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”Robot Analysing a Brain in Surrealist Style.” produced with DALL-E Flow generative model [1]

“ ’All models are wrong but some are useful.’ is often attributed to George Box and is used

to describe the inherent limitations of all models. All models are an approximation of reality and

therefore can never be completely accurate. However, some models can be more useful than others.

This is often determined by how well the model captures the important aspects of the system it is

trying to represent and how well it can be used to make predictions. ”

– GPT-3 [2] explanation of George E.P. Box famous citation in Science and Statistics & Robustness in Statistics
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Modelling and Predicting Acute Ischaemic Stroke Outcomes

by Tiago DOS SANTOS

Acute ischaemic stroke (AIS) is the second most common cause of death and leading

cause of long-term disability worldwide. Fast AIS patient diagnosis and stratification for

treatment are fundamental to improve outcomes and reduce disability and lethality. Al-

though it is a thoroughly researched topic, the heterogeneity of human cohorts and brain

complexity makes it difficult to create guidelines and models with wide applicability for

clinical decision-making in this field. This project used the comprehensive dataset of a

prospective cohort of AIS patients submitted to thrombectomy in a Portuguese Compre-

hensive Stroke Center by applying machine learning and computer vision techniques to

develop predictive models on thrombectomy outcomes, using demographic, clinical, bio-

chemical biomarkers and raw imaging data. The goal is to create several models that are

optimized for each phase of the patients’ admission: at admission to hospital, after neu-

roimaging and blood work-up and at discharge. This is achieved by selecting the best

information available from the datasets provided for this study, trying a vast array of

modelling strategies and hyperparameters and creating mixed models for that purpose.

For each admission phase and data available, one model is proposed.

The overall best model found was the 3D convolutional neural network (CNN) with

basic fine-tuning on a publicly available lung CT scan dataset, which achieved

AUCBasicTrans f erL = 0.97± 0.05 on validation. However, its generalization capacity may be

worse than other models, considering is has shown overfitting in validation curves and

only achieved AUCBasicTrans f erL = 0.58 and F1-weightedBasicTrans f erL = 0.66 on the test set.

At admission to hospital, the hyperparametrized logistic regression trained on the strictly

selected feature clinical dataset is recommended, achieving
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med(AUCLR Clin0h FS) = 0.84 ± 0.07. When neuroimaging data is available, the above-

mentioned CNN should be used. At this stage, if hemispheric contrast imaging biomarker

is integrated in neuroimaging software, it should be used in conjunction with clinical data,

on the proposed Light Gradient Boosting Machine-based model with strict feature selec-

tion, which achieved med(AUCLGBM Clin0hCA FS) = 0.86 ± 0.08 and its result probabilities

compared with the ones from the 3D CNN. On the follow-up phase, the 3D CNN results

should be compared with the ones from the SVM trained on non-augmented clinical and

biomarkers measured at follow-up is proposed, measuring

med(AUCSVC ClinBiom24h) = 0.88 ± 0.08.

Imaging methods have shown relevance to AIS treatment outcomes modelling, espe-

cially when convolutional neural networks are used directly in imaging data. The imaging

biomarker studied in this thesis, hemispheric contrast, has shown relevance to modelling,

but it did not provide statistically significantly better predictive capacity.
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Modelação e Prognosticação de Acidentes Vasculares Cerebrais Isquémicos Agudos

com métodos de Aprendizagem de Máquina e Visão Computacional

por Tiago DOS SANTOS

Acidentes vasculares cerebrais (AVCs) são a segunda causa de morte mais comum

em todo o mundo e a principal causa de incapacidade a longo prazo. O diagnóstico e

estratificação rápidas dos doentes com AVC é fundamental para melhorar prognósticos, e,

consequentemente, reduzir a incapacidade e letalidade associadas. Embora seja um tema

exaustivamente investigado, a heterogeneidade dos coortes humanos e a complexidade

cerebral cria dificuldades na criação de directrizes e modelos com ampla aplicabilidade

na tomada de decisões clı́nicas neste campo. Neste projeto foi utilizado um conjunto de

dados abrangente de uma coorte prospetiva de pacientes com AVC que foram submetidos

para trombectomia num Centro de Referência de Intervenção na Doença Cerebrovascu-

lar. Nesse conjunto de dados foram utilizando métodos de aprendizagem de máquina e

de visão computacional para desenvolver modelos preditivos dos resultados de trombec-

tomias, utilizando dados demográficos, clı́nicos, de biomarcadores bioquı́micos e dados

de imagem em bruto. O objectivo é criar modelos optimizados para cada fase da admissão

dos pacientes: à chegada ao hospital, depois da aquisição inicial de dados de neuroima-

giologia e análises laboratoriais, e na alta do paciente. Isto é conseguido seleccionando a

melhor informação disponı́vel dos conjuntos de dados fornecidos para este estudo, e cri-

ando modelos mistos para esse fim. Para cada fase da admissão é proposto um modelo.

O melhor modelo encontrado foi uma rede convolucional 3D com simples retreino

em dados do de TACs pulmonares, tendo conseguido AUCBasicTrans f erL = 0.97 ± 0.05 na

validação. No entanto, os resultados no conjunto de teste foram marcadamente piores que

outros modelos produzidos, tendo em conta as curvas de validação e por ter conseguido
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apenas AUCBasicTrans f erL test = 0.58 e F1-weightedBasicTrans f erL test = 0.66. Na admissão ao

hospital, uma regressão logı́stica hiperparametrizada e treinada apenas num conjunto de

dados clı́nico estritamente seleccionado é recomendada, tendo atingindo

med(AUCLR Clin0h FS) = 0.84 ± 0.07. Assim que os dados de neuroimagiologia estive-

rem disponı́veis a rede convolutional anteriormente descrita deverá ser utilizada. Se o

cálculo do marcador de contraste hemisférico estiver integrado no software de captura

e processamento, este deve ser utilizado em conjunto com os dados clı́nicos base, utili-

zando o modelo proposto based em Light Gradient Boosting Machine com seleção es-

trita de variáveis, e que atingiu med(AUCLGBM Clin0hCA FS) = 0.86 ± 0.08 e as probabi-

lidades de saı́da comparadas com as da rede convolucional. Na fase de seguimento, a

rede convolucional é proposta em conjunto com uma Support Vector Machine treinada

sem aumentação de dados em biomarcadores clı́nicos e biomarcadores medidos no se-

guimento, com med(AUCSVC ClinBiom24h) = 0.88 ± 0.08, uma vez que a espera por análise

clı́nicas adicionais é inconsequente nesta fase da admissão dos pacientes. Apesar do bi-

omarcador de imagem, contraste hemisférico, ter apresentado relevância nos modelos

estudados, não permitiu melhorar a capacidade preditiva significativamente.

Os métodos de imagem demonstraram relevância na modelação de prógnosticos de

tratamento de acidentes vasculares cerebrais isquémicos agudos, especialmente quando

redes neurais convolucionais são utilizadas diretamente em dados de imagem. O bio-

marcador de imagem estudado nesta tese, contraste hemisférico, mostrou relevância para

a modelação, mas não permitiu modelos com capacidade de previsão estatisticamente

significativamente superior.
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Chapter 1

Introduction

1.1 Thesis motivation

According to the World Health Organization (WHO), stroke events are the second cause

of natural death in adults worldwide, only surpassed by ischaemic heart disease. They

are particularly relevant in high-income countries, where they are more predominant and

have been increasing their preponderance in the last few decades [3]. Stroke is a neuro-

logical deficit attributed to an acute focal injury of the central nervous system (CNS) by

a vascular cause [4]. Ischaemic Strokes (ISs) are defined as any neurological dysfunction

stemming from an ischaemic event in the CNS. Ischaemic stroke can be acute or transient,

differing on the condition’s volatility [5]. This study focus specifically on Acute Ischaemic

Stroke (AIS) events given that any patient arriving to a hospital and is diagnosed with an

IS is treated promptly, proceeding to thrombolysis or mechanical thrombectomy inter-

ventions, where it is assumed the IS would not resolve itself in due time [6], intending to

provide a tool to forecast the outcome of an AIS.

When an AIS is diagnosed, two main clinical interventions are available for treat-

ment. Intravenous tissue plasminogen activator, IV-rtPA , a technique approved nearly

two decades ago for AIS treatment. There is a narrow time window for effective ad-

ministration — less than 4.5 hours —, and there are several contraindications to its use.

Mechanical thrombectomies are usually applied as endovascular approaches to recanal-

ization [7, 8]. State-of-the-art reviews state that both techniques are particularly effective

when used in tandem [7], although, around one-third of patients who survive go on to

live with long-term disability [9, 10].

1
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1.2 Significance of this Dissertation

Being able to make an accurate prognosis on the treatment outcomes is invaluable to make

appropriate treatment decisions after risk-benefit analysis and helps the clinicians to pre-

pare the patient’s family for the expected outcomes [11]. As such prognostic risk scores

that use patient characteristics to predict functional outcomes in AIS patients are of in-

creasing importance for aiding clinical decisions in stroke management [12], considering

the most common treatment options have non-negligible associated risks [13–15], assess-

ment of cost-effective procedures helps resource management for the health unit and the

patient [16]. However, pre-treatment information is scarce, usually consisting on a report

on the patient’s behaviour before admission, a subset of blood work data and imaging

data done upon admission [11]. Several formulas and algorithms exist to provide an

objective outcome prediction. Most commonly, the National Institute Health Stroke Scale

(NIHSS) is used for neurological evaluation, succeeding the modified Rankin Scale (mRS),

used for neurological evaluation [17], and the ASPECT score is the most commonly used

scoring method for brain imagery [18].

1.3 Dissertation Goals

This thesis intends to improve the selection of patients with AIS for thrombectomy by

creating a clinical decision tool to predict individual positive outcomes — i.e., mRS lower

than three — calibrated on consecutive stroke patient cohort from a Comprehensive Stroke

Center, by creating and selecting machine learning (ML) models adapted to various data

availability profiles.

To do so, for each patients admission phase — data collected at hospital admission,

former information complemented with clinical analysis and neuroimaging information,

and post-thrombectomy follow-up —, the recommended model is ascertained by statisti-

cal model comparison.

In a first phase of the project, models are meant to be created using the available tab-

ular data, recurring to a wide selection of modelling strategies. Missing Values (NAs)

imputation and data augmentation techniques should be explored to preserve data and

improve predictive results.

On a second phase, imaging data is processed and analysed by Neural Networks

(NNs) specialized in imaging data, convolutional neural networks (CNNs) and computer
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vision (CV) techniques. Data augmentation, Network Architecture Search (NAS) and

transfer learning should be explored to improve results. The best model represents the

proposed model to analyse imaging data in isolation.

On a third phase, merging tabular data and imaging information is possible. Com-

bining selected features from the tabular datasets (dss.) and remodelling allows the cre-

ation of a model that accounts demographic, clinical, FBC data, biochemical analyses and

imaging data from the patient. These models should be the best models, considering they

account for all the data available.

Selected models should only be considered for the demographic analysed and if the

data required by each model is complete.





Chapter 2

Background

2.1 Stroke

Stroke is defined as ”rapidly developed clinical signs of focal (or global) disturbance

of cerebral function, lasting more than 24 hours or leading to death, with no apparent

cause other than of vascular origin” [19]. Stroke is a medical emergency that is a major

cause of death and disability, corresponding to approximately 9.2% of the total mortality

in Portugal [20], and leaves many patients permanently disabled. Mortality rates of stroke

patients aged between 18 and 80 are around 8%, with a standard deviation of approxi-

mately 3% [21], and it is the most impacting disease in the Portuguese population [22],

stroke treatment costs represent a substantial financial burden on society, should all pa-

tients receive treatment.

2.2 BioStroke Study

BioStroke is a prospective study, including patients admitted between January 2019 and

March 2020 to the Comprehensive Stroke Centre (CSC) of Centro Hospitalar Universitário

do Porto (CHUP). Data retrieved in this project includes complete neurological evalua-

tion, brain neuroimaging and longitudinal blood sampling for biomarker assessment at

arrival and follow-ups. Considering there is no early clinical test that can assess ade-

quately patient’s predisposition to a stroke, BioStroke objective is to discover stroke-

related biomarkers [23].

5
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2.3 Disability and Stroke Severity Measures

Hospitalized stroke patients usually incur in some sort of disability, even when receiving

successful treatment, so, having an objective measure of disability is useful in the clinical

context to assess the proper remedial actions and evaluate treatment options against their

outcomes.

The mRS is a clinician-reported measure of disability usually applied to evaluate

stroke patient outcomes, with its usefulness widely supported by literature [24]. mRS six

categories describing patients level of impairment are described in table A.1.

NIHSS is another medical assisted diagnostic tool used to measure stroke severity, as

it quantifies stroke impairment more objectively. It sums the scores of several evaluations

on level of consciousness, gaze, hemianopia, facial palsy, motor arm, motor leg, ataxia,

sensory perception, aphasia, dysarthria, and neglect. This scale ranks from 0 to 42 and

higher values correspond to greater impairment [25].

Alberta Stroke Program Early CT Score (ASPECTS) is a neuroimaging based score,

calculated by subtracting points for each of 10 distinct Middle Cerebral Arthery (MCA)

areas with possible hypoattenuation, starting with 10 points. One point is subtracted

for each hypoattenuated area and a completed infarct leads to an ASPECTS score of

0. ASPECTS scores between 0 to 7 imply bad outcomes and 8 to 10 usually good out-

comes [26]. Common practice recommends that only patients with an ASPECTS of 6 and

above should be considered for endovascular treatment [27]. Given ASPECTS inter-

pretation on a Non-Contrast CT (NCCT) brain scan of AIS patients is challenging and

variable, even between stroke experts, automated tool for AIS predictions are desired in

clinical practice and research in order to reduce human subjective assessment [27]. These

tools are usually Machine Learning (ML)-based programs that vary their performance

depending on the training data quality and modelling choices used [27].

2.4 Clinical Imaging Exams

When an AIS patient is admitted, imaging exams are often performed to observe the brain

structure and evaluate the lesion according to its location, extension, and aetiology of the

lesion. Imaging methods are non-invasive, the most common being NCCT, CT Angiogra-

phy (CTA), Perfusion CT (pCT) and Magnetic Resonance Imaging (MRI). Although they

often can be used to ascertain the same information, each method has its strengths and
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weaknesses [28]. In this introduction, only NCCT is going to be described since the other

imaging methods were not modelled during this thesis.

NCCT is the most common and simple imaging method. It improves regular radio-

graphies by enabling the acquisition of a 3D structure, and it allows the identification of

any anatomical structures. Their main disadvantage is patient’s radiation is much higher

than other available options for the same purpose. NCCT is the usual imaging exam,

conducted when a patient is admitted to the hospital, as a fast and cheap assessment

option, since it does not require preparation, nor injection of chemicals with potential

side effects or masking effects [28]. It allows ruling out haemorrhage before thrombolytic

therapy, very early signs of ischaemic changes, and hyperdense vessel signs, as well as to

review previous infarction areas [28, 29].

FIGURE 2.1: Orthogonal projections of a NCCT viewed on Mango [30] without proper
window, on the left; and with appropriate window for brain features, on the right side.

A CT scan results in a volume composed by voxels. These are three-dimensional rep-

resentations of multiple two-dimensional reconstructions stacked together. These planes

— i.e., slices — are usually the way that CT scans are presented, and the experts slide

through various slices to assess the features of interest. The distance between planes is

varied, but it is usually between 2.5mm and 5mm. Since the array of radiodensities cap-

tured is much higher than the usual colour resolution of the media in which the CT scans

are presented, the expert needs to define minimum and maximum radiodensities to be

presented, so the image shows appropriate contrasts for interpretation [28, 29, 31]. Ra-

diodensities are measured in Hounsfield Units (HU), and the usual windows for brain

tissue analysis are between 0 HU and 80 HU, and a narrower window can be used when

stroke is expected, such as: 20 HU up to 60 HU (W:40, L:40) or 28 HU up to 36 HU

(W:8, L:32) [32, 33]. The information contained in a CT scan is three-dimensional, so,
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modern techniques enable its visualization as a 3D volume using radiodensities recon-

struction [28, 29].

2.5 Medical Imaging Data formats

In the context of neuroimaging, a few formats need to be understood, since they are preva-

lent in this field. NIfTI, DICOM, Minc, and Analyze are specialized medical imaging file

formats still commonly used in various contexts. Although, for the most part, they are im-

age encoding formats with some extra metadata. They encode data in a very precise way

and with predefined metadata encodings, — the characteristic that makes them unique.

As such, most common imaging programs and libraries cannot interface with them di-

rectly and specialized tools are required to manipulate these files, as well as to extract

information or convert relevant part to more amenable formats. In this section the most

common formats used in this project are going to be summarily described.

2.5.1 Digital Imaging and Communications in Medicine (DICOM)

DICOM is an international standard for medical images and associated metadata, first

published in 1993. The standard aims at providing the quality definition that allows imag-

ing files a proper clinical use. Most imaging devices in fields as diverse as odontology to

radiotherapy use this standard, being one of the most widely deployed healthcare mes-

saging standards used in the world. DICOM standard is recognized by the International

Organization for Standardization as the ISO 12052 standard. [34]. This standard includes

both the file format definition as well standards for transmission, and storage of clinical

data, by defining a data dictionary, data structures, file formats, client and server services,

workflow, and compression [34].

DICOM files consist of imaging files with encapsulated metadata associated to the

patient, capture device, image acquisition parameters, and optionally various other file

parameters and clinically relevant data fields. They usually have .dcm file extension,

though not mandatory, as evidenced by SECTRA’s file structure. DICOM files contain a

file header portion, a metadata portion, and a single Service-Object Pair (SOP) instance.

The header is made up of a 128 byte preamble, followed by the characters DICM, all

uppercase. The preamble, sometimes used for proprietary data, must contain all zeroes if

it is not filled in [35]. DICOM format uses a separate file for each slice, so a 3D scan —
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such as any CT scan or MRI — uses a series of files to represent the scan, each with its own

Unique Identifier (UID). Since each file contains embedded metadata with the patient’s

and hospital information, anonymizing DICOM data requires thorough handling on all

files [35].

DICOMs use a hierarchical structure to its metadata, which includes four main levels:

patient, study — the imaging procedure to be performed at a certain date —, series — each

part of a study, whether multiple acquisitions, or a series of acquisitions, as in a CT scan

—, and instances — corresponding to each individual slice in a series, i.e., the individual

files [35].

2.5.2 Neuroimaging Informatics Technology Initiative (NIFTI)

NifTI is a neuroimaging file format, created by an NIH group in early 2000s as an evo-

lution of the formats ANALYZE 7.5 — one of two widespread formats at the time in the

research field, the other being Misc [36]. At the moment, it consists in two sub-formats

NIfTI-1 and NIfTI-2 file formats, both usually gathered under the same file extension

.nii. The main difference between both is that NIfTI-2 format updates NIfTI-1 to allow

more data to be stored. NIfTI files are usually more common in imaging informatics for

neuroscience and neuroradiology research, while DICOM files are more common in the

clinical practice. Given their widespread usage, several tools exist to convert these two

formats, so that image processing pipelines can be readily used with any of the above-

mentioned formats [36]. Opposed to DICOM files, NifTI files can contain all slices in a

study, and they can keep order information on each slice. This makes the ds. handling

convenient since all slices pertaining a scan are aggregated in a single file, with common

metadata present in that file. Although it does not have as many standard metadata fields,

the most important pertain acquisition, patient and bureaucratic parameters existing in

DICOM files can be encoded in NifTI files [36, 37].

2.5.3 Imaging Data preprocessing

Imaging data formats such as the ones mentioned earlier are able to carry large amounts

of personally identifiable patient information, both because they contain a comprehensive

set of acquisition metadata that usually is filled in automatically by the software saving

imaging data, and because the high-resolution three-dimensional data can enable facial

reconstruction that allows personal identification [38]. To comply with general privacy
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legislation, respect patients in the study and comply with the ethical committee consider-

ations, all data should be stripped of all personally identifiable information when being

analysed [38]. Metadata can be stripped before acquisition, and should any relevant

metadata persist on the ds., it should be discarded automatically through software [39].

After anonymization, the files should be converted to NifTI, which is much more

convenient when manipulating large collections of CT scans —, and was done with tools

such as dcm2niix [38]. During this process, one must ensure the data was converted cor-

rectly, either for elastic distortions in the scans — such as gantry and tilt, which can be

usually corrected using the previously mentioned packages —, either by dynamic range

compression or off-setting — where values should be within -1024 and 3071 HU [38]. CT

scan types should not be mixed together, and images with added contrast — such as an-

giograms — should be treated separately and accounting for the type of contrasting agent

used [38]. Bias field corrections are usually applied to MRIs, but it can be tentatively used

on CT scans and tested as an extra parameter for modelling, since CT scans do not suffer

from coil effects such as heating [38], and they can potentially improve light image dis-

tortions. In this work, all CT scans with metal objects induced distortions too strong for

gradient based corrections were omitted. Then, after bias and distortion corrections, fur-

ther anonymize the image by removing body parts not relevant to the study, such as the

face, neck, and entire bone structure, making models more resistant to these confounding

factors [38, 40]. Finally, to remove variability and confounding factors due to size, posi-

tion or orientation; CT scans should be registered against a template. The registration

process isolates the brain or skull in each CT scan and applies transformation to it, so it

approximates more closely the brain in a template [38].

2.6 Artificial intelligence

One of the greatest advances in computer sciences of the 21st century was the achievement

of enough computational power to make widespread use of Neural Networks (NNs) [41].

With this advent, these models, mathematically outlined in the 60’s, saw booming re-

search and great innovation came to this type of models. Given their great capacity to

model arbitrary functions, they allowed researchers to explore them in more scenarios

than modelling less structured tabular data [42]. So far, most Computer Vision (CV) tasks

were done from first principles, using logic-driven algorithms instead of data-driven al-

gorithms [43]. Although this process allows more easily explainable and interpretable
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algorithms that have a more deterministic approach to the tasks they are given, logic-

driven algorithms are difficult to create and maintain, they require greater human inge-

nuity and time to develop, and they can be more difficult to adapt to new tasks. Neural

Network (NN) algorithms and other types of ML algorithms are data-driven, as an algo-

rithm that designs itself as an approximation to the function that describes the data fed to

it, instead of an algorithm designed to replicate a function thought by the developer [44].

These data-driven algorithms, since their logic is not explicitly coded by a developer, are

more commonly associated to Artificial Intelligence (AI) programs. The main advan-

tage of data-driven algorithms is to exchange human research time by computer runtime,

since they can be obtained by brute forcing large amounts of hypothesis/models/calcula-

tions [44]. For them to generalize well, they usually require more data, although, fuelled

by consumer level internet access inception, new digitized data is created exponentially

over time, regarding all aspects of existence.

2.6.1 Machine Learning and Data-driven algorithms

Data-driven algorithms can usually be classified by the way they learn from the data:

supervised learning — when the developer provides an interpretation to the data, in

the form of annotations or a Dependent Variable (d.v.) field —, unsupervised learning

— when the developer does not provide any information regarding what is meant to be

learned from the data, and the algorithm learns relations within the ds. through data dis-

tribution and distances —, and reinforcement learning (RL) — usually applied to learn-

ing actions, by using a learning agent that interacts with its environments through trial

and error until it meets a success condition, reinforcing the path that led the agent to

that condition [44]. Sometimes, a fourth type of data-driven learning algorithms is con-

sidered. Semi-supervised algorithms, are in essence pipelines that deal with partially

annotated data. In this type of learning, unsupervised learning is applied, but the clus-

ters and associations in the data become labelled based on their association with existing

annotated data. Then those samples can be fed again to a supervised learning task to

improve its performance [44, 45]. The main issue with this approach is the annotations

lack standards of supervised data, where they are based on ground truths, at least by

data collection or engineering teams standards, an issue that can amplify classification

biases [45]. Not all Artificial Intelligence (AI) data-driven algorithms are NN but much of
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today’s state-of-the-art CV is. The currently controversial and popular GPT-3 [2], DALL-

E 2 [46], LAION-based models [47] —such as Stable Diffusion —, Google’s LaMDA [81],

or AlphaFold [49] are all NNs able to solve a wide array problems not conceivable by

the mainstream just a couple of years ago. This versatility is what brings interest to this

topic, and the reason why a Deep Learning (DL) approach was attempted on this project.

All the previous NN-based models are also examples of supervised learning or semi-

supervised learning — where gigantic dss. with annotated data were fed to these models

of which, modern trends suggest that even greater amounts of data are needed to fully uti-

lize each deep learning architecture to its full potential [50]. Supervised models attempt

to learn the function that minimizes the difference between modelled calculation of all

Independent Variables (i.vs.) and the ground truth [51].

Machine learning (ML) is a sub-type of AI and data-driven algorithms where struc-

tured or unstructured data is used to make predictions, usually as classification or regres-

sion problems [52].

2.6.2 Models description

Several ML strategies exist to learn from annotated data through supervised learning.

These are encoded as algorithms with different calculation methods, assumptions regard-

ing data, balances between data distribution assumptions and the modelled function —

the model’s bias —, and the way it adapts to differences in the ds. — the model’s vari-

ance [52]. In this subsection, a brief description of each strategy used in this thesis follows.

One of the most ubiquitous ML tools is the Logistic Regression (LR). As a special

case of generalized linear models, LR assumes the d.v. is modulated by linear i.vs., but

unlike linear regression, LR is designed for classification problems, where the d.v. is

the positive class probability [51]. Like linear regression, it also assumes no collinearity

between i.vs. — although it is still robust under non-ideal circumstances —, and it requires

cases count to be greater than feature count [51]. Considering a Decision Boundary (DB)

set at p = 0.5, can be found for LR by solving the sigmoid function:

f (x) =
1

1 + e−x , (2.1)

where x is a regressive input function. One LR advantage over other modelling strategies

is it does not assume i.vs. are normally distributed, and its d.v. distribution is expected

to follow the Bernoulli distribution [51, 53]. One important LR limitation is its linear
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DB assumption, which makes it unable to model more complex interactions between

variables [53, 54].

Also assuming a linear DB, is the Linear Discriminant Analysis (LDA). This clas-

sifier, unlike LR, assumes that observations come from a Gaussian distribution and the

covariance matrix for all classes to be classified is identical. When those assumptions are

not met, it provides unreliable results. LDA improves on the Bayesian Optimal Classi-

fier [54].

Another model used, derived from LDA is Quadratic Discriminant Analysis (QDA).

It evolves LDA formulation by accepting a different covariance matrices for each class,

allowing more complex Decision Boundaries (DBs) to be defined. When that condition

happens — the most usual circumstance — the DB is expressed by a quadric formula,

the reason for this modelling strategy name [54]. When QDA covariance matrices are all

assumed to be diagonal, it is equivalent to Gaussian Naı̈ve-Bayes classifier (GNBC) [55].

