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Resumo 

As membranas das mucosas são de uma grande importância na defesa do hospedeiro 

a infeções bacterianas, sendo as brânquias, a pele e o intestino as primeiras barreiras 

físicas. Estas superfícies são ainda revestidas por uma camada mucosa composta que 

contém importantes moléculas na defesa do organismo. 

Tenacibaculum maritimum é o agente etiológico da tenacibaculose, uma doença que 

provoca importantes perdas na produção do robalo europeu, desta forma é 

extremamente importante compreender melhor o funcionamento dos seus mecanismos 

imunes envolvidos no seu combate, ainda vagamente compreendidos. 

Devido ao uso abundante de antibióticos na produção animal, encontrar uma estratégia 

às alternativas existentes para a sua redução e eliminação é de importância extrema. A 

metionina como ingrediente funcional para promover a saúde dos peixes, poderá ser 

uma solução. Os aminoácidos são os ingredientes base para a síntese proteica. A 

metionina é um aminoácido essencial que regula processos metabólicos chave, tendo 

um impacto essencial no controlo do sistema imunitário dos peixes. Em específico, a 

metionina intervém durante a síntese de poliaminas e na resposta inflamatória. 

O objetivo desta dissertação é aferir, evidenciar e esclarecer o papel da metionina como 

suplemento nas dietas do robalo europeu (Dicentrarchus labrax) no estado imunitário e 

resposta ao combate imunitário a infeções com Tenacibaculum maritimum, através da 

análise do efeito da metionina extra no perfil hematológico e parâmetros imunes do 

intestino e muco da pele. 

Para isso, os peixes de uma forma aleatória foram alimentados em provas de 

alimentação com períodos de 4 semanas onde três grupos independentes, foram 

alimentados com uma dieta controlo (cuja composição correspondeu aos requisitos 

nutricionais do robalo) e duas dietas idênticas à dieta controlo, mas com níveis 

superiores de DL-Metionina (1 e 2 % do peso da dieta). Os peixes foram amostrados às 

2 e 4 semanas de forma a aferir o estado imunológico do animal com cada dieta. No 

final de cada prova de alimentação os peixes foram infetados em banho bacteriano, de 

2 horas, por Tenacibaculum maritimum e amostrados 4 e 24 horas após a infeção. Em 

todas as amostragens, foram recolhidas amostras de sangue (para avaliação do perfil 

hematológico e da resposta celular), muco da pele (para avaliação de parâmetros 

imunes) e intestino anterior (para avaliação de parâmetros imunes). 
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Os resultados demostram que a resposta imune dos peixes após a estimulação 

bacteriana por Tenacibaculum maritimum, como esperado de uma boa e eficiente 

resposta imunitária, aumenta, já nas fases iniciais, a atividades no muco da pele 

(protéase e peroxidase) como resposta à inflamação. Também evidencia que, pelo 

menos por infeção bacteriana por banho de T. maritimum, a resposta imune no peixe 

parece mais intensa no muco da pele que no intestino. Tanto monócitos como neutrófilos 

são rapidamente recrutados, já numa fase inicial, atingindo grandes níveis, juntamento 

com a explosão respiratória, mesmo às 4 h após resposta à inflamação, indo ao 

encontro de resultados descritos. 

A suplementação de metionina diminui o número de células periféricas e protéases no 

muco imunológicos dos peixes, apontando para um efeito potencialmente 

imunossupressor que poderá comprometer a possível resistência a doenças. 

Palavras-chave: aminoácidos, desafio bacteriano, dieta funcional, estimulação 

imunitária, inflamação  
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Abstract 

Mucous membranes are of main importance in the defenses of the host against bacterial 

infections, being the gills, skin and gut the first two physical barriers. 

Tenacibaculum maritimum, the aetiological agent of tenacibaculosis is one disease that 

causes highly loses in stock production of European seabass, so knowing more about 

the immune mechanism involved its fight, still poorly understood, is highly important. 

