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Towards Realtime Classification of Optically Trapped Particles

by Vicente ROCHA

In recent decades, optical tweezers(OT) have emerged as a powerful tool to work with

micro-sized particles. Indeed, by allowing micromanipulation and analysis of a wide

range of synthetic and biological particles, OT may impact a plethora of natural sciences

ranging from biology to physics. Yet, in spite of its successes for fundamental research

purposes, it still needs to solidify its role as a reliable and versatile technological tool.

In particular, one of the most promising applications of OT is the classification of the

optically trapped particles, but the existent methodologies still lack the necessary perfor-

mance and throughput to be able to support high-performance diagnostic tools.

In this context, this work explores the implementation of machine learning algorithms

capable of speeding up classification performance while maintaining accuracy, focusing

for this purpose on two architectures: convolution neural networks(CNN) and reservoir

computing(RC). In particular, the CNN framework takes advantage of the modern era

graphic processing unit (GPU) for fast classification and, looking toward real-time exe-

cution, while RC explores the concept of recurrent neural networks for processing time

series in a timely manner. We tested both frameworks on experimentally acquired time

series for the forward scattered signal from an inverted microscope OT setup and mea-

sured with a quadrant photodetector. Furthermore, with the development of a digital

twin, we were also capable of verifying the experimental results on synthetic data.

The case studies implemented looked to evaluate classification in both the composi-

tion and size characteristics of the particles. The results highlight the capabilities of CNNs

for the fast classification of optically trapped particles, which as verified by both experi-

mental and synthetic data with similar results. In contrast, RC only performed well for

one of the datasets, which leaving room for future improvements.
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In conclusion, this dissertation presents the use of two machine learning algorithms

for the classification of trapped particles in OT setups, which to our best knowledge

were unexplored in the literature. These present non-trivial opportunities, improving the

throughput and performance of technological tools based on OT, while also paving for

innovative solutions using RC that may be implemented in all-optical manners in future

miniaturized integrated solutions.
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Rumo à classificação em tempo real de partı́culas opticamente presas

por Vicente ROCHA

Nas última décadas, as pinças óticas surgem como uma ferramenta importante para

trabalhar com partı́culas de tamanho micrométrico. De facto, ao permitir manipular e

analisar partı́culas micrométrica de uma ampla gama de partı́culas sintéticas e biológicas,

pinças óticas podem impactar uma infinidade de ciências naturais desde biologia à fı́sica.

No entanto, apesar dos seus sucessos para fins de pesquisa fundamental, ainda é preciso

solidificar o seu papel como uma ferramenta confiável e versátil. Em particular, uma das

aplicações mais promissoras de pinças óticas é a classificação de partı́culas oticament pre-

sas, mas as metodologias existentes ainda carecem de desempenho e eficiência necessária

para poder suportar ferramentas de diagnóstico de alto desempenho.

Neste context, este trabalho explora a implementação de algoritmos inteligentes ca-

pazes de acelerar o desempenho da classificação mantendo a precisão, focando para este

propósito em dois tipos de arquitetura: rede neuronal convolucional e computação de

reservatório. Em particular, as redes neuronais convolucionais tomam vantagem das uni-

dades de processamento gráfico da era moderna para classificação rápida e, com olhos

postos na execução em tempo real, computação de reservatório explora o conceito de re-

des neuronais recorrentes para processamento direto de séries temporais. Testamos am-

bas as arquiteturas em séries temporais adquiridas experimentalmente do sinal disperso

para a frente com recurso à configuração de microcópio invertido de pinças óticas inte-

grado com um detetor de photões de quadrantes. Além disso, com o desenvolvimento

de um gêmeo digital da montagem experimental, também fomos capazes de verificar os

resultados experimentais em dados sintéticos.
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Os estudos de caso implementados procuram avaliar a classificação com base tanto

na composição quanto no tamanho das partı́culas. Os resultados destacam as capacida-

des das redes neuronais convolucionais para a classificação rápida de partı́culas otica-

mente presas, o que foi verificado com resultados semelhantes por dados experimentais e

sintéticos. Em contraste, a computação de reservatório obteve apenas bom desempenho

para um dos conjuntos de dados, o que deixa espaço para melhorias futuras.

Em conclusão, esta dissertação apresenta o uso de dois algoritmos inteligentes para

a classificação de partı́culas aprisionadas em configurações de pinças óticas, os quais, no

melhor do nosso conhecimento eram inexploradas na literatura. Estas oportunidades me-

lhoram a velocidade e o desempenho de tecnologias baseadas em pinças óticas, ao mesmo

tempo que abrem caminhos para soluções inovadora usando computação em reservatório

que podem ser implementadas de forma totalmente óptica em futuras soluções integradas

e miniaturizadas.
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Chapter 1

Introduction

In a series of revolutionary reports starting from 1970, Arthur Ashkin[1] reshaped the

toolbox for the experimental manipulation of particles with the development of Opti-

cal Tweezers[2, 3], eventually awarding him the Nobel prize later in 2018. Indeed, from

multiple particle trapping[4] to single atoms[5] and cells[6], optical tweezers now find

contributions to a plethora of natural sciences.

To provide some illustrative examples of the versatility of the tool, optical tweezers

have been used in biology applications for a long time, namely to manipulate specimens

and probe their dynamical properties in the laboratory[7]. In a distinct context, the same

tool has been emerging for monitoring processes and reactions in chemistry applications

and measuring the rheological properties of the medium[8–10]. Leaning towards the fun-

damental side of science and focusing on atomic and quantum physics, the same underly-

ing concept supports the trapping of atomic clouds, which combined with other magnetic

and optical solutions, allows the exploration of macroscopic quantum matter states at the

micro to nano-kelvin scales[11–14].

Still, and in spite of all the solid academic applications, Optical Tweezers has still to

solidify its role as a reliable and versatile technological solution. Pointing in this direc-

tion, the team of the Center for Applied Photonics at INESC TEC has been developing

in the last 5 years a consistent effort for the development of intelligent, automatic, and

fast Optical Tweezers systems for biological sensing purposes. In particular, the work has

mostly focused on the classification and identification of trapped specimens, capable of

identifying and distinguishing particles and cells[15, 16].

Nevertheless, the solutions and algorithms developed so far still require a significant

time and computational load for signal acquisition and processing. This prevents the

1



2 TOWARDS REALTIME CLASSIFICATION OF OPTICALLY TRAPPED PARTICLES

use of systems that can give high throughput classification rates, which may be desirable

for applications requiring this scan (e.g. ultra-low concentrations of the target particle

or monitoring large volumes). In this context, this dissertation describes our efforts to

deploy an ultra-fast and real-time solution for the identification of the trapped particle,

starting from the first principles and covering state-of-the-art machine learning solutions

like convolutional neural networks (CNN) and reservoir computing (RC) paradigms.

1.1 Optical tweezers: concepts and setups

The observation of optical forces dates back to Kepler, that proposed the existence of ra-

diation pressure by observing that the tail of a comet consistently pointed away from the

Sun. Later, more than 200 years after that, Maxwell introduced the momentum of the elec-

tromagnetic wave, providing a theoretical framework to explain how radiation fields are

capable of exerting forces[17, 18]. Built upon these principles and driven by the invention

of the laser, Ashkin and his colleagues reported the first observation of the trapping of

transparent dielectric spheres in 1970[1].

This first optical trapping setup was suggested after the observation of a single beam

scattering force pushing a particle along and a gradient force attracting it inwards towards

higher intensities. By counterpropagating two beams, see figure 1.1.a, the scattering forces

cancel out and an equilibrium position can be created[1]. Yet, the complexity of the setup

forbade effective 3-dimensional (3D) manipulation. Not long after, a single beam optical

trap was devised by counterbalancing radiation pressure against gravity[19]. Neverthe-

less, by allowing only levitation of particles this tool lacked versatility.

Later on, Ashkin introduced a novel ”single-beam optical trap” paradigm, which

leveraged on a single highly focused beam[20]. This technique uses the dipolar com-

ponent of light-matter interaction to induce an optical gradient force that counters the

scattering force and creates an equilibrium position, see figure 1.1.b. Finally, in 1986, the

first optical tweezers setup was first reported in Optics Letters, a manuscript that to this

day remains the most cited of this prestigious publication. Following a close concept to

the theoretical prediction for atoms, they used a high numerical aperture (NA) objective to

tightly focus the beam, generating higher intensity gradients and consequently stronger

attractive gradient forces. By achieving a counterbalance between the radiation and gra-

dient optical forces, an effective 3D trap is created, sparking the subject that we now know

as Optical Tweezers (OT)[2].
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FIGURE 1.1: Illustrative example of optical manipulators with the representation of the
forward-pushing scattering forces (blue arrow) and restoring gradient forces (orange
arrow) exerted on the trapped particle. By cancelling scattering forces using counter-
propagating beams, the conventional configuration (a) and fiber application (d) lever-
age on the gradient forces to effectively trap particles. In the single beam configuration,
the conventional setup (b) and fiber implementation (e) balance scattering and gradient
forces by means of a tightly focused single beam creating a stable 3D trap. Finally, resort-
ing to SLMs, holographic optical tweezers (c) reshape a single beam to create multiple

traps.
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More recently, seeking additional tunability of the system, wavefront shaping tech-

niques started to be explored for spatial and time manipulation of the trapping potential

at the focal plane, see figure 1.1.c. This configuration, commonly called Holographic Opti-

cal Tweezers (HOT), involves digital holography techniques achieved by using an active

optical element such as a Spatial Light Modulator (SLM), a tunable liquid crystal dis-

play that can perform spatial phase modulation. Using specifically computed holograms,

multiple traps[21], and dynamical beam steering[22] are two simple examples of the wide

range of patterns and applications that can be easily achieved with holographic optical

tweezers.

From another perspective, and seeking a more versatile, flexible and on-site solution,

fiber optical tweezers (FOT) have recently emerged as surrogates for trapping, while si-

multaneously being simpler and cheaper[23]. In this configuration, optical forces are in-

duced similarly to the traditional OT setup with the caveat of achieving lower NA. Conse-

quently, gradient forces are generally weaker and trapping becomes harder to realise[23,

24]. To ease this disadvantage, dual counter-propagating fibers configuration such as in

figure 1.1.d can be implemented. Alternatively, improved FOT trapping solutions takes

advantage of several techniques even allowing trapping with single fiber, see figure 1.1.e.

For example, by modifying the fiber tip to form a lens[25] such as tapered fibers, coated

or etched tips[26, 27] and modifying the fiber such as multi-mode fibers in holographic

optical tweezers configurations[28]

1.2 A brief overview of the applications of Optical Tweezers

These days, OT finds applications in a multitude of areas, from fundamental to applied

studies and from research to technological areas. Indeed, since the turning of the century,

hundreds of manuscripts have been published each year, making a complete description

of the state-of-the-art impracticable for the present document. For this reason, we will re-

strict to a simplified overview of biological applications, further focusing the scope on the

identification and classification of the trapped specimens, which aligns with the purpose

of the dissertation. Nevertheless, some good reviews can be found in the literature for

other subjects, from which we highlight the following references: cold atoms[29]; quan-

tum physics[30]; chemistry[31].

For biological applications, the first applications report back to the observations of

tobacco mosaic virus, Escherichia coli bacteria and single-cell trapping[6, 32]. Featuring
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no damage above a wavelength threshold and below reasonable beam power[33], optical

tweezers emerged then as a revolutionary tool for in vitro and in vivo studies[34, 35] in

paths that we can divide into two distinct directions.

On one hand, OT provides a remarkable opportunity for manipulating and playing

with biological specimens at the mesoscopic scale. For example, organelle trapping and

dragging demonstrate the possibility for micromanipulation within cells[36]. Addition-

ally, random intensity speckles distribute a field of shallow potential wells trapping par-

ticles based on their physical properties thus functioning as optical ”sieves”[37].

On the other hand, the forces exerted by optical traps conveniently match those of and

within biomolecules making OT an exciting opportunity for probing the physical proper-

ties of trapped particles. For example, particle-dependent optical trap stiffness, viscosity

and diffusion coefficients are measured using a series of methods not only helpful in cal-

ibrating an OT setup but also to characterize particles and forces[38, 39]. In different

methodologies, transportation by OT was used in the study of extracellular vesicles in-

teraction with cells[40] while the exertion of force permits the study of DNA coiling [41],

thermal fluctuations and hydrodynamics of polymers[42], probing cellular[43] and bacte-

rial adhesion[44], just to name a few. Additionally, DNA unravelling around the histone

octamer is seen in the quantization of force with elongation when stretching and measur-

ing force [45].