GNBC is a classifier modelling strategy that assigns class labels to problem instances,

where those are classified as proportions of the outcome to be predicted, based only on

the data available on the ds., as approximations to the population’s proportion. After

decomposing the ds. and doing those estimates, a maximum likelihood evaluates classes’

combination influence using Bayes probabilities as defined by the conditional probability

given by:

p(Ck | x) =
p(Ck) p(x | Ck)

p(x)
, (2.2)

where Ck is the set of Independent Variable (i.v.) classes and x is the vector with class

representations of every feature in the observation. GNBC assumes that each of these

features is independent of the others, so the conditional probability p(Ck | x), where x is

input vector. The main advantage of GNBC is that in dss. where features and classes are

indeed independent, it can perform well with small training sets [54].

Decision Trees (DTs) are a very different type of modelling strategy to the ones pre-

sented above. It defines models as a branched function, creating a hierarchical structure

with the most important classification choices in the upper levels — the ones that reduce

entropy the most — and refines the model at each extra level with choices that enable a

further reduction of the overall classification entropy. Entropy metric is defined as

D = −
K

∑
k=1

p̂mk log p̂mk , (2.3)



14 MODELLING AND PREDICTING ACUTE ISCHAEMIC STROKE OUTCOMES

while the Gini Index, on the other hand, is defined by

G =
K

∑
k=1

p̂mk
(
1 − p̂mk

)
, (2.4)

where D is entropy, G is the Gini Indez, K is the total number of classes of the outcome,

and p̂mk is the proportion of class k observations in node m of the tree. It is preferable in

DTs and associated methods to use the more common classification error rate due to its

sensitivity. The main advantages of DTs is that they work well with limited data, they are

among the most explainable and interpretable models, and they can map very complex

DBs [54]. However, given Decision Tree (DT) models high variance, especially when

configured to overfit, models are unstable, varying significantly with the underlying sub-

set of data in use, they give more preponderance to categorical features with more classes,

and models with many features can have structures empirically hard to understand [54].

The main drawbacks of DTs can be overcome with ensembles. Ensembles or ensem-

ble methods are models that use the output of learning models’ groups to produce their

predictions. In theory, the errors of individual models are diluted through majority vot-

ing, and the errors of each learner can be emphasized by the next in the ensemble, so

those errors are avoided. One major ensemble methods drawback is the obfuscation of

individual learners, so the models created are opaque and, therefore, less explainable and

interpretable.

Random Forests (RF) is one popular ensemble method, using as learners DTs. They

use bootstrapping for each of their individual trees, and an ensemble process known as

bagging, which is mathematically defined as

f̂bag(x) =
1
B

B

∑
b=1

f̂ ∗b(x), (2.5)

where ∗b is the number of bootstrapped dss., and B is the total number of bootstrapped

dss.. In bagging, learners are grown independently, but RF enhances the randomization

of data available to each learner, by randomly subsetting features at each split of each

DT [54]. Bagging allows DTs to use the entire ds. on each learner but having different

perspectives on it, and feature subsetting avoids overrepresentation of features with many

categories, making these models usually perform better than DTs [54].

The other ensemble methods used in this thesis are Adaptative Boosting — better

known as AdaBoost —, Extreme Gradient Boosting — better known as XGBoost — and
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Light Gradient Boost Machine (LGBM). Unlike RF, they all use boosting, which is an en-

semble of weak learners — i.e., models intentionally underfit — where learner are grown

in succession, gives more weight to the misclassified samples [54]. Boosting is known for

its top performance in many dss., and AdaBoost became notorious in early data science

competitive scenarios [56]. It has less hyperparameters (hps.) so, it is easier to configure

than previous methods, and like all boosting methods, usually performs much better than

individual learners. As disadvantages, it is sensitive to noise, and it may become more

easily biased by irrelevant features than competing methods [57, 58]. XGBoost improves

on AdaBoost by adding automatic Feature Selection (FS), individual tree penalization,

proportional leaf nodes’ shrinking, a better method for solving the optimization prob-

lem — Newton’s method —, and it can take advantage of parallelized resources [57, 59].

Finally, LGBM is a competing method to XGBoost. Though it is technically similar —

despite differences in the method for split finding, and the ability to deal with categor-

ical variable without prior preprocessing —, it can leverage GPU resources, and several

heuristics, lead to much faster execution than XGBoost with equivalent results [60].

Another important modelling strategy experimented on during this thesis is Support

Vector Machines (SVMs) . Typically, used as classifiers, but, due to their algorithm ex-

ponential complexity, best suited for moderately sized dss.. They are classifiers robust

to outliers that have become known for their speed and high performance in classifica-

tion, especially in applications where NN used to be applied. Their robustness to outliers

stems from their base principle: SVMs and Maximum Margin Classifiers (MMCs) try to

find their DB by finding the furthest points from each classes’ centroid that are the closest

to other classes’ boundaries — known as support vectors [54]. Given that often there is

an intersection between the volumes where samples from multiples classes occur, so the

MMCs cannot provide a solution. SVMs consider a soft margin, where points of various

overlapped classes occur, and each of those points weights on the DB. In this way, out-

liers, having a boundary that only considers the points within the margin. This can be

mathematically described as:

maximize
β0,β1,...,βp,ϵ1,...,ϵn,M

M (2.6)
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subject to
p

∑
j=1

β2
j = 1,

yi

(
β0 + β1xi1 + β2xi2 + · · ·+ βpxip

)
≥ M (1 − ϵi) ,

ϵi ≥ 0,
n

∑
i=1

ϵi ≤ C,

(2.7)

where M is the margin’s width, C is an arbitrary tuning parameter, and ϵi is the slack vari-

able, controlling the number of points to intrude in opposite side of the DB [54]. SVMs

have a rigid assumption regarding their DB shape — which would be linear in the regular

case —, but they are more versatile than other methods given that kernel transformations

can be used to adapt to different DB shapes. Considering an SVM kernel with no trans-

formations is defined by:

K(xi, xj) = ⟨x, x′⟩, (2.8)

where K is the kernel transformation, ⟨⟩ is the inner product space operation, and x′ is

the derived feature set, in this case, without transformation, which produces linear DBs.

Quadratic boundaries can be achieved by using:

K(xi, xj) = e−
∥xi−xj∥

2

2σ2 , (2.9)

or any other polynomial DB by using:

K(xi, xj) = (γxT
i xj + r)d , (2.10)

where σ, γ and r are kernel parameters and d is the polynomial transformation degree [54].

SVMs become popular due to their versatility, allowing them to model complex CV and

Natural Language Processing (NLP) tasks — especially to their robustness while mod-

elling highly-dimensional dss. —, and Support Vector Machine (SVM) derivative methods

are still used since they achieve results comparable to NNs while having less parametriza-

tion effort, performing faster training and inference on moderately sized dss., [61] but

tend to have worse generalizability than NNs for the same volumes of data [54].

2.6.3 Artificial Neural Networks

Artificial Neural Networks (ANNs), most commonly referred as Neural Networks (NN),

are one type of ML model inspired by its biological counterpart. Given their ability to

model complex feature iteration and DBs, they are often used as alternatives to SVMs for
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CV and NLP tasks, and historically, their popularity increased or dwindled depending on

computing power and relative execution time to SVMs [54]. All types of Artificial Neu-

ral Network (ANN) mimic biological brains by emulating an aggregate of individual

units — artificial neurons or perceptrons —, but unlike natural neural networks where

the start portion is hard to assess, these networks have a start layer, input layer, several

ordered layers to which information is passed through, hidden layers, and a final layer

where the results are expressed and evaluated, output layer [52, 54]. The most common

layers in ANNs pass signals to all units of the next layer, forward propagation, and adapt

their function based on ground truth feedback, the back propagation mechanism [52].

These layered unit connections emulate the synapses and can connect to other parts of the

network depending on the architectural type used. Some ANN formulations can pass in-

formation in different orders as an attention mechanism — as in most NLP focused Long

Short Term Memory (LSTM) ANN —, they can pass information to reconstruction layers

several layers after the subsequent one — also in some types of generative models —,

they can feed the calculation of an aggregate function to be feed to earlier layers — as

in relational neural networks (RNN) — and various other architectural choices made to

improve performance and allow even greater flexibility from this modelling strategy.

While in biological NNs the signal is transmitted biochemically, either as an electric

signal mediated by ionic transfers or via more chemical signals — neurotransmitters re-

ceived by G-protein-coupled receptors —, in ANN the signal is transferred as numbers,

where the values are mediated in each of the graphs units — also called neurons or percep-

trons — and via their edge weights — equivalent to synaptic impulse response [52, 62, 63].

Considering ANNs are human made, their internals are well-defined. On a feed-

forward pass, signal passed to a single output is given by:

f (x) = β0 +
K

∑
k=1

βkhk(x), (2.11)

where K is the number of activations, X is the input tensor — or previous layer tensor —,

hk is the hidden layer function, β0 is the usual bias neuron added to each layer, and βk are

the weights of every other neuron in the layer [54]. The hidden layer function for each

neuron is given by:

h(k) = g

wk0 +
p

∑
j=1

wkjXj

 , (2.12)

where g(z) is an Activation Function (AF), w is the edge weight, k is the layer sorting
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number, X is the tensor, and j is the sorting number of the neuron within the layer [54].

Activation Functions (AFs) control which signals pass to the following layer [52]. Linear

activation, g(z) = z, is rarely used, since negative uncontrolled biases usually leads to

vanishing gradients — a condition where the signal flow stops and no further learning is

possible. The most commonly used AFs are the sigmoid function [54], defined as

g(z) =
1

1 + e−z , (2.13)

and the Recurrent Linear Unit (ReLU) function, defined as

g(z) = max(0.0, z) , (2.14)

although many other AFs are available [55]. By limiting values between 0 and 1, the

sigmoid function avoids drastic adjustments to weights that avoid progressively finding

a local minimum for the gradient — the function intended to be minimized to find the

best solution. The ReLU function avoids gradients to be transformed in 0 values in deep

NNs — deep as in having many layers [52]. The step function, is the simplest AF defined

as:

g(z) =


1 if z ∈ A

0 if z /∈ A
, (2.15)

where A is an a priori defined interval [55]. Other functions, such as hyperbolic tangent,

work a middle ground between the step function or as small variations of other more

common AFs [54].

Hidden layers are defined to acquire representations of the data at different scales,

or in special cases to emulate logical circuits that allow the design of special modelling

function [64].

2.6.4 Automated Machine Learning (AutoML)

The ML preparation process is complex, even with all modern tools that speed up the pro-

cess, it requires a fair amount of technical knowledge, and it is very time-consuming to

tweak and test all possible combinations to provide the best model, given any ds.. Making

a robust model requires: data preparation, record selection, NAs inference, column data

type detection, column intent detection – relevant for transformations, e.g., target/label,

stratification field, free text field –, feature engineering and selection, task detection, hy-

perparametrization, metrics selection, data leakage detection, ensemble creation and final
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model selection [65]. In extreme cases, it can extend to meta-learning, transfer learning,

pipeline section within time, memory and complexity constrains, results’ analysis and

creation of user interfaces and adequate visualizations [66, 67]. In this context, automatiz-

ing the process of creating a model, automated machine learning (AutoML), even if at a

cost of great computational time becomes highly desirable, given that technical expertise

and experts time to dedicate to each problem is limited [65, 68, 69].

Such systems have been incepted partially in one form or another from ML early days,

but it was with AutoWEKA that automated ML began by providing automation of the

combined algorithm selection and hyperparameter (hp.) selection of 39 classification al-

gorithms using Bayesian optimization algorithms to find solutions within the defined

time constrains [68]. This type of automated ML is often referred to as Generalized Ma-

chine Learning (GML) [65]. Auto-SkLearn continued the work started by WEKA [67],

and applied the same concepts to the SciKit-Learn library [70, 71], a modern ML library,

also used in this thesis for modelling all models but the ones requiring deep networks

with custom features — i.e., Convolutional Neural Networks (CNNs) —. Auto-SkLearn,

another GML tool, improves on Auto-WEKA by identifying instantiations of ML frame-

works that perform well on a new ds. and starting Bayesian optimization with them; by

automatically constructing ensembles of the models considered by the search space strat-

egy; and by designing a highly parametrized ML framework from high-performing classi-

fiers and preprocessors implemented in scikit-learn [67]. A development of this library,

released as Auto-SkLearn 2.0, improves on the first version by improving modelling on

big ds. performance, and by introducing the Portfolio Successive Halving (PoSH), which

reallocates more resources to promising pipelines to meet the goals within strict time con-

strains, and by automatizing optimization policy selection [72]. Both Auto-SkLearn 1.0

and 2.0 have the disadvantage of not being available for Windows OSes¸ . While these

libraries automatize the search for the best models with conventional ML purposes, and

they use some simple NN, they are not the most suited for search for complex NN archi-

tectures or deep NN exploration. Based on PyTorch, a mature and widely used library

for advanced deep learning, Auto-PyTorch focuses only on automating models based

on NNs [73], a subset of automated ML often called AutoDL [65]. As such it focuses on

tools that better parametrize this types of models — searching for new architectural de-

signs based on existing architectures —, it thrives where DL large amounts of data with

complex relations with the d.v.. Other tools of interest is AutoGluon, an automated GML
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tool that also has advanced DL features, and is much more versatile than the previous

one since it can handle image data, time series and multimodal models, that combine

simple two-dimensional inputs with tabular data [74]. H2O AutoML is another freely

available automated GML tool with limited DL capabilities — a part of H2O open-source

library [75] —, and formal reviews have highlighted its excellent performance and effi-

ciency in tabular data [65].

2.6.5 Convolutional Neural Networks (CNN)

CNNs are specially designed feed-forward NNs — i.e., without loops or recurrence —

that account for the spacial relation of data in the tensor they are encoded in, and for

that reason, they are useful while modelling all sorts of imaging data. They do so by

learning convolutional filters [52] instead of single weights. Convolution operations can

be expressed as

( f ∗ g)(t) =
∫ ∞

−∞
f (τ)g(t − τ) dτ , (2.16)

where the continuous function f is the main function and g is the filter, both usually

represented as discretized functions in the form of tensors, the symbol ∗ is the convo-

lution’s representation, and τ is the positional representation where the filter should be

applied. For strictly discrete functions — as it is the case in Convolutional Neural Net-

works (CNNs) —, the function can be expressed as:

( f ∗ g)[n] =
∞

∑
m=−∞

f [m]g[n − m], (2.17)

where n are positions to be calculated and m is the positional representation of the filter

[76]. These filters are smaller tensors that, through the convolution operation, produce a

resulting tensor with distinct results. Filters are commonly used in computer vision (CV)

tasks and image processing software has popularized many of these, such as the blurring

with the Gaussian filtering, edge detection using the Laplacian and Sobel filters, or even

with an aggregation of filters — such as the difference of Gaussians [77]. In the CNNs’

case, each convolutional filter is designed for each part of the input [52]. Individual con-

volution calculations can be considered a summarized image feature, so although CNNs

deal with complex data, no laborious feature extraction is to be conducted beforehand,

for them to produce results [52].

In a typical CNN architecture, four basic components are included: a local recep-

tive field, shared weights, pooling and fully connected (FC) layers, as in regular ANN.
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Several Convolutional Layer (CL)s are stacked with pooling layers and one or more fully

connected layers at the end of the network to form a deep CNN architecture [78]. Two-

dimensional CNN extract spatial features from input data while one-dimensional CNN

extract spectral features. By extracting both spectral and spatial features simultaneously

from the input volume, 3D CNNs can take advantage of both 1D and 2D CNNs architec-

tures. In 3D CNN, an extra dimension is added to the mathematical formulation of 2D

CNN as a CL can be mathematically defined by:

xℓi,j,k = ∑
a

∑
b

∑
c

ωa,b,cyℓ−1
(i+a)(j+b)(k+c) + βℓ, (2.18)

where xℓi,j,k is an input x as a three-dimensional tensor of size i × j × k where i, j and k are

iterators for each dimension, and ℓ is the hidden layer ordinal position of said CL, a, b and

c are the numbered parameters for each iterator, ωa,b,c is the weight w.r.t. the pertinent

iterator, β is the bias for that level, and the output function yℓ(i+a)(j+b)(k+c) corresponds to

f (xℓ(i+a)(j+b)(k+c)) [52, 78].

Although the convolution operation in CLs condenses information regarding a kernel

sized tensor of points, it is repeated almost as many times — or as many times if padding

is used —, so the number of parameters passed to forward layers can remain the same,

which is usually ineffective in terms of computing resources. Pooling layers are used

to reduce dimensionality of previous layers, and they correspond to a filter that usually

calculates either the average or maximum value with its confines and outputs it as a single

value. The entire tensor is recurred with this operation, using a step value — called stride

— that denotes how many cells are advanced on each iteration. The pooling layer new

dimensions are given by:

(iℓ, jℓ, kℓ) =
(iℓ−1, jℓ−1, kℓ−1)− (πi, πj, πk) + (1, 1, 1)

σ
, (2.19)

where π is the defined pool, and σ is the stride [52, 79].

Regularization layers are usually needed considering CNNs high potential for over-

fitting any given data. Regularization allows the network to be less sensitive to sampling

noise in the data — especially relevant when data is limited —; therefore, reducing over-

fitting and improving models generalizability [52]. This can be achieved with dropout

layers. These layers copy to themselves the previous layer, but drop — i.e., set to 0 —, an

arbitrary proportion of random units at each step of the training process; consequently,
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reducing the importance of some units on some steps, to make their effect temporarily

less important in the training process [52, 79].

Batch normalization is another important component in Convolutional Neural Net-

work (CNN) — and NN in general. Batch normalization normalizes values from a layer

— as codified in its respective tensor — by their mean and variance values. This is impor-

tant because NNs can converge faster when values are centred around zero, given AFs

usually assume the data fed to them has a Gaussian distribution [52, 78]. This allows set-

ting up higher Initial Learning Rate (ILR)s which further speed-ups finding convergence

close to a global minimum [78].

Although other modelling strategies, such as SVMs, can be applied with success in

imaging data [80], and NN are usually much less interpretable — i.e., understand the

relation between input data and output predictions — and explainable — understand

how the model processes information, and what each of its trained parameters means —

than other ML alternatives, they can be parametrized to become more flexible to input

data, and therefore, to be able to adequately model more complex problems. This is one

of the reasons complex tasks involving images usually use DL models extensively, as the

recent advances from OpenAI with DALL-E 2 [46] or Google Parti [48]. This flexibility has

to do with the fact NNs behave as logical circuits [64] — hard to decode logical circuits

nonetheless — and can be hyperparametrized by architecture engineering to emulated

virtually any function [82, 83].

2.6.6 Training

After the CNN’s architecture is defined, the model is trained with the typical NN proce-

dure. This is an iterative process using one of various types of gradient descent [52]. The

gradient is the first derivative of function that operates in a tensor of at least two dimen-

sions [84]. The objective of gradient descent optimizers is to minimize a cost function,

evaluating the change in the tensor that represents the cost function and, depending on

the cardinality and magnitude of the calculated loss, adjust via back-propagation an ap-

propriate correction to the weights and biases of all former layers before processing the

next step in the training process [52]. 3D CNNs most commonly used loss function is

categorical cross-entropy (CCE) [78], since Mean Squared Error (MSE) is mostly used in

regression analysis. CCE can be calculated as:
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CCE = −Σtilog(si) , (2.20)

where ti is the iterator corresponding to the ground truth and si is the predicted prob-

ability vector [52]. Gradient descent optimizers use heuristics to find their optimum

value, since usually the gradient is not perfectly convex, the training set size may not

fit into memory and the parameters defined for the search — such as ILR — are usually

approximations to the perfect settings to be defined, which would make the problem of

ascertaining a direction to be taken an intractable problem [52]. Calculating the loss func-

tion for images is a memory intensive process, so, usually this is done in mini-batches —

i.e., subsets of the whole training ds. that, as a whole, can fit into memory available in the

equipment to be used during training —, a heuristic referred to Stochastic Gradient De-

scent (SGD). Considering that stochastic nature, proper parametrization is key for good

performance, and batch size should be as large as memory permits and the ILR should be

selected with care, since large values can constantly pass over global minimums and ex-

cessively small values make the algorithm take too long to reach a good solution [52, 78].

Another popular optimizer is Adam that evolves the concept of SGD by adding adapta-

tive momentum, the reason for its name. Momentum makes the gradient descent vector

to have influence in subsequent updates — therefore similar to momentum in physics —,

and it is able to update momentum at the end of each epoch. This is particularly important

for extremely noisy gradients [85], as it is the case when modelling imaging data.

While training, each neuron uses convolutional filters that can take inputs shared with

other neurons, as defined by

I ∗ Kx,y = Σ1
i=−1Σ1

j=−1 Ix+i,y+j ∗ KS+i,S+j , (2.21)

where I is the input tensor, x, y are input coordinates, K the filter, i, j offsets to the filter’s

centre, and S the filter’s size minus one [86], if stride is smaller than S. Given imaging

data dimensions, each neuron learns very localized local data from the previous layer,

that, when combined with enough data and adequate data augmentations, enables shift

invariant representations of the data [54].

ANNs can continuously improve their adjustment to the data until they converge,

and since they can map out extremely complex functions, they can converge when all

training data is perfectly adjusted. Usually when models are tested in validation or test

sets, they perform considerably worse, implying overfitting [54]. A model should be
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trained while it improves validation and test scores, and stop training it when this is no

longer the case. Early stopping mechanisms can control this in various models, such as

NNs and DTs, acting as a regularization technique [52]. Early stopping is an imposed

condition for the model to stop trying to minimize the loss function once the valida-

tion metrics do not improve more than a set value, or for a certain amount or training

epochs [79].

Transfer learning is an ML method where an algorithm’s learning product can be used

to warmstart the learning of a second related task, accelerating it. This happens because

parts of the network may be trained to discern common partial patterns [87].

2.6.7 Metrics

Metrics are needed to evaluate each model, to assess the fitness of a model to a function,

and to compare performance with previous models [88]. The F1-score keeps this balance

as a harmonic mean, as defined by:

F1 = 2 · precision · recall
precision + recall

(2.22)

When applied to segmentation task and calculated as a measure of pixel overlap of all

samples, the same formula is referred to as Sørensen–Dice coefficient or Dice similar-

ity coefficient (DSC). The weighted F1-score gives weight proportional to the predicted

class proportion. Given it is more important to correctly evaluate cases excluded from

treatment, and there is slightly more cases with bad outcomes, weighted averaging is

more adequate than macro averaging, which balances class representation by increasing

minority class weight [88].

Accuracy (ACC) represents the proximity of the measurement results to the true value.

It is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
(2.23)

Balanced accuracy is more adequate when class imbalance is present and extends the

concept of accuracy by averaging recall across predicted classes [89], so when possible

weighted version of it and F1-score were used.

Calculation of all relevant binary classification metrics can be consulted in table 2.1.

While absolute metrics indicate how the models perform in a given test set, they do not

show how the models fail to classify some samples. Models can have rigid assumptions

— as the models with linear boundaries previously mentioned —, and therefore they are
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TABLE 2.1: List of main classification metrics and their calculation method.
Note that specificity is also known as True Positive Rate (TPR), and sensitivity is also

known as True Negative Rate (TNR). Table retrieved from Pereira et al. [90].

less prone to overadjust their function to the ds. they encounter — they have a high bias.

This can be an advantage, since when modelling one wants to obtain the base principles

that distinguish multiple class, so high bias models have a lower tendency to overadjust

to noise in the data, a condition denominated overfitting. On the other hand, supposing

the distinction between classes is better represented by a quadratic function — a more

complex DBs —, a linear boundary does not capture well enough the complexity required

by a good model. It underfits the data [54]. Every time a model is parametrized to reduce

overfitting, by making the model have more rigid assumptions or by simplifying its

output, it increases its underfitting potential. If a model is parametrized to reduce its

underfitting to the data — e.g., by increasing the depth of a decision tree —, it is more

prune to capture noise in the data, and, therefore, overfit. Overfitting makes the model

change its DBs more markedly with different observations, a characteristic called model’s

variance. To achieve the best results one has to evaluate which bias-variance trade-off is

best suited for the data at hand [54].

Regularization methods such as dropouts, data augmentation, and early stopping can

improve a model’s generalizability without seriously impacting training performance [52].





Chapter 3

State of the Art

3.1 Outcomes’ Predictive Modelling

Prognostic risk scores using patient’s characteristics to predict functional outcomes in

AIS patients are of increasing importance for clinical management decisions [12], since

common treatment options — such as thrombectomy — have non-negligible associated

risks [13, 14, 91]; assessment of cost-effective procedures helps health unit and the pa-

tient’s resource management [16]; and, the patient and their family appreciate informed

predictions on treatment outcomes [92]. There are numerous previous studies on this

field, but few have modelled AIS outcomes for CHUP reality. Commonly used AIS out-

come models include ASTRAL [93], a useful model since it uses only six features readily

available in any patient’s admission: age, NIH Stroke Scale, time from onset to admission,

range of visual fields, acute glucose, and level of consciousness; DRAGON score [94],

used to predict 3-month outcomes for patients engaging in thrombolysis;

THRIVE score [95] uses age, NIHSS, and the previous history of atrial fibrillation, hy-

pertension and diabetes mellitus to predict the 3-month outcome. Other widely used

publicly available models include MR PREDICT [96], which includes ASPECTS infor-

mation and other radiological information, or have been extended to include it, such as

the MT-DRAGON [97], mHIAT [98], HIAT 2 [99], or mTHRIVE [98]. Based on the data

collected on the patient, the stage of patient’s admission, and predictive accuracy, one of

these models may be preferred to others. However, all these models were created on for-

eign ds., that may have factors influencing their cohorts not accounted for in the model,

and, depending on the model characteristics and differences between the training cohort

27
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and the one where the model is applied to, may require calibration for optimal applica-

bility, since poorly calibrated algorithms can be misleading and potentially harmful for

clinical decision-making [100]. Examples of AIS outcome modelling calibrated for the

Portuguese reality, include the study from Monteiro et al. 2018 [101], which creates pre-

dictive models for AIS outcomes, considering good outcomes as mRS ≤ 2 — like this

thesis, and comparing common ML strategies with ASTRAL, THRIVE, and DRAGON —

public state-of-the-art models to predict AIS outcomes. A recent biomarkers’ study in-

cepted in Centro Hospitalar do Porto (CHUP) by the neurology team assesses biomarker

association with AIS outcomes, and models they present as an outcome predictor [102].

These previous studies and resulting models use a limited array of predictor features,

which is convenient for widespread usage, but may miss important information for ac-

curate inferences. The more features required, the less generalizable the model becomes.

