with which we want to

f i l t e r are
: return : New dataframe with f i l t e r e d va lues
" " "
new_df = pd.DataFrame(columns=df.columns)

for idx, row in df.iterrows():

if condition_function(row[column]):

new_df.loc[(len(new_df.index))] = row

return new_df

def easy_dict_print(the_dict: dict[str, Fraction], n_decimals: int = 2,

ignore_fraction: bool = False) -> None:

" " "
Print fo r d i c t i o n a r i e s o f the format s t r −> Fraction so tha t one can see

data e a s i l y .
: param the_dict : The d i c t i onary
: param n_decimals : The number of decimal d i g i t s in the pr in ted f l o a t
: param ignore_fract ion : I f t rue the f r a c t i o n i s not pr in ted at the end
: return : None
" " "

156 Appendix B. Code

for key in the_dict.keys():

f_val = float(the_dict[key])

format_float = ("{:." + str(n_decimals) + "f}").format(f_val)

if ignore_fraction:

print(format_float, key)

else:

print(format_float, key, the_dict[key])� �
thesis_code/demonstration/algorithm_to_get_weights.py� �
import os

from fractions import Fraction

from classifier.classifier_tools import get_weights, scores_df_to_ranks_df,

calc_correct_guesses

from classifier.input_objects import HInput, SAInput, FTInput

from classifier.tuple_rating import id_1, id_2

from coding import handy_vars, corpus

from coding.tools import check_current_dir, easy_dict_print

if __name__ == ’__main__’:

Import the data
if not check_current_dir("thesis_code"):

raise Exception("Running from wrong directory!")

CLEANING UP A CORPUS TO BE USED FOR CRYPTOGRAMS
print("cleaning the corpus if needed...")

corpus_path = "corpora/english_corpus.txt"

clean_corpus_path = "output/cleaned_text.txt"

output_path_to_file = "output/files/scores.csv"

if not os.path.exists(os.path.dirname(output_path_to_file)):

os.makedirs(os.path.dirname(output_path_to_file))

alphabet_to_clean = handy_vars.ENGLISH_ALPHABET

if not os.path.exists(clean_corpus_path):

file_length = corpus.clean_corpus(corpus_path, alphabet_to_clean,

clean_corpus_path)

else:

file_length = corpus.get_number_of_chars_in_file(clean_corpus_path)

INPUT
identification_function = id_1

heuristics_tuple = handy_vars.ALL_HEURISTICS_TUPLE

ciphers_tuple = handy_vars.ALL_CIPHERS_TUPLE

sa_input = SAInput(

acceptable_fallback_ratio=Fraction(1, 20),

minimum_improvement_value=Fraction(1, 200),

max_failed_attempts_tolerated=3,

ratings_window_size=12,

identification_function=identification_function

157

)

he_input = HInput(

clean_corpus_path=clean_corpus_path,

clean_corpus_length=file_length,

min_text_length=500,

max_text_length=500,

n_texts=300,

symbols_per_character=1,

min_period_guess=5,

max_period_guess=20,

heuristics_tuple=handy_vars.ALL_HEURISTICS_TUPLE

)

initial_weights = {}

for heuristic in heuristics_tuple:

initial_weights[heuristic] = Fraction(1, len(heuristics_tuple))

ft_input = FTInput(

necessary_improvement_between_iterations=Fraction(1, 100),

max_failed_attempts=3,

weight_increment=Fraction(1, len(heuristics_tuple)),

initial_weights=initial_weights,

verbose=True

)

COMPUTING
computed_weights, scores_df, rating, elapsed_time = get_weights(sa_input,

he_input, ft_input, ciphers_tuple)

OUTPUTTING
print("SCORES DATAFRAME:")

print(scores_df)

print(float(rating), rating)

print(elapsed_time)

scores_df.to_csv(output_path_to_file)

easy_dict_print(computed_weights)

output_path_to_file = "output/files/ranks.csv"

ranks_df = scores_df_to_ranks_df(scores_df)

ranks_df.to_csv(output_path_to_file)

print("Number of correctly guessed:", calc_correct_guesses(ranks_df))

print("Number of cryptograms in total:", len(ranks_df.index))

ratio = Fraction(calc_correct_guesses(ranks_df), len(ranks_df.index))

print("Ratio between them:", float(ratio), ratio)� �
thesis_code/demonstration/cipher_classifier.py� �
from fractions import Fraction

158 Appendix B. Code

from classifier.heuristics import CalculatedHeuristics

from classifier.tuple_rating import get_ranking

from coding import handy_vars

from coding.tools import check_current_dir, easy_dict_print

if __name__ == ’__main__’:

Import the data
if not check_current_dir("thesis_code"):

raise Exception("Running from wrong directory!")