Furthermore, more powerful analysis tools are obtained when combining optical tweez-

ers with other techniques. For example, combining single-molecule fluorescence with op-

tical tweezers allows molecule structure probing such as DNA unbinding[46, 47]. Another

powerful combination joins OT and Raman spectroscopy information where the finger-

print characteristic of a spectrum is used to attain accurate particle characterization used

for example in the differentiation between live and dead yeast cells[48].

A particularly interesting case study for technological purposes is the identification

and classification of trapped particles in the OT, which can be used for optical sorting

methodologies. Debuting in 1987, optical sorters used either a single or counter-propagating

weakly focused beam setup and an additional probe beam[49]. This setup was capable of

sorting particles based on their optical properties by measuring the scattered probe power

at 90◦ and using the optical manipulator to deflect them over distances of millimeters. The

advent of this technique began a search for the development of active and passive sorting

mechanisms using optical forces to improve upon the simple mechanism implemented.



6 TOWARDS REALTIME CLASSIFICATION OF OPTICALLY TRAPPED PARTICLES

For example, replacing the intensity probe with an active fluorescence-based identifica-

tion was observed to achieve fast throughput and high purity sorting[50]. Alternatively,

passive particle sorting using optical lattices allows sorting based on size and refractive

index with thresholds controlled by particle optical polarizability[51]. Although these

methods are successful at sorting particles they present a few caveats in either scalability,

time duration or the usage of markers.

In specific, focusing on active classification within the context of optical tweezers, we

identify three central methodologies. The first corresponds to an image-based feature

search, for example using a camera or speckle analysis of fluorescing or plain cells[52].

Image information treatment uses image processing tools and deep learning algorithms,

such as convolution neural networks, which can feature a high throughput during the

classification process. Still, the methodology features significant drawbacks, such as the

low image quality and the diffraction limit for particles below the micrometer size.

A second technique explores the use of OT integrated with additional Raman spec-

troscopy information. Its core advantage resides in acquiring a fingerprint signal that

can be related to the composition signature. In particular, the Raman spectrum can be

analysed with principal component analysis(PCA)[53] and other models[54] to deploy ef-

fective particle identifiers. For example, Raman spectra for multi-species classification of

single red blood cells were recently reported in the literature[55]. The caveats of using

Raman spectroscopy account for the need for an additional excitation laser and longer

integration times (up to a few seconds) to improve the signal-to-noise ratio (SNR).

The last methodology mentioned focuses on using the scattered signal to extract in-

put information for a set of machine learning algorithms[15, 56]. The underlying concept

is that this signal contains information regarding trapped Brownian dynamics and thus

relates to the physical and optical properties of the specimen. This methodology, exten-

sively explored recently by the group of the Center for Applied Photonics at INESC TEC

and its spin-off ILOF[56], has the advantage of requiring only cheap and commercially

available components and being able to be implemented either in inverted microscope OT

or in the more versatile FOT[16]. Still, one of the caveats of the methodology is the rela-

tively high acquisition times, reported to be around 2 seconds for the ILOF technology[56],

recently reduced to 500 milliseconds in a recent work[15]. Furthermore, they usually re-

quire some pre-processing and feature extraction, which adds significant processing time.
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These facts limit the deployment of OT-based ultra-fast classifier solutions, which consti-

tutes the challenge for this dissertation.

1.3 From fast to real-time processing

In the modern age of Big Data, the deep learning (DL) computing paradigm is the state-of-

the-art of machine learning, drawing particular emphasis on CNN framework[57]. Gener-

ally, ML algorithms require pre-processing and feature extraction to perform a task which

implies longer computing routines. In contrast, CNNs require little pre-processing, and

feature extraction is intrinsic to the model by optimization of the convolution filter (or

kernels) through automated learning, whereas in conventional algorithms these filters are

hand-engineered. This independence from prior knowledge and human intervention in

feature extraction is a major advantage. Furthermore, when this procedure is made par-

allel and takes advantage of graphic processor units (GPU) for image processing, CNNs

achieve extraordinarily fast performances, which we will be exploring in later chapters.

Nevertheless, CNNs require batches of information stored in the machine thus requiring

long acquisition times and slow memory systems.

True real-time execution of a computational task occurs when input data is fed con-

tinuously to an algorithm thus circumventing pre-processing and feature extraction steps

and resulting in almost immediate answers. Evidently, advanced algorithms must be im-

plemented for a task to be performed efficiently and equipped with internal but fading

memory[58]. The requirements set for real-time data analysis make it so machine learning

algorithms such as CNNs are not suitable to perform this kind of task. Indeed, as they

process data in batches, it would require larger memory systems and longer times for

data processing. As an alternative neuromorphic architecture, recurrent neural networks

(RNN) make use of non-linear and mutable layers whose internal dynamics are governed

by input information plus feedback loops, being thus armed with internal memory sub

intended in the evolution of the layer states. The caveat of this architecture is the training

process of the hidden layer weights, which is often computationally costly and hard to

converge[59].

To avoid these difficulties, a new framework within RNN called Reservoir Computing

(RC) has recently emerged inspired by biological and analogic data processing[60]. In

short, the concept is to replace the hidden layer of RNN with a random, sparse, non-

linear, and dynamical reservoir that bypasses the heavy task of training the hidden layer.
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Through the nonlinear expansion of the input into a higher dimensional space of states, a

nonlinear task can be turned into a linear one without applying pre-processing or feature

extraction algorithms[61], thus setting the field for real-time processing as long as the

deployed RC algorithm is sufficiently fast.

Additionally, as it requires only a nonlinear reservoir, RC is a suitable framework to

bridge from software to actual hardware solutions, spanning across a plethora of support-

ing physical systems[62]. Of particular interest is the case of optical implementations, that

promise fast and parallel computation exploring the native properties of light itself[63].

For example, a simple system such as a Mach Zehnder interferometer intensity modula-

tion together with a delay in a fiber spool can work as a many-node reservoir that is capa-

ble of solving digit recognition and non-linear equalization problems[64]. Additionally,

using semiconductor optical amplifiers the upper part of the commonly used hyperbolic

tangent is approximated resulting in the typically used RC models[65].

1.4 Thesis Outline

The major goal of this dissertation is to explore state-of-the-art algorithms and technolog-

ical solutions for faster OT-based classification solutions. For that, and within the context

described in the last sections, we will first explore the deployment of algorithms based on

CNNs, before trying to move towards real-time processing using RC paradigm.

The structure of this dissertation divides into six chapters as follows. First, in chapter

1 we provide a contextual introduction to historical notes on OT and an overview of its

applications for biological purposes, before focusing on the challenges of fast and real-

time classification of trapped particles, setting the motivation for the project.

Then, in chapter 2, we introduce the basic concepts of OT, providing a theoretical

framework for the description of the 3D optical trap and building the necessary connec-

tions to understand how optical harmonic traps are shaped. We end this chapter by mak-

ing the connection to the experimental work, describing the OT setup and experimental

procedure used in the data acquisition in this work.

From experimental setup to developing a digital twin, in chapter 3 we study the

Langevin representation of Brownian motion in a harmonic trap together with the over-

damped approximation and a brief overview of its statistics and limitations. Lastly, we

describe the implementation of an integrator of the overdamped Langevin equation and

provide a simple test to verify convergence.
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The first interaction with machine learning occurs in chapter 4 with an introduction

to basic concepts required to understand commonly implemented test procedures and

interpretation of final results. Then, we present the preparation of the input data to a

Convolution Neural Network for the classification of trapped particles. To conclude the

chapter we present the results, on experimental or synthetic data, where particles are

identified with basis on their size or composition.

The journey toward the real-time classification of optically trapped particles starts in

chapter 5 with the study of recurrent neural networks, particularly the echo state network

(ESN) framework. The implementation of an ESN algorithm is discussed and constructed

in python being tested for the classification of optically trapped particles in the concluding

section.

Finally, in chapter 6, we present the concluding remarks and prospective work, mainly

focused on the expedition towards real-time optical computing for optical tweezers anal-

ysis.

1.5 Original Contributions

Along with the completed work listed below, an article is currently being prepared for

submission.

Conference Peer-Reviewed Proceedings:

• V. Rocha, J. Oliveira, A. Guerreiro, P. A. S Jorge, and N. A. Silva, ”Intelligent Optical

Tweezers with deep neural network classifiers”, EOSAM Conference Proceedings,

2022.

• J. Oliveira, V. Rocha, A. Guerreiro, P. A. S Jorge, and N. A. Silva, ”Automation strate-

gies and machine learning algorithms towards real-time identification of optically

trapped particles”, EOSAM Conference Proceedings, 2022.

• J. Teixeira, V. Rocha, J. Oliveira, P. A. S. Jorge, and N. A. Silva, ”Towards real-time

identification of trapped particles with UMAP-based classifiers”, AOP Conference

Proceedings, 2022.

• F. Coutinho, J. Teixeira, V. Rocha, J. Oliveira, P. A. S. Jorge, and N. A. Silva, ”Au-

tonomous Optical Tweezers: from automatic trapping to single particle analysis”,

AOP Conference Proceedings, 2022.
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Oral Presentations

• J. Oliveira, V. Rocha, N. A. Silva, P. A. S. Jorge, ”Optical Tweezers development as a

tool for biomedical diagnosis”, Investigação Jovem da U. Porto, 2022.

• J. Oliveira, V. Rocha, N. A. Silva, P. A. S. Jorge, ”Optical Tweezers development as a

tool for biomedical diagnosis”, Fı́sica 2022.

• J. Oliveira, V. Rocha, N. A. Silva, P. A. S. Jorge, ”Automation strategies and machine

learning algorithms towards real-time identification of optically trapped particles”,

EOSAM, 2022.

Poster Presentations:

• V. Rocha, J. Oliveira, A. Guerreiro, P. A. S. Jorge, and N. A. Silva, ”Deep-learning

approach to classification of optically trapped particles”, Investigação Jovem da U.

Porto, 2022.

• V. Rocha, J. Oliveira, A. Guerreiro, P. A. S. Jorge, and N. A. Silva, ”Recurrent Neural

Network classification of optically trapped particles”, Fı́sica, 2022.

• V. Rocha, J. Oliveira, A. Guerreiro, P. A. S. Jorge, and N. A. Silva, ”Convolution

Neural Network classification of optically trapped particles”, EOSAM, 2022.

• J. Teixeira, V. Rocha, J. Oliveira, P. A. S. Jorge, and N. A. Silva, ”Towards real-time

identification of trapped particles with UMAP-based classifiers”, AOP, 2022.

• F. Coutinho, J. Teixeira, V. Rocha, J. Oliveira, P. A. S. Jorge, and N. A. Silva, ”Au-

tonomous Optical Tweezers: from automatic trapping to single particle analysis”,

AOP, 2022.

Outside of the scope of this work:

Peer-reviewed manuscripts

• T. D. Ferreira, V. Rocha, D. Silva, A. Guerreiro, N. A. Silva, ”Towards the experi-

mental observation of turbulent regimes and the associated energy cascades with

paraxial fluids of light”, September 2022, New Journal of Physics.

Oral Presentations
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• T. D. Ferreira, N. A. Silva, D. Silva, V. Rocha, C. C. Rosa, and A. Guerreiro. “Using

fluids of light in photorefractive media to create turbulent states”, FÍSICA 2022 – 23ª

Conferência Nacional de Fı́sica e 32º Encontro Ibérico para o Ensino da Fı́sica, Porto,

September, 2022.

• T. D. Ferreira, N. A. Silva, D. Silva, V. Rocha, C. C. Rosa, and A. Guerreiro. “Exper-

imental turbulent states with paraxial fluids of light in photorefractive media”, V

International Conference on Applications of Optics and Photonics, Guimarães, July,

2022.





Chapter 2

Fundamentals of Optical Trapping:

from theory to the laboratory

This chapter is dedicated to a brief overview of the working principles of OT and of the

experimental setup used throughout this work. Starting by understanding OT, we review

the two common regimes typically used in the literature for the introduction of physical

phenomena. Although these regimes do not provide a complete description of OT, they

still give a good picture of the principles behind the trapping of mesoscopic scale particles.

