
 

 

 

 

 

 

 

 

 

 

MESTRADO 

ECONOMIA E ADMINISTRAÇÃO DE EMPRESAS 

 

 

 

SPOTTING FRAUD: DETECTING 

PATTERNS AND RED FLAGS IN 

FINANCIAL NETWORKS 

Joana Isabel Cortez Trindade 

M 
2022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

SPOTTING FRAUD: DETECTING PATTERNS AND RED FLAGS IN 
FINANCIAL NETWORKS 

Joana Isabel Cortez Trindade 

 

 

 

 

Dissertation 

Master in Economics and Business Administration 

 

 

 

 

 

 

 

 

Supervised by 
Professor Pedro Campos, PhD 

Professor Pedro Ribeiro, PhD 

 

 

 

 

 

 

 

 

2022 

 

 

 

 



2 

 
 



Acknowlegdements 

I would like to express my deep gratitude to Professor Pedro Campos and Professor Pedro 

Ribeiro, my supervisor and cosupervisor for all the support, guidance and encouragement. 

I would like to acknowledge everyone who played a role in this academic accomplishment. 

To my parents and brother, for the unconditional support, for being an example of 

commitment and hard work. Thank you for always giving me strength to pursue every dream.  

To João for all the emotional support and everything. Without you everything would be 

harder, you have been amazing and you are an example to me.  

To my friends for all the support and understanding my absence during these times. 

  



iv 

Abstract 

Fraud is an old but always evolving practice. In our days’ the digitalization of money, 

banks and financial transactions has provided fraudsters with infinite opportunities to 

commit crime from behind a screen, anywhere in the world. The impact of fraud is wide, 

with direct consequences for business and the economy.  

The main goal of this study is to create a model able to classify fraudulent transaction, 

as well as detecting patterns and red flags associated with fraud. analyze the impact of 

network measures in fraud detection.  

For that purpose, a synthetic dataset including financial transactions data, Paysim was 

used. Firstly, the dataset is studied, identifying all the sub networks of directly connected 

accounts. G-tries is the algorithm used used to scan the networks to find 3 and 4 nodes 

subgraphs in an attempt to look for motifs associated with fraud. Then a classification model 

using Random Forest including network measures is created. A Logistic Regression model 

was also created in order to identify the best attribute for fraud detection in Paysim dataset. 

Finally, the performance of the model and results are presented and discussed.  

In the end of this work, the main patterns and red flags associated with fraud are 

presented, as well as the model providing information about fraudulent schemes and how 

the people committing fraud can be spotted within a given financial network.  
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1. Introduction 

 

Fraud is a widespread phenomenon. There is often news about fraud using computer 

networks and, in some cases, only after some time the situation is detected. The impact of 

fraud is wide, with direct consequences for business and the economy. Methodologies for 

detecting fraud are therefore essential. Statistical and data mining methods provide effective 

tools to support business activities. Fraud detection is one of them, and there are applications 

to detect cases such as credit card fraud or intrusion into computer systems.  

 The Association of Certified Fraud Examiners (ACFE), concluded in the Report to 

The Nations published in 2020, that organizations worldwide lose about 5% of revenue every 

year due to fraud. This figure represents about 4.5 million of millions of USD lost annually 

due to fraud (ACFE, 2020). Several studies on this phenomenon report shocking numbers: 

46% of companies worldwide have reported experiencing fraud, corruption or other 

economic crime in the past year. PriceWaterhouse & Coopers calls out for the increasing 

number of cybercrime, customer fraud and asset misappropriation (PwC, 2022).  

 The motivation for this work came from the possible synergy between economic 

areas that focus on fraud detection, analysis and prevention and the data analysis methods 

and the recent advances in areas such as Data Mining and Machine Learning. Some of the 

attributes of this type of methods such as the capability of analysing great quantities of 

transactions and the detection of fraudulent networks can be used as a major tool to detect 

and prevent fraud, as well as, diminishing the negative impact that fraud has in organizations 

worldwide and overall macro economy (Gee, 2015). 

 As stated by Milo et al. (2002) network motifs are universally found in all fields of 

study from biochemistry, neurobiology, to ecology, and engineering. Motifs may therefore 

define universal classes of networks. The author insists that it is of value to detect and 

understand network motifs in order to gain insight into their dynamical behaviour and to 

define networks (Milo, et al., 2002).  

 The aim of this work is to investigate the use of network motifs and patterns for 

fraud detection. For this, a synthetic financial transaction dataset will be studied. The goal is 

to identify and characterize the financial transaction network. Then, to identify what network 

motifs and patterns are related with fraudulent transactions, the frequency and characteristics 

of these fraudulent network motifs. These network motifs are carrying information about 
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fraudulent schemes and how the people committing fraud can be spotted within a given 

financial network. 

 This dissertation is divided as follows: in chapter 2 the literature review is presented, 

we reviewed previous work related to fraud identification, networks, subgraphs and patterns 

identification and finally data mining classification algorithms 

 In chapter 3 an extensive description of the dataset is presented and the methodology 

is explained. This chapter includes some preliminary results, namely the subgraphs existent 

on the Paysim sub networks.  

 The main analysis was performed in chapter 4, where the final dataset is built and 

used to build a classification model, resulting on the identification of the best fraudulent 

transactions indicators which are presented on chapter 5. 

 Finally, on chapter 6 the conclusions of this study are presented as well as suggestions 

for future work.  
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2. Literature Review  

 

We start with a short definition of fraud as outlined in Black's Law Dictionary: 

«An act of intentional deception or dishonesty perpetrated by one or more individuals, 

generally for financial gain. » (Garner, 2019) 

Simmons, on the other hand, states that we are faced with fraud when a series of 

elements occur (Simmons, 1995):  

 An individual or organization intentionally makes false claims about an important 

fact or event. 

 The false statement is believed by the victim (the person or organization to whom 

the statement was presented). 

 The victim trusts and acts upon the false statement.  

This implies that a simple mistake or misunderstanding is not fraudulent when there 

was no intent to harm the victim.  

Occupational fraud implies that an employee violates the trust associated with his or 

her duties and conceals the fraud. The employee takes action to conceal the fraud and hopes 

that it will not be discovered in a timely manner or until it is never uncovered.  

Fraud is not the norm. Other anomalies such as accounting record anomalies are the 

result of inadequate process or procedures and other weaknesses in internal control 

processes. Sometimes they are even repeated consistently at a certain frequency or at certain 

times of the year such as the end of the month or the end of the year. Understanding the 

practices and procedures inherent in a given organization helps to explain and find most of 

these anomalies (Gee, 2015). 

The ACFE in the 2012 report to the nations, (ACFE, 2012) divides occupational 

fraud into three major categories, as depicted below in Figure 1.  
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Figure 1: Occupational Fraud Classification (ACFE, 2012) 
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Pimenta (2009) affirms that when we talk about fraud we are dealing with a vast set 

of situations, mostly intentional, in which some citizens or institutions deceive others, 

causing direct or indirect economic and social damage. We are, above all, considering 

processes that are part of the economic fabric of this increasingly globalized society (Pimenta, 

2009). 

Currently, most fraud cases are brought to light because of someone’s tip, meaning 

most fraud is discovered only because it is reported. On the other hand, a lack of internal 

controls contributed for a third of the fraud cases (ACFE, 2020). 

However, with technological development, the increasing complexity of problems, 

and the increasing volume of data available, has become a greater need and ability to develop 

sophisticated and autonomous computational tools. Nowadays, this kind of tools can have a 

wide range of practical applications.  

The object of financial fraud detection in this work has two particular characteristics: 

a high number of transactions to be handled and a short time to decide what to do with the 

information. Even with Covid-19 pandemic, credit/debit card transactions instead of money 

have been widely used to purchase items or to pay for almost anything (Kosse & Szemere, 

2021). Consequently, millions of people perform millions of transactions every minute of the 

day. All these transactions must be analysed in order to determine if they are fraudulent or 

not. The problem is not only the huge amount of data to be analysed but, also, the short time 

in which this must be done (Almeida, 2009). 

The main goal here is to prevent a fraudulent transaction before it is labelled as illegal, 

by red flagging it.  

Financial fraud can be hard to detect when transaction characteristics are taken 

individually. For instance, a large transaction is not prima facie suspicious, unless it is 

performed at usual times (for example., at night) or in an unusual store (a store never visited 

before by the card owner, located in a different city, etc.) (Zanin, Romance, Moral, & Criado, 

2018). Data mining and network analysis are successfully able to detect patterns and have 

this multi characteristics view over the transaction data.  

When applying network analysis for fraud detection, one must keep in mind that in 

real world, false-positive alarms might lead to the accusation of innocent people. On the 
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other hand, false-negative alarms mean that a fraudster might succeed. However, the fine-

tuning of both is usually coupled. More sensitive algorithms lead to the detection of more 

frauds, but also more false-positive alarms will be generated. To this end, the calibration of 

their sensitiveness is essential.  

While network analysis algorithms can identify undetected patterns in data, they 

usually lack the capacity of synthesizing metrics describing the global structure created by the 

interactions between the different features. The use of Visual Analytics can be essential in 

order to easily interpret the network and adapt the fraud detection algorithm (Leite, 

Gschwandtner, Gstrein, & Kuntner, 2018). 

Sherly and Nedunchezhian (2010) built a model capable of detecting fraud by 

analysing consumer’s profile and historic behaviour. This behaviour includes data regarding 

transaction amounts, category of the items, purchase address, among others. Then, the 

system compares the incoming transaction to the consumer’s history, and, through BOAT 

(Bootstrapped Optimistic Algorithm for Tree Construction) algorithm, it is detected (or not) 

any anomaly. This anomaly is marked as possible fraud.  

Malekian and Hashemi (2013) used a learning algorithm and studied the dynamic and 

nonstationary behaviour. It was introduced in the system a temporary profile and the 

algorithm is capable of, regardless the historical information, retain new concepts from the 

incoming data. 

Chandola et al. (2009) analysed two objects, the customer and the operation The first 

one is characterized by comparing the incoming data with the credit card history and if both 

data do not match, the transaction is flagged as an anomaly. On the other hand, operation 

approach is based on geographic location: if the location of the incoming transaction does 

not match with the profile, it is flagged as an anomaly. 

Francis et al. (2011) used Support Vector Machines (SVM) to look for fraud on 

medical insurance. Using SVM, it was possible to accelerate the time of detection fraud to 

the real time. 

Tsai et al. (2014) stated that the information is stored in heterogeneous databases. 

Using a methodology called CommonKADS, that develops a comprehension of the system. 

Using this methodology, the authors claim, fraud detection will be easier and quicker, and 

the labour costs will be reduced. 

Jeh and Widom (2002) presented an approach to detect anomalies that is applicable 

to any object-to-object relationships domain. Basing on the object’s relationship with other 
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objects, the authors focused in measuring the similarity of the structural context where the 

object occurs. Two objects are similar if they are related to similar objects. 

Noble and Cook (2003) proposed graph-based anomaly detection techniques using 

two methods. The first one consists in detecting anomalous substructure analysing unusual 

substructures in a graph and, in the second one, the authors partitioned the graphs into 

several sets of subgraphs and tested each one against the others, looking for unusual patterns. 

Xu et al. (2007) worked on Structural Clustering Algorithm for Networks (SCAN) in 

order to detect clusters and outliers in networks, using structural similarity measures. To 

detect clusters vertices, they use common neighbours, and two vertices are assigned to a 

cluster depending on their neighbours. 

Akoglu et al. (2010) showed how the discovery of some rules regarding density, 

weights, ranks and eigenvalues can help the anomaly detection. They also focused on 

questions such as “what features should we use to characterize a neighbourhood?” and “what 

does a “normal” neighbourhood look like?”. OddBall, the algorithm they created, detects 

anomalies in weighted, unlabelled graphs. 

The authors Yan and Han (2002) developed the algorithm gSpan, that is capable of 

discover frequent substructures. In other words, gSpan allows to detect frequent patterns of 

connectivity within a subgraph building a new lexicographic order and, in each graph, it is 

associated to a unique code. 

Yue et al. made a review of Data Mining based financial fraud detection methods and 

claimed that regression was the most popular method, using financial ratios such as the 

inventories to sales ratio, the ratio of the total debt to total assets, the working capital to total 

assets ratio, financial distress, amongst others (Yue, Wu, Wang, LI, & Chu, 2007). 

Fontes, et al. are the only authors found that studied motifs and anti-motifs in the 

context of banking fraud. Recently they published a work where they used 3 nodes graph 

representations to build both entity graphs and transaction graphs. As future work, the 

authors propose one can investigate whether different banking datasets have similar motifs 

(and anti-motifs) and if those patterns are different in merchant datasets. It is also proposed 

to extend the analysis to larger motif sizes, different temporal windows,and the inclusion of 

transaction amounts or fraud labels as graph properties (Fontes, et al., 2021). 

Others used artificial neural network, not only generalized adaptive neural network 

architectures and the adaptive logic network but also fuzzy rule was integrated with a neural 
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network. (Lin, Hwang, & Becker, 2003) And some studies used a combination of neural 

network, decision tree and Bayesian (Kirkos, Spathis, & Manolopoulos, 2007). 

On Table 1, a summary of the different application of data mining and network 

analysis for fraud detection is presented: 
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Table 1: Data Mining and Network Analysis techniques for fraud detection summary 

AUTHOR, YEAR TOPIC/TITLE OBJECTIVE METHODOLOGY 

Pouramirarsalani et 
al. (2017) 

Fraud detection in E-banking by using the 
hybrid feature selection and evolutionary 
algorithms 

To provide a new method to fraud 
detection in e-banking. 

