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Impact of wiggliness on the cosmic microwave background anisotropies

generated by cosmic string networks

by Rodrigo Pereira da Silva

Cosmic strings are 1-dimensional topological defects that may be produced in phase

transitions in the early universe. These defects are expected to persist throughout the

evolution of the universe, leaving imprints in the Cosmic Microwave Background (CMB).

Furthermore, as the universe evolves, cosmic strings interact with one another, resulting in

the production of small-scale structures known as kinks, which may further enhance their

CMB signatures.

In this dissertation, we aim to describe the impact of cosmic strings with kinks on

the CMB anisotropies. For this purpose, we extended the Unconnected Segment Model

(USM) to describe the stress-energy tensor of a network of strings with kinks throughout

the evolution of the universe. We then implement this novel wiggly USM in the publicly

available CMBACT code to obtain the Cold Dark Matter (CDM) linear power spectrum

and the CMB anisotropies generated by a network of cosmic strings with kinks.

We find that when we consider wiggly string segments there is an increase in the

amplitude of the CDM linear power spectrum and of the CMB anisotropies. This increase

— that scales roughly as 1/ sin2(β/2) — is larger when kinks are sharper, which may be

explained by the fact that the energy density of the network increases when we increase

the kink sharpness. Moreover, this increase is actually scale-dependent and some regions of

the spectra are more enhanced than others. The region of the spectrum that is enhanced

is approximately determined by the length of the subsegment (i.e. the distance between

kinks), which depends on the number of kinks per string segment and their sharpness. As

a matter of fact, in general, there is a shift of power from large to small scales. The larger
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the number of kinks, the smaller the distance between kinks will be and, as a result, this

power is shifted to increasingly smaller scales. However, if the kinks are extremely sharp,

the subsegment may be quite large even if there is a large number of kinks per segment and

there also may be visible effects on larger scales. Furthermore, our results also show that

the enhancement of the relative amplitude of the spectrum is more prominent for vector

modes, probably as a result of the discontinuity of the string at the kinks.

The original CMBACT uses an approach that consists of introducing a phenomenolog-

ical wiggliness parameter to provide an effective description of wiggles on the string. We

have also found that the standard effective approach leads, in general, to an underestima-

tion of the amplitude of the CMB anisotropies and to a prediction of a different shape for

the spectra. This may be seen in every component, but it is particularly prominent for the

vector and tensor modes, highlighting the importance of our geometrical approach for an

accurate prediction of the CMB power spectra.

Finally, we used our results to derive observational constraints on cosmic string tension

for wiggly cosmic string. We found that, in general, the constraints on the tension of

wiggly cosmic strings derived using CMB data are more stringent than those of Nambu

Goto strings. For instance, for a wiggly string with kink sharpness equal to π/9, we obtain

Gµ0 < 4.49 × 10−9 which is different, and more stringent, than the regular constraint for

Nambu-Goto strings by a factor of about 33.
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Impacto da estrutura de pequena escala nas anisotropias da radiação cósmica

de fundo geradas por redes de cordas cósmicas

por Rodrigo Pereira da Silva

Cordas cósmicas são defeitos topológicos produzidos em transições de fase no universo

primordial. Espera-se que estes defeitos sobrevivam à evolução do universo, deixando

impressões na Radiação Cósmica de Fundo (RCF). Para além disso, com a evolução do

universo, as cordas cósmicas interagem entre si resultando na produção de estruturas de

pequena escala denominadas kinks, que poderão potenciar as assinaturas na RCF.

Nesta dissertação, procuramos descrever o impacto de cordas cósmicas com estruturas

de pequena escala nas anisotropias da radiação cósmica de fundo. Para este propósito,

desenvolvemos uma extensão do Unconnected Segment Model (USM) para descrever o

tensor energia-momento de redes de cordas cósmicas com estrutura de pequena escala

durante a evolução do universo. De seguida, implementamos este novo USM no código

publicamente disponível CMBACT para obtermos o espetro linear da Matéria Escura Fria

(MEF) e as anisotropias da RCF geradas por uma rede de cordas cósmicas com estrutura

de pequena escala.

Quando consideramos segmentos de corda com estrutura de pequena escala verificamos

que existe um aumento da amplitude do espetro linear da MEF e das anisotropias do RCF.

Este aumento — que escala como 1/ sin2(β/2) — é maior quando os kinks são mais agudos,

o que pode ser explicado pelo aumento da densidade de energia da rede quando a agudeza

destas estruturas aumenta. Além disso, este aumento depende da escala e algumas regiões

dos espectros sofrem maiores aumentos que outras. A região do espetro que é potenciada é

aproximadamente determinada pelo comprimento dos subsegmentos (i.e a distância entre

os kinks), que depende do número de kinks por segmento de corda e a sua agudeza. De
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facto, de um modo geral, há uma transferência de potência de grandes para pequenas

escalas. Quanto maior for o número de kinks, menor será a distância entre eles e, como

resultado, esta potência será deslocada para escalas cada vez menores. No entanto, se

os kinks forem extremamente agudos, mesmo que haja um grande número de kinks por

segmento, o subsegmento poderá tornar-se bastante longo e também poderá haver efeitos

visíveis em escalas maiores. Além disso, os nossos resultados mostram que o aumento da

amplitude relativa do espetro é mais proeminente para os modos vetoriais, provavelmente

como resultado da descontinuidade da corda nos kinks.

O CMBACT original utiliza uma abordagem que consiste na introdução de um parâ-

metro fenomenológico para fornecer uma descrição efectiva da estrutura de pequena escala

na corda. Também descobrimos que a abordagem efetiva padrão leva, em geral, a uma

subestimação da amplitude das anisotropias e à previsão de uma forma diferente para os

espectros. Isto pode ser visto em qualquer componente, mas é particularmente proemi-

nente para o caso de modos vetoriais e tensoriais, demonstrando assim a importância da

nossa abordagem geométrica para uma previsão precisa dos espectros de potência RCF.

Por último, usamos estes resultados para obter constrangimentos observacionais à ten-

são de cordas cósmicas com estrutura de pequena escala. Verificámos que, em geral, os

constrangimentos sobre a tensão das cordas cósmicas com estrutura de pequena escala, de-

rivadas utilizando dados RCF, são mais rigorosas do que as das cordas Nambu-Goto. Por

exemplo, para uma corda com kinks com agudeza igual a π/9, obtemos Gµ0 < 4.49× 10−9

o que é diferente, e mais forte, do que os constrangimentos usuais para cordas Nambu-Goto

por um fator de aproximadamente 33.
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Notation and Units

In this dissertation, we use the following metric signature: (+,−,−,−). We also use units

in which c = h̄ = kB = 1. Furthermore, the Greek indices run over 0,1,2,3 and Latin indices

run over 0,1. Finally, we use Aµ,ν ≡ ∂Aµ

∂xν to express the partial derivative and the following

notation for the covariant derivative Aρ
;σ ≡ ∇σ Aρ.
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Chapter 1

Introduction

1.1 The Standard Cosmological Model

The standard cosmological model is the widely accepted explanation for the evolution of

the universe from the Big Bang to the present. It is based on the assumption, known as the

cosmological principle, that the universe is spatially homogeneous and isotropic at large

scales.

In 1915, Albert Einstein published the field equations of gravitation [1], known as

Einstein Field Equations (EFE), which relate the curvature of spacetime to the contents of

the universe. In 1922, Alexander Friedmann found that the EFE has two types of solutions:

one for an expanding universe and another for a contracting universe [2], completing the

universe’s description by discovering the missing piece, its dynamics. In 1927, Belgian priest

Georges Lemaître proposed that the Doppler shift of nebula galaxies could be caused by

the expansion of the universe [3]. Furthermore, in 1929 Edwin Hubble discovered that

galaxies were receding from Earth, which can only be explained by an expanding universe.

If the universe was static, galaxies would move at random velocities relative to the point

of observation, with no direct relationship between distance and velocity. If the universe

was contracting, galaxies would be approaching Earth [4].

In spherical coordinates, the line element for a homogeneous and isotropic expanding

universe can be represented as follows:

ds2 = a(τ)2

[
dτ2 − dr2

1 − Kr2 − r2
(

dθ2 + sin2 θdφ2
)]

, (1.1)

1
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where τ is the conformal time, which is related to physical time t via dτ = dt/a, a(t) is the

scale factor, and K is a constant curvature that determines the geometry of the universe:

K > 0 , the universe is closed with an S3 topology ,

K = 0 , the universe is flat with an R3 topology ,

K < 0 , the universe is open with an H3 topology .

(1.2)

The metric that corresponds to the line element in Eq.(1.1) is known as Friedmann–Lemaître–Robert-

son–Walker (FLRW) metric.

The scale factor a(τ) describes the time evolution of the distance D between two points

on a FLRW universe, which can be equated as:

D(τ) = a(τ)D0 , (1.3)

where D0 is the distance at the initial time. Hubble’s law provides the corresponding

recessional velocity:

v = HD , (1.4)

where the Hubble parameter was introduced:

H =
1
a

da
dt

. (1.5)

The dynamics of the universe is assumed to be governed by the EFE (1.6). The EFE

may then be used to describe the expansion of the universe:

Gµν ≡ Rµν −
1
2
Rgµν = 8πGTµν , (1.6)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the

metric tensor, G is the gravitational constant and Tµν is the stress-energy tensor. The

Ricci scalar is obtained by contracting the Ricci tensor with the metric: R = Rµνgµν. The

Ricci tensor is obtained by contracting the Riemann tensor’s first and third indices:

Rµν = Rσ
µσν = Γλ

µν,λ − Γλ
µλ,ν + Γλ

ρλΓρ
µν − Γλ

ρνΓρ
µλ , (1.7)

where

Γµ
λσ =

gµν

2

(
gµν,σ + gσν,λ − gλσ,ν

)
(1.8)

are the Christoffel symbols.
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We assume that the content of the universe, in a FLRW spacetime, can be described

by a perfect fluid, so the stress-energy tensor, Tµν, takes the form:

Tµν =
(
ρ(t) + p(t)

)
uµuν − p(t)gµν , (1.9)

where ρ(t) is the time-dependent energy density, p(t) is the time-dependent pressure, and

uµ is the perfect fluid’s 4-velocity, which has the form:

uµ =
dXµ

dt
. (1.10)

Local conservation of energy-momentum is imposed by Tµν
;ν = 0, which implies:

dρ

dt
+ 3

da
dt

1
a
(ρ + p) = 0 . (1.11)

Using the “00”-component of Eq.(1.6) along with “00”-component of Eq.(1.9), we obtain

the Friedmann equation for a homogeneous, isotropic, expanding universe which can be

written as follows: (
da
dt

)2

+ K =
8πGρa2

3
. (1.12)

WMAP and Planck missions have recently confirmed that the universe is flat with a 0.4%

margin of error [5, 6], so, from now on, we set K = 0. In this case, Eq.(1.12) equals:(
da
dt

)2

=
8πGρa2

3
. (1.13)

The evolution of the scale factor, a(t), is fully described by Eq.(1.12) and Eq.(1.11),

along with the equation of state for a perfect fluid, which can be written as:

p = ωρ , (1.14)

where ω is determined by the contents of the universe.

Assuming that ω is a constant then Eq.(1.11) with the equation of state (1.14) yields:

ρ = ρ0a−3(1+ω) , (1.15)

where ρ0 is the energy density in the present epoch.

We can calculate the evolution of the scale factor using Eq. (1.15) and Eq.(1.13):

a
1
2 (1+3ω)da = C0dt , (1.16)
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where C0 =
(

8πGρ0
3

)1/2
. This expression can be integrated to a closed-form expression,

requiring ω 6= −1. In this case, the scale factor can be written as:

a ∝ t
2

3(1+ω) . (1.17)

Therefore, when relativistic matter dominates the universe, ω = 1/3 and thus the scale

factor will evolve as a ∝ t1/2. However, if non-relativistic matter dominates the energy

density of the universe, pressure is negligible, so ω = 0 and thus the scale factor will evolve

as a ∝ t2/3.

The acceleration equation can be obtained by combining the non-zero components of

Eq.(1.6) and the Friedmann Equation (1.13), and it is written as follows:

ä
a
= −4πG

3
(
ρ + 3p

)
. (1.18)

During the radiation and matter-dominated eras, ä < 0, implying that the universe’s

expansion is decelerating. Nonetheless, in the late 1990s, the High-z Supernova Search

Team and the Supernova Cosmology Project published observational results of type-IA

supernovas [7, 8] which implies that the universe’s expansion is accelerating. This accel-

eration could only be explained by an additional component of unknown origin, which

exerts negative pressure. As a result, it was hypothesized that the universe would be in an

era dominated by an unknown component — dark energy. Furthermore, when ω ≤ −1,

Eq.(1.18) always implies that the universe’s expansion is accelerating, so dark energy is

something with such equation of state. Finally, ω = −1 is a special case corresponding

to the cosmological constant, a component whose energy density remains constant. If we

plug this equation of state in Eq.(1.16) we obtain:

a = aieC0(t−ti) , (1.19)

where ai is the scale factor in the initial time, ti, ρ0 = ρΛ and C0 has the same definition as

above. Moreover, Eq.(1.19) tell us that the universe, in a cosmological-constant-dominated

era, will expand exponentially.

At last, we can express the energy density of each component as:
ρr = ρ0ra−4,

ρm = ρ0ma−3,

ρΛ = const,

(1.20)
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where the subscripts m and r represent matter and radiation, respectively.

