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Abstract

Fake news consist of intentionally false information and their proliferation has been ever-
increasing in recent years. They are frequently used for political or financial gain, causing
severe social problems, such as the adoption of non-scientific alternative medicines, extreme
political standpoints, or pyramid schemes. Moreover, the high reachability they now have,
powered by social media platforms which allow their widespread and fast dissemination, makes it
crucial to find novel ways to tackle this problem.

Machine Learning (ML) approaches have been already proposed, where models are trained
with the purpose of detecting fake news. Nonetheless, most of the news datasets in which these
models train are extremely imbalanced, having substantially more real news than fake ones. As
such, ML models struggle to generalize properly, causing them not to be accurate at detecting
fake news.

One promising approach is to artificially balance the ratio between fake news and real news
by using synthetic data. When data are scarce or of poor quality, synthetic data can be used, for
example, to improve the performance of ML models. Synthetic data are artificially generated from
real data and have the same statistical properties as real data. However, unlike real data that
is measured or collected in the real world, synthetic data is generated by computer algorithms.
There are several methods for generating synthetic data, e.g. Random Oversampling (ROS),
Synthetic Minority Over-sampling Technique (SMOTE), or Gaussian Mixture Model (GMM).
However, in recent years, a new and promising generative model has emerged. Generative
Adversarial Networks (GANs) are a state-of-the-art deep generative model that can generate
novel synthetic samples that follow the underlying data distribution of the original dataset. They
are widely used and provide very good results in image domains, but are still poorly explored in
domains with tabular data.

In this dissertation, we conducted a thorough literature review on the topics of GANs
(especially for tabular data), methods for generating synthetic data, and quality assessment
of synthetic data, which, to our knowledge, have not been explicitly combined in any of the
relevant literature. Having laid the groundwork for our work, we demonstrated the potential of
synthetic data to improve the performance of ML models in detecting fake news, as well as the
best performing GAN architectures. To this end, we conducted an experiment using a public
news dataset, trained several GANs architectures to generate synthetic data, and evaluated the
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performance of several ML models on the augmented dataset. Finally, we modified and extended
a data usage approach that was used to evaluate the quality of synthetic data. In this case,
we conducted another experiment on a public dataset where we used this framework not only
to evaluate the quality of the generated data, but also to understand the relationship between
synthetic data quality and data augmentation performance in a classification task. The results
indicate that, indeed, the higher the quality of the synthetic data, the better the performance in
the underrepresented class.
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Resumo

O termo “fake news” (expressão em inglês para “notícias falsas”) pode ser definido como
informação falsa deliberada. Infelizmente, sua proliferação tem vindo a aumentar nos últimos
anos. Frequentemente, as fake news são utilizadas com o objetivo de obter ganhos políticos ou
financeiros, causando problemas sociais severos, tais como a adoção de medicinas alternativas,
pontos de vista políticos extremos ou até “esquemas em pirâmide”. Para além disso, as redes
sociais permitem a sua abrangente e rápida disseminação, tornando fulcral a procura de novos
métodos para abordar este problema.

Foram já propostas metodologias de “Machine Learning (ML)” (termo em inglês para
“aprendizagem computacional”) que consistem no treino de modelos com o propósito de identificar
fake news. Contudo, a maioria dos conjuntos de dados de notícias que estes modelos utilizam
para treinar são extremamente desbalanceados, tendo um número substancialmente maior de
notícias verdadeiras quando comparado com o número de notícias falsas. Posto isto, os modelos
de ML acabam por ter dificuldades em generalizar devidamente, impedindo-os de obter resultados
satisfatórios.

Uma abordagem promissora consiste em balancear artificialmente o rácio entre notícias falsas
e verdadeiras utilizando dados sintéticos. Em situações em que os dados são escassos ou de fraca
qualidade, os dados sintéticos podem ser usados para, por exemplo, melhorar a performance de
modelos de ML. Os dados sintéticos são gerados artificialmente a partir de dados reais e possuem
as mesmas propriedades estatísticas que estes. No entanto, ao contrário dos dados reais, que
são medidos ou obtidos no mundo real, os dados sintéticos são gerados por algoritmos. Para
esse efeito, existem vários métodos, como por exemplo Random Oversampling (ROS), Synthetic
Minority Over-sampling Technique (SMOTE) ou Gaussian Mixture Model (GMM). Apesar disso,
nos últimos anos, um novo modelo generativo tem vindo a ganhar relevância devido aos seus
resultados promissores. As “Generative Adversarial Networks (GANs) ” (termo em inglês para
“redes adversárias generativas”) são o estado da arte no que toca a modelos generativos profundos,
tendo a capacidade de gerar dados sintéticos com a mesma distribuição subjacente que os dados
originais. As GANs são frequentemente usadas em domínios de relacionados com a imagem, mas
ainda não foram suficientemente bem exploradas no domínio dos dados tabulares.

A seguinte dissertação inclui uma revisão da literatura sobre GANs (especialmente para dados
tabulares), metodologias de geração de dados sintéticos e avaliação de qualidade dos mesmos.
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Da pesquisa efetuada, não foram encontradas fontes que combinassem explicitamente estes três
tópicos. Após a obtenção destes conhecimentos basilares para este estudo, foi demonstrado o
potencial que os dados sintéticos têm para melhorar a performance de modelos de ML na deteção
de fake news. Para além disso, foram analisadas as arquiteturas das GANs que se mostraram
mais promissoras. Foi realizada uma experiência utilizando um conjunto de dados públicos,
e foram geradas amostras sintéticas utilizando GANs e avaliando a performance de múltiplos
modelos de ML no conjunto de dados aumentado. Por último, foi alterado e expandido um
método de avaliação de dados sintéticos utilizado para determinar a qualidade das amostras
geradas. Para o efeito, foi realizada uma outra experiência, utilizando um conjunto de dados
público, onde foi aplicado este método, não apenas para avaliar a qualidade dos dados gerados,
mas também para averiguar a relação entre a qualidade dos dados sintéticos e a performance
num problema de classificação utilizando o conjunto de dados aumentado. Os resultados indicam
que, efetivamente, quanto melhor a qualidade dos dados sintéticos, melhor é a performance na
classe sub-representada.
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Chapter 1

Introduction

The continuous flow of huge amounts of information reaches us constantly through our digital
devices. Thus, it becomes more and more difficult to keep up with all this content and to
distinguish what is real and what is not.

Fake news are produced for a multitude of purposes, e.g., political or financial gain, and can
be roughly defined as intentionally false information [74]. Even though the issue of fake news
is not a recent one (the accounts of misinformation, propaganda, and lies can be traced back
to as long as 3, 000 years ago [87]), nowadays it is aggravated by online social media platforms,
which offer a way to easily and rapidly disseminate fake news. Due to its high reachability and
misleading information, spreading large volumes of online fake news can cause severe social
problems, such as extreme political standpoints, propagation of pyramid schemes, or the adoption
of non-scientific alternative medicines.

A paradigmatic example of the harm caused by fake news is the 2016 US presidential election.
According to [6], some commentators believe that former president Donald Trump would not
have been elected in the presidential election were it not for the influence of fake news. Indeed,
the evidence shows that: (a) 62% of US adults get news on social media; (b) many people who
see fake news have reported believing them; (c) the most popular fake news were more widely
shared on Facebook than the most popular mainstream news; and (d) Donald Trump tends
to be favored over Hillary Clinton in the most discussed fake news [6]. Furthermore, during
the presidential race, fake news were employed with the goal of direct political interference,
with systematic operations conducted by the Russian government to influence the results of the
American election. As shown in [55], Russian efforts to promote fake advertising and videos in
favor of Donald Trump, as well as to “provoke and amplify political and social discord in the
United States” and the publishment of fake content that had the potential to reach millions of
Americans are some examples of how fake news shaped the presidential elections.

Fake news were also present in another important political event, the United Kingdom’s
referendum decision to leave the European Union, commonly known as “Brexit”. In [37], Max
Hänska and Stefan Bauchowitz analyzed 7.5 million tweets and found the predominance of

1
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Euroscepticism1 on social media mirrored its dominance in the press. Moreover, a 2015 Ofcom
report found that 43% of people who get news online, receive it through social media and that,
the figure rises to 61% among 16- to 24-year-olds (16% of whom rely exclusively on social media
for news) [59]. Once again, fake news disseminated through social media platforms played a key
role in the final decision.

As shown in the previous paragraphs, the effects of Fake News supported by social media
platforms are harmful to society. In fact, an analogy can be made to the disease triangle [72],
developed to understand the pathology and epidemiology of plants and their diseases. This
model states that three basic elements are required for the manifestation of a disease: the host
(in this case, society), the environment (social media), and the infectious agent that carries the
virus (Fake News)2 – see figure 1.1. Overall, Fake News (with the help of social media) causes
several societal problems [60].

Figure 1.1: Disease triangle. Figure adapted from [60].

The examples presented thus far – 2016 US elections and Brexit – are paradigmatic and
effectively capture the harm caused by fake news and, consequently, the urge and great interest
to detect when content is unreliable and intended to be deceitful. Given the large amounts of
data, it is practically impossible to apply a manual approach, where a human reviewer goes
through several pieces of content and classifies them. Hence, Machine Learning (ML) methods,
which can automate this process, have been proposed.

Traditional ML algorithms (e.g., Logistic Regression, Naive Bayes, Support Vector Machines
(SVMs), or Random Forests) have provided promising results in several studies. Random Forests
often figure among the best classifiers, also commonly employed with linguistic-based features,
producing good results, such as in [95] or [67]. Other works make use of Deep Learning (DL),
since this technique has had good results in natural language processing problems, particularly
Recurrent Neural Networks and Convolutional Neural Networks. With the aid of text vector
representations and network and semantic features, these networks have shown fine results in [86]

1The Euroscepticism is a political position involving criticism of the European Union and European integration.
2The analogy between Fake News and a virus is based on the idea that Fake News, like a virus, also requires a

host to manifest itself and can only spread through the host itself
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and [84].

However, ML models alone are not accurate regarding fake news detection. The problem
arises from the fact that news datasets tend to be extremely imbalanced, as the fake news class,
typically, has considerably fewer observations than the real news class, posing a problem in fake
news detection. Hence, the training of ML models will not be as good as expected since the fake
news class is underrepresented. Thus, they will not be able to generalize effectively, leading to a
poor classification of unseen observations.

1.1 Motivation

To overcome the lack of fake news labeled samples, most approaches focus on artificially balancing
the two classes using oversampling (randomly replicating fake observations), undersampling
(removing non-fake examples), or even combining both methods [83]. This methodology is not
sufficient to overcome the problem, as randomly adding or removing samples can change the
data distribution. A slightly more complex technique for tackling this issue is Synthetic Minority
Over-sampling Technique (SMOTE), which creates synthetic samples using nearest neighbors’
interpolation. Nonetheless, it is often the case that the result will still have a particular bias
due to the lack of training samples, causing this technique not to be capable of significantly
improving the ability to generalize.

If the underlying data distribution of fake news can be learned from a small sample, it will be
possible to generate new plausible data points which can, in turn, be used by ML models to detect
fake news. Hence, a promising solution is to introduce synthetic data. Generative Adversarial
Networks (GANs)3 are a deep generative framework that can comprehend and mimic the data
distribution. Hence, they are able to create observations drawn from the learned distribution
which are significantly different from the original ones. Moreover, in [83], we have shown some
promising initial results. By augmenting our original train set, using a CTGAN (a tabular GAN
architecture that will be explored in the following chapters) to generate synthetic data, we were
able to increase the performance of some ML models in several metrics.

In [83], we have used an extremely imbalanced fake news dataset in which four different
ML models were trained and their performances evaluated with respect to three metrics. Each
classifier was trained using the original dataset, but also with the original dataset augmented
with synthetic data. The idea was to assess if the models performed better when trained in the
augmented datasets, where synthetic observations of the fake news class were added. Indeed, we
have seen good and promising results – figure 1.2 shows only the main results of our experiment.
The grey lines represent the baseline performances (when the ML models were trained in the
original dataset) and the colored lines represent the performance of the models when trained in
the augmented datasets (the x-axis shows the number of generated samples). As can be seen,
the colored lines surpass the grey ones in most cases, which indicates a performance gain when

3GANs will be seen in close detail in the following chapters.
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synthetic data is added to the training process4.

Figure 1.2: Comparison of the performance of the ML models when trained in the original dataset
and when trained in the augmented datasets. Image taken from [83].

The experiment described is a first attempt to show that GANs, in this particular case the
CTGAN architecture, has the potential to enable MLs models to perform better on classification
tasks. Although the results are not the best and can certainly be improved, this experiment has
led us to believe that GANs can be quite useful and is worth exploring further.

1.2 Goals

Our main goal is to mitigate the harmful impact of fake news by incorporating synthetic data
into the training process of ML models, allowing them to better identify fake news. Consequently,
we want to investigate the GAN architectures that offer the best synthetic data for the task at
hand. To that end, we propose three different research questions that we attempt to answer in
the course of this research:

1. RQ1: Does the addition of synthetic data in the training process of ML models
enables them to better identify fake news? This is the main research question.
Indeed, as the title of this work hints, our main aim is to understand whether synthetic
data can help in Fake News identification. As discussed in this chapter, Fake News are
compared to an infectious pathogen, and helping to reduce the reach of such pathogen
could be an important asset in the fight against Fake News.

4For further details of our experiment see [83].
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2. RQ2: Which GAN architectures are more suitable for the generation of tabular
data? This question may help answer the previous one. In fact, by understanding
which GAN architectures are more suitable for synthetic data generation, we may transfer
that knowledge to the News domain and have more extensive knowledge regarding data
augmentation. Answering this question may not only be useful to News domains but to
several others where tabular data is involved.

3. RQ3: How does the intrinsic quality of the synthetic data influence the results
of the classification in a data augmented dataset? This question aims to understand
the relationship between the intrinsic quality of synthetic data (i.e., the quality of the data
without regard to a specific purpose) and its ability to help in the task of data augmentation.
Can generated data that mimic the original very well help in the classification task?

In answering these research questions, this study has a number of related contributions.
Firstly, the contents covered in this work offer a strong baseline for any new researcher in the
field of synthetic data generation of tabular datasets. Secondly, we use a utility framework to
evaluate the quality of synthetic tabular data. Finally, we investigate how the use of synthetic
data can aid in the identification of fake news.

1.3 Document Structure

The document is divided into six chapters, including this one, which are organized as follows.

Chapter 2 is dedicated to synthetic data. In section 2.1 an introduction to synthetic data is
given, as well as its usefulness. In the next section (section 2.2) we provide a literature review of
the main methods used to generate synthetic data, diving them into two main groups — standard
and deep learning methods. Whereas in subsection 2.2.1 we showcase the standard methods, in
subsection 2.2.2 the deep learning methods are shown. Lastly, in subsection 2.2.3 some thoughts
on the algorithms are presented.

Chapter 3 focuses on a particular generative model – GANs. Section 3.1 starts by carefully
explaining what is a GAN and how does it generate synthetic data, followed by section 3.2 which
contains their main drawbacks. In section 3.3 a literature review of the most prominent GAN
architectures is presented by chronological order, so that a clear picture of GAN evolution can be
mentally drawn. Finally, section 3.4 is concerned with GANs used for tabular data generation
(the main focus of this work) and delves deep into three promising architectures.

Chapter 4 deals with synthetic data quality evaluation. Besides generating synthetic data, it
is fundamental to ensure that the data is of proper quality. Section 4.1 shows some important
techniques to assess the data quality and, in section 4.2 a critical reflection on the outline methods
is provided.

