
Fault detection in
wastewater
treatment plants ­
Application and
comparison of
machine learning
techniques with
streaming data
Rodrigo Salles
Master in Data Science
DEPARTMENT OF COMPUTER SCIENCE
2022

Orientador
Prof. Dr. João Gama, Faculty of Sciences of the University of Porto

Coorientadora
Prof. Dra. Rita Ribeiro, Faculty of Sciences of the University of Porto

Coorientador
Prof. Dr. Jérôme Mendes , ISR ­ University of Coimbra



Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /



Declaração de Honra 

Eu, Rodrigo de Oliveira Salles, inscrito no Mestrado em Ciência de Dados (Data 

Science) da Faculdade de Ciências da Universidade do Porto declaro, nos termos do 

disposto na alínea a) do artigo 14.º do Código Ético de Conduta Académica da U.Porto, 

que o conteúdo da presente dissertação reflete as perspetivas, o trabalho de 

investigação e as minhas interpretações no momento da sua entrega.  

Ao entregar esta dissertação, declaro, ainda, que a mesma é resultado do meu próprio 

trabalho de investigação e contém contributos que não foram utilizados previamente 

noutros trabalhos apresentados a esta ou outra instituição. 

Mais declaro que todas as referências a outros autores respeitam escrupulosamente as 

regras da atribuição, encontrando-se devidamente citadas no corpo do texto e 

identificadas na secção de referências bibliográficas. Não são divulgados na presente 

dissertação quaisquer conteúdos cuja reprodução esteja vedada por direitos de autor. 

Tenho consciência de que a prática de plágio e auto-plágio constitui um ilícito 

académico. 

 

Rodrigo de Oliveira Salles 

Porto, 04 de Outubro de 2022. 





UNIVERSITY OF PORTO

MASTERS THESIS

Fault detection in wastewater treatment
plants - Application and comparison of

machine learning techniques with streaming
data

Author:

Rodrigo SALLES

Supervisor:

João GAMA

Co-supervisor:

Rita RIBEIRO
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Salles. Obrigado por toda ajuda e compreensão. Seria impossı́vel concluir esse curso sem

a ajuda de vocês. Amo-vos.
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Fault detection in wastewater treatment plants - Application and comparison of

machine learning techniques with streaming data

by Rodrigo SALLES

Water is an essential element for life, and plays a fundamental role for human be-

ings. Industrial activities, services and agriculture depend on the availability of water

resources. And these resources are increasingly scarce. It is estimated that of all the water

on Earth, only 1% is available for human consumption. It is a small fraction that must

serve an increasing number of people. Approximately 4 billion people face water supply

problems at least once a month, and half a billion people face water shortages throughout

the year.

In view of the importance of water, the need for its conscious use is clear. Water needs

to be used efficiently, and wastewater treated, so that it can be used again, without posing

risks to humans and the environment. The objective of the work developed in this disser-

tation is to implement a fault detection method for sensors used in Wastewater Treatment

Plant (WWTP), in order to make them more reliable and efficient. In this dissertation, the

use of machine learning techniques, specifically based on autoencoders (AE), were pro-

posed to identify faults in sensors, in WWTPs, using streaming data. The failure detection

system was developed, with the help of the Benchmark Simulation Model No 2 (BSM2),

to identify faults, in an online way, in the dissolved oxygen sensor, which monitors the

oxygen levels in the biological reactor tanks.

Three failure scenarios were created, with the help of BSM2, with variations in the or-

der of appearance, duration and intensity of failures. The purpose of the EA models used

is to detect the occurrence of these faults as soon as possible. The AE models, which were

used for fault detection, Convolutional and Long Short-Term Memory (LSTM), were effi-

cient, according to the considered metrics. Most of the samples representing the failures
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were identified, with few delays. The AEs-based methodologies proved to be a suitable

alternative for fault detection in WWTPs. The exploitation of hyperparameters and the

combination of AE with other machine learning methods can make the fault detection

system even more efficient, and the WWTPs more reliable in performing their important

function.
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Deteção de falhas em estações de tratamento de águas residuais - Aplicação e

comparação de técnicas de aprendizado de máquina com dados em streaming

por Rodrigo SALLES

A água é um elemento essencial para a vida, e desempenha um papel fundamen-

tal para os seres humanos. As atividades industriais, serviços e agricultura dependem

da disponibilidade dos recursos hı́dricos. E estes recursos são cada vez mais escassos.

Estima-se que de toda a água existente na Terra, apenas 1% está disponı́vel para o con-

sumo humano. Trata-se de uma pequena fração que deve servir a um número crescente de

pessoas. Aproximadamente 4 bilhões de pessoas enfrentam problemas de abastecimento

de água pelo menos uma vez por mês, e meio bilhão de pessoas enfrentam escassez de

água ao longo do ano.

Tendo em conta a importância da água, a necessidade da sua utilização consciente é

clara. A água precisa de ser utilizada eficientemente, e as águas residuais tratadas, para

que possa ser utilizada novamente, sem representar riscos para os seres humanos e para o

meio ambiente. O objetivo do trabalho desenvolvido nesta dissertação é implementar um

método de deteção de falhas nos sensores utilizados nas ETARs, de modo a torná-las mais

confiáveis e eficientes. Nesta dissertação, foi proposto o uso de técnicas de aprendizagem

de máquinas, especificamente baseadas em autoencoders (AE), para identificar falhas em

sensores, em ETARs, utilizando dados em streaming. O sistema de deteção de falhas

foi desenvolvido, com a ajuda do simulador Benchmark Simulation Model No 2 (BSM2),

para identificar falhas, de forma online, no sensor de oxigénio dissolvido, que monitoriza

os nı́veis de oxigénio nos tanques do reator biológico.

Foram criados três cenários de falhas, com a ajuda do BSM2, com variações na ordem

de aparecimento, duração e intensidade das falhas. O objetivo do sistema de deteção im-

plementado é detetar a ocorrência destas falhas o mais rapidamente possı́vel. Os modelos
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de AE, que foram utilizados para a deteção de falhas, Convolutional e Long Short-Term

Memory (LSTM), foram eficientes, de acordo com as métricas consideradas. A maioria

das amostras que representavam as falhas foram identificadas, com poucos atrasos. As

metodologias baseadas em AEs provaram ser uma alternativa adequada para a deteção

de falhas em ETARs. A exploração de hiperparâmetros e a combinação dos AEs com

outros métodos de aprendizagem de máquinas podem tornar o sistema de deteção de fa-

lhas ainda mais eficiente, e as ETARs mais confiáveis no desempenho da sua importante

função.
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Chapter 1

Introduction

This first chapter aims to present the motivation of this dissertation, namely, the problems

related to water and wastewater, the importance and complexity of the Wastewater Treat-

ment Plant (WWTP), and the relevance of a reliable failure detection system. Section 1.1

brings the motivation and context of the work, and in Section 1.1.1 a description of the

evolution and challenges faced by WWTPs when performing their tasks is made. Section

1.2 brings a summary of the objectives of the proposed work, and finally in Section 1.3

there is a description of the dissertation organization.

1.1 Motivation and Context

Water is a very important resource for human life and represents approximately 60% of

body weight in adult men and 50%-55% in adult women [1], which regulates our tempera-

ture and is essential to all our organic functions. Furthermore, water plays a fundamental

role in many human activities, such as agriculture, industry and services. And this re-

source so important to our survival is limited. Water covers about 70% of planet Earth

[2], but it is estimated that 97% of the water available on the planet is salty, unfit for con-

sumption, found in oceans and seas, and 2% form inaccessible glaciers. Therefore, 1% is

used for human and animal consumption [3].

The supply of quality water for human activities is a challenge that increases with

population growth. According to United Nations estimates, on 15 November 2022, the

Earth will reach the 8 billion people mark [4], and is estimated that 4 billion people already

face severe water scarcity at least one month a year. Half a billion people face severe water

shortages throughout the year. [5].

1
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With population growth, there is greater use of water and greater amount of wastew-

ater produced, with pollutants of various types. The causes of water pollution are many:

residential and industrial sewage, mining activities, pesticides and fertilisers used in agri-

culture, etc. Domestic, agricultural or industrial activities produce effluents containing

undesirable pollutants that can be toxic [6].

In view of the information about the importance of water for human beings and its

scarcity, the need for actions that encourage its conscientious use is clear. Water resources

must be used efficiently, and the wastewater resulting from this use must be treated, so

that it becomes available again and does not pose a threat to the environment and thus to

human being. In this context, specialized WWTP, emerge as very important structures to

face the new water and wastewater challenges.

1.1.1 Wastewater Treatment Plants

Wastewater treatment is carried out in Wastewater Treatment Plants. In general terms, the

WWTPs have the function of removing the most different types of pollutants present in

wastewater. The stations speed up the treatment that occurs in nature, so that the waters

reach the minimum quality requirements and can be returned to the environment without

posing threats [7].

WWTPs are very important structures for modern life. They treat wastewater from in-

dustrial and domestic environments [8], and they are spread out in large numbers around

the world. In the United States of America, there are more than 16,000 public adminis-

tration WWTPs [9]. The European Union has more than 18.000 treatment units, serving a

population of over 450 million people in its member states [10].

WWTPs are large complex plant constituted by several interconnected processes [11].

The sewage treatment comprises several steps, in physical, chemical and biological pro-

cesses. Decantation of organic matter, addition of coagulants, bacterial action, sludge

formation, etc. Each step is made up of its own, and often conflicting, processes and

goals. External factors make the wastewater treatment even more complex: climatic

events (rains, storms, droughts), seasonality, periods of the day and the year, etc [12, 13].

All these factors must be considered to ensure that the water leaving the treatment sta-

tion is within the required quality parameters. It is a great challenge for a structure with

markedly non-linear characteristics [14].
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The efficiency of a WWTP is commonly evaluated by the quality of the water that

leaves the station, but many other factors must be considered to confirm its efficiency.

The WWTPs perform their functions with a high demand for resources, with special em-

phasis on electricity. 7% of all energy consumed in the world is consumed by WWTPs [15].

In Portugal, approximately 4% of all energy consumed is spent on water distribution and

treatment systems, and of this total, 25% is used by WWTPs [16]. Thus, energy consump-

tion is an important efficiency index. The consumption of chemical reagents involved in

the process, the emissions of greenhouse gases, are indices normally considered [17, 18].

These and many other issues must be addressed when designing control, monitoring and

optimization models for WWTPs.

In the 21st century the need for efficiency and environmental protection has become

even clearer, and the demands placed on the operation of WWTPs have increased [19].

The WWTPs need to achieve at least three sustainability goals: environmental protection

(low pollutant load), social acceptance (human sanitary protection) and economic devel-

opment (feasible operational and construction costs) [20, 21].

Over the years, it was found that the conventional forms of control and monitoring

of WWTPs were not sufficient to keep up with the new requirements and restrictions.

It is not enough to have reactive systems. It is necessary to have systems that antici-

pate problems and assist in decision making. And due to the non-linear characteristics of

WWTPs, designing models that meet their new demands is not trivial. With technological

advances, new techniques can help to overcome new challenges. The massive use of sen-

sors and the consequent data generation, enabled the use of more efficient and promising

techniques. The large amount of information generated in a short period of time, in real

time, about the various stages of the process, enabled the use of new methods, especially

methods involving machine learning algorithms. The availability of data allows the train-

ing of algorithms, and obtaining ever more efficient models. The advantages of the new

methods are clear, but with the new methods come new challenges.

The amount of data generated by the sensors is very large. A special scheme for han-

dling and storing this information is needed, as well as computing resources. Sensors are

exposed to an inhospitable environment, and usually present failures, but a failure must

be distinguished from an anomaly in the process. And the detection must be in real time.

The results of some measurements of the treatment processes can be obtained instantly or

take a few hours or days. Monitoring and control techniques need to deal with different
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sampling times. These are just a few issues that have gained relevance with technological

advances, and need to be analyzed in the search for efficiency.

1.2 Objectives and Contributions

The work developed in this dissertation aims to assess the potential of autoencoders (AEs)

in the detection of failures in dissolved oxygen (DO) sensors, in WWTPs, in real time, with

streaming data. For that, the simulator Benchmark Simulation Model nº2 (BSM2) [22],

which reproduces all phases of the treatment performed in a WWTP, was used to test

and validate the fault detection methodologies on the DO sensor in the biological reactor.

The contribution of this dissertation is to analyzes the strengths and weaknesses of the

Convolution-AE and Long short-term memory (LSTM)-AE models, used to detect failures

on DO sensors presented in WWTPs. Moreover, the models are studied and evaluated for

the detection of five types of failures: bias, drift, precision degradation, spike and stuck,

in three scenarios, with changes in the order of appearance, duration and intensity of the

faults. These contributions have resulted on the accepted conference paper (see Appendix

A):

• Rodrigo Salles, Jérôme Mendes, Rita P. Ribeiro, and João Gama. Fault Detection in

Wastewater Treatment Plants: Application of Autoencoders with Streaming Data.

The 7th Workshop on Data Science for Social Good, Grenoble, France, September

23, 2022.