We can see that the energy density of radiation decreases faster than that of matter and

of dark energy with expansion. As a consequence, it must have been the dominant com-

ponent in the early stages of the universe. Furthermore, matter’s energy density decreases

faster than dark energy, which appears to be constant throughout the universe’s expan-

sion and is the dominant component today. To summarize, the universe must have gone

through a radiation, a matter, and a dark energy era, in that order, due to the dependence

of each energy density on the scale factor.

1.2 Topological Defects

In condensed matter, phase transitions between different states of matter can cause struc-

tural defects such as vortex lines in liquid helium, flux tubes in type II superconductors,

and disclination lines in liquid crystals [9, 10].

Similarly, many particle physics theories use the same concept, topological defects, to

describe the hypothetical defects created by phase transitions in the early universe.

1.2.1 Phase Transition in Early Universe

1.2.1.1 Cosmological Phase Transitions

In the early universe, phase transitions are known to have occurred, therefore it is natural

to speculate that topological defects may have formed during these processes. Despite

the fact that topological defects in cosmology have never been observed, their existence is

predicted by many high energy physics models [11–28].

A spontaneous symmetry breaking is intrinsically related to a phase transition. This

concept arose from Condensed Matter Physics [29, 30] as well as the concept of topological

defect, and later Kibble proposed using the same concept in Cosmology [31].

A symmetry group encodes the transformations that leave a physical system invariant.

Consider the following figures:

Rotation by 𝜋 

Figure 1.1: Representation of a transformation that leaves the rectangle invariant.
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Rotation by 𝜋/2 

Figure 1.2: Representation of a transformation that does not leave the rectangle invari-
ant.

In Fig.1.1, we can see that a rotation by an angle of π yields the initial rectangle. However,

in Fig.1.2, we can see that after a rotation by π/2, we do not get the same rectangle.

The transformation shown in Fig.1.1 is one of the transformations that leave the original

rectangle invariant — in other words, it is a symmetry transformation — while that in

Fig. 1.2 is not. The set of all the transformations that leave a rectangle invariant form a

symmetry group known as the dihedral group D2.

In physical systems, the idea is the same: if we have a symmetric system, the Lagrangian

density must be invariant under the transformations of the corresponding symmetry group.

When the symmetry breaks spontaneously, a stable state of the system is no longer invariant

under these symmetry group transformations [32] and depending on its nature, different

topological defects may appear.

As an example, consider the Goldstone model with a real scalar field, φ, in 3 + 1

dimensions. The potential of this model is as follows:

V(φ) =
λ

4

(
φ2 − η2

)2
, (1.21)

which is invariant under reflection: φ −→ −φ:

V(−φ) =
λ

4

(
(−φ)2 − η2

)2
=

λ

4

(
φ2 − η2

)2
= V(φ) . (1.22)

Therefore, we can say that the potential possesses reflection or Z2 symmetry [33]. When

the temperature of the universe is above a critical temperature, φ will be established to

a symmetric state: 〈φ〉 = 0. When the temperature of the universe reaches the critical

temperature and then drops below it, a phase transition occurs, breaking the reflection

symmetry. Below the critical temperature, the energy in the universe is insufficient to
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allow φ to overcome the potential barrier, so 〈φ〉 = 0 is no longer a stable state, and φ will

settle to one of the minima of the potential:

V(φ) = 0 ⇐⇒ φ = ±η . (1.23)

Since all minima are equivalent, the field will settle to one of the minima at random at

every point in space. The field then acquires different Vacuum Expectation Values (VEVs)

in different regions of spacetime and, since the field must vary continuously in space, 〈φ〉

will interpolate between −η and η in the boundaries between regions with different VEVs.

As a result, there exist regions in space where the field has energy – known as domain walls,

which are 2+1-dimensional topological defects. Topological defects are regions where the

φ has a non-trivial configuration or, in other words, is not in a vacuum state.

Figure 1.3: Representation of the behavior of φ (blue ball) before the phase transition
(a) and after the phase transition (b). Figure adapted from [34].

1.2.1.2 Cosmic String Production

The simplest model in which cosmic strings appear is the Goldstone model with a complex

field φ, with potential [34]:

V(φ) =
1
2

λ

(
φ∗φ − 1

2
η2
)2

. (1.24)

Similarly to the case of domain walls, in the early stages of the universe, the temperature

was higher than the critical temperature, below which the symmetry is broken. In this

regime, φ develops a vacuum expectation value 〈φ〉 = 0. When the universe reaches a

critical temperature and undergoes a phase transition that breaks the axial symmetry,

characteristic of this model, φ rolls down to the valley of the potential, developing a non-

vanishing vacuum expectation value: 〈φ〉 6= 0. Since all points in the valley of the potential

are equivalent, quantum and thermal fluctuations determine this choice at random at each
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point in space. As a result of causality, regions separated by more than a correlation

length will be independent, i.e. uncorrelated, and thus have, in general, different vacuum

expectation values. By causality, this correlation length is constrained to be smaller than

the particle horizon:

dh = a(t)
∫ t

0

dt′

a(t′)
. (1.25)

Figure 1.4: Representation of the behavior of the scalar field before and after the sym-
metry breaking. Figure adapted from [35].

Consider a closed curve, C, that connects the possible potential minima in Fig.1.5. If

we begin, at a given point, to travel around the closed path, we can expect to return to

the same point. The number of times around the circle of minima that it takes to reach

the initial point is known as the winding number. Let’s consider the closed path in Fig.1.5

with a non-zero winding number. If we shrink the closed curve to a point, the winding

number becomes zero, which is a contradiction. The only way to avoid this is to consider

that the path has, at least in one point, left the circle of minima of the potential, but this

implies that there is a point inside curve C that is not a minimum of the potential [36]. In

this case, the topological defect that arises is line-like and is denominated cosmic string.
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𝛼  = 𝜋 𝛼  =
𝜋

2
 

3𝜋

2
𝛼  =  

𝛼  = 2𝜋 

Figure 1.5: Schematic representation of the formation of cosmic strings. The red dots
represent different vacuum expectation values, whose phases vary by 2π. Figure adapted

from [34].

Finally, the type of strings presented here have a tension that is divergent and, as result,

the energy is not confined to a small region around the core. However, strings originating

from the breaking of a local axial symmetry — i.e a symmetry transformation that depends

on the spacetime coordinates — do not have the same problem. In this case, the energy per

unit length is finite — which is determined by the energy scale of the symmetry-breaking

phase transition — and the energy is confined to the core of the strings.

In most situations of interest in cosmology, strings originate from the breaking of a local

symmetry therefore, in this dissertation, we will only consider local strings, with energy

localized within a thin core, that may then be treated as infinitely thin objects.

1.3 Cosmic Microwave Background

In 1948, George Gamow, Ralph Alpher, and Robert Herman predicted the existence of a

cosmic background radiation [37–42]. In 1964, Arno Penzias and Robert Wilson detected a

weak background radio signal uniformly distributed across the sky [43]. After investigating

whether the weak signal was caused by the noise created by the horn antenna used to detect

it or by any apparatus surrounding the antenna, they discovered that the signal did, in

fact, come from a source in the universe. In 1965, Robert Dicke and his group deduced

that the source of this faint signal was recombination in the early universe, and this weak

background radio signal was labeled Cosmic Microwave Background (CMB) [44].



10 1.3. Cosmic Microwave Background

The COsmic Background Explorer (COBE) satellite demonstrated that the CMB has

an almost perfect blackbody radiation spectrum characterized by a temperature of 2.728 K

[45]. In addition to the anisotropies caused by Earth’s motion relative to the CMB rest-

frame, the COBE satellite discovered faint anisotropies in the CMB. These anisotropies

are very small:

δT
T

. 10−5 . (1.26)

Despite the fact that the CMB has anisotropies, the Wilkinson Microwave Anisotropy

Probe (WMAP) and the Planck satellite have recently demonstrated that, if we ignore

the anisotropy caused by Earth’s motion, the universe is homogeneous and isotropic on

sufficiently large scales, providing considerable confirmation of the Cosmological Principle

[5, 6].

1.3.1 Cosmic Microwave Background Anisotropies

Perturbations in the energy density in the early universe were the origin of large-scale

structures that we observe today. It was proposed that these perturbations were caused

either by topological defects — active model — or that they arose in the very early universe

(for example, during cosmological inflation) — primordial perturbation models.

CMB anisotropies can be decomposed into three modes: scalar, vector, and tensor,

each corresponding to a perturbation of a quantity in the universe [46]. The scalar mode

is associated with a change in the energy density of the fluid that makes up the universe.

The vector mode is a perturbation corresponding to vortical motions of matter, where

the velocity of the fluid v obeys ∇ · v = 0. Finally, the tensor mode is associated with

transverse-traceless perturbations to the metric, which can be interpreted as gravitational

waves [47].

In primordial perturbation models, perturbations are seeded in the early universe and

grow throughout the universe’s evolution to become the structures observed today. In

contrast, in active models, perturbations are generated all the time [48, 49]. As a result,

active models generate significant vector contributions, whereas primordial perturbation

models do not. This becomes more clear when we consider the linearized EFE for the

vector component [48]:

V̇ + 2
ȧ
a

V =
64πG
25
√

3k
Cγ − 8πG

k
ΘV , (1.27)
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where Cγ is a constant depending on the average photon density, the average neutrino den-

sity, the multipole moments, and the quadrupole component of the neutrino distribution.

Moreover, ΘV is the source of vector perturbations and V is the vector perturbation. In

primordial perturbation models, there was an initial source of vector perturbations, but

because these are only seeded at the start, there is no source after that (ΘV = 0) and Cγ

is negligible. Therefore Eq.(1.27) reduces to:

V̇ + 2
ȧ
a

V = 0 −→ V ∝ a−2 . (1.28)

Thus, the vector perturbations in this model will become negligible as the universe expands.

However, in active models, this contribution is not negligible because anisotropies are

continuously generated throughout cosmological evolution (ΘV 6= 0). Computations of

the CMB anisotropies generated by cosmic string networks revealed that they generate

vector and tensor perturbations of similar magnitude, both contributing significantly to

the CMB anisotropies [50–53].

Recent observational missions have demonstrated that the measured CMB temperature

anisotropy is consistent with primordial perturbations, such as those seeded by cosmological

inflation [54]. Nonetheless, we cannot exclude from consideration a subdominant contri-

bution of cosmic strings just yet. Although cosmic strings do not contribute significantly

to the temperature anisotropies of the CMB, they may contribute or even dominate the

B-mode polarization because they generate significant vector modes [55].

Finally, CMB observations constrain the cosmic string tension to Gµ0 < 1.49 × 10−7

[56]. These constraints, however, were derived using models that assume cosmic strings

do not have significant small-scale structure. Realistically, as a result of collisions and

interactions, strings can become very wiggly. In this dissertation, we improve the modeling

of the CMB anisotropies generated by cosmic strings by considering wiggly strings, in order

to increase the precision of the constraints on the string tension.





Chapter 2

Cosmic Strings: Dynamics and

Interactions

2.1 Cosmic Strings: An Overview

Several extensions of the Standard Model, such as the axion model [17, 18], brane inflation

from string theory [19–22], and supersymmetric theory [23–28], to name a few, predict

the existence of cosmic strings. All of these models can be validated if cosmic strings are

detected. Cosmic strings are, in a sense, a probe of high-energy physics models.

2.1.1 The Nambu-Goto Action: From String Dynamics to String Energy

The dynamical equations of motion of a (local) cosmic string can be derived using the

Nambu-Goto action. In spacetime, an infinitely thin string sweeps a 2-dimensional surface.

The following 4-vector can represent this worldsheet:

Xµ = Xµ(ξa) , a = 0, 1 , (2.1)

where ξ0 denotes a timelike variable and ξ1 denotes a spacelike variable that parameterizes

the string worldsheet. An infinitely thin string obeys the Nambu-Goto action:

S = −µ0

∫
d2ξ

√
−γ, (2.2)

where µ0 is the cosmic string tension, which is the energy per unit length of the string, γ

is the determinant of the worldsheet metric, γab = gµνXµ,aXν,b and gµν is the spacetime

metric.

13
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We consider a flat FLRW metric:

ds2 = a(τ)2
(

dτ2 − dx2
)

.

The Nambu-Goto action is invariant under worldsheet reparametrizations, therefore we

can use any gauge that is convenient. It is common in a FLRW background to choose

temporal-transverse gauge conditions:

ξ0 = τ and Ẋ · X′ = 0 , (2.3)

where Xµ = (τ, X), a dot and a prime denotes a derivative with respect to τ or σ, respec-

tively, Ẋ is the velocity of the string and X′ is the string tangent vector.

The equations of motions are obtained by varying Eq. (2.2) with respect to Xµ:

Xµ ;a
,a + Γµ

ρλγabXρ
,aXλ

,b = 0 , (2.4)

where

Xµ ;a
,a =

1√
−γ

∂a

(√
−γγabXµ

,b

)
. (2.5)

In the temporal-transverse gauge and for a FRLW metric, the equations of motion may

be written as :

Ẍ + 2
ȧ
a

(
1 − Ẋ2

)
Ẋ = ε−1

(
ε−1X′

)′
, (2.6)

ε̇ = −2
ȧ
a

εẊ2 . (2.7)

with

ε2 =

(
X′ 2

1 − Ẋ2

)
. (2.8)

The dynamics of a cosmic string in an expanding, flat universe are completely described

by Eqs.(2.6) and (2.7).

The stress-energy tensor is obtained by varying the Eq. (2.2) with respect to gµν:

Tµν = − 2√−g
δS

δgµν
= µ0

∫
d2ξ

√
−γγabXµ

,aXν
,bδ(4)

(
Xσ − Xσ(ξa)

)
. (2.9)

As a result, the energy of the string is given by:

E = µ0a(τ)
∫

εdξ . (2.10)
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2.1.2 String Interactions

Strings moving through the universe can interact with one another. When two strings

come into contact, they will reconnect.