Supported by the fundamental concepts of OT, we then discuss the trapping conditions

and introduce the simplified harmonic potential approximation that accurately describes

single particle manipulation using a Gaussian-shaped beam profile. Finally, we present

the experimental OT setup used throughout this thesis, as well as discuss the methodolo-

gies and acquisition instruments for the measurement of the position time series.

2.1 Balancing Optical Forces

Optical forces that sustain the trapping mechanism result from the transfer of momentum

from the optical trapping beam to the particle.Yet, this mechanical process has distinct

physical roots depending on the size of the particle, which is an essential parameter to por-

tray an accurate description of the light-matter interaction. The first regime explains the

forces when the particle size (a) is much smaller than the wavelength of light (λ, a� λ)

and the particle is treated as a point-like electric dipole[66]. In the opposite condition

(a� λ) the regime can be treated using geometric optics[67]. Finally, both models fail

to describe the trapping forces for a third intermediate regime (a ≈ λ), thus requiring a

13
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full electromagnetic description[29]. For the sake of simplicity, we will proceed by fo-

cusing our analysis only on the first two regimes, discussing qualitatively the origin of

the optical forces and the theoretical framework that may come into play. Furthermore,

we simplify the following models by assuming spherical particles. The analysis becomes

complex when deformation is added to the particles, meaning that computational simu-

lations become key in studying its effects [68, 69].

2.1.1 Rayleigh approximation

As stated before, the first regime considers particles with sizes much smaller than the

wavelength of light (a� λ). In this condition, the particle can be approximated by a

dipole (closely related to the so called dipole approximation in quantum optics) induced

by the incident electric field. The optical forces can then be easily described by the inter-

action of this dipole with the electric field.

On one hand, the absorption and re-emission of photons and the associated momen-

tum conservation result in an effective scattering force along the optical propagation di-

rection, which is proportional to the intensity incident on the cross section area σ as

Fscat =
nm

c
σI0, (2.1)

where nm is the refractive index of the medium and I0 is the intensity of the incident

light. It can be shown[29, 66] that for spherical particles the effective cross-section can be

modeled as

σ =
128π5a6

3λ4

(
m2 − 1
m2 + 2

)2

, (2.2)

where m is the ratio between the particle refractive index and that of the optical medium.

On the other hand, a second force component called gradient force arises from the

dipole moment interaction with the inhomogeneous electric field, being given by

Fgrad =
2πα

cn2
m
∇I0, (2.3)

where

α = n2
ma3

(
m2 − 1
m2 + 2

)
(2.4)

is the particle Clausius-Mossotti polarizability [70]. The gradient force is thus propor-

tional to the intensity gradient. From the Clausius-Mossotti relation, the polarizability

can either take negative or positive values depending on the ratio m, making the force
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attractive or repulsive in relation to the higher intensity spots, e.g. the beam focal point.

Indeed, if the particle refractive index is superior to that of the medium we have posi-

tive polarizability and therefore a gradient force attracting the particle towards the beam

focus; conversely, for particle refractive index inferior to that of the medium, we have a

repulsive force.

2.1.2 Ray optics regime

For larger particles, the electric dipole approximation breaks and one should pursue a dis-

tinct theoretical framework to understand the physical concepts underlying the trapping

phenomena. In particular, when the particle is significantly larger than the wavelength of

light, it can be explained using a ray optics formalism.

In the geometric optics (GO) regime, the trapping beam can be visualized as a collec-

tion of rays composed of a stream of momentum-carrying photons[71]. By considering

a symmetrical beam, an efficient picture is described by opposing pairs of rays resulting

in trapping along the axis. Additionally, from the spherical particle assumption, the inci-

dent rays and subsequent reflections and refractions can be analyzed over a single plane,

as depicted in figure 2.1.

The optical forces arise from the transfer of momentum between the trapping beam

and particle resulting from the change in the wavevector magnitude and direction upon

reflection or refraction. Along the trajectory of a ray, many reflections and refractions oc-

cur that become progressively less relevant[71], but we can limit the description to the

first reflection and refraction as contributions from subsequent ones are described analo-

gously. One way to calculate the momentum carried by a single ray is to think of it as a

stream of photons each carrying momentum

p = ni
hν

c
, (2.5)

where h is Planck’s constant, ν the frequency of the photons, ni the refractive index of the

medium and c the speed of light. In total, a ray’s total momentum is given by the sum of

contributions from the total number of photons N as

P = Np = Nni
hν

c
. (2.6)

For a single ray, the force can thus be computed as the contribution of the three terms [71]

as
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Fray =
niPi

c
r̂i −

niPr

c
r̂r −

ntPt

c
r̂t, (2.7)

where P is the power of the ray and the indexes i, r and t identify the incident, reflected

and transmitted light, respectively.

In the following qualitative analysis, we elucidate three trapping situations illustrated

in figure 2.1. In general, when a particle’s surface deflects a ray, its momentum changes in

both direction and magnitude, with a balance in momentum occurring as a result of force

applied to the particle. With this in mind, in the first case (a) the trapped particle is dislo-

cated along the axis below the focal point where reflection generates the scattering force

(Fscat, blue arrows) pushing the particle away from the focal point while refraction induces

a gradient force (Fgrad, orange arrows) restoring the particle towards the focal point. Case

(b) describes the complementary situation of a particle above the focal point where both

scattering and gradient force contribute to restoring the particle to the equilibrium posi-

tion. The last case (c) depicts the off-axis situation where the scattering force pushes the

particle away from the focal points while the gradient force restores the particle to it.

The previously discussed examples all share the gradient force pulling the particle

towards the focus while scattering force pushes it away. Hence, the gradient force must

counterbalance the scattering force for 3D optical trapping to be effective. The usual des-

ignation of a tightly focused single beam trap results from the fact that this is achieved by

ray angles steeper toward the center such as those obtained by tightly focusing the beam.

FIGURE 2.1: Illustration of the ray-induced forces on the trapped particle for three dis-
tinct situations: (a) below the focus, (b) above the focus and (c) dislocated along the

transversal plane.
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2.1.3 An effective model for a single-beam gaussian optical trap

While these two regimes are described by totally distinct phenomenology, we note that

both descriptions result in two major optical forces of similar effect. On the one hand,

we have the scattering force that pushes the particle along the direction of the beam, thus

opposing optical trapping needing to be counter-balanced. On the other, the gradient

force creates a stable equilibrium point in the highest intensity regions, i.e. focus. Thus,

the gradient force must exceed the scattering force for an equilibrium to be created, a

condition that strongly depends on the particle size and medium but that is typically

achieved only when using highly focused beams. Furthermore, due to the scattering force

pushing the particle downwards (along the beam direction), the trap equilibrium position

is slightly below the focal point.

To conclude the theoretical discussion of optical trapping we must relate the beams

profile with the optical force felt by the trapped particle. Assuming a single Gaussian-

shaped beam profile and small displacements around the equilibrium, the trapping po-

tential can be approximated by a harmonic trap and the force given by the Hooke law

[29, 71]

F = −k� r, (2.8)

where k is the stiffness vector and r the position relative to the equilibrium point. This

model strongly simplifies the analysis and provides a suitable and well-established math-

ematical background to treat optically trapped particles.

2.2 Experimental Setup

So far we have established a theoretical framework and some of the prerequisites for a

successful single beam optical trapping. In this section, we bridge theory to the laboratory

and present our experimental setup.

The setup used for the experimental work on this dissertation is adapted from the

commercial Optical Tweezers (OTKB - Modular Optical Tweezers System, Thorlabs, USA),

shown in figure 2.2 and schematically depicted in figure 2.3.

A continuous-wave (CW) 976nm fiber laser diode (Lumentum s27-7602-460) is used

for trapping single particles with power emission at 68mW and coupled to a 980nm single

mode optical fiber for spatial mode filtering purposes. The choice of the long wavelength

seeks to minimize the necessary power which is fundamental for non-damaging trapping
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FIGURE 2.2: Inverted microscope objective configuration of optical tweezers used in the
experimental component of this work.

procedures. After collimating the beam at the exit of the fiber, a Galilean expander - com-

posed of achromatic doublets of −50mm and 150mm focal lengths - is used to expand the

beam and completely fill the aperture of the inverted microscope objective, thus maximiz-

ing the intensity gradient and inducing stronger gradient forces. For focusing purposes,

we used a high numerical aperture (CFI E Plan Achromat 100× Oil) which both matches

the necessary gradient conditions for particles in the range of a few micrometers, as well

as provides better image resolutions. To cope with such high numerical apertures and

minimize refraction and reflection of light in-between surfaces, an immersion oil with re-

fractive index ne = 1.518 at 23◦C (Olympus IMMIOL - F30CC) is also used. The focus

is then used to trap the particles in the sample, which is mounted in a 3-axis positioning

stage for scanning the sample as needed.

In this type of setup, called inverted microscope, the objective has both the function

of focusing the beam and imaging the particle to a CMOS camera illuminated by a LED.
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Thus, an additional imaging arm features a camera (DCC1240, Thorlabs) that captures

colour images with a 200mm focal length achromatic lens to image the sample plane at

1280 × 1024 resolution. To avoid saturation from backscattered light, a shortpass filter

with a cut-off wavelength at 750nm is placed before reaching the camera sensor.

Finally and above the sample, we find an arm with a 10× air condenser lens (E Plan

Achromat 10X, Nikon) that collects the beam that is then directed and focused on the

photon quadrant detector. For that, we use a neutral density filter OD= 0.6 to avoid sat-

uration and a 40mm lens to focus the beam in the sensor. The photon quadrant detector

(PDQ80A, Thorlabs) operates for a wavelength range between 400− 1050nm and is capa-

ble of 150kHz bandwidth. For the purposes of this work, it is set to a sampling rate of

10kHz, sufficient to track the particle motion while maximizing the signal-to-noise ratio.

FIGURE 2.3: Schematics of the inverted microscope configuration featuring a photon
quadrant photodetector for the acquisition of the forward-scattered signal.

2.2.1 Tracking the position of the particle

Tracking the particle motion precisely is an essential requirement for particle characteri-

zation in the context of OT. In the particular case of our setup, we explore the concept of

laser-based position detection. Summarizing, while the inverted microscope focuses the

beam in the plane of the particle, the condenser collects the forward scattered light that,

imaged in the Fourier space using the 40mm lens in the back focal plane of the condenser,

can provide information of the position using the quadrant photodetector.

The photon quadrant detector is a semiconductor silicon photodiode divided into four

sections (quadrants), see figure 2.4. By imaging onto the quadrant photodetector the
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transmitted beam from the trapped particle, a change in the particle position induces a

beam deflection measurable as a differential of the intensities of each quadrant. From

each quadrant intensity, the position of the beam relative to a reference can be obtained

via the formulas

X =
(Q2 + Q3)− (Q1 + Q4)

Q1 + Q2 + Q3 + Q4

Y =
(Q1 + Q2)− (Q3 + Q4)

Q1 + Q2 + Q3 + Q4
,

(2.9)

where Q1, Q2, Q3 and Q4 are the quadrant intensities. The denominator is the total in-

tensity, usually denominated as SUM, which accounts for intensity fluctuations. From the

experimental perspective, the reference point is obtained by setting the differences to zero

when the laser crosses the system without any obstacles, i.e. the beam is centered.

FIGURE 2.4: Illustration of the quadrant photodetector where deflections of the beam
induced by particle displacements are detected by the quadrants.

Assuming a linear relation between the beam position in the QPD and the particle

position, the absolute position can also be acquired using a conversion factor. The conver-

sion factor depends on the beam parameters and for our setup it was previously obtained

in reference [72].

To conclude this section a short comment must be made on the relation between the

SUM values and longitudinal direction (z). Technically, the longitudinal direction is en-

coded in the SUM values. Yet, this dependence is non-linear and hard to characterize. Due

to these reasons, throughout this work, we will not be making use of the SUM value. Nev-

ertheless, the methodologies deployed will be general enough to include this additional

source in the future, provided solid theoretical and experimental knowledge is developed

beforehand.
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2.2.2 Experimental procedure

To ensure good and reproducible results, and avoid unwanted experimental bias in the

data, we devised a protocol for data acquisition.