In chapter 5 we present the results from our experiments and how they relate to our research
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goals. We start by presenting the datasets used (section 5.1) and what GAN architectures were
used for the synthetic data generation 5.2. Then we evaluate the quality of the synthetic data
(section 5.3) and, finally, we use it to perform data augmentation (section 5.4).

Finally, in Chapter 6 we discuss our main conclusions from the study and answer our research
questions. Additionally, we present a general summary of the work conducted (section 6.1),
the main contributions (section 6.2), the limitations and challenges faced (section 6.3), and
possibilities for extending this work (section 6.4).



Chapter 2

Synthetic Data

This chapter will address synthetic data, what it is and what is used for. Moreover, a literature
review of synthetic data generation methods is provided, as well as a critical discussion of the
algorithms. The goal is to provide the reader with sufficient context to review the work in the
following chapters.

2.1 What is Synthetic Data?

Synthetic data is artificially generated from real data and has the same statistical properties as
real data. However, unlike real data, which is measured or collected in the real world, synthetic
data is generated by computer algorithms [7, 28].

According to [28], synthetic data can be generated from real data, from existing models, using
expert domain knowledge, or from a mixture of these options. Synthetic samples generated from
real data are obtained by creating a model that captures the properties (distribution, correlation
between variables, etc.) of the real data. Once the model is created, it is used to sample synthetic
data.

Synthetic data generated from existing models consist of instances generated from statistical
models (mathematical models that have statistical assumptions about how data are generated) or
from simulations (e.g., game engines that create images from objects). The use of domain-specific
knowledge can also be used to generate synthetic data. For example, knowledge about how the
financial market behaves can be used to create an artificial dataset about stock prices. However,
this requires extensive knowledge about the domain in question so that the synthetic data behaves
similarly to real data.

Many Artificial Intelligence (AI) problems today arise from insufficient, poor quality, or
unlabeled data. This is almost ubiquitous, as many fields of study suffer from such difficulties –
e.g., physics [3, 75], finance [10], health [24, 46], sports [18], or agriculture [12]. As a result, there
is a growing interest in the usefulness of synthetic data and the drawbacks it can overcome.

7
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An example of the usefulness of synthetic data can be found in [82], where a network trained
only on synthetic data achieved competitive results when compared to a state-of-the-art network
trained on real data. Also, in [56], the author argues that synthetic data are essential for the
further development of Deep Learning (DL) and that many more potential use cases remain.
He also discusses the three main directions for using synthetic data in Machine Learning (ML):
using synthetic data to train ML models and use them to make predictions in real-world data;
using synthetic data to augment existing real datasets, typically used to cover underrepresented
parts of the data distribution; and solving privacy or legal issues by generating anonymized data.
The focus of this work is on the first two directions, to use synthetic data or augmented datasets
to enhance the performance of machine learning models, so the generation of anonymized data is
not addressed here.

2.2 Synthetic Data Generation Methods

In this section, a review of some of the main methods for generating synthetic data1 is shown.
To better organize them they were divided into standard methods (the most commonly used
methods before the success of generative deep learning models) and DL methods, which use DL
techniques to generate synthetic data.

2.2.1 Standard Methods

As previously explained, standard methods are the ones that do not use DL techniques to
generate synthetic data. As not to randomly present the methods, the section is organized by
the level of sophistication of the algorithms. Thus, Random Oversampling (ROS) is shown firstly,
followed by Synthetic Minority Over-sampling Technique (SMOTE) and several algorithms that
improve the core idea of SMOTE (e.g., by adding safe levels or clustering). Next, cluster-based
oversampling is analyzed. Finally, Gaussian Mixture Model (GMM) is reviewed as it provides a
different approach to the task of generating synthetic data.

2.2.1.1 ROS

ROS adds additional observations to the dataset by randomly sampling from the minority class(es)
with replacement. Probably, the simplest and most straightforward method for expanding a
dataset is ROS. Nevertheless, this approach can change the data distribution. Thus, if a classifier
is fed with such data, it may learn from an incorrect distribution. Moreover, since ROS duplicates
observations, this technique does not create new synthetic samples, but only replicates the
existing ones. Therefore, more advanced techniques, such as SMOTE, had to be developed.

1Our focus is on tabular data, so we refrain from writing about cropping, zooming, or inverting, which are used
in image data.
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Examples of ROS can be found, for example, in [13], where the authors compared the
use of ROS with Random Undersampling (RUS)2. It has been shown that ROS gives better
classification results than RUS, since it does not affect the classification of the majority class
instances as much as RUS, while it increases the classification of the minority class instances.
Another example is shown in [27] where the authors also compare ROS and RUS. In that study,
however, they concluded that ROS was surprisingly ineffective, producing little or no change in
classification performance in most cases.

2.2.1.2 SMOTE

SMOTE [17] is an oversampling approach in which synthetic observations are generated (and
not duplicated, as in ROS) from the minority class(es). SMOTE was inspired by a perturbation
method used to recognize handwritten digits. This was a very domain-specific problem and so
were the techniques used (e.g., rotation or skew), but the authors of SMOTE generalized them
to generate synthetic samples in a less application-specific way.

The algorithm works as follows. Given a data point from a minority class and its nearest
neighbor from the same class, the distance between them is determined (the distance is computed
as the difference between both feature vectors, the data points). This distance is multiplied by a
random number between 0 and 1 and added to the selected data point. This causes the new
sample to fall in the line segment between the original sample and its neighbor. The same process
is repeated until the desired number of samples is reached. Figure 2.1 shows a toy example of an
iteration of the SMOTE algorithm.

Figure 2.1: Toy example of the SMOTE algorithm for one iteration. The dataset has 2 minority
classes (blue and orange), and one majority class (red). After selecting a minority class instance
and its nearest neighbor, a synthetic data point is added somewhere in the line segment between
them.

The SMOTE algorithm is quite popular in the literature. In [51], for example, the authors
evaluate the use of SMOTE for high-dimensional data. It was shown that SMOTE does not
attenuate the bias toward the majority class for most classifiers. However, for k-nearest neighbors,

2RUS is a technique that consists of randomly removing instances of the majority class so that minority classes
are not underrepresented.
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classifiers based on Euclidean distance, SMOTE may be beneficial if the number of variables is
reduced by variable selection. In [79], SMOTE is combined with decision trees and bagging to
address a problem of imbalanced credit evaluation of companies. The proposed framework shows
good results, outperforming other five different approaches, and overcoming the class imbalance
problem. Another example of using SMOTE can be seen in [80], where SMOTE is combined
with Adaboost Support Vector Machine Ensemble with time weighting (ADASVM-TW) in two
different ways and evaluated in a financial dataset. The first method uses SMOTE followed by
ADASVM-TW, while the second method embeds SMOTE into the iteration of ADASVM-TW.
Both approaches greatly improved the recognition performance of the minority class.

Although a more advanced technique than ROS, SMOTE still suffers from some problems –
e.g., focusing on minority class instances (thus ignoring those of the majority class), or altering the
true data distribution. That being said, some informed improvements can be applied. Therefore,
Borderline-SMOTE, Safe-Level-SMOTE, and ADASYN have been introduced.

2.2.1.3 Borderline-SMOTE

Han et al. [36] have proposed two algorithms that are a variation of SMOTE: Borderline-
SMOTE1, which only oversamples the minority class(es) examples near the borderlines, and
Borderline-SMOTE2, which takes also into account the majority class observations.

The Borderline-SMOTE1 considers only the minority class data points that have a number
of minority class neighbors in the range [m/2, m[, where m is defined by the user. These are the
points that can be easily misclassified (the borderline data points of the minority class). After
detecting such observations, SMOTE is applied to create new synthetic samples. Borderline-
SMOTE2 is quite similar, with the difference that it also considers the neighbors of the majority
class. According to [36], Borderline-SMOTE offers improvements over ROS and SMOTE in
terms of TP-rate and F-value.

Examples of Borderline-SMOTE can be found in [48], where the authors use this method for
data augmentation and evaluate its impact on an Electroencephalography (EEG) classification
dataset obtained with a Brain-Computer Interface (BCI). Borderline-SMOTE did not improve
overall classification performance, but significantly increased the performance of the classifiers
that produced the worst results. Another example can be found in [68], where Borderline-
SMOTE was improved by using Gabriel graphs. The authors addressed the main problems of
Borderline-SMOTE and were able to improve its performance on neural networks.

2.2.1.4 Safe-Level-SMOTE

SMOTE synthesizes minority class samples along a line connecting a minority class instance
to its nearest neighbors, ignoring nearby majority class instances. Safe-Level-SMOTE [15], on
the other hand, defines safe regions to prevent oversampling in overlapping or noisy regions,
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providing better accuracy performance than SMOTE and Borderline-SMOTE.

Each minority class example is assigned a safety level defined as the number of instances of
the minority class in the k nearest neighbors, where k is specified by the user. Each synthetic
instance is positioned closer to the largest safe level so that all synthetic instances are created
only in safe regions. Intuitively, when given a data point, p, from the minority class and its
nearest neighbor, n, (from that same class), the Safe-Level-SMOTE will generate a synthetic
sample closer to p if its safe level is higher than the one of n, or closer to n otherwise. That is,
the synthetic sample will be closer to the data point that has more nearest neighbors from the
minority class. Hence, the Safe-Level-SMOTE offers a wittier solution than the one of SMOTE,
in the sense that it does not simply generate a random instance in the line segment between two
minority class data points, but takes into account their neighborhoods.

An example of using Safe-Level-SMOTE is shown in [76], where the authors overcome some
of the difficulties of Safe-Level-SMOTE (some synthetic data points may be placed too close to
nearby majority instances, which can confuse some classifiers and also the fact that it avoids using
minority outcast samples for generating synthetic instances) by using two processes – moving
the synthetic instances of the minority class away from the surrounding examples of the majority
class and treating the outcasts of the minority class with a 1-nearest-neighbor model. Several
ML models were evaluated with 9 UCI and 5 PROMISE datasets after using the above approach,
and improvements in F-measure were obtained.

2.2.1.5 ADASYN

ADASYN [38] is an oversampling algorithm that improves the learning performance of the
classifiers. It uses a weighted distribution for different minority class instances that takes into
account their level of difficulty for a classifier to learn – the minority class samples that have
fewer minority class neighbors are harder to learn than those which have more neighbors of the
same class. Thus, more synthetic samples are generated for the minority class examples that are
harder to learn and less for the minority class examples that are easier to learn.

ADASYN is similar to SMOTE in the sense that it generates synthetic samples in the
line segments between two minority class data points. The difference is that ADASYN uses a
density distribution as a criterion to automatically determine the number of synthetic samples to
generate for each instance of the minority class. Hence, the extended dataset provides a balanced
representation of the data distribution and forces the classifier to pay more attention to the more
difficult-to-learn examples.

The ADASYN approach is used in [50], to process an imbalanced telecommunications fraud
dataset. The authors concluded that ADASYN is more beneficial than SMOTE and that accuracy,
recall, and F1-measure were improved when ADASYN was used. Another example can be found
in [1], where ADASYN is used this time for data augmentation in an imbalanced churn dataset.
A final example is retrieved from [19], where ADASYN is used in a financial dataset. The authors
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note that ADASYN overcame the problem of overfitting caused by SMOTE and improved the
prediction of extreme financial risk.

While ADASYN, Safe-Level- and Borderline-SMOTE are variants of SMOTE, it is also
possible not to modify the SMOTE algorithm, but instead, use an unsupervised algorithm before
performing SMOTE (or ROS). Clustering algorithms are a type of unsupervised algorithm that
can be very useful in detecting structure in the data (e.g., divide the data into classes). When
applied well, clustering algorithms can reveal hidden patterns in the dataset that were previously
undetectable.

2.2.1.6 K-Means SMOTE

K-Means SMOTE was proposed by Last, Douzas, and Bacao in [26], and combines K-means [52],
a popular clustering algorithm, with SMOTE, thereby avoiding the generation of noise and
effectively overcoming the imbalances between and within classes.

K-Means SMOTE consists of three steps. First, observations are clustered using the K-means
algorithm. This is followed by a filtering step in which the clusters with a small proportion
of minority class instances are discarded. The number of synthetic samples to be created also
depends on the cluster. That is, clusters with a lower proportion of minority class samples will
have more synthesized instances. Finally, the SMOTE algorithm is applied to each of the clusters.
Figure 2.2 shows the use of K-Means SMOTE in a toy dataset.

Figure 2.2: Toy example of the K-Means SMOTE algorithm. The left image shows the toy
dataset, which consists of 3 classes: the blue and the orange are minority classes and the red one
is a majority class. At the center took place the creation of clusters. In the right picture, the
clusters with a high proportion of samples from the minority class were populated with synthetic
instances.

An example of the use of K-Means SMOTE can be found in [71], where the authors compared
it with other methods of generating synthetic data, such as SMOTE or Borderline-SMOTE. It
was shown that K-Means SMOTE is better at balancing datasets allowing ML models to perform
better in terms of average recall, F1-score, and geometric mean.



2.2. Synthetic Data Generation Methods 13

2.2.1.7 Cluster-Based Oversampling

Jo and Japkowicz, in [42], address the presence of small disjuncts in the training data. Their work
has shown that the loss of performance in standard classifiers is not caused by class imbalance,
but that class imbalance can lead to small disjuncts, which in turn cause the loss of performance.

The Cluster-Based Oversampling algorithm consists of clustering the data for each class, i.e.,
each class is clustered separately (in [42] the authors used K-Means clustering, but theoretically
any clustering algorithm can be used), and then applying ROS to each cluster. For the majority
class clusters, all clusters except the largest are randomly oversampled until they have the same
number of observations as the majority class cluster with the most data points. The minority
class clusters are randomly oversampled until each cluster has m/N samples, where m is the
number of instances of the majority class (after ROS) and N is the number of clusters of the
minority class.

Cluster-Based Oversampling is similar to K-Means SMOTE, in that both use clustering
followed by oversampling, but they differ in some aspects. For instance, K-Means SMOTE uses
a specific clustering algorithm, K-Means, and the classes are not clustered separately, while
Cluster-Based Oversampling allows the user to freely choose the clustering algorithm and the
classes are clustered separately. Also, K-Means Clustering uses SMOTE, while Cluster-Based
Oversampling uses ROS.

The methods studied so far, with the exception of ADASYN, tend to neglect the distribution
of the original data. Thus, a logical but different approach would be to model the underlying
distribution of the data and draw a sample from it. However, estimating such a distribution is
an extremely difficult problem, especially as the number of features in the data increase and
simplifications need to be made.

2.2.1.8 GMM

A GMM is a probabilistic model that assumes that the data can be modeled by a weighted sum
of a finite number of Gaussian distributions [47]. So, the resulting model is given by

p(x) = π1p1(x) + π2p2(x) + ... + πnpn(x)

In the univariate case, pi(x) is the probability density function of a univariate normal
distribution with mean µi and standard deviation σi, πi is the weight assigned to each pi(x),
and n is the number of components. The number of components, n is set by the user, and the
parameters µ1, σ1, µ2, σ2, ..., µn, σn and π1, π2, ..., πn−1

3 are estimated, typically by an expectation-
maximization algorithm – an iterative and well-founded statistical algorithm that calculates the

3The sum of all πi equals 1, so if n − 1 weights are estimated, the last one is equal to 1 minus their sum. That
is, πj =

∑n

i ̸=j
πi
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probability that each point is generated by each component, and then changes the parameters to
maximize the likelihood of the data. For the multivariate case, pi(x) is replaced by a multivariate
normal distribution, Nk(µi, Σi), where k is the dimension of the multivariate normal distribution,
µi is now a vector of means, and Σi is the covariance matrix. Having determined the model,
synthetic data are generated by drawing random samples from it.