Reconnection can result in three different outcomes: strings colliding in one point and

exchanging partners, resulting in the formation of strings with kinks; strings colliding in

two points, resulting in the formation of kinks and loops; and strings self-intersecting, also

resulting in the formation of strings with kinks and loops. A schematic representation of

these processes is shown in Fig.2.1 and 2.2.

Figure 2.1: Formation of two cosmic strings with kinks as a result of reconnection.
Image from [57].

(b)(a)

Figure 2.2: Loops are formed when two cosmic strings intersect (a) or when a string
intersects itself (b). Image from Cambridge Cosmology Group.

https://www.ctc.cam.ac.uk/outreach/origins/cosmic_structures_three.php




Chapter 3

Modeling Cosmic Strings

Networks

Cosmic Strings form a network, thus it is not sufficient to know the cosmological evolution

of a single string. To describe the cosmological evolution of a cosmic string network, one

must consider its dynamics and potential interactions between strings. This is especially

important because cosmic strings are expected to survive throughout the universe’s evo-

lution, generating signatures in the CMB. Therefore, we must describe the evolution of

cosmic strings throughout cosmological history and must know the network’s stress-energy

tensor in order to compute the CMB anisotropies.

The first attempt to describe the cosmological evolution of a network was made by

Kibble when he proposed the One-Scale model [58], in which he assumed that the evolution

of a network could be characterized by the correlation length, ζ. Numerical simulations [59,

60] revealed that Kibble’s one-scale model ignored important small-scale physical processes

because the simulations agreed with Kibble’s model only on sufficiently large-scales [59].

In 1996, Martins and Shellard extended the one-scale model by adding another dy-

namical variable, the string Root-Mean-Squared (RMS) velocity and thus creating the

Velocity-dependent One-Scale (VOS) model [61, 62]. Essentially, this model tells us how

many strings exist on average per comoving volume and their mean velocity, then providing

a quantitative description of the evolution of the string network [61]. The VOS model, like

Kibble’s model, describes a network on sufficiently large scales, but it does so with greater

precision since it describes the radiation-matter transition.

In order to investigate the CMB anisotropies, we need a microscopic description of the

stress-energy tensor, which cannot be achieved with the VOS or Kibble’s model since they

17
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only describe large-scale dynamics. With this objective in mind, the Unconnected Segment

Model (USM) was introduced. The USM [48, 53] simplifies the network by considering a

collection of randomly distributed and orientated straight string segments moving with

random, uncorrelated velocities, in order to compute the stress-energy tensor of a cosmic

string network. At last, after obtaining the stress-energy tensor and using the linearized

Einstein-Boltzmann equations [63], it can be used to study the CMB anisotropies generated

by a cosmic string network.

In this chapter, we are going to introduce the VOS model and the USM.

3.1 Cosmological Evolution of Cosmic String Networks

3.1.1 The Velocity-Dependent One-Scale Model

The VOS model considers a volume with long strings and assumes that their evolution

can be described by a single length scale called correlation or physical length ζ, which is

defined in terms of the bare string density:

ρ0 =
µ0

ζ2 . (3.1)

The bare string density corresponds to the energy density of the string excluding the energy

density accommodated in kinks/wiggles or other additional degrees of freedom.

Furthermore, the VOS includes a dynamical variable called RMS velocity to describe

the matter-radiation transition [62], which is defined as:

v2 ≡ 〈ẋ2〉 =
∫

ẋ2εdσ∫
εdσ

. (3.2)

The energy of long strings can be defined in terms of the total energy density of the network:

E = ρV . (3.3)

In this model, the characteristic length, ζc, is defined such that there is a string with size

ζc per volume ζ3
c . Thus, one can write:

ρ =
µ0 (ζc)

ζ3
c

=
µ0

ζ2
c

. (3.4)

For strings without small-scale structure, the correlation and characteristic lengths coincide

ζ = ζc, whereas if the strings are wiggly these lengths may differ significantly. For the
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remainder of this section, we shall assume that strings are not wiggly and write all the

equations in terms of the correlation length ζ.

To describe the evolution of the network, the VOS models also assume that strings

can be described by the Nambu-Goto action. In this case, the equations of motion for the

strings are Eqs.(2.6) and (2.7).

In order to obtain the evolution equation for ρ, we must consider the total energy in

strings, including the contributions of all strings in the network, then differentiate it and

apply the Nambu-Goto equations of motion (Eqs.(2.6) and (2.7)). We then obtain:

dρ

dt
+ 2Hρ

(
1 + v2

)
= 0 . (3.5)

When sub-horizon loops are formed, they completely detach from the network, altering

its energy density. This process, which must be considered for an accurate description of

the evolution of the network, is not accounted for in the above equation. As a result, we

consider Kibble’s proposed phenomenological term [58]:(
dρ

dt

)
= c̃v

ρ

ζ
, (3.6)

where c̃ is a phenomenological parameter that characterizes loop chopping efficiency [62],

which was calibrated using numerical simulations [59, 60] and has the following value [62]:

c̃ = 0.23 ± 0.04 . (3.7)

For a probabilistic derivation of Eq.(3.6), see [61]. For a full description of the evolution

equation for ρ, we need to subtract energy losses caused by loop formation Eq.(3.6) from

Eq.(3.5), resulting in:
dρ

dt
+ 2Hρ

(
1 + v2

)
− c̃v

ρ

ζ
= 0 . (3.8)

Using Eq.(3.4), we can write the evolution equation of the correlation length:

2
dζ

dt
= 2Hζ

(
1 + v2

)
+ c̃v . (3.9)

Lastly, we must determine the evolution equation for v; to do so, we differentiate

Eq.(3.2) and use the Nambu-Goto equations of motions Eqs.(2.6) and (2.7), yielding:

dv
dt

=
(

1 − v2
) [ k(v)

ζ
− 2vH

]
, (3.10)
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where we assumed 〈Ẋ4〉 ≈ 〈Ẋ2〉2. This expression is exact up to second-order terms [61].

k(v) is the momentum parameter, which is defined as:

k(v) ≡
〈
(

1 − Ẋ2
) (

Ẋ · u
)
〉

v(1 − v2)
, (3.11)

where u is a unit vector parallel to the curvature radius. This parameter may be interpreted

as describing, to a limited extent, the impact of small-scale structure [62]. In [62, 64, 65]

the following form for k(v) was proposed:

k(v) ≡ 2
√

2
π

(1 − v2)(1 + 2
√

2v3)
1 − 8v6

1 + 8v6 . (3.12)

3.1.2 Scaling Solutions

Numerical simulations [60, 66] revealed that cosmic strings networks evolve towards a

linear scaling regime [67]; otherwise cosmic strings would dominate the energy density of

the universe.

Linear scaling regimes appear when we assume that the scale factor behaves as a power

law [62]:

a(t) ∝ tβ , β = constant , 0 < β < 1 . (3.13)

The characteristic length can be written as:

ζ = η(t)t . (3.14)

If we substitute Eq.(3.14) in expressions (3.9) and (3.10), we obtain:

2
η̇

η
=

1
t

[
2β
(

1 + v2
)
+ c̃

v
η
− 2

]
and v̇ =

1
t

(1 − v2
)( k

η
− 2vβ

) , (3.15)

In a linear scaling regime, v and η are constant, implying that v̇ = η̇ = 0. In this regime,

Eqs.(3.15) reduce to:

η2 =
k (k + c̃)

4β
(
1 − β

) , v2 =
k
(
1 − β

)
β (k + c̃)

, (3.16)

which is an attractor solution of the VOS equations. For these quantities to have physical

significance we should have:

η > 0 , 0 < v < 1 , ζ < dH . (3.17)

In linear scaling regimes, the fraction of energy density of strings and energy of the

background remains constant in both the radiation and matter eras. The energy density
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of strings can be written as:

ρst =
µ0

ζ2 =
µ0

η2t2 . (3.18)

In the matter era, we may write the fraction of the energies as:

ρst

ρm
=

µ0/η2t2

ρ0ma−3 ∝
µ0/η2t2

ρ0m(t2/3)−3 =
µ0

η2ρ0m
, (3.19)

which is constant as we stated before. Similarly, in the radiation era, we can write the

fraction of the energies as:

ρst

ρr
=

µ0/η2t2

ρ0ra−4 ∝
µ0/η2t2

ρ0r(t1/2)−4 =
µ0

η2ρ0r
, (3.20)

which is also constant, as we expected. Consequently, strings do not have a tendency to

dominate the universe’s energy density.

3.2 The Stress Energy Tensor of a Cosmic String Network

3.2.1 The Unconnected Segment Model (USM)

As in the VOS model, we consider a volume containing a large number of strings. In order

to study the CMB anisotropies generated by the cosmic string network, we would need

to describe the stress-energy tensor for the entire volume, which is extremely difficult to

do analytically. To achieve this, the Unconnected Segment Model (USM) was developed,

which approximates the network in this volume by a collection of uncorrelated randomly

distributed straight string segments moving with randomly orientated velocities. In this

model, the stress-energy tensor is computed for this simplified network and then averaged

over a large number of realizations in which the segments and velocities are assigned at

random. Even though a realistic cosmic string network is not a collection of straight

segments, we can describe its anisotropies accurately by averaging the CMB anisotropies

generated over a large number of realizations of the USM. Moreover, the USM assumes

that strings are created at an early epoch and decay in subsequent epochs to mimic the

effect of energy loss caused by the creation of loops [48].

Each cosmic string within the volume generates perturbations that contribute to the

anisotropies generated by the entire network. So, in order to fully describe the CMB

anisotropies, we need to have a description of the stress-energy tensor of the whole network

at any instant in time. We can write the network stress-energy tensor as the sum of the
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stress-energy tensors of each string [53]:

Θµν(~k, τ) =
Ns

∑
m=1

Θm
µν(~k, τ)Toff

(
τ, τm

f

)
, (3.21)

where Ns is the number of strings contained within the volume, τm
f is the conformal time

of complete decay of the m-th segment, and Toff is a smooth function chosen to model

segment decay. This function may be written as follows [48]:

Toff(τ, τf ) =


1 τ < λ f τf

1
2 +

1
4

(
x3

off − 3xoff

)
λ f τf ≤ τ < τf ,

0 τf ≤ τ

(3.22)

where

xoff = 2
ln(λ f τf /τ)

ln(λ f )
− 1 , (3.23)

Based on the results of simulations [68–71] and the predictions of analytical models

[61, 62], a large number of strings is expected to survive cosmological expansion. In fact,

in order to have a single string surviving at the present time, we would have to start with

Ns ≥ 1012 [53], which would require a lot of computational power. One way around this

would be to avoid directly dealing with the individual segments and instead consolidate all

string segments that decay at the same epoch into a single straight segment. The number

of decaying segments Nd at a discrete conformal time is [48, 53]:

Nd (τ) = V
[
n(τi−1)− n(τi)

]
, (3.24)

where V is the simulation volume and n(τ) is the string number density at time τ. Indi-

vidual segments in real space are randomly oriented, which corresponds to random phases

in Fourier space. The amplitude of the Fourier transformed stress-energy tensor describing

the sum of the contributions of individual segments that decay at a given time is then es-

sentially a random walk. As a result, in Fourier space, we can write the total stress-energy

tensor as the stress-energy tensor of a single segment of string weighted by a factor of
√

Nd

[48, 53, 72]. Thus, one can write [53]:

Θ̃µν(k, τ) = ∑
i

√
Nd(τi)Θ1

µν(k, τ)Toff(τ, τi) + Tµν , (3.25)

where the index i runs over the consolidated straight segments, Θ1
µν(k, τ) is the stress-

energy tensor for a single straight segment, and Tµν is the contribution of any string
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segments that did not decay until τmax, which we consolidate into one straight segment

with weight
√

Nd(τmax) =
√

Vn(τmax). Therefore, we can write Tµν as [53]:

Tµν =
√

Nd(τmax)Θ1
µν(k, τ) . (3.26)

Finally, the number density of the decaying segments within the comoving volume is

not directly proportional to L−3 due to the implementation of Toff(τ, τi). Instead, we have:

n(τ) =
C(τ)

L3 , (3.27)

where L is the comoving correlation length and is defined as:

L =
ζ

a(τ)
. (3.28)

Function C(τ) is determined by requiring that the total number of strings at any time is

given by V0/L(τ)3 [53], where V0 is the comoving volume. For that reason:

1

(L)3 = ∑
i

[
n(τi−1)− n(τ)

]
Θi

µν(k, τ)Toff(τ, τi) + n(τmax) , (3.29)

where L is determined using the VOS model.

3.2.2 The VOS-USM connection and the computation of CMB anisotropies

To calculate the CMB anisotropies generated by cosmic string networks, we must first

compute the network’s stress-energy tensor using the USM. This model, however, tells us

nothing about the average length of the segments, or, in other words, nothing about the

energy density in the observed universe, nor does it tell us anything about the average

velocity in the simulation volume, for which we use the VOS model. To compute the

stress-energy tensor of a realistic cosmic string network, we must use both of these models

in conjunction.

Finally, in order to compute the CMB anisotropies, we must solve the linearized

Einstein-Boltzmann equations, with the stress-energy tensor calculated using both the

USM and the VOS as a source. To accomplish this, we use the publicly available numeri-

cal tool CMBACT [53, 73] which is based on CMBFAST [63].