In this thesis, to allow a malleable number of features collected, models were created

with different feature sets and their performance compared among them, so importance

of specific data collection for outcome prediction can be learnt, and only then, statistical

feature selection was performed. However, added features incur in potential costs, data

collection time and data insertion time, so parsimony should be considered in the neurol-

ogy domain, and was taken into account when selecting models. These improved models

may help reduce cost and speed up decision-making processes, if certain clinical analysis

are shown not to improve inference. Yet, this may reveal new chemical biomarkers and

Imaging Biomarker (IB)s of importance for an accurate prediction, which may suggest

their inclusion in standard clinical protocol.

3.2 Classification on 3D Medical Imaging

Cui et al. implemented in 2021 a 3D CNN classifier based on Inception NN using dif-

fusion weighted images, which they denominated as DeepSymNet-3D-CNN [103]. Cui

et al. adapted the Inception architecture by replacing its 2D convolutional and pooling

layers by their 3D counterparts, and each volume was divided in halves and analysed in

the first portion of the CNN as a single half, with each side having separate weights [103],

since the vast majority of strokes present stroke lateralization [104] and because in con-

junction with lateralization information, allows the network to discern between halves

with lesions and strokes without lesions. With only 190 cases, Cui et al. achieved accuracy
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of 0.85 and AUC scores of 0.86 ± 0.04 [103]. Their NN fared better than a simple conver-

sion of MedicalNet to the classification task — a transfer learning tool designed to help

implement medical segmentation using 3D models pre-trained on large dss. [105] , which

only achieved 0.71 ± 0.05. This paper shows the importance of proper weight initializa-

tion to achieve good results, suggests that analysing brains as two separate hemispheres

improves performance, the benefits of Inception architectural considerations and proper

regularization techniques [103]. As of February 2021, Lo et al. published findings on a

2D CNN model trained with 1244 NCCT slices and using AlexNet pre-trained weights it

achieved AlexNet achieved an accuracy of 0.97, a sensitivity of 0.98, and a specificity of

0.96 on lesion detection, demonstrating once more the importance of proper weight ini-

tialization [106]. Ertl et al. in 2022 has shown the importance of using adequate radioden-

sities windowing while training medical CNNs, and they were to achieve predictive 0.89

accuracy and 0.93 F1-scores on the presence of brain hyperdensities in post-thrombectomy

NCCT trained on 241 samples [107].

3.3 Segmentation on 3D Medical Imaging

Considering that 2D dss. and applications are older, more widespread and more modest

in computing requirements, much of CV research from the past decade using DL is done

on 2D CNNs.

Lesion segmentation is a relevant application, but AIS feature extraction is challeng-

ing due to the complex characterization of an ischaemic lesion and possibly small relative

size. DeepMedic is a state-of-the-art tool to help in the training and creation of 3D CNN,

especially designed for medical imaging segmentation [108]. This tool was successfully

used to win several international neuroimaging competitions such as ”Ischemic Stroke

Lesion Segmentation Challenge” (ISLES) [109], or the ”Multimodal Brain Tumor Seg-

mentation Challenge” [108, 110]. However, these tools that simplify the creation of robust

models, still rely on large quantities of high quality annotated data to train their dss..

Other projects solved this problem with attention mechanisms and curriculum based

systems. Attention mechanisms save weight update information for each element of the

sample, and portions with higher weights get further attention. This weighting is used in

subsequent NN updates to focus more resources on regions of a sample — in this case,

spatial attention selects data points in the image [111]. Curriculum based learning is a

way to select subsets of the training data to be learnt by the NN, starting by training the
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network on easier to classify samples before moving to increasingly harder, usually done

by analysing how samples’ classification confidence in an initial training and using that

score as the sorting function of samples for the full NN [112]. By creating an attention

guided curriculum learning pipeline where the tumour is roughly segmented and cre-

ates the samples curriculum, then the segmentation results are passed to a second NN

that dilates the segmented area, and finally the results are passed to another segmenta-

tion network that refines the dilated segmented area using the curriculum order, Zhou

et al. improved Dice scores, reduce training times and the overall number of parameters

on their innovative NN architecture, which they referred to as One-Pass Multi-Task Net-

works with Guided Attention [113]. By combining 2D, 2.5D and 3D samples, Milletari

et al. achieved better segmentation results on a brain tumour segmentation challenge

with Dice scores of 0.91 [114]. Sato et al. also used an efficient anomaly detection strat-

egy relevant to this thesis. They used autoencoders to produce normal brains and detect

infarction areas by comparing erased portions with their reconstruction. This method

achieved a sensitivity of 0.68 and a specificity of 0.88 [78]. Another work by Olli et al. us-

ing CTA to segment stroke lesions achieved Dice scores of 0.61, and has shown improved

performance when lesion lateralization information was included in the model [115].

3.4 Thesis framing

Models using both human decoded Imaging Biomarkers (IBs) and without them have

been found to model AIS outcomes and have been referred in their own section. Using

raw imaging data both for feature extraction and direct modelling is a more recent devel-

opment. Only in August 2022, Tolhuisen et al. published on Diagnostics an AIS outcome

prediction method using autoencoders on diffusion weighted imaging [116], similar to

the method Sato et al. created, as described on a literature review [78]. It is the study

that most closely relates to the CV work done on this thesis, but it is meant to be a post-

treatment model, using considerably different topologies, and it is not trained on cheaper

and most readily available NCCT scans. Although many of these papers used methods

that can be replicated on personal computers with commercial GPUs, most state-of-the-art

research referred previously was done in dedicated clusters.
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Material

4.1 Data description

Clinical, biomarker and imaging data provided for this thesis were collected under the

BioStroke Project for ML purposes. It is composed by three main dss.: one with clinical

and bureaucratic data, one with biomarkers data and one with neuroimaging data. The

imaging database was provided by CHUP, being compiled by the thesis’ author under the

guidance of João Pedro Filipe and Ricardo Varela.

Clinical data included demographic, co-morbidities, prior medication, clinical evalu-

ation at arrival — including NIH Stroke Scale and modified Rankin Scale —, and infor-

mation on patient’s admission. This ds. corresponds to a cohort of 274 patients with large

vessel occlusion, from a total pool of 563 stroke code activations. After triaging relevant

records, 152 cases were kept, as shown in figure 4.1. The biomarkers datasets also refers

to the same cohort which was selected as in the previous ds. and all entries were used the

study’s primary key. It contains FBC data, clotting report, and biochemical analysis of

biomarkers relevant to the thrombectomy, all of them taken on patients’ admission and

after thrombectomy was performed. A custom OCR implementation based on tabula li-

brary was produce to help with manual data digitization, but the dataset was delivered

for analysis with all records from the selected cohort due to time constraints. These dss.

are described in table A.4, A.5 and A.6. There were 79 records on admission and 126

cases on follow-up.

The neuroimaging dataset was composed by radiographies in DICOM format from

each patient of the study, stripped of all personally identifiable metadata. At admis-

sion, either to the first hospital, or at arrival in the reference hospital that performed
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FIGURE 4.1: Cases-cohort selection flowchart from the existing BioStroke dataset.

the thrombectomy, NCCT scans of the patient, and CTAs were taken, and, if available,

pCTs as well. Along with this imaging data, follow-up data was also retrieved by adding

follow-up NCCTs taken after thrombectomy. Neuroimaging data was retrieved manually

from the SECTRA front-end.

Unlike the clinical and biomarkers ds., for the imaging ds. only the relevant records

were retrieved — for the 152 patients selected for thrombectomy —, which included 174

NCCT before thrombectomy, and 141 NCCTs after thrombectomy. CTAs and pCTs were

preprocessed and QC’ed but not used during this thesis. Only

pre-thrombectomy NCCTs were analysed during this thesis.

4.2 Computing environment

4.2.1 Hardware

For most programming tasks without a need for raw computing power, a laptop equipped

with 16GB of system RAM, an AMD Ryzen 7 3550H CPU, and an NVIDIA GeForce GTX

1650 Mobile with 4096 MB GPU was used. Running in tandem in long experiments —

especially for DL and CV tasks exploration and training tasks —, a laptop equipped with

a 16GB of system RAM, Intel Core i7-10870H CPU, and an NVIDIA GeForce RTX 3070

GPU with 8192 GB of VRAM was used. Occasionally, while private laptops were busy

on long operations, Google Colab cloud services on GPU mode was used to test function

tweaks or test online code on synthetic or public dss..
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4.2.2 R programming language

For most data exploration, data preprocessing and data wrangling operations, R lan-

guage was used, since many packages are well-developed in this field, and their libraries

enable fast data exploration and data manipulation without excessive code burden. R

version in use was 4.0.3 [117], while the integrated development environment used was R

Studio version 1.4.1717 [118]. Non-standard libraries required for the analysis mentioned

or implied in this thesis are:

• DataExplorer [119]

• GGally [120]

• ggplot2 [121]

• ggpubr [122]

• ggthemes [123]

• gtsummary [124]

• lubridate [125]

• MASS [126]

• NAGuideR [127]

• readr [128]

• readxl [129]

• rpart [130]

• rpart.plot [131]

• rstatix [132]

• tidyr [133]

• tidyverse [134]

4.2.3 Python programming language

The main modelling tasks were conducted in Python, because most state-of-the-art and

up-to-date libraries for ML, deep learning (DL) and computer vision (CV) had no ad-

equate alternatives on R. Python ML state-of-the-art libraries are coded on for this lan-

guage, such as Sci-Kit Learn [55], Keras [79], PyTorch, and all derivative libraries that use

them as a basis, such as Project MONAI [135], AutoSkLearn [72], AutoPyTorch [73] and

AutoGluon [74], all of them greatly expanding modelling possibilities and accelerating

the workflow significantly. Depending on the required libraries for a specific modelling

task or program to be used, versions of Python [136] ranging from 3.6.0 to 3.8.5 were

used, mostly interfaced through Jupyter notebooks [137]. Several libraries and differ-

ent Python version in use for various tasks are incompatible, so management of several

environments was done through Anaconda version 2.4.0 [138]. Most coding is operat-

ing system agnostic, but, at the time of writing, some notebooks include packages only

available for Linux, most notably hyper-parameter tuning libraries, AutoML libraries and

some libraries that enable GPU optimized operations. The list required to produce all the

Python code created for this thesis is:
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• autorank [139]

• autosklearn [72]

• cuda [140]

• imblearn [141]

• joblib [142]

• keras [79]

• keras-tuner [143]

• LightGBM [60]

• matplotlib [144]

• nibabel [145]

• numpy [146]

• OpenCV [147]

• pandas [148]

• RAPIDS [149]

• scikit-

posthocs [150]

• scipy [151]

• seaborn [152]

• sklearn [70]

• talos [153]

• tensorflow [154]

• tensorboard [154]

• volumentations [155]

• xgboost [59]

4.2.4 Other requirements

Linux is required for neuroimaging preprocessing and for some notebooks that explored

libraries exclusively on Linux, such as autosklearn [72], or RAPIDS [149] — a library that

leverages GPU resources for computing intensive operations —, and FSLTools, a versatile

neuroimaging command line processing tool [156].



Chapter 5

Methods

5.1 Data preprocessing

5.1.1 Clinical Dataset

The ds. contained 274 cases. 152 were selected by only including patients that received

treatment — which excluded 81 patients — and that treatment included thrombectomy

— which filtered a further 41, as seen in figure 4.1. Fields with high proportion of missing

values (NAs), derived features, or no variability were removed. Some fields with non-

validated clinically data were also removed. NIHSS after treatment and at discharge as

after thrombectomy variables were also removed. Remaining NAs have to be imputed

or discarded by case removal before modelling, so they do not crash some algorithms,

nor are sub-optimally imputed by them. Missing times related to onset were imputed

by calculating the median time difference between recorded times on arrival to first hos-

pital and reported onset times. All field with separate time and date information were

combined into a single field containing date and time information, removing formerly

separate fields. After this triage, all fields with no variability and binary fields with less

than three cases in the minority class were removed, since they do not have enough sam-

ples to generalize well, and would likely increase models’ overfitting. Two NAs in other

medication were imputed by creating a DT using only previous co-morbidities and the

patient’s medication data. After this, the ds. contained no NAs for the selected of 152

cases. All remaining intermediate derived fields were removed. Fields that could bias

multiple comparison corrections were removed from statistical analysis. The final ds.

contains a slight class imbalance with 87 cases classified as bad outcomes, 57.2%, and 52

cases classified as good outcomes, 41.8%.
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5.1.2 Biomarkers Dataset

Biomarkers ds. was retrieved from BioStroke’s patients blood work and biochemical anal-

ysis conducted upon admission and patient’s follow-up. On this ds., part of the pre-

processing was done directly on the provided spreadsheet, given this database was still

in work-in-progress state. After clean up and standardization, the database was saved

as new spreadsheet that was used in a formal pre-processing pipeline, done in R. In the

biomarkers ds., only biomarkers data is considered relevant, so hospital of arrival in-

formation was removed as well as dates and times, except FBC and biochemistry times-

tamps. Finally, mRS outcome was added from the clinical ds. by cross-referencing data

between datasets. The high number of NAs makes this ds. challenging for modelling,

given imputations on NAs can heavily distort the data — e.g., by replacing NAs by zeros

when random values are missing at random. However, with such a great number of NAs,

more sophisticated imputation techniques also fail, since they do not have enough data

to create good enough models for imputation. To solve this issue, compromises had to be

accepted, but several efficient imputation techniques were tested to keep as much data as

possible, and keep imputation bias minimal.

First, FBC quantification often lacked either the percent value of a blood cell type or

its raw quantification, but leucocytes quantification was usually present if the patient had

data available. First, using the formula:

NLL ratio =
[Neutrophils] + [Lymphocytes]

[Leucocytes]
, (5.1)

leucocyte data was QC’ed for each FBC set — at admission and at follow-up — and the

global average, NLL ratio, was calculated. With this indicator, leucocytes, neutrophils

and lymphocytes were QC’ed and absurd or missing values with full component infor-

mation were corrected with their sum. The remaining erroneous or missing leucocytes’

quantification usually had neutrophil and leucocyte quantifications, important for calcu-

lating an important clinical biomarker, the Neutrophil to Leucocyte Ratio (NLR). Con-

sidering there are other leucocyte types in the blood — e.g., Monocytes, Eosinophils, and

Basophils —, [Leucocytes] was imputed using:

Leucocytes =
[Neutrophils] + [Lymphocytes]

NLL ratio
(5.2)
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Then all NAs in the remaining component concentrations were imputed as:

[Leucocyte type] =
TLC × LTP

100
, (5.3)

where TLC is total leucocytes count, LTP is the specific leucocyte type percentage. This

NAs calculation was followed by missing LTP imputations with

Leucocyte type% =
[LTC]

TLC × LTP
× 100 , (5.4)

where LTC is each leucocyte type count.

All Neutrophil-Lymphocyte Ratios (NLRs) were then recalculated, correcting or im-

puting any missing record. The modelling d.v., mRS at discharge, was binarized with

the outcome criteria as mRSat discharge ≤ 2 set to 0. FBC and biochemistry timestamps are

paired with no difference between both fields, so they were imputed using the value filled

in. When that was not possible, the average difference between FBC timestamps at arrival

and follow-up, 28.9 hours, was used to make adequate imputations.

The ds. was split between admission and follow-up data to improve missing data

profiles. B-type Natriuretic Peptide PROmotor Hormone was removed from Biom0h and

Biom24h, as well as Homocysteine from the Biom24h, since they still had nearly 90%

NAs. At this point, rows with no biomarkers’ data were removed leaving Biom0h with

79 samples — of which 22 complete records — and Biom24h with 126 — of which 64

complete records. NAs profiles can be seen in figures A.5 and A.6.

At this point, and before adding imputations via modelling — which can add dis-

tortions —, descriptive and statistical analysis was done on both dss.. Data analysis

is shown in figures 6.8 and 6.11. To salvage most records with valid information for

modelling and to keep most of the ds., NAGuideR [127] was used to apply and test

several strategies to impute all remaining data in the dss.. NAGuideR was configured

to not make data transformations, discard fields nor samples based on their percentage

of NAs, nor their coefficient of variation, to keep as much original data as possible.

The following imputations were done: zeros (zero), overall minimum value (min), col-

umn median (rowmedian [157]), row median (rowmedian [157]), and deterministic mini-

mal value (mindet [158]); global structured methods such as: singular value decompo-

sition (svdmethod [159]), and Bayesian principal component analysis (bpca [160]); and

with the following local similarity approaches: k-nearest neighbour (knnmethod [159]),

quantile regression (qrilc [158]), iterative robust model (irm [161]), and random forest
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model (MissForest). Imputed dss. were evaluated with the available classic criteria only

— Normalized Root Mean Squared Error (NRMSE), NRMSE-based sum of ranks (SOR),

Procrustes Sum of Squared errors (PSS), and Average Correlation Coefficient between

Original value and Imputed value (ACC OI). MissForest (a.k.a., RF on NAs, as a Ran-

dom Forests-based method [162]) was shown to be the best for all metrics but ACC OI,

in which it ranked as the second-best imputation strategy. Imputations with variable me-

dia (rowmin) were the second-best set of imputations in all criteria, and all metrics ranked

worse than MissForest imputation. Both these four complete dss. — via imputations —

were used to model the biomarkers ds..

5.1.3 Neuroimaging Dataset

FIGURE 5.1: Orthogonal projections of an NCCT without registration as viewed on
Mango [30], on the left; and the same CT scan after the registration and deskulling pro-

cess, on the right.

Before further preprocessing, all CT scans in DICOM format were reviewed, confirm-

ing the absence of personally identifiable metadata, and remove CT scans that fell out of

the scope of work, have low quality, or were repetitions of the exam at the same times-

tamp. Files were then converted from DICOM format to NifTI format, to reduce image

size, make file structure human-readable and to make individual CT scans easier to in-

teract with other available tools. NIFTIs were named with the BioStroke patient key and

metadata regarding time of capture, as well as CT type description — i.e., NCCT, CTA or

pCT —, if available in the metadata. As recommended [38], files were defaced, deskulled

and registered using a custom pipeline based on FMRIB Software Library — and neu-

roimaging library specialized in MRI analysis, but that can be configured to work with CT

scans [156] — as exemplified in figure 5.1. Before deskulling, the radiodensities dynamic

range was clipped using an extended brain window. Registration was done using one
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BioStroke sample with no interferences, full brain capture, good positioning and high res-

olution NCCT. That sample was further cropped and realigned to have perfect alignment

with natural axis. Registration process normalized position, orientation, rotation and size

in all three axis. The model for registration used elastic local adjustments, so that each

brain region’s shape and size variation is minimal, but the process did not show perfect

results in this regard. Finally, after registering all files were verified one by one to confirm

the registration process did not cause unreasonable distortions to the original CT, and af-

ter assuring the CT type is the one in the description, they were stored as three separate

dss.: NCCT ds., CTA ds., and pCT ds..

5.2 Statistical Analysis

On all tabular dss., descriptive and statistical analysis was conducted to better illustrate

data, assess the cohort limitations, and range of application of the proposed models. This

analysis was automated with the help of gtsummary [124]. Each feature data types were

defined manually since gtsummary selects tests based on continuous, categorical, and log-

ical variables, as well as the number of independent classes to consider — in our case two

outcomes. Parametric or non-parametric tests are selected automatically, depending on

the feature distribution characterization. For logical and categorical features, the percent-

age of true on each class is shown, and the test performed is the Pearson’s Chi-squared

test; for categorical variables where the Chi-squared test individual predictions are be-

low 5, Fisher’s exact test with Freeman-Halton extension was used; for continuous vari-

ables, features were described by median and Inter Quartile Range (IQR) — given that

no variable tested positive on the Shapiro-Wilk’s test for normal distributions —, and a

Wilcoxon rank sum test, better known as Mann-Whitney’s test, was performed [163]. The

number of tests conducted on each ds. creates the multiple comparison problem, where it

is likely that some Statistically Significant (stat. sig.) tests at a significance level of 5% are

significant only due to chance [164], so, adjusted p-values were calculated using Holm-

Bonferroni correction, as a uniformly more powerful alternative to the more common

Bonferroni post hoc test [165]. The post hoc test was applied only to groups of variables

inside the same ds. and time, that is, a group with all the clinical variables at arrival and

the imaging biomarkers, another group with biomarkers analysis ds. at arrival; and the

last group with biomarkers ds. on follow-up.
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5.3 Clinical Data Modelling

5.3.1 Data preparation

After preprocessing clinical data and preliminary data analysis through an R pipeline, the

triaged and processed data was loaded into a Python notebook. Preliminarily, data to

be fed to models was QC’ed by verifying NAs. After confirming the ds. was complete,

a principal component analysis (PCA) was conducted to evaluate the best FS strategy.

For each set of chosen clinical data features, data was loaded into a Python framework,

classifying each feature as: category, boolean integer, or float point fields. Numeric vari-

ables did not show relevant outliers, so all cases were kept, as seen in tables 6.1, 6.2 and

6.3. For feature transformation purposes, age, mRS before event, NIH Stroke Scale, time

difference in minutes from onset to the first hospital, to the first CT and to the second

hospital were considered numerical variables and were rescaled using a MinMaxScaler

algorithm. Boolean variables were binarized and categorical variables were converted

with dummy encoded by parametrizing OneHotEncoding. Despite irrelevant variables and

collinearity issues with the data, most variables were added to the modelling in a first

stage, since some models handle better than others these issues.

5.3.2 Testing

The ds. was split in training, validation and test sets. Using the definition provided by

Brian Ripley in ’Pattern Recognition for Machine Learning’.

– Training set: A set of examples used for learning, that is to fit the parameters

of the classifier.

– Validation set: A set of examples used to tune the parameters of a classifier,

for example to choose the number of hidden units in a neural network.

– Test set: A set of examples used only to assess the performance of a fully-

specified classifier. [166]

From the initial ds. 20% samples were randomly selected for the test set. For model se-

lection, 10-fold stratified repeated cross-validation was used. Non-nested

cross-validation was used, so the model metrics shown for cross-validation are the ones

obtained while looking for the best model. Given the model selection is optimizing for a

metric, the metrics obtained this way are optimistic. One solution would be to use nested
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cross-validation or accept the performance on a separate ds.. Given that on average the

difference between nested and non-nested cross-validation is below 2 percent [167], and

search and evaluation time increases exponentially, nested cross-validation was not used.

The metric selected for search was weighted F1-score, while the intended testing and com-

parison metric is the AUC score. Finally, the parametrized models were evaluated with

ROC curves on the test set to assess their general performance is within error confidence

intervals obtained in cross-validated validation scores.

5.3.3 Model selection

An array of classifiers strategies of interest was chosen, including linear based methods

such as LR, Linear Discriminant Analysis (LDA), and linear SVM; decision-trees based

methods such as single DTs, Random Forests (RF), AdaBoost, XGBoost (XGBM) and Light

Gradient Boosting Machine (LightGBM) classifiers; Bayesian methods represented by

the GNBC — for testing purposes only, given several variables do not follow the nor-

mal distribution —; lazy learning methods represented by k-Nearest Neighbours (k-NN)

strategy; SVMs with different kernel transformations; Quadratic Discriminant Analy-

sis (QDA); and NNs represented with the fully connected networks, the Multi-Layer Per-

ceptron (MLP) available on Sci-Kit Learn. Before training, a global random generator seed

was set and for each model, the hp. was also internally added.

Several manually tailored Grid Searches (GSes) were conducted guided by previ-

ously found hps., where each time a range limit value was selected, the next Grid Search

(GS) would be adjusted so the extreme value would become a median value in the next

GS, following Bayesian search principles. After finding the main models for each mod-

elling strategy, modelling strategies were compared by the average metrics calculated on

cross-validated results.

5.3.4 Performance metrics and statistical model comparison

During model selection phase, weighted-F1 score was chosen for model selection. The

positive class was selected as the bad outcome — the ones rejected for thrombectomy.

Accuracy, balanced accuracy, and Area Under the (ROC) Curve (AUC) where also calcu-

lated and checked to assure the model performed consistently in all relevant metrics. All

metrics were calculated and stored for each cross-validation set. A classification report,
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which calculates precision, recall and F1-score, macro- and weighted-averaging separated

by predicted class was also performed.

Statistical model comparison was done by performing a Friedman’s test on the list

of AUC cross-validated scores from the best model of each modelling strategy. AUC

score was the main model evaluation metric. It is calculated from the Receiver-Operator

Curves (ROC) and has the advantage of summarizing those curves under a single met-

ric [54]. When this test rejected the null hypothesis, multiple models’ comparison was

done with a Nemenyi post hoc test [168], conducted on the same AUC scores matrix.

Models that distance themselves less than the critical distance were considered not stat. sig.

different and were grouped together. The group of models that performed the best was

used in further analysis, after the initial survey on the base clinical ds..

5.3.5 Automated Machine Learning (AutoML)

The clinical ds. was passed to AutoSkLearn, testing both version’s strategies: the base

version — using meta-learning to warm-start the Bayesian optimization, followed by en-

semble creation —, and version 2.0 strategy, which expands the first version with Portfolio

of Successive Halvings — a way to select test groups of models with increasing resources,

such as number of samples, iterators, etc. —, early stopping unpromising tests, and by

automatically selecting the search policy based on the information learned from the ds..

The models were run for the same time as the total time of the last manually constructed

GS and compared against all base models preceding it.

5.3.6 Feature Selection (FS)

A study on each tabular ds. was conducted after the best models were found. Consider-

ing the top two or three hyperparametrized models were selected. For each of them the

Hughes Phenomenon (HP) [169] was studied, recurring the model’s training with in-

creasing number of features, selected by their ANOVA F-values between label/feature

for classification tasks. The previous pipelines were rerun for every ds., trimming the fea-

tures by the value recommended by FS analysis, and when metrics improved, these new

models were considered final.
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5.4 Tabular Data Augmentation

This work involves the processing of three different dss., two tabular and one 3D image-

based, so different methods were applied. For tabular data, synthetic data can be pro-

duced with a special interpolation method, usually applied to dss. with high class imbal-

ance, the Synthetic Minority Over-sampling Technique, better known as SMOTE [170].

Several SMOTE variants, which improve on special types of dss., and try to better gener-

alize SMOTE fields of application were test [171].

TABLE 5.1: The top performer oversamplers ranked by the combination of all scores. Be-
sides the combined ranking, the aggregated values of the measures and the correspond-

ing ranks are also reported. Table retrieved from Kovacs et al. 2019 [171].
.

In a first step, a comprehensive review on SMOTE variants was made [141, 172, 173].

This review has shown the most reliable method for minority oversampling and data aug-

mentation is polynomial-fit-SMOTE [174], as shown in table 5.1 [171].

polynomial-fit-SMOTE is incompatible with existing conda environments, so, a study us-

ing SMOTE variants and undersampling methods available in the imbalanced-learn

library was done. For standardization, the most suitable candidate from a combination

of oversampling and undersampling methods was found by creating pipelines with var-

ious oversampling and undersampling techniques in various sorting orders and calcu-

lating the mean True Positive Rate (TPR) and mean False Positive Rate (FPR) with which

the AUC score was calculated, the best performing combination was tested by just balanc-

ing the dss. and by oversampling the ds. up to 200 samples per class. For every relevant

tabular ds. combination, SMOTE variants data balancing techniques and augmentation

were analysed.