Due to highly use of antibiotics in the animal production finding a strategic to counter it 

is of highly need, methionine as functional ingredient for promoting health in fish would 

be a good approach. The building blocks for protein synthesis are amino acids, the 

methionine is one of them, an essential amino acid that regulates key metabolic 

pathways, having a vital impact on the immune system control in fish. This amino acid in 

specific, methionine plays an important role during the polyamines synthesis and 

inflammatory response.  

This study aimed to assess, gather evidence and elucidate on the specific role of 

methionine dietary supplementation on the immune status and response of European 

seabass (Dicentrarchus labrax) against infection with Tenacibaculum maritimum, 

through, evaluation of methionine surplus effect on the haematological profile, gut and 

mucus immune parameters.  

To achieve this goal, European seabass juveniles were subjected to a feeding trial of 

four weeks being fed three dietary treatments: a control diet (meeting all the nutritional 

requirements for seabass) and two control-based diets supplemented with two different 

with DL-Methionine at 1 or 2 % of feed weight. Fish were sampled at 2 and 4 weeks in 

order to evaluate the immune status of fish fed with each diet. At the end of each feeding 

trial, fish were subjected to a 2 hours bath challenge with Tenacibaculum maritimum and 

sampled at 4 and 24 hours post infection. Samples of blood, skin mucus and gut were 

taken for the evaluation of the haematological profile, peripheral cell dynamics, and 

immune parameters. 

The results showed that fish immune response following stimulation with the bacteria, 

Tenacibaculum maritimum, as expected of an efficient immune response, reacted with 

skin mucus activities (protease and peroxidase) rising at early stages of the inflammatory 

response. It also showed that, at least in a T. maritimum bath infection, the immune 

response seems more intense in the fish skin mucus than in the gut. Both monocytes 
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and neutrophils were readily recruited at early stages, showing peaking levels, alongside 

respiratory burst, already at 4 h post infection response, in accordance with other results 

found. 

The methionine supplementation diminishes the number of peripheral cell and proteases 

in the immune mucus of the fish, pointing for potentially immunosuppressor effect that 

could compromise the possible resistance to the disease. 

Keywords: amino acids, bacterial challenge, functional diet, immunostimulation, 

inflammation 
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1. Introduction 

1.1. Aquaculture and European seabass 

Aquaculture is an industry responsible for supplying aquatic animal protein (Lazado, 

2015). Its significance has been rising during the current years, being the fastest growing 

food-sector related industry, in the European Union aquaculture mainly because of the 

rise in the production and of the importations from third countries. The efforts in the 

investment by governments and private sector during the recent years have created 

positive improvements in production, processing, logistics and marketing that are 

projected to help, through demand generation and cost savings, the industry profitability 

(Globefish, 2017). Non-EU producers even with these improvements appear to have an 

advantage in competition (e.g. lower labor cost, or licencing of new production facilities) 

which make higher production cost in the EU countries than in third countries (M. Bozoglu 

et al., 2009; Scientific, Technical and Economic Committee for Fisheries, 2014). 

One of the sectors with higher potential for sustainable jobs and growth is aquaculture in 

the EU’s Blue Growth Strategy (European Commission, Communication from the 

Commission: Blue Growth Opportunities for Marine and Maritime Sustainable Growth, 

2012). This sector, considered a large economic activity with a capacity to increase 

seafood green production, within the EU, enhancing rural and coastal employment and 

incomes. Within the EU, increasing the importance of aquaculture for policy markers, the 

demand for assessment about development of economic performance of the aquaculture 

industry also increase, having the ability to reach peaking points (J. Guillen et al., 2015). 