Chapter 4

A Wiggly Unconnected Segment

Model

As we previously mentioned, cosmic strings collide throughout the course of cosmological

evolution, and, as result, they will inevitably reconnect and kinks will form. A kink is

a point in which the string tangent vectors are discontinuous. These are produced in

substantial amounts during the intercommutation process, giving rise to a network of

wiggly strings.

In [53], there is the first attempt to compute the CMB anisotropies generated by wiggly

strings. Basically, this is done by giving strings an effective tension different from the actual

physical tension — through a wiggliness parameter — and therefore there is no modification

of the VOS model nor of the USM. In [74], the authors consider a modified Nambu-Goto

action, where a wiggliness parameter dependent on a field that is a function of world-

sheet time is introduced, which led to the development of a wiggly VOS model. In [75],

this wiggly VOS model is introduced into CMBACT to compute the CMB anisotropies. In

essence, they took into consideration straight segments with a modified dynamical effective

tension. In [53, 75], the USM was never changed.

Our strategy is a little different. Since there is an abundance of kinks produced after

intercommutation, resulting in a wiggly string, we consider, in the computation of the

stress-energy tensor of the network, string segments with kinks instead of straight ones. In

this chapter, we will therefore develop a novel USM for wiggly strings, with the objective

of computing the CMB anisotropies.

25
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4.1 Extending the VOS Model for Wiggly Strings

For clarity, the different lengths and lengthscales used in this chapter are recorded in Table

4.1.

Symbol Definition

d comoving subsegment length

L comoving projective length of the string segments

Ltotal total comoving length of the string segments

Lc comoving characteristic length of the network

ζ correlation length of the network

ζc characteristic length of the network

Table 4.1: Different lengths and lengthscales used.

In this chapter, unless stated otherwise, all the mentioned lengths are comoving lengths.

In our USM, we consider a network of string segments with kinks — or wiggly segments —

in which each string has the same total length and number of kinks, N. Furthermore, each

string is composed of N + 1 straight segments with the same length, d, that meet at the

kinks, which all have the same sharpness, β. Fundamentally, we also model the network

as a collection of randomly oriented identical segments moving in random directions but

now the segments have a “zig-zag” form.

To estimate the energy density of a network composed of wiggly strings, we must once

again understand its evolution. The characteristic length of a network composed of straight

strings coincides with the correlation length — which may be identified as the projective

or physical length of the segments —– whereas it does not in strings with wiggles. In

the case of straight strings, we can use the VOS model to describe the evolution of the

network’s energy density; however, for wiggly strings, the VOS model does not apply in

general because the characteristic length differs from the correlation length.

In our approach, we will assume that the VOS model accurately describes the energy

density of a network of strings without small-scale structure so that it is always a good

description of the bare energy density of the network. In other words, we will always

consider strings with the same physical length even if the number of kinks and/or kink

sharpness changes, and assume that this length is well described by the VOS model. This

is a first approximation to describe the dynamics of networks of wiggly cosmic strings,
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other more complex models for describing networks of strings with small-scale structure

were proposed in [74–79]. Finally, even though we use the simplest possible model as a

first approximation, the wiggly USM we will develop can be used with these more complex

models in a very straightforward way in the future.

For simplicity, we consider an odd number of kinks N — the number of subsegments is

N + 1. To determine the total length of a wiggly string segment, let us start by considering

the case of a string with one kink.

𝛽 
𝑑 𝑑 

𝐿 
𝐿 

Figure 4.1: Transformation of a straight string segment into a segment with 1 kink.
The projective length is denoted by L on both sides, while the subsegment length is d.

Moreover, L = 2d for a straight segment.

As Fig.4.1 shows, a segment with a kink splits into two straight subsegments with lengths

d. These two subsegments meet at an angle that we will refer to as the kink sharpness or

simply as β. We can express the relation between L, d and β in the following way:

d =
L

2 sin
(

β/2
) , (4.1)

as Fig.4.2 illustrates.

𝑑 

𝛽/2 

𝐿/2 

Figure 4.2: Relation between d, L and β for a segment with 1 kink.

Before generalizing, consider the case of a string with 3 kinks, illustrated in Fig.4.3.
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𝛽 𝑑
𝐿

𝑑
𝐿

𝛽 𝑑𝑑

Figure 4.3: Transformation of a straight string segment into a segment with 3 kinks.
The subsegment length is d, and the projective length is given by L on both sides.

Similarly to the 1-kink case, we consider the configuration illustrated in Fig.4.4.

𝑑 

𝛽/2 

𝐿/4 

Figure 4.4: Relation between d, L and β for a segment with 3 kinks.

Therefore, we can write:

d =
L

4 sin
(

β/2
) . (4.2)

At last, now the generalized expression is straightforward and can be written as follows:

d =
L

(N + 1) sin
(

β/2
) . (4.3)

Furthermore, a segment with N kinks has N + 1 straight segments and therefore we can

write:

LTotal = (N + 1)d . (4.4)

Substituting, Eq.(4.3) in Eq.(4.4) we obtain:

LTotal =
L

sin
(

β/2
) , (4.5)

which is the total length of the wiggly segments considered here.

Moreover, using Eq.(2.10) we notice that for a wiggly segment:

Es = a (τ) µ0γ (N + 1) d −→ Es = a (τ) µ0γ
L

sin(β/2)
, (4.6)



4. A Wiggly Unconnected Segment Model 29

where γ is the Lorentz factor:

γ =
1√

1 − v2
, (4.7)

and where we have used Eq.(4.3) in order to simplify it. We also notice that the energy

for this string with wiggles does not depend on the number of kinks, but rather on the

sharpness of the kinks. On the other hand, the bare string’s energy — which is the energy

of the strings excluding kinks/wiggles or other additional degrees of freedom — can be

written as follows:

E0 = a (τ) µ0γL. (4.8)

By comparing, Eq.(4.6) and Eq.(4.8) we notice that wiggly segments have larger energy

than straight segments, so the energy density of a network composed of wiggly segments

will differ from the bare energy density predicted by the VOS model.

Nonetheless, in spite of these differences in energy, changing the wiggliness of the seg-

ments does not change the number of strings in the volume considered by the VOS model.

Therefore, we will assume that the number of segments is that predicted for a network of

bare strings, which can be written as follows:

E0 = Vρ0 ⇐⇒ Ns(τ)µ0ζ =
µ0V
ζ2 −→ Ns(τ) =

V
ζ3 ⇐⇒ ns(τ) =

1
ζ3 =

1(
a(τ)L

)3 , (4.9)

where Ns(τ) is the total number of strings, V is the simulation volume, and ζ is the

correlation length — which, in our assumption, coincides with the projective length.

The total energy density can be written as follows∗:

ρ = nsEs −→ ρ =
µ0(

a (τ) L
)2 sin(β/2)

, (4.10)

where ns is the string number density, Es is the string energy and 0 ≤ β ≤ 2π. Furthermore,

comparing Eq.(4.10) and Eq.(3.1) we may notice that the energy density of the network of

wiggly strings is larger than the energy density of the network composed of bare strings.

Finally, the energy density can be used to define a characteristic length for the wiggly

cosmic string network:

ρ ≡ µ0(
a (τ) Lc

)2 . (4.11)

∗The Lorentz factor in Eq.(4.6) was absorbed into the definition of L.
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Comparing Eq.(4.10) and Eq.(4.11) we may see that the characteristic length can be written

in terms of the kink sharpness and the projective length:

L2
c = L2 sin(β/2) , (4.12)

and is, in general, smaller than the correlation length of the network.

In order to quantify how wiggly the string segments are, we introduce an effective string

tension, µe f f . The effective string tension is defined in such a way that we have:

ρ =
µe f f(

a(τ)L
)2 . (4.13)

Substituting Eq.(4.10) in Eq.(4.13) we obtain:

µ0

L2 sin(β/2)
=

µe f f

L2 −→ µe f f =
µ0

sin(β/2)
. (4.14)

From Eq.(4.14), we can see that the effective tension for wiggly segments is larger than µ0.

When β = π, Eq.(4.14) is equal to µ0 implying that the segment under consideration has

no wiggles and is therefore a straight segment, as expected.

4.2 The Stress-Energy Tensor of a String with Kinks

We are missing one component to complete the development of a wiggly USM: the stress-

energy tensor of a wiggly cosmic string segment. To compute the stress-energy tensor of

a string with kinks, we assume that the string is in the xy-plane, that it behaves as a

rigid body — the velocity is the same in each point of the string — with a velocity, Ẋ,

orthogonal to the xy-plane and that kinks do not propagate∗. Moreover, the basis of our

coordinate system is defined by the following orthogonal unit vectors:

êx =


sin(θ) sin(φ)

− sin(θ) cos(φ)

cos(θ)

 , (4.15)

êy =


− cos(φ) sin(ψ)− cos(ψ) sin(φ) cos(θ)

− sin(φ) sin(ψ) + cos(ψ) cos(φ) cos(θ)

sin(θ) cos(ψ)

 , (4.16)

∗In general, kinks are expected to propagate along the cosmic string.
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êz =


cos(φ) cos(ψ)− sin(ψ) sin(φ) cos(θ)

sin(φ) cos(ψ) + sin(ψ) cos(φ) cos(θ)

sin(θ) sin(ψ)

 , (4.17)

where θ, φ, ψ are attributed randomly in each realization to define the orientation and the

velocity of each segment. Additionally, 0 ≤ θ < π and 0 ≤ φ, ψ < 2π.
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𝑑 𝑑 

𝐗1
'

 𝐗2
'   
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𝑑 𝑑 𝐗1
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𝐗2
'  

𝛽/2 

Figure 4.5: Illustration of the decomposition of the tangent vectors in terms of the basis
vectors.

From Fig.4.5, we see that vectors ˆ̇X, — which is the unit vector along the direction of

the string’s velocity — X̂′
1 and X̂′

2 — which are unit vectors with directions tangent to the

first and second subsegments, respectively — can be decomposed into the basis defined by

the previous vectors as follows:

X̂′
1 = sin(β/2)êx + cos(β/2)êy ,

X̂′
2 = sin(β/2)êx − cos(β/2)êy ,

ˆ̇X = êz .

(4.18)

When the vectors are written on a given basis, the transversal gauge should also be verified.

As a matter of fact, we have that:

X̂′
1 · ˆ̇X = sin(β/2)êx · êz + cos(β/2)êy · êz = 0 ,

X̂′
2 · ˆ̇X = sin(β/2)êx · êz − cos(β/2)êy · êz = 0 .

(4.19)

Finally, we are ready to compute the stress-energy tensor for strings with a different number

of kinks.
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4.2.1 String with 1 Kink

Let us consider a string segment with a kink as illustrated in Fig.4.6. The stress-energy

tensor for this configuration may be written as:

Tµν =
µ0√−g

[ ∫ (
ε1Ẋµ

1 Ẋν
1 − ε−1

1 X′ µ
1 X′ ν

1

)
δ
(4)
1 dτdσ

+
∫ (

ε2Ẋµ
2 Ẋν

2 − ε−1
2 X′ µ

2 X′ ν
2

)
δ
(4)
2 dτdσ

]
,

(4.20)

where δ
(4)
j ≡ δ

(4)
j (xη

j − Xη
j (τ, σ)) is a Dirac-delta function and 1 and 2 label each of the

strings subsegments.

𝛽 

𝑑 𝑑 

𝐗13
'  

𝐗23
'  

𝐲𝟎 

Figure 4.6: Illustration of a segment with 1 kink.

Since integrating Eq.(4.20) in real space is difficult, we write the stress-energy tensor

in momentum space, which we do by Fourier transforming Eq.(4.20):

Θµν = µ0

[ ∫ 0

−d
dσeik·X1

(
ε1Ẋ1

µẊν
1 − ε−1

1 X′ µ
1 X′ ν

1

)
+
∫ d

0
dσeik·X2

(
ε2Ẋµ

2 Ẋν
2 − ε−1

2 X′ µ
2 X′ ν

2

) ]
,

(4.21)

where X1 and X2 can be parameterized as follows:

X1 = y0 + vτ ˆ̇X + σX̂′
1 , X2 = y0 + vτ ˆ̇X + σX̂′

2 , (4.22)

y0 is the position of the kink, v = |Ẋ| and ˆ̇X1 = ˆ̇X2 ≡ ˆ̇X because we assumed that the

segment behaves as a rigid body. Moreover, we shall assume, without loss of generality,

that k = kê3, thus Eq.(4.21) reduces to:

Θµν = µ0ei
(

k·y0+kvτ ˆ̇X3

)[ ∫ 0

−d
dσeikσX̂′

13

(
ε1Ẋ1

µẊν
1 − ε−1

1 X′ µ
1 X′ ν

1

)
+
∫ d

0
dσeikσX̂′

23

(
ε2Ẋµ

2 Ẋν
2 − ε−1

2 X′ µ
2 X′ ν

2

) ]
.

(4.23)
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The real-part of the “00”-component of Eq.(4.23) — for a detailed computation check

appendix A — can be written as follows:

<
(

Θ00
)
= µ0γ

 cos(A)

(
sin(B1)

kX̂′
13

+
sin(B2)

kX̂′
23

)

+ sin(A)

(
X̂′

23 − X̂′
13

kX̂′
23X̂′

13

+
cos(B2)

kX̂′
23

− cos(B1)

kX̂′
13

) ,

(4.24)

where

A = k · y0 + kvτ ˆ̇X3 , B1 = kdX̂′
13 , B2 = kdX̂′

23 . (4.25)

4.2.2 String with 3 Kinks

For a string with three kinks, we basically translate the structure in Fig. 4.6 once, creating

the configuration shown in Fig.4.7.
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𝑑 𝑑 

𝐗13
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𝐗23
'  
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𝑑 𝑑 

𝐗13
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𝐗23
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𝐲𝟎 𝐲1 

𝐲𝐦𝐩 

Figure 4.7: Illustration of a segment with 3 kinks.