5.5 Biomarkers Data Modelling

Part of the search for successful strategies was narrowed down, to save computing time.

After collecting both relevant dss. and their statistical analysis, the dss. were passed to the
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modelling pipeline, similar to the one used for clinical data, but without oversampling or

undersampling and including only a search for part of the modelling strategies that per-

form the best within the first group. Over- and undersampling techniques, as well as aug-

mentation were not used since they did not show improved results over the best models.

In these cases, only the best performing modelling strategies on the clinical ds. — i.e.,

logistic regression; boosting represented by Extreme Gradient Boosting Machine (XGBM)

and the faster LightGBM; and SVMs with various kernel types — were applied. RF and

AdaBoost were not used since they have a boosting strategy sufficiently similar to XGBM

with equivalent results, but having much longer runtimes than the nearly equivalent

LGBM, which allows modelling time to be used in more experiments. To find the best

models, the same methodology used in the clinical ds. was used on four biomarkers

dss.: biomarkers at admission dataset (Biom0h) with Random Forest (RF) imputations,

Biom0h with features median imputations, biomarkers at admission dataset (Biom24h)

with RF imputations, Biom24h with features median imputations. After the GS on each

ds. the selected models were compared with the top three clinical models, referred to as

’base models’.

5.6 Imaging Data Modelling

The imaging data was treated with CV methods for IB extraction and convolutional neural

networks (CNNs).

5.6.1 Hemispheric Contrast (HC)

In a first phase, an imaging contrast biomarker was created, as the contrast between

two hemispheres. This contrast was calculated on a registered deskulled brain, where

the registration template is perfectly aligned, centred and symmetrical in the volume

space. Considering the radiointensities input tensor, I, and the normalized radiodensities

image input tensor, I
′
, Hemispheric Contrast (HC) is calculated as:

f (I
′
) = 2 ×

Σ
x
2
i=1Σy

j=1Σz
k=1

(
I
′
i,j,k

)
− Σx

m= x
2 +1Σy

l=1Σz
n=1

(
I
′
l,m,n

)
x × y × z

, (5.5)

where i, j, k, l, m and n are imaging volume coordinates, x, y and z are imaging volume

dimensions of I
′
. Normalized intensities tensor, I

′
, is calculated as:
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I
′
=

I − Imax

Imax − Imin
(5.6)

HC and its absolute value was calculated for all samples. These two features were

added to the processed clinical ds., statistically analysed, and passed to the formerly de-

scribed modelling pipeline and compared with the best base models.

5.6.2 Convolutional neural networks (CNNs)

Modelling started with a Keras example of a 3D CNN for classification. The archi-

tecture initially explored had four 3D CLs, each of them followed by a pooling layer

— MaxPooling3D, which returns a single maximum value in each 2 × 2 × 2 grid —, fol-

lowed by normalization of batch values — BatchNormalization —. After the previously

described sets, the layers are again reduced and flattened with GlobalAveragePooling3D

and passed to a last fully connected dense layer — i.e., Dense. The general initial architec-

ture can be seen in figure 5.2. All layers had the standard Recursive Linear Unit (ReLU)

as AF.

FIGURE 5.2: Diagram representing the initial 3D CNN architecture.

The model used a modest initial learning rate (ILR), lr = 0.0001, and a slow exponen-

tial decay of weights over 10.000 steps as a regularization method, to avoid overfitting.

This was changed later since the model has shown no learning in the first untweaked

experiments. The model uses early stopping with patience, using 15 epochs to allow

the network to surpass local minima and a larger margin for final experiments. Patience

concept in NN design means the NN continues training for n more epochs after the stop-

ping condition is met. If in those epochs, validation metric improves again, the patience

counter is reset and the network continues for more n epochs, counting from the new

best. Accuracy was used as the validation metric. Models were saved only when valida-

tion metrics improve, using Keras checkpoints functions.
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In 3D CNN first versions, the data was fed to training without rotations, then with

a basic axial axis rotation augmentation, and, finally, several other augmentations were

introduced with the package volumentations library. Imaging data augmentations will

be further discussed on their own section.

After initial training, and augmentation introduction, improvements were attempted

using Neural Architecture Search (NAS) via the more simple talos — limited to several

advanced types of random search algorithms —, and the more versatile keras-tuner —

with advanced search space algorithms such as Bayesian Optimization and Hyperband

—, since more efficient NAS are needed for longer training times that 3D CNNs incur.

The search space included number of CLs sets — i.e., CL, associated pooling, and

associated normalization —, filter and kernel size of each CL, AF used in each CL —

from a selection of ReLU, Exponential Linear Unit (ELU), Scaled ELU (SELU), Hyperbolic

Tangent (TanH), and sigmoid function —, existence of pooling layers and their type —

pooling by average or maximum —, dense layer size, and dropout existence and pro-

portion. This model used exponential weight decay, so initial learning decay, number of

decay steps, and decay rate were hps. also tested.

To run all models with just 8GB of VRAM batch sizes were adjusted, and CUDA

unified memory was used. CUDA unified memory implies longer training times when

VRAM is exceeded but allows models to run with hardware that would be unable to do

so. Despite these optimizations some experiments ran shorter than expected, but a sys-

tem of checkpoints saving all models tested by the search algorithm, allows continuing

the search, or salvaging the best models.

5.6.3 Training and Model Evaluation

Validation performance metrics on CNN models were substantially different from the

ones chosen for tabular data for operational reasons. First, CNNs can continuously im-

prove their adjustment to training data, so, the training of CNNs continues until a stop

condition — usually based on validation metrics — stops improving. This is similar to

creating a model at each epoch, with former model weights. The consequence is the

model trained and chosen cannot include validation data, as the ML methods used for

tabular data, which refit the models to include both training and validation data on the

model after model selection was completed. The base models and DL library chosen

was TensorFlow with Keras high level code, which does not have encoded libraries to
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use F1-weighted scores during training, so validation metrics search the epoch with the

highest weighted accuracy. The models’ fitting function, loss, was defined as binary

cross-entropy. The base 3D CNN optimizer was maintained, Adam. Batch size was set to

two to comply with memory constraints. Base ILRs were tested depending on the model’s

configuration.

When relevant models were found, generalization capacity needs to be evaluated on

previously unseen data. Considering data scarcity and computing time required to de-

velop CNNs, several development versions were done tracking validation results before

finding the final architectures to be tested. The imaging ds. was divided in the typical

training, validation and test before training. After fitting the model and evaluating on

the test set, stratified cross-validation on the training and validation set was performed,

assessing accuracy, balanced accuracy, weighted F1 and AUC scores, so an apples-to-

apples comparison could be done. ROCs and classification reports — which include True

Positives (TP), True Negatives (TN), False Positives (FP), False Negatives (FN), precision

and recall — were obtained on the test set.

5.6.4 Neural Network Architecture Search (NAS)

To try to improve on base architecture metrics, a better performing one for this ds. was

searched. First, since initial implementations used more strict early stop parameters,

patience = 15, to account for low ILRs this value was increased to 30 epochs. The

base template converted inputs to squared tensor by rotating by 90 degrees and crop-

ping, which cut the volumes in their frontal and occipital parts, destroying potentially

useful information. This behaviour was changed, removing the rotation, and adding ade-

quate padding before resizing to the intended dimensions. The cropped dimensions were

changed to width = 130, height = 130 and depth = 52, so that after processing by con-

volution tensors would be multiples of 128, therefore benefiting from TPU acceleration.

The exhaustive former search procedure, GS, was intractable for this NN. keras-tuner

was selected for NAS By running first Hyperband search, initial test performance can

be tested on hundreds of hp. combinations, defaulting each parameter on the base CNN

model. The best between the base model and the model found by HyperBand can then

be used as the baseline for Bayesian Optimization, a slower and more dependent on ini-

tialization search heuristic. The search space of those Bayesian Optimization searches is

described in the following code snippet:
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1 # configure model search space

ilr = hp.Float(’learning_rate’,

3 min_value = 1e-5, max_value = 1e-1,

sampling = ’log’, default = 1e-3)

5 decay_steps = hp.Int(’decay_steps’,

min_value=1e4, max_value=1e6,

7 sampling=’log’, default = 1e5)

decay_rate = hp.Float(’decay_rate’,

9 min_value=0.93, max_value=0.99,

step=0.1, default = 0.96)

11 lr_schedule = keras.optimizers.schedules.ExponentialDecay(

initial_learning_rate = ilr,

13 decay_steps = decay_steps,

decay_rate = decay_rate,

15 staircase = True

)

17
nr_conv_layers= hp.Int(’number_of_layers’,

19 min_value = 1, max_value = 5, default = 4)

filter_s_1 = hp.Choice(’filter_s_1’, [64, 128, 256], default = 128)

21 kernel_s = hp.Choice(’kernel_s’, [3, 5], default = 3)

activation_t = hp.Choice(’activation’,

23 [’relu’, ’elu’, ’selu’, ’tanh’, ’sigmoid’],

default = ’selu’)

25 type_pooling = hp.Choice(’type_pooling’, [’max’, ’avg’], default = ’avg’)

maxp_1 = hp.Choice(’maxp_1’, [1, 2], default = 2)

27
with hp.conditional_scope("number_of_layers", [2, 3, 4, 5]):

29 filter_s_2 = hp.Choice(’filter_s_2’, [64, 128, 256], default = 128)

maxp_2 = hp.Choice(’maxp_2’, [1, 2], default = 2)

31
with hp.conditional_scope("number_of_layers", [3, 4, 5]):

33 filter_s_3 = hp.Choice(’filter_s_3’, [128, 256, 512], default = 256)

maxp_3 = hp.Choice(’maxp_3’, [1, 2], default = 2)

35
with hp.conditional_scope("number_of_layers", [4, 5]):

37 filter_s_4 = hp.Choice(’filter_s_4’, [256, 512, 1024], default = 512)

maxp_4 = hp.Choice(’maxp_4’, [1, 2], default = 2)

39
dense_u_5 = hp.Choice(’dense_u_5’, [256, 512, 1024], default = 512)

41
dropout = hp.Float(’dropout’,

43 min_value = 0.0, max_value = 0.5,

step = 0.1, default = 0.1)

LISTING 5.1: Python code snippet describing keras-tuner search space parameters

5.6.5 Imaging Data Augmentation

Augmentations were also used to improve CNN performance. In this case, the data

augmentations are related to image transformations, in this case, adapted to 3D voxel

based spaces. In CV tasks, synthesizing images from the ds. bearing the same meaning

but different characteristics, such as contrasts, colours, axial flipping, rotations, minor

deformations, and added noise allows deep neural networks to learn the various forms
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a single definition — i.e., sample — can take, and avoids overfitting by improving the

definition of the function that describes the class to be classified [175].

Five transformations were used in this project, namely: axial view rotations, alter-

ations to global brightness, and flipping in all planes. Probabilities of application were

assigned to each augmentation, so there was a chance the original data was fed to the NN,

and so that transformation do not affected all the images. Contrast changes, scaling, and

noise addition were removed due to memory leaks in all available volumentations library

implementations tested, only perceivable in longer training sessions. Elastic deformations

were not implemented due to their excessive processing time. All these transformations

were select based on their usefulness, computational resources required and implementa-

tion difficulty, being applied randomly to each training example, with adjusted probabili-

ties of occurrence and diverse parameters, to avoid distorting each non-synthetic training

sample excessively. These augmentation sets are commonly used in biomedical data, and

many libraries specialized in this field implement them, such as project MONAI [135],

volumentions, and volumentations-3d [155, 176], as well in several well-known data

science competitions [109, 177].

5.6.6 Transfer learning

In a first part, the best architecture found in earlier sections was trained on the origi-

nal template model ds., MosMedData, a publicly available ds. of chest CT scans with

COVID-19 related findings. After training the chosen CNN on this data, model’s weights

were saved. On a second session, the model was fine-tuned to the task of classifying

thrombectomy outcomes by running another training session on the weights resulting

from the model’s training in lung NCCTs. On a third session, model weights from

MosMedTraing were loaded into the same architecture, but the last part of the network

was removed: a pooling layer, a fully connected dense layer, a dropout layer and the

output layer. Then they were readded as non-initialized trainable layers. Training was

done on these layers, using the inner model in inference mode. Then, the entire model

was unfrozen and retrained with a ILR one order of magnitude lower than the one

selected previously. Finally, it was evaluated and compared by the cross-validation pro-

cedure used previously.
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5.7 Mixed Models Modelling

Mixed models are models that combine more than one of the former dss. — clinical,

biomarkers and imaging data. The first mixed models created combined the clinical

ds. with the biomarkers ds.. To minimize underfitting, FS based multivariate LR anal-

ysis was done, considering as threshold the maximum p-value that includes sex and

age from the clinical ds., as seen in table A.25. Using the same FS threshold the analysis

was repeated for the biomarkers ds. at admission — table A.26 —, and at follow-up —

table A.27. All dss. were subset using the same threshold and two new dss. were cre-

ated, by running an inner merge with the clinical subset of features against each subset

of biomarker features with RF imputations. The ds. with admission features was called

ClinBiom0h, and the one with follow-up features was called ClinBiom24h. These new dss.

were them passed to the same modelling pipeline used to model the original biomark-

ers dss., searching the best hp. for each modelling strategy and compared to base models.

The best mixed models were also trained on augmented data to try further improvements.

Later mixed models combine IB information with the previous dss., but only for the best

models selected on each phase. This was achieved by merging HC and absolute HC with

the dss. required by each model, through an inner merge.
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Results

In this section, to simplify dss. and models description they are often referred by abbre-

viations related to their characteristics. Clin refers to dss. and models using the clinical

ds.. Biom refers to the FBC and biochemical biomarkers ds.. CA refers to the use of

hemispheric contrast (HC), an imaging biomarker explained in its own section. 0h refers

to at admission data and 24h refers to follow-up data. FS is used each time strict fea-

ture selection is used. AUG refers to models with augmentations. To exemplify, a model

referred as ClinBiom24h AUG FS refers to a model created with clinical and biomark-

ers data at follow-up using data augmentation and that has strict model selection in its

pre-processing pipeline.

6.1 Clinical Data

The sociodemographic profile of the cohort, is shown in table 6.1 is focused on senior

population with a median age of 76 y.o. without statistically significant (stat. sig.) sex

imbalance. Age, suggests being a more relevant variable, where good outcomes had

lower median aged subjects, but again, p-values after adjustment to multiple compari-

son are not significant, p.adj. = 0.57. mRS before the event is stat. sig. to better outcomes,

p.adj. < 0.001. Good outcomes had lower mRS before the event than bad outcomes,

mostly composed by patients with individuals with no previous impairment as evaluated

by mRS, IQRmRSprv = [0 − 0]. Lower level of impairment after AIS, as evaluated by the

NIHSS score at arrival to hospital also had statistically better outcomes, p.adj. = 0.007.

Although, 89.5% of the patients admitted had at least one previous evaluated condition,

51
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TABLE 6.1: Demographic and medical history data descriptive and statistical summary.

individual conditions evaluated on this study were not stat. sig. for thrombectomy out-

come, p.adj. ≥ 0.91.

Only patients with lateralized strokes were selected for this thesis cohort, and there is a

slight prevalence to AIS on the right hemisphere. Neither side of the AIS nor its aetiology

are stat. sig. to thrombectomy outcome, p.adj > 0.99. No previous medication group

had significantly statistical relevance to the outcomes, p.adj. > 0.99 for all groups. One

relevant variable on this table is the analysis of stroke evidence at patients’ wake up —

before calling the emergency services. Although shown not stat. sig., p.adj. = 0.18, it was

considered highly significant without multiple test correction, p-value = 0.006, and it was

the third most significant variable in this ds.. Bad outcomes have a higher proportion

of strokes at wake up. Emergency episodes logistic data shows no stat. sig. variable, nor

suggests relevant features from unadjusted p-values, not even for times from onset, as

shown in table 6.3.
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TABLE 6.2: Diagnosis and medication history data descriptive and statistical summary.

TABLE 6.3: Emergency episodes logistic data descriptive and statistical summary.
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6.1.1 Model Selection

In the first stage, several more limited GSes were performed, adjusting the search param-

eters when they selected the limits of a range, which evaluated in total approximately

7000 models. The best parameters found for each model after cross-validated evaluation

on this first phase can be seen in table 6.4. Logistic regression (LR) has performed better

using the ℓ1 regularization, which is consistent with the number of categorical variables,

tree-based methods such as DT, RF, AdaBoost, XGBoost and LightGBM do not agree in

the criterion for selecting branches, but all the best tree-based models were shallow, 2-4

levels deep, and they included many features, 21-22 features in DT and RF. k-NN used a

moderate number of neighbours for interpolation, 7, and the SVM classifier kernel with

the best performance was a Radial Based Function (RBF), — selected over polynomial

kernels, suggesting a DB close described as a quadratic function. NN selected a funnel

shape, resembling EfficientNet principles, even when the grid allowed more units in all

hidden layers, and the best performing NN used the unusual identity function as the AF.

TABLE 6.4: Clinical Data best hyperparameters per modelling strategy.

Model Parameters
LogisticRegression {’classifier C’: 1, ’classifier max iter’: 100, ’classifier penalty’: ’l1’, ’classifier solver’: ’saga’}
DecisionTreeClassifier {’classifier criterion’: ’gini’, ’classifier max depth’: 4, ’classifier max features’: 19, ’classifier min samples leaf’: 22}
RandomForestClassifier {’classifier criterion’: ’gini’, ’classifier max depth’: 4, ’classifier max features’: 33, ’classifier min samples leaf’: 11}
AdaBoostClassifier {’classifier base estimator’: DecisionTreeClassifier(max depth=2), ’classifier learning rate’: 0.05}
XGBClassifier {’classifier booster’: ’dart’, ’classifier learning rate’: 0.1, ’classifier max depth’: 4, ’classifier min child weight’: 4}
LGBMClassifier {’classifier boosting type’: ’gbdt’, ’classifier learning rate’: 0.1, ’classifier max depth’: 4, ’classifier min child weight’: 4}
KNeighborsClassifier {’classifier n neighbors’: 7, ’classifier weights’: ’distance’}
QuadraticDiscriminantAnalysis {’classifier reg param’: 1, ’classifier tol’: 1e-07}
LinearDiscriminantAnalysis {’classifier shrinkage’: ’auto’, ’classifier solver’: ’lsqr’, ’classifier tol’: 1e-05}
CategoricalNB {’classifier alpha’: 1e-05, ’classifier fit prior’: True}
LinearSVC {’classifier C’: 1, ’classifier loss’: ’hinge’, ’classifier penalty’: ’l2’}
SVC {’classifier C’: 100, ’classifier coef0’: 0, ’classifier degree’: 2, ’classifier gamma’: ’auto’, ’classifier kernel’: ’poly’}
MLPClassifier {’classifier activation’: ’relu’, ’classifier alpha’: 5e-06, ’classifier hidden layer sizes’: (32, 16, 16, 16),

’classifier learning rate’: ’constant’, ’classifier shuffle’: True, ’classifier solver’: ’lbfgs’}

Cross-validated metrics analysis shows the best performing model depends on the

metric to be considered, in table 6.5. The modelling strategy that achieved the best re-

sults in validation by F1-score was a DT, F1-weighted = 0.73 ± 0.15, followed two other

DT-based methods, RF and XGBM, both with F1-weighted = 0.72 ± 0.12, and by LR with

F1-weighted = 0.71 ± 0.14. However, for our intended metric, the AUC scores, LR has

shown the best scores with AUC = 0.80 ± 0.13, only matched by the RF and XGBM clas-

sifier, both with AUC = 0.78± 0.13. When one considers secondary metrics such as accu-

racy and balanced accuracy, two models stand out: DT with

Acc. = 0.74 ± 0.13 and Bal.Acc. = 0.73 ± 0.13 and XGBM with Acc. = 0.73 ± 0.12 and

Bal.Acc. = 0.72 ± 0.12, although LR and DT classifier were still among the top perform-

ing models, with Acc. = 0.71 ± 0.13 and Bal.Acc. = 0.71 ± 0.13, and Acc. = 0.73 ± 0.11

and Bal.Acc. = 0.71 ± 0.12 respectively.
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TABLE 6.5: Best clinical models on each modelling strategy compared by their cross-
validated metrics.

Model Val. Acc. Std. Val. Bal.Acc. Std. Val. AUC Std. Val. F1-Weighted Std.
LogisticRegression 0.71 0.13 0.71 0.13 0.80 0.13 0.71 0.14
DecisionTreeClassifier 0.74 0.13 0.72 0.14 0.70 0.15 0.73 0.15
RandomForestClassifier 0.73 0.11 0.71 0.12 0.78 0.13 0.72 0.12
AdaBoostClassifier 0.69 0.13 0.68 0.13 0.76 0.15 0.68 0.14
XGBClassifier 0.73 0.12 0.72 0.13 0.78 0.13 0.73 0.13
LGBMClassifier 0.72 0.12 0.71 0.12 0.78 0.13 0.71 0.12
KNeighborsClassifier 0.58 0.15 0.57 0.15 0.56 0.18 0.57 0.15
QuadraticDiscriminantAnalysis 0.59 0.14 0.55 0.14 0.61 0.17 0.55 0.15
LinearDiscriminantAnalysis 0.68 0.14 0.67 0.14 0.73 0.15 0.67 0.14
CategoricalNB nan nan nan nan nan nan nan nan
LinearSVC 0.68 0.13 0.67 0.13 0.72 0.14 0.68 0.13
SVC 0.66 0.13 0.65 0.13 0.69 0.15 0.65 0.13
MLPClassifier 0.66 0.12 0.65 0.13 0.67 0.15 0.65 0.13

Not all populations of cross-validated metrics had metrics in a normal distribution,

so the Friedman’s test was used to compare metrics populations, showing at least one

model is stat. sig. different from other models, p < 0.001. However, measured cross-

validated median AUC scores have shown overlaps on most models, as, for example,

XGBM, LGBM, and RF are all within LR 95% Confidence Intervals (CIs),

AUCLR = [0.76 − 0.84] A.2. Conducting the post hoc Nemenyi’s post hoc test 6.1, it was

possible to confirm that LR was not stat. sig. different from XGBM, LGBM, RF, and

AdaBoost but it was also shown to be different from all other models. Several other

groups of samples appear, and models from the top-tier group have other non-significant

differences with tertiary models, such as the LDA and Linear Support Vector Machine

Classifier (SVC).

Model comparison analysis using AUC scores tested on the test set shows if vali-

dation metrics are overly optimistic or pessimistic. Considering the test set only con-

tains 31 samples, and nested-CV was not used, comparisons between validation met-

rics and test metrics are limited to comparing validation 95% CI A.2 with single sam-

ple values from the test metric 6.2. The best model in the test set was AdaBoost with

AUCAdaBoosttest = 0.90, which exceed the upper Confidence Interval (CI) in the validation

set, AUCAdaBoostval = [0.72 − 0.80]. Considering the small number of samples, this effect

is highly influenced by stochastic changes, and tests with different random seed have

shown considerably different results. Linear SVC and SVC with kernel trick underper-

form in the test set but all remaining models all performed within their validation CIs as

can be confirmed be seen comparing the values from A.2 with 6.2.
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FIGURE 6.2: Receiver-Operating Curves for initial hyperparametrized models.

6.1.2 Automated Machine Learning on Clin0h (AutoML)

AutoML with AutoSkLearn 1.0 running for 10425 s tested 433 models and find the best

model with F1AutoSkLearn1.0val = 0.77, and 95% CIs

AUCAutoSkLearn1.0val = [0.73 − 0.80]. This model is non-stat. sig. different from other top

performing models, as indicated by the Nemenyi’s critical distance shown in plot A.2.

Evaluation on the test set has shown a value below the estimated CI,

AUCAutoSkLearn1.0val = 0.72, suggesting poorer generalization ability than former top mod-

els.

AutoML with AutoSkLearn 2.0, also running for 10425 s tested many more models,

4002 in total, and it found a better model than AutoSkLearn 1.0 with

F1AutoSkLearn2.0val = 0.78 on validation, but considerably worse in the intended metric with

AUCAutoSkLearn2.0val = 0.71 and 95% CIs AUCAutoSkLearn2.0val = [0.67 − 0.74]. This suggests

the models chosen by AutoSkLearn 2.0 was worse than the one selected by AutoSkLearn

1.0. Nemenyi’s critical distances show that this model is statistically different from the

one selected by version 1.0 strategy, and all the models within the best models group, as

seen in figure A.2 and table A.3.
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6.1.3 Data Augmentation

Comparing with the base models, SMOTE followed by Tomek Links (TL) was unable

to improve the best modelling strategy on this ds., but achieved the highest augmented

AUC score (0.78 ± 0.14) in this study, confirming findings from other authors regarding

the SMOTE-TomekLinks combination, so it was used in subsequent work, as shown in

table A.12. This study shows Edited Nearest Neighbours (ENN) is too aggressive in this

ds. and its sample removal technique causes all models to have lower performance. Re-

sults of TL are not always positive, and some algorithms seem to perform worse with TL

undersampling. This may be due stochastic effects on a mildly unbalanced ds., consider-

ing that all undersampling and oversampling techniques had mixed results, dependent

on which model was being applied. If one wants to maximize accuracy, the best algo-

rithms were a combination between undersampling with TomekLinks, followed by over-

sampling with BorderlineSMOTE or SVMSMOTE, followed again by TomekLinks.

The results in hyperparametrized models were not improved, with drops in aver-

age metric scores in the best performing model — LR dropped from AUC = 0.80 to

AUC = 0.77, while XGBM and LGBM remained with AUC = 0.78. Only the previ-

ously underfit model, Linear SVC, has shown improvement going from AUC = 0.72 to

AUC = 0.75, as seen by comparing the data in table 6.5 with table 6.6. The randomness of

variations in scores is confirmed by the Nemenyi’s post hoc test shown in figure A.12. All

models trained on SMOTE’d data underperformed the base LR although not significantly.

Data augmentation did not bring significant improvements to tabular dss..

TABLE 6.6: Best augmented clinical models cross-validated metrics.