European seabass, Dicentrarchus labrax (Linnaeus, 1758) is produced under intensive, 

semi-intensive or extensive systems (Basurco, 2000). It is a coastal marine fish from the 

north-eastern Atlantic Ocean to the Mediterranean and the Black Sea that lives in shallow 

waters, it is euryhaline (0-40 ppt salinity) and eurythermal (2-32 ºC). Sea bass 

aquaculture is essentially located in the Mediterranean area, mostly in Turkey, Greece, 

Egypt and Spain, which accounts for 94% of the production. In aquaculture the 

production is in two phases: first a hatchery-pregrowing phase, which produces fish of 1 

to 20 g in three to eight months, and then an ongrowing phase to 250-450 g in 12 to 20 

months (Vandeputte, 2019). Despite several studies, relatively old (some almost 20 

years) on technical efficiency, productivity and profitability, in the seabass industry, after 

this new century, the challenges that industry is dealing had shifted significantly. 
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1.2. Innate immune system 

Fish skin, gills and gut act as physical barriers that are considered to be the first defense 

against infection (Shephard, 1994). Teleost skin is histologically diverse and unique 

(Esteban, 2012); the external mucus is one of the most distinguishing features of this 

tissue, that holds numerous immune components (like lectins, pentraxins, lysozyme, 

complement proteins, antibacterial peptides and IgM) of both the innate (non-specific) 

and acquired humoral and cell mediated mechanisms (specific), which are responsible 

for resistance to diseases (Aranishi, 1997; Ellis, 1999; Fast, 2002). Skin mucus has the 

capacity to alone form a insulating layer (biofilm) that underlies the epithelium, protecting 

it from damage. Skin damage can be provoked by bacteria, being the mucus an 

important player in the damage progression. In same way, the innate immune system is 

present in all organisms, it is a more primitive system of protection, and in teleost fish it 

is well developed (Barton GM., 2008).  

The innate immune system’s recognition of non-self is mediated by germline-encoded 

pattern that identify proteins/receptors that recognise molecular patterns, characteristic 

of microbes. Due to the intrinsic inefficiency of fish acquired immune response as a result 

of its evolutionary position and poikilothermic nature, the innate immune system is of 

primary significance in the combat of infections. The acquired immune response of fish 

can be up to 12 weeks sluggish compared to the relatively temperature independent and 

instant innate immune response (Alexander, 1992; Ellis, 2001). 

The innate immune system, served by a variety of germline-encoded pattern recognition 

receptors (PRR) or pattern recognition proteins (PRP) (Janeway, 1989). Unlikely the 

acquired resistance recognition molecules, the innate systems recognition receptors are 

fairly few and vertically transmitted, exposing the adaptation to specific environmental 

conditions and evolutionary defence battles of species (Lo D et al., 1999). 

The inflammatory response initiates when external barriers such as skin mucus and skin 

are breached, as a reaction to a wound or infection (Ellis, 2001). An inflammatory 

response should be locally restricted and self-limiting, but at the same time destructive 

and rapid, in order to swiftly re-establish homeostasis while repairing the damage. During 

the inflammatory response, an influx of phagocytic cells into the inflammatory focus 

enables the recognition, neutralization and degradation of the organism responsible for 

the infection.  

Once the recognition molecules, like siglec lectin, are activated they can induce 

opsonization and phagocytosis of the pathogen, stimulate nature cytotoxic cells or 
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activate different signalling/executive processes like the complement system and the 

lytic pathway or an acute phase response (Jung, 2000). 

The phagocytes main tasks are intracellular killing and phagocytosis, and to do so, the 

microorganisms are engulfed by these cells into membrane-delimited compartments 

known as phagosomes. The phagosomes fuse with granules in order to produce a 

phagolysosome, in which the microorganisms are subjected to antimicrobial peptides 

(AMPs), enzymes and reactive oxygen species (ROS), these components through 

synergize effectively destroy the microorganisms. Many studies demonstrated inducible 

antimicrobial responses, mainly using head kidney-derived monocytes/macrophages 

and also neutrophils, generating anti-proteases compounds, lysozyme and complement 

factors that attack efficiently the pathogens in the cells (Ellis A.E., 2001; Rodriguez, 2003; 

Plouffe, 2005), including respiratory burst and subsequent production of ROS and 

inducible nitric oxide synthetase producing nitrogen intermediates with antimicrobial 

effect (Stafford, 2002; Forlenza, 2008). 