Used a hybrid feature selection and generic algorithm. 

Jeh and Widom 
(2002) 

SimRank: A Measure of Structural- Context 
Similarity 

To measure the similarity of structural 
context of an object. 

Computing a measure, two objects are similar if they 
are related to similar objects. 

Noble and Cook 
(2003) 

Graph-based anomaly detection 
To detect unusual patterns in graph-
based data. 

The authors created a measure that calculates the 
regularity of a graph, using conditional entropy. 

Xu et al. 
(2007) 

SCAN: A Structural Clustering Algorithm for 
Networks 

To develop a method capable of 
detecting clusters based on individual’s 
common neighbours. 

The individuals are assigned to the same cluster 
depending on how they share the neighbours. 

Akoglu et al. 
(2010) 

OddBall: Spotting anomalies in weighted 
graphs 

To build an algorithm that is scalable 
and work for unsupervisioned data for 
anomaly detection. 

Through some discovered rules in density, weights, 
ranks and egonets, the authors show how to detect 
anomaly in graphs. 

Yan and Han 
(2002) 

gSpan: graphbased substructure pattern 
mining 

To find frequent substructures within a 
graph. 

The authors adopted a DFS strategy to find patterns 
of connectivity in subgraphs. 

Sherly and 
Nedunchezhian 
(2010) 

BOAT adaptive credit card fraud detection 
system. 

To build a system capable of detecting 
fraud through behaviour analysis. 

Compare income behaviour with historical 
information and using BOAT algorithm, anomalies are 
detected and identified (or not) as fraud. Also, by 
combining classification and clustering techniques. 

Malekian and 
Hashemi, 
(2013) 

An Adaptive Profile based Fraud Detection 
Framework For Handling Concept Drift. 

Study the dynamic and non-stationary 
behaviour. 

It is introduced in the system a temporary profile and 
the algorithm is retain new concepts from the 
incoming data, regardless the historical information. 

Chandola et al., 
(2009) 

Anomaly detection: a survey. 
Overview of the study of anomaly 
detection. 

It was used two approaches technique: owner and 
operation approach. 

Francis et al., 
(2011) 

Using support vector machines to detect 
medical fraud and abuse 

Analyse the efficiency of Quash, a bill 
processing system. 

Using support vector machine, the authors accelerated 
the time of detection of fraud. 

Tsai et al., 
(2014) 

Using CommonKADS method to build 
prototype system in medical insurance fraud 
detection 

Improve the inefficiency of the 
healthcare system. 

Using a process which the main goal is to have a 
comprehension of the system (CommonKADS). 

Fontes, et al. 
(2021) 

Finding NeMo: Fishing in banking networks 
using network motifs 

Find fraud in banking networks by 
studying motifs and anti-motifs using 3 
nodded subgraphs 

Using two graph representations, entity graphs and 
transaction graphs, they proposed a novel 
randomization method that operates directly on 
tabular data. 
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2.1. Network Motifs  

The “network motifs” are those patterns for which the probability P of appearing in 

a randomized network an equal or greater number of times than in the real network is lower 

than a cut-off value (Milo, et al., 2002). 

In other words, network motifs are patterns that appear more frequently or less 

frequently than they are supposed to, i.e., than they would appear in randomly generated 

networks.  

These network motifs, specific subgraphs, can be evidence of irregular activity in the 

network, fraudulent activity.   

Figure 2 presents a visual explanation of the motif and the difference between real 

networks and randomized networks.  

 

Figure 2: Real Networks vs Randomized Networks, (Milo, et al., 2002) 

 

How to detect network motifs? 

Finding network motifs is a computationally hard task, as the size of the motifs 

increases, the time needed to calculate them grows exponentially. 

Ribeiro, Silva, & Kaiser, studied the strategies for network motifs discovery and 

selected those that rely on the theoretical definition of motif and are the basis of almost every 

motif application found in the literature. They summarized the different strategies on a table 

where they present the main differences using a set of relevant distinguishable parameters 

(Ribeiro, Silva, & Kaiser, 2009). 
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Table 2: Classification of most used strategies for network motifs discovery (Ribeiro, Silva, & Kaiser, Strategies for 
Network Motifs Discovery, 2009). 

METHOD BIAS 
SYMMETRY 

BREAKING 

NETWORK 

CENTRIC 

PUBLIC 

TOOL 

MOTIF 

SIZE 

MFinder Yes No Yes Yes small 

FanMod No Yes Yes Yes medium 

Grochow Yes Yes No No large 

 

When one needs to enumerate and consider all subgraphs, the authors advise 

FanMod strategy, unless we have small motif sizes and undirected subgraphs, in which case 

Grochow can be the better option. If trying to find if a relatively small set of specific 

subgraphs is a motif, then Grochow is also the better option.  

According to the authors, an approach with potential success is to initially use 

FanMod to enumerate all subgraphs of the original network, and then use Grochow to count 

the occurrences on the random ensemble of random networks (Ribeiro, Silva, & Kaiser, 

2009). 

Regarding network motifs counting methods, Ribeiro et al., present a extensive 

review on existing practical methods to solve the subgraph counting problem, dividing them 

in three different categories: 

 algorithms that efficiently perform exact counting, which is an intrinsically 

computationally hard task; 

 algorithms that perform an approximation of subgraph frequencies, making the 

process faster, considering the accuracy of their estimation; 

 algorithms that efficiently exploit parallel architectures despite the unbalanced nature 

of subgraph counting (Ribeiro, Paredes, Silva, Aparício, & Silva, 2021). 

Ribeiro & Silva, develop a new method, g-tries, a novel data-structure created for storing 

and finding subgraphs. Inspired by prefix trees, g-tries store the subgraphs in a multiway tree 

that encapsulates information about common substructure, with related subgraphs being 

stored in common branches (Ribeiro & Silva, 2014). 

In this work, Gtries Scanner was used. Nevertheless, all these methodologies are useful 

for network motifs identification and were considered for this work. 
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2.2. Classification Algorithms 

 

In addition to investigate the connection (or not) between the patterns and graphs in 

financials transactions and fraud, we also tried to classify and predict transactions, so that we 

may ascertain how likely a certain transaction is to be fraudulent.  

Databases and large quantities of data have hidden information that can be used for 

smart decision making. In our days, most decision support systems are built from data mining 

and machine learning algorithms. Witten, Frank and Hall defined data mining as the process 

of discovering patterns in data. The process must be automatic or (more usually) semi- 

automatic. The patterns discovered must be meaningful in that they lead to some advantages, 

usually an economic advantage (Witten, Frank, & Hall, 2011). 

In general, for for Fraud Detection, data mining techniques can be classified into two 

categories according to the type of the machine learning techniques as: 

Supervised Learning for Fraud Detection 

This method uses supervised learning in which all the available records are classified 

as «fraudulent» and «non-fraudulent». The machine is taught by example to identify records 

according to this classification.  

The operator provides the machine learning algorithm with a known dataset that 

includes desired inputs and outputs, and the algorithm must find a method to determine how 

to arrive at those inputs and outputs. While the operator knows the correct answers to the 

problem, the algorithm identifies patterns in data, learns from observations and makes 

predictions. The algorithm makes predictions and is corrected by the operator – and this 

process continues until the algorithm achieves a high level of accuracy/performance. 

Unsupervised Learning for Fraud Detection 

In this method the machine learning algorithm studies data to identify patterns. There 

is no answer key or human operator to provide instruction. Instead, the machine determines 

the correlations and relationships by analyzing available data. In an unsupervised learning 

process, the machine learning algorithm is left to interpret large data sets and address that 

data accordingly. The algorithm tries to organize that data in some way to describe its 



13 

structure. This might mean grouping the data into clusters or arranging it in a way that looks 

more organized. Some examples are Clustering and Dimension reduction.  

Within the supervised learning method, we can find Classification, Regression and 

prediction analysis. Classification and prediction are two forms of data analysis that can be 

used to extract models and predict future data trends. Such analysis allows us to have an 

understanding of large amounts of data, transforming data into information. Classification 

predicts categorical labels (discrete, unordered) whilst prediction models continuous-valued 

functions.  

For example, a classification model can be used to categorize bank loan applications 

as either safe or risky, or a prediction model to predict the expenditures in dollars of potential 

customers on computer equipment given their income and occupation (Han, 2006). 

These provide a powerful tool for solving many economic substances. They are 

successfully used for inflation-deflation forecasting, for the currency exchange rates 

predictions, for the prediction of share prices and many other applications in this field.  

In this situation it is clear that we are standing in front of a classification problem, 

the aim is to classify the transaction as fraudulent or non-fraudulent. The method chosen to 

reach this classification the Random Forest method.  

Random Forests 

Tree models where the target variable can take a discrete set of values are called 

classification or decision trees. A decision tree is a hierarchical structure that represents a 

classification model. Internal tree nodes correspond to splits applied to decompose the 

domain into regions, and terminal nodes (or leaves) assign class labels to regions believed to 

be sufficiently small or sufficiently uniform. The topmost node in a tree is the root node. 

(Cichosz, 2015) 

Random forests combine two approaches to base model creation: instance sampling 

(using bootstrap samples) and algorithm nondeterminism. The latter is achieved by 

randomizing the split selection operation used for decision tree or regression tree growing. 

The randomization consists in drawing a random subset of available attributes in each node 

and restricting the subsequent split selection process to splits using attributes from that 

subset. The usual split evaluation criteria for decision trees or for regression trees are then 

applied. (Cichosz, 2015) 
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A standard heuristic is to use the square root of the number of all available attributes 

as the size of the randomly drawn subset of attributes. Typically, at least several hundred 

base models are created. Their individual overfitting is canceled out by the aggregation 

process, which makes the random forest ensemble highly resistant to overfitting. (Han, 2006) 

Randomized decision trees or regression trees used as base models for random 

forests are aggregated via unweighted voting or averaging/summation. 

Typically, the first step in a classification problem, a classifier is built describing a 

predetermined set of data classes. This is the learning step or training phase. In this phase 

the classification algorithm builds the classifier learning from the training set and its 

associated class labels. 

Logistic Regression 

Logistic regression models are statistical models in which an evaluation is made of 

the relationship between a dependent qualitative, dichotomic variable (binary or binomial 

logistic regression) and one or more independent explanatory variables, whether qualitative 

or quantitative. (Hosmer, Lemeshow, & Sturdivant, 2013) 

These regression models the probability of some event occurring as a linear function 

of a set of predictor variables. The logistic regression model is very appropriate for 

addressing problems where the response variable is of the dichotomic type. (Wilcox, 2019) 

It is advisable to adhere to the following recommendations when coding the variables 

of a logistic regression model, since it facilitates interpretation of the results:  

- Dependent variable: we code as 1 the occurrence of the event of interest, and as 0 

the absence of the event. For example, in this particular application 1 for fraudulent, 0 for 

non-fraudulent.   

- Independent variables: these may be of different types: - Numerical variable: in 

order to introduce the variable in the model, it must satisfy the linearity hypothesis, meaning 

for each unit increase in the numerical variable, the odds of the response variable increase 

by a constant multiplicative value. (Domínguez-Almendros, Benítez-Parejo, & Gonzalez-

Ramirez, 2011) 
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 It is important to note that with logistic function probability P, ranges between 0 

and 1, while logit function can be any real number from minus infinity to positive infinity. 

For P ∈ [0,1]: 

𝑜𝑑𝑑𝑠 =
𝑃

1 − 𝑃
→ 𝑙𝑜𝑔𝑖𝑡(𝑃) = 𝑙𝑛 (

𝑃

1 − 𝑃
) 

(2.1) 

Setting logit of P to be equal to mx+b:  

𝑙𝑜𝑔𝑖𝑡(𝑃) = 𝑚𝑥 + 𝑏 → 𝑚𝑥 + 𝑏 = ln(
𝑃

1 − 𝑃
) 

(2.2) 

 

(
𝑃

1 − 𝑃
) = 𝑒(𝑚𝑥+𝑏) →

𝑒(𝑚𝑥+𝑏)

1 + 𝑒(𝑚𝑥+𝑏)
→ 𝑃(𝑥) =

1

1 + 𝑒−(𝑚𝑥+𝑏)
 

(2.3) 

 

The logit representation combined with a linear inner representation function is used 

to represent linear logit classification models, more commonly referred to as logistic 

regression models. (Belyadi & Haghighat, 2021) 

Performance Measures 

In many applications, it may not be sufficient to know how often the evaluated model 

is wrong or even how costly its mistakes are on average. It may be similarly or even more 

important to know how often it fails to predict correctly particular classes. This is especially 

true whenever classes of the target concept have different predictability or have different 

occurrence rates.  

In such cases, model performance can be more deeply evaluated based on the 

confusion matrix. Rows of the confusion matrix correspond to class labels predicted by the 

model h and columns correspond to true class labels assigned by the concept c, as shown 

below on Table 3. Please note that is it considered the following:  

 TP is the number of true positives; 

 TN is the number of true negatives; 

 FP is the number of false positives;  

 FN is the number of false negatives.  
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Table 3: Confusion matrix  

  c (true values) 

  0 1 

h (predicted) 
0 TN FN 

1 FP TP 

 

Considering this denotation, several performance measures can be used.  