An example of using GMM can be found in [22]. The authors address the problem of lack of
data in Immersive Virtual Environments (IVE) by using a GMM. The results have shown that
the GMM is a good option to overcome the problem of small sample size in IVE experiments.

2.2.2 Deep Learning methods

DL methods are so named because they use DL techniques to create new instances. Unlike
standard methods, DL models are more difficult to understand because they are more complex
and usually cannot be interpreted. In this section, we review the three main classes of deep
generative models: Bayesian Networks (BNs)4, Autoencoders (AEs), and Generative Adversarial
Networks (GANs). There are innumerable variations of these algorithms and a whole range
of domain-specific architectures. It would, therefore, not be possible to list everything in the
literature, so instead a comprehensive overview is presented.

2.2.2.1 Bayesian Networks

A BN (also known as a belief network in the 1980s and 1990s) is a type of probabilistic graphical
model that uses Bayesian inference for probability computations over a directed acyclic graph [77].
It is used to represent dependence between variables so that any full joint probability distribution
can be represented, and in many cases very succinctly [69]. In a BN, each node corresponds to a
random variable (which may be discrete or continuous) and contains probability information that
quantifies the effect of the parents (the nodes pointing to it) on the node. If there is a link from
node xi to node xj , then xi has a direct impact on xj . Moreover, if there is a path from node xi

to node xj (with at least one node in between), then xi also has an influence on xj (though not
a direct influence).

As an example, suppose a certain person has an alarm system installed at home. The alarm
is very good at detecting burglaries, but it also triggers for minor earthquakes. The person
has asked his neighbors, John and Mary, to call him if the alarm goes off. On the one hand,
however, John is more careful than Mary, so he almost always calls when he hears the alarm, but
sometimes mistakes it for the phone ringing. On the other hand, Mary likes to listen to loud
music, so she does not hear the alarm as often as John does. This is a simple toy example that
can be modeled by a BN (see figure 2.3).

4Even though BNs may not be considered DL, they are easily generalized to Bayesian Neural Networks, which
are DL structures [11], so we have included them.
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Figure 2.3: Toy example of a BN. A certain individual has an alarm installed at home, which
fires in case of minor earthquakes or burglaries (with a certain probability). The given individual
also has two neighbors, Mary and John, who will call him in case they hear the alarm. Image
adapted from [69].

The previous example is quite simple, but these structures can have many more layers,
representing dependencies between multiple variables. As the number of layers increases, BNs
become deep BNs. Although they played an important role in the history of DL5, they are rarely
used nowadays [34].

An example of the use of BNs can be seen in [92], where the authors address the problem of
sharing private data. A BN adds noise to the data to estimate an approximate distribution of the
original data. The BN has been evaluated experimentally and found to significantly outperform
existing solutions in terms of accuracy.

2.2.2.2 Autoencoders

An AE is a special type of feedforward neural network that consists of two parts: an encoder
network that learns to compress high-dimensional data into a low-dimensional, latent spacial
representation (the code), and a decoder network that decompresses the compressed representation
into the original domain [32]. Figure 2.4 shows a diagram of an AE.

Formally, the encoder can be viewed as a function, c = E(x), that produces a low-dimensional
representation of the data, and the decoder as a function, r = D(c), that produces a reconstruction
of the code. The goal is not for the AE to learn how to set D(E(x)) = x for each input example
x, but rather to learn how to copy the original data only approximately, and only inputs that
resemble the original data. By constraining it and forcing it to learn which aspects of the data
should be prioritized, AEs can learn useful properties about the data6 [35].

5BNs were one of the first non-convolutional models to allow training of deep architectures successfully.
6AEs have been on the DL landscape for decades, and have typically been used for feature learning and

dimensionality reduction.
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Figure 2.4: A diagram of an AE. On the left is depicted an example structure of an encoder.
The input layer has more units than the middle layer, where the input was compressed into a
lower-dimensional representation (the code). On the right, the decoder decompresses the code
back to the original domain.

In terms of generating synthetic samples, AEs have some issues. First, the learned distribution
of points in the latent space is undefined, i.e., when a point is sampled from the latent space
and decoded to generate a new example, there is no guarantee that it is a plausible sample.
Second, there is a lack of diversity in the generated samples. Finally, points belonging to the
same class may have large gaps in the latent space, which can lead to poorly generated instances
when samples are drawn from their neighborhood. To overcome these problems, Variational
Autoencoders (VAEs) can be used.

VAEs were first proposed by Diederik P Kingma and Max Welling, in [45], and are a natural
extension of AEs aimed at solving the aforementioned problems. VAEs improve on vanilla AEs
by making a few changes to the encoder and loss function:

Encoder. The encoder of a VAE maps each point in the original data to a multivariate
normal distribution in the latent space, represented by the mean and variance vectors. VAEs
assume that there is no correlation between any two dimensions in the latent space, so the
covariance matrix does not need to be calculated because it is diagonal. This small change
ensures that a point, a, sampled from the neighborhood of another point, b, in the latent space,
is similar to b. Thus, a point in the latent space that is completely new to the decoder will most
likely still yield a correct sample.

Loss function. The VAE loss function adds the Kullback–Leibler (KL) divergence to the
AE reconstruction function (typically, the binary cross entropy or the root mean squared error).
Formally, the KL divergence in this particular case can be written as follows.
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where k is the number of dimensions in the latent space. So, the loss function becomes

L(x, x̂) = RL(x, x̂) + 1
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where RL is the reconstruction loss, x denotes the input data, and x̂ is the predicted output.
This loss function provides a well-defined distribution (the standard normal distribution) that
can be used to sample points in the latent space – sampling from this distribution most likely
guarantees that the sampled points are in the region from which the decoder is to decompress.
Also, the gaps between points in the latent space will be smaller.

Therefore, changing the encoder mapping and adding the KL divergence to the loss function
leads to a better framework for generating synthetic samples – the VAE.

The use of AEs to generate synthetic data is widespread in the literature. For example,
in [94], the authors used a Multichannel Autoencoder (MCAE) to assist classifiers in the learning
process. They concluded that the use of a MCAE provided better feature representation. In
addition, the experimental results validated their methodology for generating synthetic data.
In [85], a VAE was used to address a problem of imbalanced image learning. It was shown
that the VAE can generate novel samples and that it produces better results compared to other
methods in several distinct datasets with different evaluation metrics. A final example of the use
of AEs can be seen in [41], where a VAE was used to generate accident data, which was then
used for data augmentation. The VAE was compared to SMOTE and ADASYN. This showed its
superiority as it provided a better learning process for the classifiers, and thus provided better
classification metrics.

2.2.2.3 Generative Adversarial Networks

GANs are a type of deep generative structure consisting of two networks: the generator, G, and
the discriminator, D. The details of how they operate will be shown in fine detail in Chapter 3,
and for now, we will focus on the practical applications of such structures. Due to the usefulness
of GANs in generating synthetic samples, they are widely used. Hence, it would be tedious to
list them all. Therefore, only some interesting results will be shown.

In [30], the authors used a GAN to generate artificial EEG datasets. The results presented
were quite good: indeed, GANs (in this case, with convolutional layers) were able to generate
brain signals similar to the real ones (obtained by EEG in multiple subjects).

Patel et al. used a Conditional Generative Adversarial Network (CGAN) for data augmen-
tation in a signal modulation dataset used for automatic modulation classification [63]. These
data were then used to improve the accuracy of a CNN classifier used as a benchmark. It was



18 Chapter 2. Synthetic Data

concluded that CGAN-enriched data could greatly benefit CNN-based training – it has faster
convergence and lower training loss. Moreover, the more data generated by the CGAN, the
better the F1-score of the CNN classifier is (the authors used 1000, 2000, 3000, 4000, and 5000
synthesized samples). Figure 2.5 shows the F1-score for the original and the extended dataset at
different Signal-to-Noise Ratios (SNRs). Clearly, the F1-score increases at each SNR level as
more synthetic samples are added to the original dataset.

Figure 2.5: F1-score on the original data and on the augmented datasets (1000, 2000, 3000, 4000,
and 5000 synthetic samples were added to the original data) at different SNR levels. The plot
shows that, as the number of generated samples increases, the better the F1-score at each SNR
level. Image taken from [63].

Another example of the use of GANs is the Multiple Fake Class GAN (MFC-GAN) [4].
The MFC-GAN was used to handle datasets with multiple imbalanced classes by augmenting
the original data with artificial samples. Four public datasets were used, MNIST, E-MNIST,
CIFAR-10, and SVHN, and MFC-GAN was compared with FSC-GAN [5], Auxiliary Classifier
Generative Adversarial Network (AC-GAN) [58], and SMOTE [17], both in terms of the quality
of the generated samples and in a classification task (a baseline CNN classifier was used). It was
found that MFC-GAN provided better quality generated samples and that the training time was
significantly reduced compared to FSC-GAN (MNIST dataset). The results also showed that
MFC-GAN performed better than SMOTE and AC-GAN on all SVHN and CIFAR-10 minority
classes and in 7 of 10 E-MNIST and MNIST minority classes.

In [81], Sushko et al. proposed the One-Shot GAN, which given just one image (or video) as
input, can generate images (or videos) that are significantly different from the original one. This
type of GAN has improved the quality and variety of images (and videos) over previous works
when only one image (or video) is available. When only small amounts of data are available,
the One-Shot GAN mitigates the memorization problem (reproducing the original image) and
is able to generate images that are structurally different from the original. This is extremely
useful for data augmentation tasks in domains where data is very scarce and collecting it may be
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challenging.

A quantum GAN – Entangling Quantum GAN (EQ-GAN) – was proposed in [57]. By
leveraging quantum circuits’ entangling7 power, it overcomes some limitations of previously
proposed quantum GANs (non-convergence due to mode collapse and a non-unique Nash
equilibrium). Moreover, the authors have shown that the EQ-GAN can generate an approximate
Quantum Random Access Memory (QRAM), which is required by most ML algorithms. They
have further demonstrated an application of such a QRAM, improving the performance of a
quantum neural network in a classification task.

Finally, to conclude this subsection, we show one last example. In [93], the authors have
proposed the Metropolitan GAN (MetroGAN), which is used for urban morphology simulations.
Recent studies have shown that GANs have the potential to simulate urban morphology, despite
being a challenging task. Nevertheless, the existing GAN models are limited by the instability in
model training and the sparsity of urban data, compromising their application. However, when
compared to other state-of-the-art urban simulation methods – XGBoost, U-NET, and CityGAN
– the MetroGAN outperforms them all in the three levels used to evaluate the results: pixel level,
multi-scale spatial level, and perceptual level.

2.2.3 Thoughts on the Algorithms

In this chapter, eight techniques for data augmentation were reviewed. ROS is the most simple of
them all and, therefore, is easier to implement than any of the others. However, it is a very naive
approach that does not take into account the distribution of the data. Furthermore, it disregards
the majority class instances, as well as the difficulty of the classifiers in learning the decision
boundaries. A simple yet more intelligent way to improve ROS is SMOTE. This technique does
not replicate observations as ROS does but adds new synthetic data points to the dataset. This
can make it easier for a classifier to learn from the data. Nonetheless, SMOTE does not care
about changing the distribution of the data and does not consider majority class observations.

SMOTE brought a highly successful synthetic data generation method but also a lot of room
for improvement. Therefore, new algorithms were created by borrowing the core idea of SMOTE,
which is to add noise to the instances. Borderline-SMOTE oversamples near the borderlines
to make the learning task easier for classifiers while also taking into account the majority class
observations. Safe-Level-SMOTE has defined safe regions to generate better quality instances,
which is an improvement over SMOTE and Borderline-SMOTE.

K-Means SMOTE first clusters the data using the K-Means algorithm and then oversamples
the clusters using SMOTE, effectively overcoming the imbalances between and within classes.
ADASYN is another variant of SMOTE. This method takes into account the learning difficulties

7Quantum entanglement is a physical phenomenon that happens when, in a set of particles, an individual
particle’s quantum state cannot be described independently of the state of the others, no matter how far apart
they are.
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of the classifiers and aims not to change the data distribution (one of the drawbacks of SMOTE).
Cluster-Based Oversampling takes into account the presence of small disjuncts in the data. This
algorithm is not a variant of SMOTE but a variant of ROS. Both the minority and majority
classes are oversampled so that each class has the same number of instances.

GMMs use a different approach to address the synthetic data generation task – modeling
the data with a weighted sum of normal distributions. While this is usually an improvement
over previous algorithms, it has two major drawbacks. First, not all datasets can be modeled
with a weighted sum of the Gaussian distribution. Therefore, the use of GMM may not be the
most appropriate method for generating plausible samples. On the other hand, some types of
data may have categorical features. In these cases, GMM cannot be applied because the normal
distribution is continuous, and it cannot model discrete variables.

BNs, AEs, and GANs are more complex techniques compared to the others. Unlike the
previous methods, they use a DL approach that allows them to better learn the underlying
patterns in the data and, therefore, offer higher quality synthetic patterns in most cases. BNs
were widely used in the past but have fallen out of favor and are rarely used today. AEs, especially
VAEs, are powerful generative models that have evolved and are proving useful in data generation
tasks.

Nevertheless, AEs are not as popular and usually not as powerful as GANs. Yann LeCun
has even described them as “the most interesting idea in the last 10 years in machine learning”
[53]. GANs have countless different architectures, and many are yet to be created. Only a few
applications of GANs for the generation of samples were shown, as it would be grueling (and
probably impossible) to find and summarize all the literature on GANs and data generation.
They can be quite problem-specific, so a few have been selected to show their capabilities and
broad application to real-world data.

In the following chapter (Chapter 3) we will dive into the details of how GANs work, their
main drawbacks, and several GAN architectures that have been developed in the last few years.
As seen in the present chapter, they are a powerful tool to generate synthetic samples, with high
applicability and, thus, deserve to be further explored.



Chapter 3

Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a framework that uses an adversarial process to
estimate generative deep learning models, proposed by Ian J. Goodfellow et al. [33] in 2014.
These structures have been adapted and improved over the last years and are now very powerful.
GANs are currently capable of painting, writing, composing, and playing, as we will see in this
chapter.

3.1 GANs Under the Hood

A GAN is constituted by two models1: a generator model, G, that tries to generate samples
that follow the underlying distribution of the data. Nonetheless, these observations are suitably
different from the ones in the dataset (i.e., they should not simply reproduce observations that
already occur in the dataset). There is also a discriminator model, D, that given an observation
(from the original dataset or synthesized by the generator), classifies it as fake (produced by the
generator) or real. An important thing to consider is that G and D compete against each other.
While G generates similar data points to those in the original data, with the aim of deceiving
the discriminator, D attempts to distinguish the generated from the real observations.

To describe in closer detail how the networks are trained, the training was split into the
training of the discriminator and of the generator separately. Training the discriminator consists
in creating a dataset with instances generated by G and data points from the original dataset.
The discriminator outputs a probability (continuous value between 0 and 1) that indicates
whether a given observation came from the original data (0 means that the discriminator is 100%
certain that the given example was synthesized, while 1 means the exact opposite).