CLEANING UP A CORPUS TO BE USED FOR CRYPTOGRAMS
print("cleaning the corpus if needed...")

corpus_path = "corpora/english_corpus.txt"

clean_corpus_path = "output/cleaned_text.txt"

READING THE CRYPTOGRAM FROM THE FILE
cryptogram_file = "output/files/example_cryptogram.txt"

text_file = open(cryptogram_file, "r")

cryptogram = text_file.read()

text_file.close()

INPUT
symbols_per_character = 1

min_period_guess = 5

max_period_guess = 20

heuristics_tuple = handy_vars.ALL_HEURISTICS_TUPLE

ciphers_tuple = handy_vars.ALL_CIPHERS_TUPLE

weights_dict = {

"h_alpha": Fraction(3030623103620308676227, 9387480337647754305649),

"h_ic": Fraction(2855499837626176807254, 9387480337647754305649),

"h_ic_period": Fraction(694248090544448628480, 9387480337647754305649),

"h_ncd": Fraction(236052463877338152960, 9387480337647754305649),

"h_phillips": Fraction(544118476419313509888, 9387480337647754305649),

"h_trans": Fraction(2026938365560168530840, 9387480337647754305649)

}

if sum(weights_dict.values()) != 1.0:

raise Exception("The sum of the weights of the heuristics must be 1.")

ch = CalculatedHeuristics(

text=cryptogram,

symbols_per_character=symbols_per_character,

min_period_guess=min_period_guess,

max_period_guess=max_period_guess,

heuristics_tuple=heuristics_tuple,

original_cipher="NA"

)

scores = ch.get_scores(

ciphers_tuple=ciphers_tuple,

159

weights_dict=weights_dict

)

ranking = get_ranking(scores)

print("scores:")

easy_dict_print(scores)

print()

print("ordered by ranking:")

easy_dict_print(ranking, n_decimals=0, ignore_fraction=True)� �
thesis_code/demonstration/create_example_cryptogram.py� �
import os

from coding import corpus, handy_vars

from coding.generatecrypto import cipher_text_with_given_ciphers

from coding.tools import check_current_dir

if __name__ == ’__main__’:

Import the data
if not check_current_dir("thesis_code"):

raise Exception("Running from wrong directory!")

CLEANING UP A CORPUS TO BE USED FOR CRYPTOGRAMS
print("cleaning the corpus if needed...")

corpus_path = "corpora/english_corpus.txt"

clean_corpus_path = "output/cleaned_text.txt"

output_path_to_file = "output/files/example_cryptogram.txt"

if not os.path.exists(os.path.dirname(output_path_to_file)):

os.makedirs(os.path.dirname(output_path_to_file))

alphabet = handy_vars.ENGLISH_ALPHABET

print("cleaning the corpus if needed...")

if not os.path.exists(clean_corpus_path):

file_length = corpus.clean_corpus(corpus_path, alphabet,

clean_corpus_path)

else:

file_length = corpus.get_number_of_chars_in_file(clean_corpus_path)