Model Val. Acc. Std. Val. Bal.Acc. Std. Val. AUC Std. Val. F1-Weighted Std.
LGBMClassifier (TL) 0.72 0.12 0.72 0.13 0.78 0.13 0.72 0.13
XGBClassifier (TL) 0.73 0.12 0.73 0.12 0.78 0.13 0.72 0.12
LinearSVC (TL) 0.68 0.14 0.68 0.15 0.75 0.15 0.68 0.15
SVC (TL) 0.68 0.12 0.67 0.13 0.70 0.17 0.67 0.13
LogisticRegression (TL) 0.70 0.13 0.70 0.13 0.78 0.14 0.69 0.13

Studies on oversampling each class to 200 samples — an 163% in the number of sam-

ple — was unable to offer better results, as seen in table 6.7 and by the Nemenyi’s critical

distances, shown in figure A.13. The results in table 6.7 are using non-parametric descrip-

tor because some cross-validates metric set did not follow a normal distribution, which

makes autorank automatically calculate the table differently. This makes it impossible

to compare values directly, but the trends shown in previous analysis are maintained.
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All models trained in the ds. with 400 samples did not perform better than LR model

trained on the base ds. — having worse central tendency metrics — although XGBM

and LGBM trained on augmented data have shown non-stat. sig. different from base LR

model.

TABLE 6.7: SMOTE-TomekLinks augmented to 400 samples AUC metrics compared to
base models.

meanrank median mad ci lower ci upper effect size magnitude
SVC (Augmented) 2.45 0.71 0.13 0.60 0.78 0.00 negligible

LinearSVC (Augmented) 3.98 0.76 0.10 0.68 0.83 -0.24 small
Random Forests (Base) 4.51 0.77 0.08 0.71 0.86 -0.35 small

LogisticRegression (Augmented) 4.72 0.77 0.11 0.71 0.85 -0.34 small
XGBoost (Base) 4.74 0.80 0.08 0.72 0.86 -0.52 medium

LGBMClassifier (Augmented) 4.84 0.78 0.08 0.74 0.86 -0.41 small
XGBClassifier (Augmented) 4.92 0.77 0.08 0.72 0.80 -0.34 small
Logistic Regression (Base) 5.83 0.80 0.08 0.74 0.88 -0.52 medium

6.2 Biomarkers Data

Considering biomarkers ds. was split between data collected on patient’s admission and

on patient’s follow-up, analysis is done separately.

6.2.1 Biomarkers at admission (Biom0h)

Although clinical analysis have been conducted on every patient, this ds. is limited to

79 cases. Within the retrieved data, FBC data is mostly complete with only three cases

with NAs in some quantification — i.e., monocytes, eosinophils, basophils, erythrocytes,

platelets and haemoglobin. In all admitted patients. Neutrophil Lymphocyte Ratio (NLR),

an important inflammation and tumour biomarker, was not considered stat. sig. to

thrombectomy outcomes, p.adj. > 0.99. Indeed, no FBC biomarker was considered sig-

nificant to the outcomes, even without multiple comparison correction, with the best

unadjusted p-value was p-value = 0.19, as table 6.8 shows.

Table 6.9 shows biochemical biomarkers on follow-up and no biochemical biomarker

has a good correlation with thrombectomy outcome, p.adj. ≥ 0.76. Many biomarkers

tested are indicators of inflammation, hepatic diseases, diabetes and other conditions that

hinder the patients health and influence available treatment choices, so although they

are essential for proper treatment, they have little relation with recovery from thrombec-

tomy outcomes, as the statistical tests suggest. Considering how small this ds. is — with
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TABLE 6.8: Hemogram descriptive and statistical analysis on Biom0h.

some biomarkers having down to 17 samples in one class, as it is the case of Gamma-

Glutamyl-Transferase — effects may be revealed in larger dss., and p-values without mul-

tiple comparisons corrections can be used as indicators for further research. Only Alanine

Aminotransferase (ALA) — a biomarker to diagnose liver damage — was stat. sig. with-

out Family-Wise Error Rate (FWER) corrections, p-value = 0.03.

6.2.1.1 Model Selection

Considering NAs profile shown in image A.5, this ds. required imputations to be ap-

plied extensively. Since imputation methods heavily influence the results, a study us-

ing NAGuideR was conducted on this ds. to assess which imputation method would be

preferable. The ranked NAGuideR results of the eleven imputation algorithms, in table

6.10, shows that three out of four metrics consider RF imputation, rf, the best algo-

rithm for this ds., followed by imputation by median value per biomarker, rowmedian —

note the table was transposed for NAGuideR processing. Quantile regression, iqr, was
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TABLE 6.9: Biochemical analysis descriptive and statistical analysis on Biom0h.

the only method that surpasses both above-mentioned methods on Average Correlation

Coefficient between Original value and Imputed value (ACC OI).

Tables A.7 and A.8 with individual ranking metrics show NAGuideR misclassifies

iqr as the best imputation method in relation to ACC OI, since its average correlation

coefficient is the one closest to 0, showing little to no correlation between predicted and

expected value, which makes it the worst performing method by this metric. This was

possibly due to a bug in one internal function, leading it to overvalue negative coeffi-

cients. As such, only the dss. imputed with the two best imputation methods were mod-

elled, modelling the second one for evaluation of imputation method influence. Although

studies on NAs imputations have come to the conclusion that RF is the best performing

method for most dss. [127, 178], within the selected group of methods chosen in this the-

sis, this was not shown. None of the selected methods is particularly adequate for data

missing not at random, which does not seem to be the case, since clinical exam values

indicate when tested values are below detection threshold — e.g., some cells in the ds.



62 MODELLING AND PREDICTING ACUTE ISCHAEMIC STROKE OUTCOMES

TABLE 6.10: NAGuideR imputation methods ranking on Biomarkers at admission
dataset.

contained < 0.001 before preprocessing. In this study, these entries were converted dur-

ing preprocessing to the numeric form by replacing by the minimum detection value.

Comparison among all models seems to suggest that both imputation methods offer

similar results, with some modelling strategies on the same ds. performing better with

row median, while other modelling strategies do not, as seen in figure A.9. Given how dis-

tinct both strategies and values are, it can be assumed both imputation methods are sub-

optimal. However, both allow modelling without discarding excessive amounts of data,

and the best XGBM-based models achieve median AUC scores of 0.79, which is among

the best performances recorded, in table A.10. These models still underperform the best

LR-based model on the clinical ds. due to their wider confidence interval, although not

significantly as seen by the Nemenyi’s plot in figure A.11, suggesting biomarkers models

have greater variance than their clinical counterparts, probably due to inadequate impu-

tation methods and the number of imputed values in each cross-validated set.

Testing the models against the test set shows these underperform the null model,

with AUC scores below 0.50. While models based on the ds. with RF imputations per-

formed slightly better than the models that used the ds. with row median imputations,

the low values obtained confirm the lack of correlation suggested by statistical tests, with

the extra bias introduced by multiple imputations.
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6.2.2 Biomarkers on follow-up (Biom24h))

This subset of the original biomarkers ds. preserved 126 cases, with only three cases with

missing FBC information. Biochemical information on follow-up for the triaged biomark-

ers was present in at least 78 cases per biomarker with more than 100 data points on eight

biomarkers. There is a mild class imbalance, with 57.9% of the bad outcome cases and

42.1% good outcome cases.

6.2.2.1 Descriptive and Statistical Analysis

Tables 6.11 and 6.12 show Biom24h ds. descriptive and statistical analysis. Unlike in the

analysis of at admission ds., stat. sig. biomarkers were found, which is expected consid-

ering that these biomarkers should correlate to surgical success and therefore, patients’

health condition after a thrombectomy.

Some blood cell quantifications are stat. sig. while no biochemical biomarkers has

statistical significance after multiple comparisons corrections, as shown in tables 6.11

and 6.12. While total leucocyte count does not have stat. sig. relation with thrombec-

tomy outcomes, p.adj. = 0.36, unadjusted values suggest it is an important variable

with p-value = 0.02. Leucocyte type quantifications, but, where shown to be more rel-

evant, especially NLR related quantifications, with neutrophil and lymphocytes propor-

tion, as well as NLR itself being all highly stat. sig. with p.adj. < 0.01, with neutrophil

and lymphocyte quantifications being stat. sig., p.adj. < 0.05. All these quantifiers are

known to be associated with ischaemic events and revascularization outcomes, particu-

larly neutrophil higher counts and high NLR, while lymphocyte counts are usually more

associated with the inflammation, and they sharply decline when acute kidney and liver

damage occurs, further increasing NLR [179]. Bad outcomes have higher neutrophils

concentrations and proportions, as well as higher NLR, than good outcomes, while the

opposite is true for lymphocytes, as table 6.11 shows.

Eosinophils were also considered stat. sig., p.adj.Eosinophil% = 0.007 and

p.adj.Eosinophil% = 0.02. Although this specific blood cell type has no clear correlation with

AIS when hyper-eosinophilic syndrome is not present — a type of eosinophils’ hyper-

regulation when infection by metazoans occurs —, the correlation between eosinophils

and AIS outcomes is well documented [180, 181].
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TABLE 6.11: Full blood count descriptive and statistical analysis on Biom24h.

Basophils and monocytes have shown no statistical significant correlation, despite be-

ing recruited by neutrophils and; therefore, being associated with their increased pres-

ence. Basophils, given their primary role in foreign bodies controls, such as allergic com-

pounds, and in inflammatory events, do not have an obvious relation with AIS. Their

relation with heparin regulation could influence clotting events or the recovery from a

clotting event, but their recorded values nearly identical in both outcome classes, both in

Biom0h and in Biom24h.

The three remaining FBC quantification — i.e., red blood cells, platelets and

haemoglobin — were also not stat. sig. after multiple comparison corrections, but this all

non-adjusted tests have rejected the null hypothesis. Erythrocyte and haemoglobin quan-

tifications are important to assess anaemia, but no strong correlation exists with Ischaemic
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Stroke (IS) and their outcomes. In this study, slightly lower values of both were observed

in patients with poorer outcomes. Post-thrombectomy quantification are about 10% lower

in patients with bad outcomes.

TABLE 6.12: Biochemical analysis descriptive and statistical analysis on Biom24h.

Table 6.12 shows descriptive and statistical analysis on biochemical biomarkers. While

no biochemical biomarker tested on follow-up has shown statistically relevant correla-

tions to outcomes, three biomarkers show statistical significance when this correction is

not done. Urea concentration on follow-up has about 20% higher values on patients with

bad outcomes. This effect was not observed in admission, suggesting kidney function has

changed between both states, possibly due to anaesthetics reaction, which would explain

its prevalence in patients with bad outcomes. Various cholesterol analysis were done on
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the follow-up but only total cholesterol was suggested as relevant before Holm’s correc-

tion, showing about 10% lower values in patients with bad outcomes. Lastly, Thyroid

Stimulating Hormone (TSH) has shown roughly 50% higher values in patients with good

outcomes. Considering TSH is responsible for upregulating the metabolism of almost

all living tissues, low values indicate low metabolism and consequently slower recovery

from thrombectomy and other ailments the patient may have.

6.2.2.2 Model Selection

This ds. required even further imputations, 554 in total, as seen by NAs profile in fig-

ure A.5 and the exclusion of some biomarkers from analysis, as detailed in the meth-

ods section. The imputation method analysis done on the previous ds. was used on the

Biom24h, so, modelling analysis was also done with complete cases after imputation with

RF and row median. Results in table 6.13 confirm that using row median ds. allowed

slight better results on all modelling strategies, with gains of up to 2%. The modelling

strategy with the best results in both dss. was XGBM, AUCXGBM RM = 0.76 ± 0.15 and

AUCXGBM RM = 0.74 ± 0.15, closely followed by LGBM, AUCLGBM RM = 0.72 ± 0.16 and

AUCLGBM RF = 0.72 ± 0.15. XGBM and LGBM follow the same trend in other metrics,

achieving the best performance in all standards. Non-parametric central tendency analy-

sis shown in table A.10 also confirms these findings, with XGBM achieving median AUC

scores above 0.79.

TABLE 6.13: Biom24h-based models metrics table including both imputation methods.

Model Val. Acc. Std. Val. Bal.Acc. Std. Val. AUC Std. Val. F1-Weighted Std.
LGBMClassifier (24h RF) 0.66 0.13 0.66 0.13 0.72 0.16 0.66 0.14
XGBClassifier (24h RF) 0.68 0.13 0.66 0.13 0.74 0.15 0.67 0.14
LinearSVC (24h RF) 0.63 0.14 0.61 0.14 0.67 0.16 0.62 0.15
SVC (24h RF) 0.64 0.15 0.61 0.15 0.67 0.16 0.62 0.16
LogisticRegression (24h RF) 0.63 0.14 0.61 0.14 0.68 0.16 0.61 0.15
LGBMClassifier (24h RM) 0.68 0.13 0.67 0.13 0.72 0.16 0.67 0.13
XGBClassifier (24h RM) 0.71 0.13 0.69 0.14 0.76 0.15 0.70 0.14
LinearSVC (24h RM) 0.64 0.14 0.63 0.15 0.70 0.16 0.63 0.14
SVC (24h RM) 0.66 0.14 0.62 0.14 0.68 0.16 0.63 0.15
LogisticRegression (24h RM) 0.64 0.15 0.61 0.15 0.68 0.16 0.62 0.16

Even though these summary statistics suggest a difference in performance between

imputation methods, formal statistical model comparison achieved by Nemenyi’s critical

distances, shown in figure A.9, suggests the improvements seen in some models with a

specific imputation strategy are casual, and not stat. sig.. The best performing models, by

their ranked metrics are models trained on follow-up metrics, with only SVC with kernel
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transformation trained on Biom0h model not showing significant statistical difference

with the first group. In this ds., models with high bias and linear DBs— such as LR and

Linear SVC seem to underperform more complex models. When compared with the best

models from the clinical ds., both XGBM models show better performance than LGBM,

with XGBM not being stat. sig. different from the best model found so far, a LR trained on

the clinical ds., as shown in figure A.11.

ROC curves on the test set also show that Biom24h models generalize better than

Biom0h models, with all AUCs above the null model line, in figure 6.3. Unlike dur-

ing validation, XGBM and LGBM models performed considerably worse than the other

tested modelling strategies, achieving AUCs around 0.60, while high bias LR achieved

AUCLR RF = 0.73 and AUCLR RM = 0.78. Although the test set analysis is not cross-

validated, the values are below CIs, so these XGBM and LGBM models show signs of

overfitting and should be considered carefully.

FIGURE 6.3: ROC curves for models trained on follow-up biomarkers dataset with Miss-
ingForest imputations, on the left, and with row median imputations, on the right.

6.3 Hughes Phenomenon (HP) on each dataset

HP —- also known as peaking phenomenon —, is the observation that most modelling

strategies only benefit for a certain amount of features — signal features —, which past

that point adding more features to a model does not improve performance and can even

degrade it. Considering how light FS was done on tabular datasets, Hughes analysis was

relevant to understand if by reducing the number of features, the model can be improved.
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6.3.1 HP on Clinical Data at Admission (Clin0h FS)

The clinical ds. benefited from FS the most by trimming to only ten features since all mod-

elling strategies had been initially tested on it. All models gained increased performance

reflected in most metrics, but hyperparametrized LRs improved with FS was unable to

surpass the previous best A.14. Ten features were selected on the clinical ds. considering

peaking performance: age; previous modified Rankin Score (mRS); NIHSS at admission;

history of chronic renal disease, heart failure or AIS; if the AIS is pro-thrombotic; and

if the symptoms were detected at patient’s wake-up. With these features, a maximum

med(AUC) = 0.82 was achieved. Since reparametrization on selected features did not

show improvements, the LR model selected from HP analysis was reused, by training it

on the average peak, k = 10, achieving med(AUC) = 0.84 and CIAUC = [0.77 − 0.91],

values that made it stat. sig. from all previous models. The balancing and augmentation

technique studies as best performing, SMOTE-TomekLinks as documented on appendix

section A.4, has performed worse with med(AUC) = 0.82, but it was the only model from

this group statistically similar according to Nemenyi’ critical distances, as seen in figure

A.16.

6.3.2 HP on Biomarkers Data at Admission (Biom0h FS)

Biom0h A.15 and Biom24h, A.16 have shown the same phenomenon but did not im-

prove with FS, neither on the best model nor on adjusting underfit models. Ten features

were selected on Biom0h considering peaking performance: neutrophils and eosinophils

percentage, as well as eosinophils, haemoglobin, glycose, aspartate aminotransferase, ala-

nine aminotransferase, alkaline phosphatase, C-reative protein concentrations, and par-

tial thromboplastin time. With these features the models achieved a maximum

med(AUC) = 0.70. However, greater variability in these models makes the mean scores

stay at more modest values.

6.3.3 HP on Biomarkers Data at Follow-up (Biom24h FS)

22 features were selected on Biom24h, considering peaking performance: leucocytes,

neutrophils, lymphocytes, eosinophils, erythrocytes, platelets, haemoglobin, glycose, urea,
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aspartate transferase, alanine transferase, total cholesterol, LDL cholesterol, VLDL choles-

terol, C-reactive protein, and tiroid-stimulating hormone concentrations; neutrophils, lym-

phocytes, monocytes, eosinophils, basophils, A1c haemoglobin percentages; and NLR.

With these features the models achieved a maximum med(AUC) = 0.79.

Considerations on HP study on ClinCA0h were done on a later stage, its description

can be consulted in ClinCA0h section and appendices. Figure 6.4 summarizes HP in this

ds., ClinCA0h Nemenyi’s plot in figure A.20 and AUCs comparison tables in table A.17.

FIGURE 6.4: Hughes phenomenon analysis on the two top performing mixed clinical
model with hemispheric contrast.

6.4 Imaging Data

6.4.1 Hemispheric Contrast (HC)

Some distribution differences exist in absolute HC, as shown in figure 6.5.

FIGURE 6.5: Absolute hemispheric contrast histogram.
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Both HC and absolute HC, when tested together with all clinical variables do not

show stat. sig. correlation with outcomes, but absolute HC is stat. sig. when multiple

comparison corrections are not performed, p-value = 0.04, while signed HC stays non-SS

with p-value = 0.38. For this reason, all further modelling work continued disregarding

signed HC. Bad outcomes had higher medium absolute HC, as shown in table 6.14.

TABLE 6.14: Imaging biomarkers descriptive and statistical analysis.

Absolute HC alone is not enough to produce good models, as seen in table 6.15, but

better results were achieved as complementary feature. Those can be found in Mixed

Models section within ClinCA0h subsection and ClinBiom24h with Feature Selection (FS)

and Hemispheric Contrast (HC) subsections.

TABLE 6.15: Absolute HC only models.

Model Val. Acc. Std. Val. Bal.Acc. Std. Val. AUC Std. Val. F1-Weighted Std.

LGBMClassifier 0.60 0.03 0.50 0.00 0.63 0.12 0.46 0.04
XGBClassifier 0.60 0.13 0.58 0.14 0.60 0.14 0.59 0.13
LinearSVC 0.60 0.03 0.50 0.00 0.63 0.14 0.46 0.04
SVC 0.55 0.08 0.49 0.06 0.60 0.16 0.47 0.08
LogisticRegression 0.60 0.11 0.56 0.11 0.63 0.14 0.58 0.11

6.4.2 3D CNNs

The base model with patience hp. defined to 15 epochs has shown no signs of learning,

with training ending before validation loss and accuracy converged and with its values

swinging wildly, as seen in 6.6. This may be due to the low ILR and patience defined.

The classification report shows the model classified all samples as having poor out-

comes. Subsequent runs were adapted to learn faster — by increasing the ILR —, and

train for longer — by increasing patience setting. Despite these bad results, the model

achieved cross-validated AUC = 0.69 ± 0.12, but a F1 weighted = 0.62 ± 0.17, since the
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FIGURE 6.6: Training and validation accuracy and loss evolution through 3D CNN base
model training with no augmentation and patience is set to 15 epochs.

regularizing effect of F1-weighted during model selection was not present in CNN indi-

vidual training sessions, as seen in tables 6.16, A.19, and A.20, but test accuracy results

just match class proportions, as seen in table 6.17.

TABLE 6.16: CNNs cross-validated metrics comparison.

Model Val. Acc. Std. Val. Bal.Acc. Std. Val. AUC Std. Val. F1-Weighted Std.

3D CNN (NO AUGs, Patience = 15) 0.69 0.12 0.63 0.15 0.75 0.20 0.62 0.17
3D CNN (NO AUGs, Patience = 30) 0.76 0.14 0.73 0.16 0.87 0.13 0.73 0.17
3D CNN (NO AUGs, Patience = 100, ILR=0.01) 0.57 0.12 0.51 0.12 0.60 0.17 0.51 0.12
3D CNN (NO AUGs, Patience = 100, ILR=0.001) 0.80 0.13 0.76 0.16 0.92 0.11 0.77 0.17
3D CNN (NO AUGs, Patience = 100, ILR=0.0001) 0.89 0.09 0.88 0.11 0.96 0.07 0.89 0.10
3D CNN (NO AUGs, Patience = 200, ILR=0.0001) 0.91 0.09 0.91 0.10 0.97 0.07 0.91 0.09

Classification reports from models with patience increased to 30, 100 and 200 epochs

show no meaningful improvement in the model’s generalization results, although mod-

els trained for longer started making more balanced predictions. Increasing patience from

100 to 200 improves validation metrics marginally, but it does not achieve better gener-

alizability, as seen in table 6.17 and 6.18, suggesting the models are just overfitting past

a certain point. These test results were observed also with varying ILRs ranging from

0.0001 to 0.01, although cross-validation shows learning during training with low ILRs is

possible, but not with higher values such as 0.01, as seen in plots 6.7, 6.8, and 6.9.

TABLE 6.17: Base 3D CNN model without augmentations and patience set to 15, on the
left side, and patience set to 30 classification reports, on the right side.

precision recall f1-score support

0 0.00 0.00 0.00 14
1 0.60 1.00 0.75 21

accuracy 0.60 35
macro avg 0.30 0.50 0.37 35

weighted avg 0.36 0.60 0.45 35

precision recall f1-score support

0 0.50 0.14 0.22 14
1 0.61 0.90 0.73 21

accuracy 0.60 35
macro avg 0.56 0.52 0.48 35

weighted avg 0.57 0.60 0.53 35
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TABLE 6.18: Base 3D CNN model without augmentations and patience set to 100, on the
left side, and patience set to 200 classification reports, on the right side.

precision recall f1-score support

0 0.67 0.14 0.24 14
1 0.62 0.95 0.75 21

accuracy 0.63 35
macro avg 0.65 0.55 0.50 35

weighted avg 0.64 0.63 0.55 35

precision recall f1-score support

0 0.33 0.21 0.26 14
1 0.58 0.71 0.64 21

accuracy 0.51 35
macro avg 0.46 0.46 0.45 35

weighted avg 0.48 0.51 0.49 35

FIGURE 6.7: Training and validation accuracy and loss evolution through 3D CNN base
model training with no augmentation and patience is set to 100 epochs and initial learn-

ing rate set to 0.01.

FIGURE 6.8: Training and validation accuracy and loss evolution through 3D CNN base
model training with no augmentation and patience is set to 100 epochs and initial learn-

ing rate set to 0.001.

FIGURE 6.9: Training and validation accuracy and loss evolution through 3D CNN base
model training with no augmentation and patience is set to 100 epochs and initial learn-

ing rate set to 0.0001.
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6.4.3 3D CNNs Data Augmentation

In a first approach, ILRs were tested without cross-validation to see how the training

loss progressed. Figures 6.7, 6.8 and 6.9, show that defining ILR = 0.0001 enables sig-

nificantly lower training loss values than other magnitudes values, but it also achieves

visible improvements in training starting on earlier epochs, as seen comparing 6.8 with

6.9. This seems to indicate the extra variability added by the augmentations requires

slower learning for the network to be able to adjust to this dynamically produced ds.,

not overajusting to initial features. Considering these results, further experiments used

ILR = 0.0001.

TABLE 6.19: CNNs cross-validated metrics comparison.

Model Val. Acc. Std. Val. Bal.Acc. Std. Val. AUC Std. Val. F1-Weighted Std.

3D CNN (NO AUGs, Patience = 200, ILR=0.0001) 0.91 0.09 0.91 0.10 0.97 0.07 0.91 0.09
3D CNN (AUGs Rot., Patience = 200, ILR=0.0001) 0.73 0.13 0.68 0.15 0.82 0.17 0.69 0.17
3D CNN (AUGs Vol., Patience = 200, ILR=0.0001) 0.71 0.08 0.66 0.09 0.80 0.10 0.67 0.10

As seen in tables 6.19, the model with simple rotations and ILR = 0.0001 was unable

to produce significantly better results than the worse model measured, a 3D CNN with

no data augmentation and patience = 30, inducing that when using data augmentation,

training epochs should be increased, so the model maintains its validation performance

and increases its generalization capacity, but increasing patience to 200 epochs produced

the same test results, so the same poor generalization results were achieved, with cross-

validation metrics only improving slightly. Adding more complex augmentations with

the volumentations package — and another increase in sample variability — did not im-

prove results, neither during validation — where accuracy and F1-weighted scores were

equivalent to a null model —, nor on test scores where the model was unable to improve

upon any of the previous models.

6.4.4 3D CNNs Network Architecture Search (NAS) Results

The test run with HyperBand lasted for 23h 12m 32s before crashing without possibility

to continue from that point. During that period 307 trials were conducted in the first

Hyperband phase, recurring three epochs each, and finding a model that achieved 0.67

validation loss. NAS suggested hps. are shown in table 6.20.

The model suggested by HyperBand has shown no signs of learning during its

training, as shown by figure 6.10.
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TABLE 6.20: 3D CNN architecture hyperparameters suggested by Hyperband.

Hyperparameter learning rate decay steps decay rate number of layers filter s 1 kernel s activation type pooling maxp 1

Best Value So Far 0.00011319 1.52e+05 0.93 5 64 3 selu avg 2

Hyperparameter filter s 2 maxp 2 filter s 3 maxp 3 filter s 4 maxp 4 dense u 5 dropout

Best Value So Far 128 2 512 2 256 2 256 0.10

FIGURE 6.10: Training and validation accuracy and loss evolution through HyperBand
parametrized 3D CNN training with full augmentation set, set to patience = 200 and

ILR = 0.0001.

Considering the same training epochs and data augmentations as the models analysed

in the previous section, the model suggested by HyperBand has decreased AUC perfor-

mance, with only AUC = 0.76, as seen in table 6.16, and all other metrics with similarly

bad results. The model was unable to distinguish itself statistically from other 3D CNNs

when comparing F1-weighted scores, as seen in figure 6.13.

TABLE 6.21: 3D CNN architecture hyperparameters suggested by Bayesian Optimiza-
tion.

Hyperparameter learning rate decay steps decay rate number of layers filter s 1 kernel s activation type pooling

Best Value So Far 3.60e-06 17770 0.93 2 64 5 relu max

Hyperparameter maxp 1 filter s 2 maxp 2 filter s 3 maxp 3 dense u 5 dropout

Best Value So Far 2 256 2 None None 1024 0.20

The test run with Bayesian Optimization lasted for 22h 59m 19s before crashing with-

out possibility to continue from that point. During that period 7 full trials were conducted,

recurring approximately 600 epochs each, and finding a model that achieved 0.73 valida-

tion weighted accuracy. NAS suggested hps. are shown in table 6.21, not much can be

learnt from them considering its even lower metrics compared to the baseline, as shown

in table 6.22.