1.3 Organization of the Dissertation

The remaining of this dissertation is organized as follows:

• Chapter 2 provides a literature review on the main techniques used for fault detec-

tion in WWTPs, and a description of the most common faults found in DO sensors.

• Chapter 3 gives a description of the Benchmark Simulation Model No 2 (BSM2)

simulator, used for the development of the work.

• A description of the Autoencoders is given in Chapter 4.

• In Chapter 5, a description of the dataset used, obtained using the BSM2, is made.

This chapter also describes the process of injecting the failures in the DO sensor.
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• The obtained results and discussions are in Chapter 6.

• In Chapter 7 is the conclusion of the work, with its limitations and possibilities for

future work.





Chapter 2

Fault Detection in WWTPs

In this chapter, a literature review will be performed on the techniques used to detect

failures in WWTPs, as well as the description of the main types of failures found in sensors

responsible for monitoring the various stages of the wastewater treatment process. The

chapter is organized as follows: Section 2.1 explains the methodology adopted to prepare

the literature review, Section 2.2 presents the works found in the literature review that

use machine learning techniques to detect failures in WWTPs, in Section 2.3, the works

that use statistical methods to detect failures in WWTPs are described, and finally, Section

2.4 describes the the main types of faults found in the DO sensors, drift, bias, Precision

degradation, spike and stuck, which will later be used to evaluate the performance of the

proposed failure detection system.

2.1 Literature Survey Methodology

A fault is an unintentional deviation of a process characteristic that limits the process’

ability to achieve its purpose [23]. In this sense, fault identification plays an important

role int the WWTP management system. Environmental legislation, increasingly strict,

requires the anticipation of the occurrence of failures or anomalies. An unidentified fault

in WWTPs can pose serious risks to the environment and severe damage to the station’s

structures. And, failures in WWTPs can come from a variety of sources: changes in efflu-

ent quality (snow melt, industrial discharges, heavy rains), mechanical failures (pumps,

aerators, heaters), abnormal growth or death of microorganisms (bacteria and algae),

7
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damage to treatment structures (membranes, valves, pipes), and sensor failures (electri-

cal interference, dirt, sensor degradation). Each failure has its own characteristics and

different ways of affecting the treatment process.

Many works have already been proposed with the objective of predicting failures and

anomalies in various parts of the wastewater treatment process. In order to better under-

stand these techniques, their strengths and weaknesses, and to identify possible innova-

tions, a search was carried out according to keywords in some repositories.

In order to conduct the literature survey, the title, abstract and field of study were

searched in IEEE Xplore*, ScienceDirect†, MDPI‡, Springer§ and IWA¶ repositories. The

query was done in publications of the last 20 years, and was made according to a combi-

nation of keywords, divided into groups.

TABLE 2.1: Search keywords.

Group A Group B Group C
sensor WWTP fault detection

Wastewater treatment plants failure detection
fault identification

fault isolation

The words that make up the groups were combined using logical operators: (Group

A) AND (Group B) AND (Group C). Only articles related to failures in WWTPs were

selected.

Most of the selected works are divided into statistical methods, methods that employ

machine learning algorithms or a combination of both approaches. The basic organization

of the articles found can be seen in the Figure 2.1. In the next section the works proposed

in these categories will be analyzed.

*https://ieeexplore.ieee.org/Xplore/home.jsp
†https://www.sciencedirect.com
‡https://www.mdpi.com/
§https://www.springer.com/gp
¶https://iwa-network.org/

https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.sciencedirect.com
https://www.mdpi.com/
https://www.springer.com/gp
https://iwa-network.org/


2. FAULT DETECTION IN WWTPS 9

FIGURE 2.1: Data-driven fault detection methods employed in WWTPs.

2.2 Machine Learning Techniques

The use of machine learning (ML) techniques makes possible to extract important infor-

mation from the obtained data from the treatment process carried out in the WWTPs.

The ML techniques build a model based on data, modelling the complex relationship in

which process inputs are non-linearly linked to outputs, without prior knowledge of an

underlying mechanism.

Some machine learning techniques used to identify failures in WWTPs will be de-

scribed below.

2.2.1 Artificial Neural Networks (ANN)

Artificial neural networks (ANN) is a massively parallel combination of simple and inter-

connected processing units which can acquire knowledge from the environment through

a learning process and store the knowledge in its connections [24].

In [25], the use of ANN is proposed to identify six types of failures. The model re-

ceives 5 input variables: D (sludge dilution rate), W (aeration rate), r (recirculation rate),

b (excess sludge rate), Sin (inflow substrate concentration), and can produce seven results:

normal operation, failure of the recirculation pumping, failure of the supply pump, fail-

ure of the excess of the sludge pump, failure of the biomass concentration sensor, failure

of the dissolved oxygen (DO) concentration sensor, and partial failure ( 25%) at the supply
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pump. The results of the test proved a good ability of the neural network to recognize the

faults, correctly identifying 97.2% of failures in the analyzed cases.

A WWTP produces a large amount of data, most of which come from sensors, and

it is a great challenge to identify collective faults in sensors. This is the objective of the

work proposed in [26], that uses Long short-term memory (LSTM) networks to identify

collective failures in the sensors. The data used were collected from a real WWTP. They

were collected every minute, for a year, by 12 sensors, with each sensor responsible for

438.181 observations, totaling 5.1 million observations, and were labeled, by an expert,

as normal and faulty. In the wastewater treatment process with the increase in ammonia

levels, oxygen is pumped. Then the ammonia levels drop and the pumping of oxygen

is stopped. And this cycle is repeated. A fault is detected when the oxygen is pumped,

but the ammonia levels does not decrease. The results obtained by the LSTM were com-

pared to the results of the Autoregressive Integrated Moving Average (ARIMA), Principal

Component Analysis (PCA) and Support Vector Machines (SVM) models , and achieved

a fault detection rate (recall) of over 92%, thus outperforming traditional methods and

enabling timely detection of collective faults.

In the biological reactor tanks of the WWTPs, when the DO sensor fails, the system can

be wrongly induced to increase or reduce the levels of oxygen pumping. A Radial Basis

Function (RBF) neural network is used in [27] to identify faults in DO sensors in the bio-

logical reactor tanks. The RBF network is used to construct a time series that corresponds

to the variable Oxygen Transfer Coefficient for tank 5 (KLa5). If the actual verified value

for the KLa5 variable deviates considerably from the expected value, a failure in the DO

sensor is indicated. The method performed well in relation to the delay for fault detec-

tion and false alarm rate. In [28], the use of a hybrid system for monitoring and detecting

failures in WWTPs is proposed. The model is composed of a multivariate regression, an

ANN and a hybrid technique that uses PCA for data pre-processing. The system receives

11 variables as input and aims to predict the value of total Kjeldahl nitrogen present in the

biological reactor. The hybrid model performed well in relation to the root mean squared

error (RMSE) metric.

There are two forms of training ANNs: supervised and unsupervised training. Su-

pervised training requires data to be labelled in such a way that inputs and outputs are

defined. Unsupervised training of a ANN uses data that are unlabeled. In fault detection,

unsupervised ANN can be trained to model a process by estimating the values of inputs
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and comparing the estimation to the actual values. This unsupervised training ANN is

known as Autoencoder (AE). [29] used a deep associative neural network for fault diag-

nosis and prognosis, with “bottleneck” layer (i.e. the middle, hidden layer contains fewer

nodes than the preceding or succeeding layers), as AE. This narrowing in the central layer

force the ANN to effectively capture the principal components of the data to detect faults

at a WWTP. The proposed model was used for detection of abrupt changes and drift in the

sensor signal. The results showed that the proposed methodology is capable of detecting

sensor faults and process with good accuracy under different scenarios. In [30], a varia-

tional AE is used for fault detection. The proposed model takes into account the temporal

evolution of the treatment process. The slow feature variational AE (SFAVAE) model is

used to monitor processes, using the Benchmark Simulation Model No 1 (BSM1) simula-

tor, and tries to identify faults such as sludge expansion fault, small magnitude variable

step and ramp fault. SFAVAE’s performance is compared with the PCA, independent

component analysis (ICA), kernel principal component analysis (KPCA) and variational

AE (VAE) models. The results indicate that the SFAVAE model has higher effectiveness in

process monitoring according to the false alarm rate and the missing alarm rate metrics.

2.2.2 Gaussian Process Regression

Gaussian process regression (GPR) is a non-parametric, Bayesian approach to regression

which has already been used to identify faults and anomalies in WWTPs. In [31], GPR was

used to monitor the Biochemical Oxygen Demand (BOD) value of the WWTP effluent.

The value BOD value was used to predict the Sludge Volume Index (SVI), and to predict

the occurrence of filamentous sludge bulking. The work develops a GPR model for multi-

step-ahead prediction using Recursive, Direct and Direct-Recursive strategies. The data

used correspond to 14 days of dry weather, and sampling is done every hour. To assess

the system’s performance in identifying drifts in the time series, a drift was added in the

last three days. The GPR models were able to identify the drifts 6 hours in advance with

a 95.5% probability.

The work carried out in [32] proposes two GPR models: GPR with maximum like-

lihood estimation (GPR-MLE) and GPR using Monte Carlo sequential estimation (GPR-

SMC). Two situations are evaluated, the first being the impact of local optimum points in

the estimation of missing values in the WWTP flow rate, and the second, the evaluation of
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the most efficient method for detecting drifts in the values of sensors that measure ammo-

nia levels. The work demonstrated that the GPR model can be used to monitor WWTPs

efficiently. The GPR successfully detected the drift in the ammonium sensor and had few

false alarms during the non-faulty test period. In the complete test data set, GPR had

74.5% drift detection percentage, and 15.9% false alarm percentage.

2.3 Statistical Techniques

Statistical methods, consolidated in the state-of-the-art, represent important tools for the

identification of failures and anomalies in time series. Some of these techniques, used in

WWTP, will be analysed below.

2.3.1 Control Charts

Control charts are important tools for determining whether a system is in control (IC) or

out-of-control (OC). The most popular control chart was developed by Walter Shewhart of

Bell Labs. The Shewhart control chart uses upper and lower control limits (UCL and LCL)

for a process variable or statistics by adding or subtracting k standard deviations from the

variable’s mean, with k = 3 being the industry standard [33]. If an observation is above

the UCL, a statistically significant change has most likely occurred. Shewhart control

charts employed at WWTP are typically constructed with a 3 or 5 days arithmetic moving

average for variables designed to be stationary. The method proposed by Shewhart has

the limitation of being applicable only to normally distributed and independent variables

and the stationary time series [34].

To try to overcome the limitations of Shewhart control charts, some techniques were

proposed. Exponentially weighted moving average (EWMA) can account for some non-

stationarity found in WWTP data [35]. The Shewhart control chart assumes the process

is stationary and weighs all past observations equally, ignoring trends [34]. The EWMA

gives more weight to the most recent observations, adapting to some process variation

[33]. In [36], it is proposed to use EWMA, together with a Kalman filter, to identify fail-

ures in WWTPs. The system monitors the variables chemical oxygen demand (COD), DO

concentration, active heterotrophic biomass, ammonia and nitrate concentration and ac-

tive autotrophic biomass. The proposed model is used to calculate the residual between
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the actual and estimated values, and then the Control Chart is used to detect the fail-

ure. The proposed model performed well in relation to the false alarm rate and missed

detection rate metrics.

EWMA is not the best method to distinguish between IC or OC. Like other data-driven

methods, its performance is strongly affected by the presence of outliers [37].

2.3.2 Principal Component Analysis

A widely used statistical method for monitoring multiple variables simultaneously is

principal component analysis (PCA) [38]. PCA is a mathematical method that uses an

orthogonal transformation to convert a set of observations of possibly correlated vari-

ables into a set of values of linearly uncorrelated variables called principal components

(PC). PCs account for as much variation as possible and can, therefore, reduce the number

of model variables and eliminate noise and redundancy. To use PCA for supervised, data-

driven analysis, a training dataset that represents IC conditions are used to calculate the

PCs, then testing data are transformed into the model subspace (defined by the PCs). If

the overall distance from a new observation to the PCA model is above a desired control

limit, then the new observation is considered abnormal.

PCA has many applications in WWTP, from direct fault detection [39] to data recon-

struction [40]. For dynamic WWTP data, variations of PCA are often used, with adaptive

PCA being the most common [41]. The work developed in [42] aims to detect failures in

the DO sensor, of the biological reactor represented by BSM1. The faults are injected into

the simulator, and the PCA is used to detect these faults. The detection method obtained

good results according to the Hotelling’s t-squared Statistic (T2) and Squared Prediction

Error (SPE) metrics. The work developed in [43] has the same objective, but here the

technique used is the Monte Carlo simulation. The method used obtained good results

according to the Fault detection, Fault isolation, and False alarm rate metrics

In [44], the method called Incremental PCA (IPCA) overcomes the difficulties char-

acteristic of the traditional PCA, which has the tendency, due to non-stationary charac-

teristics of WWTPs, to present a high number of false alarms. The method consists of

two parts, an offline training and an online monitoring. In offline training the data is

normalized, the number of PCs to be retained is determined and the limits, from which

a failure is considered, are calculated. In online monitoring new data are collected. The

statistical information SPE and T2 are calculated, and it is checked whether these values
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are within the limits considered normal. To detect failures 28 variables were monitored.