INPUT
text_length = 500

cipher_to_use = "phillips"

period_or_key_len = 13

CRYPTOGRAM GENERATION
text_to_cipher = corpus.get_random_texts_from_file(

clean_corpus_path,

file_length,

160 Appendix B. Code

(text_length, text_length,),

1

)[0]

print("chosen text:")

print(text_to_cipher)

cipher_tuple = (cipher_to_use,)

ciphertext = cipher_text_with_given_ciphers(text_to_cipher, cipher_tuple,

period_or_key_len)[cipher_to_use]

print("ciphered text:")

print(ciphertext)

wri t ing to f i l e
output_file = open(output_path_to_file, "w")

output_file.write(ciphertext)

output_file.close()� �
thesis_code/demonstration/sa_demonstration.py� �
import os

from fractions import Fraction

from pandas import DataFrame

from classifier.classifier_tools import get_weights, scores_df_to_ranks_df,

calc_correct_guesses

from classifier.heuristics import get_more_heuristics

from classifier.input_objects import HInput, SAInput, FTInput

from classifier.simulated_annealing import simulated_annealing

from classifier.tuple_rating import id_1, id_2

from coding import handy_vars, corpus

from coding.tools import check_current_dir, easy_dict_print

if __name__ == ’__main__’:

Import the data
if not check_current_dir("thesis_code"):

raise Exception("Running from wrong directory!")

CLEANING UP A CORPUS TO BE USED FOR CRYPTOGRAMS
print("cleaning the corpus if needed...")

corpus_path = "corpora/english_corpus.txt"

clean_corpus_path = "output/cleaned_text.txt"

output_path_to_file = "output/files/scores.csv"

if not os.path.exists(os.path.dirname(output_path_to_file)):

os.makedirs(os.path.dirname(output_path_to_file))

alphabet_to_clean = handy_vars.ENGLISH_ALPHABET

if not os.path.exists(clean_corpus_path):

file_length = corpus.clean_corpus(corpus_path, alphabet_to_clean,

clean_corpus_path)

else:

161

file_length = corpus.get_number_of_chars_in_file(clean_corpus_path)

INPUT
identification_function = id_1

heuristics_tuple = handy_vars.ALL_HEURISTICS_TUPLE

ciphers_tuple = handy_vars.ALL_CIPHERS_TUPLE

sa_input = SAInput(

acceptable_fallback_ratio=Fraction(1, 20),

minimum_improvement_value=Fraction(1, 200),

max_failed_attempts_tolerated=3,

ratings_window_size=12,

identification_function=identification_function,

verbose=True

)

he_input = HInput(

clean_corpus_path=clean_corpus_path,

clean_corpus_length=file_length,

min_text_length=500,

max_text_length=500,

n_texts=300,

symbols_per_character=1,

min_period_guess=5,

max_period_guess=20,

heuristics_tuple=handy_vars.ALL_HEURISTICS_TUPLE

)

weight_increment = Fraction(1, len(heuristics_tuple))

initial_rating = Fraction(0)

initial_weights = {}

for heuristic in heuristics_tuple:

initial_weights[heuristic] = Fraction(1, len(heuristics_tuple))

COMPUTING
calculated_heuristics_list = get_more_heuristics(he_input, ciphers_tuple)

computed_weights, rating = simulated_annealing(

calculated_heuristics_list=calculated_heuristics_list,

current_weight_increment=weight_increment,

ciphers_tuple=ciphers_tuple,

initial_weights=initial_weights,

initial_rating=initial_rating,

sa=sa_input

)

scores_df = DataFrame(columns=["original_cipher"] + list(ciphers_tuple))

for ch in calculated_heuristics_list:

scores_dict = ch.get_scores(ciphers_tuple, computed_weights)

162 Appendix B. Code

scores_df.loc[len(scores_df.index)] = [ch.original_cipher] +

[scores_dict[a] for a in ciphers_tuple]

OUTPUTTING
print("SCORES DATAFRAME:")

print(scores_df)

print(float(rating), rating)

scores_df.to_csv(output_path_to_file)

easy_dict_print(computed_weights)

output_path_to_file = "output/files/ranks.csv"

ranks_df = scores_df_to_ranks_df(scores_df)

ranks_df.to_csv(output_path_to_file)

print("Number of correctly guessed:", calc_correct_guesses(ranks_df))

print("Number of cryptograms in total:", len(ranks_df.index))

ratio = Fraction(calc_correct_guesses(ranks_df), len(ranks_df.index))

print("Ratio between them:", float(ratio), ratio)� �

Bibliography

[Åhl22] Johan Åhlén. Cipher Identifier (online tool) | Boxentriq. https://www.boxentriq.
com/code-breaking/cipher-identifier, 2022.