Accuracy 

Accuracy is the ratio of correctly classified positives and negatives to all instances:  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.4) 

Precision  

Precision is the ratios of instances correctly classified as positive to all instances classified as 

positive: 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.5) 

Recall  

Recall (or sensitivity) is the ratio of real positives that are correctly predicted as positives: 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.6) 
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3. Dataset, Software, Questions and Methodology 

3.1. Software  

Regarding data processing, network creation and as a general tool, Python 

programming language was used. Within Python several libraries were used including the 

pandas library (for data manipulation and analysis), and NetworkX library (for studying 

graphs and networks). Python was also used to run the G-Tries Scanner for all networks.  

Jupyter Lab, an open-source web application was used as an interactive computing 

for Python. 

In order to build the classification model, RapidMiner1, a data science platform that 

provides data mining and machine learning procedures, data preprocessing and visualization 

and evaluation, was used. This tool allows the user to easily build data mining models using 

blocks.   

The version of each software used for developing this work was the following: 

 Python - Version: 3.9 

 Jupyter Lab - Version 3.4.2 

 G-Tries - Version: 0.1 

 Rapid Miner - Version: 9.10 

 

3.2. Dataset’s Nature 

 

The data that will be used is a synthetic dataset generated by Paysim 2simulator.  

Paysim is a simulation of mobile money transactions with the objective to generate a 

synthetic transactional data set that can be used for research into fraud detection (Lopez-

Rojas, Elmir, & Axelsson, 2016).  

The reason why a synthetic dataset was chosen for this study was essentially the 

struggle in having access to real data due to the intrinsic private nature of financial 

transactions. Nevertheless, the authors of used techniques such as agent based simulations 

to create a realistic synthetic data set from a real confidential data set, providing a complete 

                                                 
1 https://rapidminer.com/ 
2 https://www.kaggle.com/datasets/ealaxi/paysim1 
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and robust dataset very used for fraud detection studies and is very suitable for this particular 

use including network theory. (Lopez-Rojas, Elmir, & Axelsson, 2016) 

In Paysim,  the predictive attribute is the presence or absence of fraudulent behaviour 

associated to the transactions. 

In this work, transactions will be seen as relationships within a network perspective.  

In order to make a proper analysis of a network, the first step that needs to be 

considered is the analysis of its characteristics.  

Paysim simulates mobile money transactions based on a sample of real transactions 

extracted from the logs of a mobile money service implemented in an African country. Each 

row of the dataset describes a transaction.  

The information given for each transaction is the ID, the step, the type, the amount, 

the name of the origin account, the old balance of the origin account, the new balance of the 

origin account, the name of the destiny account, the old balance of the destiny account, the 

new balance of the destiny account, if the transaction is fraudulent of not and if is flagged as 

fraudulent or not. 

There are three main entities or agents in the system:  

 Clients,  

 Merchants and  

 Fraudsters.  

 

Clients are the normal customers of the system; merchants play a passive role during the 

simulation and only serve the clients in certain operations and finally the fraudsters are the 

threat to the system and the principal focus of our study in fraud detection. 

On the following chapters, a description of each column of the dataset will be given.  

On Figure 3 and Figure 4 two representations of Paysim network are presented. On the 

first one the network is randomly presented and in the second one the network is presented 

with a circular layout. This vast network has a series of smaller networks composed of directly 

connected nodes, smaller circles of accounts that transfer money among them. 
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Figure 3: Visualization of the full Paysim dataset network with a random layout. Source: the author. 

 

Figure 4: Visualization of the full Paysim dataset network with an circular layout. Source: the author.
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3.3. Descriptive Analysis of Paysim 

COLUMN MEANING TYPE 
POSSIBLE VALUES 

[MIN;MAX] UNIQUE COUNT MEAN STD DEV 

- - - all data isFraud all data isFraud all data isFraud all data isFraud all data isFraud 

step time 
integer 
float64 

[1;743] [1;743] -  6.362.620 8.213 243 368 142 216 

type 
type of transaction between a client and a 
merchant(possible fraudster) 

string 
object 

CASH_OUT 
PAYMENT 
CASH_IN 

TRANSFER 
DEBIT 

 -  6.362.620 8.213 - - -  

amount amount of the transaction 
real 

float64 
[0;92.445.517] [0;10.000.000] -  6.362.620 8.213 179.862 1.467.967 603.858 2.404.253 

nameOrig Origin/Client account ID int64 Cxxxxxxxxxx  6.353.307  6.362.620 8.213 -  -  

oldbalanceOrg 
balance of origin account before the 
transaction occurs 

real 
float64 

[0;59.585.040] [0;59.585.040] -  6.362.620 8.213 833.883 1.649.668 2.888.243 3.547.719 

newbalanceOrig 
balance of origin account after the 
transaction occurs 

real 
float64 

[0;49.585.040] [0;49.585.040] -  6.362.620 8.213 855.114 192.393 2.924.049 1.965.666 

nameDest 
balance of destination account before the 
transaction occurs 

int64 
Cxxxxxxxxxx 
Mxxxxxxxxxx 

 2.722.362  6.362.620 8.213 -  -  

oldbalanceDest 

balance of destination account before the 
transaction occursNote that there is no 
information for customers that start with 
M (Merchants). 

real 
float64 

[0;356.015.889
] 

[0;236.230.517] -  6.362.620 8.213 
1.100.70

2 
544.250 3.399.180 3.336.421 

newbalanceDest 

balance of destination account after the 
transaction occurs Note that there is no 
information for customers that start with 
M (Merchants). 

real 
float64 

[0;356.179.279
] 

[0;236.726.495] -  6.362.620 8.213 
1.224.99

6 
1.279.708 3.674.129 3.908.817 

isFraud 

This is the transactions made by the 
fraudulent agents inside the simulation. 
In this specific dataset the fraudulent 
behavior of the agents aims to profit by 
taking control of customers accounts and 
try to empty the funds by transferring to 
another account and then cashing out of 
the system. 

0/1 
float64 

[0;1]  -  -  -  -  

isFlaggedFraud 

 The business model aims to control 
massive transfers from one account to 
another and flags illegal attempts. An 
illegal attempt in this dataset is an 
attempt to transfer more than 200.000 in 
a single transaction 

0/1 
float64 

[0;1]  -  -  -  -  
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In the following paragraphs, we describe the several attributes of Paysim.  

STEP 

The column «step» maps a unit of time in the real world. In this case, 1 step is 1 hour 

of time. Paysim has a total of 744 steps (30 days simulation).  

On Table 4, some basic statistics of variable step are presented.  

  
Table 4: Overview of step variable values 

COUNT MEAN STD MIN MAX 25% 50% 75% 

6362620 243 142 1 743 156 239 335 

 

As shown on Figure 5 ,  in the first 14 days of the month there is a higher number of 

transactions compared to the remaining days. This is perhaps a phenomenon present due to 

the introduction of income during the first days of the month. 

 
Figure 5: Frequency of transactions per step (hours of the 30 day of the simulation).  Source: the author.  

 
 
 
TYPE 

As previously mentioned, Paysim is based on real data from an African mobile money 

transactions service. The mobile money system is a way to digitally send money. However, 

like any other debit accounts you also have the possibility to withdraw cash or deposit cash. 
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These operations are only possible using a merchant (or kiosk), the client gives digital money 

to merchants, and they give back cash in return for CASH_OUT, similarly to this, is 

CASH_IN operation.  

The type column is a string that describes the type of the transaction. Transactions can be 

one of the following 5 types: 

 CASH-IN is the process of increasing the balance of account by paying in cash to a 

merchant; 

 CASH-OUT is the opposite process of CASH-IN, it means to withdraw cash from 

a merchant which decreases the balance of the account; 

 DEBIT is similar process than CASH-OUT and involves sending the money from 

the mobile money service to a bank account; 

 PAYMENT is the process of paying for goods or services to merchants which 

decreases the balance of the account and increases the balance of the receiver; 

 TRANSFER is the process of sending money to another user of the service through 

the mobile money platform. 

 

On, some basic statistics of variable step are presented.  

  
Table 5: Relative frequency of transaction types 

TRANSACTION TYPE FREQUENCY % 

CASH_OUT 2237500 35% 

PAYMENT 2151495 37% 

CASH_IN 1399284 22% 

TRANSFER 532909 8% 

DEBIT 41432 1% 

TOTAL 6362620 100% 

 

 
 

AMOUNT 

The column «amount» includes the values of the amount of each transaction on local 

currency. On Table 6 , some basic statistics of variable amount are presented.  
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Table 6: Overview of amount variable values 

COUNT MEAN STD MIN MAX 25% 50% 75% 

6362620 179862 603858 0 92445517 13390 74872 208721 

 

Most of the transactions (75%) are below the amount of 208721. Nevertheless, as observed 

on Table 7, where the mean amount values per transaction type is depicted, the mean amount 

for TRANSFER transactions is 910647. 

 
Table 7: Overview of amount values per transaction type 

TYPE COUNT MEAN STD MIN MAX 

CASH_IN 1399284 168920 126508 0 1915268 

CASH_OUT 2237500 176274 175330 0 10000000 

DEBIT 41432 5484 13319 1 569078 

PAYMENT 2151495 13058 12556 0 238638 

TRANSFER 532909 910647 1879574 3 92445517 
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ACCOUNTS 

The column «nameOrig» contains the name of the origin account and the column 

«nameDest» contains the name of the destiny account.  

If the account name starts with a C, it means the account is a customer account. If on the 

other hand, the account name starts with a M, it means the account is a merchant account.  

Looking at all different accounts, customer and merchants, origin or destiny accounts, there 

are a total of 9073900 different accounts on the dataset. 

Most of the origin accounts appear only once on the data set but some accounts appear in 2 

or 3 transactions, as depicted below on Table 8. 

Table 8: Number of times each account on «nameOrig» appears on the transaction dataset 

NAMEORIG COUNT 

C1065307291 3 

C1784010646 3 

C1902386530 3 

C1832548028 3 

C545315117 3 

… … 

C1645325210 1 

C1645325020 1 

C1645324530 1 

C1645324143 1 

C999999784 1 

 

 
 

On Table 9, some basic statistics of nameOrig accounts are presented.  

 
Table 9: Overview of nameOrig accounts  

COUNT UNIQUE TOP FREQ. 

6362620 6353307 C1902386530 3 
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Contrary to the origin accounts, destiny accounts appear more repeatedly, the most feature 

destiny account is C11286084959, being the destiny account on 113 transactions.  On Table 

10, some basic statistics of nameDest accounts are presented.  

 
Table 10: Overview of nameDest accounts  

COUNT UNIQUE TOP FREQ. 

6362620 2722362 C11286084959 113 

 

Since there is not record of balance from clients that start with M (Merchants), these types 

of accounts will be not given as much importance.  

 

OLD AND NEW BALANCES 

The «oldbalanceOrg» is the initial balance of the origin account before the transaction. On 

Erro! A origem da referência não foi encontrada., some basic statistics of oldbalanceOrg 

accounts are presented. 

 
Table 11: Overview of oldbalanceOrg  

COUNT MEAN STD MIN 25% 50% 75% MAX 

6362620 833883 2888243 0 0 14208 107315 59585040 

 
The «newbalanceOrg» is the final balance of the origin account after the transaction. 

OnTable 11, some basic statistics of newbalanceOrg accounts are presented. 

Table 12: Overview of newbalanceOrg  

COUNT MEAN STD MIN 25% 50% 75% MAX 

6362620 855114 2924049 0 0 0 144258 49585040 

 

The «oldbalanceDest» is the initial balance of the destiny account before the transaction. On 

Table 13, some basic statistics of oldbalanceDest accounts are presented. Note that there is 

not information for customers that start with M (Merchants). 
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Table 13: Overview of oldbalanceDest  

COUNT MEAN STD MIN 25% 50% 75% MAX 

6362620 1100702 3399180 0 0 132706 943037 356015889 

 
The «newbalanceDest» is the final balance of the destiny account after the transaction. On 

Table 14, some basic statistics of newbalanceDest accounts are presented.  

Table 14: Overview of newbalanceDest  

COUNT MEAN STD MIN 25% 50% 75% MAX 

6362620 1224996 3674129 0 0 214661 1111909 356179279 

 
Note that there is no information for the accounts that start with M (Merchants), as depicted 

on Table 15. 
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Table 15: Overviw of Merchants accounts 

STEP TYPE AMOUNT NAMEORIG 
OLDBALANCE

ORG 
NEWBALANCE

ORIG 
NAMEDEST 

OLDBALANCE
DEST 

NEWBALANCE
DEST 

ISFRAUD 
ISFLAGGED

FRAUD 

1 PAYMENT 9840 C1231006815 170136 160296 M1979787155 0 0 0 0 

1 PAYMENT 1864 C1666544295 21249 19385 M2044282225 0 0 0 0 

1 PAYMENT 11668 C2048537720 41554 29886 M1230701703 0 0 0 0 

1 PAYMENT 7818 C90045638 53860 46042 M573487274 0 0 0 0 

1 PAYMENT 7108 C154988899 183195 176087 M408069119 0 0 0 0 

... ... ... ... ... ... ... ... ... ... ... 