1Typically, the models used for the generator and discriminator are neural networks. As such, we normally refer
to G and D as networks. However, in theory, the models need not to be a neural network. Indeed, in [33], the
term "model" is used. Nonetheless, they note that the "adversarial modeling framework is most straightforward to
apply when the models are both multilayer perceptrons".

21
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The training of the generator is more complicated. G is given as input random noise2,
commonly from a multivariate normal distribution, and the output is a data point with the same
features of the original dataset. However, there is no dataset to inform whether a particular point
in the latent space is mapped by G into a reasonable or useful example. Therefore, the generator
is only provided with a value from a loss function. This is usually the binary cross-entropy3

between D’s output and a response vector of 1’s (the instances synthesized by G are all marked
as coming from the original data).

Given the discriminator’s feedback, i.e., the value of the loss function, the generator attempts
to improve to better fool the discriminator. As training progresses, G uses D’s output to generate
better examples, i.e., examples that better resemble the real data distribution. As the data
produced by G becomes more realistic, D also improves, so that it can better determine whether
a sample is real or synthetic. As such, both networks improve each other and, ideally, G will
be able to mimic the data distribution and D will be 1

2 everywhere, i.e., the probability that D
distinguishes between a real observation and a generated one is as good as a random guess. In
this ideal scenario, G has succeeded in recovering the distribution of the original data, completely
fooling D. A GAN diagram is shown in Figure 3.1.

Figure 3.1: A GAN diagram. G is given random noise z⃗, usually from a multivariate normal
distribution, to generate a set of data points, Xfake. D is provided with both the original data,
Xreal, and the generated data. D outputs a label y, denoting if a given observation is fake (was
produced by G) or real (came from the original data).

3.2 Main Drawbacks

Although plain vanilla GANs – that is, the GANs in their simplest form, as we have been
explaining – are quite strong ideas, they also have disadvantages. Namely, GANs are extremely

2The term latent space is typically used to designate G’s input space.
3The binary cross-entropy is mathematically defined as follows

− 1
n

n∑
i=1

yilog(pi) + (1 − yi)log(1 − pi)

where yi represents the label of an input sample, pi is the probability of yi coming from the original data, and n is
the number of examples. It is a measure of the difference between the ground truth and the computed probabilities
and it is used in the case where there are only two possible outcomes – the observation came from the original
data or it was synthesized by the generator.
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difficult to train due to a number of factors that include the loss function, hyperparameters, or a
generator that can easily fool the discriminator.

Oscillatory loss (instability) is a common problem that occurs during the training process. It
is characterized by wild oscillations of the discriminator’s and generator’s loss, which should be
stable over the long term. For the training process to be effective, the loss should stabilize or
gradually increase/decrease over the long term. Unfortunately, in many cases, this is not what
happens. Another problem with the loss function is the lack of information it usually provides
(uninformative loss). For example, a commonly used generator’s loss function is the binary cross
entropy. This is a disadvantage because there is no correlation between the generator’s loss and
the quality of the output (not only in the specific case of the binary cross entropy). Hence, the
training is sometimes difficult to monitor.

Another fairly common phenomenon is that the generator finds a small number of samples
that fool the discriminator – this is called mode collapse. Having found such samples, the
generator will focus only on them to minimize its loss function, while the discriminator remains
confused during training because it cannot distinguish whether the instances are real or synthetic.
Therefore, the generator is not able to produce other examples than this limited set. Figure 3.2
shows an example of mode collapse in a toy dataset.

Figure 3.2: Graphical representation of mode collapse in a toy dataset consisting of random
samples drawn from four Gaussian distributions with the same covariance matrix but different
means (visible by the four separate clusters). The blue points correspond to real data points,
whereas the red ones are synthesized by the generator. The generator has found a small number
of samples (the ones in the upper cluster), so it does not learn beyond that. It will continue to
produce samples in that range without seeing the overall distribution of the data, as it is enough
to fool the discriminator.
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Moreover, GANs have a significant number of hyperparameters. Thus, to create a well-
performing GAN, a large number of hyperparameters must be tuned. It is possible to use grid
search, but only for a limited subset of hyperparameters. Otherwise, the training time will be
considerably long and the resource consumption extremely high.

Finally, there is the vanishing gradient problem, which may completely stop the GAN from
further training, given that the gradients can be extremely small and not allow the weights to
be updated further. This can occur if the discriminator is close to optimal, which allows it to
accurately discern generated samples from real ones and causes the generator’s train to fail.

These are the five most common problems encountered in GAN training – oscillating loss,
mode collapse, uninformative loss, vanishing gradients, and hyperparameter-tuning. The above
problems are broad and independent of domain and architecture. That is, they attempt to cover
the range of possible GAN training drawbacks without being too specific about the loss function
or hyperparameters used (broad); they do not depend on the particular domain, whether it is
live cell images or a tabular dataset of bank fraud (domain-agnostic); and finally, they do not
depend on a particular GAN architecture (architecture-agnostic).

3.3 GANs Come in a Lot of Flavours

Since GANs were proposed, many researchers have considered them a powerful tool. As a result,
they have been systematically modified and improved. The architecture of a GAN can be very
problem-specific, and they are often modified or fine-tuned to serve a particular purpose. Hence,
the literature on them is quite extensive, and thus, only the main highlights are shown. In the
following paragraphs, the GAN architectures are arranged chronologically by year (in ascending
order, i.e., earlier years are shown first), so two architectures created in the same year may not
be arranged by month. Nonetheless, this can show the evolution of GANs up to the time of
writing (September 2022).

Conditional Generative Adversarial Network (CGAN) is a GAN variant proposed
by Mehdi Mirza and Simon Osindero in [54]. Suppose one is using a vanilla GAN on an image
dataset with multiple class labels, (e.g., the ImageNet dataset). The GAN has been properly
trained and is ready to generate synthetic samples. However, it cannot sample an image of the
desired class. For example, if one wants synthetic images of cars (assuming that images of cars
were used in the training data), one cannot force a vanilla GAN to do so. This happens because
there is no control over the latent space representation. That is, the GAN maps points from
latent space to the original domain, but the features in the latent space are not interpretable by
the user. As such, one does not know from which range of points to sample in order to produce
examples of a certain class. This is an obvious disadvantage of using GANs in labeled datasets.
An interesting idea is to make the GAN dependent on a class label, which allows generated data
to be conditioned on class labels. That is, given a labeled dataset, the CGAN is trained using
the data instances and their respective labels. Once trained, the model can generate examples



3.3. GANs Come in a Lot of Flavours 25

that depend on a class label selected by the user. For example, if a hypothetical dataset has
three classes – “low”, “medium”, “high” – the CGAN is trained with both the instances and
their associated labels. After the learning process is complete, the user can choose to generate
samples of only “low” and “high” classes by specifying the desired label. A diagram representing
a CGAN is shown in Figure 3.3.

Figure 3.3: A diagram of a CGAN. The CGAN is similar to a vanilla GAN (see Figure 3.1), but
the generator, G, and the discriminator, D, are conditioned on class labels.

Despite the importance of the CGAN, with its clear advantage of being able to draw a sample
from a user-selected class, back in 2014 the generation of synthetic images had a lot of room for
improvement. As such, a growing number of GAN architectures focused on image generation
were proposed in the following years.

Deep Convolutional Generative Adversarial Network (DCGAN) is a GAN architec-
ture that combines convolutional layers4, which are commonly used in computer vision tasks,
with GANs. Radford et al., in [65], have brought together the success of Convolutional Neural
Networks (CNNs) in supervised learning tasks with the then emerging GANs. Nowadays, the use
of convolutional layers in GANs for image generation is quite common, but at that time (2016)
this was not the case. Therefore, the use of convolutional layers in the GAN structure is still a
powerful tool for handling image data.

Thus, the DCGAN was able to enhance the generated images by using convolutional layers.
However, the features in the latent space had no semantic meaning. That is, it was not possible
to change the values of a feature in latent space and predict what that change would do to the
image, (e.g., rotation, widening).

Information Maximizing Generative Adversarial Network (InfoGAN), is a GAN
extension proposed by Chen et al. in [20], that attempts to learn disentangled information.
That is, to give semantic meaning to features in the latent space (see Figure 3.4). InfoGAN
can successfully recognize writing styles from handwritten digits in the MNIST dataset, detect
hairstyles or eyeglasses in the CelebA dataset, or even background digits from the central digit

4A convolutional layer is a layer that uses a convolution operation. A convolution, in terms of computer vision
tasks, consists of a filter (represented by a matrix) that slides through the image pixels (also represented by a
matrix) and performs matrix multiplication. This is useful in computer vision tasks because applying different
filters to an image (by means of a convolution) can help, for example, detect edges, blur the image, or even remove
noise.
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in the SVHN dataset.

Figure 3.4: The semantic meaning InfoGAN adds to the latent variables in the MNIST dataset.
In (a), varying the latent variable c1 leads to a digit change (from 0 to 9), while in (b), a regular
GAN does not add meaning to its latent variables. In (c), the variation of c2 leads to the rotation
of digits. Finally, in (d), variation c3 controls the width of the digits. Image taken from [20].

The GAN architectures presented so far can be quite time-consuming and use a high amount
of computing resources to train. Given a large number of hyperparameters and a large number
of training samples, the training process could be prohibitively expensive due to the training
time and resources required.

Coupled Generative Adversarial Networks (CoGAN), proposed in [49] by Ming-Yu
Liu and Oncel Tuzel, use a pair of GANs instead of only one GAN. The CoGAN was used to
learn the joint distribution of multi-domain images, which was achieved by the weight-sharing
constraint between the two GANs. In addition, sharing weights requires fewer parameters than
two individual GANs, which, in turn, results in less memory consumption, less computational
power, and fewer resources.

The focus on image generation continued, and in 2016, the AC-GAN and the StackGAN
architectures were introduced to provide improvements in synthetic image generation.

Auxiliary Classifier Generative Adversarial Network (AC-GAN) [58], is a GAN
extension proposed by Odena et al. that modifies the generator to be class dependent (it takes
class labels into account) and adds an auxiliary model to the discriminator whose purpose is
to reconstruct the class label. The results in [58] show that such an architecture can generate
globally coherent samples that are comparable, in diversity, to those of the ImageNet dataset
(see Figure 3.5).
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Figure 3.5: Images of five distinct classes generated by the AC-GAN. Nowadays, the detail in
the images is far superior to the one provided by the AC-GAN. Image taken from [58].

Stacked Generative Adversarial Network (StackGAN), proposed in [90] by Zhang
et al., is another extension of GANs that can generate images from text descriptions. This
generation of photorealistic images is decomposed into two parts. First, the STAGE-I GAN
sketches a primitive shape and colors based on the input text. Next, the Stage-II GAN uses the
same text description as the STAGE-I GAN and its output as input and generates high-resolution
images by refining the output images by STAGE-I GAN. Their work has led to significant
improvements in image generation.

Despite improving the quality of the generated images, adding semantic meaning to the
latent features, and reducing memory consumption and training time, the training itself was still
difficult due to mode collapse and uninformative loss metrics.

Wasserstein Generative Adversarial Networks (WGAN), is an alternative to tradi-
tional GAN training. The WGAN proposed by Arjovsky et al. in [9] is a GAN extension that
modifies the training phase such that the discriminator, called the critic, is updated more often
than the generator at each iteration i, where i is defined by the user. This change to GAN
training avoids mode collapse and provides a meaningful loss metric that correlates with the
generator’s convergence and sample quality.

Returning to image generation, an interesting idea is to transfer an image from one area to
another. For example, let us take a landscape image and “merge it” with an image of a Monet
painting so that the landscape image has the style of a Monet painting.

Cycle-Consistent Generative Adversarial Network (CycleGAN), is a GAN extension
for image-to-image translation without paired data. Zhu et al. proposed, in [97], an approach to
translate an image from a domain X to a domain Y when no paired images are available. The
CycleGAN consists of two generators, G and F , and two discriminators, DX and DY . G maps
an image from X to Y , and DY tries to determine whether it is from the original dataset or
synthesized. Similarly, F maps an image from Y to X, and DX determines whether it is real
or generated by F . In addition to the four networks, the cycle consistency loss metric was also
introduced to ensure that translating an image from X to Y and then from Y to X yields a very
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similar image to the original one. Figure 3.6 shows the image-to-image translation capabilities of
CycleGAN.

Figure 3.6: Given any two image collections, the CycleGAN learns to automatically “translate”
an image from one domain into the other and vice versa. Example application (bottom): using
a collection of paintings of famous artists, the CycleGAN renders a user’s photograph in their
style. Image taken from [97].

To date, GAN architectures have focused on image generation and translation, training
stabilization, and time or have been tied to class labels. Nonetheless, there is an interesting
application of GANs to music generation.

Multi-track sequential GAN (MuseGAN), proposed by Dong et al. in [25] is a GAN
architecture for music generation. This is quite different from generating images or videos since
music has a temporal dimension, is usually composed of multiple instruments, and musical notes
are often grouped into chords. Although the music generated is not as good as that produced
by professional musicians, the results were quite promising, and the MuseGAN model had some
interesting properties.

In late 2017 and throughout 2018, the quality of image-generated data improved greatly with
the introduction of ProGAN, SAGAN, and BigGAN architectures.

Progressive growing of Generative Adversarial Networks (ProGAN), is a technique
that helps stabilize GAN training by progressively increasing the resolution of generated images.
Proposed in [43] by Karras et al., the ProGAN accelerates and stabilizes training by, first,
constructing a generator and a discriminator that produce images with few pixels. Then, layers
corresponding to higher resolutions are added in the training process, allowing the creation of
high-quality images. Figure 3.7 shows images generated with the ProGAN.
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Figure 3.7: Images generated using ProGAN. Notice the level of detail when compared to the
ones generated from AC-GAN (Figure 3.5). Image taken from [43].

Self-Attention Generative Adversarial Networks (SAGAN), improves on previous
GAN structures by maintaining long-range relationships within an image rather than just local
points [91]. Zhang et al. have found that using spectral normalization improves the training
dynamics of the generator. In addition, the discriminator can assess whether highly detailed
features in distant image regions match each other. When this architecture was proposed, the
authors were able to improve both the Inception Score [70] and the Fréchet Inception Distance [40]
(two widely used metrics to evaluate synthetic image data) on the ImageNet dataset.

Big Generative Adversarial Network (BigGAN), proposed by Brock et al. [14], is
a type of GAN architecture that upscales existing GAN models and produces high-quality
images (see Figure 3.8). BigGAN has also demonstrated how to train GANs at a large scale by
introducing techniques that detect training instability. At the time of BigGAN’s introduction,
its performance was significantly better than that of other state-of-the-art structures.

Figure 3.8: Class-conditional samples generated by BigGAN. Image taken from [14].
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As seen previously, the image quality has improved considerably (compare Figure 3.5 with
Figures 3.7 and 3.8, for example). However, there were still some limitations in the images
generated. Although the GAN architectures provided extremely realistic images, it was still
difficult to understand various aspects of the image synthesis process [44].

Style-based Generative Adversarial Networks (StyleGAN), proposed by Karras et al.
in [44], explores an alternative generator architecture based on style transfer. The focus is not
on generating more realistic images but on having better control over the generated image. This
new architecture is able to learn to separate high-level features and stochastic variation. In fact,
the new generator improves the quality metrics over the state-of-the-art, untangles the latent
variables better, and has better interpolation properties.

Two other different ideas than those shown so far, but also very interesting, were proposed
in 2019. The first is about turning a user’s sketch into a realistic image. The second is about
automatically completing an incomplete image in a plausible way.