The implemented protocol requires a micro-pipette 1− 10µL (e.g. P10 model, GILSON)

and a pipette 100− 1000µL (e.g. P1000 model, GILSON), plus distilled water and a glass

beaker. For each experiment (i.e. for each class of particles) the following set of con-

sumables are necessary: pipette tips (compatible with each pipette), an eppendorf, and a

plastic pipette. Sample preparation for each type of particle was made with an eppendorf

for each class to avoid mixing of particles and allow us to keep track of the particle labels.

To prepare each sample, we began by placing enough distilled water in the glass

beaker to later withdraw 2mL using a pipette with an unused tip. Then, we place the

pipette content in the eppendorf where the sample is to be prepared, and using the smaller

pipette with a new tip we withdraw from the container 1µL of particle in preparation. The

tip of the pipette is submerged in distilled water to dilute the particles. Then, we clean the

pipette from any remaining particles by withdrawing some solution and placing it back

in the medium. The solution comes to a concentration of 0.05%. This small concentra-

tion is used to avoid particle interaction during data acquisition. Finally, we remove the

pipette and close the eppendorf. The tips from the pipettes shall be discarded responsibly

to avoid cross-contamination issues.

For the acquisition process, a small sample withdrawn from the eppendorf using a

plastic pipette (three drops are used) is placed in the sample holder (figure 2.2). A drop

of the aforementioned oil is placed on the microscope objective and the sample holder is

then placed on the positioning stage and lowered until the oil fills the gap between the

objective and the sample holder. In order to avoid measuring the same particle twice -

thus creating a bias in the experimental data set - we measure a single particle from each

sample withdrawn from the eppendorf. After trapping, each acquisition of the position

time series lasts around 20 seconds, but we shall stress that the low concentration of the

sample makes it hard to find a single particle, which means that a single measurement

process is very slow and can take between 5− 15 minutes for a single particle. Finally, we

shall also note that we must randomly iterate between classes of particles and samples

throughout the whole experimental period to assure that changes in experimental con-

ditions (e.g. temperature variation throughout a day) do not introduce unwanted data

bias.
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2.3 Concluding remarks

In this chapter, we reviewed the theoretical background to support the interpretation of

the optical trapping phenomena using a single tightly focused beam. Furthermore, by

taking into consideration the relation of optical gradient force with the intensity gradient

in the beam transverse plane, we introduced an effective harmonic model that is valid for

small displacement and gaussian-shaped traps, the typical experimental conditions that

we explore in this dissertation and feature in our experimental setup.

Then, we presented the optical tweezers setup we used for the trapping and signal

acquisition procedures. We explained the working principles and the mechanism for re-

lating the information acquired from the forward scattered beam using a quadrant pho-

todetector with the position of the particle. Also, we discussed the reasons for which

we will discard the longitudinal position information from further analysis, arguing that

the conversion between intensity measurement and position is complex to model and

strongly dependent on the setup conditions, introducing possibly unreliable information

that can be detrimental to our purposes.

To conclude the chapter, we described an experimental procedure that we have de-

signed and used for creating the experimental datasets, making the procedure repro-

ducible and less susceptible to unwanted bias from variable experimental conditions. This

is also an important step to account for class representation as required by machine learn-

ing applications.



Chapter 3

Developing a digital twin

As we saw before, when a particle immersed in a medium is optically trapped, there

is a balance between two optical forces that can be translated into an effective harmonic

model for the single gaussian-shaped beam. However, there are still additional effects that

must be taken into account, in particular the viscosity of the medium and the stochastic

processes brought on by nearby particle collisions.

In this chapter, we introduce a mathematical model for this Brownian-like motion

by means of the overdamped Langevin stochastic differential equation, in an attempt to

develop a digital twin capable of simulating the acquired signal to validate our experi-

mental results and methodologies. We discuss some common techniques for the study of

such stochastic processes, including probability distribution and mean square displace-

ment. Based on these concepts, we present three common calibration methods of OT that

can allow the determination of the particle-dependent physical properties of the particle

to fine-tune our digital twin model to match the experimental results. To conclude, we

described the implementation of a simulator for the overdamped Langevin equation and

provide a simple test of the simulator to verify the convergence of the statistical properties

of the simulation with the theoretical predictions.

3.1 A Langevin model for the trapped particle

When immersed in a medium, the dynamics of an optically trapped particle result from

an interplay between stochastic Brownian motion, optically induced Hook-like forces and

viscous drag, see figure 3.1. This results in a random walk that can be described in terms

of a stochastic differential equation named the Langevin equation[71, 73, 74]. Taking the

23
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harmonic oscillator model from the previous chapter, the Langevin model reads

m
d2

dt2 r (t) + γ
d
dt

r (t) + k� r (t) = γ
√

2Dχ (t) , (3.1)

where m is the particle mass, γ is the viscosity, D is the diffusion coefficient and � repre-

sents the element-wise product. On the left side, we have the position-dependent quanti-

ties. The first term is the inertia of the particle, which is not present in the original Einstein

model for the Brownian motion. The inertia of the particle is particularly significant for

smaller time scales or heavier particles where the ballistic behaviour becomes relevant.

The second term is the dissipation emerging from the friction between the particle and

the surrounding fluid i.e. the viscosity. The last term on the left side is the trapping

Hook-like force induced by a Gaussian-shaped beam.

FIGURE 3.1: Illustration of an experimentally trapped random walk of a 3µm Polystyrene
particle resulting from an interplay between Brownian motion, light-induced forces and

viscous drag.

On the right-hand side, we have a stochastic vector term χ (t) that accounts for the

interactions between the particle and the surrounding fluid. One of the properties of this

term is that, as in the Einstein model, it allows to establish the diffusion coefficient. In

the Langevin equation, this is warranted by setting the stochastic term distribution as the

solution of the diffusion equation [75]. Thus, by including the factor
√

2D in equation
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3.1 we are implicitly saying that the term χ (t) has unity variance. Also, the white noise

nature of the stochastic term means that it must feature[71, 74, 76]

• 〈χ (t)〉 = 0, and

• 〈χ (t1)� χ (t2)〉 = δ (t1 − t2),

where the average is taken over many ensembles. In short, the first property states the

zero mean for the distribution, while the second implies zero correlation between two

values when evaluated at different times.

A common approximation that is used in OT is neglecting the inertial term, which is

usually smaller than the dissipation induced by viscous drag (τm = m/γ→ 0) and the

collisions term. By neglecting the inertial term the particle dynamics can be modelled by

the overdamped Langevin equation [71]

d
dt

r (t) +
k
γ
� r (t) =

√
2Dχ (t) , (3.2)

which is simpler to explore mathematically and easy to simulate computationally. Natu-

rally, by removing the inertial term this model accounts only for the diffusive behaviour

of the particle. Thus, we shall note that by not accounting for the inertia of the fluid

this model fails to accurately describe the particle dynamics for very small time scales or

larger particles[74, 77, 78]. Nevertheless, the time scales used in this work are sufficiently

large to consider this simplified inertia-less regime an accurate description of the trapped

Brownian-like motion.

3.2 Statistical properties and distributions

While the process is inherently stochastic, one can still access particle properties and dy-

namical parameters by studying the statistical quantities of the position time series. In-

deed, using the overdamped Langevin model, we can easily deduce a series of expres-

sions describing the relations between physical and statistical quantities. We are mainly

interested in the relations portraying the probability distributions, i.e. the distribution

moments.
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Starting with the position density distribution, thermalization of the trapped particle

with the neighbouring fluid constituents results in the well-known Boltzmann distribu-

tion where the energy is approximated by the optically-induced harmonic trap[39]

ρi =
ki

2πkBT

− 1
2

r2
i

kBT/ki
, (3.3)

where kB is the Boltzmann constant, T the temperature of the system and i indexes the

transversal direction
(
x, y
)
. Proof of this distribution is given in section 3.3 where in

figure 3.4 we show the match between the normal distribution and experimental time

series histograms.

From equation 3.3, we directly withdraw the variance as

〈
(

ri − req,i

)2
〉 = Dγ

ki
= Dτot,i , (3.4)

where the Stokes-Einstein relation, Dγ = kBT, was used to relate the thermal energy with

the physical properties of the particle and τot,i = γ/ki is the trap characteristic relaxation

time. A caveat of using this position information is that it may be susceptible to the

presence of long timescale drifts, for example, originating from residual fluid velocities

or convective currents.

One path to bypass this problem is to consider the subtraction of time-delayed posi-

tions, minimizing the long-term mean drift effects. This transformation leads us to what

is known as displacement, defined as

d (t) = r (t)− r (t− ∆t) , (3.5)

where ∆t is a short time interval between positions. As before, the statistical description

for the average displacement is also possible to derive by extending the position model.

The density distribution of the displacement, much like the position distribution, is a

zero-centered Gaussian with the only non-zero moment being the variance, see figure

3.2. The displacement variance is commonly denominated mean squared displacement

(MSD) and is defined as

MSDi (∆t) = 〈
[
ri (t + ∆t)− ri (t)

]2〉, (3.6)

where the mean is taken over an ensemble of random walks acquired in a time interval T

where T � τot. Using the formal solution to the overdamped Langevin equation 3.2[39,
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FIGURE 3.2: Displacement distribution of a 3µm PS particle.

73] as calculated in the appendix A, the MSD is given by

MSDi (∆t) = 2Dτot,i

(
1− e−

∆t
τot

)
. (3.7)

Compared with the position information, displacement representation of the proper-

ties of the particle comes altered by a non-linear transformation tuned by the time interval,

as seen in figure 3.3.

FIGURE 3.3: Dependence of the MSD on the time interval between positions. On the
left and right are located the MSD in the x and y directions, respectively. The points are
obtained from the experimental position time series of a 3µm Polystyrene bead, where
the MSD is computed by averaging the displacement with fixed time intervals between

positions. The points are then fitted to the equation 3.7 in the main text.
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3.3 Calibrating the model to the experimental world

Optical tweezers are capable of exerting very small forces of the order of picoNewtons

on trapped particles that can be determined using calibration methods. In this section,

we review three of the most common and easy calibration methods: potential analysis,

equipartition method and power spectral density (PSD). The first two methods make use

of the statistics of the particle while the third uses the frequency dynamics of diffusion[39].

As will be seen, the principles used in these methods restrict the physical quantities pos-

sible to be obtained using each technique. As an illustration for each of the three methods,

figure 3.4 comprises the principles used in each technique.

3.3.1 Potential Analysis Method

Starting with a statistical physics approach, the potential analysis or Boltzmann method

makes use of the position density distribution to estimate the optical force of the trap. This

restricts the method to measure properties of the trap e.g. trap stiffness k for the harmonic

potential case. In general, for a potential field U (r) the position density for a particle in

thermal equilibrium with the environment is given by the Boltzmann distribution

ρ (r) = ρ0e−
U(r)
kBT , (3.8)

where ρ0 the normalization constant, kB Boltzmann constant and T is the temperature. As

no shape of potential field is assumed beforehand, this model can be used for any trap

shape. Furthermore, inverting equation 3.8 allows estimation of the shape and strength

of the potential field resulting in

U (r) = −kbT ln

(
ρ (r)

ρ0

)
. (3.9)

Computationally, this method can be translated to an algorithm as follows:

1. Compute the histogram of each one of the M timeseries (length T) for a well-established

range of extreme values to standardize the R bins intervals. Calculate the normal-

ized histogram of the M timeseries ρm in this range;

2. Calculate the mean ρ (r) and variance ∆ρ (r)2 according to

ρ (r) =
1
M ∑

m
ρm (r) and ∆ρ (r)2 =

1
M− 1 ∑

m

[
ρm (r)− ρ (r)

]2 ; (3.10)
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3. Finally, estimate the physical parameters by fitting the density to equation 3.8. This

step requires defining the shape of the potential field which in our case is the har-

monic potential, allowing us to calculate the stiffness k and the equilibrium position

req. Alternatively, we can adjust the last step to use equation 3.9 instead.

3.3.2 Equipartition Method

The equipartition method is an extension of the potential analysis for the restrictive case

of an harmonic potential. Plugging the harmonic potential,

U (r) =
1
2

k ·
(

r− req

)2
, (3.11)

in equation 3.8 the position distribution given by Boltzmann distribution becomes

ρ (r) = ρ0e−
k(r−req)

2

2kbT . (3.12)

From this distribution, we immediately get the variance as

〈
(

ri − ri,eq

)2
〉 = kBT

ki
. (3.13)

Inverting this equation results in the relation

ki =
kbT

〈
(

ri − req,i

)2
〉

, (3.14)

which is used to obtain the stiffness of the trap from the variance of the position time

series. This method allows for a faster determination of the stiffness when compared to

the potential analysis as it does not require the fitting of a function. Yet, it does not work

for an arbitrary potential shape.