Basically, we can regard this case as two strings with one kink located at different points.

In this case, the stress-energy tensor can be written as:

Tµν =
µ0√−g

4

∑
j=1

[ ∫ (
εjẊ

µ
j Ẋν

j − ε−1
j X′ µ

j X′ ν
j

)
δ
(4)
j dτdσ

]
. (4.26)

The Fourier transformed stress-energy tensor can be written as follows:

Θµν = µ0

1

∑
m=0

[ ∫ 0

−d
dσeik·X2m+1

(
ε2m+1Ẋµ

2m+1Ẋν
2m+1 − ε−1

2m+1X′ µ
2m+1X′ ν

2m+1

)
+
∫ d

0
dσeik·X2m+2

(
ε2m+2Ẋµ

2m+2Ẋν
2m+2 − ε−1

2m+2X′ µ
2m+2X′ ν

2m+2

) ]
,

(4.27)

where Xj, with j = 1, 2, 3, 4, can be parameterized as follows:

X1 = y0 + vτ ˆ̇X + σX̂′
1 , X2 = y0 + vτ ˆ̇X + σX̂′

2 ,

X3 = y1 + vτ ˆ̇X + σX̂′
1 , X4 = y1 + vτ ˆ̇X + σX̂′

2 ,
(4.28)

and y0 and y1 are the positions of the kinks. Furthermore, the tangent vectors of the

first and third segments are equal, as well as the tangent vectors of the second and fourth
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segments. As in the previous case, we set k = kê3 then Eq.(4.27) simplifies to:

Θµν = µ0

1

∑
m=0

ei
(

k·ym+kvτ ˆ̇X3

)[ ∫ 0

−d
dσeikσX̂′

13

(
ε2m+1Ẋµ

2m+1Ẋν
2m+1 − ε−1

2m+1X′ µ
2m+1X′ ν

2m+1

)
+
∫ d

0
dσeikσX̂′

23

(
ε2m+2Ẋµ

2m+2Ẋν
m+2 − ε−1

2m+2X′ µ
2m+2X′ ν

2m+2

) ]
.

(4.29)

As we have stated before, essentially we are dealing with two segments with one kink

at different positions, therefore the “00”-component of Eq.(4.29) will be the sum of the

contributions of two strings with one kink Eq.(4.24) located at y0 and at y1 — for more

details see appendix A. We then have that:

<
(

Θ00
)
=µ0γ

 cos(A0) + cos(A1)

(sin(B1)

kX̂′
13

+
sin(B2)

kX̂′
23

)

+

 sin(A0) + sin(A1)

( X̂′
23 − X̂′

13

kX̂′
23X̂′

13

+
cos(B2)

kX̂′
23

− cos(B1)

kX̂′
13

)
,

(4.30)

where

Aj−1 = k · yj−1 + kvτ ˆ̇X3 , Bj = kdX̂′
j3 with j = 1, 2 . (4.31)

In order to simplify Eq.(4.30), let us rewrite it in terms of the position of the kink located

at the middle point ymp. From Fig.4.7, we see that y0 and y1 may be written as:

yj = ymp − (−1)jdX̂′
2−j , with j = 0, 1. (4.32)

Substituting in the definition of A0 and A1, we obtain:

A2−j = Amp − (−1)jdkX̂′
j3 , with j = 1, 2, (4.33)

where

Amp = k · ymp + vτ ˆ̇X3 . (4.34)

Consequently, Eq.(4.30) can be written as follows:

<
(

Θ00
)
=µ0γ

 cos(Amp − dkX̂′
23) + cos(Amp + dkX̂′

13)

(sin(B1)

kX̂′
13

+
sin(B2)

kX̂′
23

)

+µ0γ

 sin(Amp − dkX̂′
23) + sin(Amp + dkX̂′

13)

( X̂′
23 − X̂′

13

kX̂′
23X̂′

13

+
cos(B2)

kX̂′
23

− cos(B1)

kX̂′
13

).

(4.35)
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Furthermore, we can decompose X̂′
13 and X̂′

23 in terms of the basis vectors Eq.(4.18) and

thus Eq.(4.35) can be expressed as:

<
(

Θ00
)
= 2µ0γ cos

(
L
4

k · êx

) cos
(

A′
mp

)(sin(B1)

kX̂′
13

+
sin(B2)

kX̂′
23

)

+ sin
(

A′
mp

)( X̂′
23 − X̂′

13

kX̂′
23X̂′

13

+
cos(B2)

kX̂′
23

− cos(B1)

kX̂′
13

) ,

(4.36)

where we defined A′
mp = Amp + dk ·

(
cos(β/2)êy

)
. For more details see appendix A.

4.2.3 String with 5 Kinks

A string with 5 kinks can be regarded as 3 strings with one kink located in different

positions. An illustration of a string with 5 kinks can be found in Fig.4.8.
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Figure 4.8: Illustration of a segment with 5 kinks.

Proceeding as in the previous sections, we can write the Fourier transform for the string

with 5 kinks:

Θµν = µ0

2

∑
m=0

[ ∫ 0

−d
dσeik·X2m+1

(
ε2m+1Ẋµ

2m+1Ẋν
2m+1 − ε−1

2m+1X′ µ
2m+1X′ ν

2m+1

)
+
∫ d

0
dσeik·X2m+2

(
ε2m+2Ẋµ

2m+2Ẋν
2m+2 − ε−1

2m+2X′ µ
2m+2X′ ν

2m+2

) ]
,

(4.37)

where Xj, with j = 1, 2, 3, 4, 5, 6, can be written as follows:

X1 = y0 + vτ ˆ̇X + σX̂′
1 , X2 = y0 + vτ ˆ̇X + σX̂′

2 , X3 = y1 + vτ ˆ̇X + σX̂′
1 ,

X4 = y1 + vτ ˆ̇X + σX̂′
2 , X5 = y2 + vτ ˆ̇X + σX̂′

1 , X6 = y2 + vτ ˆ̇X + σX̂′
2 .

(4.38)

As in the previous sections, we set k = kê3 therefore Eq.(4.37) simplifies to:

Θµν = µ0

2

∑
m=0

ei
(

k·ym+kvτ ˆ̇X3

)[ ∫ 0

−d
dσeikσX̂′

13

(
ε2m+1Ẋµ

2m+1Ẋν
2m+1 − ε−1

2m+1X′ µ
2m+1X′ ν

2m+1

)
+
∫ d

0
dσeikσX̂′

23

(
ε2m+2Ẋµ

2m+2Ẋν
m+2 − ε−1

2m+2X′ µ
2m+2X′ ν

2m+2

) ]
.

(4.39)



36 4.2. The Stress-Energy Tensor of a String with Kinks

which is the sum of the contributions of the stress-energy tensor of 3 different strings with

one kink, located at y0, y1 and y2, and thus Eq.(4.39) has the solution:

<
(

Θ00
)
=µ0γ

 cos(A0) + cos(A1) + cos(A2)

(sin(B1)

kX̂′
13

+
sin(B2)

kX̂′
23

)

+µ0γ

 sin(A0) + sin(A1) + sin(A2)

( X̂′
23 − X̂′

13

kX̂′
23X̂′

13

+
cos(B2)

kX̂′
23

− cos(B1)

kX̂′
13

)
,

(4.40)

where

Ai−1 = k · yi−1 + kvτ ˆ̇X3 , Bj = kdX̂′
j3 with i = 1, 2, 3 ; j = 1, 2 . (4.41)

In order to simplify Eq.(4.40), we need write y0, y1, y2 and y3 in terms of ymp. From

Fig.4.8, we can see that:

y0 = ymp −
L
3

êx , y1 = ymp , y2 = ymp +
L
3

êx , (4.42)

thus A0, A1 and A2 can be rewritten as:

Aj = Amp + (j − 1)
L
3

k · êx , j = 0, 1, 2 , (4.43)

where Amp has the same definition as before (Eq.(4.34)).

Using the quantities defined above Eq.(4.40) may be written as:

<
(

Θ00
)
= µ0γ

(
1 + 2 cos

(
L
3

k · êx

)) cos
(

Amp

)(sin(B1)

kX̂′
13

+
sin(B2)

kX̂′
23

)

+ sin
(

Amp

)( X̂′
23 − X̂′

13

kX̂′
23X̂′

13

+
cos(B2)

kX̂′
23

− cos(B1)

kX̂′
13

) .

(4.44)

4.2.4 String with 7 Kinks

As in the previous cases, a string with 7 kinks can be thought of as four strings with one

kink at different locations (see Fig.4.9).
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Figure 4.9: Illustration of a segment with 7 kinks.
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Proceeding as before, we can write the Fourier transformed stress-energy tensor for this

case as:

Θµν = µ0

3

∑
m=0

[ ∫ 0

−d
dσeik·X2m+1

(
ε2m+1Ẋµ

2m+1Ẋν
2m+1 − ε−1

2m+1X′ µ
2m+1X′ ν

2m+1

)
+
∫ d

0
dσeik·X2m+2

(
ε2m+2Ẋµ

2m+2Ẋν
2m+2 − ε−1

2m+2X′ µ
2m+2X′ ν

2m+2

) ]
,

(4.45)

where Xj, with j = 1, 2, 3, 4, 5, 6, 7, 8, can be expressed as:

X1 = y0 + vτ ˆ̇X + σX̂′
1 , X2 = y0 + vτ ˆ̇X + σX̂′

2 , X3 = y1 + vτ ˆ̇X + σX̂′
1 ,

X4 = y1 + vτ ˆ̇X + σX̂′
2 , X5 = y2 + vτ ˆ̇X + σX̂′

1 , X6 = y2 + vτ ˆ̇X + σX̂′
2 ,

X7 = y3 + vτ ˆ̇X + σX̂′
1 , X8 = y3 + vτ ˆ̇X + σX̂′

2 .

(4.46)

As in the previous sections, we set k = kê3 then Eq.(4.45) simplifies to:

Θµν = µ0

3

∑
m=0

ei
(

k·ym+kvτ ˆ̇X3

)[ ∫ 0

−d
dσeikσX̂′

13

(
ε2m+1Ẋµ

2m+1Ẋν
2m+1 − ε−1

2m+1X′ µ
2m+1X′ ν

2m+1

)
+
∫ d

0
dσeikσX̂′

23

(
ε2m+2Ẋµ

2m+2Ẋν
m+2 − ε−1

2m+2X′ µ
2m+2X′ ν

2m+2

) ]
.

(4.47)

which is the stress-energy tensor of a string with one kink, located at y0, y1, y2 and y3.

Furthermore, Eq.(4.47) has the following solution:

<
(

Θ00
)
=µ0γ

 cos(A0) + cos(A1) + cos(A2) + cos(A3)

(sin(B1)

kX̂′
13

+
sin(B2)

kX̂′
23

)

+µ0γ

 sin(A0) + sin(A1) + sin(A2) + sin(A3)

( X̂′
23 − X̂′

13

kX̂′
23X̂′

13

+
cos(B2)

kX̂′
23

− cos(B1)

kX̂′
13

)
,

(4.48)

where

Ai−1 = k · yi−1 + kvτ ˆ̇X3 , Bj = kdX̂′
j3 with i = 1, 2, 3, 4 ; j = 1, 2 . (4.49)

As in the previous cases, let us write y0, y1, y2 and y3 in terms of ymp. Using Fig.4.9 it is

straightforward to see that:

y0 = ymp − dX̂′
2 −

L
4

êx , y1 = ymp − dX̂′
2

y2 = ymp + dX̂′
1 , y3 = ymp + dX̂′

1 +
L
4

êx ,
(4.50)



38 4.2. The Stress-Energy Tensor of a String with Kinks

Therefore, we can write A0, A1, A2 and A3 as:

Aj = Amp − dX̂′
m3 −

(
j − 1

) L
4

k · êx , j = 0, 1; m = 2 ,

Aj = Amp + dX̂′
m3 +

(
j − 2

) L
4

k · êx , j = 2, 3; m = 1 ,
(4.51)

where Amp is defined in Eq.(4.34). We then have that (for more details, see appendix A):

<
(

Θ00
)
=2µ0γ

(
cos

(
L
8

k · êx

)
+ cos

(
3L
8

k · êx

)) cos
(

Amp

)(sin(B1)

kX̂′
13

+
sin(B2)

kX̂′
23

)

+ sin
(

Amp

)( X̂′
23 − X̂′

13

kX̂′
23X̂′

13

+
cos(B2)

kX̂′
23

− cos(B1)

kX̂′
13

) .

(4.52)

4.2.5 Generalization to a String with N kinks

We have computed the temporal component of the stress-energy tensor for a string with 1,

3, 5, and 7 kinks in previous sections; now it is straightforward to write the “00”-component

of the stress-energy tensor for a string with an arbitrary odd number N of kinks:

<
(

Θ00
)
= µ0γF(N)

 cos
(

Amp

)(sin(B1)

kX̂′
13

+
sin(B2)

kX̂′
23

)

+ sin
(

Amp

)( X̂′
23 − X̂′

13

kX̂′
23X̂′

13

+
cos(B2)

kX̂′
23

− cos(B1)

kX̂′
13

) ,

(4.53)

where

F(N) =


2 ∑(N−3)/4

q=0 cos
(
(2q + 1) L

N+1 k · êx

)
, if (N − 1) /2 is odd ,

1 + 2 ∑(N−1)/4
q=1 cos

(
(2q) L

N+1 k · êx

)
, if (N − 1) /2 is even .