TABLE 6.22: CNNs cross-validated metrics comparison.

Model Val. Acc. Std. Val. Bal.Acc. Std. Val. AUC Std. Val. F1-Weighted Std.

3D CNN (AUGs Vol., Patience = 200, ILR=0.0001) 0.71 0.08 0.66 0.09 0.80 0.10 0.67 0.10
3D CNN (AUGs Vol., Patience = 200, Hyperband) 0.68 0.11 0.63 0.12 0.76 0.13 0.65 0.12
3D CNN (AUGs Vol., Patience = 200, BayesOpt) 0.65 0.08 0.61 0.08 0.69 0.11 0.62 0.09
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6.4.5 3D CNNs with Transfer Learning

The best 3D CNN model architecture so far was the template 3D CNN architecture when

trained for 200 epochs with a ILR = 0.0001, so this was the architecture used for transfer

learning. The tests were done comparing to the model trained with patience = 100 due

to time constraints and the small difference in metrics this incurs, considering overfitting

was detected much earlier on the training process.

TABLE 6.23: CNNs cross-validated metrics comparison.

Model Val. Acc. Std. Val. Bal.Acc. Std. Val. AUC Std. Val. F1-Weighted Std.

3D CNN (NO AUGs, Patience = 100, ILR=0.001) 0.80 0.13 0.76 0.16 0.92 0.11 0.77 0.17
3D CNN (NO AUGs, Patience = 100, ILR=0.0001) 0.89 0.09 0.88 0.11 0.96 0.07 0.89 0.10
3D CNN (NO AUGs, Pat.=100, BasicTransferL) 0.94 0.09 0.93 0.10 0.97 0.05 0.94 0.09
3D CNN (No AUGs, Pat.=100, FullTranferL) 0.93 0.08 0.92 0.10 0.94 0.08 0.92 0.11

Basic transfer learning via simple fine-tuning, BasicTransferL, improved all metrics

over the best 3D CNN architecture so far, while Training the final dense layers separately

before fine-tuning, FullTranferL, made all metrics decreased compared to simple fine-

tuning, as seen in table 6.23. Considering Nemenyi’s critical distances based on AUCs,

models with transfer learning differentiate themselves from most models, but they are

not stat. sig. different among themselves and the model without transfer learning, as seen

in 6.13.

TABLE 6.24: 3D CNN trained with basic transfer learning, on the left side, and with full
transfer learning, on the right side.

precision recall f1-score support

0.0 0.71 0.36 0.48 14
1.0 0.68 0.90 0.78 21

accuracy 0.69 35
macro avg 0.70 0.63 0.63 35

weighted avg 0.69 0.69 0.66 35

precision recall f1-score support

0.0 0.60 0.21 0.32 14
1.0 0.63 0.90 0.75 21

accuracy 0.63 35
macro avg 0.62 0.56 0.53 35

weighted avg 0.62 0.63 0.57 35

Despite excellent validation results for both methods, the models achieved values be-

low CIs on the test set, although BasicTransferL still fared better, as seen on 6.24. As

expected, transfer learning made training faster, as denoted by achieving top training ac-

curacy markedly earlier, although starting to overfit earlier, as seen by comparing training

and validation curves from transfer learning models 6.11 and 6.12 with the model without

transfer learning, in figure 6.9.
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FIGURE 6.11: Training and validation accuracy and loss evolution through 3D CNN basic
fine-tuning, BasicTransferL.

FIGURE 6.12: Training and validation accuracy and loss evolution through 3D CNN with
fine-tuning after dense layer retraining, FullTransferL.

6.5 Mixed Models

6.5.1 Clinical data and Selected Biomarkers at Admission (ClinBiom0h) Model

Selection

ClinBiom0h included all variables with p-values in bold present in tables A.25 and A.26,

summing up 29 features. ClinBiom0h models achieved better results than Biom0h mod-

els, but no better than the best base clinical models, with all ClinBiom0h models achiev-

ing AUC < 0.72. Models trained on augmented data performed better than their non-

augmented counterparts with AUC increases ranging from 2% to 6%. Once more, XGBM

achieved the best result AUC = 0.72 ± 0.16 with LGBM following closely

AUC = 0.72 ± 0.17 and showing more consistent results in augmented and

non-augmented data.

Despite measured metrics differences, w.r.t. AUC scores, only four models were sta-

tistically different from the best clinical models: both SVC models without kernel trans-

formation, LR on non-augmented data and XGBM on non-augmented data, as shown in

figure A.22. The poor results of SVC on this ds. are due to underfitting, steaming probably

because convergence was not achieved within the set maximum of iteration, since SVC on

non-augmented data classified all cases as having poor outcomes.

Figure 6.14 shows ClinBiom0h models’ ROCs on

non-augmented and augmented test data respectively. AUCs on the test set show both
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TABLE 6.25: Table comparing best ClinBiom0h tabular models against augmented mod-
els and clinical dataset models.

meanrank mean std ci lower ci upper effect size magnitude
SVC (ClinBiom 0h) 3.79 0.57 0.16 0.49 0.65 0.00 negligible

LogisticRegression (ClinBiom 0h) 4.44 0.60 0.12 0.54 0.66 -0.18 negligible
SVC (ClinBiom 0h AUG) 5.36 0.62 0.21 0.51 0.71 -0.22 small

XGBClassifier (ClinBiom 0h) 5.77 0.65 0.14 0.59 0.72 -0.54 medium
LinearSVC (ClinBiom 0h) 6.02 0.67 0.17 0.59 0.75 -0.57 medium

LogisticRegression (ClinBiom 0h AUG) 6.03 0.65 0.23 0.54 0.75 -0.37 small
LinearSVC (ClinBiom 0h AUG) 6.64 0.69 0.24 0.58 0.80 -0.56 medium
LGBMClassifier (ClinBiom 0h) 6.78 0.68 0.15 0.61 0.75 -0.70 medium

LGBMClassifier (ClinBiom 0h AUG) 6.78 0.71 0.18 0.63 0.79 -0.83 large
XGBClassifier (ClinBiom 0h AUG) 7.16 0.72 0.16 0.65 0.80 -0.94 large

XGBoost (Base) 7.86 0.78 0.11 0.73 0.82 -1.50 large
Random Forests (Base) 7.93 0.78 0.11 0.73 0.83 -1.50 large

Logistic Regression (Base) 8.50 0.79 0.14 0.73 0.85 -1.45 large

LGBM and XGBM generalize well, with AUCs above CIs, LR has shown consistent per-

formance with the cross-validated scores and SVM-based models underperformed on

the test set, with SVC on non-augmented data showing the same AUC as the null model,

while the one trained on augmented data showing a performance far worse than the null

model.

FIGURE 6.14: ROCs comparing ClinBiom0h models without augmentation, on the left,
and with augmentation on the right.

6.5.2 Clinical data and Selected Biom24h (ClinBiom24h) Model Selection

ClinBiom24h included all variables with p-values in bold present in tables A.25 and A.27,

summing up 43 features. Table 6.26 details how models performed based on their AUC

scores. ClinBiom24h models also achieved better results than models with Biom24h,

and, were also better than the best base clinical models, unlike ClinBiom0h. The best

ClinBiom24h model is a SVM with kernel transformation model on non-augmented
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data, which achieved med(AUC) = 0.88, nearly a 10% improvement over the best clin-

ical model. This group did not show clear improvements with data augmentation and

only LGBM and Linear SVC have shown noticeable improvements in their median AUC

values. Metrics differences among top performing models were small, with CIs strongly

overlapping in the maximum upper CI being achieved by seven different models. These

results suggest there were too many noisy features in the ClinBiom0h for SVC with kernel

transformations to properly fit.

TABLE 6.26: Table comparing the best ClinBiom24h tabular models against augmented
models and clinical dataset models.

meanrank median mad ci lower ci upper effect size magnitude
Random Forests (Base) 6.10 0.77 0.08 0.71 0.86 0.00 negligible

XGBClassifier (ClinBiom 24h) 6.19 0.79 0.08 0.71 0.88 -0.16 negligible
XGBoost (Base) 6.23 0.80 0.08 0.71 0.86 -0.22 small

LGBMClassifier (ClinBiom 24h) 6.39 0.81 0.10 0.74 0.88 -0.30 small
XGBClassifier (ClinBiom 24h AUG) 6.46 0.79 0.12 0.71 0.92 -0.13 negligible
LogisticRegression (ClinBiom 24h) 7.04 0.82 0.10 0.71 0.92 -0.33 small

Logistic Regression (Base) 7.20 0.80 0.08 0.74 0.88 -0.22 small
LogisticRegression (ClinBiom 24h AUG) 7.24 0.81 0.10 0.75 0.92 -0.29 small

LinearSVC (ClinBiom 24h AUG) 7.31 0.81 0.11 0.75 0.92 -0.28 small
SVC (ClinBiom 24h AUG) 7.51 0.83 0.08 0.75 0.88 -0.49 small
LinearSVC (ClinBiom 24h) 7.58 0.83 0.08 0.75 0.92 -0.49 small

LGBMClassifier (ClinBiom 24h AUG) 7.61 0.83 0.08 0.75 0.92 -0.49 small
SVC (ClinBiom 24h) 8.14 0.88 0.08 0.79 0.92 -0.83 large

These new models were stat. sig. different from the two base models, base RF and

XGBM. Although metrics have improved considerably, there is still no stat. sig. from base

LR the overall best clinical model, as shown in figure A.23.

Figures 6.15 and 6.16 show ClinBiom24h models’ ROCs on non-augmented and aug-

mented test data respectively. All models but Linear SVC trained without data aug-

mentation have dropped AUC scores on the test set, but only SVC with kernel trans-

formation AUC shows clear signs of overfitting, considering its value dropped below

its validation CI, AUCSVC val = [0.79 − 0.92] and AUCSVC AUC val = [0.75 − 0.88], with

AUCSVC test = 0.74 and AUCSVC AUG test = 0.70.

6.5.3 Clinical models with Hemispheric Contrast (HC) Imaging Biomarker (IM)

(ClinCA0h) and ClinCA0h with Feature Selection (ClinCA0h FS)

Most clinical models benefited from absolute HC addition but statistic comparison as

shown no improvement over the best baseline LR, figure A.30.

While conducting HP analysis, figure 6.4, absolute HC appeared as the fifth most

important variable by its ANOVA F-value, preceded only by mRS before event, NIHSS

at admission to hospital, history of heart failure, and if the AIS was detected while
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FIGURE 6.15: ROCs comparing Clin-
Biom24h models.

FIGURE 6.16: ROCs comparing Clin-
Biom24h models trained on aug-

mented data.

waking up. The best median for all models cross-validate AUCs was achieved adding

previous intake of anti-hypertensors and knowing if AIS’ aetiology was prothrombotic,

also allowing LGBM to achieve med(AUC) = 0.86 ± 0.08. The highest LR AUC was

achieved with 11 variables, med(AUC) = 0.83 ± 0.08, adding patient’s age, history of

chronic renal disease, AIS and previous intake of medication for diabetes.

F1-score regularizing effect while conducting GS makes the model continue to peak

at AUC = 0.80, with no model surpassing LR on the clinical ds. after renewed GS. As

such, the original FS model is selected due to its better final metrics, table A.17, although

better metrics are not stat. sig. different from the best previous models A.20. It should

be noted both SVCs have improved the most with FS, showing they were assigning too

much weight to irrelevant features.

6.5.4 ClinBiom24h with Feature Selection (FS) and Hemipheric Contrast (HC)

ClinBiom24h FS did not improve central tendency nor dispersion metrics over the base

ClinBiom24h, med(AUCClinBiom24hFS) = 0.87 ± 0.09, although this LGBM achieves it

with only three variables: mRS before event, NIHSS and patient’s age. Adding HC at

admission (ClinBiom24hCA0h FS) does not improve the best model either, since absolute

HC is the seventh variable to be selected; therefore creating a model with more require-

ments, and because metrics further decrease, med(AUCClinBiom24hCA0hFS) = 0.83, as can

be seen in table A.18. Despite lower metrics, these models are not stat. sig. from the best

model found so far for post-thrombectomy data, an SVC with kernel transformation

trained on ClinBiom24h, as seen in figure A.21.



Chapter 7

Discussion

7.1 Clinical Models

The variables mostly correlated to outcome were the clinical scores for patients functional

evaluation: mRS before event, and NIHSS at admission. These make sense since incom-

ing patients with previous AIS damage have a worse baseline to recover from, and any

subsequent damage stacks-up. While conducting FS, it was possible to verify that FWER

corrections were too aggressive on these ds. since models continued to improve peak

scores up to 16 variables — dummy classes included —, which suggests extra informa-

tion from those variables is relevant to the outcome, and, therefore, correlated in some

way, with ANOVA F-values sorting variables in a way similar to unadjusted p-values.

Although neurology’s motto is ”Time is brain”, and the ds. contained detailed timing

information from incident to thrombectomy, time differences were not successful indica-

tors, mostly due to two factors: patient’s specific tolerance to ischaemia differences, and

the bias created by imputing event times for cases with symptoms while waking up. A

related boolean variable, AIS at wake-up (WkUp), was among the most relevant variables.

Clinical models provide a baseline for modelling, considering the ds. is composed

by information acquired once the patient arrives to hospital, and much of it can be auto-

matically obtained through the patient’s health records. Baseline models trained on this

ds. had good predictive capacity, with LR dominating the first modelling phase. This

can be due to the high bias that this modelling strategy has, conforming with linear DBs,

ℓ1 regularization technique, and the ability to deal moderately well with collinear vari-

ables. Initial FS was minimal to allow evaluating modelling strategies on their ability to

deal with collinearity, with models that integrate good FS methods — such as tree-based

81
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models — to differentiate positively. This strategy was sub-optimal, considering HP im-

proved metrics while reducing model complexity and training time. Multicollinearity

is a particular problem for some modelling strategies, particularly NNs, LDA and SVM

— which are sensitive to this phenomenon —, and those strategies could have had better

results, if multicollinear variables were handled more strictly beforehand.

Minority class balancing and data augmentation were not effective on the best model

trained on this ds., the hyperparametrized LR, but data augmentation has helped XGBM

and LGBM come closer to the original LR, which suggests the regularizing effect of data

augmentation was more effective in models with high variance, probably because they

were overfitting noisy features.

7.2 Automated Machine Learning (AutoML)

The limited test with AutoML has shown that within the same computational search time,

a manually constructed search space is more effective at finding top performing mod-

els, faster classifiers are created, and they are generally easier to explain. However, the

experiment conducted did not factor in the time spent on repeated experiments, tweak-

ing search spaces, nor development time orders of magnitude greater than AutoSkLearn

runtime. Should those be accounted for, it is possible that better results were found with

AutoML. The experiment extended to AutoPyTorch, and H2O, but no good way was

found to obtain individual cross-validation scores so formal statistical model comparison

could be done, — the reason these experiments not being detailed —, but, preliminary

tests have returned promising results with AUCAutoPyTorch = 0.78. AutoML was shown

to be a good way to produce robust models when developer time can be exchanged by

extra computing resources and processing time; models interpretability and explainabil-

ity is not key; and inference time and performance can be suboptimal. The research on

AutoML models enabled the discovery of more efficient models selection strategies —

later used on CNNs NAS —, ensemble methods inner workings and importance — later

used on multi-model voting systems —, as well as the importance of the exploration-

exploitation dilemma — a concept transversal to all research, and an AutoML pillar.

Should the objective of this thesis not be to produce the best models while developing

a deeper understanding on ML and CV with focus on DL methods applied to neuro-

sciences, dedicating more computing resources and research time to AutoML methods
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could be a sound strategy to find top models. That research would shift to spending more

time trying to explore and explain AutoML created models than to produce them.

7.3 Biomarker Models

Statistical analysis on ClinBiom0h has difficulty predicting modelling outcomes with this

ds., which was confirmed by the poor results on this ds.. This suggests the main bio-

chemical characteristics used in routine clinical practice have little to no bearing in the

patients’ outcome, nor are conducted for that purpose. However, these biochemical anal-

ysis were done to diagnose underlying patient’s conditions for anaesthesiology guidance,

not for prospective values for modelling AIS outcomes. Notwithstanding, given how

important these are to the overall patient’s health, analysing them as fitting within the

normal range for the patients sex and age, or use them as a reference to calculate the vari-

ation with follow-ups, could bring engineered features with better predictive potential.

This analysis was not yet done, due to time constrains.

Models trained only on pre-thrombectomy data missed some important variables,

considering models based on the same biomarkers at different phases had very dif-

ferent results. Biom24h-based models matched the performance of the base clinical

models with AUC scores around 0.80, while Biom0h had less predictive ability than a null

model. This indicates that some surgery related information is important for outcomes

prediction. Considering the clinical analysis done shortly after surgery, it is expected that

inflammation and apoptosis-related biomarkers collected have some degree of correla-

tion with the reperfusion achieved and how the brain tissues are reacting to treatment;

therefore, acting as a collinear variable to surgical success, as was shown while modelling

with such biomarkers. This clinical success is related to the level of reperfusion achieved

on the affected artery, which is often evaluated with the modified Thrombolysis in Cere-

bral Infarction (mTICI), and, in fact, several studies show its importance in outcome

modelling [182, 183].

Biom24h had more variables with relation to the outcome, especially FBC informa-

tion. AST, as an aminotransferase is usually associated to ALA in liver damage, but since

AST occurs in other organs, high concentrations may also be indicative of myocardial

infarction — or causes of extensive bodily damage, such as extensive burns, acute pancre-

atitis or acute haemolytic anaemia —, a possible cause of brain infarction without local-

ized brain ischaemia [184]. Prothrombin time and International Normalized Ratio (INR)
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are coagulation related biomarkers, and are usually tested before admission [184]. Due to

this they have a direct relation with thrombosis in case of below reference INR values,

one common form of IS, or haemorrhagic strokes in case of exceedingly high INR val-

ues [185]. As previously stated, these values also have no bearing in patients outcome

when measured before the thrombectomy takes place since they possibly only reveal

the possibility for bodily damage to occur, and after thrombectomy coagulation is regu-

lated by prescribed medication; therefore not affecting the patients’ outcome. All these

biomarkers are relevant clinically, but, considering this study’s subjects advanced age, the

range of possible values affecting these biomarkers is too narrow, — IQR = [2 − 8], their

variation within the selected cohort may be too narrow to produce perceivable effects on

outcomes.

Biomarkers modelling was constrained by two main aspects. Cases arriving from

other hospitals did not have available data, reducing considerably this subset of data.

With only 79 cases to model and 26 features, overfitting to noisy features is more rele-

vant. As in the clinical models, after reducing the number of features to 10, better results

were achieved in all models.

While studying HP with AUC scores, all models improved significantly in raw met-

rics but only Clin0h LR improved stat. sig. over all other models. It should be noted the

regularizing effect of using a different search space objective, F1-weighted score, made the

former top hps. not to be selected because they would have lower total F1-score despite

maximizing AUC. This made most models maintain or lower their AUC scores after GS.

Trying to optimize models for a single objective — as it is common in data science compe-

tition, such as Kaggle and ISLES — can prove useful to maximize scores across the board,

so the hps. used on HP were used to retrain models on the optimal number of features

and considered the best.

Several features selected are mathematically coupled [186] — e.g., percentages and

concentrations of the same biomarker, NLR and features relating to lymphocytes and

neutrophils — which shows that the automated FS using ANOVA F-values accounts

poorly for this type of variable interaction that causes multicollinearity problems. These

problems are more easily solved when selecting variables manually, so, combining auto-

mated FS with manual tweaking may bear better results. Also, analysing which vari-

ables are responsible for increases in cross-validated peak performance in HP analysis

and selecting only those for new models may prove to be a sound strategy for model
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improvement.

7.4 Imaging Models

Imaging models achieved the best overall results on validation. Transfer learning was

effective on improving model performance, and the models with the best validation and

test results among 3D CNNs were achieved by fine-tuning a model without data aug-

mentation, and doing it in considerably less epochs than the one used by most other

advanced models tested, even when considering retraining times. The model with basic

fine-tuning, BasicTransferL, can be considered the best model overall. However, further

cross-validation of this model on unseen data is recommended, considering the dispar-

ity between cross-validated results and test results. Test results are a single point metric,

so they are greatly influenced by stochastic factors, and comparing directly validation re-

sults from DL methods with validation results from other ML strategies is tricky, because

the patience mechanism cherry-picks the best epoch within numerous epochs and metrics

evolution variation should also be taken into account.

Image data augmentation techniques can theoretically improve generalization re-

sults, but within the maximum set training epochs, this was not observed, neither in

validation nor in testing. Samples registration is meant to reduce confounding factors

and variability to be modelled, so it is likely that augmentations have to be better de-

signed for registered data, especially because overfitting was suggested by training and

validation loss plots, the difference between different lesion severities is very subtle, and

successful augmentations documented on other classifications tasks use larger models

trained for longer. Despite having used longer training sessions than many experiments

without data augmentation, it has not been enough to account for the extra variability.

It should also be noted that mirroring images in the axial plane causes hemispheres to be

interpreted as being switched and lesion impacts are different depending on the hemi-

sphere affected, which may result in distinct outcome categorization [187]. Since transfer

learning was done after data augmentation analysis, showing much faster convergence —

but also diminishing returns on increased training time —, it would be interesting to also

test data augmentation on the transfer learning pipeline and assess generalization results.

Considering the low number of epochs in NAS trials with HyperBand and that var-

ious manually hyperparametrized models have only shown learning with dozens to a

hundred epochs, it is unlikely that Hyperband was able to select models appropriately.
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With so few epochs, the assumption the models’ performance at early epochs reflects the

overall relative model performance may be flawed, especially considering the amount

of input parameters and model’s expected complexity. Despite these limitations, Hyper-

band suggested a deep model similar to the base model, with five hidden layers but

changed some activation unity replaced ReLU activation by SeLU, and average pool-

ing was selected instead of maximum pooling, so testing these parameters on the base

architecture may improve 3D CNN results. Bayesian Optimization was more fitting to

the task since it fully tests each architecture, but the low number of trials has been

unable to find a distinctly better architecture. Using this NAS strategy requires a signifi-

cant number of trails to find improvements over the base architecture, which was already

chosen for dss. such as the one used.

7.5 Mixed Models

Tabular mixed models had varying results. The best ClinBiom0h model — a XGBM

trained on augmented data — was not statistically different from the baseline models, but

it has shown considerably lower metrics than all the best clinical only models, suggesting

that Biom0h added to the models were mostly multicollinear or noisy features, and rein-

forcing the notion the biochemical state of the patient before surgery has little influence on

its outcome, since it reflects the critical state that took the patient to the hospital. On the

other hand, several ClinBiom24h models outperformed all clinical only models but the

FS’ed ones, demonstrating that despite most biomarkers being the same as in admission,

the ’updated’ information is relevant to determine patients’ recovery.

Model-dependent results of data augmentation on tabular data suggest that either

the chosen data augmentation algorithm was suboptimal — despite the study done on the

subject —, or for mildly imbalanced data, the regularizing effects of this strategy achieve

meagre improvements that get diluted by other more significant modelling adjustments.

It was noticeable that the best models during validation — SVM with kernel transforma-

tion and LGBM — underperformed during testing, while modelling strategies with more

modest results — linear SVM and LR — performed consistently with validation CIs, sug-

gesting increased robustness on models with high DB bias.

The FS for mixed models used statistics for initial data reduction before the merge, so

the most likely noisy features were not included on mixed dss.. This is likely the cause for

posterior FS while analysing the HP not being able to produce relevant improvements.
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On the Clin0hCA mixed model, it was shown that adding the IB enables models

to maintain equivalent performance with fewer features. If this IB is calculated by the

CT scanner software without extra delays to emergency procedure, this may increase op-

erational performance since fewer variables have to be confirmed by the operator, with

Clin0hCA being less prone to extreme results due to noise on the extra features.

7.6 Transferability and generalization

The analysed cohort refers to very specific subjects with specific characteristics: a se-

nior population, with little to no previous AIS sequels, being affected by an AIS in

the cerebral middle artery with infarction in the carotid territory. Considering the co-

hort represents the general statistics for patients being conducted for thrombectomy, the

models trained on these dss. will be useful for the vast majority of incoming patients,

but care should be taken to not use the models in cases considerably different from this

cohort parameters.

Test AUCs have been analysed in each section, and they mostly fit within validation

CIs, but it was noticeable that strict FS had a positive impact in test scores, making most

models increase test scores and achieve values closer to validation mean AUCs. This reaf-

firms FS regularizing effect, and its usefulness in AIS modelling. The most important

tabular features selected for clinical models are similar to the ones used by state-of-the-

art AIS outcomes models: age — used in all well-known models —, pre-stroke functional

status (mRS before event) — used by Dragon, FSV, PLAN and SOAR —, co-morbidities,

such as previous renal chronic disease, heart failure, previous AIS — used by iScore,

PLAN, SPI, S-TPI and THRIVE —, stroke severity (NIHSS at admission) — used by most

well-known AIS predictive models but SOAR and SPI. Imaging findings, such as abso-

lute HC were not known to be specifically used by any model, but common tools like

e-ASPECTS use imaging findings, as well as, models such as Dragon, SNARL, and S-

TPI [188].

No publicly available models were applied to these dss. and comparing single point

measures taken on different dss. from references does not provide an accurate assessment,

but if AUCs’ CIs were calculated, they could be compared statistically [189]. Regardless,

the best 3D CNN results of this thesis compare positively with the values encountered in

referenced studies, but not its test results. Once again, the comparison is limited, since

different dss. and measuring methodologies were used in each work.





Chapter 8

Conclusions

8.1 General conclusions

During this work several modelling strategies were used. Various ML methods to select

and improve model performance were applied, studying the various parts of the process

to optimize results as much as possible. DL was used mostly for CV tasks, since on tab-

ular data NN have shown severe overfitting, mostly because multicollinearity is poorly

handled by this algorithms group.

The overall best model found was the 3D CNN with basic fine-tuning on MosMed-

Data, which achieved AUCBasicTrans f erL = 0.97 ± 0.05 on validation, although its gen-

eralization capacity may be worse than other models, considering all 3D CNN show

strong signs of overfitting in the training/validation plots, and this model only achieved

AUCBasicTrans f erL = 0.58 and F1-weightedBasicTrans f erL = 0.66 on the test set.