Some failures were implemented to test the proposed system: step in the oxygen level in

the aerobic digester, in the sedimentation speed of the secondary clarifier, and a step in

the parameters of the bioreactor. In all the proposed failure situations, the IPCA was able

to detect the fault, and isolate the variable that originated the failure, with false alarm rate

and missed detection rate of 0.07% and 18.53%, respectively.

The method Adaptive PCA updates the model based on a “rolling window” of train-

ing observations. The training window is set to n observations. With time evolution the

oldest observations are removed, and more recent observations are added to the window,

keeping n constant. The rolling training window can thereby account for temporal non-

stationarity found in WWTP. However, if the training window is too large, faults could be

ignored [41]. If the training window is too small, normal observations could be flagged

as faults [45].

A Probabilistic PCA approach in process monitoring and fault diagnosis with appli-

cation in WWTPs is proposed in [46]. The Probabilistic PCA is compared to PCA, PPCA,

GPLVM and Bayesian GPLVM. The PPCA is a probabilistic interpretation of the PCA, the

GPLVM is a version of the PPCA for non-linear situations, and the Bayesian GPLVM uses

the Beysian theory to train the GPLVM model and thus make it more robust to overfit-

ting. The GPLVM and Bayesian GPLVM models showed better performance in detecting

failures. This can be explained by adaptations to non-linearities. The PCA and PPCA

methods showed high rates of false positives.

In [47], some methods to identify anaerobic digesters faults in WWTP are compared.

A soft sensor implemented with an ANN estimates the value of volatile fatty acids (VFA),

and is statistically compared with values considered normal. The techniques used in

the comparison are PCA, SPE and Cumulative Sum Control Chart (CUSUM). SPE and

CUSUM performed better than PCA in relation to the Recall, Precision and F1 score met-

rics. CUSUM performed better for errors of lesser magnitude, while SPE performed better

for errors of greater magnitude.

The biggest disadvantage for applying the PCA in WWTPs is the assumption that

process variables are linearly related to each other [48]. To account for the non-linear

components of WWTP, data can first be mapped into a higher-dimensional, non-linear

space, where observations are more likely to be linear [49]. PCA can be an important tool
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for detecting failures in WWTPs when used in conjunction with other methods that com-

pensate their weaknesses. In [50], it is proposed to use the PCA together with an ANN.

The objective is to identify three failures: toxicity shock, Inhabitation and Bulking. The

results obtained indicate greater efficiency than the classic PCA, increasing the sensitivity

and robustness of the monitoring schemes.

2.3.3 Partial Least Squares

Similar to PCA, Partial Least Squares (PLS) identify linear combinations of measured vari-

ables, and outliers can be identified with T2 and SPE statistics. In [51], the use of PCA

and PLS is proposed, in a system called Multivariate Statistical Process Monitoring. The

proposed system is used to monitor collective failures in WWTPs, and showed good per-

formance in relation to the T2 and SPE metrics, but presented considerable delay in the

detection of failures. Unlike PCA, PLS differentiates between input variables and output

variables and performs dimension reduction on each set of variables separately [52]. PLS

only monitors the output variables that are affected by the input variables, while the PCA

is used to monitor all variables in the process simultaneously. If an observation is abnor-

mal but does not affect the final water quality, PLS will not signal the process as outside

of the region considered normal, but PCA will [53].

2.3.4 Summary

A summary with the main information of the analyzed articles can be seen in Table 2.2.

It is noticed that the most used techniques for the detection of failures in WWTPs are the

ANN, in its multiple forms, and the PCA, with its adaptations.

Several works were analyzed, and many of these dealt with failures in the dissolved

oxygen (DO) sensor, which monitors the biological reactor tanks, an important part of the

treatment carried out in the WWTPs. The faults commonly found in these types of sensors

can be classified into groups [42], which will be further explained in the next section.
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TABLE 2.2: Summary of the reviewed works.

Source Contribution Algorithm Data Failure
Type

Performance
Metrics

[25] Multiple
fault

detection

ANN Simulating
scenario in
presence of

failures

Injection of
faults in the

analyzed
dataset

TP, FP, TN,
FN, ROC

[26] Collective
failures

detection in
sensors

LSTM Real Data
labeled as

normal and
faulty

Precision,
recall, and
F1 score

[27, 43] Faults
detection in
DO sensor

RBF Simulator
(BSM1)

Injection of
faults in the

analyzed
dataset

Detection
delay and
false alarm

[29] Abrupt
changes and

drift
detection in

sensors

AE Simulator
(BSM1)

Injection of
faults in the

analyzed
dataset

False alarm
and faulty
detection

rate

[30] Multiple
fault

detection

AE Simulator
(BSM1)

Injection of
faults in the

analyzed
dataset

T2, SPE

[31] Fault
prognosis of
filamentous

sludge
bulking

GPR Simulator
(BSM1)

Injection of
faults in the

analyzed
dataset

RMSE,
Correlation
Coefficient

(r)

[32] Drift
detection

and forecast
with NH4

sensor data

GPR Phenomeno-
logical

influent
simulator
and real

data

Missing
data/real

drift

Normalized
RMSE/Per-
centage of
detection,

false alarm
probability

[41, 42] Real-time
fault

detection
and

isolation

PCA Real and
Simulator

(BSM1)

Faults in
nitrogen
and DO
sensors

Fault
detection

rate, T2, SPE

[44] Online
sensor
failure

detection

IPCA Simulator
(BSM2)

Injection of
faults in the

analyzed
dataset

False alarm
rate, missed

detection
rate

[45] Multiple
fault

detection

PCA based
models

Real Data
labeled as
normal or

faulty

Fault
detection

rate
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TABLE 2.2: Summary of the reviewed work (continuation)

Source Contribution Algorithm Data Failure
Type

Performance
Metrics

[46] Multiple
fault

detection

Probabilistic
PCA

Real Data
labeled as
normal or

faulty

Fault
detection

rate

[47] Fault
detection in
anaerobic
digestion

ANN,
SVM, PCA

Simulator
(BSM2)

Injection of
faults in the

analyzed
dataset

Recall,
Precision, F1

score

[49] Multiple
fault

detection

PCA-based
and

PLS-based
faults

diagnosis

Simulator
(BSM1)

Injection of
faults in the

analyzed
dataset

Fault
detection

rate

[50] Multiple
fault

detection

PCA and
ANN

Simulator Injection of
faults in the

analyzed
dataset

Fault
detection

time

[51] Multiple
fault

detection

PCA, PLS Simulator
(BSM1)

Injection of
faults in the

analyzed
dataset

T2, SPE

[36] Multiple
fault

detection

EWMA,
Kalman

Filter and
Control
Chart

Simulator Injection of
faults in the

analyzed
dataset

False alarm
and missed
detection

rate

[54] Multiple
fault

detection

Lasso Real data Real faults
present in
the dataset

False signal
rate, false

signal count,
detection
accuracy

and
isolation

rate
[28] Monitoring

of variables
and fault
detection.

Multivariate
regression,
ANN, PCA

Real Deviation
from the
expected

value

RMSE
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2.4 Sensor Fault Taxonomy

Deviations from expected behavior in the sensor output are considered faults. They are

classified according to the trend in which they deviate from normal behavior. Let s(t) =

h(t) + η be the expected output of a sensor without the presence of faults, where h(t) is

the output of the sensor at time t, and η ∼ N(0, δ2
n) is noise [55]. The different types of

fault can be defined as follows [56].

2.4.1 Drift Fault

When sensor output increases continuously at a constant rate, this type of fault is known

as the drift fault. Many conditions can lead to this failure. Degradation of the mate-

rial that makes up the sensor, extreme conditions where the sensor is installed (common

condition in WWTPs), and corrosion, are some causes of drift fault. A drift fault can be

mathematically defined as

s(t) = h(t) + η + b(t), b(t) = b(t − 1) + υ, υ = constant (2.1)

where b(t) is the bias added to the signal at time t, and it increments with the passage of

time: b(t) = b(t − 1) + υ. In this type of fault, the output value increases linearly from the

normal value over time.

2.4.2 Bias Fault

In a bias fault, a constant value is added to the sensor output and, as a result, a shift from

the normal value is observed. Mathematically, a bias fault is expressed as

s(t) = h(t) + η + υ, υ = constant (2.2)

This fault is mainly due to calibration error.

2.4.3 Precision Degradation Fault

This type of fault adds noise with a zero mean and high variance to the output of a sensor.

Mathematically, the precision degradation fault is expressed as

s(t) = h(t) + η + υ, υ ∼ N(0, δ2
υ), δ2

υ ≫ δ2
n (2.3)
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The reasons for this fault are sparse connections in the circuitry, high-frequency noise in

the system, or physical damage in the sensor.

2.4.4 Spike Fault

As the name indicates, in spike faults, large-amplitude spikes are observed in sensor out-

put. To obtain spike fault, a constant bias bt is added to the elements of the normal signal.

It is modelled as

s(t) = h(t) + η + bt, (2.4)

∀ t = v × τ

Where v = {1, 2, . . . } is a set of natural numbers and τ is the interval in which the spikes

occur in the sensor output, and τ ⩾ 2.

2.4.5 Stuck Fault

It is a complete failure, with the sensor output being locked at a fixed value. It could be a

temporary or permanent problem. This type of failure is mathematically defined as

s(t) = υ, υ = constant. (2.5)

These are the most common faults found in DO sensors used in WWTPs. Any of these

failures can result in heavy fines, damage to the environment, and possible damage to

the WWTPs structure [54]. One way to better understand the dynamics of faults, and to

evaluate detection methods, is through the use of simulators that represent the treatment

process, with its stages and characteristics. For the present work, the BSM2 simulator will

be used. The next chapter will provide a brief description of the wastewater treatment

process carried out in WWTPs, and its representation by the BSM2 simulator.





Chapter 3

Benchmark Simulation Model No 2 -

A Wastewater Treatment Plant

Simulator

Organic pollution by wastewater discharge from human activities (cities, farming, indus-

try) affects humans and ecosystems worldwide through the global sanitation crisis [57].

Wastewater resulting from various human activities cannot be released directly into na-

ture. They can be a threat to public health and water resources, and so need treatment.

This treatment takes place in special places designed for this purpose, the wastewater

treatment plant (WWTP), and consists of several stages [58]: preliminary, primary, sec-

ondary, tertiary (reuse of treated water), and sludge treatments.

For testing and evaluating strategies related to WWTPs, the use of simulators is essen-

tial. For the development of the work presented here, the simulator Benchmark Simulator

Model No 2 (BSM2) was used, which simulates all stages of wastewater treatment that oc-

curs in a WWTP. Details about wastewater treatment and the simulator used will be given

in this chapter, which is organized as follows. Section 3.1 provides information on the

steps in the wastewater treatment process carried out by WWTPs. Section 3.2 describes

the BSM2 simulator, with its composition and layout. Section 3.3 describes the Activate

Sludge Model No1 module which represents the biological treatment of wastewater. In

Section 3.4, the model of the anaerobic digester present in BSM2 is detailed. And, Section

3.5 details general characteristics of the BSM2, such as tank volume and water retention

time.

21
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3.1 Wastewater Treatment Plant

The treatment of wastewater from various human activities must be treated before return-

ing to the environment, and this treatment takes place in WWTPs. The treatment made in

the WWTPs, represented in Figure 3.1, will be briefly described below.

FIGURE 3.1: Schematic of conventional wastewater treatment process [58].

The stages of wastewater treatment are as follows:

1-Preliminary treatment: removal, with the help of bars, of larger materials that could

damage the treatment plant equipment or reduce the treatment capacity due to its dimen-

sions. At this stage, sand is also removed by decantation.

2-Primary treatment: removes settleable and floatable solids (may not be present in all

treatment plants [58]). In this step, floating materials such as oils and greases are also

removed.

3-Secondary treatment (activated sludge and decantation): removes biochemical oxy-

gen demand (BOD) and dissolved and colloidal suspended organic matter by biological

action. It is the biological and oxidative treatment, and takes place in the activated sludge

reactor (biological reactor). In this process, bacteria consume organic matter, and for that

they need oxygen. Thus, this tank has an oxygenated part. At the end of the process,

the waste water goes to a secondary settler, and the organic matter decants. Part of this

decanting matter, formed by organic matter and bacteria, is redirected to the entrance of

the activated sludge reactor. Thus, the concentration of bacteria in this reactor is much
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higher than what would be natural in wastewater, and thus, organic matter is consumed

more quickly. It’s a way to speed up a natural process.

4-Tertiary treatment (reuse of treated water): due to water scarcity, in certain regions

the use of water from WWTPs represents an important alternative [59]. But this water

needs to be treated to reach minimum levels of quality. At this stage of treatment, the

wastewater is subjected to disinfection and nutrient removal. Bacteria, suspended solids,

excess nutrients and specific toxic compounds are removed. After this treatment, the

water can be used in agriculture, watering green spaces, washing pavements and streets,

among other possible uses.