3.3.3 Power spectral density method

The third method we present can be derived directly from the Langevin equation. The

derivation of the PSD expression for the Langevin equation is presented in appendix B

followed by the overdamped approximation given as

PSDi
(

f
)
= 〈|ri

(
f
)
|〉2 =

1
2π2

D
f 2
c,i + f 2

(3.15)
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where ri
(

f
)

is the Fourier transform of the position time series, f is the frequency and

fc,i =
ki

2πγ is the corner frequency. The diffusion coefficient and optical trapping time are

estimated through a fitting of the experimental power spectrum.

FIGURE 3.4: Visual representation of the potential analysis and equipartition calibration
methods (left) making use of the position time series distributions and the PSD method
(right) representing both long-term drift and the short-term Brownian dynamical effects
which are separated by the corner frequency. The results originated from the experimen-

tal position time series of an optically trapped 3µm Polystyrene particle.

3.4 Implementing a digital twin

Supported by the physical model we have introduced in the last sections and its associ-

ated calibration procedures, we are now in conditions to describe the implementation of

a digital twin of our experimental setup. The final intent is to support the testing of the

classification methodologies we will later explore, as well as validate the experimental

results obtained.

3.4.1 Adimensional overdamped Langevin equation

To avoid numerical stiffness and convergence issues, converting the equation into dimen-

sionless units is a helpful and common approach in computational physics. Thus, we

begin the digital twin implementation by introducing some easy algebraic manipulations

on the overdamped Langevin equation.
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To nondimensionalize the Langevin equation we start by introducing time and posi-

tion transformations

r = rsr′; t = tst′ (3.16)

where r′ and t′ are our new adimensional variables. Replacing this in the Langevin equa-

tion, equation 3.1, results in

mrs

t2
s

d2r′

dt′2
+

γrs

ts

dr′

dt′
+ rsk� r′ =

γ
√

2D√
ts

χ
(
t′
)

, (3.17)

where we stress the fact that the stochastic term is inversely proportional to
√

t, thus

requiring the additional factor. Taking the overdamped approximation we get the adi-

mensional overdamped Langevin equation as

dr
dt

+ ts
k
γ
� r =

√
2D
√

ts

rs
χ (t) (3.18)

where we dropped the primes for the sake of simplicity. From equation 3.18 we take the

hint for the expression of the position scaling coefficient defining it as

rs =
√

2Dts, (3.19)

resulting in the expression
dr
dt

+ ts
k
γ
� r = χ (t) . (3.20)

In its turn, the time scale coefficient will act as a free parameter for defining a timescale,

taking into consideration also the order of magnitude of the stiffness.

To conclude, we must recall the existence of a non-linear transformation of experimen-

tal measurements in the longitudinal direction and the position values. The nonlinearity

of the transformation forbids a faithful description of the measurements in this direction.

Nevertheless, by simulating using adimensional units and considering only the position

in the transverse plane, the digital twin is still reliable as long as the overdamped model

is valid.

3.4.2 Numerical integration using a fourth-order Runge-Kutta

The numerical integration of the Langevin equation is performed using a standard fourth-

order Runge-Kutta (RK4). To implement it, we start by identifying the derivative of the



32 TOWARDS REALTIME CLASSIFICATION OF OPTICALLY TRAPPED PARTICLES

variable to be integrated as

f (r, t) = −ts
k
γ
� r + χ (t) . (3.21)

Using this function we calculate the RK4 coefficients dividing each integration step into

four contributions as

K1 = f(r, t)

K2 = f(r + ∆tK1/2, t + ∆t/2)

K3 = f(r + ∆tK2/2, t + ∆t/2)

K4 = f(r + ∆tK3, t + ∆t).

(3.22)

Before advancing, we must notice a key aspect of the calculation of the RK4 coefficients

involving the time-dependent stochastic term. Indeed, the stochastic term is defined at

each given time interval. Hence, to keep its characteristics when iterating in time (see

figure 3.5), the stochastic term value used in the calculation of simultaneous coefficients

must be made with the same stochastic value. Lastly, a simple and natural choice for

the distribution from which to draw these random values is the zero-centered normal

distribution with unity variance [71, 79].

FIGURE 3.5: Visual representation of the RK4 integration method where we call attention
to the evaluation of simultaneous coefficients using the same stochastic value.
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The numerical integration of the Langevin equation is then simply done by iterating

in time the algorithm

r (t + ∆t) = r (t) +
∆t
6

(K1 + 2K2 + 2K3 + K4) , (3.23)

where an initial position r (0) must be given beforehand.

To conclude the discussion, care must be taken when choosing the time step. As in

ordinary differential equations, a good rule of thumb is to choose a time step that is con-

siderably smaller than the smallest characteristic time in the equation. Yet, we should note

that the stochastic differential equations the stochastic term depends inversely in
√

∆t and

therefore smaller timescales must be avoided as the term diverges for ∆t→ 0 [79].

3.4.3 Code deployment and validation

For deploying our digital twin we implemented the RK4 integrator of the overdamped

Langevin equation in Python using the Numba package to increase the simulation per-

formance. The code was developed using a modular framework, which allows the user

at distinct levels of expertise to explore the simulation tool using the Jupyter notebook

workflow. A library with the necessary calibration functions and other auxiliary process-

ing and visualization tools was also created to ease the interpretation of the results.

To validate the model and the tool, we calibrated the digital model to match the parti-

cle properties determined from an experimental time series acquired for a 3µm polystyrene

particle using the PSD method to obtain the reference value, as presented in Table 3.1. In-

troducing these values in the simulator, we simulated 106 points with time steps of 10−4s

resulting in 100s time series. The multiple calibration models were then applied to calcu-

late the variance of the synthetic data time series, results presented in table 3.1 and figure

3.6. As can be concluded from the similarity between the data simulated and the reference

value, the code converges into a faithful simulation of optically trapped particles.

Axis kReference
kBT

(
10−4V

)
kPA
kBT

(
10−4V

)
kEP
kBT

(
10−4V

)
kPSD
kBT

(
10−4V

)
x 4.42± 0.01 4.13± 0.03 4.2± 0.1 4.662± 0.007
y 2.439± 0.005 2.31± 0.08 2.29± 0.08 2.525± 0.003

TABLE 3.1: A good convergence is obtained in the position variance between the refer-
ence value used in the simulations (first column) and the outputted by the implementa-
tion of the three calibration methods: potential analysis (second column), equipartition
methods (third column) and PSD (fourth column). The data is obtained by simulating a

3µm Polystyrene bead using the developed digital twin.



34 TOWARDS REALTIME CLASSIFICATION OF OPTICALLY TRAPPED PARTICLES

FIGURE 3.6: Application of the potential analysis (green), equipartition method (red)
and PSD (orange) to the digital twin simulated time series. We highlight the resemblance
between the expected values (blue) of the normal distribution obtained by the potential

analysis and equipartition method (left) and the PSD (right).

3.5 Concluding remarks

In this chapter, we modelled the dynamics of a trapped particle as arising from the in-

terplay between the optically induced forces, the stochastic Brownian motion, and the

viscous drag using a Langevin equation model. We investigated the model to relate the

statistical properties of the position and displacement with the dynamical properties of

the particle and medium, namely through the shape and variance of the distributions. We

have shown that position and displacement may complement each other information of

the system and then act as inputs to a machine learning algorithm.

In a second stage, we shown how to extract from the position time-series the physical

parameters that enter in the mathematical model, such as the stiffness, diffusion or relax-

ation time. From these so-called calibration methods, we presented three of the most com-

monly used in the OT community: potential analysis, equipartition method and power

spectral density.

Finally, using this model and calibration procedures, we described the implementation

of a digital twin for our experimental OT setup by the means of a numerical RK4 integra-

tor to solve in time the overdamped Langevin equation. We confirm the solver accuracy
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for mimicking the data acquired, establishing thus a valuable tool to help and validate

classification algorithms and methodologies as we will explore in the next sections.





Chapter 4

Convolution deep neural network

approach to classification of optically

trapped particles

As concluded from the previous chapter, optically trapped particles have their physical

properties encoded in the position and displacement time series, thus making these rich

sources of information to be fed to a machine learning algorithm for classification and

identification purposes. In this chapter, we will explore this fact and look at the possibility

of using Convolutional Neural Networks to classify the trapped specimen.

With this aim, the chapter begins with a general but brief introduction to a series of

concepts in training neural networks (NN), optimization and evaluation of models, and

how to visualize and interpret the test results with confusion matrices. Then, by focusing

on the specific case of the CNN, we proceed with a discussion of the convenient input

data for this machine learning model, describing the process of image creation from the

time series, together with the normalization and standardization procedures. Then, after

training a CNN, we run a series of tests on particle size and composition classification,

comparing with those obtained from the digital twin for validation purposes. We end the

chapter with a critical discussion of the results and possible improvements or extensions

of the methodology that are ready to be explored in future work.

37
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4.1 A brief note on machine learning and neural networks

In general terms, we can say that machine learning corresponds to a toolbox of com-

putational methods that automatize the process of building analytical models using data

analysis. To further refine the discussion, we can also identify three methodologies for the

process of training a machine learning algorithm: unsupervised learning, reinforcement

learning and supervised learning. The first method is able to perform density estimation,

clustering, and dimensionality reduction tasks without prior knowledge of the targets,

while reinforcement learning solves any task where decisions can be classified into two

classes. Lastly, for the most general purpose such as regression and classification tasks,

we commonly use supervised learning, taking both variable and output target labels for

the training process. In the present work, we are interested in the classification process

for identifying and grouping particles into labelled groups, see figure 4.1.

FIGURE 4.1: Illustration of machine learning classification between classes A (orange)
and B (blue) where a threshold (green) is developed during supervised training.

Within the supervised learning methodologies, neural networks assumed in the last

decade a prominent position in the many classes of machine learning algorithms for scien-

tific purposes. Spite being around for many years, these neuromorphic-inspired methods

benefited from the recent development of the GPU industry, making use of this special-

ized hardware to process large volumes of data and models of many degrees of freedom

in a timely manner. To understand its inner workings, one can take the example of the

single-layer neural network, mathematically represented by

youtput = f (W · X) , (4.1)
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where W is the hidden layer weight matrix, X is the input information and f is a non-

linear function named activation function. A layer is composed of a number of nodes,

each represented by a row of the weight matrix that intakes the information and projects

accordingly to the values of each node weights. The treatment of a single-layered neural

network is the same as deep neural networks, with the latter having added complexity

due to consecutively stacked layers.

The training of a neural network in supervised learning then consists of optimizing

the layer weights that minimize the loss function reporting the distance between out-

put and expected label. A common method to search for local and global minimums of

the loss function is to apply back-propagation techniques together with gradient descent

methods[80]. In short, this method back-propagates the loss value and derivatives that

indicate in which direction each weight must go in order to lower the loss function. Since

we will use this training method, it is important to mention that we can define a learn-

ing rate hyperparameter lr that controls the weight update magnitude. In figure 4.2 we

illustrate three cases to take into account when choosing lr. In the first case, the lr is too

high making the loss value jump over the minimum and can even move out of the well.

In the second case, the lr is too small, resulting in slow convergence to the minimum and

requiring more train time. Finally, a good value of lr is found resulting in both good and

fast convergence.

FIGURE 4.2: Gradient descent method for minimizing the loss function with (a) large lr
where algorithm diverges from the minimum, (b) small rate resulting in slow conver-

gence and (c) optimal value which results in good and fast convergence.

In classification problems where each example is restricted to belong to a single class,

the labels are encoded into a vector of probability distributions reflecting the likelihood

of an example belonging to a given class. In other words, the vectors representing labels

are zero except in the entry associated with the true class of the example where a one
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indicates the certainty of the class, see figure 4.3. In a neural network algorithm, the

classification outputs a vector of likelihoods representing the confidence that the example

belongs to each class. From these, we extract the predictions by taking the index with

the highest likelihood. Furthermore, this representation allows the use of the categorical

cross-entropy loss function, given by

L(ylabel, ypredicted) = −log

(
pt

∑i∈{classes} epi

)
(4.2)

where pi is the index i of the output vector of probabilities and pt is the probability of the

true label. In this function, only the probability of the expected class is used to evaluate

the loss function while the others are merely used for normalization. Furthermore, from

the monotonically decreasing loss function with the increasing of pt and in the limit case

of pt = 1 with L = 0 we have a function that penalizes small likelihoods for the expected

label while simultaneously overlooking the likelihoods associated with wrong classes.