[Ame05] American Cryptogram Association. The ACA and You —– a Handbook for the
Members of the American Cryptogram Association. Haverford, 2005.

[Bau02] Friedrich Ludwig Bauer. Decrypted Secrets: Methods and Maxims of Cryptology.
Springer, Berlin ; New York, 3rd, rev. and updated ed edition, 2002.

[BCV13] Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A Review and
New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828, August 2013.

[Cip22] Ciphertext-Classification-Ensemble-SVM. https://github.com/
HappyHackingOrange/Ciphertext-Classification-Ensemble-SVM, April 2022.

[Cry17] Crypto Identifier - Enigmator. https://merricx.github.io/enigmator/cryptanalysis/
crypto_identifier.html, January 2017.

[DCo22] dCode - Solveurs, Crypto, Maths, Codes, Outils en Ligne. https://www.dcode.fr/,
2022.

[DS20] Elonka Dunin and Klaus Schmeh. Codebreaking: A Practical Guide. Robinson,
London, 2020.

[dSS86] S. H. C. du Toit, A. G. W. Steyn, and R. H. Stumpf. Graphics for Univariate and
Bivariate Data. In S. H. C. du Toit, A. G. W. Steyn, and R. H. Stumpf, editors,
Graphical Exploratory Data Analysis, pages 13–35. Springer, New York, NY, 1986.

[Dun20] Elonka Dunin. Elonka’s List of Famous Unsolved Codes and Ciphers. https://elonka.
com/UnsolvedCodes.html, December 2020.

[Gai89] Helen Fouché Gaines. Cryptanalysis: A Study of Ciphers and Their Solution. Dover
Publ, New York, corr. ed edition, 1989.

[GKP94] Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik. Concrete Mathematics:
A Foundation for Computer Science. Addison-Wesley, Reading, Mass, 2nd ed edition,
1994.

163

https://www.boxentriq.com/code-breaking/cipher-identifier
https://www.boxentriq.com/code-breaking/cipher-identifier
https://github.com/HappyHackingOrange/Ciphertext-Classification-Ensemble-SVM
https://github.com/HappyHackingOrange/Ciphertext-Classification-Ensemble-SVM
https://merricx.github.io/enigmator/cryptanalysis/crypto_identifier.html
https://merricx.github.io/enigmator/cryptanalysis/crypto_identifier.html
https://www.dcode.fr/
https://elonka.com/UnsolvedCodes.html
https://elonka.com/UnsolvedCodes.html

164 Bibliography

[Gov22] Government Communications Headquarters. CyberChef. ht-
tps://github.com/gchq/CyberChef, June 2022.

[Kah96] David Kahn. The Codebreakers: The Story of Secret Writing. Scribner, New York,
rev. ed. edition, 1996.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing.
Science, 220(4598):671–680, May 1983.

[Kut05] Michael H. Kutner, editor. Applied Linear Statistical Models. The McGraw-Hill/Irwin
Series Operations and Decision Sciences. McGraw-Hill Irwin, Boston, 5th ed edition,
2005.

[LKE+21] Ernst Leierzopf, Nils Kopal, Bernhard Esslinger, Harald Lampesberger, and Eckehard
Hermann. A Massive Machine-Learning Approach For Classical Cipher Type
Detection Using Feature Engineering. International Conference on Historical
Cryptology, pages 111–120, August 2021.

[LMK+21] Ernst Leierzopf, Vasily Mikhalev, Nils Kopal, Bernhard Esslinger, Harald Lampes-
berger, and Eckehard Hermann. Detection of Classical Cipher Types with Feature-
Learning Approaches. In Yue Xu, Rosalind Wang, Anton Lord, Yee Ling Boo,
Richi Nayak, Yanchang Zhao, and Graham Williams, editors, Data Mining,
Communications in Computer and Information Science, pages 152–164, Singapore,
2021. Springer.

[MR07] António Machiavelo and Rogério Reis. Automated Ciphertext—Only Cryptanalysis
of the Bifid Cipher. Cryptologia, 31(2):112–124, March 2007.

[MVOV97] A. J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press Series on Discrete Mathematics and Its Applications. CRC
Press, Boca Raton, 1997.