5-Sludge treatment: the sludge produced in the treatment, as well as the final water,

needs to be treated so that it can be discarded, or reused (agriculture, landfills, etc). Me-

chanical, chemical, thermal, thermochemical, and biological treatments are applied to

sludge [60].

The steps described can vary according to the type of treatment and the capabilities of

the WWTPs, but in general these are the processes used, and each of these steps can be

divided into sub-processes, and done in several different ways. The generic structure of

a WWTP is represented by the simulator Benchmark Simulation Model Nº2 (BSM2), that

will be described in Section 3.2.

3.2 Benchmark Simulation Model Nº2

WWTPs are structures subject to many variations, and with highly non-linear character-

istics [61], and which, nevertheless, need to function within the strict limits imposed by

environmental legislation [62].

Many strategies related to attempts to make the wastewater treatment process more

efficient have been, and are being implemented, but comparing these methods is difficult

due to the complexity of the system. And, to achieve innovations, evaluations must be

carried out based on rigorous methods, with well-established performance criteria.

In this sense, the simulation environment Benchmark simulation model no.2 (BSM2)

was developed. From 1998 to 2004, the development of benchmark tools for simulation-

based evaluation of control strategies for activated sludge plants has been issued in Eu-

rope by Working Groups of COST Action 682 and 624. This work has been continued

under the umbrella of the International Water Association (IWA) Task Group on Bench-

marking of Control Strategies for WWTPs [63]. BSM2 (or part of them, eg. BSM1) has
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been widely used by the research community, as for example, in the following works

[12, 64–70].

The BSM2 is a simulation environment defining the plant layout, the simulation model,

influence loads, test procedures and evaluation criteria. For each of these items, compro-

mises were pursued to combine plainness with realism and accepted standards [22].

BSM2 describes a structure responsible for the treatment of wastewater, consisting of

biological and sludge treatment. The simulator is mainly composed by primary settling,

activated sludge system (including anoxic and aerobic reactors and a secondary clarifier),

anaerobic digester, sludge thickener and dewatering, and a sludge storage unit. The lay-

out of BSM2 can be seen in Figure 3.2.

Activate sludge reactor

Tank

 1

Tank 

2

Tank 

3

Tank 

4

Tank 

5

Storage tank

Anaerobic
digester

Secundary
clarifier

Primary
clarifier

Dewatering

Thickener

FIGURE 3.2: Layout of BSM2.

Two models used in the BSM2 units are the Activate Sludge Model Nº1 (ASM1) and

the Anaerobic Digester Model N°1 (ADM1). The ASM1 models the unit where the bio-

logical treatment takes place, while ADM1 works with one of the later units, responsible

for anaerobic digestion and biogas generation.

3.3 Activate Sludge Model Nº1 - ASM1

In 1983, a working group was formed, under the responsibility of the IWA, with the ob-

jective of providing the application and validation of models of biological systems for the

treatment of effluents in activated sludge processes. This work group culminated with the
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launch of a family of biological treatment models using activated sludge. The first model

released was called Activate Sludge Model Nº1, or ASM1.

The ASM1, considered as the reference model for the biological treatment process,

configures the biological reactor model or activated sludge reactors, with five compart-

ments, with an anoxic zone, made up of two tanks, and an aerated zone, made up of three

tanks. In these two sections the processes of denitrification and nitrification take place.

The ASM1 is part of the Benchmark Simulation Model N°1 (BSM1), which can be seen in

Figure 3.3, and presents a typical activated sludge system, combining the ASM1 model

with a secondary clarifier [71]. The BSM1 simulator was used as a basis for the elabora-

tion of the BSM2, which added the primary decanter and the sludge treatment tanks to

the original project.

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5

Biological Reactor Clarifier

Wastewater

External recycle Wastage

To river

PI controller

Anoxic section Aerated section

FIGURE 3.3: Layout of BSM1.

To keep the bacterial population responsible for the degradation of organic matter,

the sludge from the secondary clarifier is recirculated to the anoxic tanks. The sludge

concentration is kept constant through continuous recirculation from the clarifier [72].

The treatment process that takes place in the biological reactor can be summarized in

eight processes [61]:

• Aerobic growth of heterotrophs;

• Anoxic growth of heterotrophs;

• Aerobic growth of autotrophs;

• Decay of heterotrophs;

• Decay of autotrophs;
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• Ammonification of soluble organic nitrogen;

• Hydrolysis of organic compounds;

• Hydrolysis of inorganic compounds.

These methods aim to neutralize threats posed by chemical compounds produced by

human activities, and accelerate the process that occurs in nature.

3.4 Anaerobic Digester Model N°1 - ADM1

As mentioned earlier, a product of wastewater treatment is sludge. This compound needs

to be treated before being used or disposed. In this sense, the anaerobic digester, described

by the ADM1 model [73], performs anaerobic digestion and biogas generation.

Many factors influence the anaerobic digestion process. The main ones are tempera-

ture and pH, which strongly influence bacterial metabolism. For optimal bacterial growth

the pH should be between 6.7 and 7.5 [74]. As a product of the anaerobic bacterial activ-

ity, we have the production of biogas. A typical biogas composition of digested sludge is

methane (CH4, 50–70%) and carbon dioxide (CO2, 30–50%) [75].

It can be concluded that the ADM1 and ASM1 models, which make up the BSM2

simulator, allow a realistic evaluation of the implemented techniques related to WWTPs.

3.5 General Characteristics of BSM2

As general characteristics, the BSM2 simulator is designed for an average influent dry-

weather flow rate of 20648, 36 [m3/day] and an average biodegradable Chemical Oxygen

Demand (COD) in the influent of 592, 53 [g/m3]. Its hydraulic retention time is 22 hours,

based on average dry weather flow rate and total tank volume – i.e. primary clarifier

(900 [m3]) + biological reactor (12000 [m3]) + secondary clarifier (6000 [m3]). The influent

dynamics are defined for 609 days by means of a single file, which takes into account

rainfall effect and temperature [76], with the data sampled every 15 minutes.

During the various stages of the treatment process, many variables can be accessed.

The main ones are:

• Time, [days].

• SI (inert soluble material, [g COD/m3]);
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• SS (readily biodegradable substrate, [g COD/m3]);

• XI (inert particulate material, [g COD/m3]);

• XS (slowly biodegradable substrate, [g COD/m3]);

• XB,H (heterotrophic biomass, [g COD/m3]);

• XB,A (autotrophic biomass, [g COD/m3]);

• XP (inert particulate material from biomass decay, [g COD/m3]);

• SO (dissolved oxygen, [g COD/m3]);

• SNO (nitrate and nitrite, [g N/m3]);

• SNH (ammonia and ammonium, [g N/m3]);

• SND (soluble organic nitrogen associated with SS, [g N/m3]);

• XND (particulate organic nitrogen associated with XS, [g N/m3]);

• SALK (alkalinity);

• TSS (total suspended solids, [g SS/m3]);

• flow rate, [m3/day];

• temperature, [°C].

At the end of the simulation period, a report is generated with various informations

related to indicators, including energy consumption, general expenses in the treatment

process, biogas generation and the quality of the resulting water. With the help of BSM2,

it is possible to implement and test strategies for control, optimization, prediction of vari-

ables, detection of failures and anomalies, etc. It is possible to compare results according

to pre-established metrics, and thus achieve innovations and contributions to mitigate the

problems related to wastewater.





Chapter 4

Fault Detection using Autoencoders

This chapter aims to describe the Autoencoder (AE), their basic structure and usage. It

also describes the two models of AEs used in this work. The chapter is organized as

follows: Section 4.1 presents some use cases for AEs, and Section 4.2 describes the basic

structure of AEs, with their mathematical representation. In this section, the two EA

models used in the development of the work are also described.

4.1 Autoencoder

AEs are artificial neural networks with a wide application area: classification and regres-

sion [77], reconstruction of missing parts in an image [78], hierarchical feature extraction

[79], analysis of large neuroimaging datasets [80], online data stream analysis and action

recognition [81], 3D face reconstruction [82], natural language processing [83], object de-

tection [84], image classification [85], etc.

The main feature of AEs is the ability to represent high-dimensional data in reduced

dimensions, while maintaining the original quality as much as possible. AEs are struc-

tures that work like the PCA, which projects high-dimensional data onto smaller-dimensional

data. However, PCA applies linear transformation, while AE apply non-linear functions.

There are many applications, but there are few works that apply AE to solve problems in

WWTPs. In the next section, the basic structure of AEs will be described. Variations and

characteristics that allow its application in WWTPs will be explained.

29
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4.2 General Architecture of Autoencoders

As stated in the introduction to this chapter, AE is an unsupervised machine learning

algorithm that aims to reconstruct its input signal. It was proposed by Geoffrey Everest

Hinton in the 1980s to solve the “Backpropagation without a teacher” problem [86]. The

generic AE model consists of three parts:

• Encoder: responsible for reducing the dimensionality of the data.

• Code(activation): latent/compressed representation of the data, contains the re-

duced representation of the encoder input data. It is a non-linear mapping that

transforms the encoded coefficients into the range [0, 1].

• Decoder: responsible for expanding the dimensionality represented in the Code,

and reconstructing the input signal.

An AE is a typical feed-forward neural network that connect many simple neurons.

The output of a neuron can be the input of another, and the parameters can be estimated

using a back-propagation algorithm. A forward pass is first run to compute the activa-

tions weights (a non-linear mapping) throughout the network. For each middle node, an

error term that measures how much that node was responsible for any errors in the out-

put is calculated. For an output node, the difference between the network’s output and

the true target value can be measured directly and further used to renew the error term.

A representation of the AE can be seen in the Figure 4.1, and a generic flowchart of an AE

can be seen in the Figure 4.2.

Encoder Decoder

Input Output

Code

FIGURE 4.1: Generic AE model.
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FIGURE 4.2: Generic flowchart of an AE. Adapted from [87].

Given the visible input layer x, the AE first maps it into a hidden layer h with a weight

matrix Wv, bias bv, and an activation function σ(·) : R → [0, 1]:

h = σ(Wvx + bv) (4.1)

The hidden units are then listed into the output layer z inversely with weight matrix

Wh, bias bh, and activation δ(·) : R → [0, 1]:

z = δ(Whh + bh) (4.2)

To simplify the network architecture, the tied weights strategy Wv = Wh = W are

used, and the parameters to be determined are {W, bv, bh}. The objective function to

train an AE is to minimize the cost function J ,

J (W, bv, bh). (4.3)

Given the training samples, the cost function is defined as

J (W, bv, bh) = L(x, z) + g(W), (4.4)

where L(x, z) is the loss function and g(W) is a regularization. The weight matrix and

bias are obtained by the minibatch stochastic gradient descent (SGD) algorithm

Wnew = Wold − α
∂

∂W
J (W, bv, bh),

bnew
v = bold

v − α
∂

∂bv
J (W, bv, bh),

bnew
h = bold

h − α
∂

∂bh
J (W, bv, bh), (4.5)

where α is the learning rate, Wold, bold
v , bold

h denote the old model parameters, and Wnew, bnew
v , bnew

h

are the renewed ones.

From the basic structure of AEs, many different models with different applications can

be obtained. The next subsection outlines the main variations of AEs.
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FIGURE 4.3: Factors to consider when implementing AEs. Adapted from [88].

4.2.1 Variants of Autoencoders

Many parameters can be modified when implementing AE. It can have a simple structure,

with only one hidden layer, or can have several hidden layers, characterizing a deep AE

model. The representation of the input data, made by the latent layer h (Figure 4.2), can

be classified as under complete or over complete [88]. An under complete representation,

where the representation dimension is smaller than the input dimension, forces learning

of the most essential features of the training data. The AE can be implemented as fully

connected, convolution based or recurrent based units. The number of neurons in each

layer can vary according to the objectives to be achieved for the proposed problem. These

are just a few of the many factors. The main factors that should be considered when

implementing AEs can be seen in the Figure 4.3.
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FIGURE 4.4: Generic structure of the LSTM cell. Adapted from [90].

In this work, two forms of AE will be used: Long short-term memory (LSTM) and

Convolutional AEs, named here as LSTM-AE and Convolutional-AE, respectively. These

models will be described in the next subsections.

4.2.1.1 LSTM Autoencoder

LSTM, proposed in [89], is a recurrent neural network that takes into account the historical

context of events to make its predictions, with the help of memory cells. The generic

structure of an LSTM cell can be seen in Figure 4.4.

The detailed process of updating the LSTM neural unit is as follows [89, 91]:

• The input ht−1 and xt are received as input values of the forget gate at time t. The

output ft of the forget gate is obtained. The formula is as follows:

ft = σ(W f [ht−1, xt] + b f ), (4.6)

where the value range of ft is 0 to 1, W f is the weight of the forget gate, and b f is

the bias of the forget gate.

• The input ht−1 and xt are received as input values of the input gate at time t. The

output it and the candidate cell state C̃t of the input gate are obtained. The formulas

are shown in Equations 4.7 and 4.8:

it = σ(Wi[ht−1, xt] + bi), (4.7)

C̃t = tanh(Wc[ht−1, xt] + bc), (4.8)
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where the value range of it is 0 to 1, Wi is the weight of the input gate, bi is the bias

of the input gate, Wc is the weight of the candidate input gate, and bc is the bias of

the candidate input gate.