GauGAN [62], a model proposed by NVIDIA Research that allows users to sketch an
abstract scene and then turn it into a detailed image. Users can also manipulate the scene and
label each element. This is achieved through the use of a spatially-adaptive normalization layer
whose purpose is to aid in the generation of photorealistic images when a semantic layout is
given as input.

Pluralistic Image Inpainting GAN (PiiGAN), proposed by Weiwei Cai and Zhanguo
Wei in [16], attempts to fill in large missing areas in an image. Unlike other Deep Learning (DL)
methods that try to achieve a single optimal result, PiiGAN has a new style extractor that is able
to extract the style features from the original images. As shown in [16], PiiGAN can produce
images of better quality and greater variety than other state-of-the-art architectures that match
the context semantics of the original image. Figure 3.9 shows the capabilities of PiiGAN.

Figure 3.9: Examples of inpainting results produced by PiiGAN on two faces and a leaf. On the
left column is the input image (with the center pixels removed). The images in the remaining
columns are outputs of the PiiGAN. Image taken from [16].
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A more recent architecture, introduced in 2021, is the Multy-StyleGAN, which highlights the
capabilities of GANs in various image domains – in this case, biology.

Multi-StyleGAN, proposed by Prangemeier et al. in [64], is a novel GAN architecture
used to study the dynamic processes of life at the level of single cells. Since acquiring images to
study such processes is costly and complex, the Multi-StyleGAN is a descriptive approach that
simulates microscopic images of living cells. As shown by the authors, the proposed architecture
is capable of capturing the underlying biophysical factors and temporal dependencies.

As shown in the previous paragraphs, the major breakthroughs of GANs are focused on
imaging generation. Despite their enormous success in this area, GANs can be used in other
areas as well since there are no restrictions on whether the dataset must be an image, a video,
music, or an ordinary tabular dataset. Nonetheless, different types of architectures must be
considered depending on the task. Image data does not have the same characteristics as music
or tabular data, so different types of layers, activation functions, or training procedures must be
selected accordingly. That being said, there are some best practices that can be used depending
on the data at hand, but the architecture of a GAN currently seems to be as much an art as a
science. In the next subsection, we take a closer look at three GAN structures used to generate
tabular data.

3.4 GANs for Tabular Data

As seen in Section 3.3, GANs are widely and successfully used for image generation tasks.
However, many datasets have a tabular format, and the most popular GAN architectures cannot
be used in such a setting because tabular data has unique properties.

First, continuous and categorical features are present in most tabular datasets. Since image
data consists solely of numerical features (the pixels), GANs used for image generation tasks
cannot accommodate the different types of variables. Second, non-Gaussian and multimodal
distributions are quite common in tabular datasets. Numerical features in tabular data may
have multiple modes and follow a non-Gaussian distribution, which must be considered when
generating synthetic data. Third, highly imbalanced categorical variables are common. This can
lead to severe mode-collapse and insufficient training for the minority classes. Finally, it is easier
for a trivial discriminator to distinguish between real and fake data when it learns from sparse
one-hot-encoded vectors since it takes into account the sparsity of the distribution rather than
checking the overall authenticity of the sample.

In the following paragraphs, we detail three important GAN architectures used to overcome
the above problems. The TGAN architecture was introduced in 2018, followed by the CTGAN
architecture in 2019, which is an evolution of the TGAN architecture and was proposed by the
same authors. This was followed in 2021 by the TabFairGAN, which was intended to dethrone
the two aforementioned GANs in terms of the quality of synthetic tabular data generation. We
believe the detailed explanations that follow can shed some light on a topic that is as not as well
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disseminated in the literature, as far as we are aware – the use of GANs to generate tabular data
rather than image data.

3.4.1 TGAN

TGAN was proposed in 2018 by Lei Xu and Kalyan Veeramachaneni [88] as a GAN architecture
for synthesizing tabular data. Given a dataset, unbal, which is already split into train set, Dtrain,
and test set, Dtest, the aim of the TGAN is twofold: given a Machine Learning (ML) model, its
accuracy on Dtest when trained on the Dtrain should be similar to its accuracy, also on Dtest, but
when trained using Dsynth, which is the synthetic data (machine learning efficacy); the mutual
information between each pair of columns in D and Dsynth should be similar.

To achieve these goals, first, it is important to transform the data. A GAN usually consists
of two neural networks, so it is crucial to properly represent the data before feeding it as input.
This problem is addressed by applying mode-specific normalization for numerical variables and
smoothing for categorical variables.

Mode-specific normalization is used to handle non-Gaussian and multimodal distributions.
It fits a Gaussian Mixture Model (GMM), which models a distribution as a weighted sum of
Gaussian distributions to each numerical variable and calculates the probability that a sample
from a numerical column comes from each of the Gaussian distributions. These probabilities
are then used to encode the values of the rows corresponding to the numerical features. More
formally, let {N1, N2, . . . , Np} represent the numerical columns of a tabular dataset D. A GMM
with m components is fitted to each numerical variable, Ni. The means and standard deviations
of the m Gaussian distribution are represented by µ
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respectively. The probability of xi,j (the value at row i and column j) coming from each of the
m Gaussian distributions is given by a vector u
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(k)
i,j and vi,j is clipped to [−0.99, 0.99], and ui, vi are used to

encode xi.

Smoothing of the categorical variables is achieved by representing them as one-hot-encoded
vectors, adding noise to each dimension (drawn from a uniform distribution), and renormalizing
the vector. After applying mode-specific normalization to the numerical columns and smoothing
the categorical ones, the data are ready to be fed into the TGAN. The generator is a Long-Short
Term Memory (LSTM) network that generates the numeric variables in two steps (in the first
step, vi is generated, and ui is generated in the second step) and the categorical variables in one
step. A fully connected neural network is used as the discriminator. A diagram of a TGAN is
shown in Figure 3.10.
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Figure 3.10: Diagram of a TGAN used in a toy example with 2 continuous and 2 discrete
variables. Image taken from [88].

The TGAN was evaluated, in [88], with respect to machine learning efficacy and the
preservation of correlation (the two aforementioned aims of the TGAN) and compared with other
data synthesis models. Regarding machine learning efficacy, five models were evaluated in terms
of accuracy and Macro-F1, namely, Decision Trees, Linear Support Vector Machines, Random
Forests, AdaBoost, and Multi-Layer Perceptrons, on three different datasets. It was found that
while the ML models generally performed better when trained on the real dataset, the average
performance difference between the real and synthetic data was 5.7%. This suggests that the
TGAN performs quite well (The authors compared the TGAN with a Gaussian Copula (GC)
and a Bayesian Network (BN-Co), which showed a drop in performance of 24.9% and 43.3%,
respectively). Moreover, the TGAN was able to maintain the ranking of the ML models. As
for the preservation of correlation between any two pairs of variables, the TGAN was able to
successfully capture this correlation.

3.4.2 CTGAN

The CTGAN, also proposed by Lei Xu and Kaylan Veeramachaneni et al. [89] in 2019, is an
improvement over TGAN. The objectives of CTGAN are almost the same as those of TGAN.
The difference is that CTGAN is more ambitious, and instead of just preserving the correlation
between any pair of columns in the synthetic data, it aims to preserve the joint distribution of
all columns.
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As for the transformations of the input data, they are similar to those presented for the
TGAN model. To transform the numerical columns, a variational Gaussian mixture model
(VGM) is used instead of a GMM. The difference is that the VGM estimates the number of
modes for each numerical column, unlike in the TGAN, where the number of modes is predefined
and is the same for each numerical column. In addition, the continuous values are represented as
a one-hot vector indicating the mode and a scalar indicating the value within the mode 5. The
categorical features are only one-hot-encoded without adding noise.

To allow the CTGAN to deal with imbalanced discrete columns, the authors used a
conditional generator that can generate synthetic rows that depend on any of the discrete
columns. Furthermore, a technique called training by sampling was proposed, allowing the
CTGAN to uniformly examine all possible discrete values.

To integrate the conditional generator in the GAN architecture, it is necessary to properly
prepare the input. This is accomplished by using a conditional vector, which specifies that a
given categorical column must be equal to a certain value (from the set of the possible values
for that particular column). Furthermore, the generator loss is modified so that it learns to
map the conditional vector into the one-hot-encoded values. The conditional vector consists of a
simple transformation to the one-hot-encoded vectors. Supposing that a dataset with 3 discrete
columns, D1 = {0, 1, 2}, D2 = {0, 1}, D3 = {0, 1, 2}, is given, and the condition that is indicated
is D2 = 1, the conditional vector would be

⃗cond = (0, 0, 0︸ ︷︷ ︸
D1

, 0, 1︸︷︷︸
D2

, 0, 0, 0︸ ︷︷ ︸
D3

)

Where the first three entries correspond to the one-hot-representation of D1, the fourth
and fifth entries correspond to the one-hot representation of D2, and the last three entries
correspond to the one-hot representation of D3. The conditional generator is then forced to
map the conditional vector into the one-hot-encoded ones by adding the cross entropy to its loss
function.

Training by sampling is a technique that ensures that the conditional vector is properly
sampled so that the CTGAN can uniformly examine all possible values in discrete columns.
This is performed by randomly selecting a discrete column, constructing the probability mass
function over the possible values for the selected column (the probability mass of each value is
the logarithm of its frequency), and only then computing the conditional vector. A diagram of
a CTGAN is shown in Figure 3.11 (the conditional generator and the discriminator are both
fully-connected networks).

5e.g., if the VGM has estimated three modes and a given value xi,j has a greater probability of coming from
mode 2, then the one-hot-encoded vector would be β⃗ = (0, 1, 0) and the value within the mode would be given by
ai,j = xi,j −µ2

4σ2
, where µ2 is the mean of the Gaussian distribution corresponding to the second mode, and σ2 its

standard deviation.
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Figure 3.11: Diagram of a CTGAN. Image taken from [89].

To evaluate the CTGAN, the authors in [89] have used seven simulated datasets and eight
real datasets. In the simulated datasets, the likelihood fitness metric was computed to evaluate
performance, which is possible since the distribution of the data is known. In what concerns the
real datasets, the machine learning efficacy was used to evaluate performance (it is not possible
to compute the likelihood fitness metric in real datasets because the distribution of the data is
unknown). The CTGAN was also compared with other generative models, namely CLBN [23],
PrivBN [92], MedGAN [21], VeeGAN [78], and TableGAN [61]. It was found that in real datasets,
the CTGAN outperformed all other models in terms of machine learning efficacy. In simulated
datasets, the CTGAN performed quite well in terms of the likelihood fitness metric, although it
was not able to outperform all other models.

Finally, an ablation study was conducted with the goal of evaluating the utility of mode-
specific normalization, conditional generator, and training by sampling. The results showed that
if the mode-specific normalization was replaced by either a GMM with five modes (GMM5), a
GMM10, or a min-max normalization, the losses in performance (regarding machine learning
efficacy) in the real datasets would be of −4.1%, −8.6%, and −25.7%, respectively. In what
concerns the training by sampling, if removed, the performance would decrease by 17.8%. If
the conditional generator was removed, the performance would drop by 36.5%. Therefore, the
techniques introduced in CTGAN, namely, mode-specific normalization, training by sampling,
and the conditional generator, are very important for generating high-quality tabular data.

3.4.3 TabFairGAN

TabFairGAN, proposed in 2021 by Amirarsalan Rajabi and Ozlem Ozmen Garibay [66], is a WGAN
with a gradient penalty. As with TGAN and CTGAN, it is crucial to represent the data correctly
before entering it as input to the TabFairGAN. Thus, Rajabi and Garibay used one-hot-encoding
to represent the categorical features. A quantile transformation was used for the numerical
features:
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c′
i = Φ−1(F (ci))

where ci is the ith numerical feature, F is the cumulative distribution function (CDF) of the
feature ci, and Φ is the CDF of a uniform distribution.

In what concerns the network structure, the generator is formally described as:
h0 = z

h1 = ReLU(FClw→lw(h0))
h2 = ReLU(FClw→Nc(h1)) ⊕ gumbel0.2(FClw→l1(h1))⊕
gumbel0.2(FClw→l2(h1)) ⊕ . . . ⊕ gumbel0.2(FClw→Nd

(h1))

where z is a latent variable drawn from a standard multivariate normal distribution, ReLU is
the rectified linear unit activation function, FCa→b denotes a fully connected layer with input
size a and output size b, lw is the dimension of an input sample, Nc is the number of numerical
columns, Nd is the number of categorical columns, li is the dimension of the one-hot-encoded
vector of the ith categorical column, ⊕ denotes the concatenation of vectors, and gumbelτ is the
Gumbel softmax with parameter τ (a continuous distribution that approximates samples from a
categorical distribution and uses backpropagation).

In what concerns the critic (discriminator), its architecture can be formally described as
follows:


h0 = X

h1 = LeakyReLU0.01(FClw→lw(h0))
h2 = LeakyReLU0.01(FClw→lw(h1))

Here X denotes the output of the generator or the transformed real data, and LeakyReLUτ

represents the leaky rectified linear unit activation function with slope τ . Figure 3.12 shows a
diagram of the TabFairGAN. An initial fully connected layer (with ReLU activation) constitutes
the generator, followed by a second layer that uses ReLU for numerical attributes and Gumbel
softmax for one-hot-encoding of the categorical features. In the last layer, all the attributes are
concatenated, producing the final generated data. The critic is constituted by fully connected
layers with the LeakyReLU activation function.

TabFairGAN was evaluated in terms of machine learning efficacy (the F1-score and accuracy
metrics were used) using three ML models, namely, decision trees, logistic regression, and multi-
layer perception in the UCI Adult Income Dataset. The results were compared with two other
state-of-the-art models, the TGAN and the CTGAN. TabFairGAN was found to perform better
than TGAN and CTGAN on all ML models and metrics used, except MLP, where CTGAN
performed better than TabFairGAN in terms of accuracy (but not in the F1-score). Hence, the
TabFairGAN is quite effective in generating data similar to the real tabular data.
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Figure 3.12: TabFairGAN architecture. Image taken from [66].

Having shown the several synthetic data generation methods in Chapter 2 and then funneling
down to GANs in the current chapter, a next logical step is to present how the quality of synthetic
data can be evaluated. This is, indeed, quite important as bad quality synthetic data can be
useless or even jeopardize the performance of ML models. The following chapter (Chapter 4)
guides the reader through the most common synthetic data evaluation methods.





Chapter 4

Synthetic Data Quality Evaluation

Evaluating the quality of the generated samples is critical to assessing the quality of the method
used to generate synthetic data. There is a huge number of evaluation techniques, so it is tedious
and almost impossible to explore and describe them all. Moreover, many of these evaluation
techniques are intended for specific types of data or for very specific domains. We focus our
attention only on tabular data, disregarding the domain to which the data belongs, as we aim to
use general evaluation methods, not restricting ourselves to a specific domain. Therefore, this
chapter focuses on evaluation methods for tabular data.

4.1 Synthetic Data Evaluation Methods

The simplest way to evaluate the quality of synthetic data is to compare their basic statistics,
(e.g., mean, median, standard deviation) with those of the real data. If the values are similar, it
is likely that the synthetic data are similar to the real data. However, this can be misleading, as
statistician Francis Anscombe showed in 1973 [8]. The Anscombe quartet includes four datasets
that are nearly identical in terms of basic descriptive statistics but whose distributions are very
different.

Anscombe constructed his quartet to demonstrate the importance of plotting the data when
analyzing it (see figure 4.1). Back in 1973, it may have been challenging to create plots with
data, in part because of scarce and expensive computing resources. Today, however, it is quite
easy, with hundreds of graphics libraries available for various programming languages. Thus,
another method to evaluate the quality of synthetic data is to use graphical representations,
(e.g., box plots, histograms, violin plots).