For each admission phase and data available, one model is proposed. On arrival,

the hyperparametrized LR trained on the strictly selected features clinical ds. is rec-

ommended. The moderate AUC values achieved by this model suggest caution since

AUC scores on the order of 80% is only considered good in many low consequence set-

ting [190]. The medical field is no such area, where AUC > 0.95 is expected for models to

be considered for use [191]. It should however be noted using a metric for model selection

different from the one used in validation and test evaluation makes measurements more

conservative. F1-weighted score assures the models selected have a good compromise

between precision and recall, with slightly more relevance given to the positive class, i.e.,

the one assuming the decision to not perform surgical treatment with the prediction of

a poor outcome. Should neuroimaging data be available on decision time, the 3D CNN

89
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with simple fine-tuning is recommended, considering its validation results. However,

comparing results with the previous model is advisable, since direct metrics comparison

among 3D CNN results and other ML methods is not straight forward. If hemispheric

contrast imaging biomarker is integrated in neuroimaging software, recurring to the pro-

posed ClinCA0h FS model for this second pre-surgical phase and its results compared

with the ones from the 3D CNN. These models might be further improved by automatiz-

ing the comparison by using a voting system that selects the highest probability between

the best 3D CNN and one of other above-mentioned models.

For the follow-up phase, the pre-treatment 3D CNN results should be compared to

the SVM with kernel transformation trained on non-augmented ClinBiom24h mixed

model. The mixed SVM model alone achieved med(AUC) = 0.88 ± 0.08, a considerably

higher median than all clinical models — even the one improved by HP analysis. Despite

better metrics, they have greater variability, and therefore are not stat. sig. different from

the best model trained on Clin0h. Waiting on further FBC and biochemical analysis

is inconsequential in this stage of the patient’s admission, so, there is no reason to not

use extra information for modelling. Follow-up models might also benefit from a voting

system that automatizes model comparison.

Imaging methods have shown relevance to AIS treatment outcomes modelling, es-

pecially when CNNs are used directly in imaging data. The imaging biomarker studied

in this thesis, hemispheric contrast, has shown relevance to modelling, but it did not

provide statistically significantly better predictive capacity.

Despite neuroimaging-based models improvements on predictive capacity, they

take longer to preprocess the data and make inferences, which is an extra step over ra-

dioimaging acquisition, something not desirable in the emergency settings where these

models can be used as an assisted diagnosis tool for treatment selection. Absolute HC

biomarker has shown high relevance to modelling, and it can be further improved with

other deterministic IBs with excellent AIS predictive capacity — e.g., angular second mo-

ment, contrast, entropy, correlation, sum of squares, difference entropy, inverse differ-

ence moment, inertia, cluster prominence and shade, energy, homogeneity, dissimilarity

and difference in variance [192] —, which can further improve predict outcomes, both on

pre- and post- thrombolysis and thrombectomy imaging data. ASPECTS is a well-known

imaging biomarker with a body of evidence on AIS prediction, usually used in conjunc-

tion with other variables [193]. ASPECTS alone achieved AUCLR ASPECTS = 0.75 while
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predicting 3-month outcomes in a 200 patients study [194].

There are some limitation in this study worth mentioning. In this work, although

cross-validated validation metrics achieved outstanding results, single point test metrics

diverged enough to warrant caution. Selected models have shown robust results even

with the small dataset that was available. Training the selected models on larger datasets,

should existing cohort data collection efforts continue, will make future models more ro-

bust, especially if more cases with minority characteristics or attributes not contemplated

in this study are present — e.g., AIS cases in middle-aged individuals, or AIS events in

different arteries and territories. Increasing the amount of training data is key to train

robust CNNs. Comparison with other studies may be biased, since this study used data

on medical discharge, while most AIS outcomes studies model outcomes over a 90-day

period.

During this work, while assessing HP, it was also demonstrated increased number of

features does not imply better model performance, due to multicollinearity, mathemati-

cal coupling and noisy features with little to no relation to the outcome.

The IB calculated during this thesis has shown good predictive results, being the fifth

most relevant feature for outcome prediction. As studied on at admission NCCTs, it was

unable to consistently improve models containing it, and its simple inclusion was not

enough to improve the best models. However, as a novel improvement, absolute HC en-

ables models with fewer features for equivalent performance. If its value is confirmed

with large scale studies, this may be suitable to replace more subjective clinical variables.

Imaging data alone is so relevant that it produced top results through 3D CNNs.

DL models are difficult to interpret and explain, so despite their impressive results, they

usually do not expand overall knowledge on the domain they are applied to and their

black-box design is not reassuring to users. This thesis has shown promising strategies

to further improve this 3D CNN performance and generalization capacity, so future work

with more data and computational resources is bound to improve these models.

8.2 Future work

First and foremost, creating a multimodal implementation that would enable merging tab-

ular data with imaging data would likely provide more robust results, and would ease the

burden of running multiple models at one stage and compare manually their results. Tab-

ular data models might be improved with feature engineering, exploring massive number
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of derived features with tools such as featuretools, and then selecting the best feature

with the methods already explored or via recursive feature elimination. AutoML was

lightly explored during this thesis. Within the search time provided, its results were un-

able to match human guided search spaces and FS, but this is a constantly expanding

ML field. Several other tools explored in a non-structured way during this thesis may

outperform existing models, since preliminary exploration has shown promising results

with AutoPyTorch. Testing these tools with higher budgets will help study how improve-

ments scale with the budget and if the best models found are the best possible models for

the provided dss.. BioStroke has fuelled the discovery of several biomarkers associated

with AIS not assessed in routine analysis, so integrating information on those biomark-

ers in future cohorts can show improvements on these predictive models. Integrating

more reliable thrombectomy evaluation features such as mTICI, or selecting cases for the

training ds. where full recanalization was achieved, is likely to help the models perform

better, and calibrate posterior probabilities with publicly accessible ones [195]. Recanal-

ization variable success implies HC can be even more valuable as a post-thrombectomy

outcome predictor, a feature not tested during this thesis. Exploring existing AIS IB as

the ones referred by Hema Rajini et al. [192] is a deterministic CV task that can provide

models that offer insights as neuroimaging data is collected. Assessing damage to each

functional area and extracting that information as a biomarker after proper segmentation

can provide derived imaging features useful for several neuroimaging tasks — including

precise thrombectomy outcome prediction. Scoring systems such as e-ASPECTs can be

expanded, accounting for more precise quantification, more separate regions to be anal-

ysed, or account for the relevance of the area affected to perceived dysfunction. Finally,

to use models in high-consequence scenarios and improve them, they need to be inter-

pretable. Tools as SHapley Additive exPlanationns or ELI5 can help understand the inner

workings of black-box models such as the LGBM, XGBM and NNs, and bring insights

that can help improve those models. Image data augmentations on properly registered

data were unable to produce improved models, possibly indicating the importance of

registration as a time and energy saving method on this kind of dss. and can be investi-

gated further. Further exploring NAS, with more appropriate equipment may improve

results and find architectures able to generalize better with little data, since filter size on

this project may have been a limiting factor. Transfer learning can be further improved by

using 3D versions of ResNet or ImageNet for neuroimaging modelling, since they enable
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learning from models with much more data, parameters and training time. Alternatively

chaining imaging related modelling studies from other medical domains may improve

overall results, since there is less likelihood of negative knowledge transfers.

8.3 Ethics and Data Protection

The dss. for this study were provided under a non-disclosure agreement, so it will not

be made publicly available. Taking into account medical records’ sensitive nature, all

data was anonymized before being passed to the author, by removing personally iden-

tifiable information and changing the keys of each record to BioStroke study specific

identification keys. The imaging analysis extension was approved by CHUP Ethical Com-

mittee before the author had access to the data. It was downloaded in CHUP computers,

stripped of all personal identifiable information on download, and further anonymized

by deskulling. No data from BioStroke was passed to Google Colab for processing.

8.4 Code Availability

The code from this study can be consulted on https://github.com/TiagoSantos81/

AISOutcomes private repository, accessible through request.

https://github.com/TiagoSantos81/AISOutcomes
https://github.com/TiagoSantos81/AISOutcomes




Appendix A

Appendix

A.1 Stroke Disability and Severity Scales

TABLE A.1: Modified Rankin Score table [24].

Grade Patient’s Description

0 Without symptoms
1 Without significant disability despite symptoms and able to carry out all usual duties and activities
2 Only has a slight disability in which it is unable to perform all previous activities
3 Requires some help, but it is able to walk without assistance
4 Unable to walk without assistance and unable to attend to own bodily needs without assistance
5 The patient is bedridden, incontinent and requiring constant nursing care and attention
6 Death

A.2 Clinical Data Appendix

TABLE A.2: Best clinical models AUC results comparison table.

meanrank mean std ci lower ci upper effect size magnitude
CategoricalNB 3.10 0.55 0.18 0.49 0.60 0.00 negligible

KNeighborsClassifier 3.60 0.56 0.18 0.51 0.62 -0.09 negligible
QuadraticDiscriminantAnalysis 4.26 0.61 0.17 0.56 0.66 -0.35 small

MLPClassifier 5.88 0.67 0.15 0.63 0.72 -0.76 medium
DecisionTreeClassifier 6.30 0.70 0.15 0.65 0.74 -0.91 large

SVC 6.47 0.69 0.15 0.64 0.74 -0.86 large
LinearSVC 6.88 0.72 0.14 0.67 0.76 -1.04 large

LinearDiscriminantAnalysis 7.64 0.73 0.16 0.68 0.78 -1.10 large
AdaBoostClassifier 8.42 0.76 0.15 0.71 0.80 -1.27 large

RandomForestClassifier 8.76 0.78 0.13 0.74 0.81 -1.46 large
LGBMClassifier 9.04 0.78 0.14 0.74 0.82 -1.44 large
XGBClassifier 9.13 0.78 0.13 0.74 0.82 -1.49 large

LogisticRegression 10.12 0.80 0.13 0.76 0.84 -1.56 large
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FIGURE A.1: Pearson’s correlation heatmap accounting all variables and dummy vari-
ables in the clinical dataset.

TABLE A.3: AUC comparison table with both AutoSkLearn algorithms tested.

meanrank mean std ci lower ci upper effect size magnitude
CategoricalNB 3.42 0.55 0.18 0.49 0.60 0.00 negligible

KNeighborsClassifier 3.90 0.56 0.18 0.51 0.62 -0.09 negligible
QuadraticDiscriminantAnalysis 4.68 0.61 0.17 0.56 0.66 -0.35 small

MLPClassifier 6.56 0.67 0.15 0.63 0.72 -0.76 medium
DecisionTreeClassifier 7.10 0.70 0.15 0.65 0.74 -0.91 large

SVC 7.21 0.69 0.15 0.64 0.74 -0.86 large
Auto-SkLearn 2.0 7.72 0.71 0.13 0.67 0.74 -1.03 large

LinearSVC 7.80 0.72 0.14 0.67 0.76 -1.04 large
LinearDiscriminantAnalysis 8.61 0.73 0.16 0.68 0.78 -1.10 large

Auto-SkLearn 1.0 9.44 0.75 0.13 0.71 0.79 -1.31 large
AdaBoostClassifier 9.56 0.76 0.15 0.71 0.80 -1.27 large

RandomForestClassifier 10.03 0.78 0.13 0.74 0.82 -1.46 large
LGBMClassifier 10.36 0.78 0.14 0.74 0.82 -1.44 large
XGBClassifier 10.45 0.78 0.13 0.74 0.82 -1.49 large

LogisticRegression 11.55 0.80 0.13 0.76 0.84 -1.56 large
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A.3 Biomarkers Data Appendix

FIGURE A.3: Pearson’s correlation heatmap accounting all variables and dummies in the
biomarkers at admission dataset.

TABLE A.4: Biomarkers ds. patients’ logistic fields description.

Field Name 0h Field Name 24h Description
Ref.Biostroke Ref.Biostroke BioStroke Key
1EXT External Patient? 1 – True, 0 – False
Onde Which External Hospital
Data AVC Sintomas 1st Symptoms Date
Data 1º Hospital Hospital Admission Date
Hora 1º Hospital Hospital Admission Hour
Data 1º TAC 1st CT Scan Date
Hora 1º TAC 1st CT Scan Hour
2EXT 3EXT Acute phase clinical analysis conducted in CHUP?

0 - True, 1 – False
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FIGURE A.4: Pearson’s correlation heatmap accounting all variables and dummies in the
biomarkers at follow-up dataset.

FIGURE A.5: At admission biomarker dataset missing data profile after calculations.
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FIGURE A.6: At follow-up biomarker dataset missing data profile after calculations.

FIGURE A.7: NAGuideR imputations evaluation on admission ds..
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TABLE A.5: Biomarkers ds. patients’ FBC related fields description.

Field Name 0h Field Name 24h Description
Hemograma Data Hemo24 Data FBC Date
Hemograma Hora Hemo24 Hora FBC Hour
Hemograma Leuc Hemo24 Leucócitos Leucocytes (10³/µL)
Hemograma Neutr(%) Hemo24 Neutr(%) Neutrophils (%)
Hemograma Neutr ABS Hemo24 Neut AB Neutrophils (10³/µL)
Hemograma Linf (%) Hemo24 Linf (%) Lymphocytes (%)
Hemograma Linf ABS Hemo24 Linf AB Lymphocytes (10³/µL)
Hemograma NLR Hemo24 NLR Neutrophils-Leucocytes Ratio (NLR)
Hemograma Mono (%) Hemo24 Mono (%) Monocytes (%)
Hemograma Mono ABS Hemo24 Mono AB Monocytes (10³/µL)
Hemograma Eos (%) Hemo24 Eos (%) Eosinophils (%)
Hemograma Eos ABS Hemo24 Eos AB Eosinophils (10³/µL)
Hemograma Bas (%) Hemo24 Bas (%) Basophils (%)
Hemograma Bas ABS Hemo24 Bas AB Basophils (10³/µL)
Hemograma Eritr Hemo24 Eritrocitos Erythrocytes (106̂/µL)
Hemograma Hb Hemo24 HB Haemoglobin (g/dL)
Hemograma PLAQ Hemo24 PLAQ Platelets (10³/µL)

TABLE A.6: Biomarkers ds. patients’ biochemical related fields description.

Field Name 0h Field Name 24h Description
BQ Data BQ24 Data
BQ Hora BQ24 Hora
BQ Glicemia BQ24 Glicemia Glycose (mg/dL)
BQ Creatinina BQ24 Creatinina Creatinine (mg/dL)
BQ Ureia BQ24 Ureia Urea (mg/dL)
BQ AST BQ24 AST Aspartate aminotransferase (U/L a 37°)
BQ ALT BQ24 ALT Alanine Aminotransferase (U/L a 37°)
BQ FA BQ24 FA Alkaline Phosphatasis (U/L a 37°)
BQ GGT BQ24 GGT Gamma-Glutamyl-Transferase (U/L a 37°)
BQ PCR BQ24 PCR C-reactive protein (mg/L)
BQ Pro-BNP BQ24 Pro-BNP B-type Natriuretic Peptide PROmotor Hormone (pg/mL)
BQ TTP Partial Thromboplastin Time (s)
BQ PT Prothrombin Time (s)
BQ INR International Normalised Ratio

BQ24 Ac úrico Uric Acid (mg/dL)
BQ24 Hb A1C Haemoglobin A1c (%)
BQ24 CT Total Cholesterol (mg/dL)
BQ24 TGL Triglycerides (mg/dL)
BQ24 HDL High-density lipoprotein (HDL) cholesterol (mg/dL)
BQ24 LDL Low-density lipoprotein (LDL) cholesterol (mg/dL)
BQ24 VLDL Very-Low-density lipoprotein (VLDL) cholesterol (mg/dL)
BQ24 T4L Free T4 - Free Thyroxine (ng/dL)
BQ24 TSH Tiroid-Stimulating Hormone (ng/dL)
BQ24 Homocisteı́na Homocysteine (µUI/mL)
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FIGURE A.8: NAGuideR imputations metrics plots on admission ds..

TABLE A.7: Normalized Root Mean Squared Error (NRMSR) and NRMSE-based Sum Of
Ranks (SOR).
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TABLE A.8: Procustes sum of squared errors (PSS) and ACC OI tables for the selected
models.

TABLE A.9: Best hypermaters for models trained on biomarkers datasets.

Model Parameters
LGBMClassifier (0h RF) {’classifier boosting type’: ’gbdt’, ’classifier learning rate’: 0.1, ’classifier max depth’: 2,

’classifier min child weight’: 2}
XGBClassifier (0h RF) {’classifier booster’: ’gblinear’, ’classifier learning rate’: 0.1, ’classifier max depth’: 2,

’classifier min child weight’: 2}
LinearSVC (0h RF) {’classifier C’: 10, ’classifier loss’: ’hinge’, ’classifier penalty’: ’l2’}
SVC (0h RF) {’classifier C’: 100, ’classifier coef0’: -1, ’classifier degree’: 3, ’classifier gamma’: ’auto’, ’classifier kernel’: ’poly’}
LogisticRegression (0h RF) {’classifier C’: 0.01, ’classifier max iter’: 400, ’classifier penalty’: ’none’, ’classifier solver’: ’saga’}
LGBMClassifier (0h RM) {’classifier boosting type’: ’gbdt’, ’classifier learning rate’: 0.05, ’classifier max depth’: 2,

’classifier min child weight’: 2}
XGBClassifier (0h RM) {’classifier booster’: ’gblinear’, ’classifier learning rate’: 0.1, ’classifier max depth’: 4,

’classifier min child weight’: 8}
LinearSVC (0h RM) {’classifier C’: 1, ’classifier loss’: ’hinge’, ’classifier penalty’: ’l2’}
SVC (0h RM) {’classifier C’: 100, ’classifier coef0’: 0, ’classifier degree’: 2, ’classifier gamma’: ’auto’, ’classifier kernel’: ’poly’}
LogisticRegression (0h RM) {’classifier C’: 20, ’classifier max iter’: 100, ’classifier penalty’: ’l2’, ’classifier solver’: ’sag’}
LGBMClassifier (24h RF) {’classifier boosting type’: ’gbdt’, ’classifier learning rate’: 0.1, ’classifier max depth’: 4,

’classifier min child weight’: 2}
XGBClassifier (24h RF) {’classifier booster’: ’gbtree’, ’classifier learning rate’: 0.1, ’classifier max depth’: 6,

’classifier min child weight’: 2}
LinearSVC (24h RF) {’classifier C’: 0.5, ’classifier loss’: ’hinge’, ’classifier penalty’: ’l2’}
SVC (24h RF) {’classifier C’: 10, ’classifier coef0’: -1, ’classifier degree’: 3, ’classifier gamma’: ’auto’, ’classifier kernel’: ’poly’}
LogisticRegression (24h RF) {’classifier C’: 1, ’classifier max iter’: 100, ’classifier penalty’: ’l2’, ’classifier solver’: ’newton-cg’}
LGBMClassifier (24h RM) {’classifier boosting type’: ’gbdt’, ’classifier learning rate’: 0.1, ’classifier max depth’: 2,

’classifier min child weight’: 2}
XGBClassifier (24h RM) {’classifier booster’: ’gbtree’, ’classifier learning rate’: 0.05, ’classifier max depth’: 4,

’classifier min child weight’: 2}
LinearSVC (24h RM) {’classifier C’: 100, ’classifier loss’: ’hinge’, ’classifier penalty’: ’l2’}
SVC (24h RM) {’classifier C’: 0.5, ’classifier coef0’: 0, ’classifier degree’: 2, ’classifier gamma’: ’scale’, ’classifier kernel’: ’poly’}
LogisticRegression (24h RM) {’classifier C’: 1, ’classifier max iter’: 100, ’classifier penalty’: ’l2’, ’classifier solver’: ’liblinear’}



104 MODELLING AND PREDICTING ACUTE ISCHAEMIC STROKE OUTCOMES

F
IG

U
R

E
A

.9:N
em

enyi’s
plotofallbestbiom

arkers
m

odels
w

ith
both

im
putation

m
ethods

and
both

subsets.



A. APPENDIX 105

FIGURE A.10: ROC curves of best Biom0h models with RF imputation, tested on the test
set, on the left, and with row median imputations, on the right.

TABLE A.10: Best biomarkers models AUC scores and ranking.

meanrank median mad ci lower ci upper effect size magnitude
LGBM (0h Rm) 7.27 0.56 0.14 0.44 0.67 0.00 negligible
LGBM (0h RF) 7.76 0.58 0.17 0.44 0.75 -0.12 negligible

Logistic Regression (0h RF) 8.54 0.58 0.17 0.44 0.75 -0.12 negligible
XGBoost (0h RF) 9.12 0.58 0.19 0.44 0.78 -0.11 negligible

SVC linear (0h RF) 9.76 0.67 0.17 0.50 0.78 -0.49 small
XGBoost (0h RM) 9.95 0.67 0.17 0.50 0.78 -0.49 small

Logistic Regression (0h RM) 10.00 0.67 0.17 0.56 0.78 -0.49 small
SVC linear (24h RF) 10.28 0.67 0.12 0.58 0.79 -0.57 medium
SVC linear (0h RM) 10.31 0.67 0.17 0.50 0.83 -0.49 small

SVC (24h RM) 10.35 0.67 0.11 0.58 0.76 -0.60 medium
SVC (24h RF) 10.38 0.67 0.12 0.58 0.79 -0.57 medium

Logistic Regression (24h RM) 10.80 0.67 0.12 0.62 0.80 -0.57 medium
SVC (0h RF) 10.92 0.67 0.19 0.56 0.83 -0.45 small

Logistic Regression (24h RF) 10.94 0.67 0.12 0.58 0.79 -0.57 medium
SVC (0h RM) 11.23 0.67 0.17 0.56 0.88 -0.49 small

SVC linear (24h RM) 11.40 0.68 0.10 0.62 0.79 -0.70 medium
LGBM (24h RM) 11.82 0.71 0.12 0.62 0.83 -0.78 medium
LGBM (24h RF) 11.99 0.75 0.11 0.64 0.83 -1.05 large

XGBoost (24h RF) 13.32 0.75 0.12 0.67 0.88 -0.99 large
XGBoost (24h RM) 13.84 0.79 0.12 0.67 0.88 -1.20 large

TABLE A.11: Best biomarkers models and clinical models AUC scores table.

meanrank median mad ci lower ci upper effect size magnitude
LGBM (24h RM) 3.22 0.71 0.12 0.62 0.79 0.00 negligible
LGBM (24h RF) 3.51 0.75 0.11 0.64 0.83 -0.24 small

Random Forests (Base) 4.10 0.77 0.08 0.71 0.86 -0.40 small
XGBoost (24h RF) 4.11 0.75 0.12 0.67 0.84 -0.22 small

XGBoost (Base) 4.14 0.80 0.08 0.72 0.86 -0.58 medium
XGBoost (24h RM) 4.26 0.79 0.12 0.68 0.88 -0.45 small

Logistic Regression (Base) 4.66 0.80 0.08 0.74 0.88 -0.58 medium
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A.4 Tabular Data Augmentation

TABLE A.12: SMOTE results on most successful models comparison table.

Model Mean AUC Std. Model Mean AUC Std.
LogisticRegression 0.78 ± 0.13 TL-KMeansSMOTE-TL-LogisticRegression 0.76 ± 0.13
LGBMClassifier 0.76 ± 0.13 KMeansSMOTE-TL-LGBMClassifier 0.76 ± 0.14
XGBClassifier 0.74 ± 0.14 TL-KMeansSMOTE-LGBMClassifier 0.76 ± 0.14
SMOTE-LogisticRegression 0.78 ± 0.14 TL-KMeansSMOTE-TL-LGBMClassifier 0.76 ± 0.13
SMOTE-LGBMClassifier 0.75 ± 0.14 KMeansSMOTE-TL-XGBClassifier 0.75 ± 0.14
SMOTE-XGBClassifier 0.74 ± 0.14 TL-KMeansSMOTE-XGBClassifier 0.75 ± 0.13
BorderlineSMOTE-LogisticRegression 0.77 ± 0.14 TL-KMeansSMOTE-TL-XGBClassifier 0.75 ± 0.14
BorderlineSMOTE-LGBMClassifier 0.76 ± 0.13 ENN-LogisticRegression 0.58 ± 0.14
BorderlineSMOTE-XGBClassifier 0.74 ± 0.14 ENN-LGBMClassifier 0.50 ± 0.00
SVMSMOTE-LogisticRegression 0.77 ± 0.14 ENN-XGBClassifier 0.68 ± 0.14
SVMSMOTE-LGBMClassifier 0.75 ± 0.14 SMOTE-ENN-LogisticRegression 0.63 ± 0.14
SVMSMOTE-XGBClassifier 0.74 ± 0.14 ENN-SMOTE-LogisticRegression 0.59 ± 0.14
KMeansSMOTE-LogisticRegression 0.77 ± 0.13 ENN-SMOTE-ENN-LogisticRegression 0.52 ± 0.13
KMeansSMOTE-LGBMClassifier 0.75 ± 0.13 SMOTE-ENN-LGBMClassifier 0.57 ± 0.16
KMeansSMOTE-XGBClassifier 0.75 ± 0.13 ENN-SMOTE-LGBMClassifier 0.50 ± 0.06
TL-LogisticRegression 0.77 ± 0.14 ENN-SMOTE-ENN-LGBMClassifier 0.50 ± 0.00
TL-LGBMClassifier 0.77 ± 0.13 SMOTE-ENN-XGBClassifier 0.68 ± 0.13
TL-XGBClassifier 0.76 ± 0.14 ENN-SMOTE-XGBClassifier 0.65 ± 0.15
SMOTE-TL-LogisticRegression 0.78 ± 0.14 ENN-SMOTE-ENN-XGBClassifier 0.56 ± 0.16
TL-SMOTE-LogisticRegression 0.76 ± 0.13 BorderlineSMOTE-ENN-LogisticRegression 0.64 ± 0.14
TL-SMOTE-TL-LogisticRegression 0.77 ± 0.13 ENN-BorderlineSMOTE-LogisticRegression 0.59 ± 0.14
SMOTE-TL-LGBMClassifier 0.75 ± 0.13 ENN-BorderlineSMOTE-ENN-LogisticRegression 0.51 ± 0.14
TL-SMOTE-LGBMClassifier 0.76 ± 0.13 BorderlineSMOTE-ENN-LGBMClassifier 0.56 ± 0.16
TL-SMOTE-TL-LGBMClassifier 0.77 ± 0.13 ENN-BorderlineSMOTE-LGBMClassifier 0.50 ± 0.06
SMOTE-TL-XGBClassifier 0.75 ± 0.14 ENN-BorderlineSMOTE-ENN-LGBMClassifier 0.50 ± 0.00
TL-SMOTE-XGBClassifier 0.76 ± 0.13 BorderlineSMOTE-ENN-XGBClassifier 0.69 ± 0.14
TL-SMOTE-TL-XGBClassifier 0.75 ± 0.14 ENN-BorderlineSMOTE-XGBClassifier 0.65 ± 0.14
BorderlineSMOTE-TL-LogisticRegression 0.77 ± 0.14 ENN-BorderlineSMOTE-ENN-XGBClassifier 0.56 ± 0.16
TL-BorderlineSMOTE-LogisticRegression 0.77 ± 0.14 SVMSMOTE-ENN-LogisticRegression 0.63 ± 0.15
TL-BorderlineSMOTE-TL-LogisticRegression 0.77 ± 0.14 ENN-SVMSMOTE-LogisticRegression 0.58 ± 0.14
BorderlineSMOTE-TL-LGBMClassifier 0.76 ± 0.14 ENN-SVMSMOTE-ENN-LogisticRegression 0.50 ± 0.14
TL-BorderlineSMOTE-LGBMClassifier 0.76 ± 0.13 SVMSMOTE-ENN-LGBMClassifier 0.54 ± 0.12
TL-BorderlineSMOTE-TL-LGBMClassifier 0.76 ± 0.13 ENN-SVMSMOTE-LGBMClassifier 0.50 ± 0.02
BorderlineSMOTE-TL-XGBClassifier 0.75 ± 0.14 ENN-SVMSMOTE-ENN-LGBMClassifier 0.50 ± 0.00
TL-BorderlineSMOTE-XGBClassifier 0.75 ± 0.14 SVMSMOTE-ENN-XGBClassifier 0.68 ± 0.14
TL-BorderlineSMOTE-TL-XGBClassifier 0.76 ± 0.14 ENN-SVMSMOTE-XGBClassifier 0.65 ± 0.16
SVMSMOTE-TL-LogisticRegression 0.76 ± 0.14 ENN-SVMSMOTE-ENN-XGBClassifier 0.54 ± 0.16
TL-SVMSMOTE-LogisticRegression 0.77 ± 0.14 KMeansSMOTE-ENN-LogisticRegression 0.59 ± 0.16
TL-SVMSMOTE-TL-LogisticRegression 0.77 ± 0.14 ENN-KMeansSMOTE-LogisticRegression 0.58 ± 0.13
SVMSMOTE-TL-LGBMClassifier 0.76 ± 0.13 ENN-KMeansSMOTE-ENN-LogisticRegression 0.48 ± 0.13
TL-SVMSMOTE-LGBMClassifier 0.76 ± 0.13 KMeansSMOTE-ENN-LGBMClassifier 0.56 ± 0.15
TL-SVMSMOTE-TL-LGBMClassifier 0.76 ± 0.14 ENN-KMeansSMOTE-LGBMClassifier 0.49 ± 0.05
SVMSMOTE-TL-XGBClassifier 0.75 ± 0.14 ENN-KMeansSMOTE-ENN-LGBMClassifier 0.50 ± 0.00
TL-SVMSMOTE-XGBClassifier 0.75 ± 0.14 KMeansSMOTE-ENN-XGBClassifier 0.68 ± 0.15
TL-SVMSMOTE-TL-XGBClassifier 0.75 ± 0.14 ENN-KMeansSMOTE-XGBClassifier 0.63 ± 0.15
KMeansSMOTE-TL-LogisticRegression 0.77 ± 0.14 ENN-KMeansSMOTE-ENN-XGBClassifier 0.51 ± 0.16
TL-KMeansSMOTE-LogisticRegression 0.76 ± 0.13

TABLE A.13: Best augmented clinical models cross-validated metrics.