(4.54)

Note that the summations in Eq.(4.54), can be computed analytically (see appendix B for

a detailed demonstration):

2

(N−3)/4

∑
q=0

cos
(
(2q + 1)

L
N + 1

k · êx

) =
sin
(

L
2 k · êx

)
sin
(

L
N+1 k · êx

) (Odd term), (4.55)

1 + 2

(N−1)/4

∑
q=1

cos
(
(2q)

L
N + 1

k · êx

)
 =

sin
(

L
2 k · êx

)
sin
(

L
N+1 k · êx

) (Even term). (4.56)

This means that we can compute the total stress-energy tensor without explicitly summing

over each subsegment or resorting to a consolidation analogous to Eq.(3.25). As a result,
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we can consider an arbitrarily large number of kinks without losing accuracy or increasing

computational cost.

As we can see, the summations for the even term and the odd term yield exactly the

same result. Therefore, we may write the temporal component of the stress-energy tensor

in the following closed form:

Θ00 =µ0γ
sin
(

L
2 k · êx

)
sin
(

L
N+1 k · êx

)
 cos

(
Amp

) sin
(

dkX̂′
13

)
kX̂′

13

+
sin
(

dkX̂′
23

)
kX̂′

23


+ sin

(
Amp

)  X̂′
23 − X̂′

13

kX̂′
13X̂′

23

+
cos

(
dkX̂′

23

)
kX̂′

23

−
cos

(
dkX̂′

13

)
kX̂′

13

 ,

(4.57)

where

Amp =


k · ymp + kvτ ˆ̇X3 , if (N − 1)/2 even

k · ymp + kvτ ˆ̇X3 + d cos(β/2)k · êy , if (N − 1)/2 odd .
(4.58)

Finally, for a string with N kinks, the spatial components of the stress-energy tensor

can be written as follows:

Θij =
2

∑
T=1

[
v2 ˆ̇XTi

ˆ̇XTj −
(

1 − v2
)

X̂′
TiX̂

′
Tj

]
Θ00

(T) , (4.59)

where, for numerical implementation purposes, we have separated the contributions of the

segments with tangent X′
1 and X′

2. Moreover, Θ00
(T) may be written as:

Θ00
(T) = µ0γ

sin
(

L
2 k · êx

)
sin
(

L
N+1 k · êx

)
 cos

(
Amp

) sin
(

dkX̂′
T3

)
kX̂′

T3


+ (−1)T+1 sin

(
Amp

)  1
kX̂′

T3

−
cos

(
dkX̂′

T3

)
kX̂′

T3

 , T = 1, 2 .

(4.60)

Finally, the scalar, vector, and tensor components of the stress-energy tensor (4.60) are

given, respectively, by:

ΘS =
(

2Θ33 − Θ11 − Θ22
)

/2 ,

ΘV = Θ13
V ,

ΘT = Θ12
T .

(4.61)

By imposing local energy-momentum conservation [48], the traces Θ = Θii and the velocity

field ΘD = Θ03 are fixed.





Chapter 5

CMB Anisotropies Generated by

Wiggly Cosmic Strings

In order to compute the CMB anisotropies generated by wiggly cosmic strings, we modified

the publicly available numerical tool CMBACT [53, 73], — which is a code based on

CMBFAST [63] that computes the CMB anisotropies generated by active sources — by

changing the stress-energy tensor to describe segments with kinks (Eq.(4.59)).

In this section, we will present the CMB anisotropies and the linear Cold Dark Matter

(CDM) power spectrum generated by the modified CMBACT. The CMB anisotropies are

characterized by the angular power spectrum:

C` ≡
1

2`+ 1

`

∑
m=−`

〈a∗`ma`m〉 , (5.1)

where 〈〉 represents the ensemble average. The alm are the coefficients of the decomposition

of the temperatures anisotropies in terms of spherical harmonics functions Y`m(r̂):

∆T
T

(r̂) =
∞

∑
`=0

`

∑
m=−`

a`mY`m(r̂) , (5.2)

where r̂ is the direction along the line of sight.

The linear CDM power spectrum is defined as:

P(k) = ∆(k) , (5.3)

where ∆(k) is the Fourier transform of the density contrast

∆(x) =
ρm(x)− 〈ρm〉

〈ρm〉
, (5.4)

41
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where ρm is the matter density at the position x and 〈ρm〉 is its average value.

Finally, our results are averaged over 500 realizations of a wiggly cosmic string network

with the updated cosmological parameters given by the Planck mission [6] and string

tension is fixed to Gµ0 = 10−7.

5.1 Wiggly string network in the straight string limit

When the kink sharpness is β = π, the segment becomes straight, and thus the expression

for the straight string should be recovered in this limit. Moreover, in this limit êx = X̂′
1 =

X̂′
2 ≡ X̂′, Amp = k · ymp + kvτ ˆ̇X3, regardless of whether (N − 1)/2 is odd or even, the

position of the middle point, ymp, coincides with the position of the center of mass, x0, and

d = L/ (N + 1). When β = π, Eq.(4.60) then reduces to:

Θ00 =µ0γ
sin
(

L
2 k · X̂′

)
sin
(

L
N+1 k · X̂′

)
 cos

(
Amp

) sin
(

dkX̂′
3

)
kX̂′

3

+
sin
(

dkX̂′
3

)
kX̂′

3


+ sin

(
Amp

)  X̂′
3 − X̂′

3

kX̂′
3X̂′

3

+
cos

(
dkX̂′

3

)
kX̂′

3

−
cos

(
dkX̂′

3

)
kX̂′

3


=µ0γ

sin
(

L
2 X̂′

3

)
sin
(

L
N+1 kX̂′

3

) cos
(

Amp

) sin
(

L
N+1 kX̂′

3

)
kX̂′

3/2


=µ0γ cos

(
k · x0 + kvτX̂′

3

) sin
(

L
2 kX̂′

3

)
kX̂′

3/2
,

(5.5)

which is the stress-energy tensor of a straight cosmic string segment [48, 53].

In order to compute the CMB anisotropies and the linear CDM power spectrum gener-

ated by a network of strings with N kinks, we first modify the CMBACT code to include

the contribution of the stress-energy tensor presented in Eq. (4.59). We anticipate, for

β = π, the linear CDM power spectrum and the CMB anisotropies generated by both

models to be identical. So, this instance serves as a test for our numerical implementation

of the wiggly USM.

For the sake of simplicity, from now on, we will refer to the modified CMBACT as

WCMBACT and to the original CMBACT as CMBACT.
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Figure 5.1: Linear CDM power spectrum generated by a cosmic string network with a
different number of kinks and sharpness equal to π, compared with the original CMBACT

code. In both cases, we averaged over 500 realizations of cosmic string networks.

The linear CDM power spectrum generated by the original and modified codes are,

indeed, identical as shown in Fig.5.1. Furthermore, we see that the number of kinks has

no effect on the linear CDM power spectrum when the kink sharpness is π.
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Figure 5.2: CMB anisotropies generated by a cosmic string network with a different
number of kinks and sharpness equal to π, compared with the original CMBACT code.

For both cases, we averaged over 500 realizations of cosmic string networks.

As we can see in Fig.5.2, the anisotropies generated by different models — with a

different number of kinks — are completely overlapped, because we set the kink sharpness

to π. This behavior was expected because the anisotropies are generated by solving the

Einstein-Boltzmann equations, in which we select the source to be the stress-energy tensor

of the configuration of a cosmic string — a string with kinks (wiggly string) and a straight

string — and the stress-energy tensor is the same when β = π.

5.2 Impact of kink sharpness on the CMB anisotropies

In Eq.(4.3), we see that the subsegment length is dependent on the number of kinks, N, and

the kink sharpness, β. To investigate the effect of kink sharpness on the CMB anisotropies,

we first fix the number of kinks and vary the kink sharpness. By inspecting Eq.(4.3), we

can see that the subsegment length will increase as β −→ 0.
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Figure 5.3: Linear CDM Power Spectrum generated by the CMBACT code and by
the WCMBACT code, for different values of the kink sharpness equal to or greater than
π/2. We chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network

realizations.
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Figure 5.4: CMB anisotropies produced by the CMBACT code as well as the WCM-
BACT code, for different values of the kink sharpness equal to or greater than π/2. We
chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network realiza-

tions.
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Figure 5.5: Linear CDM Power Spectrum generated by the CMBACT code and by the
WCMBACT code, for different values of the kink sharpness smaller than π/2. Finally,
we chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network real-

izations.
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Figure 5.6: CMB anisotropies produced by the CMBACT code as well as the WCM-
BACT code, for different values of the kink sharpness smaller than π/2. We chose

Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network realizations.

As could be expected, and as we can see in Figs.5.3 and 5.5, a higher energy density of

the network, when we decrease β, enhances the amplitude of the power spectrum. More-

over, the amplitude of the CMB anisotropies also increases with the increase of the kink

sharpness (or a decrease of β), as is shown in Figs.5.4 and 5.6.

In order to better understand how the shape of the power spectrum and CMB anisotropies

are affected when we change the sharpness of the kinks, we normalize the plots to unity at

large-scales (i.e. in the first point of each graph).
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Figure 5.7: CMB anisotropies produced by the CMBACT code as well as the WCM-
BACT code, normalized to unity, with kink sharpeness equal to or greater than π/2. We
chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network realiza-

tions.
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Figure 5.8: CMB anisotropies produced by the CMBACT code as well as the WCM-
BACT code, normalized to unity, with kink sharpeness equal to or greater than π/2. We
chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network realiza-

tions.
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Figure 5.9: CMB anisotropies produced by the CMBACT code as well as the WCM-
BACT code, normalized to unity, with kink sharpeness smaller than π/2. We chose
Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network realizations and

normalized the plots to unity.
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Figure 5.10: CMB anisotropies produced by the CMBACT code as well as the WCM-
BACT code, normalized to unity, with kink sharpeness smaller than π/2. We chose
Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network realizations and

normalized the plots to unity.

When the β is equal to or greater than π/2, Fig.5.7, the maximum relative amplitude

of the linear CDM power spectrum seems to decrease. In fact, this happens for most of the

power spectrum, except on small scales — or large k. Therefore, we may say that there is

a shift in power from large scales to small scales as the string becomes wiggly, which can

be explained by our approach. When we make strings wiggly we introduce a new scale to

the cosmic string network — the subsegment length — that is smaller than its correlation

length in this limit. This then results in a relative increase of the contribution on small

scales.

On the other hand, when β is smaller than π/2, Fig.5.9, the maximum relative ampli-

tude seems to increase over all scales. Nonetheless, on large scales — small k — the relative

amplitude is still smaller than that generated by straight strings. Generally speaking, we

may say the peak of the power spectrum, in this case, becomes more prominent and a bit
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broader. This may be explained by the fact that, as we decrease sharpness, we are making

subsegments longer, thus increasing slightly the power on larger scales.

Regarding the CMB anisotropies: when β is equal to or greater than π/2, Fig.5.8,

we may see that the shapes of the TT and EE scalar power spectra do not seem to dif-

fer significantly from that generated by straight strings, — even though there is a slight

relative increase on small-scales — whereas the shape of the vector and tensor contribu-

tions change. The relative amplitude of the vector component increases over all scales, but

very prominently on small scales. This may be explained by the string configuration —

illustrated in, for example, Fig.4.6. That configuration assumes a pointy kink, which may

result in vortical motions of matter and thus increase the relative amplitude of the vector

component.

On the other hand, the relative amplitude of the tensor component decreases as kink

sharpness increases. This decrease seems to be more prominent for small scales, but, as

we will see in the next section, this may not be the full picture. The shape of the cross-

correlation power spectrum TE is also not significantly affected and it is also most affected

on small scales.

Finally, for the B-mode polarization, the shape of the vector component stays roughly

the same, whilst the relative amplitude of the tensor component decreases on small scales

in a similar way as the rest of the other tensor components.

The picture changes somewhat when we consider β smaller than π/2, as illustrated

in Fig.5.10. In the TT anisotropies, we see that the shape of the scalar modes seems

to stabilize and that changing the kink sharpness does not cause further changes to the

shape of the spectrum. This behavior is also present on small scales for the vector modes,

although there seems to be a slight increase of the relative amplitude on intermediate scales

that leads to higher relative peak amplitude. At last, the tensor modes seem to increase the

relative amplitude contribution on small scales, when we decrease β below π/2. However,

this relative amplitude is still smaller than that predicted for straight strings. On top of

that, the plots show that this increase “decelerates” and the shape of the spectrum seems

to maintain its shape once the kinks are sharp enough.

The TE and EE anisotropies behave similarly, excluding the scalar mode. The rela-

tive amplitude of the scalar component of the EE anisotropy decreases, while that of TE

anisotropy increases as we decrease the kink sharpness. The vector modes decrease on all

scales, except on very small scales, where the spectra seem to also stabilize, which leads to
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a smaller relative amplitude of the peaks. The tensor modes behave similarly to what we

see for the TT spectrum.

In BB anisotropies, the shape of the vector modes is not significantly affected by the kink

sharpness increasing. The tensor component, on large scales, increases until it saturates.

Finally, for a different number of kinks, we have verified that these components behave

roughly the same.

5.3 Impact of the number of kinks on the CMB anisotropies

To investigate the impact of the number of kinks on the CMB anisotropies, let us start

by setting kink sharpness to π/9, π/2, and 4π/5 and varying the number of kinks in the

string segments.