• Update the cell status Ct at time t. Its equation is as follows:

Ct = ftCt−1 + itC̃t, (4.9)

where the value range of Ct is 0 to 1.

• The input ht−1 and input xt are received as input values of the output gate at time t,

and the output ot of the output gate is obtained. The equation is as follows:

ot = σ(Wo[ht−1, xt] + bo), (4.10)

where the value range of ot is 0 to 1, Wo is the weight of the output gate, and bo is

the bias of the output gate.

• The final output value ht of the LSTM neural unit is calculated as shown in Equation

4.11.

ht = ot tanh(Ct) (4.11)

In [92], the LSTM-AE is described as an extension to RNN based AE for learning the

representation of time series sequential data. In this model, encoder and decoder are built

using LSTM. Encoder LSTM accepts a sequence of vectors in the form of features. Decoder

LSTM recreates the target sequence of input vectors in the reverse order. A representation

of the LSTM-AE can be seen in Figure 4.5.

4.2.1.2 Convolutional Autoencoder

Fully connected AEs ignore the spatial structure of the input signal, and this spatial struc-

ture can represent important information for the final reconstruction. To solve this prob-

lem, in [79] is proposed a model known as convolutional AE (convolutional-AE). Instead

of using fully connected layers, convolutional-AE use convolutional operators that allow

extracting important representations from the input data. Forms of redundancy in pa-

rameters are introduced as a way to have a global learning. Because the weights and bias

are shared among all locations of input, the spatial locality can be preserved [87].
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FIGURE 4.5: LSTM-AE. Encoder and decoder implemented with LSTM cells.

Given the input signal x, the latent representation of the k − th feature map is given by

hk = σ(xWk + bv) (4.12)

Where hk is the latent representation of the k − th feature map, σ(·) is the activation func-

tion, W is the weight of the units, and the bias of the visible units bv is broadcast to the

whole map, being one bias per latent map.

As in convolutional neural networks, AE uses max-pooling layers. Max-pooling or

Maximum pooling, it is a pooling operation that calculates the maximum, or largest, value

in each patch of each feature map. The results are a pooled feature maps that highlight

the most present feature in the patch. The max-pooling layer is connected with the con-

volutional layer, and the reconstruction is obtained using

z = δ(∑
k

hkW̃k + bh) (4.13)

Where W̃k denotes the flip of Wk over both dimensions of the weights, and bh is the bias of

the hidden units. In the reconstruction, the latent coding decreases the average number of

filters contributing to the decoding of each input signal, forcing filters to be more general.

The cost function Jconv used by convolutional-AE is given by

Jconv = L(x, z) = ∑
i
{∥xi − zi∥2

2} (4.14)

Where xi and zi represent the signal value and its reconstruction at time i, respectively. A

representation of the Convolutional-AE can be seen in Figure 4.6.
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FIGURE 4.6: Convolutional-AE. Encoder and decoder implemented by convolution pro-
cess.

In the present work the LSTM and Convolutional AEs will be used to detect failures,

in real time, in the DO sensor of the biological reactor of a WWTP, represented by the

BSM2. By obtaining, as output, the signal representing the expected behavior for the DO

sensor, a threshold can be determined from which a failure is indicated.



Chapter 5

Dataset and Fault Implementation

This chapter aims to describe the origin of the dataset used for fault detection. The sensors

used by the simulator, the faults injected into the system, and the graphical representa-

tions of these faults are presented. The chapter is organized as follows: Section 5.1 de-

scribes the sensors present in the BSM2, with emphasis on the DO sensor, and describes,

in general terms, the functioning of the aeration system of the biological reactor tanks.

Section 5.2 details the failure injection process in the dataset used.

5.1 BSM2 Dataset

In order to evaluate new methods proposed for WWTPs, the use of simulators is very

important. As described in Chapter 3, BSM2 is an important simulator widely used in

the development and testing of techniques related to WWTPs. All treatment phases of a

conventional treatment plant are represented by the simulator. The BSM2 model imple-

mented in Matlab/Simulink can be seen in Figure 5.1.

Sensor information supports several decisions related to the functioning of WWTP.

The information from the sensors helps to determine the amount of chemical reagents

that must be added to the treatment process, the time that the aerators must run, the time

that purge valves must remain open, etc. Similarly, many of the techniques proposed to

optimize WWTPs are based on information obtained by sensors. For the result obtained

by the simulator to be realistic, the sensor represented in the BSM2 model must present a

behavior close to that found in a real situation. To avoid unrealistic behavior, the BSM2

uses sensor models modeled taking into account information such as saturation, response

time and noise. The sensors used by BSM2 can be classified into six classes, according to
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FIGURE 5.1: BSM2 simulator implemented in Matlab/Simulink. Biological reactor and
activated sludge system represented by the blue block.

their application. Table 5.1 shows the sensor classes available on the BSM2. The DO

sensor, a Class A sensor, can be seen in Figure 5.2, and its representation in the activated

sludge treatment system can be seen in Figure 5.3.

TABLE 5.1: Sensor classes. A measuring interval equal to 0 means continuous measure-
ment [93].

Sensor
classes

Response
time [min]

Measuring
interval

[min]

Examples

Class A 1 0 Ion sensitive, optical without
filtration

Class B0 10 0 Gas-sensitive + fast filtration
Class B1 10 5 Photometric + fast filtration
Class C0 20 0 Gas-sensitive + slow

filtration
Class C1 20 5 Photometric + slow filtration

or sedimentation
Class D 30 30 Photometric or titrimetric for

total components

The oxygen level in the biological reactor tanks is maintained with the aid of a Proportional-

Integral (PI) controller. The PI controller aims to maintain the level of DO in the oxy-

genated tanks of the biological reactor at 2 [mg/L]. To achieve this objective, the PI con-

troller receives measurements from the DO sensor, compares it with the reference value
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FIGURE 5.2: DO sensor represented in Matlab/Simulink.

FIGURE 5.3: Activated sludge treatment system with DO sensor.

and provides the operating signal to the aerators of bioreactors tanks 3, 4 and 5.

From the operating process of the treatment system, simulated by the BSM2, the im-

portance of the DO sensor is clear. Failures in the DO sensor can cause unnecessary ex-

penses with excess oxygen pumping, or it can impair the treatment due to lack of oxygen,

reducing bacterial activity, and not treating wastewater correctly.

5.2 Dissolved Oxygen Sensor Data and Fault Injection

The sensor used to measure the DO level at the exit of tank 4 can be seen in Figures 5.2

and 5.3. The continuous measurement of the sensor provides the DO values for the PI

controller. A signal from this sensor under normal operating conditions can be seen in the

Figure 5.4.

Figure 5.4 represents only two days of DO sensor signals, but the BSM2 can simulate

continuous cycles of 609 days of a WWTP operation. For training and tests of the models
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FIGURE 5.4: DO level obtained by the sensor in two days of operation.

used to detect failures in the DO sensor, 200 days of operation were considered, with the

last 100 days of a cycle used for training and validation, and the first 100 days of the

following cycle used for tests. The data used for training and validation and for the final

tests can be seen in Figures 5.5 and 5.6, respectively.
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FIGURE 5.5: Time series used for training and validation.
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FIGURE 5.6: Time series used for fault injection and tests.

To evaluate the performance of the fault detection techniques analyzed in this work,

the faults described in Section 2.4 were injected into the 100 days used for the tests. The

fault injection process will be further explained in the following subsection.
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5.3 Fault Injection

The faults considered were injected directly into the sensor model, and programmed to

act on specific days. To give more realism and allow a better evaluation of the detection

techniques, three scenarios were evaluated: Scenario 1 - injection of faults on specific

days; Scenario 2 - injection of faults with change in the order of appearance and duration

of faults; and Scenario 3 - injection of faults with change in order of appearance, intensity

and duration of faults. The implementation of sensor failures, in the BSM2 simulator, can

be seen in Figure 5.7. Details about the faults injected into the DO sensor, as well as their

graphical representation, will be given in the next subsections.

FIGURE 5.7: Faults implemented in the DO sensor: drift, bias, PD, spike and stuck.

5.3.1 Fault Injection: First Scenario

In the first scenario, the faults were injected into the DO sensor in the following order:

drift, bias, PD, spike, and stuck. The Table 5.2 shows information about the start and

duration of these faults. Its graphical representation can be seen in Figure 5.8. To facilitate

the visualization, Figures 5.9–5.13 shows the faults individually.
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TABLE 5.2: First scenario: faults introduced in the DO sensor signal.

Fault Start [day] Duration [hours]

Drift 10 120
Bias 30 120
PD 50 120

Spike 70, 72, 74, 76, 78 0.25
Stuck 90 120

0 20 40 60 80 100
Time [days]

2
0
2
4
6
8

10

DO
 [m

g/
L]

FIGURE 5.8: Faults implemented in the DO sensor signal in the first scenario.
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FIGURE 5.9: Faults implemented in the first scenario: drift.
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FIGURE 5.10: Faults implemented in the first scenario: bias.
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FIGURE 5.11: Faults implemented in the first scenario: PD.
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FIGURE 5.12: Faults implemented in the first scenario: spike.
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FIGURE 5.13: Faults implemented in the first scenario: stuck.

5.3.2 Fault Injection: Second Scenario

In the second scenario, the faults were injected into the DO sensor in the following order:

PD, stuck, drift, spike, and bias. In addition to the change in the order of appearance,

the duration of the faults was also modified. Table 5.3 shows information regarding the

second scenario. Figure 5.14 shows the graphical representation of the faults and Figures

5.15–5.19 show the faults individually.
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TABLE 5.3: Second scenario: faults introduced in the DO sensor signal.

Fault Start [day] Duration [hours]

Drift 40 72
Bias 92 48
PD 18 96

Spike 60, 62, 64, 66, 68 0.25
Stuck 30 72
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FIGURE 5.14: Second scenario. Faults implemented in the DO sensor signal. Changes
implemented in the duration and order of appearance of failures.
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FIGURE 5.15: Faults implemented in the second scenario: drift.
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FIGURE 5.16: Faults implemented in the second scenario: bias.
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FIGURE 5.17: Faults implemented in the second scenario: PD.
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FIGURE 5.18: Faults implemented in the second scenario: spike.
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FIGURE 5.19: Faults implemented in the second scenario: stuck.

5.3.3 Fault Injection: Third Scenario

In the third scenario, the faults were injected into the DO sensor in the following order:

stuck, spike, bias, drift, and PD. In addition to the change in the order of appearance,

the duration and intensity of the faults was also modified. The information on the faults

implemented in the third scenario can be seen in Table 5.4. The graphical representation

of these faults can be seen in Figure 5.20, and their individual representations are repre-

sented in Figures 5.21–5.25.
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TABLE 5.4: Third scenario: faults introduced in the signal from the DO sensor.

Fault Start [day] Duration [hours]

Drift 58 96
Bias 45 72
PD 90 72

Spike 26, 30, 31, 33, 38 0.25
Stuck 15 48
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FIGURE 5.20: Third scenario. Modification in the order of appearance, duration and
intensity of faults.
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FIGURE 5.21: Faults implemented in the third scenario: drift.
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FIGURE 5.22: Faults implemented in the third scenario: bias.
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FIGURE 5.23: Faults implemented in the third scenario: pd.
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FIGURE 5.24: Faults implemented in the third scenario: spike.
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FIGURE 5.25: Faults implemented in the third scenario: stuck.

The faults implemented in the BSM2, and represented in the graphs, are the most

common faults found in the sensor responsible for measuring the levels of DO in WWTPs

[42]. In order to detect these faults, two autoencoders will be used: convolutional and

LSTM autoencoders. The process of training and tuning hyperparameters as well as the

results obtained will be detailed in the next section.





Chapter 6

Results and Discussion

This chapter brings the training process of the AE-based models (LSTM-AE and Convolutional-

AE) presented in Chapter 4 for the detection of the failures presented in the Chapter 5, and

the discussion of the obtained results.

The chapter is organized as follows: Section 6.1 and Section 6.2 present the process

of training and validating the Convolutional-AE and LSTM-AE, respectively, with the

choice of its hyperparameters and determination of its threshold. Section 6.3 presents the

algorithms performance evaluation metrics. The results of Convolutional-AE and LSTM-

AE models according to each of the three scenarios are described in Section 6.4.

As described in Chapter 5, the dataset, which represents the DO sensor signal, used

for training and validating the AEs is equivalent to the last 100 days of a BSM2 operating

cycle, that is, the period between days 509 and 609. Graphic representation of the signal

of the DO sensor between these days can be seen in Figure 5.5. The sampling frequency

is 15 minutes, totaling 9600 samples, which were divided, 70% for training and 30% for

validation of Convolutional-AE and LSTM-AE models. All the work described in this

section was developed in Python programming language, version 3.7, with the help of

the Keras neural network package, version 2.8.0 .

6.1 Convolutional Autoencoder

In order to obtain the best Convolutional-AE model, a grid search were performed, with

the evaluation of the combination of hyperparameters. The following combinations of

hyperparameters were analyzed:

• Epochs = [10, 20, 30, 40, 50];
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• Batch size = [32, 64, 128];

• AE layout : [16, 32, 64, 128].