Comparing the graphs of the synthetic data with the graphs of the real data provides a visual
assessment of the generated data, which can also be supplemented by descriptive statistics. The
Q-Q plot is a probability plot that can be particularly useful for making comparisons between
two data distributions, as it plots their quantiles against each other and can, thus, evaluate the
similarity between the distributions (see figure 4.2). Given the vast amounts of data available

39
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Figure 4.1: Ascombe’s quartet. All four sets are identical when examined using simple summary
statistics but vary considerably when plotted.

today, with datasets containing hundreds or even thousands of variables, it can be prohibitively
expensive to visually represent and analyze all of the data, so other approaches to evaluate
synthetic data are required.

Machine learning efficacy is another technique for evaluating synthetic data. Since many of
the uses of synthetic data are to increase the performance of Machine Learning (ML) models,
machine learning efficacy is used to evaluate the quality of synthetic data with respect to the
performance of ML models. It consists of, given a dataset, D, already split into a train set,
Dtrain, and test set, Dtest, comparing the performance of ML models, (e.g., logistic regression,
decision trees, artificial neural networks, etc) when trained in Dtrain, and on Dsynth (the synthetic
data), and evaluated in Dtest (see Figure 4.3). If the performance, (e.g., in terms of accuracy,
recall, precision, F1-score) of the models trained using Dtrain is similar to those trained using
Dsynth, then the synthetic data is likely to follow the underlying data distribution. In [88, 89],
this method was used to evaluate the performance of the TGAN and CTGAN architectures,
respectively. Furthermore, in [96], this technique was used to evaluate the forecast of emerging
technologies.
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(a) An example of a Q-Q plot in the case where
the two distributions are not similar.

(b) An example of a Q-Q plot in the case where
the two distributions are very similar.

Figure 4.2: The Q–Q plot is used to compare the shapes of distributions, providing a graphical
view of how similar the two distributions are. If the two distributions being compared are similar,
the points in the Q–Q plot will approximately lie on the identity line y = x.

Figure 4.3: Machine learning efficacy diagram. The performance (accuracy, F1-score, etc.) of ML
models (random forests, decision trees, etc.) in the test set, Dtest, is compared when the models
are trained on the real training data, Dtrain, and when they are trained using the synthetic data,
Dsynth.

In [73], Shmelkov et al. argue that the existing methods for evaluating synthetic samples are
insufficient and must be adapted to the task at hand. They begin by addressing two commonly
used metrics, namely the Inception Score [70] and the Fréchet Inception Distance [40]1. Both

1Both the Fréchet Inception Distance and the Inception Score are metrics used to assess the quality of images
created by a generative model. However, unlike the Inception Score, which evaluates only the distribution
of generated images, the Fréchet Inception Distance compares the distribution of generated images with the
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metrics are used for the evaluation of image-generated data and, thus, are not the focus of this
work. Nonetheless, it is important to mention them at least, as they are widely used in the
literature to evaluate synthetic image data.

After presenting these two metrics, the authors introduced their proposed metrics – GAN-train
and GAN-test – which, although applied to image data, can also be applied to other types of
data, such as tabular datasets. Moreover, despite both measures having “GAN” in their name,
the synthetic samples do not need to be generated exclusively with a Generative Adversarial
Network (GAN) but can also be generated with any other method. Therefore, we have slightly
modified the definition of GAN-train and GAN-test given in [73] to make it more general by
replacing the use of a GAN with any synthetic data generation method and the image data with
any type of data (see Figure 4.4).

GAN-train. A classifier is trained with instances generated by a synthetic data generation
method and its performance is evaluated against a test set consisting of real-world data. This
measure provides a measure of how far apart the generated and true distributions are.

GAN-test. A classifier is trained on a real dataset and evaluated on the generated data.
GAN-test provides a measure to evaluate whether the synthetic data generation method has
overfitted (values significantly higher than the ones from validation accuracy) or underfitted
(values significantly lower than the ones from validation accuracy) the data.

Figure 4.4: A diagram representing the GAN-train and GAN-test metrics. The GAN-train is a
measure consisting of the accuracy of a classifier trained in the generated data and evaluated in
the real data. GAN-test learns on the real data and is evaluated in the generated data. Image
based on [73].

Another technique to evaluate the quality of synthetic data was proposed in [2]. The authors
address the fact that most existing evaluation metrics for generative models are focused on
image data and have introduced a domain- and model-independent metric. The metric is three-
dimensional (α-Precision, β-Recall, Authenticity), and it evaluates the fidelity, diversity, and
generalization of each generative model and is independent of the domain, (e.g., images or tabular

distribution of real images.
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data). Moreover, the three components correspond to interpretable probabilistic quantities,
making it easier to detect a lack of synthetic data quality if such a problem occurs.

Fidelity. The α-Precision component measures the similarity between the generated and the
real samples. Thus, values with high-fidelity correspond to realistic samples, i.e., samples that
resemble those from the original dataset.

Diversity. It is not enough to have samples that resemble those from the original dataset.
High-quality synthetic data must also have some diversity. The β-Recall component evaluates
how diverse the generated samples are. That is, whether the generated data is diverse enough to
cover the existing variability in the real data.

Generalization. Last but not least, the generated samples mustn’t be copies of the original
data. High fidelity and diversity values do not guarantee that the synthetic samples are not just
copies of the original dataset. Therefore, the authenticity component is a measure of how well
the model can generalize and, therefore, not overfit the real data.

The first two components are computed by embedding the real and synthetic data in
hyperspheres. That is, the original data, Xr, and the generated data, Xs, are mapped from
the original domain, X , to a hypersphere of radius r, Sr. The third component is computed by
evaluating the proximity of the real data to the generated data in the embedding space using a
hypothesis test. Figure 4.5 shows a representation of the three metrics.
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Figure 4.5: Representation of α-Precision, β-Recall, and Authenticity. The blue and red
spheres correspond to the α- and β-supports of the real and the generated samples, respectively.
Intuitively, these regions are “safe zones” where points that lie outside the spheres are outliers,
and points inside the spheres are “ordinary” samples. (a) Generated samples that lie outside
the blue sphere are unrealistic. (b) Synthetic samples that are very close to real instances are
inauthentic because they are almost exact copies of the real data. (c) Synthetic data points inside
the blue sphere and without real data points near them are considered high-quality samples. (d)
A data point outside the sphere is considered an outlier. Image retrieved from [2].

Finally, an important aspect of this metric is that, unlike the other metrics, it provides
the ability to evaluate each instance. Considering this, the authors of [2] have also proposed a
model-checking framework where low-quality samples (low values in some or all components)
are discarded. Therefore, the final generated dataset is a “curated” version consisting only of
high-quality samples.

Last but not least, in [29], the authors have conceived a framework to evaluate the utility of
synthetic data. They have used several utility metrics with concern to univariate, bivariate, and
multimodal distributions, as well as the distinguishability of the dataset (how distinguishable is
the synthetic data from the real one). Image 4.6 shows an illustration of the utility framework.
As their approach is quite general, we have used their core ideas with some modifications to fit
our use cases in chapter 5. As such, in the following paragraphs, we describe the approach so
that the reader can understand the next chapter.
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Figure 4.6: Illustration of the utility framework.

4.1.1 Univariate Analysis

Regarding the univariate analysis, it consists in comparing each feature in the synthetic data
with the same feature in the original data. If the distributions are similar, but not exactly the
same (this would indicate that the generated samples are just a copy of the original ones), then
the feature was properly generated. This has an obvious problem, which is the lack of scalability:
the more columns a dataset has, the more time it takes to evaluate every univariate distribution.
As such, some sort of summary statistic is required to compare the real and synthetic features in
a concise way.

For such purposes, the authors mention the Hellinger distance [39], which is a probabilistic
measure between 0 and 1 used to measure the difference in the distributions (a value of 0 indicates
no difference between distributions). An advantage of the Hellinger distance is that it deals
with both continuous and categorical features. Also, when the dataset has many variables,
the Hellinger distances can be represented in a boxplot, summarizing the overall differences in
univariate distributions. For a high-utility synthetic dataset, the median Hellinger distance across
all features is expected to be close to 0 and the variation to be small (this indicates that the
synthetic data replicates the distribution of each variable in the real data accurately). Figure 4.7
shows an illustrative example of two such boxplots, where the Hellinger distance is computed as
a percent.

For our purposes, it is important to make some adjustments to this approach. Since we will
be dealing with binary classification datasets and our focus is on the minority class, we could
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Figure 4.7: Boxplots depicting the Hellinger distance as a percent. Each data point corresponds
to the Hellinger distance (as a percent) between a feature in the original data and the same
feature in the synthetic data.

restrict ourselves just to the minority class and compare the distribution between the features
only of the minority class samples (from the original and synthetic data). However, we believe
it is important to compare the minority class-generated samples both with the majority and
minority class original observations. The reason is that the univariate distributions can be very
similar, which in turn can lead the synthesizer to struggle with the distinction between classes.
As such, this comparison can show if the minority class generated samples are more similar to
the minority class original data or to the majority class original data. Of course, it is expected
that the resemblance is higher in the minority class samples, otherwise, it would indicate that
the synthesizer did not learn properly and, thus, did not generate good-quality data.

4.1.2 Bivariate Analysis

Regarding the bivariate analysis, it consists in computing the absolute difference in correlations
between all feature pairs in the real and synthetic data. That is, for each pair of variables in the
synthetic data, their correlation is measured; the same is performed for the original data; then,
the absolute differences for the same pair of variables (the correlation of one pair was computed
in the synthetic data and the other in the real data) are calculated. If the synthetic data kept
the correlations between variables, then the differences will be close to zero2.

Furthermore, it is important to have in mind for which types of variables the correlations
are being computed – one cannot use the same correlation metric to measure the correlation
between two numerical variables and to measure the correlation between one categorical and one
numerical variable. To allow for a simple interpretation of the results, all the correlation metrics
used should be scaled to the [0, 1] interval (or to any other interval, as long as they are all on the

2As in the univariate analysis, the synthetic data should not be a copy of the original data. Thus, the differences
should not be all zero. Small differences indicate that the synthetic data kept the correlations between variables
without overfitting the original data.
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same scale). As in the univariate case, to represent the difference in correlations in a concise
manner, they can be plotted on a boxplot across all possible pairwise relationships, or they can
be plotted in a heatmap. Figure 4.8 shows a depiction of such a boxplot and heatmap.

(a) Heatmap. (b) Boxplot.

Figure 4.8: Illustration of the absolute difference in correlations. The left plot shows a heatmap,
whereas the one on the right is a boxplot.

Once again, in the case of having a binary (or multiple) classification dataset, this analysis
can be also applied to each of the classes (as long as there are not many classes). This can
be very useful to understand in which class(es) the synthesizer is having difficulties capturing
the data distribution. For example, imagine that we have a binary and extremely imbalanced
dataset. If we apply this approach to all the dataset, we may find the differences in correlations
to be very low. Nonetheless, this may be misleading, as the minority class samples have a low
contribution to these differences. By applying this approach to both classes, however, one can
detect such problems.

4.1.3 Multivariate Analysis

For the multivariate analysis, it is used an all models test. Essentially, since it is not known a
priori what an actual analyst would want to do with the generated dataset, determining if the
real and synthetic data have similar predictive ability using multivariate models can be achieved
by building classification models with every variable in the dataset as a target variable. To
compute the performance of the models, the Area Under the Receiver Operating Characteristics
Curve (AUROC) can be computed.

The authors propose using 10-fold cross-validation where, for each fold, the AUROC is
computed. Nevertheless, we argue that a 10-fold cross-validation can be inappropriate given
the dataset. For example, in the case where the dataset has few observations, 5- or 3-fold
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cross-validation might be more adequate. On the other extreme, if the dataset has a large number
of data points, 10-fold cross-validation might not be applicable due to high training times and,
thus, using fewer folds might be more suitable. Besides, if the variability of samples in the dataset
is low, the 10-fold cross-validation may not bring advantages to using fewer folds. On the other
hand, if the variability is high, the use of more folds might be useful.

After computing the AUROC for every fold the average is taken to compute the overall
AUROC. This process is performed considering every variable as an outcome (if the dataset has
n variables, the process is repeated n times, each time considering a different target variable).
Moreover, since the aim is to compare the synthetic data with the real data, this has to be
done both in the real and synthetic data. To guarantee that all models can be summarized in
a consistent way, continuous target variables can be discretized to build classification models.
Finally, the absolute difference between the AUROC values (in the real and synthetic data) is
computed. Small values indicate that the models have similar performances, indicating similar
predictive ability and that the models trained using the synthetic data will provide the same
conclusion when applied to real data as models that were trained using real data. Once again,
boxplots can be used to represent the absolute differences in AUROC values in a concise manner.

We argue that, depending on the particular use case, the AUROC might not be the best
metric to consider. For example, in the case where all the variables in the dataset are numerical,
it does not make much sense to discretize one at a time when they are considered the target
variable. Instead, a more appropriate metric for regression can be used (such as the mean squared
error or the R2). Moreover, if one knows the

4.1.4 Distinguishability

The last utility metric addressed in this framework is distinguishability, which is another way
to compare real and synthetic data in a multivariate manner. The idea is to build a model
to distinguish between real and synthetic data. Hence, a binary outcome variable is assigned
to each record – a 1 indicates that the observation is a real record and a 0 indicates it is a
synthetic record (or vice-versa). Then, using 10-fold cross-validation3, a classification model is
trained to discern between real and synthetic samples. The classifier outputs a probability – if
the probability is closer to 1, then it is predicting that a record is real, and if the probability is
closer to 0, it is predicting that a record is synthetic. This is, effectively, a propensity score for
every record. Once again, the propensity scores can be summarised in a boxplot.

When the two datasets are exactly the same, there will be no distinguishability between
them and, thus, the propensity score of every record will be 0.5 as the classifier will not be able
to distinguish any observation (see figure 4.9a). On the other extreme, if the two datasets are
completely different the classifier will be able to easily distinguish every record (see figure 4.9b).
Of course, in a real scenario, the datasets will fall somewhere between these two extremes.

3in the previous section we discussed why 10-fold cross-validation might not be the best number of folds to use
– the same arguments apply here.
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Yet again, we argue that this approach can be applied to each of the classes (if the dataset
is a classification one, of course). Moreover, if the in the presence of a classification dataset,
one can, instead of providing a binary label, provide a label that indicates the class and if it is
a real or a generated sample (e.g., 1real, 1synthetic, 2real, 2synthetic, ..., nreal, nsynthetic, n ≥ 2).
Then, like before, the classifier will classify each sample. However, this time we have not only
information regarding if the sample was predicted to be real or generated, but also the predicted
class. This might be helpful to assess if some class is not being well generated.

(a) An example of distinguishability using
propensity scores when there is no difference
between real and synthetic data.

(b) An example of distinguishability using
propensity scores when there is almost a perfect
difference between real and synthetic data.

Figure 4.9: Examples of the distribution of propensity scores on two extreme cases – when the
datasets are an exact copy (left plot) and when they are completely different (right plot).

The authors go a step further and propose a way of summarising the propensity scores across
all records (they call them the propensity score for synthesis or PSS).

PSS1: mean square difference between the propensity score and the 0.5 value;

PSS2: converting the propensity score into a binary prediction;

PSS3: mean square difference between the propensity score and the actual 0/1 label of a
record.