FIGURE 4.3: One-hot encoding of the class labels used in the supervised training where a
ML algorithm learns to associate to each index an identification likelihood for the particle.

The last concept we want to introduce corresponds to the process of the interpretation

of the results, as well as the metric for its evaluation. In this work, we use the accuracy

condensed in confusion matrices to represent the results of each test performed. In short,

a confusion matrix has the expected label on one axis and the one predicted by the algo-

rithm on the other, see figure 4.4. The optimal case is when the confusion matrix has the

principal diagonal filled since any other filled square signifies confusion from the algo-

rithm. Lastly, to assess the overall accuracy of the model we divide the number of correct

predictions by the total number of examples.
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FIGURE 4.4: Confusion matrix scheme for the presentation of classification results where
in the diagonal we find the correctly predicted labels, all other being wrong predictions.

4.2 Deploying a CNN classifier for optically trapped particles

As said before, in the last few years deep neural networks have grown in popularity in

great part due to the use of GPUs as computing hardware. Nevertheless, being hardware

specialized for imaging processing, GPUs architecture is more suitable for algorithms that

exploit the use of images as input information, such is the case of the Convolutional Neu-

ral Network. In short, a CNN is a Deep Learning method that can take in an input im-

age, assign importance to various characteristics and objects in the image, and classify

them. In a CNN, the equivalent to the feature extraction process is performed by a set

of special convolution filters and pooling operations withdrawing long and short-range

patterns. Furthermore, comparatively speaking to other image classification algorithms,

CNNs employ a minimal amount of pre-processing, as the filters or kernels are optimized

through automatic learning.

To implement a CNN-based algorithm for the classification of particles we must con-

vert the time series data into image information. There are two main forms of encoding

a time series information in an image: encode it in a two dimensional matrix with the

dimensions given by the number of signal components times the acquisition time, or en-

coding in histograms where the image size is fixed by a given number of bins. The former

results in images growing with the integration time and longer execution times meaning
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slower classifications. The latter has the size controlled by the number of bins while main-

taining the statistical information at the cost of the time correlation information. In this

work, to minimize the execution time, we will be implementing histogram-based infor-

mation.

The image creation process consisted of the plotting of 2-dimensional histograms of

the transverse position or displacement time series with 2500 time steps of 10−4s resulting

in 250ms segments. In order to avoid automatic bin range detection based on time series

extreme points, we standardized the range of bins to a fixed length value. The position

histograms are taken from an interval between [−0.07, 0.07]V while displacement, typi-

cally showing smaller values, was limited between [−0.02, 0.02]V, see figure 4.5. Further-

more, we used a magnification of the images as a data augmentation technique adding

a window for position and displacement of [−0.02, 0.02]V and [−0.005, 0.005]V, respec-

tively. In the last step of data prepping, we normalized the images to the maximum pixel

value. The normalization avoids biasing set in the case of an image having a pixel value

that exceeds any other in the database.

FIGURE 4.5: Image creation scheme from OT trapping and time series acquisition (A) to
segmentation and histogram plotting (B).

From the previous chapter, we expect the density distributions to discern based on

the variance of the time series. Furthermore, while the variance is typically well estab-

lished for a given particle the distribution slightly changes with the presence of noise in

the frequency counting due to the particle dynamics. Since no two images will ever be ex-

actly the same the ML cannot simply memorize the input thus raising the generalization
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capabilities of the model.

4.3 Classification Results

To study the capabilities of CNN for optically trapped particle classification tasks, we will

use a fixed architecture as presented in figure 4.6 to perform a series of classification tests

consisting of classes of particles with various types and sizes. We have focused on two

distinct case studies, described in table 4.1: a first that consisted in classifying particles of

distinct materials and a second that consisted in identifying particles of distinct sizes.
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FIGURE 4.6: Implemented CNN architecture featuring, in order, a convolution layer,
max-pooling, feature flattening, a five-layered multilayer perceptron and finally a soft-

max to output a vector of class likelihoods.

The CNN model was deployed in Python 3.7.9 using Keras version 2.3.1 with Tensor-

Flow backend and running on a NVIDIA TITAN V. To compare the two types of informa-

tion we will be using position and displacement in separate tests. For the evaluation of

the model, we utilize k-fold cross-validation commonly used to estimate real-life perfor-

mance while simultaneously featuring a low bias in data splitting. In short, this method

segments the dataset into k folds and uses all but one dataset to train the weights while

the remainder evaluates the model, see figure 4.7. By testing the model in unforeseen

test samples and iterating both several times, the results highlight the capabilities of the

model generalization capabilities.
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FIGURE 4.7: Data iteration of a 5-fold cross-validation for ML model evaluation. By
iteration through distinct training and testing sets, this methods is used to predict the

effectiveness of a model generalization capabilities in real life.

Number of Particles Type Size

Case Study 1
10

Polysterene (PS)
3µm

Polymethyl methacrylate (PMMA)

10
PS

8µm
PMMA

Case Study 2
10 PS

3µm
4µm
8µm

10 PMMA
3µm
8µm

TABLE 4.1: Case studies used to test the CNN for classification of particles differing in
either size or type.

4.3.1 Experimental results

The experimental data for each particle in each case study corresponded to a total of 25s

time series with time steps of 10−4s, acquired by the quadrant photodetector at an ac-

quisition rate of 10kHz. These segments were then divided into smaller segments of 250

milliseconds, that were used to generate the images as described before.

Starting with case study 1, the results obtained for the type classification task are sum-

marized in figure 4.8. First, we can note that the results largely surpass the pure guess

performance even for a large dataset of segments (over 2000), which validates the use of

a CNN methodology for this classification task. Also, both position and displacement

histograms achieve satisfying results. Position-based achieve 80% accuracy for the 3µm

and 64% for the 8µm, improving to even better results with 88% and 81% when using

displacement information.

An overall improvement is observed when using displacement-based histograms rather
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FIGURE 4.8: Type classification results between experimental time series of PS and
PMMA particles show good results for the 3µm sized particles (top row) with 80% and
88% accuracies for position and displacement information, respectively. On the bottom
row, position time series are not very efficient with 64% while showing good results for

displacement with 81% accuracy.

than position. As previously studied, the position and displacement follow a zero mean

gaussian distribution with the variances given by equations 3.4 and 3.7. The distinct en-

coding of the physical properties of the particles by these equations results in a different

level of separability in the variances of the time series. As expected, the displacement

histograms are better classified than the position ones, which can be associated with the

lower susceptibility to experimental drifts and bias of this signal compared to the posi-

tion, as discussed in the previous chapter. Indeed, to provide evidence to support this

fact, we can analyze the distribution of the variances (thus associated with the transversal

size of the histograms) for the distinct types, here represented in figure 4.9. As seen, in

addition to smaller variances for each particle, the displacement features a higher degree

of separability of the regions for each type.

As for the size classification, i.e. case study 2, summarized in figure 4.10 particles of

PMMA can be correctly classified with accuracies around 88% for the position histograms,
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FIGURE 4.9: Position (left) and displacement (right) time series variances in the trans-
verse plane for 3µm (top row) and 8µm (bottom row) sized particles where a clustering
effect is showed when transitioning from implementing position information to displace-

ment (left to right).

and 99% for displacement-based histograms. In its turn, PS particles feature overall accu-

racies of 74% and 71%, with the lower performance being associated with the confusion

of the intermediate size 4µm, as interpreted from the confusion matrix.

4.3.2 Synthetic results

In order to validate the experiments and assist in the interpretation of the results, we

numerically simulated our experimental procedure, using the digital twin developed in

the previous chapter. The simulations are performed with the physical quantities (τot, D)

extracted directly from the experimental time series via the PSD method. The time series

generated consists of 2.5× 107 points with time steps of 10−6s, by striding 100 steps we

get a 25s position time series with time steps of 10−4s, which corresponds to the same

configuration as the experimental data.
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FIGURE 4.10: Size classification of experimental time series shows very good and even
excellent results for PMMA bead (top row) classification between 3µm and 8µm particles
with 88% for position and 99% accuracy using displacement time series. In comparison,
for PS particles, only satisfying results are obtained with 74% and 71% for position and

displacement, respectively.

As before, we first focus on the first case study 1, i.e. the classification between parti-

cles of distinct composition. The results presented in figure 4.11 show that using position-

based histograms the classification results obtained only a modest accuracy of 74% and

59% for 3µm and 8µm particles respectively. Nonetheless, as happens with the experi-

mental results, we observe improvements when using displacement information instead

of position with average accuracy improvements of 18% and 9% for the 3µm and 8µm

sized particles, respectively, which aligns with the observations obtained with the experi-

mental data.

For Case Study 2, we obtained the results that are summarized in figure 4.12. Firstly,

PMMA particles with a considerable size difference are easily distinguished at average

accuracies of 87% and 99%, thus showing again an improvement of 12% when using

displacement-based histograms. The second experiment for PS particles features an addi-

tional 4µm size, sitting in between the 3µm and 8µm. The results feature lower accuracy

of 72% for position information, but again with an improvement of 6% to 78% while using
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FIGURE 4.11: Type classification between simulated PS and PMMA particles showing
satisfactory and good results for 3µm sized particles (top row) with 74% and 88% accu-
racy for position and displacement information, respectively. Meanwhile, for 8µm beads
(bottom row) the results are not as efficient nevertheless showing satisfactory results with

59% and 75% accuracy for position and displacement, respectively.

displacement. Again the results obtained using the digital twin largely align with those

of the experimental results, validating our methodology.
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FIGURE 4.12: Size classification of simulated particles where very good and excellent
results are obtained for PMMA (top row) with 87% and 99% accuracy for position and
displacement, respectively. In comparison, only satisfying to good results are obtained
for PS beads (bottom row) with 72% and 78% accuracy using position and displacement.

4.4 Concluding remarks

In this chapter, we described our efforts to deploy a CNN-based classifier for optically

trapped particles based on the forward scattered signal. For that, we first reviewed some

introductory concepts of NN, before discussing the process of transforming the acquired

time series into an image in the form of a histogram, thus acting as the input information

to the CNN model.

We then focused our attention on two distinct case studies, evaluating a CNN with

fixed architecture on the classification task of optically trapped particles based on either

size or composition. For both cases, it features satisfying results using position-based

information that is improved using displacement-based histograms, which we found to

be associated with a higher separability of the mean squared displacement comparatively

with the position variance.
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On one hand, these results highlight not only the capability of CNNs for the classifica-

tion of optically trapped particles but also the possibility for the application of displace-

ment as a novel source of information to be used in classification routines. For example,

using speckle patterned ”sieves”[37] together with CNN of the position and displacement

information has the potential to achieve higher classification results without the require-

ment for longer integration times.

On the other hand, compared to previous works, the implemented methodology works

with smaller time intervals (250 milliseconds versus 500 milliseconds of reference [15]

and 2 seconds in [56]), thus allowing to perform faster classifications. Furthermore, being

based on highly optimized libraries for CNNs, the computation of the prediction is almost

real-time (a few milliseconds), which means that it can deliver faster classification rates

as it bypasses the use of time-consuming processes for feature extraction.

Finally, we also draw attention to the usage of the digital twin, which to our best

knowledge was never exploited in the literature for these purposes. This innovative ap-

proach may allow us to understand how the time interval between positions, bin number,

and time length of each time series affects the results, thus playing an important role in

the study of optimizations and limitations of this technique.



Chapter 5

Towards real-time particle

classification with Reservoir

Computing

In the previous chapter, we saw how a CNN-based classifier could be a valuable tool

for trapped specimen classification. Yet, despite its success, it still requires acquisition

times of around 250 milliseconds, which can be unsuitable for tasks requiring a very high

throughput.

In this context, we will explore in this chapter the concept of Reservoir Computing,

seeking to use it as a suitable Neural Network tool for real-time and online classification

of optically trapped particles. As a model, we consider an in silico Echo State Network,

considering the possibility of transitioning to an optical computing implementation of the

same architecture.