The best model was the one with the lowest mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

|st − ŝt|, (6.1)

where st and ŝt are the real and estimated DO values at the instant of time t, respectively,

and n is the number of samples used to validation.

The best models found, according to the MAE (6.1), were:

• Epochs = 20;

• Batch size = 128;

• AE layout = [32, 16, 16, 32].

The best Convolutional-AE, which obtained the lowest MAE, was used to detect the

failures implemented in the BSM2 DO sensor signal. The distribution of the input signal

reconstruction error, obtained by the Convolutional-AE training, can be seen in Figure

6.1. The maximum reconstruction error obtained, used as threshold, was 0.217238. If the

difference between the predicted value and the actual value of a sample is greater than

0.217238, that sample is flagged as a failure.
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FIGURE 6.1: Signal reconstruction error. If the reconstruction error is greater than the
threshold of 0.217238, a sample is considered a failure.



6. RESULTS AND DISCUSSION 51

6.2 LSTM Autoencoder

To find the best LSTM-AE model, a grid search was performed considering the following

hyperparameters:

• Epochs = [10, 20, 30, 40, 50];

• Batch size = [32, 64, 128];

• LSTM cells (AE layout) = [16, 32, 64, 128].

The best model was chosen according to the MAE (6.1). The best model obtained has

the following hyperparameters:

• Epochs = 20;

• Batch size = 64;

• LSTM cells (AE layout) = [128, 64, 32, 32, 64, 128].

The distribution of the input signal reconstruction error, obtained by the best LSTM-

AE, can be seen in Figure 6.2. The maximum reconstruction error obtained, adopted as the

threshold, was 1.110521. The trained LSTM-AE will be used to detect the failures in the

DO sensor signal in the three proposed scenarios. If the difference between the predicted

value and the actual value of a sample is greater than 1.110521, that sample is flagged as

failure.
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FIGURE 6.2: Signal reconstruction error. If the reconstruction error is greater than the
threshold of 1.110521, a sample is considered a failure.



52
FAULT DETECTION IN WASTEWATER TREATMENT PLANTS - APPLICATION AND

COMPARISON OF MACHINE LEARNING TECHNIQUES WITH STREAMING DATA

6.3 Evaluation Metrics

The purpose of the AE is to reconstruct the input signal. During its training, with the DO

sensor data, the maximum value for the reconstruction error is adopted as threshold. In

tests, a failure is identified if the difference between the real and estimated DO values is

greater than the determined threshold.

The fault identification methods were evaluated as follows:

• If a sample is identified as faulty, within the fault duration period, it is classified as

true positive (TP);

• If a sample is identified as a failure, outside the fault duration period, is classified

as a false positive (FP);

• If a sample, within the failure duration time, is classified as normal, we have a false

negative (FN);

• If a sample outside the fault duration period is identified as normal, it is classified

as true negative (TN).

The evaluation metrics used for this study are TP rate (TPr), FP rate (FPr) and FN rate

(FNr) given by the Equations (6.2)-(6.4), respectively. The use of these metrics makes it

possible to assess the reliability of the implemented error detection failure system.

TPr = TP/(TP + FN) (6.2)

FPr = FP/(FP + TN) (6.3)

FNr = FN/(FN + TP) (6.4)

6.4 Results

The faults drift, bias, PD, spike and stuck, injected into the dataset that represents the

signal from the DO sensor characterizes three scenarios, explained in the Section 5.3, with

variations in the order of appearance, duration and intensity of faults. In the following

subsections, the results obtained by Convolutional-AE and LSTM-AE models will be pre-

sented.
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6.4.1 First Scenario

In the first scenario, the faults appear in the following order: drift, bias, PD, spike and

stuck. The results achieved by the Convolutional-AE and LSTM-AE can be seen below.

6.4.1.1 Convolutional-AE

The Convolutional-AE has detected most of the proposed faults. Figure 6.3 condenses the

results. A good performance can be seen, where the red circles represent the identified ab-

normal samples. Verifying in a more detailed way the performance of the Convolutional-

AE, it can be seen that some samples, which represent faults, were not identified as faults.

Figure 6.4 shows the model performance when identifying the fault bias. It is perceived

that most of the faults were identified. The first sample representing the fault was not

identified, which is equivalent to a delay of 15 minutes in the detection of the bias fault.

There was also considerable delay in identifying the drift and stuck faults. The graphs

with the individual results can be seen in the Annex B.1.1.
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FIGURE 6.3: Result obtained by Convolutional-AE in the first scenario.
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FIGURE 6.4: Convolutional-AE performance in identifying the bias fault. First scenario.
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6.4.1.2 LSTM-AE

The graph in Figure 6.5 shows the performance obtained by the LSTM-AE to detect the

failures of the first scenario. The performance was very close to that obtained by Convolutional-

AE. It is noticed that some samples of the spike failure were not identified as failures. In

the graph of figure 6.6 it can be seen that the first sample of the bias fault was not identi-

fied, equivalent to a delay of 15 minutes in the detection of this fault. The performance of

the LSTM-AE in detecting the failures of the first scenario can be seen in Annex B.2.1.
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FIGURE 6.5: Result obtained by LSTM-AE in the first scenario.
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FIGURE 6.6: LSTM-AE performance in identifying the bias fault. First scenario.

6.4.2 Second Scenario

The faults appear in the second scenario in the following order: PD, stuck, drift, spike and

bias. The results for this scenario can be seen below.

6.4.2.1 Convolutional-AE

The Convolutional-AE was able to detect most of the anomalous samples. Figure 6.7

represents the performance of the model. Figure 6.8 shows a delay in detecting the PD
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fault. The first 11 anomalous samples were not identified, which corresponds to a delay

of 165 minutes in the detection of the PD fault. The performance of the Convolutional-AE

in detecting the the faults implemented for the first scenario can be seen in Annex B.1.2.
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FIGURE 6.7: Result obtained by Convolutional-AE in the second scenario.
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FIGURE 6.8: Convolutional-AE. PD fault identification

6.4.2.2 LSTM-AE

The LSTM-AE was able to identify most of the proposed faults, but it presented difficulties

in detecting the spike fault, and similarly to the Convolutional-AE, it presented delays in

the identification of some faults. Figure 6.9 shows the general performance of LSTM-AE

in the second scenario, and the problems faced in detecting the spike failure. A delay

occurs in detecting the PD fault. The first 12 fault samples were not identified, which

corresponds to a delay of 180 minutes. The result in the detection of PD failure can be

seen in Figure 6.10. The graphs with the individual fault detection results can be seen in

the Annex B.2.2.
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FIGURE 6.9: Result obtained by LSTM-AE in the second scenario.
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FIGURE 6.10: LSTM-AE. PD fault identification

6.4.3 Third Scenario

In the third proposed scenario, the failures appear in the following order: stuck, spike,

bias, drift and PD. The results obtained by Convolutional-AE and LSTM-AE can be seen

below.

6.4.3.1 Convolutional-AE

The Convolutional-AE was able to identify most of the implemented faults, but it pre-

sented considerable delay in its identification, with special emphasis on the stuck fault.

Convolutional-AE had problems related to false positives between the peaks of the spike

failure, where some normal samples were identified as failure. Figure 6.11 shows the

performance of the model, and Figure 6.12 highlights the problems related to false posi-

tives. The graphs with details of the failure detection by Convolutional-AE, in the third

scenario, can be seen in the Annex B.1.3.
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FIGURE 6.11: Result obtained by Convolutional-AE in the third scenario.
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FIGURE 6.12: Identification of the spike fault.

6.4.3.2 LSTM-AE

The LSTM-AE was able to detect most of the samples that correspond to the implemented

faults, but it presented the same difficulties as the Convolutional-AE, identifying many

normal samples as faults between the second and third peaks of the spike fault. Similar to

Convolutional-AE, LSTM-AE showed considerable delay in the detection of implemented

faults, with emphasis on the detection of bias and stuck faults. The overall performance

can be seen in Figure 6.13, and the detail of the difficulty encountered in the spike failure

can be seen in Figure 6.14. The graphs with the individual fault detection results can be

seen in the Annex B.2.3.

The results obtained by the autoencoders, graphically represented in Figures 6.3 - 6.14,

are summarized in Table 6.1, according to the metrics presented in Subsection 6.3. As

the Convolutional-AE and LSTM-AE were used in three different scenarios, the results

presented in Table 6.1 represent the arithmetic average of the results obtained in each

scenario.

It is noticed that the two models are efficient in identifying the failures according
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FIGURE 6.13: Result obtained by LSTM-AE in the third scenario.
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FIGURE 6.14: Identification of the spike fault. There are many false positives.

TABLE 6.1: Performance of LSTM-AE and Convolutional-AE. The values are the arith-
metic average of the models’ performance in the three scenarios. In bold the best results.

Autoencoder Fault
Assessment metrics

TPr[%] FPr[%] FNr[%] Delay [h]

Convolutional-AE

Bias 95.6 0 4.4 2.5

Drift 95.15 0 4.85 4.41

PD 97.8 0 2.2 1.08

Spike 88.23 12.5 11.76 0

Stuck 88 0 12 5.25

LSTM-AE

Bias 95 0 5 2.16

Drift 94 0 6 5.33

PD 94.1 0 4 1.83

Spike 84.61 12.5 15.38 0

Stuck 86.39 0 13.61 6.03
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to the evaluation metrics. The bias, drift and PD faults were correctly identified by

Convolutional-AE, with TPr of 95.6%, 95.15% and 97.8%, respectively. The LSTM-AE

model presented a little lower performance with TPr of 95%, 94% and 94.1% for the same

failures, respectively. Both algorithms presented greater difficulties with the spike failure.

The Convolutional-AE and LSTM-AE showed correct identification of faults in 88.23%

and 84.61%, respectively, and considerable FNr, with values of 11.76% and 15.38%, respec-

tively. Both models performed well on the Stuck fault. The Convolutional-AE presented

88%, and the LSTM-AE 86.39% for TPr. But these two models showed considerable value

for FNr, with 12% for the Convolutional-AE, and 13.61% for the LSTM-AE model. As ev-

idenced in the analysis of the graphs, there was an identification problem near the spike

faults, in the third scenario considered. Outside the evaluation area, between the second

and third spikes, the models identified 99 normal samples as faults.

The treatment process carried out by WWTPs presents a characteristic of slow changes.

In the BSM2 simulator, the water retention time in the activated sludge tank (where the

DO sensor takes its measurements) is 14 hours. Taking water retention time into account,

both models had satisfactory results. The delay for fault detection, for each fault was cal-

culated, as in the previous cases, by the arithmetic average of the delay detection times

in the three proposed scenarios. The time that each algorithm took to identify the failures

can be seen in Table 6.1. Related to the delay, it is observed that the Convolutional-AE

obtained better results than the LSTM-AE, with the lowest average delay for fault detec-

tion. Only when detecting the bias fault, LSTM-AE obtain a better result, with 13.6% less

delay in fault identification, in relation to Convolutional-AE. Both models readily iden-

tify the first peak of the spike fault. For the other faults, the Convolutional-AE performed

better. It took 20.86%, 69.4% and 14.8% less time to identify drift, PD and stuck faults,

respectively, when compared with LSTM-AE.





Chapter 7

Conclusion

Water scarcity is already a reality. Much of the world faces problems related to water sup-

ply. WWTPs play a fundamental role in facing this problem, and the work developed in

this dissertation aims to make WWTPs more efficient. The early detection of failures in

the operation of WWTPs is very important to ensure the quality of treated wastewater,

protecting the environment, and consequently the human being, in addition to avoid-

ing damage to the station structure, pollution and fines. The most popular methods for

fault detection involve statistical analysis, which face many difficulties when applied to

WWTP processes due to their non-linear characteristics. Artificial neural networks, in the

form of AE, represent a good option because they take into account the non-linearities of

the process. To facilitate tests and evaluations, without exposure to real risks, the BSM2

simulator was used. Due to its importance, the dissolved oxygen sensor, which moni-

tors the oxygen levels in tank 4 of the biological reactor, was chosen for the simulation

of failures that could occur in its operation. The most common faults in this type of sen-

sor were implemented, and the AE used in their identification. The AE models had their

hyperparameters chosen with the help of a grid search process, using the MAE metric

to evaluate the reconstruction of the input signal. Convolutional-AE and LSTM-AE were

used to detect bias, drift, spike, stuck and precision degradation faults.