718 PAYMENT 8178 C1213413071 11742 3564 M1112540487 0 0 0 0 

718 PAYMENT 17841 C1045048098 10182 0 M1878955882 0 0 0 0 

718 PAYMENT 1023 C1203084509 12 0 M675916850 0 0 0 0 

718 PAYMENT 4110 C673558958 5521 1411 M1126011651 0 0 0 0 

718 PAYMENT 8634 C642813806 518802 510168 M747723689 0 0 0 0 
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ISFRAUD 

This variable identifies a fraudulent transaction (1) and non-fraudulent (0). These are the 

transactions made by the fraudulent agents inside the dataset. In this specific dataset the 

fraudulent behaviour of the agents aims to profit by taking control or customers’ accounts 

and try to empty the funds by transferring to another account and then cashing out of the 

system.  On Table 16, some basic statistics of isFraud are presented. 

Table 16: Overview of isFraud  

ISFRAUD 0 1 

count 6354407 8213 

mean 178197 1467967 

std 596237 2404253 

min 0 0 

max 92445517 10000000 

 

ISFLAGGEDFRAUD 

This variable flags illegal attempts to transfer more than 200.000 in a single transaction. The 

aim is to control massive transfers from one account to another and flags illegal attempts. 

On Table 17, some basic statistics of isFlaggedFraud are presented. 

Table 17: Overview of isFlaggedFraud 

ISFLAGGEDFRAUD 0 1 

count 6362604 16 

mean 179850 4861598 

std 603788 3572499 

min 0 3538874 

max 92445517 10000000 
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When the record has the isFlaggedFraud = 1, this means that the transaction was detected and stopped from being processed, that is the reason why 

it doesn't affect the account destination/origin, as observed on Table 18. 

 
Table 18: Overview of is FlaggedFraud ==1 

STEP TYPE AMOUNT NAMEORIG 
OLDBALANCE

ORG 
NEWBALANCE

ORIG 
NAMEDEST 

OLDBALANCE
DEST 

NEWBALANCE
DEST 

ISFRAUD 
ISFLAGGED

FRAUD 

212 TRANSFER 4953893.08 C728984460 4953893.08 4953893.08 C639921569 0.0 0.0 1 1 

250 TRANSFER 1343002.08 C1100582606 1343002.08 1343002.08 C1147517658 0.0 0.0 1 1 

279 TRANSFER 536624.41 C1035541766 536624.41 536624.41 C1100697970 0.0 0.0 1 1 

387 TRANSFER 4892193.09 C908544136 4892193.09 4892193.09 C891140444 0.0 0.0 1 1 

425 TRANSFER 10000000.00 C689608084 19585040.37 19585040.37 C1392803603 0.0 0.0 1 1 

425 TRANSFER 9585040.37 C452586515 19585040.37 19585040.37 C1109166882 0.0 0.0 1 1 

554 TRANSFER 3576297.10 C193696150 3576297.10 3576297.10 C484597480 0.0 0.0 1 1 

586 TRANSFER 353874.22 C1684585475 353874.22 353874.22 C1770418982 0.0 0.0 1 1 

617 TRANSFER 2542664.27 C786455622 2542664.27 2542664.27 C661958277 0.0 0.0 1 1 

646 TRANSFER 10000000.00 C19004745 10399045.08 10399045.08 C1806199534 0.0 0.0 1 1 

646 TRANSFER 399045.08 C724693370 10399045.08 10399045.08 C1909486199 0.0 0.0 1 1 
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3.4. Dataset and Fraud 

 

Taking a closer look on the fraudulent transactions of the dataset, depicted on Table 

19, we can state that the mean mount for fraudulent transactions is 1467967. In the total of 

6.362.620 transactions, 8213 are fraudulent. 

Table 19: Overview of fraudulent transactions 

PARAMETER COUNT MEAN STD MIN 25% 50% 75% MAX 

step 8213 368 216 2 181 367 558 743 

amount 
8213 1467967 2404253 1 127091 441423 1517771 10000000 

oldBalanceOrg 
8213 1649668 3547719 0 125822 438983 1517771 59585040 

newbalanceOrig 
8213 192393 1965666 0 0 0 0 49585040 

oldbalanceDest 
8213 544250 3336421 0 0 0 147829 236230517 

newbalanceDest 
8213 1279708 3908817 0 0 4676 1058725 236726495 

isFraud 8213 1 0 1 1 1 1 1 

isFlaggedFraud 8213 0 0 0 0 0 0 1 

 

On the other hand, all fraudulent transactions are equally divided between either 

CASH_OUT or TRANFER types, as shown on Table 20. 

Table 20: Fraudulent transactions per transaction type 

TYPE COUNT MEAN STD MIN MAX 

CASH_OUT 4116 1455103 2393842 0 10000000 

TRANSFER 4097 1480892 2414890 64 10000000 
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Sub Networks of directly connected accounts 

From the original dataset of transactions (big Paysim network that included 6362620 transactions) a set of smaller networks were identified, 

with accounts (nodes) with uninterrupted transactions (edges). For all the accounts presents in Paysim, the accounts transferring money directly to 

each other were included in the same network. This means that if two accounts are part of the same network, they are either directly connected, or 

they have accounts relating each other. Networks that included only two accounts transferring money to each other were removed, so that a network 

has a minimum of 3 accounts.  

The result was a set of 456187 smaller networks from 3 to 121 nodes, as depicted on Figure 6.  

 

Figure 6: Frequency of networks per network size (nodes). Source: the author. 
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On Figure 7 – Network 1, one of the sub network presents on Paysim is represented. , as it can be seen this network has 8 nodes and 7 

edges or transactions.  

Most of the networks are in a star shaped, like Network 1 and Network 2, in this networks there all nodes are making transactions to the 

same node.  

 

 

 
Network 1 Network 2 Network 3 

Figure 7: Visualisation of Paysim’s Sub networks. Source: the author. 
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Some network measurements were also calculated such as the node transitivity and node degree centrality. 

The transitivity or clustering coefficient of a network is a measure of the tendency of the nodes to cluster together. The transitivity of a node 

measures the average probability that two neighbors of a vertex are themselves neighbors. High transitivity means that the network contains 

communities or groups of nodes that are densely connected internally.  

The degree centrality assigns an importance score based simply on the number of links held by each node. Basically for each account it tells 

us the number links that account has, the number of transactions.  

 On Table 21, an overview of the non-fraudulent transactions in the sub networks it is presented.  

Table 21: Description of non-fraudulent (isFraud==0) sub networks transactions 

PARAMETER COUNT MEAN STD MIN 25% 50% 75% MAX 

step 4101972 238 140 1 154 235 331 718 

amount 
4101972 264248 725509 1 76156 159291 278979 92445520 

oldBalanceOrg 
4101972 1244402 3510193 0 0 16946 198427 43818860 

newbalanceOrig 
4101972 1282214 3553259 0 0 0 290327 43686620 

oldbalanceDest 
4101972 1702163 4104323 0 160314 581382 1744077 356015900 

newbalanceDest 
4101972 1890756 4429070 0 239696 715403 1961666 356179300 
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isFraud 4101972 0 0 0 0 0 0 0 

isFlaggedFraud 4101972 0 0 0 0 0 0 0 

 

On Table 22, an overview of the non-fraudulent transactions in the sub networks it is presented. 

 

Table 22: Description of fraudulent (isFraud== 1) sub networks transactions 

PARAMETER COUNT MEAN STD MIN 25% 50% 75% MAX 

step 5553 291 203 1 120 254 437 743 

amount 5553 1415542 2321782 0 127091 432958 1503035 10000000 

oldBalanceOrg 5553 1487364 2830166 0 125822 430722 1503035 59585040 

newbalanceOrig 5553 74762 1165376 0 0 0 0 49585040 

oldbalanceDest 5553 797852 4027940 0 0 0 440777 236230500 

newbalanceDest 5553 1750765 4592590 0 0 387460 236230500 236726500 

isFraud 5553 1 0 1 1 1 1 1 

isFlaggedFraud 5553 0 0 0 0 0 0 1 
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 Comparing the information of the fraudulent and non-fraudulent transactions a few deductions can already be made. The amount of the 

mean fraudulent transaction is significant higher. The mean value of the new balance on the Origin account is lower on the fraudulent transactions. 

The old balance on the destiny accounts is also significantly lower when there is fraud.  
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3.5. Questions 

Now that we are more familiar with the dataset and Paysim networks and 

subnetworks, we can establish a series of questions that may or not be directly linked with 

fraudulent transactions.  

These questions focus on the relationship between some network features and fraud, 

and are defined taken into account the available information from the original dataset, 

network parameters, the potential of network motifs in fraud detection and the tools 

available for network detection. 

The formulation of these questions were based on Paysim dataset attributes  and 

network theory:  testing the possibility of identifying networks patterns and network metrics 

such as degree centrality and transitivity (or clustering coefficient) that include information 

not only of the account itself but the surrounding accounts as well.  

Questions: 

1. Is there a relationship between fraud and network subgraphs/motifs?  

2. Is there a relationship between node centrality and fraud?  

3. Is there a relationship between node transitivity and fraud?  

4. Is there a relationship between the amount of the transaction and fraud?  

5. Is there a relationship between transaction type and fraud?  

6. Is there a relationship between the step (time stamp of the transaction and fraud?  

7. Is there a relationship between the account balance before and after the transaction 

and fraud? 
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3.6. Gtries 

 

A G-Tries is a data structure specialized in efficiently representing sets of subgraphs.  

A g-trie is a multiway tree encapsulates the structure of the entire graph set, taking 

advantage of common topologies in the same way a prefix tree takes advantage of common 

prefixes. This avoids redundancy in the representation of the graphs, thus allowing for both 

memory and computation time savings. 

 

 

Figure 8: G-tries’ example. (Ribeiro & Silva, 2014) 

G-Tries can significantly compress the representation of a set of subgraphs and when 

compared with previously existent algorithms. The execution times can be orders of 

magnitude better and in particular with small motif sizes and not too dense networks the 

advantage in using g-tries is overwhelming. It can be used to do the more usual network 

census (looking for triads), or to discover larger motifs, specifying beforehand larger 

subgraphs. (Ribeiro & Silva, 2010) 
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3.7. Three Nodes Subgraphs 

To search for four nodes subgraphs g-tries was executed with the command 

presented on Annex 8.3. g-tries looked for subgraphs with size 3, directed subgraphs, 

unweighted (simple) using the method esu, the input was written in  gtriesinput.txt and the 

occurrences of each graph was written the file.txt.  

 

Figure 9: gtries input file. Source: the author. 

The output file for the output of g-tries and for the number of occurrences of each 

graph are presented below on Figure 10 and Figure 11, respectively.  

 

Figure 10: g-tries output file. Source: the author. 
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Figure 11: g-tries occurrences file. Source: the author. 

 

The three nodes subgraphs found on the networks are depicted on Table 23.  

Table 23: Three nodes subgraphs found running g-tries on Paysim sub networks 

SUBGRAPH REPRESENTATION 

011000000 

 

001100000 

 

000100100 
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Observing the presence of subgraphs in the networks it is not clear if there in any 

association between a particular 3 nodes subgraph and fraudulent transactions.  

Table 24: Frequency of three nodes subgraphs in fraudulent networks 

SUBGRAPH 
TOTAL 

FREQUENCY 

FREQUENCY IN FRAUDULENT 

NETWORKS 

Absolute Relative% 

011 

000 

000 

9030 159 1.76% 

001 

100 

000 

1762 34 1.93% 

000 

100 

100 

454857 5506 1.21% 
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3.8. Four Nodes Subgraphs 

 

To search for four nodes subgraphs g-tries was executed with the presented on 

Annex 8.3. g-tries looked for subgraphs with size 4, directed subgraphs, unweighted (simple) 

using the method esu, the input was written in gtriesinput.txt and the occurrences of each 

graph was written on file.txt. 

 

Figure 12: gtries input file. Source: the author. 

The output file for the output of g-tries and for the number of occurrences of each 

graph are presented below on Figure 13 and Figure 14, respectively.  

 

Figure 13: g-tries output file. Source: the author. 
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Figure 14: g-tries occurrences file. Source: the author. 
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The four nodes subgraphs found on the networks are depicted on Table 25 

Table 25: Four nodes subgraphs found running g-tries on Paysim subnetworks 

SUBGRAPH REPRESENTATION 

0111 

1010 

1100 

1000 

 

0111 

1000 

1000 

1000 

 

0110 

1001 

1000 

0100 

 

 

  



44 

 

Considering the presence of subgraphs in both fraudulent and non-fraudulent 

transactions it is not evident  if there in any association between a particular 4 nodes subgraph 

and fraudulent transactions.  

Table 26: Frequency of three nodes subgraphs in fraudulent networks 

SUBGRAPH 
TOTAL 

FREQUENCY 

FREQUENCY IN FRAUDULENT 

NETWORKS 

Absolute Relative% 

0111 

1010 

1100 

1000  
2 1 50.00% 

0111 

1000 

1000 

1000 
321404 4249 1.32% 

0110 

1001 

1000 

0100 
2320 50 2.15% 
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4. Classification Problem  

The present chapter describes how the Random Forest model was created, the blocks used and the division of the dataset for training and testing. 

4.1. Random Forest 

Using RapidMiner3, the process for building the model and testing its performance was created.   

To build the model a dataset made from the Paysim data and the information of the sub networks present in the larger network of Paysim 

was used. This data has 49701 transactions and took about 15 hours to write. 

The process starts with the dataset, then setting the role i.e. identifying the goal of the classification. In this case the role is the label «hasfraud» 

which defines if a transaction is fraudulent or non-fraudulent. The data is split in the ratio 70:30, as in the holdout cross validation approach, where 

70% of the data will be used for the model creation or training, note that this data is sent to the Random Forest block.  The remaining data (30%) 

will be used for testing the model (Apply Model) and finally the performance of the model is evaluated (Performance block). 