With this objective, we start by describing the fundamentals of ESN accordingly to

Herbert Jaeger[81] and the algorithm used for classification. Lastly, we test the ESN archi-

tecture for the classification of particles with both synthetic and experimental data.

5.1 Fundamentals of echo state networks

This section presents the fundamental principles to construct an ESN for a discrete-time

reservoir as presented in [81]. We start by defining at a time step n the input vector of fea-

tures u (n) =
(
u1 (n) , u2 (n) , ..., uK (n)

)
, reservoir state x (n) =

(
x1 (n) , x2 (n) , ..., xN (n)

)
and outputs y (n) =

(
y1 (n) , y2 (n) , ..., yL (n)

)
. Illustrated in figure 5.1, the connections

51
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between the three layers are made through real-valued weight matrices Win of N × K

connecting the input features to the nodes in the reservoir, W of N × N representing the

reservoir inner interactions, Wout of L × (K× L× N) of the input, reservoir and previ-

ous output state contributions and lastly Wback of N × L of the output feedback to the

reservoir.

FIGURE 5.1: Visualization of the ESN architecture featuring the possible node connec-
tions and layer dimensions.

The reservoir dynamics evolve according to the linear mapping of input information

onto an N-dimensional space followed by a nonlinear transformation given by

x (n + 1) = f
(
Win · u (n + 1) + W · x (n) + Wback · y (n) (n) + Cη

)
, (5.1)

where f is the element-wise activation function and η ∈ [0, 1] is a noise factor generated

from a uniform distribution scaled by the constant factor C. Typically, for in silico com-

puting, we take the tanh activation function. Furthermore, throughout this work we do

not consider the feedback of the output into the system (Wback = 0).

The advantage of using a non-adaptative reservoir with non-linear dynamics as the

hidden layer is its capability for randomly projecting a non-linear input to a high N-

dimensional space from where the separation of features becomes a linear problem of

adjusting the readout. In turn, the requirement for weight optimization of the hidden

node layers is lifted thus resulting in faster and more efficient training performed in the

output layer alone, although more complex methods are also applicable[61]. Since we do

not need to train the reservoir, this methodology is suitable for physical implementation

with passive reservoirs resulting in low energy consuming and fast physical computation

devices[62].
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In some cases, the problem at hand may require reservoirs with longer-term memory.

A way of solving this is by introducing leakage of the previous to the posterior state of

the reservoir by means of an equation

x′ (n + 1) = (1− α) x (n) + x (n + 1) , (5.2)

where α ∈ [0, 1] is the leaking rate[81, 82].

By means of recurrence and leakage, a reservoir possesses long and short-term mem-

ory of the input. Still, for solving realtime machine learning problems and for convergence

of the ESN it is important that the memory of the input decays. For ESN this is called the

Echo State Property (ESP) which guarantees that the state at a given time is dependent

until a finite time in the past inputs. The conditions for ESP vary depending on the reser-

voir matrices but for the purposes of this work a sufficient condition is σ (W) < 1 where

σ (W) is the maximum eigenvalue of W[83, 84].

5.2 RC Algorithm: an in silico Echo-state network

The RC algorithm written for the classification of particles follows the simplest model of

ESN presented in the previous chapter to account for the feasibility of a future all-optical

integration for intelligent OT setups. Nevertheless, we should stress that the model we

implement in silico still does not have a direct translation to physical implementation as

the input has prior processing not able to be performed optically e.g. transversal position

determination by the quadrants in the photodiode.

In figure 5.2 we represent the scheme of the ESN built. The random weights of input-

reservoir and reservoir-reservoir mapping are generated using scipy sparse allowing to

control matrix density and NumPy randn with unit variance permitting scaling which

together adjust for non-linearity and memory control. The input matrix is scaled by a

constant factor while the reservoir matrix is scaled to have a maximum eigenvalue to

respect the ESP condition.

The information is fed at the input layer to the network starting with an initial state

as the zero state vector. The state’s history is then computed by iteration of equations 5.1

and 5.2. For the activation function, we can use the tanh whose optical implementation

can be achieved with saturable absorbers or amplifiers although counting with energetic

caveats[63, 65]. In the scope of the prospective work discussed in the final chapter, a sine
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will be implemented as the activation function for the nodes. This sinusoidal activation

function has been previously demonstrated to be possible in a one-node reservoir with

virtual nodes created by a delay line analogous to the traditional architecture[64].

Using the ESP, we remove the initialization bias of the reservoir by dropping a tran-

sient time until the initial state of the system is forgotten. We then start recording the states

of the system after the transient time passes. The final step consists in using the history of

states computed from the training sample to determine the output weights yielding the

final result. Three methods of using the history of states are easily applicable: full his-

tory, time-averaged state, and last state[61]. The last step of finding the readout weights

is performed via the Ridge regression from the python package sklearn that minimizes the

linear least squares function subjected to a regularization to avoid overfitting. Other read-

out methods are possible to be applied computationally such as support vector machines,

elastic net penalty and multilayer perceptron[85, 86], but are left out of the scope of this

dissertation.

FIGURE 5.2: Design of the implemented ESN model featuring the input and reservoir
scaling factors together with the ridge regression method used to train the output layer

weights.

The hyperparameters of the model used are presented in table 5.1 together with a

description and role in the network dynamics with insights as given in reference [81, 87].

Lastly, we note that optimization algorithms should be applied to search the space of

hyperparameters for achieving the best results for a validation data set. Two widely used

methods are the grid search and stochastic gradient descent[82]. Unfortunately, due to

long time requirements for proper use of either method, these were not possible to be

implemented.
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Hyperparameters Description
Number of nodes:

300
Defines the size of the high-dimensional space the input is
mapped into.

Input scale:
10

Alters the magnitude of the input consequently making it
fall into different regions of the activation function. There-
fore this controls the level of non-linearity.

Spectral radius:
0.99

Maximum eigenvalue of W. This value controls the
memory longevity of the reservoir and whether the ESP
condition is verified. Bigger(smaller) values result in
longer(shorter) term memory.

Leak rate:
0.8

State update speed defining how fast a state drifts from pre-
vious states.

W density:
0.1

Controls the number of connections in the reservoir. Ad-
vised to be sparse, thus allowing subnetworks in the reser-
voir with isolated dynamics.

Win density:
1

Number of connections of the input into the nodes of the
reservoir. A dense matrix is recommended.

Transient time:
10

Time steps until the algorithm starts to record states of the
reservoir. This time is used to remove the bias of the initial
state of the reservoir.

Noise:
2

Noise scalling factor. It improves generalization capability
of the ESN by wobbling the states around the stable path
defined by the input.

TABLE 5.1: Presentation of the hyperparameters used in the ESN model (left) together
with the effect the parameters bring upon the data processing (right) as described in the

references [81, 87].

5.3 Results

In this section we implemented the ESN algorithm developed in the two case studies

of the last chapter, using both position and displacement time series as input informa-

tion. We are interested in testing the ESN framework and comparing the two information

sources. As in the previous chapter, we will resort to both synthetic and experimental

data for classification purposes.

5.3.1 Experimental data classification

The experimental data for each particle was recycled from the previous section with a

different segmentation to speed up the evaluation process. From the total 25s time series



56 TOWARDS REALTIME CLASSIFICATION OF OPTICALLY TRAPPED PARTICLES

with time steps of 10−4s, acquired by the quadrant photodetector at an acquisition rate of

10kHz, only 5s are used and are segmented into 100ms time series.

For case study 1, which seeks classification based on particle type, the results are pre-

sented in figure 5.3. To start our analysis, we notice how the results using position time

series are only slightly above the pure guess with 63% and 54% accuracies, while for

displacement the guess is more inclined towards the correct answer. Although some im-

provement can be seen for the displacement time series, the performance only reaches

satisfying levels of 68% and 66% accuracies for the smaller and bigger-sized particles,

respectively.

FIGURE 5.3: Classification using RC between experimental PS and PMMA particles
which show for 3µm beads (top row) only slightly above pure guess with 63% and 54%
accuracies for position and displacement time series, respectively. And with similar re-
sults for the 8µm particles (bottom row) with 68% and 66% for position and displacement.

As for the second case study concerning the classification of particles in size, the re-

sults are condensed in figure 5.4. We can see that the RC algorithm performs rather well

for classifying PMMA particles with 77% using position time series and improving to 93%

with displacement series. As for the second set of tests classifying PS particles differing

in size, a low confusion between the smaller and bigger-sized particles is still observed.
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Nevertheless, a higher confusion arising from the presence of an intermediate-sized par-

ticle achieves only 59% and 70% accuracy using position and displacement time series.

FIGURE 5.4: Size classification of experimental data shows good results for the PMMA
particle (top row) classification with 77% and 93% accuracy while a higher confusion due
to an intermediate-sized particle allows only to obtain 59% and 70% accuracy for position

and displacement time series, respectively

5.3.2 Synthetic data classification

The validation of the experimental results was again performed through numerical sim-

ulations. The simulated time series is the previously generated data set but we limited

them to a total of 5s with time steps of 10−4s, divided into 100ms segments. Furthermore,

since we will be dealing with the direct time series, a random white noise correspond-

ing to 0.1% of the maximum values is added at the input of the ESN for simulating true

experimental conditions.

Starting once more with classification between particle compositions, see figure 5.5,

the results relate to those observed for experimental values of 63% and 64% accuracy for

the smaller particles with position and displacement information, respectively, while for

the bigger sized particles 54% accuracy is observed for both sources of information.
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FIGURE 5.5: Classification using RC to identify between PS and PMMA particles showing
only above pure guessing for all tests performed with 63% and 64% accuracies for 3µm
sized particles using position and displacement and 54% accuracy for 8µm beads for both

sources of information.

Finally, and to conclude our series of tests presented in figure 5.6, size classification

closely follow the results obtained experimentally. For PMMA particle classification be-

tween smaller and bigger digital particles resulted in 65% and 100% using position and

displacement time series, respectively. For the PS particles, the classification using posi-

tion time series resulted in 51% while using displacement improves the classification to

74%. In both cases short to no confusion between 3µm and 8µm sized particles occurs

while the presence of an intermediary 4µm sized class of particles raises confusion.

Consistently with the previous results, the displacement obtains superior classification

results when compared with the position.
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FIGURE 5.6: Size classification results follow those observed experimentally with 65%
and 100% accuracies using position and displacement for PMMA particles (top row) and
51% and 74% accuracies for PS particles where the confusion is raised due to the presence

of an intermediate 4µm particle.

5.4 Concluding remarks and discussion

In this chapter, we explored the implementation of an RC for the task of real-time classifi-

cation of optically trapped particles. For that goal, we reviewed the fundamental concepts

of RC with a focus on ESN, prior to its digital implementation using Python programming

language.

We then tested the ESN framework with fixed architecture on two distinct case stud-

ies of classification between the composition or size of the particles. For the case of size

classification, we can obtain good results for the identification of 3µm and 8µm particles.

Nevertheless, when introducing intermediate-sized particles we observe a decay in the

accuracy pointing towards either a lack of resolution from the algorithm or the presence

of outlier particles that cross over class limits. In agreement with the results from the

previous chapter, the displacement comes again in aid of improved classifications. Unfor-

tunately, for the type classification, the results using position time series barely leave what
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would be obtained by randomly guessing while displacement obtains slightly improved

results but still falls short of results obtained using CNN.

While the results obtained are not indicative of effective classification for both case

studies, we emphasize that this work explores only an infinitesimal part of the space of

configurations of ESNs and of the time series parameters, such as sampling rate and in-

tegration times which affect the time series correlation and simultaneously the variance

of the displacement. Also, by directly using the time series as input for classification, we

are more susceptible to noise coming from the measurements which for example in his-

tograms are accommodated by the binning step. Furthermore, growing the data set either

by means of new measurements or data augmentation techniques can lead to improved

results.

Nevertheless, in spite of all the limitations, we still stress that we were successful in

applying an RC-based classifier for the specific case of particle size classification. This

finding proves the concept of real-time classification based on the forward scattering sig-

nal and thus sets the stage for future work that can explore the parameter space in more

detail.



Chapter 6

Conclusions and outlook

This major goal of dissertation was the exploration of faster and more accurate classifi-

cation of optically trapped particles by exploring the Brownian dynamics encoded in the

forward scattered signal. In particular, we search to take advantage of the intrinsic fea-

ture extraction of CNN and their GPU accelerated execution times to achieve this goal.