For a more realistic evaluation of the AEs, the faults were injected into the dataset,

composing three scenarios, with variation in the order of appearance, duration and inten-

sity. The metrics for evaluating the performance of the AE in detecting failures were True

Positive, False Positive and False Negative. Convolutional-AE obtained the best results,

according to the considered metrics, and a shorter delay in detecting failures.
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7.1 Future Work

In this work, two methods based on EA were used, Convolutional-AE and LSTM-AE,

but as shown in the literature review, there are several models that have not yet been

used in problems related to WWTPs. The use of other AE models, the exploration of

hyperparameters, and the use of AEs together with other machine learning models can

be interesting and help in the development of safer failure detection systems.
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Abstract. Water is a fundamental human resource and its scarcity is re-
flected in social, economic and environmental problems. Water used in
human activities must be treated before reusing or returning to nature.
This treatment takes place in wastewater treatment plants (WWTPs), which
need to perform their functions with high quality, low cost, and reduced
environmental impact. This paper aims to identify failures in real-time,
using streaming data to provide the necessary preventive actions to mini-
mize damage to WWTPs, heavy fines and, ultimately, environmental haz-
ards. Convolutional and Long short-term memory (LSTM) autoencoders
(AEs) were used to identify failures in the functioning of the dissolved
oxygen sensor used in WWTPs. Five faults were considered (drift, bias,
precision degradation, spike and stuck) in three different scenarios with
variations in the appearance order, intensity and duration of the faults.
The best performance, considering different model configurations, was
achieved by Convolutional-AE.

Keywords: Wastewater Treatment Plant · Fault Detection · Autoencoder
· BSM2

1 Introduction

Water is a strategic and fundamental resource for human beings. Activities car-
ried out in the industry, agriculture, and services depend directly on access
to water resources. And access to water is limited. Most of the water on the
planet is in the seas and oceans (97%) [1]. There is only 3% of fresh water, but
more than two-thirds is frozen in glaciers and polar ice [2]. The small fraction
of fresh water remaining needs to serve more and more people. It is estimated
that two-thirds of the world’s population, 4 billion people, face water scarcity
conditions at least one month a year, and approximately 500 million people
live with water shortages throughout the year [3]. Water is a strategic resource
and must be managed consciously. The used water must be treated so that we
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can reused it. Wastewater may contain pollutants that pose risks to the envi-
ronment and consequently to humans and need to be treated in appropriate
places. Wastewater treatment plants (WWTPs) are structures that accelerate the
treatment process in nature. The water used in human activities is sent to the
WWTPs, which carry out the treatment in several stages, using chemical and
physical processes. These structures are present in various parts of the world.
In the United States of America, there are more than 16000 public administra-
tion WWTPs. Europe has more than 24000 treatment units. Brazil, Mexico, and
China have 2820, 2540, and 1486 WWTPs, respectively [4].

WWTPs are important in dealing with water scarcity, but they must carry
out their functions sustainably, with high quality and low cost. A monitoring
system is needed to provide information from all stages of the treatment pro-
cess so the necessary actions can be taken at the right time. With technological
advances, new techniques were used to improve the functioning of WWTPs.
The massive use of sensors in the monitoring of treatment plants generated
a large amount of information and enabled the use of new control and opti-
mization techniques. But the use of sensors also poses new problems. The ac-
tions taken by the control and optimization methods depend on the quality of
the information provided by the sensors, and the quality of this information
must be ensured. It is common for sensors to be exposed to extreme conditions
at the monitoring site, as for example, temperature, vibrations, dust, chemical
reagents, etc. It is of great importance that failures in these sensors are indi-
cated as soon as possible, where undetected failures can represent damage to
the structure of WWTPs, heavy fines, and environmental damage.

One of the main wastewater treatment phases occurs in the biological reac-
tor. This reactor is composed of anoxic and oxygenated tanks, and it is the site of
action of microorganisms that have the function of removing dangerous pollu-
tants from wastewater. Oxygenated tanks need to maintain minimum oxygen
levels. Lack of oxygen can result in the death of microorganisms, and excess
oxygen represents a waste of energy spent on pumping. Considering that aer-
ation is the most energy-intensive operation in wastewater treatment, amount-
ing to 45–75% of plant energy costs [5], that of all the energy consumed in the
world, approximately 3% is consumed in WWTPs [6], and that the energy spent
on pumping depends on the information of the dissolved oxygen (DO) levels
provided by the sensor, an efficient fault detection system is essential for the
DO sensor. The main objective of this paper is to use autoencoder (AE) models
to detect DO sensor failures in WWTPs. Early failure detection is important as it
allows the necessary actions to be taken, benefiting higher safety, economy and
quality of wastewater treatment. This work aims to assess the potential of AE in
detecting failures in DO sensors, in WWTPs, in real-time, with streaming data.
The simulator Benchmark Simulation Model nº2 (BSM2), which reproduces all
phases of the treatment performed in a WWTP, was used to test the fault de-
tection methodologies on the DO sensor in the biological reactor. This work
analyzes the strengths and weaknesses of the Convolution-AE and LSTM-AE
models, used to detect failures on DO sensors presented in WWTPs. The mod-
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els are evaluated for the detection of five types of failures: bias, drift, precision
degradation, spike and stuck. These faults were injected into the dataset, ob-
tained with the help of BSM2, in three scenarios, with changes in the order of
appearance, duration and intensity of the faults.

The rest of the paper is organized as follows: Section 2 brings a review of
literature related to fault detection in WWTPs. Section 3 describes the simu-
lator used and the case studies. Section 4 presents the structure of AE-based
methodologies used to identify faults on DO sensors. Section 5 presents the
experimental results, and compares the performance of Convolution-AE and
LSTM-AE models in identifying the failures. Finally, in Section 6, the conclu-
sion of the work is elaborated.

2 Related Work

Many works have already been proposed with the objective of detecting fail-
ures in sensors in WWTPs. The works can be divided into two large groups:
failure detection using statistical methods, and failure detection using machine
learning techniques. In [7], the use of artificial neural networks (ANNs) is pro-
posed to identify six types of faults, one of which is the DO concentration sen-
sor. The results proved a good ability of the ANN to recognize the faults, iden-
tifying 97% of case study failures. In [8], the authors use a Long short-term
memory (LSTM) networks to identify collective failures in the sensors. The re-
sults obtained by the LSTM were compared to the results of the autoregressive
integrated moving average (ARIMA), principal component analysis (PCA) and
support-vector machines (SVM) models, and achieved the best performance,
with a fault detection rate of over 92%. In [9], a radial basis function (RBF) neu-
ral network is used to identify faults in DO sensors by calculating the error
limits. The proposed method obtained 0% false alarm, and a delay of 0.22 days
in detection. In fault detection, unsupervised ANN can be trained to model a
process by estimating the values of inputs and comparing the estimation to the
actual values, also known as autoencoder. In [10], the authors used an AE, and
the proposed model was used for detection of abrupt changes and drift in the
sensor signal. The results showed that AE is capable of detecting sensor faults
with good accuracy under different scenarios. In [11], a variational AE is used
for fault detection. The proposed model takes into account the temporal evolu-
tion of the treatment process. The slow feature variational AE (SFAVAE) model
is used to monitor processes and tries to identify faults such as sludge expan-
sion fault and small magnitude variable step. Among the statistical methods the
most used is the PCA. The PCA has many applications in WWTP, from direct
fault detection [12] to data reconstruction [13]. In [14], the Incremental Princi-
pal Component Analysis (IPCA) method was used to identify several types of
failures in WWTPs, one of them being failures in the DO sensor. The failures
were injected into the dataset, and IPCA proved to be able to detect the failures
and isolate the variable that originated the failure, with false alarm rate and
missed detection rate of 0.07% and 18.53% respectively. A probabilistic PCA
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approach in process monitoring and fault diagnosis with application in WWTP
is proposed in [15]. The probabilistic PCA is compared to PCA, PPCA (proba-
bilistic interpretation of the PCA), GPLVM (version of the PPCA for nonlinear
situations) and Bayesian GPLVM (uses the Bayesian theory for training). The
GPLVM and GPLVM models showed better performance in detecting failures
in relation to the other models analyzed in the paper, in relation to the consid-
ered metrics. The major drawback of PCA for WWTP, is the assumption that
process variables are linearly related to each other [16]. In the present work,
models based on AE will be used. The case studies in which the models will be
evaluated will be explained in the following section.

3 Case Studies

The water resulting from human activities, which carry pollutants, cannot be
returned to the environment without undergoing treatment. This treatment oc-
curs in WWTPs and is done in several stages: primary treatment (removes float-
able and settleable solids), secondary treatment (secondary decantation and ac-
tivated sludge), tertiary treatment (reuse of treated water), and sludge treat-
ment (mechanical and biological treatments) [17]. Before implementing and
evaluating new techniques in real treatment plants, simulators are commonly
used. A widely used simulator of WWTPs is BSM2 [14,18]. Section 3.1 provides
a brief description of the BSM2, and Section 3.2 presents the case studies with
the description of the injected failures.

3.1 Benchmark Simulation Model No 2 - BSM2

The BSM2 is a simulation environment in which the plant layout, the simu-
lation model, influence loads, test procedures and evaluation criteria are de-
fined. For each of these items, compromises were pursued to combine plain-
ness with realism and accepted standards [19]. BSM2 allows the implementa-
tion of several techniques and the manipulation of many parameters related to
WWTPs [20, 21]. The influent dynamics are defined for 609 days, which takes
into account rainfall effect, and temperature [19], with the data sampled every
15 minutes. The structure of BSM2 can be seen in the Fig. 1. The BSM2 was used
to test the failure detection methods used in this work.

3.2 Faults in Dissolved Oxygen Sensor

BSM2 simulates the various stages of WWTPs. The biological reactor or acti-
vated sludge reactor can be seen in Fig. 1. Fig. 2 shows the biological reactor
in more detail. It consists of five tanks, the first two being anoxic and the next
three oxygenated. In oxygenated tanks, the DO level must be kept at 2 [mg/L],
by a proportional-integral (PI) controller, which receives the DO values mea-
sured in Tank 4, compares it with the reference value, and drives the pumps
responsible for maintaining the DO at the correct levels.
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Fig. 1: Layout of Benchmark Simulation Model No 2 - BSM2.

The aeration system depends on the value measured by the DO sensor. A
failure in this signal leads the system to malfunction. Through BSM2, we in-
jected several faults. The objective is to identify the faults as early as possible.
Also, in Fig. 2, it can be seen that the DO sensor performs its measurement in
Tank 4 and it is used by the PI controller, and that the AE, represented in yel-
low, was positioned between the DO sensor and the PI controller, and has the
function of detecting anomalous behavior in the measurement signal coming
from the DO sensor.

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5

Biological Reactor

External recycle
Wastage

To river

PI 

controller

DO
sensor

Autoencoder

Clarifier

Fig. 2: Biological reactor details and case studies framework.

To evaluate the performance of the fault detection system, some faults were
injected into the signal from the sensor. Deviations from expected behavior in
the sensor output are considered faults, and they are classified according to the
deviation from normal behavior. Let s(t) = h(t) + η be the expected output of
a sensor without the presence of faults, where h(t) is the output of the sensor at
time t, and η ∼ N(0, δ2

n) is noise, and δ2
n is the noise variance [22]. The failures
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considered in the present work are presented below [23, 24]. They are common
failures in sensors caused by corrosion, calibration errors, presence of noise and
physical damage presented on the WWTPs.

Drift fault When the sensor output increases at a constant rate, this type of
fault is called as drift fault. A drift fault can be defined as

s(t) = h(t) + η + b(t), (1)
b(t) = b(t − 1) + υ,

where b(t) is the bias added to the signal at time t, and υ is a constant. The s(t)
value increases linearly from the normal value over time.

Bias fault In a bias fault, a constant value υ is added to the sensor output and,
as a consequence, a shift from the normal value is observed:

s(t) = h(t) + η + υ. (2)

Precision degradation (PD) fault This type of fault adds noise with a zero
mean and high variance (δ2

υ) to the output of a sensor:

s(t) = h(t) + η + υ, υ ∼ N(0, δ2
υ), δ2

υ ≫ δ2
n. (3)

Spike fault In spike faults, large amplitude peaks are observed at constant time
intervals at the sensor output:

s(t) = h(t) + η + υ(t), (4)
∀t = υ × τ, h(t) + η,

otherwise, υ = {1, 2, ...}, τ ≥ 2,

where τ is the interval in which the spikes occur in the sensor output.

Stuck fault It is a complete failure, with the sensor output being locked at a
fixed value υ:

s(t) = υ. (5)

4 Fault Detection using Autoencoders

WWTPs exhibit marked nonlinear characteristics due to biochemical reactions
and nitrification processes [25]. Thus, traditional statistical methods present
difficulties in correctly identifying changes in the variables involved in the
wastewater treatment process. In order to have a good performance in iden-
tifying the changes that may occur in WWTPs, the method used must be able
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to deal with non-linearities. The AE present, among other characteristics, the
ability to deal with non-linear processes.

AE is an unsupervised machine learning algorithm that aims to reconstruct
its input signal. The generic AE model consists of three parts: encoder (respon-
sible for reducing the dimensionality of the data), code (reduced representation
of the encoder input data), and decoder (responsible for expanding the dimen-
sionality represented in the code, and reconstructing the input signal). A repre-
sentation of the AE can be seen in the Fig. 3.

Encoder Decoder

Input Output

Code

Fig. 3: Illustration of a generic AE model.

AE can have a simple structure, with only the code as the hidden layer,
or can have several hidden layers. The representation of the input data, made
by the code layer, can be classified as undercomplete or overcomplete. In un-
dercomplete representation, the dimension of the representation of the input
data by the code is smaller than the dimension of the input data, which forces
the model to learn the most important characteristics of the input data. If the
dimension of the code’s input data representation is equal to the input dimen-
sion, the overcomplete representation, the model will just copy the input signal
to the output without learning the most important characteristics of the input
signal. The AE can be implemented as fully connected, convolution based or re-
current based units [26]. In this work, two models of AE will be used: LSTM-AE
and Convolutional-AE. These models will be described in the next subsections.