The dataset contains information about the transactions (amount, step, old balance origin, new balance origin, new balance destination and 

account type) and network measures as the transitivity (or clustering coefficient) and degree centrality values for the sender and receiver accounts. 

Please note that the network measures are calculated within each set of sub network and not taking into account the major Paysim network, in order 

to get information from the smaller clusters of account that transfer money directly to each other. The model and the dataset used can be seen on 

Annex 8.4.  

                                                
3 https://rapidminer.com/ 
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The transitivity or clustering coefficient of a network is a measure of the tendency of the nodes to cluster together. The transitivity of a node 

measures the average probability that two neighbors of a vertex are themselves neighbors. High transitivity means that the network contains 

communities or groups of nodes that are densely connected internally.  

The degree centrality assigns an importance score based simply on the number of links held by each node. Basically for each account it tells 

us the number links that account has, the number of transactions.  

Please not that for the accounts type the following notation was considered:  

 1 - transaction between customer and customer; 

 2 - transaction between merchant and merchant; 

 3 - transaction between customer and merchant.  

Certain combinations of parameters were included and excluded from the dataset and the model ran with the different input datasets, in order 

to investigate which columns or parameters deliver a better performance, allowed us to create a better classification model.  

The results, including the parameters present on the dataset and the performance indicators obtained for each model are presented below on Table 

27.  
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Table 27: Models results per dataset 

DATASET PARAMETERS ACCURACY PRECISION RECALL 

DB_A 
amount, step 

accounts type 
99.91% 0% 0% 

DB_B 

old balance 

origin, new 

balance origin, 

old balance 

destination, new 

balance 

destination, 

99.91% 0% 0% 

DB_C 

transitivity 

sender, 

transitivity 

receiver, 

centrality 

sender, 

centrality 

receiver 

99.91% 0% 0% 

DB_D 

amount, step, 

old balance 

origin, centrality 

receiver 

99.91% 0% 0% 

 

The number of true positives (fraudulent transactions identified as fraudulent by the 

model) is zero. This happens because the number of fraudulent transactions on the dataset 

is too low, in 49701 transactions only 46 are fraudulent (0.09%).  

Nevertheless, the parameters identified as most relevant, responsible for causing the 

branches or splits in the decision trees were the amount, the step, the old balance of the 

origin account and the centrality of the receiver account.  

 In order to overcome the difficulty of having a very low fraudulent transaction ratio 

the technique of Under Sampling was used. This technique involves deleting random samples 
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from the majority class to compensate for an imbalance that is present in the data. (Chawla, 

2005) 

To have more transactions a larger data base was created. This dataset has 784002 

transactions and took about 78 h to write. In these 784004 transactions, 761 are fraudulent.  

Random Under Sampling was applied to this data and the final training dataset has 1522 

transactions, of which 761 are fraudulent and 761 are non-fraudulent. The final RapidMiner 

process is presented on Annex 8.4. 

 

4.2. Logistic Regression  

In order to have a better understanding about the influence of each attribute on the 

model prediction a Logistic Regression Model was implemented. The final RapidMiner 

process is presented on Annex 8.4.  

The final results, including the parameters present on the dataset and the performance 

indicators obtained are presented in the next chapter.  
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5. Model Results and Performance 

The present chapter describes the parameters used for the Random Forest model. The 

performance of the model and the final results are presented. The same is presented for the 

Logistic Regression model.  

5.1. Random Forest 

At this point the final dataset has the following parameters: amount, step, accounts type, 

old balance origin, new balance origin, old balance destination, new balance destination, 

transitivity sender, transitivity receiver, centrality sender and centrality receiver. The model 

is being fed with the Under Sampled dataset for training and the original dataset for testing.  

The Random Forest method  was applied using the parameters described on Table 28.  

Table 28: RapidMiner Random Forest calculation parameters 

PARAMETER VALUE DESCRIPTION 

Number of Trees 1000 
This parameter specifies the number of random trees to 

generate. 

Criterion gain_ratio 

Selects the criterion on which attributes will be selected 

for splitting. For gain_ratio is a variant of information gain 

that adjusts the information gain for each attribute to 

allow the breadth and uniformity of the attribute values.  

Maximal Depth 7 
The depth of a tree varies depending upon the size and 

characteristics of the dataset.  

Apply Pruning yes 

The random trees of the random forest model can be 

pruned after generation. If checked, some branches are 

replaced by leaves according to the confidence parameter. 

Confidence 0.01 
This parameter specifies the confidence level used for the 

pessimistic error calculation of pruning. 

Apply PrePruning yes 

This parameter specifies if more stopping criteria than the 

maximal depth should be used during generation of the 

decision trees.  

Minimal Gain 0.01 
The gain of a node is calculated before splitting it. The 

node is split if its gain is greater than the minimal gain. A 
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higher value of minimal gain results in fewer splits and 

thus smaller trees. A value that is too high will completely 

prevent splitting and trees with single nodes are generated. 

 

Please note, the dataset with Under Sampling (1522 transactions) was used for 

training and the total dataset (784003 transactions) was used for testing.  

The overall accuracy obtained was 93.99%. The class recall for the fraudulent 

transaction was 98.03% and the class precision was 1.56%.  

Table 29: Random Forest model  performance after Under Sampling 

- 
TRUE 0  

(NON-FRAUD.) 

TRUE 1 

(FRAUD.) 
CLASS PRECISION 

PRED. 0  

(NON-FRAUD.) 
736161 15 100.00% 

PRED. 1 

(FRAUD.) 
47081 746 1.56% 

CLASS RECALL 93.99% 98.03% - 

 

The ratio of correctly classified positives and negatives to all instances is high. The 

recall or sensitivity, the ratio of real fraudulent transactions classified as fraudulent is high.  

Nonetheless, the precision is low. Precision of the ratio of instances correctly classified as 

positive to all instances classified as positive. Which means for the fraudulent transactions 

class, precision is given by: 

746

746 + 47081
= 1.56% (5.1) 

 

This happens because of the fact that the fraudulent transactions represent a very 

small portion of all transactions. In real life this means a fraudulent red flag would be given 

to the major part of the fraudulent transactions (98.03%) are classified as fraudulent but a lot 

of non-fraudulent transactions are also classified as fraudulent by the model. 



51 

5.2. Logistic Regression 

Using the Under Sampling dataset for training and the full dataset for testing the results obtained for the Logistic Regression model  are 

depicted below, on Table 30. 

Table 30: Logistic Regression results 

ATTRIBUTE COEFFICIENT STD. COEFFICIENT STD.ERROR Z-VALUE P-VALUE 

amount -9.52E-7 -1.61 1.49E-6 -0.64 0.521 

step 1.65E-4 0.0284 5.88E-4 0.28 0.78 

oldBalanceOrig 2.10E-5 65.36 1.49E-6 14.12 0.0 

oldBalanceDest 6.08E-6 19.44 1.20E-6 5.06 4.15E-7 

newBalanceOrig -2.45E-5 -64.90 2.10E-6 -11.64 0.0 

newBalanceDest -6.20E-6 -22.60 1.20E-6 -5.16 2.42E-7 

accountsType 0.0 0.0 NaN NaN NaN 

transitivitySender 0.0 0.0 NaN NaN NaN 

transitivityReceiver 0.0 0.0 NaN NaN NaN 

centralitySender -0.153 -0.0129 1.35 -0.116 0.909 

centralityReceiver 2.300 0.293 0.99 2.30 0.0212 

Intercept -2.73 6.40 0.98 -2.79 0.00529 

 

 Looking at the coefficients for each attribute on the Logistic Regression output, we can notice right away that the attributes 

accountsType, transitivitySender and transitivityReceiver have no influence on the output (fraud. Or non-fraud.) since their coefficient is zero. On 

the other hand, attributes such as centralityReceiver, step, oldBalanceOrig and oldBalanceDest have positives coefficients, meaning its increase in 

value is reflected in an increase on the output. The probability of the transaction being fraudulent is increased with the increase of this attributes. The 



52 

probability for the transaction to be fraudulent is inversely proportional to the centralitySender, newBalanceOrig, newBalanceDest and amount 

attributes. 

The overall accuracy obtained was 94.29%%. The class recall for the fraudulent transaction was 86.33% and the class precision was 1.45%.  

Table 31: Logistic Regression Model performance after Under Sampling 

- 
TRUE 0  

(NON-FRAUD.) 

TRUE 1 

(FRAUD.) 
CLASS PRECISION 

PRED. 0  

(NON-FRAUD.) 
738611 104 100.00% 

PRED. 1 

(FRAUD.) 
44631 657 1.56% 

CLASS RECALL 94.30% 98.03% - 

.  
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Taking a closer look into the analysis done to Paysim and the random trees created by 

the model and see what were the branches and divisions used for the classification, we can 

answer the questions made before the creation of the model. 

1. Is there a relationship between fraud and network subgraphs/motifs?  

No evident relationship was found for 3 nodes and neither for 4 nodes subgraphs. 

There was no direct association found between any 3 node or 4 node subgraphs and 

the fraudulent transactions. The subgraphs found in networks with fraudulent and 

non- fraudulent transactions were the same.   

 

2. Is there a relationship between node centrality and fraud?  

There is some evidence point that way. In most trees the centrality of the sender is 

used to divide the decision tree and top classify the transaction as fraudulent or not. 

With origin accounts with higher values of centrality (higher than 0.029 in this 

dataset) being more prone to be linked with fraudulent transactions. The same 

applies to the centrality of the destiny accounts. Even though it is not as frequent as 

an attribute as the centrality of the origin account, higher values of centrality of the 

destiny account appear to be linked with fraudulent transactions. An example of this 

can be seen on the result of one decision tree, in Figure 15.  

Additionally, on the Logistic Regression centralitySender has a negative coefficient, 

meaning the higher the centrality of the sender account, the fewer the odds that the 

transaction is fraudulent. centralityReceiver’s coefficient is the higher coefficient in 

the regression. The higher the centrality value of the destiny account, the more likely 

is for the transaction to be fraudulent. 
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Figure 15: centralitySender and centralityReceiver example on decision tree. Source: the author. 

 

3. Is there a relationship between node transitivity and fraud?  

No. There is no apparent relationship between the transitivity of the origin accounts 

or the destiny account and the fraudulent transactions. This parameter is not used as 

attribute by the model. The fact that transitivity (both the origin and sender account) 

attribute of the Logistic Regression has a coefficient of zero, corroborates that there 

seems to be no apparent link between theses attribute and fraud 

 

4. Is there a relationship between the amount of the transaction and fraud?  

Yes. On the Random Forest model decisions trees, amount seems to be the most 

used attribute, as seen on the decision tree below on Figure 16. On the Logistic 

Regression the attribute amount as a coefficient of -9.52E-7, a rather low value. 

Nevertheless, there can be specific intervals of amount more linked to fraudulent 

transactions. 



55 

 

Figure 16: Amount attribute  example on decision tree. Source: the author. 

 

5. Is there a relationship between transaction type and fraud?  

It was not found any connection between the transaction type and fraud. Observing 

the decision trees created by the model, the relationship type never is chosen as an 

attribute. Similarly, on the Logistic Regression the attribute type of account has a null 

coefficient, presenting no evident relation with fraud.  

 

6. Is there a relationship between the step (time stamp of the transaction and fraud?  

Yes, it appears to exist a relationship between step and the probability for the 

transactions to be fraudulent.. The parameter step is commonly used as attribute by 

the model, it seems that some time stamps have more fraudulent transactions than 

other. This can also be related with the distributions the amount of transactions 

during the month.  

On the Logistic Regression the coefficient of the attribute step is 1.65E-4 and having 

a rather low standard deviation and low standard error.  

 



56 

Is there a relationship between the account balance before and after the transaction 

and fraud?  

7.  

There is some evidence that the balances may be a good indicator for the evaluation 

if the transaction. The newBalanceDest, newBalanceOrig,the oldBalanceOrig and 

the oldBalanceDest frequently appear as attribute  on the decision trees. An example 

of how these parameters are used as attributes by the decision trees is presented 

below, on Figure 17. On the Logistic Regression the coefficients obtained for 

oldBalanceOrig and oldBalanceDest are positive, which means the higher the values 

of the old origin and destiny balances the higher the chances of the transaction to be 

fraudulent. For newBalanceOrig, newBalanceDest the cofficients are negative wich 

means the hogher these balances, fewer the probablitiy for the transaction the be 

fraudulent. Both for the new and old balance the influence of the origin balance is 

higher.  
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Figure 17: newBalanceDest, newBalanceOrig, oldBalanceOrig and oldBalanceDest example on decision tree. Source: the 
author. 

.  
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6. Conclusions and Future Work 

 

In recent years’ fraud losses intensified, at the same time, the tolerance to this matter 

decreased and the transparency and the rules applied in organizations worldwide are more 

critical because companies are aware that fraud hold back their competitive skills on a global 

scale and ignore the presence of fraudulent acts turned too costly. (PwC, 2022) 

The main challenge of this study relied difficulty that is to have access to real financial 

transactions data. The data used is a synthetic dataset which can contain information not 

entirely representative of the reality. In Paysim there is no fraudulent activity in what regards 

to payments, debits nor cash-in transaction. Additionally, there is no information about the 

Merchants accounts. The fraudulent activity is only focused on cash-out transactions or 

transferences. When there is a transference immediately followed by a cash-out transaction, 

fraudulent activity takes place. When the amount of the transaction is equal to the old balance 

of the origin, the transaction is fraudulent. 