Furthermore, by implementing RC we have a first glance at the possibility of real-time

classification of particles.

For this purpose, we started by studying the physical principles behind optical micro-

manipulation for effective 3D trapping of transparent particles, gaining an intuition of the

phenomena that is OT. From a balance between optically induced gradient and scattering

forces, OT uses a tightly focused beam like those obtained by the inverted microscope con-

figuration explored in the experimental part of this dissertation together with a quadrant

photodetector to acquire trapped particle position time series. Implementing this setup

in the laboratory, we designed an experimental procedure and acquired a data set of par-

ticle positions in reproducible manners, to avoid unwanted bias as required by machine

learning applications.

From experimental procedure to modelling of the dynamics and construction of a dig-

ital twin, we review the Langevin model describing the behaviour of a trapped particle

accounting for the Brownian dynamics, optical trapping by a gaussian beam and viscous

damping. As an alternative representation of the particle position time series which can

feature unwanted drift effects, we propose the usage of displacement as a novel source of

information which filters the long-term drift effects.

Then, by integrating the overdamped Langevin equation using the well-known RK4

61
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we build a digital twin to the experimental setup implemented. By a series of tests per-

formed on this simulator, we verify its convergence towards the initial statistical values.

Finally, we implement the CNN to position or displacement time series histograms.

We start by discussing the process of image creation which requires standardization of bin

ranges and normalization of images to unity. Classification tests are performed on exper-

imental data having their results supported by the usage of simulations. Implementing a

fixed CNN architecture, we tested the performance of the model on two case studies of

either classification between size or composition which confirmed the possibility of im-

plementing this technique for the classification of particles using 250ms time series (faster

than previously implemented methods[15, 56]). From our results, we emphasize the us-

age of displacement time series which achieved higher accuracies in the majority of the

tests performed.

To conclude our journey, we have a first glance at the implementation of RC for the

possibility of real-time analysis in OT setups. Starting with a review of the fundamentals

of ESN, then used in the digital implementation in python. Classification test results be-

tween types are short of leaving what would be obtained by random guessing the particle

classes. In contrast, the classification of particles based on the sizes between 3µm and 8µm

shows classification capabilities.

6.0.1 Prospective work

The results enclosed in this dissertation may span its impact across some unexplored

doorways that may be explored in future research in the short to medium term.

On one hand, the successful classification of particles using CNN call for an explo-

ration of distinct trap profiles. These can be shaped by HOT, and may introduce other

symmetries, lattices, or even more exotic force fields such as speckle patterns demon-

strated to be capable of sorting particles[37]. Joining these methods with both position

and displacement time series can result in considerable improvements to the task without

the cost of time. Furthermore, we highlight the usage of the digital twin developed in this

work for the improvement and study of the limits of these techniques for the classification

of trapped particles by optimization of a series of parameters e.g. bin number, acquisition

times, and even CNN architectures.
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On the other hand, with the proof-of-concept of the RC algorithm for the classification

of particles, and leaning toward the physical implementation of this framework, real-

time classification of optically trapped particles may be implemented in microelectronic

systems and even on all-optical systems taking advantage of the light speed. Indeed, the

group at INESC TEC has recently devised an optical RC framework sitting on amplitude

or phase encoding and the non-linearity from the light measuring to be implemented as a

near-all-optical classifier and some efforts have been made towards the use of this system

for OT setups. Yet, in spite of our best attempts to implement such a system, significant

effort and research are still needed to realize such an advanced concept. Lastly, we must

call attention to the exploration of the digital twin to optimize and search for limitations

of the model which might lead to interesting breakthroughs.





Appendix A

Trapped Brownian motion physical

means

The determination of the moments of the distribution for the position and displacement

time series is pivotal to understanding the differences between the usage of either type of

information. We dedicate this appendix to the calculations leading to the MSD equation

valid in the overdamped regime of trapped Brownian motion. Furthermore, as we move

towards faster time classification the validity of the overdamped approximation of the

Langevin equation fades and we require to use of the full model description. Therefore,

for future reference, we leave the calculations of the MSD for the full Langevin model.

A.1 Mean squared displacement

Overdamping approximation:

We begin with the solution to the non-homogeneous linear differential overdamped Langevin

equation 3.2,[39] obtained by applying the integrating factor method

r (t) = r (0) e−
t

τot +
√

2D
∫ t

0
e−

(t−s)
τot χ (s) ds, (A.1)

where r (0) is the initial position.
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Plugging this solution into the MSD, equation 3.5, definition we get

MSD (∆t) = 〈
[
r (t + ∆t)− r (t)

]2〉

= 〈
[

r (0) e−
t

τot

(
e−

∆t
τot − 1

)
+
√

2De−
∆t
τot

∫ t+∆t

0
e−

(t−s)
τot χ (s) ds−

√
2D

∫ t

0
e−

(t−s)
τot χ (s) ds

]2

〉

(A.2)

where 〈(...)〉 is the mean over an ensemble of random walks followed by an average over

time. Using the properties of Brownian motion 〈χ (t)〉 = 0 and 〈χ (t)− χ (s)〉 = δ (t− s)

over an ensemble of random walks results in

MSDod (∆t) = 〈r2 (0) e−
2t

τot

(
e−

∆t
τot − 1

)2

+ 2De−
2∆t
τot

∫ t+∆t

0

∫ t+∆t

0
dsds′e−

2t−s−s′
τot δ

(
s− s′

)
+ 2D

∫ t

0

∫ t

0
dsds′e−

2t−s−s′
τot δ

(
s− s′

)
− 4De−

∆t
τot

∫ t+∆t

0

∫ t

0
dsds′e−

2t−s−s′
τot δ

(
s− s′

)
〉

= 〈r2 (0) e−
2t

τot

(
e−

∆t
τot − 1

)2

+ 2De−
2∆t
τot

∫ t+∆t

0
dse−2 t−s

τot

+ 2D
∫ t

0
dse−2 t−s

τot − 4De−
∆t
τot

∫ t

0
dse−2 t−s

τot 〉

= 〈r2 (0) e−
2t

τot

(
e−

∆t
τot − 1

)2

+ Dτot

(
1− e−2 t+∆t

τot

)
+ Dτot

(
1− e−2 t

τot

)
− 2Dτote

− ∆t
τot

(
1− e−2 t

τot

)
〉

(A.3)

Lastly, averaging over a time interval T >> τot results in

MSDot (∆t) = 2Dτot

(
1− e−

∆t
τot

)
. (A.4)

A.1.1 Exact solution:

Similarly to the previous case, we begin with the formal solution to the differential Langevin

equation 3.1. The procedure to determine the solution of the Langevin equation closely

follows reference [73]. As usual we begin with solving the homogeneous equation result-

ing in

r0 (t) = Aeω+t + Beω−t, (A.5)

with ω± =

(
−γ/m±

√
(γ/m)2 − 4k/m

)
/2. Applying the variation of constants method

the coefficients become dependent on time and the Langevin equation admits the solution

r0 (t) = A (t) eω+t + B (t) eω−t, (A.6)
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where the coefficients A(t) and B(t) must satisfy the relations

eω+t dA
dt

+ eω−t dB
dt

= 0

ω+eω+t dA
dt

+ ω−eω−t dB
dt

= 0,
(A.7)

where we omit the time dependence of the coefficients to simplify the notation.

Solving the system of equations gives the time derivatives of the coefficients

dA
dt

=
1

ω− −ω+
e−ω+t γ

√
2D

m
χ (t)

dB
dt

=
1

ω− −ω+
e−ω−t γ

√
2D

m
χ (t) .

(A.8)

Integrating, the coefficients are given by

A (t) =
γ
√

2D
m (ω+ −ω−)

∫ t

0
dse−ω+sχ (s) + A (0)

B (t) = − γ
√

2D
m (ω+ −ω−)

∫ t

0
dse−ω−sχ (s) + B (0) .

(A.9)

Replacing this in equation A.6 results in the solution

r (t) =
γ
√

2D
m (ω+ −ω−)

eω+t
∫ t

0
dse−ω+sχ (s) + A (0) eω+t

− γ
√

2D
m (ω+ −ω−)

eω−t
∫ t

0
dse−ω−sχ (s) + B (0) eω−t.

(A.10)

The determination of A (0) and B (0) can be obtained using the velocity as a second equa-

tion. Taking the mean over an ensemble of random walks and averaging over time re-

moves the dependence of the MSD on the initial conditions of the system. Therefore, we

won’t be required to determine the expression for the initial conditions we require simply

for them to be finite.

Plugging this solution into the MSD definition and computing the mean in a ensemble

of random walks and averaging over a time interval analogously, to the overdamping case

we get

MSDex (∆t) = 〈〈
[
r (t + ∆t)− r (t)

]2〉〉

=
4γ2D

m2 (ω+ −ω−) (ω+ + ω−)

[
1

ω+

(
1− eω+t

)
+

1
ω−

(
1− eω−t

)] (A.11)
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A.2 Autocorrelation

A.2.1 Overdamping approximation:

The position autocorrelation defined as

C (t + ∆t, t) := 〈r (t + ∆t) r (t)〉 (A.12)

is a measure similarity between the position and consecutive times. Replacing the equa-

tion A.1 in A.12 and using the Brownian motion properties and averaging in a time inter-

val T we have

C (t + ∆t, t) = 〈〈
[

r (0) e−
t

τot e−
∆t
τot +

√
2De−

∆t
τot

∫ t+∆t

0
dse−

t−s
τot χ (s)

]

×
[

r (0) e−
t

τot +
√

2D
∫ t

0
dse−

t−s
τot χ (s)

]
= 〈2De−2 t

τot e−
∆t
τot

∫ t

0

∫ t+∆t

0
dsds′e

s+s′
τot δ

(
s− s′

)
〉

= 〈2De−2 t
τot e−

∆t
τot

∫ t

0
dse2 s

τot 〉

= 〈Dτote
− ∆t

τot

(
1− e−2 s

τot

)
〉

= Dτote
− ∆t

τot

(A.13)



Appendix B

Appendix: Power Spectral Density

In this section we derive the complete PSD predicted by the Langevin model of Brown-

ian motion and finish by taking the overdamped approximation typical of experimental

optical tweezers setups.

We start by recalling the Langevin equation in the form

d2

dt2 r (t) + fm
d
dt

r (t) + f2
p � r (t) = fm

√
2Dχ (t) , (B.1)

where fm = γ/m and fp,i =
√

ki/m, f2
p =

[
f 2
p,x, f 2

p,y, f 2
p,z

]
and � is the element-wise

Hadamard product. Performing the Fourier transform and using the propertyF{ dn

dtn r (t)} =

(iω)n r̃ we have

r̃i =
fm
√

2Dχ̃ (ω)

f2
p,i −ω2m− iω fm

, (B.2)

where r̃ is the Fourier transform of r (t) in the angular frequency ω. The power spectrum

is the absolute squared value of the position spectrum resulting in

PSDi (ω) = |r̃i (ω) |2 =

∣∣∣∣∣∣ fm
√

2Dχ̃

f̃2
p,i −ω2 − iω fm

∣∣∣∣∣∣
2

=
2D f 2

m(
fp,i −ω2 + iω fm

) (
fp,i −ω2 − iω fm

)
=

2D f 2
m(

fp,i −ω2
)2

+ ω2 f 2
m

=
2D f 2

m

f 4
p,i + ω4 +

(
f 2
m − 2 f 2

p,i

)
ω2

(B.3)

where we used the property of white noise that the power is uniform and that we had
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previously normalized it
(
|χ̃|2 = 1

)
. This equation give the description of the PSD with

the inertial contribution.

For the usual optical tweezers experimental setup we are far from the inertial regime.

A more useful description is to consider the limit where the inertial relaxation time van-

ishes (m/γ→ 0) and the PSD becomes

PSDi (ω) =
2D

f4
p,i

f 2
m
+
(

m
γ

)2
ω4 +

(
1− 2

f2
p,i

f 2
m

ω2

)
=

2D(
2πf2

c,i

)2
+
(

1− 2τot,i
m
γ

)
ω2

(B.4)

where f2
p,i/ f 2

m = ki/γ = 2πfc,i and f2
p,i/ f 2

m = kim/γ2 = τotm/γ, resulting in

PSDi
(

f
)
=

D

2π2
(

f2
ot,i + f 2

) , (B.5)

with ω = 2π f .
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