In parallel, there is a wide array of humoral mediators that, together with the cellular 

response, ensure the efficiency of the inflammatory process. Lysozyme is an important 

bactericidal, hydrolysing β- linked glycoside bonds of bacterial cell wall peptidoglycans 

resulting in the lysis. This enzyme, mostly associated with defence against Gram positive 

bacteria, can also lyse Gram negative bacteria. It is present in mucus, lymphoid tissue, 

plasma and other body fluids of most fish species (Yousif, 1994), being also known for 

being an opsonin and activate the complement system and phagocytes (Grinde, 1989). 

Another good indicator of cellular activation during the immune response is the alteration 

of plasmatic levels in peroxidase. When stimulated, immune cells as phagocytes release 

this enzyme to the extracellular matrix as an antibacterial mechanism. Therefore, in 

blood, this enzyme is frequently used as an sign of the immunologically active status of 

circulating leucocytes (Alvarez-Pellitero, 2008). 

In fish serum and other body fluids, various proteases and proteases inhibitors are 

present, being their primary role the homeostasis (Aranishi, 1999). They are also 

involved in acute reactions and in defence against pathogens, preventing adhesion to 

matrices and degrading the microorganism’s structures (Ellis, 1987; Bayne, 2001). Most 

widely studied is the α2-macroglobulin (α2-M), having a broad specificity, inhibition 

involving the physical encapsulation of the protease (Armstrong, 1999). 

Humoral parameters, in fish, can be both cell-associated receptors or soluble molecules 

of plasma and other body fluids. Amongst others, several enzymes have been used as 
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good markers of aquatic organisms’ responses to various environmental stressors and 

to oxidative stress (e.g. glutathione system). Oxidative stress is characterized by high 

rates of lipid peroxidation, protein carbonylation, and changes in the activities of 

antioxidant enzymes (Dorts et al., 2009). When the production rate of free radicals such 

as hydroxyl ions, superoxide anions, hydrogen peroxides surplus the scavenging ability 

of these antioxidants, oxidative stress occurs. Understanding these mechanisms could 

help gathering knowledge on certain reported diseases of aquatic life, providing the 

evidence in first-line that fish have been infected (Ruby and McFall-Ngai, 1999). 

One of these enzymes is superoxide dismutase and it acts to prevent excessive levels 

of reactive oxygen species (ROS) from accumulating at the cellular and tissue level. 

Catalase is an enzyme involved in the breakdown of toxic hydrogen peroxide to water 

and oxygen, hence assisting to detoxify hydrogen peroxide (Sabatini et al. 2009). 

1.3. Tenacibaculum maritimum and tenacibaculosis 

In cultured fish, the most common group of pathogens are bacteria, and they may act as 

primary or opportunistic pathogenic agents causing disease and leading to high 

economic losses (Austin, 2007). The Gram-negative bacterium Tenacibaculum 

maritimum is the aetiological agent of tenacibaculosis. Tenacibaculosis can be a risk to 

restricting the culture of many species of anadromous and marine fish of marketable 

importance worldwide. However, there is still little knowledge on its pathogenicity and 

routes of infection. Some studies on disease transmission support the hypothesis that T. 

maritimum primarily causes extensive skin damage (ulcers, necrosis, eroded mouth, 

frayed fins and tail rots) and gill abrasion with consequent systemic infection, being an 

opportunistic pathogen (Avendaño-Herrera, 2006). The adherence of T. maritimum to 

host tissues varies on its capacity to neutralize or evade fish mucus defence 

mechanisms, such as lysozyme and other proteases, as well as on its ability to gather 

the necessary nutrients for growing (Magariños, 1995). The presence of the T. 

maritimum within the skin mucus layer could mean that this bacterium is a piece of the 

autochthonous populations in fish, consequently, in the aquatic environment the 

bacterium can persist utilizing fish mucus as a reservoir (Avendaño-Herrera et al., 2005). 