Regarding the linear CDM power spectrum, Figs.5.11, 5.12 and 5.13, we notice that

beyond a given point, it does not seem to matter much if we increase the number of kinks

or not, since its shape and amplitude is not significantly affected. However, the number of

kinks for which this stabilization happens is different in each figure.
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Figure 5.11: Linear CDM Power Spectrum generated by the CMBACT code and by the
WCMBACT code, where the kink sharpness is fixed (β = π/9) and we vary the number of
kinks. We chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network

realizations.
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Figure 5.12: Linear CDM Power Spectrum generated by the CMBACT code and by the
WCMBACT code, where the kink sharpness is fixed (β = π/2) and we vary the number of
kinks. We chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network

realizations.
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Figure 5.13: Linear CDM Power Spectrum generated by the CMBACT code and by
the WCMBACT code, where the kink sharpness is fixed (β = 4π/5) and we vary the
number of kinks. We chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic

strings network realizations.

This may be explained by the fact that, when we make strings wiggly, we introduce a

new scale — corresponding to the length of the subsegment — such that:

L
(N + 1) sin(β/2)

= d < Lc < L . (5.6)

When we increase the number of kinks, we are increasing the number of subsegments — for

reference, see Figs. 4.1 and 4.3 — and, therefore, we are adding power to the corresponding

lengthscale. Moreover, as we increase the number of kinks, the segments become smaller

and this contribution shifts towards smaller scales. Depending on kink sharpness, this
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added power may be noticeable in different scales of the spectra. For instance, if β = π/9

and N = 9 we obtain:

d ≈ 0.58L , (5.7)

which implies that we are adding power around the scale of the peak — the peak of the

spectrum corresponds to scales around the average distance between strings (or correlation

length) [80]. Furthermore, if we maintain the angle and increase N to 1001, we get:

d ≈ 0.0058L << Lc < L , (5.8)

which corresponds to an increase on small scales, beyond the range of the spectrum. There-

fore, we can conclude that with the increase in the number of kinks there is an enhancement

of power on increasingly smaller scales.
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Figure 5.14: Impact of the number of kinks, with β = π/9, on the subsegment length.

As shown in Figs.5.11, 5.12, and 5.13, the overall magnitude of the power spectrum

increases when wiggles are included. The increase in the energy density of the string

network, due to wiggles, is responsible for this increment, as we discussed in the previous

section.
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Figure 5.15: CMB anisotropies produced by the CMBACT code as well as the WCM-
BACT code, where the kink sharpness is fixed (β = π/2) and we vary the number of
kinks. We chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network

realizations.

Furthermore, in Fig. 5.15, it is shown that the CMB anisotropies are changed with the

variation of the number of kinks. For the temperature anisotropies, the magnitude of the

scalar and vector components increases with the number of kinks on sufficiently small scales

(large `). This may be explained by the fact that, when we increase the number of kinks,

the length of the subsegments decreases, then contributing to the anisotropies dominantly

on smaller scales. Additionally, for a smaller β this increase spans a wider range of `,

leading to an overall increase in the amplitude of the scalar and vector components as may

be seen in Fig.5.16. The amplitude of the tensor component decreases over all scales and

this is particularly accentuated on small scales.

A thorough examination on small scales hints at an enhancement of the spectrum on

these scales, — when compared to straight strings — which appears to always be present,

but at smaller and smaller scales — beyond the range of the plot — as the number of kinks

increases. This suggests that the impact of increasing the number of kinks may result in
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a significant shift on power towards very small scales in the cases of the tensor modes.

This behavior is more evident in Fig.5.16, when we consider a larger kink sharpness (and

consequently larger subsegments, thus shifting this effect towards slightly larger scales)∗.
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Figure 5.16: CMB anisotropies produced by the CMBACT code as well as the WCM-
BACT code, where the kink sharpness is fixed (β = π/3) and we vary the number of
kinks. We chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network

realizations.

In EE polarization spectrum, we may see there are no significant changes in the ampli-

tude of the scalar mode, except for a slight decrease of the amplitude between ` = 101 and

` = 103. The vector component seems to have a slight decrease, as in the previous case, but

this increase is moved towards higher scales and the amplitude of the tensor component

decreases on small scales with the increase in the number of kinks, but remains, as the

power spectrum, almost unchanged if we include a large enough number of kinks.

Finally, both TE and BB anisotropies modes seem to behave similarly to EE.

∗For β = π/3 this behavior is clearer. For smaller β, the behavior is the same, but, since the anisotropies
generated by wiggly strings are much larger than those of straight strings, it is harder to see this behavior
in the figures.
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5.4 Impact of Wiggliness on Constraints on Cosmic String

Tension

As we have seen in Sec.5.3, the impact of changing the number of kinks on the amplitude

of the anisotropies, on large scales, is not significant, therefore we may only look at the

impact of the kink sharpness. Moreover, the increase in kink sharpness corresponds to

an increase in effective string tension, which implies an increase in the CMB anisotropies.

Since the signal from cosmic string is not detected there are two possibilities: either cosmic

strings do not exist or they have smaller tension and are thus undetected with the current

observational data.

The constraints on the cosmic string contribution to the CMB temperature anisotropies

are often derived using the multipole moment ` = 10. Now, we will estimate how much the

constraints on cosmic string tension should change if we consider wiggly string segments.

To do so, we must first examine the dependence of the CMB anisotropies on kink sharpness.
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Figure 5.17: Variation of the amplitude of the TT anisotropies as a function of
1/ sin2 (β/2

)
for ` = 10.
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Figure 5.18: Variation of the amplitude of the EE anisotropies as a function of
1/ sin2 (β/2

)
for ` = 10.
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Figure 5.19: Variation of the amplitude of the BB anisotropies as a function of
1/ sin2 (β/2

)
for ` = 10.

From Figs.5.17, 5.18 and 5.19, we may see that the amplitude of the CMB anisotropies

varies proportionally to
(

1/ sin2 (β/2
))

. In [55], it is stated that:

Cstrings
` ∝ Ns

(
Gµ0

)2 . (5.9)
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In our case, we should have the same expression, but with effective tension:

Cstrings
` ∝ Ns

(
Gµe f f

)2
∝

1
sin(β/2)2 , (5.10)

which is the result we obtained computationally.

We also noticed that configurations with the sharpest kinks contribute more to the

CMB anisotropies, which corresponds to the behavior illustrated in Figs.5.4 and 5.6. Now

that we have “parameterized” the behavior of the CMB anisotropies, we can predict it and

estimate the constraints on the tension for different values of kink sharpness. In order to

achieve it, we start by considering the constraints derived for Nambu-Goto strings [56]:

Gµ0 < 1.49 × 10−7 , (5.11)

and translate them into constraints on the tension of wiggly strings. Essentially, we discover

the value of the wiggly strings’ effective tension that would generate a temperature power

spectrum with the same amplitude of ` = 10.
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Figure 5.20: Variation of the constraints on string tension with the effective tension.

We can see from Fig.5.20 that the allowed tension decreases with the increase of the effective

string tension. Therefore, we can conclude that a larger effective string tension will increase

the constraints on string tension, as one would naturally expect.





Chapter 6

Comparison Between Different

Models

The USM describes the stress-energy tensor of a network composed of straight string

segments. The model in [53] introduces a phenomenological parameter called wiggliness

parameter, α, to provide an effective description of wiggles on the string. Essentially, Ref.

[53] parameterizes a wiggly string by assuming that to describe segments with small scale

structure it is sufficient to make strings heavier, ignoring any geometrical impact. Our

novel model does not rely on this assumption; instead, we consider string segments with

kinks, thus including this effect by a geometrical modification of string segments in the

CMBACT code.

In this section, we will look more closely at the case where the kink sharpness is different

from π and highlight the main differences between the two models.

6.1 Geometrical Approach vs. Increasing String Effective

Tension

In [53], the impact of small-scale structure is included by making the string segments

heavier, through the introduction of a wiggliness parameter defined as:

α =
E
E0

, (6.1)

where E0 is the energy of the bare string — without wiggles — and E is the energy of the

wiggly string.

65
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In [53], α is chosen arbitrarily, with α = 1 representing a string with no small-scale

structure and α > 1 representing a string with wiggles. In our geometrical approach,

wiggliness is actually determined by the sharpness of the kinks:

αw =
L/ sin

(
β/2

)
L

=
1

sin(β/2)
=

µe f f

µ0
, (6.2)

where β is the kink sharpness.

10 3 10 2 10 1

10 2

10 1

100

WCMBACT, Nkinks= 108 + 1, = /6

WCMBACT, Nkinks= 108 + 1, = /3

WCMBACT, Nkinks= 108 + 1, = 2 /3
CMBACT with = 1/sin( /12)
CMBACT with = 1/sin( /6)
CMBACT with = 1/sin( /3)

Figure 6.1: Linear Power Spectrum generated by the CMBACT code and by the WCM-
BACT code. The dashed lines are generated by the CMBACT code, with different values
of the wiggliness parameter associated with kink sharpness π/6, π/3 and 2π/3, respec-
tively. The solid lines are generated by modified CMBACT code with kink sharpness π/6,
π/3 and 2π/3, respectively. We chose Gµ0 = 10−7 and averaged over 500 realizations of

cosmic strings network realizations.
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Figure 6.2: CMB anisotropies produced by the CMBACT code as well as the WCM-
BACT code. The dashed lines are produced by the CMBACT code, with the wiggly
parameter associated with kink sharpness π/6, π/3, 2π/3, respectively. The solid lines
are created using a modified CMBACT code with kink sharpnesses of π/6, π/3 and 2π/3,
respectively. We chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings

network realizations.

The effective treatment of wiggliness introduced in [53] does not describe the same

behavior as that introduced by our geometrical approach. Their approach underestimates

the amplitude of the power spectrum, and the magnitude of the CMB anisotropies and

does not predict the same shape, as we may see in Figs.6.1 and 6.2. This is clear for the

cases in which kink sharpnesses are farthest from π; in fact, when the kink sharpness is

π, the linear power spectrum and CMB anisotropies are the same, for α = 1, as shown in

Figs.5.1 and 5.2.

These differences are clearer in Figs 6.3 and 6.4, where we plot the ratio between the

amplitude predicted for WCMBACT and that predicted by the standard CMBACT. In

Fig.6.3, we notice that this ratio is different from the unity — the blue line on the figure —

on all scales and this difference increases with the increase of the kink sharpness. Basically,

if the ratio is larger than one, then the original CMBACT code is underestimating the
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amplitude of the spectrum (i.e. predicting a lower amplitude). On the other hand, if it is

smaller than 1, it is in fact predicting a larger amplitude than our model and, therefore,

overestimating the anisotropies. In the case of the power spectrum, the underestimation

of the amplitude in the effective approach used in CMBACT is, in general, particularly

significant on large scales (small k).
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Figure 6.3: Ratio between the amplitude of the Linear Power Spectrum generated by
the WCMBACT and that predicted by the CMBACT code, for kink sharpness π/6, π/3,
2π/3. We chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network

realizations.
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Figure 6.4: Ratio between the CMB anisotropies produced by the WCMBACT code and
those predicted by the CMBACT code, for kink sharpness π/6, π/3, 2π/3 and π. We
chose Gµ0 = 10−7 and averaged over 500 realizations of cosmic strings network realizations

and normalized the plots to unity.

Regarding the CMB anisotropies, something similar happens. For the scalar component of

the temperature anisotropies, we notice that the CMBACT underestimates the amplitude

of the spectrum both on large and small scales and that this difference increases when we

decrease β. Additionally, for intermediate scales around 10 < ` < 103, this underestimation

of the spectrum becomes less significant and there is actually an overestimation of the

amplitude of the spectrum above a certain scale (which depends on the sharpness of the

kinks). CMBACT, then, predicts a more prominent peak. In the case of the vector

component, there is an underestimation of the amplitude — that is more significant than

that on scalar modes — of the spectrum on all scales — that increases with sharpness.

This demonstrates that our geometrical approach is essential to describe this component
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accurately since it captures the impact that the discontinuities on strings may have. A

similar thing may be said about the tensor modes, but in this case, for large enough β,

there may also be an overestimation of the amplitude of the spectrum on small enough

scales. The impact on tensor modes may, as we have seen in Sec.5.3, depend on the number

of kinks. In principle, if we consider a smaller number of kinks, this overestimation should

appear on significantly larger scales.

In the scalar component of the E-mode polarization spectrum and in the cross-correlation

TE power spectrum, what we may see is that the CMBACT code underestimates the am-

plitude of the first peak of the spectrum (located at ` = 10) and also predicts a narrower

peak on small scales (` = 103). This may be seen better in Fig.6.2. Besides this, we

may see that the vector and tensor components in all cases show the same trend as the

temperature anisotropies.

In conclusion, and as a result of the differences depicted above, our approach is essential

in order to account for the full effect of the cosmic string network with wiggles.



Chapter 7

Conclusions and Further Work

In this dissertation, we developed a formalism to describe the CMB anisotropies generated

by cosmic strings with kinks. To do so, we started by developing a wiggly USM to de-

scribe the stress-energy tensor of a network of cosmic strings with kinks throughout the

universe’s evolution. Subsequently, we implemented this novel wiggly USM to the publicly

available CMBACT [53] in order to obtain the linear CDM power spectrum and the CMB

anisotropies generated by cosmic string networks with kinks.

With this approach, we noticed that the amplitude of the power spectrum increases

when we increase the kink sharpness, which happens as a consequence of the energy den-

sity increasing with the decrease of β. We also found that the amplitude of the power

spectrum increases with the number of kinks with non-zero kink sharpness. The region

of the spectrum where this enhancement happens, however, is determined by the length

of the subsegments, which in turn depends on the number of kinks per segment and their

sharpness. Consequently, beyond a certain number of kinks, the shape of the spectrum is

not significantly affected because the length of the subsegments is much smaller than the

correlation length and, therefore, this enhancement happens at scales much smaller than

the peak of the spectrum. Our results, in fact, show that when the kink sharpness is equal

to or greater than π/2, there is a shift in relative power from large scales to small scales

as the string becomes less straight. By contrast, when the kink sharpness is smaller than

π/2, subsegments are longer, and thus the maximum relative amplitude increases over

most scales.