Regarding the association of 3 and 4 node subgraphs and fraud, it was concluded that 

no connection was found. G-tries was used to scan Paysim network for subgraphs and there 

was no link between the 3 and 4 subgraph nodes found and the fraudulent transactions for 

this particular dataset.  

It was found that within the Paysim dataset there is a total of 456187 directly 

connected networks. These networks have 3 to 121 nodes (or accounts). Most of these 

networks have 3 nodes with more than half of them having less than 10 nodes.  

A dataset including original Paysim data and calculated network measures such as the 

accounts transitivity (or clustering coefficient) and degree centrality was generated. Using this 

dataset, a Random Forest model was created to classify the transactions and fraudulent or 

non-fraudulent.  

Analyzing the Random Forest and the Logistic Regression models it was possible to 

conclude that the best attributes parameters were the account degree centrality, the amount 

being transferred, the step (or time stamp) and the account balanced before and after the 

transaction, both for the origin and the destiny account. On the other hand, and taken into 
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account these particular dataset, the account transitivity and the transaction type don’t appear 

to be relevant in classifying the transaction as fraudulent or non-fraudulent.  

The overall accuracy of the model is 93.99%. This model has a class recall for 

fraudulent transactions of 98.03% and class precision of 1.56%. In real life this means a 

fraudulent red flag would be given to the major part of the fraudulent transactions but a lot 

of non-fraudulent transactions would also be red flagged in the process which is not 

necessarily bad since these non-fraudulent transactions can be discarded after an individual 

investigation is carried out by the bank.  

For future work it is suggested to perform and analysis between the existence of fraud 

and network motifs using real data, as well as including additional network measures on fraud 

classifications problems. 
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8. Attachments 

8.1. Paysim Data Analysis 

# Load Pkgs 

import pandas as pd  

import networkx as nx 

import matplotlib.pyplot as plt 

%matplotlib inline 

 

# 

import warnings 

df = pd.read_csv("Paysim.csv")  

Paysim_graph = nx.MultiGraph()  

# Read Our Edgelist 

Paysim_graph = 

nx.from_pandas_edgelist(df,source="nameOrig",target="nameDest",edge_attr="amount",create_using=nx.DiGra

ph()) 

 

plt.figure(figsize=(50,50))  

nx.draw_shell(Paysim_graph, with_labels=True) 

 plt.show() 
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pos = nx.random_layout(Paysim_graph)  

plt.figure(figsize=(50,50))  



66 

nx.draw(Paysim_graph,pos) 

plt.show() 
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df["step"].describe() 
 

count 6362620 

mean 243 

std 142 

min 1 

25% 156 

50% 239 

75% 335 

max 743 

Name: step, dtype: float64 

df["step"].plot.hist(bins=30, sharex=True, sharey=True, orientation="vertical", cumulative=False); 
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df["amount"].describe() 
 

count 6362620 

mean 179862 

std 603858 

min 0 

25% 13390 

50% 74872 

75% 208721 

max 92445517 

Name: amount, dtype: float64 

df.groupby(["type"])["amount"].agg(["count","mean", "std", "min", "max"]), 
 

( 

type 

count mean std min max 
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CASH_IN 1399284 168920 126508 0 1915268 

CASH_OUT 2237500 176274 175330 0 10000000 

DEBIT 41432 5484 13319 1 569078 

PAYMENT 2151495 13058 12556 0 238638 

TRANSFER 532909 910647 1879574 3 92445517,) 

 

df.groupby("nameOrig") ["nameOrig"].count().sort_values(ascending=False) 

nameOrig C1065307291 3 

C1784010646 3 

C1902386530 3 

C1832548028 3 

C545315117 3 

.. 

C1645325210 1 

C1645325020 1 

C1645324530 1 

C1645324143 1 

C999999784 1 

Name: nameOrig, Length: 6353307, dtype: int64 

 

 

 

df.groupby(df.nameOrig.str[:1]) ["nameOrig"].count().sort_values(ascending=False) 

nameOrig 

C 6362620 

Name: nameOrig, dtype: int64 

df.query(" (newbalanceDest-oldbalanceDest != amount) and nameDest < 'J' and type != 'DEBIT'") 
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step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

2 1 TRANSFER 181 C1305486145 181 0 C553264065 0 0 1 

3 1 CASH_OUT 181 C840083671 181 0 C38997010 21182 0 1 

15 1 CASH_OUT 229134 C905080434 15325 0 C476402209 5083 51513 0 

19 1 TRANSFER 215310 C1670993182 705 0 C1100439041 22425 0 0 

24 1 TRANSFER 311686 C1984094095 10835 0 C932583850 6267 2719173 0 

... ... ... ... ... ... ... ... ... ... ... 

6362614 743 TRANSFER 339682 C2013999242 339682 0 C1850423904 0 0 1 

6362616 743 TRANSFER 6311409 C1529008245 6311409 0 C1881841831 0 0 1 

6362617 743 CASH_OUT 6311409 C1162922333 6311409 0 C1365125890 68489 6379898 1 

6362618 743 TRANSFER 850003 C1685995037 850003 0 C2080388513 0 0 1 
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step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

6362619 743 CASH_OUT 850003 C1280323807 850003 0 C873221189 6510099 7360102 1 

df.query(" (abs(oldbalanceOrg-newbalanceOrig) != amount) and nameDest< 'J' and type == 'TRANSFER'") 

 

step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

19 1 TRANSFER 215310 C1670993182 705 0 C1100439041 22425 0 0 

24 1 TRANSFER 311686 C1984094095 10835 0 C932583850 6267 2719173 0 

78 1 TRANSFER 42712 C283039401 10363 0 C1330106945 57902 24044 0 

79 1 TRANSFER 77958 C207471778 0 0 C1761291320 94900 22234 0 

80 1 TRANSFER 17231 C1243171897 0 0 C783286238 24672 0 0 

... ... ... ... ... ... ... ... ... ... ... 

6362322 718 TRANSFER 82096 C614459560 13492 0 C855350324 0 82096 0 
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step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

6362456 730 TRANSFER 10000000 C1277761503 37316255 27316255 C500987951 0 0 1 

6362460 730 TRANSFER 10000000 C2140038573 17316255 17316255 C1395467927 0 0 1 

6362462 730 TRANSFER 7316255 C1869569059 17316255 17316255 C1861208726 0 0 1 

6362584 741 TRANSFER 5674548 C992223106 5674548 5674548 C1366804249 0 0 1 

df.query(" (abs(oldbalanceOrg-newbalanceOrig) != amount) and nameDest< 'J' and type == 'CASH_OUT'") 

 

 

step 
type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

15 1 CASH_OUT 229134 C905080434 15325 0 C476402209 5083 51513 0 

42 1 CASH_OUT 110415 C768216420 26845 0 C1509514333 288800 2415 0 

47 1 CASH_OUT 56954 C1570470538 1942 0 C824009085 70253 64106 0 

48 1 CASH_OUT 5347 C512549200 0 0 C248609774 652637 6453431 0 
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step 
type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

51 1 CASH_OUT 23261 C2072313080 20412 0 C2001112025 25742 0 0 

... ... ... ... ... ... ... ... ... ... ... 

6362306 718 CASH_OUT 169291 C1569237054 26919 0 C342077848 2684602 2853894 0 

6362313 718 CASH_OUT 111964 C1438119383 4514 0 C99772923 154925 266889 0 

6362317 718 CASH_OUT 317177 C857156502 170 0 C784108220 345042 662220 0 

6362320 718 CASH_OUT 159188 C691808084 3859 0 C1818183087 0 159188 0 

6362321 718 CASH_OUT 186274 C102120699 168046 0 C1515639522 24894 211168 0 

df.max() 

step 743 

type TRANSFER 

amount 92445517 

nameOrig C999999784  

oldbalanceOrg  59585040 

newbalanceOrig 49585040 

nameDest M999999784  
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oldbalanceDest  356015889 

newbalanceDest 356179279 

isFraud 1 

isFlaggedFraud 1 

dtype: object  

 

 

df.min() 

step 1 

type CASH_IN 

amount 0 

nameOrig C1000000639 

oldbalanceOrg 0 

newbalanceOrig 0 

nameDest C1000004082  

oldbalanceDest  0 

newbalanceDest 0 

isFraud 0 

isFlaggedFraud 0 

dtype: object  

 

df.nameOrig.describe() 

count 6362620 

unique 6353307 

top C1902386530 

freq 3 

Name: nameOrig, dtype: object  
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df.oldbalanceOrg.describe() 

count 6362620 

mean 833883 

std 2888243 

min 0 

25% 0 

50% 14208 

75% 107315 

max 59585040 

Name: oldbalanceOrg, dtype: float64 

 

 

df.isFraud.describe()  

count 6362620 

mean 0 

std 0 

min 0 

25% 0 

50% 0 

75% 0 

max 1 
 

Name: isFraud, dtype: float64 

df.groupby("isFlaggedFraud") ["amount"].count().sort_values(ascending=False) 

isFraud 

0 6354407 

1 8213 

Name: amount, dtype: int64 
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df.groupby("isFlaggedFraud") ["amount"].count().sort_values(ascending=False) 

 

isFlaggedFraud  

0 6362604 

1 16 

Name: amount, dtype: int64 

df.groupby("isFraud")["step"].plot.hist(bins=2, sharex=True, sharey=True, 

orientation="vertical",cumulative=False); 
 

 
 

df.query("isFlaggedFraud == 1").groupby("isFraud")["isFraud"].count() 

isFraud  
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1 16 

Name: isFraud, dtype: int64 

df.query("isFraud == 1").to_csv('Paysim_isFraud==1.csv')  

dfisFraud = pd.read_csv("Paysim_isFraud==1.csv")  

dfisFraud.describe() 

Unnamed: 0 step amount oldbalanceOrg newbalanceOrig oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

count 8213 8213 8213 8213 8213 8213 8213 8213 8213 

mean 4244980 368 1467967 1649668 192393 544250 1279708 1 0 

std 2157498 216 2404253 3547719 1965666 3336421 3908817 0 0 

min 2 1 0 0 0 0 0 1 0 

25% 2065130 181 127091 125822 0 0 0 1 0 

50% 5188057 367 441423 438983 0 0 4676 1 0 

75% 6168689 558 1517771 1517771 0 147829 1058725 1 0 
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Unnamed: 0 step amount oldbalanceOrg newbalanceOrig oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

max 6362619 743 10000000 59585040 49585040 236230517 236726495 1 1 

dfisFraud.groupby(["type"])["amount"].agg(["count","mean", "std", "min", "max"]), 

(  count mean std min max type 

CASH_OUT 4116 1455103 2393842 0 10000000 

TRANSFER 4097 1480892 2414890 64 10000000,) 

 

dfisFraud.query(" (abs(oldbalanceOrg-newbalanceOrig) == amount) and nameDest > 'J' and type == 

'TRANSFER'") 

Empty DataFrame 

Columns: [Unnamed: 0, step, type, amount, nameOrig, oldbalanceOrg, newbalanceOrig, nameDest, 

oldbalanceDest, newbalanceDest, isFraud, isFlaggedFraud] 

Index: [] 

dfisFraud.query(" (abs(oldbalanceOrg-newbalanceOrig) != amount) and nameDest < 'J' and type == 

'CASH_OUT'") 

 

Unnamed: 

0 
step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

6 724 1 CASH_OUT 416001 C749981943 0 0 C667346055 102 9291620 1 
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Unnamed: 

0 
step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

13 1911 1 CASH_OUT 132843 C13692003 4499 0 C297927961 0 132843 1 

78 14861 8 CASH_OUT 181728 C2102265902 0 0 C789014007 11397 184478 1 

111 77745 10 CASH_OUT 277971 C489647033 0 0 C571514738 0 277971 1 

135 169998 12 CASH_OUT 149669 C227115333 0 0 C460735540 44170 193839 1 

138 178668 12 CASH_OUT 222049 C265790428 0 0 C1700442291 2979 225028 1 

147 200845 13 CASH_OUT 454859 C1274887619 0 0 C2146670328 0 454859 1 

179 291459 15 CASH_OUT 95428 C947728507 0 0 C1720721903 0 95428 1 

180 296686 15 CASH_OUT 39713 C1404885898 0 0 C1795377601 1274867 1314580 1 

203 377151 17 CASH_OUT 42063 C897869440 340830 298768 C616721459 398931 678420 1 

208 408955 18 CASH_OUT 314252 C1462280812 75956 0 C90486891 7962205 8276457 1 
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Unnamed: 

0 
step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

217 424928 18 CASH_OUT 508782 C576782065 0 0 C2090737806 1082008 1590790 1 

224 479636 19 CASH_OUT 122102 C149845822 0 0 C1200316948 0 639940 1 

239 543928 21 CASH_OUT 23292 C1861214292 0 0 C1834461593 392365 415657 1 

256 559979 22 CASH_OUT 89571 C1022920965 4506 0 C1460548505 1929428 2018999 1 

389 643671 35 CASH_OUT 112281 C609821524 0 0 C708118422 40512 152793 1 

414 694551 36 CASH_OUT 234377 C1737133410 0 0 C877378703 34938 269315 1 

429 732891 37 CASH_OUT 112486 C124687089 0 0 C179706450 257274 369761 1 

434 750755 38 CASH_OUT 577419 C1907944035 0 0 C541373010 0 577419 1 

443 764187 38 CASH_OUT 407006 C1948189565 0 0 C1059308371 0 407006 1 

2050 2058343 181 CASH_OUT 332730 C645124798 0 0 C1797918851 613712 946442 1 
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Unnamed: 