They show their preference for the PSS1, but note that, in practice, all three methods will
provide similar conclusions. One way to interpret the PSS1 score is to split the range into
quintiles since the PSS1 varies between 0 and 0.25. Ideally, the PSS1 score should be at quintile
1 (or at most at quintile 2) to ensure that the utility of the dataset is adequate. It is also easy
to compare the distinguishability of different synthesis methods and datasets with the PSS.
Figure 4.10 shows the PSS1 range split into five quintiles.

Overall, this utility framework is very encompassing, including univariate, bivariate, and
multivariate analysis, as well as a distinguishability metric. Furthermore, it is built in such a
way that tries to be very generic, providing broadly useful utility indicators when future analysis
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Figure 4.10: The PSS1 range can be split into quintiles.

plans are unknown. However, depending on the specific purpose of the synthetic data, this
framework may not measure what is considered to be “high-quality data” for one’s particular case.
Furthermore, we have argued about all the 4 metrics, showing our thoughts on why something
might not be adequate to a particular case or might be improved in some way.

4.2 Thoughts on the Methods

In this chapter, seven evaluation techniques were examined – descriptive statistics, graphical
representations, machine learning efficacy, GAN-train, GAN-test, the (α-Precision, β-Recall,
Authenticity) metric and the utility framework. It is always good not to use only one measure
and to combine at least two of them. For example, as mentioned earlier, the descriptive statistics
of a generated sample may be similar to those of the real data, but the distribution of data
points may be very different. Or the machine learning efficacy might provide similar values for
the models trained in the real data and those trained in the generated data, but their descriptive
statistics, or graphical representations, may be very different.

Evaluating synthetic data is challenging and depends heavily on the problem at hand.
Sometimes generating synthetic data can be useful to better train a classifier when there is a
lack of data. In other cases, the problem might be to create simulated realities for a video game.
The definition of “high-quality samples” is likely to be different in the two cases. In the first
scenario, the synthetic data must be very similar to the original data for the classifier to learn a
reasonable model of the real world. Therefore, the synthetic data must be closely scrutinized,
and various evaluation techniques need to be used. In the latter case, the generated data need
not be plausible in the human world, and less stringent criteria can be used to evaluate the
quality of the samples.

Even for problems of a similar nature, the evaluation techniques may be different. Suppose
there are two different classification tasks. The first is to classify a patient with cancer as
“benign” or “malignant”. The second task is to classify the sex of an unborn child as “male”
or “female”. In the first task, it is critical to generate extremely high-quality synthetic data to
improve the classifiers. The data must be highly plausible and truly represent the real world.
Failing to generate trustworthy synthetic data might lead doctors not to diagnose a patient with
a malignant cancer, which can have serious consequences for the patient (and also for the doctor).
Therefore, multiple evaluation techniques must be used to be sure that the generated data will



4.2. Thoughts on the Methods 51

help in the classification task and not jeopardize it.

In the second scenario, evaluation techniques to assess the quality of the generated samples
may not need to be as rigorous. Improving the performance of the classifier might be useful even
if it is with samples of intermediate quality so it is not necessary to analyze the synthetic data
in detail. Whether the unborn child is classified as “female” or “male” does not have as much
impact as a tumor being “benign” or “malignant”.

In the next chapter, we generate synthetic data using the GAN structures described in
section 3.4 and evaluate them using the utility framework proposed in this chapter.





Chapter 5

Results

Having laid out the necessary theory in the chapters 2, 3, and 4, we are now in a position to use
Generative Adversarial Networks (GANs) to generate synthetic data, evaluate it, and perform
data augmentation with it. The goal of this chapter is therefore to generate synthetic data. We
use two well-known public datasets, the Adult dataset1 and the LIAR-PLUS dataset2 and use
two of the GAN architectures shown in section 3.4. In addition, we evaluate the quality of our
data using the utility framework described in section 4 and perform data augmentation using
the generated data.

5.1 Datasets

The Adult dataset is a public dataset with information from a 1994 census database. It has
48 842 records, 14 attributes, and a target variable indicating whether the individual (each record
is an individual) earns more than $50K per year or not. The Adult dataset is imbalanced, with
only 11687 of the individuals earning more than $50K (roughly 24% of the observations).

The LIAR-PLUS dataset is an extension of the LIAR dataset, a publicly available dataset for
fake news detection. It has 10 242 rows, 8 features, none of which is numerical, and six categories
in the target variable, namely true, mostly-true, half-true, barely-true, false and pants-on-fire. As
the focus of this work is to increase the performance of Machine Learning (ML) models related
to Fake News detection, especially in the scenario where there is a data scarcity of the Fake News
class, the following strategy was used.

(a) Only 75 random observations of the class false were kept.

(b) Only 75 random observations of the class pants-fire were kept.

(c) The 150 observations (75 + 75) were considered to be just one class – the fake news class.
1https://archive.ics.uci.edu/ml/datasets/adult
2https://github.com/Tariq60/LIAR-PLUS
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(d) All the 1676 observations of the true class were kept.

In these conditions, we are in the presence of an imbalanced dataset, which is the focus of
our study.

5.2 Synthetic Data Generation

For the synthetic data generation, we have used the CTGAN and the TabFairGAN. The TGAN,
although mentioned in section 3.4, is not as powerful as the CTGAN nor the TabFairGAN (in
fact, the CTGAN is an improvement over the TGAN), so it was not used. Moreover, from the
author’s own experience, the code implementation of the CTGAN is much more robust than the
one of the TGAN and allows for the replication of results.

Table 5.1: Hyperparameters used for the CTGAN architectures.

Noise dimension 64, 128
Size of the output samples for each one of the Residuals (512, 512), (256, 256)
Size of the output samples for each one of the Discriminator Layers (512, 512), (256, 256)
Generator learning rate 0.0002
Discriminator learning rate 0.0002
Number of discriminator updates to do for each generator update 1
Whether to use log frequency of categorical variables True
Number of samples to group together when applying the discriminator 16

Due to the way these models were implemented by their authors, only the CTGAN3 allowed
us to change its architecture (hyperparameters). As such, in the case of CTGAN, we have used 8
different architectures (see table 5.1), whereas in the case of the TabFairGAN4 we were limited
to the default values. Throughout this chapter we make reference to the CTGAN architectures,
so we have named them as follows for easy reference in table 5.2. We note that the generator
dimension and the discriminator dimension are the size of the output samples for each one of the
residuals and the size of the output samples for each one of the discriminator layers, respectively.

5.3 Synthetic Data Evaluation

The goal of this section is to analyze the data quality of the synthetic data generated using
the Adult dataset. For such purposes, we have used the data utility framework explained in
chapter 4, as it is generic and encompassing. Given this is a rather extensive analysis, we have
chosen to only perform it in the Adult dataset. The main reason is that the LIAR-PLUS dataset
has several text variables, causing this framework to not be as easily applicable. Nevertheless,

3The code of the CTGAN can be seen at https://sdv.dev/SDV/api_reference/tabular/ctgan.html
4The code of the TabFairGAN can be seen at https://github.com/amirarsalan90/TabFairGAN

https://sdv.dev/SDV/api_reference/tabular/ctgan.html
https://github.com/amirarsalan90/TabFairGAN
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Table 5.2: Summary table of the eight CTGAN architectures.

Architecture Noise Dimension Generator Dimension Discriminator Dimension
CTGAN 0 64 (512, 512) (512, 512)
CTGAN 1 64 (512, 512) (256, 256)
CTGAN 2 64 (256, 256) (512, 512)
CTGAN 3 64 (256, 256) (256, 256)
CTGAN 4 128 (512, 512) (512, 512)
CTGAN 5 128 (512, 512) (256, 256)
CTGAN 6 128 (256, 256) (512, 512)
CTGAN 7 128 (256, 256) (256, 256)

the following paragraphs show the potential of this evaluation framework, which is more crucial
than the dataset that is being used.

Before carrying on with the evaluation it is important to note that:

(a) the features capital-gain and capital-loss were not included in this analysis because they
were poorly generated by the GAN models. The real distribution is completely different from
the generated distribution (see Figure 5.1). Therefore, they were not considered because they
would interfere with the analysis given their poor results.

(b) given the fact that we are analyzing synthetic data of trained GANs, we are (quite
reasonably) assuming that the statistical properties of a sample do not depend on its size –
samples with sizes 1000 and 10000 have the same statistical properties. This assumption seems
plausible, as the model has learned a certain distribution from which it samples the synthetic
data. Thus, the sample size does not influence the statistical properties of the generated data.

(c) since we have only generated samples of the minority class, we have only compared the
generated samples with the original minority class samples, as that is the distribution we are
trying to capture.

Having this in mind, we proceeded to the synthetic data evaluation using the utility framework
already described in chapter 4.
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(a) Histogram of the variable capital-loss in the
synthetic and real data for values ≥ 500.

(b) Histogram of the variable capital-loss in the
synthetic and real data for values < 500.

(c) Histogram of the variable capital-gain in the
synthetic and real data for values ≥ 500.

(d) Histogram of the variable capital-gain in the
synthetic and real data for values < 500.

Figure 5.1: Histogram for the variables capital-loss (upper plots) and capital-gain (lower plots).
For each variable, there are two histograms, one for values equal to or greater than 500 and one
for values less than 500 (for visualization purposes). The blue bars correspond to the original
data, whereas the orange ones correspond to the synthetic data. The synthetic data in the plots
was drawn from the CTGAN with the architecture 0, but the results were similar in all the other
architectures.

5.3.1 Univariate Analysis

For the univariate analysis, we have used the Hellinger distance to compare the distributions
between the real and the generated features. Figure 5.2 shows the several resulting boxplots.
In the boxplots below each data point is the Hellinger distance between the observations of a
variable in the original data and the observations of that same variable in the synthetic dataset.
Each variable in the synthetic dataset was compared with the original minority class data (same
class) and the majority class (opposite class). Of course, we expect the synthetic univariate
distributions to be more similar to the same class original data distribution, otherwise the
synthetic data generation would have been terrible.

From the figure 5.2, it can be seen that the univariate distributions in all plots are more
similar to the original minority class data than to the majority class data. It can also be seen
that CTGAN 2 has a low median and all points are below 0.4, indicating that the univariate
distributions were well preserved in the generated data. CTGAN 3 also produced good results,
but has a visible outlier. The same is true for architectures 4 and 7 and TabFairGAN. Overall,
CTGAN 2 seems to retain the univariate distributions best.
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Figure 5.2: Boxplots for each GAN architecture comparing the univariate distributions of the
generated samples both with the minority as well as the majority class original samples.

5.3.2 Bivariate Analysis

Regarding the bivariate analysis, we have used the Pearson correlation for correlations between
continuous variables, Cramer’s V for correlations between categorical variables and the correlation
ratio for correlations between continuous and categorical variables. As it would be more difficult
to compare each heatmap of the difference in correlations, once again we use boxplots (see
figure 5.3).

From the analysis of the boxplots, the TabFairGAN seems to provide the best results, with a
small range of values and a very low median. Indeed, it is quite better than the other architectures.
This indicates that it did a good job maintaining the correlations between every variable pair.
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Figure 5.3: Boxplots for each GAN architecture showing the difference in pair-wise correlations
between the generated samples and the original samples.

5.3.3 Multivariate Analysis

For each synthetic dataset, we have considered each variable as a target variable, used 5-fold
cross-validation to train a Decision Tree, and computed the mean Area Under the Receiver
Operating Characteristics Curve (AUROC) across the 5 folds. Moreover, the variables age and
hours-week were discretized, so that we could use a classifier and, thus, compute the AUROC
for every outcome variable. Figure 5.4 shows several boxplots with the absolute differences of
the mean AUROC across all folds between the synthetic data and the original data, for each
synthetic dataset and outcome variable.

In this case, it is obvious that the TabFairGAN has provided considerably better results than
all the CTGAN architectures. With the smallest range and inter-quartile range, as well as the
lowest median, the TabFairGAN as provided outstanding results in the multivariate analysis.
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Figure 5.4: Boxplots for each GAN architecture comparing the differences in the mean AUROC
between the generated samples and the original samples.

5.3.4 Distinguishability

Regarding the distinguishability, each record was assigned a binary label (0 if it was a synthetic
record and 1 otherwise) and an XGBoost model was trained using 10-fold cross-validation. Once
again, boxplots were used to assess the data quality (see figure 5.5).

To further aid our analysis, we have used the PSS1 score to summarise the propensity scores
across all records. Table 5.3 shows the PSS1 (already explained in subsection 4.1.4), as well as
the corresponding quintile (also shown in subsection 4.1.4) for every synthetic dataset.

From table 5.3 it becomes clear that the TabFairGAN, once again, has provided better results
than all the other architectures. This indicates that the utility of the TabFairGAN generated
data is quite high.

Overall, the TabFairGAN provided the best results. It was the best in terms of distin-
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Figure 5.5: Boxplots for each GAN architecture comparing the propensity scores of the generated
samples and the original samples.

Table 5.3: Summary table presenting the PSS1 score as well as the corresponding quintile for
every synthetic dataset.

GAN CTGAN 0 CTGAN 1 CTGAN 2 CTGAN 3 CTGAN 4 CTGAN 5 CTGAN 6 CTGAN 7 TabFairGAN
PSS1 0.1707 0.173 0.1061 0.1265 0.1676 0.1854 0.1196 0.1203 0.0773

Quintile 4 4 3 3 4 4 3 3 2

guishability and in the all-models test (multivariate analysis). In the bivariate analysis, it also
provided very good values, being the best architecture of them all (it had the lowest median
and the lowest interquartile range). In this bivariate analysis, other architectures provided some
competition, namely CTGAN 7, for example, but the outliers in the boxplot were farther away
than the ones of the TabFairGAN. Regarding the univariate analysis, the CTGAN 2 was the
one that better kept the univariate distributions of variables. To better assess the TabFairGAN
supremacy, a radar chart was built (see figure 5.6). Each axis represents one of the metrics used
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and the lines represent the GAN architectures. The axes Univariate, Bivariate and Multivariate
correspond to the Hellinger distance, the difference in pair-wise correlations and the difference in
the mean AUROC between real and generated samples, repectively. Moreover, these metrics are
represented by their medians, as it would be impossible to include all the points in the radar
chart.

Figure 5.6: Radar chart comparing the several GAN architectures (represented by the colored
lines) in terms of the 4 evaluated metrics (represented by the axis). The TabFairGAN architecture
has, clearly, provided very good results as its line (the red one) is the more inward one.

In the next section, this data (as well as the LIAR-PLUS dataset) will be used for data
augmentation, so that we can assess if the aid of synthetic data can aid in the performance of
ML models in a classification task, in particular in a news dataset.

5.4 Data Augmentation

Now that we have described the datasets, explained what architectures are used for data
generation, and used the data utility framework to evaluate the synthetic data, the next step is
to perform data augmentation. Despite, the fact that the utility framework was only applied to
the Adult dataset (the reasons were already mentioned), we have seen that the architectures
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used provided, typically, good results (the TabFairGAN having provided the best results). Thus,
we can generalize to a certain extent, and assume that the quality of the generated samples of
the LIAR-PLUS dataset are reasonably good.

5.4.1 Adult Dataset

The adult dataset was first split into train (80% of the observations) and test (the remaining
20%) sets. The several GAN architectures presented in section 5.2 were trained using only the
minority class samples of the train set (as this is the class that is lacking observations) for 300
epochs with a batch size of 256. Once the GANs were trained, we generated a number of samples
such that the minority class had 40%, 50%, . . . , 100% of the size (number of observations) of
the majority class (in the original train set, the minority class was of about 31% the size of the
majority class).