Regarding the CMB anisotropies, we found that all the components of the angular

power spectra grow as 1/ sin2(β/2) at angular scales of ` = 10. In addition, the whole

spectra scales roughly as 1/ sin2(β/2), but this enhancement is also scale dependent: in
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particular, as in the case of the linear power spectrum, we have a stronger enhancement

on angular scales corresponding to the length of the subsegment. As before, this usually

translates into a shift in power from large to small scales, when compared to straight

strings, for the scalar and vector temperature anisotropies. The other angular power

spectra components decrease quicker for small scales than those of networks composed

of straight strings. Yet there is some evidence that particularly in the case of tensor

modes, there may be a shift to even smaller scales beyond the range of the plot ∗.

Additionally, we used our results to study the impact of wiggliness on constraints on

cosmic string tension. We considered constraints on cosmic string tension derived for

strings without small-scale structure and used our results to derive, using CMB data,

constraints of the tension of wiggly strings. For instance, for a straight segment we obtain

Gµ0 < 1.49 × 10−7, which is the constraint derived for Nambu-Goto strings in [56], but if

we consider a wiggly segment with β = π/9 we obtain Gµ0 < 4.49 × 10−9. The increase

in the effective string tension leads to more stringent constraints on string tension.

At last, we compared the results of the original CMBACT — with different wiggliness

parameters — to the results obtained using our novel WCMBACT — with the correspond-

ing kink sharpness. This demonstrated that CMBACT underestimates the amplitude of

the power spectrum and the magnitude of the CMB anisotropies and that it does not

predict the same shape. This underestimation can be significant, — especially for vector

and tensor components — and thus, the extension presented in this dissertation is crucial

to provide a more accurate description of the full effect of the cosmic string network with

wiggles.

In our approach, we derived a model which only includes the impact of wiggly strings

at a geometrical level, but we did not consider the impact of small-scale structure on the

cosmic string network dynamics. In other words, we are assuming a fixed number of kinks

and sharpness. However, in general, kinks are created dynamically, and we do not expect

the number of kinks and their sharpness to be fixed. For instance, string intercommutations

result in new kinks, but they are also subject to being stretched by expansion and decay due

to the emission of gravitational radiation. Moreover, some kinks may also be removed when

loops are created. These phenomena change the average distance between kinks and their

sharpness as the network evolves. In the future, this model may be used straightforwardly

with a time-varying kink sharpness and a number of kinks per segment to also account

∗The CMBACT is affected by large uncertainties at very small scales and, thus, this computation is
currently not possible.
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for the dynamical effects of small-scale structure, for example, by using the more complex

models to describe wiggly networks that exist in the literature [74–79].

The dynamical impact of kinks was considered in [74, 75]. Therein, they found that the

velocity and the characteristic length of the networks should decrease as they become more

wiggly and that this may result in a decrease in the amplitude of the CMB anisotropies.

However, these studies do not take the geometrical impact of kinks into consideration in the

computation of the CMB power spectra and, consequently, they necessarily underestimate

the impact of wiggliness. These results, however, indicate that what we achieve, in this

dissertation, may be viewed as the maximum impact of kinks on the amplitude of the CMB

anisotropies generated by cosmic string networks. Once we include the dynamical effects of

wiggliness on the cosmic string network, the anisotropies may decrease. Finally, combining

our approach with a model to describe the number of kinks per string and their average

sharpness may allow us to get a more accurate characterization of this signature and to

derive more precise constraints on cosmic string tension in the future.
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Appendix A

The Stress-Energy Tensor:

Derivation

In this appendix, we go over the details of calculating the stress-energy tensor of a wiggly

string segment.

A.1 String with 1 kink

In this section, we may find the complete derivation of Eq.(4.24).

Θ00 = µ0γei
(

k·y0+kvτ ˆ̇X
)[ ∫ 0

−d
dσeikσX̂′
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∫ d

0
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84 A.2. String with 3 kinks

<
(
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A.2 String with 3 kinks

Here, we may find the complete derivation of Eq.(4.36). To do, we start by decomposing

X̂′
13 and X̂′

23 into their êx and êy using Eq.(4.18).

For simplicity, let us define the following quantities:

H =

(
sin(B1)

kX̂′
13

+
sin(B2)

kX̂′
23

)

W =

(
X̂′

23 − X̂′
13

kX̂′
23X̂′

13

+
cos(B2)

kX̂′
23

− cos(B1)

kX̂′
13

) (A.3)

and thus we can write:

<
(

Θ00
)
= µ0γ

 cos
(

Amp − dk ·
(

sin(β/2)êx − cos(β/2)êy

))
H

+ sin
(

Amp − dk ·
(

sin(β/2)êx − cos(β/2)êy

))
W


+µ0γ

 cos
(

Amp + dk ·
(

sin(β/2)êx + cos(β/2)êy

))
H

+ sin
(

Amp + dk ·
(

sin(β/2)êx + cos(β/2)êy

))
W


= µ0γ

 cos
(

A′
mp − (L/4) k · êx

)
H + sin

(
A′

mp − (L/4) k · êx

)
W


+µ0γ

 cos
(

A′
mp + (L/4) k · êx

)
H + sin

(
A′

mp + (L/4) k · êx

)
W


= 2µ0γ cos

(
(L/4) k · êx

)  cos
(

A′
mp

)
H + sin

(
A′

mp

)
W

 ,

(A.4)
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where we used the trigonometric identities:

cos (A − B) + cos (A + B) = 2 cos (A) cos (B) ,

sin (A − B) + sin (A + B) = 2 sin (A) cos (B)
(A.5)

and the following relations:

d sin(β/2) =
L
4

, (A.6)

A′
mp = Amp + dk ·

(
cos(β/2)êy

)
, (A.7)

where

Amp = k · ymp + vτ ˆ̇X3 . (A.8)

A.3 String with 5 kinks

Thereafter, we have the following derivation of Eq.(4.44).

<
(

Θ00
)
= µ0γ

 cos
(

Amp −
2L
6

k · êx

)
H + sin

(
Amp −

2L
6

k · êx

)
W


+µ0γ

 cos(Amp)H + sin(Amp)W


+µ0γ

 cos
(

Amp +
2L
6

k · êx

)
H + sin

(
Amp +

2L
6

k · êx

)
W


=µ0γ

(
1 + 2 cos

(
2L
6

k · êx

)) cos
(

Amp

)
H + sin

(
Amp

)
W

 ,

(A.9)

where to obtain the last expression we have used the trigonometric identities defined in

Eqs.(A.5).
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A.4 String with 7 kinks

Finally. we may see the derivation of Eq.(4.52).

<
(

Θ00
)
= µ0γ

 cos
(

Amp − dX̂′
23 −

2L
8

k · êx

)
H + sin

(
Amp − dX̂′

23 −
2L
8

k · êx

)
W


+µ0γ

 cos
(

Amp − dX̂′
23

)
H + sin

(
Amp − dX̂′

23

)
W


+µ0γ

 cos
(

Amp + dX̂′
13

)
H + sin

(
Amp + dX̂′

13

)
W


+µ0γ

 cos
(

Amp + dX̂′
13 +

2L
8

k · êx

)
H + sin

(
Amp + dX̂′

13 +
2L
8

k · êx

)
W
]

= 2µ0γ

(
cos

(
L
8

k · êx

)
+ cos

(
3L
8

k · êx

)) cos
(

A′
mp

)
H + sin

(
A′

mp

)
W

 ,

(A.10)

where we also used the trigonometric identities defined in Eq.(A.5), (A.7) and (A.8). Here,

to arrive at the last equality, we also decomposed X̂′
13 and X̂′

23 into their êx and êy compo-

nents, as we did in the case for 3 kinks.



Appendix B

Analytical Consolidation of

Subsegments

In this appendix, we detail the analytical consolidation of subsegments using geometric

series and induction.

B.1 Demonstration using the Geometric Series

For (N − 1)/2 odd, the summation in (Eq.(4.55) can be written as follows:

2
(N−3)/4

∑
q=0

cos
(
(2q + 1)

L
N + 1

k · êx

)
= 2

n

∑
q=0

cos
(
(2q + 1)θ

)
. (B.1)

Euler’s formula,

eiφ = cos(φ) + i sin(φ) , (B.2)

implies: 
<
(

eiφ
)
= cos(φ)

=
(

eiφ
)
= sin(φ)

. (B.3)

Therefore, we can write Eq.(B.1) as:

2
n

∑
q=0

cos
(
(2q + 1)θ

)
= 2

n

∑
q=0

<
(

ei
(
2q+1

)
θ
)
= 2<

eiθ
n

∑
q=0

ei2qθ

 , (B.4)

where the term with the summation is a geometric series. Any geometric series has the

following expression:
s

∑
j=0

rj =
rs+1 − 1

r − 1
, r 6= 1 . (B.5)
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Thus the summation term in Eq.(B.4) can be written as:

n

∑
q=0

ei2qθ =
ei2(n+1)θ − 1

ei2θ − 1
, θ 6= 0 , (B.6)

substituting in Eq.(B.4) we obtain:

2
n

∑
q=0

cos
(
(2q + 1)θ

)
= 2<

(
eiθ ei2(n+1)θ − 1

ei2θ − 1

)

= 2<
(

eiθ ei(n+1)θ

eiθ

sin
(
(n + 1)θ

)
sin (θ)

)

=2 cos
(
(n + 1)θ

) sin
(
(n + 1)θ

)
sin (θ)

.

(B.7)

Finally, using the following trigonometric identity :

2 cos(A) sin(B) = sin(A + B) + sin(A − B) , (B.8)

we obtain the final expression:

2 cos
(
(n + 1)θ

) sin
(
(n + 1)θ

)
sin (θ)

=
sin
(
2(n + 1)θ

)
+ sin (0)

sin (θ)
=

sin
(
2(n + 1)θ

)
sin (θ)

,
(

n =
N − 3

4

)

=

sin
(

2(
(

N−3
4

)
+ 1)θ

)
sin (θ)

=

sin
((

N+1
2

)
θ

)
sin (θ)

. (B.9)

If (N − 1)/2 is even the procedure is similar. The even summation term is:

1 + 2

(N−1)/4

∑
q=1

cos
(
(2q)

L
N + 1

k · êx

) = 1 + 2
n

∑
q=1

cos
(
2qθ
)

= 1 + 2
n

∑
q=1

<
(

ei2qθ
)
= 1 + 2

n

∑
q=0

<
(

ei2qθ − 1
)

= 1 + 2<
(

ei2(n+1)θ − 1
ei2θ − 1

− 1

)
= 1 + 2<

(
ei(n+1)θ

eiθ

sin
[
(n + 1) θ

]
sin [θ]

− 1

)

= 1 + 2

(
cos [nθ]

sin
[
(n + 1) θ

]
sin [θ]

− 1

)
=

sin
[
(2n + 1) θ

]
sin [θ]

=

sin
[(

N+1
2

)
θ

]
sin [θ]

,

(B.10)

where n = N−1
4 and we used the Euler identity and trigonometric identity established in

Eq.(B.8).
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At last, the final expression in Eqs.(B.9) and (B.10) are also valid for θ = 0.

lim
θ→0

sin
[(

N+1
2

)
θ

]
sin [θ]

→
(

N + 1
2

)
, (B.11)

which is the same result as that obtained using the even summation term with θ = 0:

1 + 2
n

∑
q=1

cos
(
2q0
)

,
(

n =
N − 1

4

)

=1 + 2

N−1
4

∑
q=1

1 =
N + 1

2
,

(B.12)

and using the odd summation term with θ = 0:

2
n

∑
q=0

cos
(
(2q + 1)0

)
,
(

n =
N − 3

4

)

=2

1 +

N−3
4

∑
q=1

1

 =
N + 1

2
.

(B.13)

B.2 Proof by Induction

To do a proof by induction, we must first demonstrate that our expression is valid for

n = 1, and that if it is valid for a given n, it should also be valid for n + 1. In our case, we

have two expressions, one for n = (N + 1)/2 odd an one for n = (N + 1)/2 even, thus we

need to prove:

1. The expression is valid for n = 1.

2. The expression is valid for n = 2.

3. If this expression is valid for n − 2, it should valid for n.

Point 1 and 2 are already verified in section 4.2.5. Now, let us assume that:

F(n − 2) =
sin
[
(n − 2)x

]
sin(x)

(B.14)

is valid. The last term for both summations will always be written as:

F(n)− F(n − 2) = 2 cos
[
(n − 1)x

]
, (B.15)

thus one can write:

F(n) = F(n − 2) + 2 cos
[
(n − 1)x

]
, (B.16)
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Verifying Eq.(B.16) allows to have an expression valid, by induction, for all n:

F(n) =
sin
[
(n − 2)x

]
sin(x)

+ 2 cos
[
(n − 1)x

]
=

sin
[
(n − 2)x

]
+ 2 cos

[
(n − 1)x

]
sin(x)

sin(x)

⇐⇒
sin
[
(n − 2)x

]
+
[
sin
[
(n − 1)x + x

]
− sin

[
(n − 1)x − x

]]
sin(x)

=
sin [nx]
sin(x)

,

(B.17)

where we used the trigonometric identity defined in Eq.(A.5). As a result, point 3 is proven

to be true, which means that:

F(n) =
sin [nx]
sin(x)

, (B.18)

is verified for all n.
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