0 
step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

2117 2242699 186 CASH_OUT 229910 C260366436 0 0 C1620159110 0 229910 1 

2330 2622102 208 CASH_OUT 291520 C485214392 0 0 C1138105020 0 291520 1 

2585 2946481 230 CASH_OUT 40611 C1617773163 0 0 C478307499 0 40611 1 

2608 2983493 231 CASH_OUT 94373 C1451318490 0 0 C421443093 471783 566156 1 

 

dfisFraud.query("nameDest < 'J'") 

Unnamed: 

0 
step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

6 724 1 CASH_OUT 416001 C749981943 0 0 C667346055 102 9291620 1 

13 1911 1 CASH_OUT 132843 C13692003 4499 0 C297927961 0 132843 1 

78 14861 8 CASH_OUT 181728 C2102265902 0 0 C789014007 11397 184478 1 

111 77745 10 CASH_OUT 277971 C489647033 0 0 C571514738 0 277971 1 
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Unnamed: 

0 
step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

135 169998 12 CASH_OUT 149669 C227115333 0 0 C460735540 44170 193839 1 

138 178668 12 CASH_OUT 222049 C265790428 0 0 C1700442291 2979 225028 1 

147 200845 13 CASH_OUT 454859 C1274887619 0 0 C2146670328 0 454859 1 

179 291459 15 CASH_OUT 95428 C947728507 0 0 C1720721903 0 95428 1 

180 296686 15 CASH_OUT 39713 C1404885898 0 0 C1795377601 1274867 1314580 1 

203 377151 17 CASH_OUT 42063 C897869440 340830 298768 C616721459 398931 678420 1 

208 408955 18 CASH_OUT 314252 C1462280812 75956 0 C90486891 7962205 8276457 1 

217 424928 18 CASH_OUT 508782 C576782065 0 0 C2090737806 1082008 1590790 1 

224 479636 19 CASH_OUT 122102 C149845822 0 0 C1200316948 0 639940 1 

239 543928 21 CASH_OUT 23292 C1861214292 0 0 C1834461593 392365 415657 1 
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Unnamed: 

0 
step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

256 559979 22 CASH_OUT 89571 C1022920965 4506 0 C1460548505 1929428 2018999 1 

389 643671 35 CASH_OUT 112281 C609821524 0 0 C708118422 40512 152793 1 

414 694551 36 CASH_OUT 234377 C1737133410 0 0 C877378703 34938 269315 1 

429 732891 37 CASH_OUT 112486 C124687089 0 0 C179706450 257274 369761 1 

434 750755 38 CASH_OUT 577419 C1907944035 0 0 C541373010 0 577419 1 

443 764187 38 CASH_OUT 407006 C1948189565 0 0 C1059308371 0 407006 1 

2050 2058343 181 CASH_OUT 332730 C645124798 0 0 C1797918851 613712 946442 1 

2117 2242699 186 CASH_OUT 229910 C260366436 0 0 C1620159110 0 229910 1 

2330 2622102 208 CASH_OUT 291520 C485214392 0 0 C1138105020 0 291520 1 

2585 2946481 230 CASH_OUT 40611 C1617773163 0 0 C478307499 0 40611 1 
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Unnamed: 

0 
step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

2608 2983493 231 CASH_OUT 94373 C1451318490 0 0 C421443093 471783 566156 1 

 

df.query("isFraud == 1 and nameDest > 'J'") Empty DataFrame 

Columns: [step, type, amount, nameOrig, oldbalanceOrg, newbalanceOrig, nameDest, oldbalanceDest, 

newbalanceDest, isFraud, isFlaggedFraud] Index: [] 

df.query("isFraud == 1 and nameDest < 'J'") 

 

Unnamed: 

0 

step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

6 724 1 CASH_OUT 416001 C749981943 0 0 C667346055 102 9291620 1 

13 1911 1 CASH_OUT 132843 C13692003 4499 0 C297927961 0 132843 1 

78 14861 8 CASH_OUT 181728 C2102265902 0 0 C789014007 11397 184478 1 

111 77745 10 CASH_OUT 277971 C489647033 0 0 C571514738 0 277971 1 

135 169998 12 CASH_OUT 149669 C227115333 0 0 C460735540 44170 193839 1 
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Unnamed: 

0 

step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

138 178668 12 CASH_OUT 222049 C265790428 0 0 C1700442291 2979 225028 1 

147 200845 13 CASH_OUT 454859 C1274887619 0 0 C2146670328 0 454859 1 

179 291459 15 CASH_OUT 95428 C947728507 0 0 C1720721903 0 95428 1 

180 296686 15 CASH_OUT 39713 C1404885898 0 0 C1795377601 1274867 1314580 1 

203 377151 17 CASH_OUT 42063 C897869440 340830 298768 C616721459 398931 678420 1 

208 408955 18 CASH_OUT 314252 C1462280812 75956 0 C90486891 7962205 8276457 1 

217 424928 18 CASH_OUT 508782 C576782065 0 0 C2090737806 1082008 1590790 1 

224 479636 19 CASH_OUT 122102 C149845822 0 0 C1200316948 0 639940 1 

239 543928 21 CASH_OUT 23292 C1861214292 0 0 C1834461593 392365 415657 1 

256 559979 22 CASH_OUT 89571 C1022920965 4506 0 C1460548505 1929428 2018999 1 
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Unnamed: 

0 

step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

389 643671 35 CASH_OUT 112281 C609821524 0 0 C708118422 40512 152793 1 

414 694551 36 CASH_OUT 234377 C1737133410 0 0 C877378703 34938 269315 1 

429 732891 37 CASH_OUT 112486 C124687089 0 0 C179706450 257274 369761 1 

434 750755 38 CASH_OUT 577419 C1907944035 0 0 C541373010 0 577419 1 

443 764187 38 CASH_OUT 407006 C1948189565 0 0 C1059308371 0 407006 1 

2050 2058343 181 CASH_OUT 332730 C645124798 0 0 C1797918851 613712 946442 1 

2117 2242699 186 CASH_OUT 229910 C260366436 0 0 C1620159110 0 229910 1 

2330 2622102 208 CASH_OUT 291520 C485214392 0 0 C1138105020 0 291520 1 

2585 2946481 230 CASH_OUT 40611 C1617773163 0 0 C478307499 0 40611 1 

2608 2983493 231 CASH_OUT 94373 C1451318490 0 0 C421443093 471783 566156 1 
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df.query("isFlaggedFraud == 1 and nameDest < 'J'") 

step type amount nameOrig oldbalanceOrg 
newbalanc

eOrig 
nameDest oldbalanceDest newbalanceDest isFraud 

isFlagge

dFraud 

1 CASH_OUT 416001 C749981943 0 0 C667346055 102 9291620 1  

1 CASH_OUT 132843 C13692003 4499 0 C297927961 0 132843 1  

8 CASH_OUT 181728 C2102265902 0 0 C789014007 11397 184478 1  

10 CASH_OUT 277971 C489647033 0 0 C571514738 0 277971 1  

12 CASH_OUT 149669 C227115333 0 0 C460735540 44170 193839 1  

12 CASH_OUT 222049 C265790428 0 0 C1700442291 2979 225028 1  

13 CASH_OUT 454859 C1274887619 0 0 C2146670328 0 454859 1  

15 CASH_OUT 95428 C947728507 0 0 C1720721903 0 95428 1  

15 CASH_OUT 39713 C1404885898 0 0 C1795377601 1274867 1314580 1  
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step type amount nameOrig oldbalanceOrg 
newbalanc

eOrig 
nameDest oldbalanceDest newbalanceDest isFraud 

isFlagge

dFraud 

17 CASH_OUT 42063 C897869440 340830 298768 C616721459 398931 678420 1  

18 CASH_OUT 314252 C1462280812 75956 0 C90486891 7962205 8276457 1  

18 CASH_OUT 508782 C576782065 0 0 C2090737806 1082008 1590790 1  

19 CASH_OUT 122102 C149845822 0 0 C1200316948 0 639940 1  

21 CASH_OUT 23292 C1861214292 0 0 C1834461593 392365 415657 1  

22 CASH_OUT 89571 C1022920965 4506 0 C1460548505 1929428 2018999 1  

35 CASH_OUT 112281 C609821524 0 0 C708118422 40512 152793 1  

36 CASH_OUT 234377 C1737133410 0 0 C877378703 34938 269315 1  

37 CASH_OUT 112486 C124687089 0 0 C179706450 257274 369761 1  

38 CASH_OUT 577419 C1907944035 0 0 C541373010 0 577419 1  
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step type amount nameOrig oldbalanceOrg 
newbalanc

eOrig 
nameDest oldbalanceDest newbalanceDest isFraud 

isFlagge

dFraud 

38 CASH_OUT 407006 C1948189565 0 0 C1059308371 0 407006 1  

181 CASH_OUT 332730 C645124798 0 0 C1797918851 613712 946442 1  

186 CASH_OUT 229910 C260366436 0 0 C1620159110 0 229910 1  

208 CASH_OUT 291520 C485214392 0 0 C1138105020 0 291520 1  

230 CASH_OUT 40611 C1617773163 0 0 C478307499 0 40611 1  

231 CASH_OUT 94373 C1451318490 0 0 C421443093 471783 566156 1  

 

 
 

df.query("nameDest > 'J'") 

step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

0 1 PAYMENT 9840 C1231006815 170136 160296 M1979787155 0 0 0 
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step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud 

1 1 PAYMENT 1864 C1666544295 21249 19385 M2044282225 0 0 0 

4 1 PAYMENT 11668 C2048537720 41554 29886 M1230701703 0 0 0 

5 1 PAYMENT 7818 C90045638 53860 46042 M573487274 0 0 0 

6 1 PAYMENT 7108 C154988899 183195 176087 M408069119 0 0 0 

... ... ... ... ... ... ... ... ... ... ... 

6362312 718 PAYMENT 8178 C1213413071 11742 3564 M1112540487 0 0 0 

6362314 718 PAYMENT 17841 C1045048098 10182 0 M1878955882 0 0 0 

6362316 718 PAYMENT 1023 C1203084509 12 0 M675916850 0 0 0 

6362318 718 PAYMENT 4110 C673558958 5521 1411 M1126011651 0 0 0 

6362319 718 PAYMENT 8634 C642813806 518802 510168 M747723689 0 0 0 
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8.2. Network and Dataset creation 

# Load Pkgs 

import pandas as pd 

import networkx as nx 

#import matplotlib.pyplot as plt 

import pickle 

#%matplotlib inline 

import warnings 

import subprocess 

import os 

import time 

#Creation of network object with the respective attributes 

class Network: 

def  init (self, nodes, edges, motifs, 

hasFraud):  

self.nodes = nodes 

self.edges = edges  

self.motifs = motifs 

self.hasFraud = hasFraud 

 

class Node: 

def  init (self, name, fraudIn, 

fraudOut):  

self.name = name 

self.fraudIn = fraudIn 

self.fraudOut = fraudOut 

 

class Edge: 

def  init (self, sender, 

receiver):  

self.sender = sender  

self.receiver = receiver 

 

class Motif: 

def init (self, adjmatrix, occ_original, z_score, avg_random, 

stdev_random): 

self.adjmatrix = adjmatrix 

self.occ_original = occ_original 

self.z_score = z_score  

self.avg_random = avg_random 

self.stdev_random = stdev_random 
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#Creation of objects from the file with the subnetworks including 

gtries 4 nodes subgraphs information 

import csv 

networks = list() 

 

file = open('e:/joana/tese/Paysim4nodes.txt', 'r')  

lines = file.readlines() 
 

nodesList = list() 

edgesList = list() 

motifsList = list() 

 

for line in lines: 

line = line.replace("\n","").replace(",","") 

row=line.split(" ") 

 

if row == ['*']: 

if len(nodesList) > 0 and len(edgesList) > 0: 

newNetwork = Network(nodesList, edgesList, motifsList, 

hasFraud) 

networks.append(newNetwork) 

nodesList = list() 

edgesList = list() 

motifsList = list() 

lastNode = 0 

lastEdge = 0 

c = -1 

continue 

 if c == 0: 

lastNode = int(row[0]) 

lastEdge = int(row[1]) + lastNode 

hasFraud = int(row[2]) 

c = c + 1; 

continue; 

if c > lastEdge + 2: 

if "Unable" not in line: 

adjmatrix = row[0] 

occ_original = row[1] 

 z_score = row[2]  

avg_random = row[3] 

stdev_random = row[4] 

 

newMotif=Motif(adjmatrix, occ_original, z_score, avg_random, 

stdev_random) 

motifsList.append(newMotif) 

 

if c > 0 and c <= lastNode: 

nodesList.append(Node(row[1], row[2], row[3])) 
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if c > lastNode and c <= lastEdge: 

edgesList.append(Edge(row[0], row[1])) 

c = c + 1 

#number of frequency of subgraphs in all networks/in fraudulent 

networks 

motifsPresent = set() 

for network in networks: 

for motif in network.motifs: 

motifsPresent.add(motif.adjmatrix) 