Model Parameters
LGBMClassifier {’classifier boosting type’: ’gbdt’, ’classifier learning rate’: 0.1, ’classifier max depth’: 2, ’classifier min child weight’: 4}
XGBClassifier {’classifier booster’: ’gbtree’, ’classifier learning rate’: 0.05, ’classifier max depth’: 4, ’classifier min child weight’: 4}
LinearSVC {’classifier C’: 0.5, ’classifier dual’: False, ’classifier loss’: ’squared hinge’, ’classifier penalty’: ’l1’}
SVC {’classifier C’: 100, ’classifier coef0’: -1, ’classifier degree’: 2, ’classifier gamma’: ’auto’, ’classifier kernel’: ’rbf’}
LogisticRegression {’classifier C’: 1, ’classifier max iter’: 200, ’classifier penalty’: ’l1’, ’classifier solver’: ’saga’}
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FIGURE A.14: Test set ROC curves for minority class SMOTE augmented models.

A.5 Feature Selection

A.6 Clin0h Feature Selection

FIGURE A.15: Clinical ds. with strict feature selection peaking phenomenon analysis.
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TABLE A.14: Clinical ds. with strict FS AUCs comparison table.

meanrank median mad ci lower ci upper effect size magnitude
CategoricalNB (FS) 2.20 0.57 0.14 0.44 0.68 0.00 negligible

QuadraticDiscriminantAnalysis (FS) 4.81 0.69 0.13 0.57 0.80 -0.57 medium
KNeighborsClassifier (FS) 5.17 0.68 0.14 0.000 0.57 0.80 -0.54 medium
DecisionTreeClassifier (FS) 6.99 0.73 0.08 0.68 0.81 -0.92 large

MLPClassifier (FS) 7.36 0.77 0.12 0.64 0.86 -1.04 large
SVC (FS) 7.52 0.77 0.11 0.66 0.86 -1.04 large

LGBMClassifier (FS) 8.02 0.77 0.08 0.70 0.83 -1.14 large
XGBClassifier (FS) 8.44 0.79 0.08 0.71 0.86 -1.25 large

RandomForestClassifier (FS) 8.70 0.77 0.08 0.71 0.86 -1.14 large
LinearDiscriminantAnalysis (FS) 8.86 0.80 0.08 0.71 0.88 -1.31 large

AdaBoostClassifier (FS) 9.08 0.80 0.08 0.71 0.86 -1.31 large
LinearSVC (FS) 9.12 0.79 0.10 0.71 0.88 -1.19 large

LogisticRegression (FS) 9.58 0.80 0.08 0.74 0.88 -1.31 large
LogisticRegression (FS Pipeline) 12.08 0.84 0.07 0.77 0.91 -1.62 large

LogisticRegression (FS AUG Pipeline) 12.08 0.84 0.07 0.77 0.91 -1.62 large

A.7 Biom0h Feature Selection

FIGURE A.17: Biom0h with strict feature selection peaking phenomenon analysis.

TABLE A.15: Biom0h RM with strict feature selection AUCs comparison table.

meanrank mean std ci lower ci upper effect size magnitude
LGBMClassifier 3.01 0.48 0.21 0.43 0.53 0.00 negligible

SVC 3.33 0.48 0.22 0.44 0.53 -0.02 negligible
LinearSVC 3.41 0.54 0.24 0.49 0.59 -0.27 small

LogisticRegression 3.54 0.54 0.25 0.50 0.59 -0.28 small
XGBClassifier 3.80 0.56 0.25 0.51 0.61 -0.36 small
MLPClassifier 3.91 0.57 0.25 0.52 0.62 -0.39 small

A.8 Biom24h Feature Selection
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FIGURE A.18: Biom24h with strict feature selection peaking phenomenon analysis.

TABLE A.16: Biom24h with strict feature selection AUCs comparison table.

meanrank mean std ci lower ci upper effect size magnitude
MLPClassifier 3.10 0.65 0.16 0.62 0.68 0.00 negligible

LogisticRegression 3.14 0.65 0.17 0.62 0.68 -0.01 negligible
LinearSVC 3.18 0.67 0.16 0.64 0.70 -0.12 negligible

SVC 3.56 0.70 0.16 0.66 0.73 -0.28 small
LGBMClassifier 3.77 0.72 0.15 0.69 0.76 -0.46 small
XGBClassifier 4.24 0.75 0.16 0.71 0.78 -0.59 medium

A.9 ClinCA0h Feature Selection

FIGURE A.19
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TABLE A.17: ClinCA0h with strict feature selection AUCs comparison table. LGBM (FS
Hughes) model shows the highest median AUC score in the Hughes phenomenon study.

meanrank median mad ci lower ci upper effect size magnitude
Random Forests (Base) 4.47 0.77 0.08 0.71 0.86 0.00 negligible

LGBMClassifier 4.58 0.79 0.09 0.71 0.84 -0.13 negligible
LinearSVC 4.59 0.80 0.08 0.71 0.86 -0.22 small

XGBoost (Base) 4.74 0.80 0.08 0.71 0.86 -0.22 small
XGBClassifier 4.89 0.80 0.11 0.71 0.86 -0.19 negligible

SVC 5.04 0.80 0.07 0.74 0.86 -0.25 small
LogisticRegression 5.40 0.80 0.08 0.74 0.83 -0.25 small

Logistic Regression (Base) 5.50 0.80 0.08 0.74 0.88 -0.22 small
LGBM (FS Hughes) 5.80 0.86 0.08 0.76 0.91 -0.67 medium

A.10 ClinBiom0h
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A.11 ClinBiom24h and ClinBiom24hCA0h Feature Selection

TABLE A.18: ClinBiom24h with strict feature selection and with HC AUCs comparison
table.

meanrank median mad ci lower ci upper effect size magnitude
XGBoost (Base) 4.68 0.80 0.08 0.71 0.86 0.00 negligible

Random Forests (Base) 4.75 0.77 0.08 0.71 0.86 0.22 small
XGBClassifier (ClinBiom 24h) 4.99 0.79 0.12 0.68 0.88 0.05 negligible

LGBM (ClinBiom24h HC0h FS) 5.50 0.83 0.08 0.75 0.88 -0.26 small
LogisticRegression (ClinBiom 24h) 5.50 0.80 0.12 0.75 0.92 0.03 negligible

LGBMClassifier (ClinBiom 24h) 5.52 0.82 0.09 0.74 0.88 -0.13 negligible
Logistic Regression (Base) 5.54 0.80 0.08 0.74 0.88 0.00 negligible
LinearSVC (ClinBiom 24h) 5.79 0.80 0.12 0.75 0.92 0.03 negligible
LGBM (ClinBiom24h FS) 6.00 0.87 0.09 0.75 0.92 -0.52 medium

SVC (ClinBiom 24h) 6.73 0.88 0.08 0.79 0.92 -0.60 medium
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A.12 Imaging Data Appendix

TABLE A.19: Best models AUC score ranks table.

meanrank median mad ci lower ci upper effect size magnitude

3D CNN (NO AUGs, Pat. = 100, ILR=0.01) 2.73 0.62 0.08 0.40 0.88 0.00 negligible
3D CNN (AUGs Vol., Pat.=200, BayesOpt) 4.85 0.69 0.07 0.54 0.84 -0.65 medium
XGBoost (Base) 7.08 0.74 0.06 0.66 0.94 -1.15 large
3D CNN (AUGs Vol., Pat.=200, HyperBand) 7.27 0.77 0.08 0.60 0.98 -1.30 large
Random Forests (Base) 7.67 0.75 0.08 0.66 0.94 -1.08 large
3D CNN (NO AUGs, Pat. = 15) 7.98 0.82 0.13 0.49 0.98 -1.21 large
LogisticRegression (Clin0hCA FS) 8.32 0.82 0.06 0.63 0.94 -1.84 large
LGBMClassifier (Clin0hCA FS) 8.52 0.80 0.09 0.59 1.00 -1.33 large
3D CNN (AUGs Vol., Pat. = 200, ILR=0.0001) 8.53 0.81 0.05 0.69 0.98 -1.84 large
Logistic Regression (Base) 8.77 0.80 0.07 0.69 0.97 -1.56 large
LogisticRegression (ClinBiom 24h) 9.35 0.83 0.08 0.63 1.00 -1.74 large
SVC (ClinBiom 24h) 10.12 0.88 0.04 0.71 1.00 -2.66 large
3D CNN (AUGs Rot., Pat. = 200, ILR=0.0001) 10.42 0.86 0.09 0.58 1.00 -1.87 large
3D CNN (NO AUGs, Pat. = 30) 11.62 0.93 0.08 0.67 1.00 -2.62 large
3D CNN (NO AUGs, Pat. = 100, ILR=0.001) 13.52 0.97 0.03 0.80 1.00 -3.81 large
3D CNN (No AUGs, Pat.=100, Full TranferL) 15.10 0.99 0.01 0.87 1.00 -4.31 large
3D CNN (NO AUGs, Pat. = 100, ILR=0.0001) 15.88 1.00 0.00 0.90 1.00 -4.47 large
3D CNN (NO AUGs, Pat. = 200, ILR=0.0001) 16.12 1.00 0.00 0.91 1.00 -4.47 large
3D CNN (No AUGs, Pat.=100, Basic TranferL) 16.17 1.00 0.00 0.93 1.00 -4.47 large

TABLE A.20: Best models weighted-F1 score ranks table.

meanrank median mad ci lower ci upper effect size magnitude

3D CNN (NO AUGs, Pat. = 100, ILR=0.01) 2.88 0.50 0.08 0.42 0.70 0.00 negligible
3D CNN (NO AUGs, Pat. = 15) 6.05 0.59 0.17 0.42 0.86 -0.48 small
3D CNN (AUGs Vol., Pat.=200, HyperBand) 6.37 0.64 0.08 0.51 0.85 -1.29 large
3D CNN (AUGs Vol., Pat. = 200, ILR=0.0001) 6.62 0.64 0.06 0.57 0.78 -1.43 large
XGBoost (Base) 7.45 0.72 0.05 0.60 0.82 -2.30 large
Logistic Regression (Base) 7.55 0.74 0.08 0.57 0.83 -2.17 large
Random Forests (Base) 7.58 0.72 0.07 0.59 0.83 -2.01 large
3D CNN (AUGs Rot., Pat. = 200, ILR=0.0001) 8.33 0.64 0.14 0.51 0.93 -0.88 large
LGBMClassifier (Clin0hCA FS) 8.72 0.75 0.10 0.59 0.92 -1.90 large
LogisticRegression (Clin0hCA FS) 8.73 0.74 0.08 0.60 0.92 -2.17 large
3D CNN (NO AUGs, Pat. = 30) 9.00 0.77 0.15 0.50 0.93 -1.60 large
SVC (ClinBiom 24h) 9.33 0.74 0.06 0.69 0.90 -2.44 large
LogisticRegression (ClinBiom 24h) 9.63 0.78 0.09 0.69 0.90 -2.34 large
3D CNN (NO AUGs, Pat. = 100, ILR=0.001) 10.00 0.84 0.09 0.62 0.93 -2.85 large
3D CNN (NO AUGs, Pat. = 100, ILR=0.0001) 13.65 0.93 0.07 0.76 1.00 -3.89 large
3D CNN (NO AUGs, Pat. = 200, ILR=0.0001) 14.10 0.93 0.07 0.79 1.00 -3.94 large

FIGURE A.24: Training and validation accuracy and loss evolution through 3D CNN base
model training with simple rotations, set to patience = 30 and ILR = 0.01.
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FIGURE A.25: Training and validation accuracy and loss evolution through 3D CNN base
model training with simple rotations, set to patience = 30 and ILR = 0.001.

FIGURE A.26: Training and validation accuracy and loss evolution through 3D CNN base
model training with simple rotations, set to patience = 30 and ILR = 0.0001.

FIGURE A.27: Training and validation accuracy and loss evolution through 3D CNN base
model training with simple rotations, set to patience = 200 and ILR = 0.0001.

FIGURE A.28: Training and validation accuracy and loss evolution through 3D CNN base
model training with full augmentation set, set to patience = 200 and ILR = 0.0001.

FIGURE A.29: Training and validation accuracy and loss evolution through Bayesian Op-
timization parametrized 3D CNN training with full augmentation set, set to patience =

200 and ILR = 0.0001.
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A.13 Mixed Models Data Appendix

A.13.1 Models hyperparameters

TABLE A.21: Best ClinBiom0h hyperparameters.

Model Parameters
LGBMClassifier {’classifier boosting type’: ’gbdt’, ’classifier learning rate’: 0.01, ’classifier max depth’: 2,

’classifier min child weight’: 2}
XGBClassifier {’classifier booster’: ’gbtree’, ’classifier learning rate’: 0.01, ’classifier max depth’: 2,

’classifier min child weight’: 2}
LinearSVC {’classifier C’: 0.01, ’classifier dual’: True, ’classifier loss’: ’hinge’, ’classifier penalty’: ’l2’}
SVC {’classifier C’: 0.01, ’classifier coef0’: -1, ’classifier degree’: 2, ’classifier gamma’: ’scale’, ’classifier kernel’: ’rbf’}
LogisticRegression {’classifier C’: 0.01, ’classifier max iter’: 100, ’classifier penalty’: ’none’, ’classifier solver’: ’newton-cg’}

TABLE A.22: Best ClinBiom0h trained on augmented data hyperparameters.

Model Parameters
LGBMClassifier {’classifier boosting type’: ’gbdt’, ’classifier learning rate’: 0.01, ’classifier max depth’: 2,

’classifier min child weight’: 2}
XGBClassifier {’classifier booster’: ’gbtree’, ’classifier learning rate’: 0.01, ’classifier max depth’: 2,

’classifier min child weight’: 2}
LinearSVC {’classifier C’: 0.01, ’classifier dual’: True, ’classifier loss’: ’hinge’, ’classifier penalty’: ’l2’}
SVC {’classifier C’: 0.01, ’classifier coef0’: -1, ’classifier degree’: 2, ’classifier gamma’: ’scale’, ’classifier kernel’: ’rbf’}
LogisticRegression {’classifier C’: 0.01, ’classifier max iter’: 100, ’classifier penalty’: ’none’, ’classifier solver’: ’newton-cg’}

TABLE A.23: Best ClinBiom24h data hyperparameters.

Model Parameters
LGBMClassifier {’classifier boosting type’: ’gbdt’, ’classifier learning rate’: 0.01, ’classifier max depth’: 2,

’classifier min child weight’: 8}
XGBClassifier {’classifier booster’: ’gblinear’, ’classifier learning rate’: 0.01, ’classifier max depth’: 2,

’classifier min child weight’: 12}
LinearSVC {’classifier C’: 0.01, ’classifier dual’: True, ’classifier loss’: ’squared hinge’, ’classifier penalty’: ’l2’}
SVC {’classifier C’: 100, ’classifier coef0’: 0, ’classifier degree’: 4, ’classifier gamma’: ’scale’, ’classifier kernel’: ’poly’}
LogisticRegression {’classifier C’: 0.1, ’classifier max iter’: 100, ’classifier penalty’: ’l2’, ’classifier solver’: ’sag’}

TABLE A.24: Best ClinBiom24h trained on augmented data hyperparameters.

Model Parameters
SVC {’classifier C’: 10, ’classifier coef0’: 0, ’classifier degree’: 4, ’classifier gamma’: ’scale’, ’classifier kernel’: ’poly’}
LogisticRegression {’classifier C’: 0.01, ’classifier max iter’: 100, ’classifier penalty’: ’l2’, ’classifier solver’: ’sag’}
LGBMClassifier {’classifier boosting type’: ’dart’, ’classifier learning rate’: 0.01, ’classifier max depth’: 2,

’classifier min child weight’: 12}
XGBClassifier {’classifier booster’: ’gbtree’, ’classifier learning rate’: 0.01, ’classifier max depth’: 2,

’classifier min child weight’: 12}
LinearSVC {’classifier C’: 0.01, ’classifier dual’: True, ’classifier loss’: ’hinge’, ’classifier penalty’: ’l2’}

A.13.2 Multivariate Analysis
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TABLE A.25: Multivariate LR analysis of the clinical dataset. Variables sorted by their
p-value.

Estimate Std. Error z value Pr(>|z|)
LcTx2CHUSJ NA NA NA NA

mRSprv 1.73e+00 5.09e-01 3.40 0.000678
AHTA1 -3.01e+00 1.12e+00 -2.68 0.007364
NIHSS 1.39e-01 5.21e-02 2.67 0.007644
WkUp1 2.02e+00 8.05e-01 2.51 0.01
EAM1 3.62e+00 1.85e+00 1.96 0.05

ACoag1 -2.22e+00 1.29e+00 -1.72 0.09
Cortical1 -1.90e+00 1.13e+00 -1.68 0.09

IC1 1.49e+00 9.16e-01 1.63 0.10
ADM21 6.03e+00 3.76e+00 1.60 0.11
DAC1 -3.04e+00 2.00e+00 -1.52 0.13

Neuro1 1.48e+00 1.01e+00 1.46 0.14
Side2 -1.63e+00 1.11e+00 -1.46 0.14

DISLIP1 1.17e+00 8.93e-01 1.31 0.19
DPOC1 -1.51e+00 1.25e+00 -1.21 0.22

AntiDis1 -1.05e+00 8.78e-01 -1.20 0.23
AGE 2.94e-02 2.63e-02 1.12 0.26
DM1 -3.80e+00 3.56e+00 -1.07 0.28

Etiology4 -1.11e+00 1.08e+00 -1.03 0.30
Etiology5 -1.67e+00 1.69e+00 -0.99 0.32
Etiology2 8.54e-01 8.96e-01 0.95 0.34

Estimate Std. Error z value Pr(>|z|)
Sex1 -5.86e-01 6.63e-01 -0.88 0.38

Hosp31 -1.29e+00 1.48e+00 -0.87 0.38
AVCprv1 -7.40e-01 9.66e-01 -0.77 0.44

(Intercept) -1.90e+00 2.70e+00 -0.70 0.48
Etiology8 -1.72e+00 2.47e+00 -0.70 0.48
Hosp11 -1.42e+00 2.13e+00 -0.67 0.50

X.2ndHCHUSJ -7.07e-01 1.19e+00 -0.59 0.55
DEM1 -6.66e-01 1.18e+00 -0.56 0.57
Hosp21 7.57e-01 1.39e+00 0.55 0.58

FA1 5.62e-01 1.14e+00 0.49 0.62
AAgreG1 -3.93e-01 9.17e-01 -0.43 0.67

HTA1 3.95e-01 9.89e-01 0.40 0.69
Etiology6 5.15e-01 1.40e+00 0.37 0.71
diff2ndH 1.19e-03 3.90e-03 0.31 0.76
diffCT1 -2.84e-03 9.94e-03 -0.29 0.77
DRC1 3.29e-01 1.50e+00 0.22 0.83

diff1stH 1.70e-03 8.19e-03 0.21 0.84
TxTp3 1.42e-01 8.29e-01 0.17 0.86
Prov22 -2.59e-01 1.77e+00 -0.15 0.88
Prov23 1.11e-01 1.38e+00 0.08 0.94

Etiology7 1.99e+01 1.25e+03 0.02 0.99
Outra1 9.76e-03 6.68e-01 0.02 0.99

Etiology3 1.65e+01 2.46e+03 0.007 0.99

TABLE A.26: Multivariate LR analy-
sis of biomarkers at admission dataset.

Variables sorted by their p-value.

Estimate Std. Error z val Pr(>|z|)
BQ AST -1.53e-01 7.61e-02 -2.01 0.04

BQ Glicemia 3.10e-02 1.57e-02 1.98 0.05
H NLR 5.64e-01 2.92e-01 1.93 0.05

BQ PCR 5.49e-02 2.93e-02 1.88 0.06
BQ Ureia 4.53e-02 2.95e-02 1.53 0.12
BQ ALT -1.06e-01 7.20e-02 -1.47 0.14
BQ TTP -1.13e-01 8.26e-02 -1.37 0.17
BQ FA 1.72e-02 1.77e-02 0.97 0.33
BQ PT 7.03e-01 7.56e-01 0.93 0.35

BQ Creatinina -6.63e-01 7.17e-01 -0.92 0.36
BQ INR -6.95e+00 8.23e+00 -0.84 0.40
H Eritr -8.80e-01 1.32e+00 -0.66 0.51

H Linf perc -3.75e+00 6.14e+00 -0.61 0.54
H Neutr perc -3.71e+00 6.17e+00 -0.60 0.55

H Hb 2.42e-01 4.04e-01 0.60 0.55
(Intercept) 3.66e+02 6.13e+02 0.60 0.55
H Eos perc -4.07e+00 6.94e+00 -0.59 0.56
BQ GGT 7.08e-03 1.21e-02 0.59 0.56

H Bas perc -4.91e+00 9.51e+00 -0.52 0.60
H Mono perc -2.95e+00 5.94e+00 -0.50 0.62
H Mono ABS -2.73e+01 6.02e+01 -0.45 0.65
H Neutr ABS -1.94e+01 6.26e+01 -0.31 0.76

H Leuc 1.92e+01 6.22e+01 0.31 0.76
H Linf ABS -1.78e+01 6.26e+01 -0.28 0.78
H Eos ABS -2.0e+01 7.11e+01 -0.28 0.78
H Bas ABS 2.85e+01 1.13e+02 0.25 0.80

H PLAQ -7.55e-04 5.72e-03 -0.13 0.90

TABLE A.27: Multivariate LR analysis
of biomarkers at follow-up with vari-

ables sorted by their p-value.

Estimate Std. Error z value Pr(>|z|)
Hemo24 PLAQ -0.02 0.007005 -2.99 0.00279

BQ24 TGL 0.03 0.02 2.01 0.04
Hemo24 Mono AB -18.80 9.38 -2.00 0.04
BQ24 Creatinina -2.82 1.59 -1.78 0.08

Hemo24 Neutr perc -2.29 1.40 -1.63 0.10
(Intercept) 225.06 137.95 1.63 0.10

BQ24 VLDL -0.18 0.12 -1.52 0.13
Hemo24 Linf perc -2.08 1.39 -1.49 0.14

BQ24 TSH -0.64 0.43 -1.48 0.14
Hemo24 Eos perc -3.44 2.38 -1.45 0.15
Hemo24 Bas AB 118.51 83.39 1.42 0.16

BQ24 GGT -0.008288 0.006081 -1.36 0.17
Hemo24 Eritrocitos -1.49 1.11 -1.34 0.18

BQ24 ALT -0.07 0.05 -1.28 0.20
BQ24 T4L 2.46 2.19 1.12 0.26

BQ24 Ureia 0.03 0.03 1.08 0.28
Hemo24 Bas perc -6.97 6.76 -1.03 0.30

BQ24 FA 0.01 0.01 1.01 0.31
Hemo24 Linf AB -8.55 8.49 -1.01 0.31

Hemo24 Mono perc -1.35 1.41 -0.95 0.34
Hemo24 Leucocitos 6.52 7.75 0.84 0.40

BQ24 Hb A1C 0.38 0.47 0.80 0.42
BQ24 AST 0.04 0.06 0.77 0.44

BQ24 Glicemia 0.005817 0.008022 0.72 0.47
Hemo24 Neut AB -5.08 7.73 -0.66 0.51

Hemo24 NLR -0.09 0.15 -0.58 0.56
BQ24 PCR 0.009024 0.02 0.51 0.61
BQ24 CT -0.02 0.05 -0.48 0.63

Hemo24 Eos AB 9.54 22.89 0.42 0.68
BQ24 HDL 0.02 0.06 0.32 0.75

Hemo24 HB 0.07 0.38 0.19 0.85
BQ24 LDL 0.008471 0.05 0.16 0.87

BQ24 Ac urico 0.01 0.11 0.13 0.90
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