Next, we have trained multiple ML models – Logistic Regression, Decision Tree, Random
Forest and XGBoost – using the original train set (to serve as a baseline), but also the original
train set plus the synthetic minority samples generated by the trained GAN architectures (the
augmented dataset). Each model was trained 3 times in each dataset (original and augmented
datasets) and the mean of each 3 runs was computed to decrease the randomness involved. The
models were then evaluated in the test set, which has been placed aside and is only used in this
step. The accuracy, precision, recall, and F1 were measured for both classes.

To better interpret the results, we have used various plots. As all the plots were created
using the same idea in mind, we shall explain them now, as this explanation will hold for all the
following plots and we can avoid being repetitive (the reader can look at figure 5.7 to follow the
explanation). Each figure has several subplots, where subplots in the same column refer to the
same metric and subplots in the same row refer to the same ML model. The x-axis represents
the percentage of minority class samples when compared to the total of majority class samples.
The blue lines (dark and light blue) indicate the performance of the models when trained in the
augmented datasets. The red lines (dark and light red) indicate the performance of the models
when trained in the original dataset – that is why they are constant (we have just drawn the
constant line for visualization purposes). We also note that not every plot was included, but
only the most important ones, as it would be exhaustive to list them all.
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Figure 5.7: Performance comparison of the 4 models across the 4 metrics when tested in the test
set and trained in the augmented dataset (TabFairGAN) as well as in the original training set.

Figure 5.7 shows the results of the data augmentation for the TabFairGAN-generated datasets.
It is quite interesting to note that, even though the TabFairGAN provided the best results
in the evaluation framework of the previous section, it does not provide very good results in
the data augmentation task as a whole. That is, it can substantially increase the performance
in the minority class, which is our focus, but also diminishes the performance in the majority
class. That being said, depending on the particular use case, one might be able to compromise
the performance in the majority class to obtain better results in the minority class, given the
high increase of performance in the underrepresented class. This helps us answer RQ3, as it
can be see that, indeed, good synthetic data quality can bring performance increases in the
classification task for the minority class. However, the performance in the majority class may
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decrease, given that the synthetiser only trained with minority class samples, the focus being on
the underrepresented class.

Figure 5.8: Performance comparison of the 4 models across the 4 metrics when tested in the
test set and trained in the augmented dataset (CTGAN 7) as well as in the original training set
(Adult dataset).

As for the CTGAN architectures, some of them provided very good results, the best of which
was the CTGAN 7 – figure 5.8 shows the results for this architecture. As can be seen from the
subplots, in all of them the performance in the minority class increases in the augmented dataset
at almost no expense from the performance in the majority class (the exception being the recall
on the Logistic Regression and in the Random Forest). In fact, in some cases, the performance
in the majority class increases too.
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Overall, the results were somewhat surprising. Even though the TabFairGAN provided the
best results in the evaluation framework (see figure 5.6), indicating that the data was of high
utility, and the generated data substantially increased the performance in the minority class, the
results of the classification as a whole (that is, considering both classes) did not improve. However,
the CTGAN 7, which did not provide results as good as the TabFairGAN in the evaluation
framework, has done a very good job in the data augmentation task, bringing information
that helped the ML models increase the minority class performance, without compromising the
majority class. In fact, this type of experiment can also be seen as an evaluation technique of
the quality of the generated data. It does not compare the properties of the synthetic data with
those of the original data but shows to what extent can such data help ML models increase their
performances.

5.4.2 LIAR-PLUS Dataset

The LIAR-PLUS dataset needed more processing, as it contained several text features. The
variables job, state, context and justification had some missing values, which were replaced by
the value other. The variable subject was a list of subjects, so we expanded that list into several
columns (20 in total) – each column had only one subject (subjecti). Since there were 20 subjects
and most of them had null values, we kept just the first 7 columns, as there was almost no loss
of data. Furthermore, given the fact that the variables speaker, job, state, party and subjecti

(∀i ∈ {0, ..., 6}) had several categories, it would be infeasible to one hot encode them, as the
number of columns would grow very large – in the order of magnitude of the thousands. Hence,
the variables were target encoded.

Finally, the variables statement, context and justification were actual sentences and were
the variables that, most likely, contained the more important information to predict the target
variable. Thus, they were processed using the Doc2Vec algorithm, which takes the sentences and
maps them into a numerical space. For the statement and justification variables, a mapping into
a 16-dimensional space was performed. For the context variable, a mapping to an 8-dimensional
space was performed. The context variable has fewer words than the statement and justification
variables, hence the lower-dimensional space: not as much information to be mapped, thus the
use of fewer dimensions.

Since the LIAR-PLUS dataset was already divided into train and test sets, we kept that
division. As explained above, the train was modified to only include the target classes pants-fire,
false and true, with an intentional imbalanced target. As for the test data, we simply kept those
same classes, again merging the pants-fire and fake classes into one class. The train had 1826
observations (1676 of the true class and 150 of the other class). The test had 1267 observations
(208 of the true class and 1059 of the other class). We note that the test set is lacking data in
the true class when compared to the fake class. These were the proportions already in the test
data, and they were not altered.

To assess the results we have used the same type of plots used in the previous section to
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evaluate the data augmentation in the Adult dataset, so we refrain from explaining them again.

Figure 5.9: Performance comparison of the 4 models across the 4 metrics when tested in the test
set and trained in the augmented dataset (TabFairGAN) as well as in the original training set
(LIAR-PLUS dataset).

Figure 5.9 shows the results for the TabFairGAN which, this time, provided better results,
especially regarding the Decision Tree model, where the precision and the recall metrics have
increase in the minority, as well as the majority class samples. Nonetheless, the CTGAN
architectures have, once again, been able to perform a better job at the data augmentation task
(see figures 5.10 and 5.11).

From figure 5.10 we can observe that the CTGAN 2 was able to increase the precision and
the recall across all models in the minority class, especially in the Decision Tree, where the uplift
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Figure 5.10: Performance comparison of the 4 models across the 4 metrics when tested in the
test set and trained in the augmented dataset (CTGAN 2) as well as in the original training set
(LIAR-PLUS dataset).

in the precision metric was quite high. Moreover, this increase in performance came without a
cost regarding the majority class metrics.

As with the CTGAN2, the CTGAN 4 (see figure 5.11) has also provided very good results in
the precision and recall metrics regarding the minority class samples, especially in the Decision
Tree. Furthermore, this architecture was able to increase the precision metric in the XGBoost
model, an already very powerful model. This increase in performance in the minority class came,
once again, without a cost in the majority class.
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Figure 5.11: Performance comparison of the 4 models across the 4 metrics when tested in the
test set and trained in the augmented dataset (CTGAN 4) as well as in the original training set
(LIAR-PLUS dataset).

These results are pretty promising. On the one hand, we have increased the performance
in the minority class (the Fake News class). On the other hand, this increase did not incur in
decreases in the majority class. Moreover, these results help us answer RQ1. Given we have
increased the performance in the class of interest without jeopardizing performance in the other,
the results obtained support the fact that, indeed, the addition of synthetic data can aid in the
identification of Fake News.

In light of the results explored in this chapter, in the next chapter, we discuss some conclusions



5.4. Data Augmentation 69

taken from this work, some challenges faced and limitations, and possibilities for future work.





Chapter 6

Conclusion

Fake News are present in our daily lives. They change our perception of the world, influence
election results and political decisions, negatively impact public health and debates, and divide
people’s opinions. This is by no means a recent problem, but with the rise of social media
platforms, the prevalence and reach of Fake News is steadily increasing. This is a serious problem,
and any tool that can help identify Fake News can be a valuable asset.

This chapter contains a general summary of the work carried out, a recapitulation of the
research questions and some conclusions that have emerged. Finally, some limitations and
challenges are discussed and possibilities for future work are identified.

6.1 General Summary

The work carried out in this investigation included several phases. The first was to understand
what methods already exist for generating synthetic data, what their strengths and drawbacks
are, and which are the most promising. In recent years, Generative Adversarial Networks (GANs)
have received a lot of deserved attention. They are a strong idea and have provided very good
results, especially in image generation. Nowadays, the images generated by GANs are so good
that we cannot distinguish between a real image and a synthetic one.

Having understood that GANs are a powerful tool, we explored it further. First, we understood
the paradigm of GAN training using an adversarial approach. With this knowledge, we examined
the evolution of GANs in chronological order to better understand its improvements over the
years as well as its current state. In the next step, we focused only on tabular GANs as they
are the most useful for our work. In this area, they are very underrepresented compared to the
image domain, making it, clearly, an understudied topic.

The next step was to understand how to evaluate the quality of the synthetic data. Until
now, we have been funneling things down, from synthetic data generation methods, to GANs
and to tabular GANs. But once this was settled, we needed to comprehend how to evaluate
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the quality of the generated samples. We researched the most useful synthetic data evaluation
methods and came across an interesting idea of a data utility framework.

Now that we had all the necessary ingredients, we were able to use GANs to generate synthetic
data, evaluate it, and use it for data augmentation, which we did. In these experiments, we
showed that the quality of the synthetic data does not necessarily mean that using the augmented
dataset will give better classification results. In addition, we have shown which GANs are more
suitable for generating synthetic data and, most importantly, the potential of this approach to
increase the performance of Machine Learnings (MLs) classifiers in detecting Fake News. The
experiments allow us to answer the research questions raised in Chapter 1. These questions are
reproduced below along with the answers obtained in this study.

1. RQ1: Does the addition of synthetic data in the training process of ML models
enable better detection of fake news? In section 5.4, we used a public news dataset
to answer this question. The experiments conducted showed that the addition of synthetic
data can have a positive impact on the performance of the ML models in detecting fake
news without affecting the performance in the real news class.

2. RQ2: Which GAN architectures are more suitable for the generation of tabular
data? From the experiments in the 5.3 and 5.4 sections, we saw that the TabFairGAN
architecture gave the best results in terms of intrinsic data quality, but this was not reflected
in the best results for data augmentation. The CTGAN architectures provided better
results in data augmentation than the TabFairGAN architecture.

3. RQ3: How does the intrinsic quality of synthetic data influence the results of
classification in a data augmented dataset? While searching for the answer to RQ2,
we came across the answer for RQ3. From the experiments we conducted, we observed that
the higher the quality of the synthetic data, the higher the performance gain it could bring
in the minority class. However, this could be at the cost of performance in the majority
class, as the generated and evaluated data concerned only the minority class.

6.2 Contributions

In the course of answering these research questions, this study offers a number of contributions,
which are listed below.

• We conducted a comprehensive review of synthetic data generation methods, GANs and
synthetic data quality evaluation. To our knowledge, no other study in the relevant
literature has explicitly combined these topics. In particular, we focused on GANs for
tabular data generation, a very understudied topic compared to image generation. This
work fills this gap and provides useful material for new researchers in this area.



6.3. Limitations 73

• We have shown that data augmentation can indeed be used to enhance the performance
of ML models in a public and well-known news dataset (LIAR-PLUS). Furthermore, we
have shown which GAN architectures are better suited for generating tabular data, both
in terms of the utility framework (section 5.3) and data augmentation (section 5.4).

• We have assessed the data quality of the datasets in a general way, making the connection
between data quality and data augmentation performance with the use of a knowledgeably
modified and comprehensive utility framework.

• We published a paper [83] at the WorldCist’22 conference, which served as the motivation
for this work.

• We published a paper [31] in the MDPI Mathematics Journal, a Q1 (WoS) journal, showing
the state-of-the-art review conducted in this work.

6.3 Limitations

One of the limitations of this work concerns the simplification of using GANs for tabular data
generation while Fake News are, typically, represented in text format – tweets, Facebook posts,
news websites, etc. As such, when transforming text into tabular data some information is lost
in the process. Dealing directly with news in its raw form might enable us to better address the
problem, but it would also add a fair share of complexity.

In line with the previous limitation, in this work we have used a utility framework to evaluate
synthetic data which was very encompassing, but lacked the ability of assessing text data, even
if we had generated it. As such, another limitation is the inability to evaluate text data with the
methods we have used.

Finally, given the three broad topics we have combined in this work – synthetic data generation
methods, GANs and evaluation of synthetic samples – some details have not been included.
Indeed, the literature is so vast that it would be impossible to summarize everything in a single
work.

6.4 Future Work

Taking into account the previous section, there are multiple ways for extending this work. Firstly,
hyper-parameter tuning could be applied using more hyperparameters, and the number of training
epochs could take longer. This would allow for better trained GANs and, probably, better quality
synthetic data. Additionally, other generative models could be used and compared with GANs,
such as Autoencoders (AEs), flow-based models, or diffusion models.

Another way we could improve this work is by considering news datasets in raw form (text
format) and address them as they are. When news are represented as tabular data, some
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information is lost in the process. By investigating about GANs for text generation, perhaps we
can boost the results.

As seen in section 5.4, the GAN that showed better results regarding the multiple utility
metrics used (see the radar chart in figure 5.6 for a quick refresher) was not the one that provided
the best results in the data augmentation task. This was quite interesting and we believe this
should be further explored. Not only to better understand the relation between the intrinsic
data quality and the data augmentation classification performance but also to assess if there are
more informative measures regarding the data augmentation.

In section 5.3 we have noted that the features capital-gain and capital-loss were not included
in this synthetic data evaluation analysis because they were poorly generated by all the GAN
models (see figure 5.1). This, however, may be addressed in future work to understand what
caused this to happen and, thus, to explore the relationship between features with a certain
distribution and the impact they have on the performance of GANs.

Another aspect we want to improve is the use of more test sets in order to decrease the bias
that may have been (inadvertently) introduced. As mentioned in section 5.4, both the Adult and
the LIAR-PLUS datasets were split into train and test sets. However, despite this random split,
some bias may have been introduced. As such, the replication of the experiments with more
train-test splits could be important to address the matter.

In what concerns the experiments in section 5.4, some further analysis can prove fruitful to
shed some light on what causes abrupt gains/losses in ML performance when the number of
samples increases. More specifically, we want to fully comprehend what caused the performance
gains (in the minority class) in the Adult dataset when the proportion of minority class samples
generated by the TabFairGAN increased from 0.9 to 1 in the accuracy and F1 of the logistic
regression, as well as the abrupt losses in precision and recall (see figure 5.7). Moreover, in
the LIAR-PLUS dataset, the wild oscillations in the performance of the minority class of the
CTGAN 4 generated samples for the precision of the decision tree (see figure 5.11) are also worth
of further exploration.

Furthermore, it became clear from our experience during this study that GANs is under-
researched for generating tabular data compared to GANs for synthesizing image data. Therefore,
we could extend this work by creating our own GAN for generating synthetic tabular data. In
addition, we would be interested in creating a package that other researchers can easily use
without them having to implement it themselves. Such a package could provide researchers with
several built-in tabular GAN architectures, removing the need for the user to build them from
scratch. Moreover, it could have a module for synthetic data evaluation, which would allow users
to get immediate feedback as soon as their GAN are trained. This way, users could rapidly try
out several GAN architectures and see which best fit their use case. This would be very useful
since the existing packages still have a lot of room for improvement.

We believe that the approach proposed in this paper has several applications. Since the
architectures we use are not limited to news datasets, they can be applied to other domains
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where tabular data is used. In addition, they could help detect fake news that would not be
captured if the ML models were trained only on an unexpanded dataset. Clearly, this can have a
positive impact and help mitigate a serious problem that affects us all: Fake News.
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