 

for motifMatrix in motifsPresent: 

count = 0; 

fraudCount = 0; 

for network in networks: 

for motif in network.motifs: 

if motif.adjmatrix ==motifMatrix:  

count = count + 1 

if network.hasFraud == 1:  

fraudCount = fraudCount + 1 

print(motifMatrix + ": " + str(count) + " " + str(fraudCount)) 

 

"0111101011001000": 2 1 

"0111100010001000": 321404 4249 

"0110100110000100": 2320 50 

#creating new column with nameOrig_nameDest of each transaction 

df = pd.read_csv('E:/joana/tese/Paysim.csv') 

df = df.assign(Orig_Dest=lambda x: x.nameOrig + "_" + x.nameDest)  

 

# number of networks with subgraph 0110100110000100 and fraud 

filteredNetworks = set() 

 
for network in networks: 

for motif in network.motifs: 

if motif.adjmatrix == '"0110100110000100"' and network.hasFraud == 

1: 

filteredNetworks.add(network) 

break 

print(len(filteredNetworks)) 

50 
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#creation of list with Paysim information of the transactions from the 

networks file 

transactions = list() 

 
for network in networks:

 networknodes=network.nodes 

networkTrasactions=network.edges 

for transaction in networkTrasactions: 

transactions.append(networknodes[int(transaction.sender) -

1].name + "_" + networknodes[int(transaction.receiver) -

1].name) 

#Creation of objects from the file with the subnetworks including 

gtries 3 nodes subgraphs information 

import csv 

networks = list() 

 

file = open('e:/joana/tese/Paysim3nodes.txt', 'r')  

lines = file.readlines() 

 

nodesList = list() 

edgesList = list() 

motifsList = set() 
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for line in lines: 

line = 

line.replace("\n","").replace(",","") 

row=line.split(" ") 

 

if row == ['*']: 

if len(nodesList) > 0 and len(edgesList) > 0: 

newNetwork = Network(nodesList, edgesList, 

motifsList,hasFraud) 

networks.append(newNetwork) 

nodesLis

t=list() 

edgesLis

t=list() 

motifsLi

st=set() 

lastNode 

= 0 

lastEdge = 0 

c = -1 

continue  

if c == 0: 

lastNode = int(row[0]) 

lastEdge = int(row[1]) + 

lastNode hasFraud = int(row[2]) 

c = c + 1; 

continue; 

if c > lastEdge + 2: 

if "Unable" not in line:  

adjmatrix = row[0]  

occ_original = row[1]  

z_score = row[2]  

avg_random = row[3]  

stdev_random = row[4] 

 

newMotif=Motif(adjmatrix, occ_original, z_score, 

avg_random, stdev_random) 

motifsList.add(newMotif) 

 

if c > 0 and c <= lastNode: 

nodesList.append(Node(row[1], row[2], row[3])) 

if c > lastNode and c <= lastEdge: 

edgesList.append(Edge(row[0], 

row[1])) 

c = c + 1 
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number of frequency of subgraphs in all networks/in 

fraudulent networks 

motifsPresent = set() 

 
for network in networks: 

for motif in network.motifs: 

motifsPresent.add(motif.adjmat

rix) 

 

for motifMatrix in motifsPresent: 

 count = 0; 

fraudCount = 0; 

for network in networks: 

for motif in network.motifs: 

if motif.adjmatrix == motifMatrix:  

count = count + 1 

if network.hasFraud == 1:  

fraudCount = fraudCount + 1 

print(motifMatrix + ": " + str(count) + " " + 

str(fraudCount)) 

"011000000": 9030 159 

"001100000": 1762 34 

"000100100": 454857 5506 

#number of networks with and without fraud 

filteredNetworksWithFraud = set() 

filteredNetworksWithoutFraud = set() 

 

for network in networks: 

if network.hasFraud == 1: 

filteredNetworksWithFraud.add(network) 

else: 

filteredNetworksWithoutFraud.add(network) 

print(len(filteredNetworksWithFraud)) 

print(len(filteredNetworksWithoutFraud)) 

5509 

450677 

transactions = list() 

 
for network in filteredNetworksWithFraud: 

networknodes=network.nodes 

networkTrasactions=network.edges 

for transaction in networkTrasactions: 

transactions.append(networknodes[int(transaction.send

er) - 

1].name + "_" + 
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networknodes[int(transaction.receiver) -1].name) 
 
 

numberOfNetwork= 

list() 

numberOfEdges= 

list() for 

network in 

networks: 

numberOfNodes.append(len(network.nodes)) 

numberOfEdges.append(len(network.edges)) 

 

import pandas as pd 

from collections import Counter 

 

count = Counter(numberOfNodes) 

df10 = pd.DataFrame.from_dict(count, orient='index') 

df10.sort_index().plot(kind='bar', figsize=[20,5]) 

<AxesSubplot:>
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#creating dataset with information (per transaction) from the 

networks file and Paysim original file 

#1-transaction between customer and customer  

#2-transaction between merchant and merchant  

#3-transaction between customer and merchant 

#calculating transitivity and degree centrality per transation 

(edge) 

begin = time.time() 

 

transitivityListsender = 

list() 

transitivityListreceiver = 

list() centralityListsender 

= list() 

centralityListreceiver = 

list() accountsTypeList = 

list() 

c2=0 

 
for network in 

networks: 

if c2==10000: 

break 

c2=c2+1 

networknodes=network.node

s 

networkTransactions=netwo

rk.edges transactions = 

list() 

for transaction in networkTransactions:  

 transactions.append(networknodes[int(transaction.send

er) - 

1].name + "_" + 

networknodes[int(transaction.receiver) -1].name) 

df2=df.loc[(df['Orig_Dest'].isin(transactions))] 

 nodesindex=list() 

edgeslist=list()  

c=1 

 

for n in network.nodes:  

nodesindex.appen

d(c) c=c+1 

 

for e in network.edges:  

edge=[int(e.sender), 
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int(e.receiver)] 

edgeslist.append(edge) 

 

Paysim_graph= nx.Graph() 

Paysim_graph.add_nodes_from(nodesin

dex) 

Paysim_graph.add_edges_from(edgesli

st) 

 

centralityArray=nx.degree_centrality(Paysim_graph)  

centralityArrayList= list(centralityArray.values()) 
 

for transaction in networkTransactions: 

index = networkTransactions.index(transaction) 

if ("C" in 

transactions[networkTransactions.index(transaction)] 

and "M" in 

transactions[networkTransactions.index(transaction)]): 

accountsType = "3" 

elif "C" in 

transactions[networkTransactions.index(transaction)]:  

accountsType = "1" 

elif "M" in 

transactions[networkTransactions.index(transaction)]:  

accountsType = "2" 

accountsTypeList.append(accountsType) 

 

transitivitysender = nx.clustering(Paysim_graph, 

int(transaction.sender)) 

transitivityreceiver = nx.clustering(Paysim_graph, 

int(transaction.receiver)) 

transitivityListsender.append(transitivitysender) 

transitivityListreceiver.append(transitivityreceiver) 

 
 

centralityListsender.append(centralityArrayList[int(t

ransaction.sender)-1]) 

centralityListreceiver.append(centralityArrayList[in

t(transaction.rece iver)-1]) 

 

################################################################

###### ##################### 

 

alltransactions= 

list() 

transactionsDF=l

ist() 

 

for network in networks:  

networknodes=network.nodes 

networkTransactions=network.edges 

for transaction in networkTransactions:  

 alltransactions.append(networknodes[int(transaction.sender) 
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-1].name + "_" + networknodes[int(transaction.receiver) -

1].name)  

c4=0 

 

for transaction in alltransactions: 

if c4==len(centralityListsender): 

break 

c4=c4+1 

index = alltransactions.index(transaction)  

df4 = df.loc[df['Orig_Dest'] == transaction] 

indexdf= df4.index[df4['Orig_Dest'] == 

transaction].tolist()[0] amount= df4.loc[indexdf, 'amount'] 

step = df4.loc[indexdf, 'step']  

hasfraud = df4.loc[indexdf, 'isFraud'] 

oldbalanceorig = df4.loc[indexdf, 'oldbalanceOrg'] 

oldbalancedest = df4.loc[indexdf, 'oldbalanceDest'] 

newbalanceorig = df4.loc[indexdf, 'newbalanceOrig'] 

newbalancedest = df4.loc[indexdf, 'newbalanceDest'] 

 

accountstype = accountsTypeList[index] 

transitivitysender = 

transitivityListsender[index] 

transitivityreceiver= 

transitivityListreceiver[index] centralitysender 

= centralityListsender[index] 

centralityreceiver= 

centralityListreceiver[index] 

 

transactionDFObject = [amount, step, hasfraud, 

oldbalanceorig, oldbalancedest, newbalanceorig, 

newbalancedest, accountstype, transitivitysender, 

transitivityreceiver, centralitysender, centralityreceiver] 

transactionsDF.append(transactionDFObject) 

 

################### 

import csv 

 

transactions_header = ['amount', 'step', 'hasfraud', 

'oldBalanceOrig', 'oldBalanceDest','newBalanceOrig', 

'newBalanceDest', 'accountsType', 'transitivitySender', 

'transitivityReceiver', 'centralitySender', 

'centralityReceiver'] 

 

with open('rapidminerDB.csv', 'w') 

as file:  

writer = csv.writer(file) 

writer.writerow(transactions_he

ader) for line in 

transactionsDF: 

writer.writerow(line) 

 

end = 
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time.time(

) 

print(end-

begin) 
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8.3. Gtries and Subgraphs Detection 

3 nodes command: -s 3 -d -f simple -m esu -g gtriesinput.txt -oc file.txt 

4 nodes command: -s 4 -d -f simple -m esu -g gtriesinput.txt -oc file.txt 

 

 

import pandas 

as pd import 

networkx as 

nx 

#import matplotlib.pyplot as plt 

import 

pickle 

#%matplotli

b inline 

import 

warnings 

import 

subprocess 

import os 

with open("Paysim3nodes.txt", "r") as networks: 

with open("gtriesallinputs.txt", "w") as gtriesallinputs: 

alreadyWritten=0 

for line in networks: 

if len(line.split()) == 

2: alreadyWritten=0 

gtriesallinputs.wri

te(line) 

if '\"' in line and alreadyWritten==0: 

gtriesallinputs.write("*\n") 

alreadyWritten = 1 

import 

fileinput 

import 

subproces

s 

cmd = r"E:\joana\tese\gtrieScanner.exe -s 4 -d -f simple -m esu 

-g gtriesinput.txt -oc file.txt" 

gtriesinput.txt" begin = time.time() 

with open("gtriesallinputs.txt", "r") as 

gtriesAllInputs: gtriesInput ="" 

for line in gtriesAllInputs: 

if 

len(line.split

()) == 2: 

gtriesInput+=l
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ine continue 

if '*' in line: 

with open("gtriesinput.txt", "w") as 

gtriesInputTxt: 

gtriesInputTxt.write(gtriesInput) 

process = subprocess.Popen(cmd, 

stdout=subprocess.PIPE, creationflags=0x08000000) 

process.wait() 

gtriesInput ="" 

with open("results.txt", "r") as results: 

with open("filteredResults.txt", "a") as 

filteredResults: 

motif = '\"' 

for line in results: 

if line.startswith("1") or 

line.startswith("0"): 
if len(line.split()) ==1: 

 motif += line[0:4:1] 

else: 

array= 

re.split("\s{2,}",line)motif= 

motif +array[0][0:4:1]+'\", '+ 

array[1][0:array[1].index("|")] 

+', '+ array[2][0:4:1] +', '+ 

array[3] [0:4:1]+', ' + 

array[4][0:4:1] +'\n' 

filteredResults.write(moti

f) motif = '\"' 

filteredResults.write("*\n") 
 

end = time.time() 

print(f"Total runtime of the program is {end - begin}") 

 Total runtime of the program is 32119.045303821564  

 

motifs = list() 

with open("filteredResults.txt", "r") as filteredResults: 

 motif = "" 

for line in filteredResults: 

if "*" not in line: 

motif+= line 

else: 

motifs.append(motif)  

motif = "" 

motifsListIndex = 0 

motifsCounter = 0 

 

for line in fileinput.input("Paysim3nodes.txt", inplace=True): 
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if '\"' in line and motifsCounter == 0: 

if motifs[motifsListIndex] == "" :  

print("Unable to find 4 nodes motifs")  

motifsCounter = motifsCounter + 1  

motifsListIndex = motifsListIndex + 1 

else: 

print(motifs[motifsListIndex], end="") 

motifsCounter = motifsCounter + 1 

motifsListIndex = motifsListIndex + 1 

elif '\"' in line and motifsCounter != 0: 

print("", end="") 

else: 

print(line, end="") 

motifsCounter = 0 
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8.4. RapidMiner’s Process and Model 

 

 

Figure 18: RapidMiner’s Process before Under Sampling. Source: the author. 
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Figure 19: RapidMiner's Dataset for model creation. Source: the author. 
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Figure 20: Final RapidMiner process including Random Under Sampling. Source: the author. 

 

Figure 21: Final RapidMiner process including Logistic Regression. Source: the author. 

 



 

 

 F
A

C
U

L
D

A
D

E
 D

E
 E

C
O

N
O

M
IA

 

 


	1fd08ddfd9cf76372dae99182b0c62611ea1947f7c531b7d1030dcc81448ce57.pdf
	c840a70c349600fda27939a1bafd95873b59f214f9a2221e633ff79cef621b7a.pdf
	1fd08ddfd9cf76372dae99182b0c62611ea1947f7c531b7d1030dcc81448ce57.pdf