4.1 LSTM Autoencoder

LSTM is a recurrent neural network that takes into account the historical con-
text of events to make its predictions, with the help of memory cells. In an LSTM
cell there are input, forget, memory and output gates.

In [27], the LSTM-AE is described as an extension to RNN based AE for
learning the representation of time series sequential data. In this model, en-
coder and decoder are built using LSTM. The encoder LSTM receives a se-
quence of vectors that represents the signal from the DO sensor, and the de-
coder has the function of recreating the target sequence of input vectors in the
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reverse order. This is the model used in the present work. The generic structure
of a LSTM-AE can be seen in Fig. 4

Input Sequence Reconstructed Sequence

Encoder Decoder
Code

Fig. 4: Generic structure of the LSTM-AE.

4.2 Convolutional Autoencoder

Fully connected AEs ignore the spatial structure of the input signal, and this
spatial structure can represent important information for the final reconstruc-
tion. To solve this problem, in [28] is proposed a model known as Convolutional-
AE. Instead of using fully connected layers, Convolutional-AE use convolu-
tional operators.

The Convolutional-AE is trained to reproduce the input signal from the DO
sensor to the output layer. The signal passes through the encoder, composed of
a convolution layer, which reduces the dimension of the representation of the
input signal. In the decoder, composed of deconvolution layers, the compressed
signal is reconstructed to obtain the original input signal, the DO sensor signal.
The generic structure of a Convolutional-AE can be seen in Fig. 5.

The LSTM-AE and Convolutional-AE will be used to identify failures in
these case studies. The experimental results will be described in Section 5.

5 Experimental Results

This section presents the results obtained by Convolutional-AE and LSTM-AE
presented in Section 4, in detecting the faults described in Section 3.2. This sec-
tion also describes the characteristics of injected faults and the evaluation met-
rics.

The dataset from the DO sensor, was separated into two equal parts, each
part being equivalent to 100 days (9600 samples), keeping the temporal order.
The first part was used to inject the faults described in Table 1 and represented
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Deconvolution
layerConvolution

layer
Deconvolution

layer

Fig. 5: Generic structure a Convolutional-AE.

in the graphs of Figure 6. From the second part, without failures, 70% of the
data was used for training the Convolutional-AE and LSTM-AE, and the re-
maining 30% was used for evaluating the models, according to the input signal
reconstruction error. In order to obtain the best model for each algorithm, a grid
search were performed, with the evaluation of the combination of hyperparam-
eters. All the work was developed in Python programming language, version
3.7, with the help of the Keras neural network package, version 2.8.0. The fol-
lowing combinations of hyperparameters were analyzed:

– Convolutional-AE: Epochs = [10, 20, 30, 40, 50]; Batch size = [32, 64, 128];
AE layout : [16, 32, 64, 128].

– LSTM-AE: Epochs = [10, 20, 30, 40, 50]; Batch size = [32, 64, 128];
LSTM cells (AE layout) = [16, 32, 64, 128].

The best model was the one with the lowest mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

|st − ŝt|, (6)

where st and ŝt are the real and estimated DO values at the instant of time t,
and n is the number of samples used to validation.

The best models found, according to the MAE, were:

– Convolutional-AE: Epochs = 20; Batch size = 128;
AE layout = [32, 16, 16, 32]

– LSTM-AE: Epochs = 20; Batch size = 64;
LSTM cells (AE layout) = [128, 64, 32, 32, 64, 128]

Table 1 presents the types of faults injected into the dataset, as well as their
duration. To better evaluate the performance of the AE three scenarios were
considered with variations in the order of appearance, duration and intensity
of failures. Figure 6 depicts the signal from the DO sensor, after the faults de-
scribed in Table 1. The objective of Convolutional-AE and LSTM-AE is to iden-
tify the faults that can be seen in Figure 6. The process of training AEs and
choosing the best models will be described below.
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Table 1: Three scenarios of faults injected in the signal obtained by the DO sen-
sor: drift (Eq. 1), bias (Eq. 2), PD (Eq. 3), spike (Eq. 4) and stuck (Eq. 5). The faults
in the scenarios have different order of appearance, duration and intensity.

Fault Start [day] Duration [hours]

Drift 10 120
Bias 30 120
PD 50 120

Spike 70, 72, 74, 76, 78 0.25
Stuck 90 120

(a) Scenario I

Fault Start [day] Duration [hours]

Drift 40 72
Bias 92 48
PD 18 96

Spike 60, 62, 64, 66, 68 0.25
Stuck 30 72

(b) Scenario II

Fault Start [day] Duration [hours]

Drift 58 96
Bias 45 72
PD 90 72

Spike 26, 30, 31, 33, 38 0.25
Stuck 15 48

(c) Scenario III

The purpose of the AE is to reconstruct the input signal. During its training,
with the DO sensor data, the maximum value for the reconstruction error is
adopted as a threshold. In tests, a failure is identified if the difference between
the real and estimated DO values is greater than the determined threshold.

The fault identification methods were evaluated as follows:

– if a sample is identified as faulty, within the fault duration period, it is clas-
sified as true positive (TP);

– if a sample is identified as a failure, outside the fault duration period, is
classified as a false positive (FP);

– if a sample, within the failure duration time, is classified as normal, we have
a false negative (FN);

– if a sample outside the fault duration period is identified as normal, it is
classified as true negative (TN).
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Fig. 6: Faults implemented in the signal obtained from the DO sensor. Variations
in the order of appearance, duration and intensity of faults.

The evaluation metrics used was for this study are TP rate (TPr), FP rate (FPr)
and FN rate (FNr) - cf. Eq.7-9. The use of these metrics makes it possible to
assess the reliability of the implemented error detection system.

TPr = TP/(TP + FN) (7)
FPr = FP/(FP + TN) (8)
FNr = FN/(FN + TP) (9)

The results obtained by the models are graphically represented in Figures 7–
8. Table 2 presents the performance of LSTM-AE and Convolutional-AE in iden-
tifying the present faults, where the values represent the arithmetic average of
the algorithms’ performance, for each fault implemented, in the three scenarios.

It is noticed that the two models are efficient in identifying the failures ac-
cording to the evaluation metrics. The bias, drift and PD faults were correctly
identified by Convolutional-AE, with TPr of 95.6%, 95.15% and 97.8%, respec-
tively. The LSTM-AE model presented a little lower performance with TPr of
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(a) Convolutional-AE applied to Scenario I.
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(b) Convolutional-AE applied to Scenario II.
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(c) Convolutional-AE applied to Scenario III.

Fig. 7: Faults identified in the three scenarios by the Convolutional-AE.

95%, 94% and 94.1% for the same failures, respectively. Both algorithms pre-
sented greater difficulties with the spike failure. The Convolutional-AE and
LSTM-AE showed correct identification of faults in 88.23% and 84.61%, and
considerable FNr, with values of 11.76% and 15.38%, respectively. Both mod-
els performed well on the Stuck fault. The Convolutional-AE presented 88%,
and the LSTM-AE 86.39% for TPr. But these two models showed considerable
value for FNr, with 12% for the Convolutional-AE, and 13.61% for the LSTM-
AE model. There was an identification problem near the spike faults, in the
third scenario considered. Outside the evaluation area, between the second and
third spikes, the models identified 99 normal samples as faults.
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(a) LSTM-AE applied to Scenario I.
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(b) LSTM-AE applied to Scenario II.

0 20 40 60 80 100
Time [days]

0

2

4

6

8

10

DO
 [m

g/
L]

(c) LSTM-AE applied to Scenario III.

Fig. 8: Faults identified in the three scenarios by the LSTM-AE.

The treatment process carried out by WWTPs presents a characteristic of
slow changes. In the BSM2 simulator, the water retention time in the activated
sludge tank (where the DO sensor takes its measurements) is 14 hours. Taking
water retention time into account, both models had satisfactory results. The de-
lay for fault detection detection, for each fault was calculated, as in the previous
cases, by the arithmetic average of the delay detection times in the three pro-
posed scenarios. The time that each algorithm took to identify the failures can
be seen in Table 2. Related to the delay, it is observed that the Convolutional-
AE obtained better results than the LSTM-AE, with the lowest average delay
for fault detection. Only when detecting the bias fault, LSTM-AE obtain a better
result, with 13.6% less delay in fault identification, in relation to Convolutional-
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Table 2: Performance of LSTM-AE and Convolutional-AE. The values are the
arithmetic average of the models’ performance in the three scenarios. In bold
the best results.

Autoencoder Fault
Assessment metrics

TPr[%] FPr[%] FNr[%] Delay [h]

Convolutional-AE

Bias 95.6 0 4.4 2.5

Drift 95.15 0 4.85 4.41

PD 97.8 0 2.2 1.08

Spike 88.23 12.5 11.76 0

Stuck 88 0 12 5.25

LSTM-AE

Bias 95 0 5 2.16

Drift 94 0 6 5.33

PD 94.1 0 4 1.83

Spike 84.61 12.5 15.38 0

Stuck 86.39 0 13.61 6.03

AE. Both models readily identify the first peak of the skipe fault. For the other
faults, the Convolutional-AE performed better. It took 20.86%, 69.4% and 14.8%
less time to identify drift, PD and stuck faults, respectively, when compared
with LSTM-AE.

6 Conclusions

WWTPs play a key role in dealing with the problem of water scarcity and thus
alleviating the resulting economic and social problems. The work proposed in
this paper helps to make WWTPs more secure and reliable. This paper pro-
posed the application of AE for fault detection in DO sensors in biological reac-
tors of WWTPs. Convolutional-AE and LSTM-AE were used to detect five types
of faults: bias, drift, PD, spike and stuck. The models had their hyperparameters
chosen with the help of the grid search process, using the MAE metric to evalu-
ate the input signal reconstruction error. Three scenarios were considered, with
variations in the order of appearance, duration and intensity of faults injected
into the dataset. The best performance was obtained by the Convolutional-AE,
with better detection values, according to the considered metrics, and less delay
time when identifying faults. The analysis of other combinations for hyperpa-
rameters or the use in conjunction with other methods that allow less delay in
fault detection would make the Convolutional-AE a good option to detect faults
such as bias and drift in real WWTPs, representing an important contribution
to its safety and sustainability.
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Appendix B

Individual Representation of

Detected Faults.

This appendix presents the detailed results of Convolutional-AE and LSTM-AE method-

ologies for the three scenarios.

B.1 Convolutional-AE

This section presents the Convolutional-AE performance in the three proposed scenarios

B.1.1 First Scenario
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FIGURE B.1: Result obtained by Convolutional-AE - first scenario: drift.
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FIGURE B.2: Result obtained by Convolutional-AE - first scenario: PD.
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FIGURE B.3: Result obtained by Convolutional-AE - first scenario: spike.
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FIGURE B.4: Result obtained by Convolutional-AE - first scenario: stuck.
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B.1.2 Second Scenario
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FIGURE B.5: Result obtained by Convolutional-AE - Second scenario: drift.
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FIGURE B.6: Result obtained by Convolutional-AE - Second scenario: bias.
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FIGURE B.7: Result obtained by Convolutional-AE - Second scenario: spike.
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FIGURE B.8: Result obtained by Convolutional-AE - Second scenario: stuck.

B.1.3 Third Scenario
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FIGURE B.9: Result obtained by Convolutional-AE - Third scenario: drift.
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FIGURE B.10: Result obtained by Convolutional-AE - Third scenario: bias.
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FIGURE B.11: Result obtained by Convolutional-AE - Third scenario: PD.
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FIGURE B.12: Result obtained by Convolutional-AE - Third scenario: stuck.

B.2 LSTM-AE

This section presents the LSTM-AE performance in the three proposed scenarios

B.2.1 First Scenario
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FIGURE B.13: Result obtained by LSTM-AE - first scenario: drift.
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FIGURE B.14: Result obtained by LSTM-AE - first scenario: PD.
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FIGURE B.15: Result obtained by LSTM-AE - first scenario: spike.
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FIGURE B.16: Result obtained by LSTM-AE - first scenario: stuck.
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B.2.2 Second Scenario
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FIGURE B.17: Result obtained by LSTM-AE - Second scenario: drift.
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FIGURE B.18: Result obtained by LSTM-AE - Second scenario: bias.
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FIGURE B.19: Result obtained by LSTM-AE - Second scenario: spike.
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FIGURE B.20: Result obtained by LSTM-AE - Second scenario: stuck.

B.2.3 Third Scenario
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FIGURE B.21: Result obtained by LSTM-AE - Third scenario: drift.
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FIGURE B.22: Result obtained by LSTM-AE - Third scenario: bias.
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FIGURE B.23: Result obtained by LSTM-AE - Third scenario: PD.
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FIGURE B.24: Result obtained by LSTM-AE - Third scenario: stuck.
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L. A. d. F. A. Pereira, and M. J. R. Soares, “O porquê da temática água na conferência
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