[NK14] Malte Nuhn and Kevin Knight. Cipher Type Detection. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1769–1773, Doha, Qatar, October 2014. Association for Computational Linguistics.

[Pol89] Polybius. The Histories of Polybius. Translated from the Text of F. Hultsch by Evelyn
S. Shuckburgh. London Macmillan, 1889.

[Riv91] Ronald L. Rivest. Cryptography. In Handbook of Theoretical Computer Science (Vol.
A): Algorithms and Complexity, pages 617–755. MIT Press, Cambridge, MA, USA,
1991.

[Sas] Yutaka Sasaki. The truth of the F-measure. page 5.

[SBS18] Patrick Schober, Christa Boer, and Lothar A. Schwarte. Correlation Coefficients:
Appropriate Use and Interpretation. Anesthesia & Analgesia, 126(5):1763–1768, May
2018.

Bibliography 165

[ŠČVB21] Valdemar Švábenský, Pavel Čeleda, Jan Vykopal, and Silvia Brišáková. Cybersecurity
knowledge and skills taught in capture the flag challenges. Computers & Security,
102:102154, March 2021.

[Tom22] Satoshi Tomokiyo. Unsolved Historical Ciphers. http://cryptiana.web.fc2.com/code/
unsolved.htm, July 2022.

[Tuk77] John W. (John Wilder) Tukey. Exploratory Data Analysis. Reading, Mass. : Addison-
Wesley Pub. Co., 1977.

[Wil39] William F. Friedman. Military Cryptanalysis, Part IV - Transposition And
Fractionating Systems; By William F. Friedman For The War Department’s Chief
Signal Officer. NSA, 1939.

http://cryptiana.web.fc2.com/code/unsolved.htm
http://cryptiana.web.fc2.com/code/unsolved.htm

	Abstract
	Resumo
	Agradecimentos
	1 Introduction
	1.1 State of the art
	1.1.1 Tools and classifiers available on the Internet

	1.2 Structure of the thesis

	2 Background
	2.1 Terminology
	2.2 Enciphering methods of classical ciphers
	2.3 Cipher keys
	2.3.1 Tabula Recta
	2.3.2 5x5 Polybius square

	2.4 Caesar cipher
	2.5 Vigenère cipher
	2.6 Autokey ciphers
	2.7 Bifid cipher
	2.8 Trifid cipher
	2.9 Homophonic substitution ciphers
	2.9.1 Numbered key cipher
	2.9.2 Chequerboard cipher

	2.10 Phillips cipher
	2.11 Playfair cipher
	2.12 Nihilist Substitution cipher
	2.13 Nihilist Transposition cipher

	3 Heuristics
	3.1 Character frequency
	3.1.1 Alphabet size of the cryptogram
	3.1.2 Index of coincidence
	3.1.3 Detecting transpositions with character frequency

	3.2 Discovering periodicity with the Index of Coincidence
	3.2.1 Automatically detect periodicity

	3.3 Phillips signature
	3.3.1 Finding the period
	3.3.2 A better approach to find the period

	3.4 Non-connected digraphs
	3.4.1 Enumerating all possible cases for non-connected digraphs
	3.4.2 Probability of character occurrence within a ciphering block
	3.4.3 Probability of homogeneous non-connected digraph occurrences
	3.4.4 Distribution of the standard deviation for non-connected digraphs
	3.4.5 Building an heuristic for the non-connected digraphs strategy

	4 Building an automated classifier for classical ciphers
	4.1 Overview
	4.2 Automatic identification process
	4.3 Finding a good weight tuple
	4.3.1 Score interpretation
	4.3.2 Tuple rating
	4.3.3 Weight mutation
	4.3.4 Simulated annealing approach
	4.3.5 Further improvements to the algorithm

	5 Results
	5.1 Setup for computing results
	5.2 Expectations
	5.3 Measuring the performance of the algorithm
	5.3.1 Algorithm convergence speed
	5.3.2 Tuple rating vs number of correct guesses

	5.4 Comparing heuristics

	6 Conclusions
	6.1 Expectations and Reality
	6.2 Comparing our model to the state of the art
	6.3 Further work

	A Box-and-whisker plots
	B Code
	Bibliography