1.4. Functional diets and methionine as an additive 

As aquaculture becomes more and more intensive, it leads to a riskier industry, 

increasing the risk for disease outbreaks (Meena D.K., 2013; Van Boeckel T.P., 2015; 

FAO, 2018). Accordingly, animal health issues are now one of the leading constraints for 

sustainability and expansion in aquaculture (Adams A., 2019). Although in the recent 
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years the regulations and legislation started to be more restrictive, one of the main 

approaches to deal with the disease occurrences in aquaculture has been the application 

of antibiotics, leading to the emergence of new antibiotic-resistant bacteria (Van Boeckel 

T.P., 2015). An alternative to the antibiotics use, and in addition to vaccination, could be 

the use of prophylactic measures through the inclusion of prebiotics and 

immunostimulants in feeds in order to enhance fish resistance against disease and 

health status in general (Yilmaz S., 2022).   

It is very likely that nutrients impact some characteristics of the immune system, therefore 

nutritional strategies may modulate it in aquaculture fish (Li P., 2007; Conceicao L.E.C, 

2012). Selecting ingredients/additives rich in essential nutrients and thereby creating 

functional feeds that improve the status of the fish, may reduce severity during an 

infection outbreak, as well as counteracting immunosuppression instigated by 

contaminants and stress and improving immunocompetence prior to, or during 

vaccination (Azeredo et al. 2017; Machado et al. 2018).  

Protein synthesis, in which an efficient immune response highly relies, is dependent on 

a sufficient availability of amino acids (Grimble, 1998). Therefore, the addition of such 

amino acids to aquaculture feeds may improve fish growth and immune performance (Li 

et al, 2009). An indispensable amino acid, methionine, in particular, is involved in cellular 

and molecular processes that take place during the immune response such as protein 

ubiquitination and autophagy (Afonso, 1998; Zinngrebe, 2014). Studies show that 

methionine may also affect lymphocytes differentiation and proliferation, since it 

participates in polyamine biosynthesis (Grimble, 1998). Through the transsulfuration 

pathway, methionine is converted into cysteine, that becomes one of the three 

glutathione (GSH) elements. GSH is a molecule involved in scavenging free radicals 

(reducing ROS), therefore protecting cells from oxidative stress during inflammation 

(Grimble, 1998). All these interventions of methionine mean that its basic nutritional 

requirement (and that of other amino acids) is increased during immune responses, 

improving them both at humoral and cellular level (Le Floc’h, 2004, Rubin L.L., 2007). 

Thus, the use of dietary supplementation of essential amino acids like methionine poses 

as an efficient, and with acceptable cost, prophylactic strategy to improve fish immune 

status and response, thereby contributing to the replacement of more deleterious 

measures such as the use of antibiotics (Grimble, 1998 and 2009). 
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1.5. Objectives 

A number of studies were performed to explain the effect of methionine on the innate 

immune response, but most of them were executed in mammals. Therefore, the aim of 

the present study is to assess, gather evidence and elucidate on the specific role of 

dietary methionine during the European seabass (Dicentrarchus labrax) immune 

response (local and systemic) against Tenacibaculum maritimum. In particular, it is 

intended to evaluate methionine surplus effects on sea bass haematological profile, 

mucus and gut immune parameters and gut oxidative stress.  
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2. Materials and methods 

2.1. Experimental diets 

Three practical isonitrogenous (45% crude protein) and isolipidic (16% crude fat) diets 

were formulated to include fish oil as the main lipid source, fish meal and a blend of plant 

feedstuffs as protein sources. A CTRL diet was formulated to include the indispensable 

AA requirement levels estimated for European seabass. Following results from previous 

works (Machado M., 2015; Le Floc’h N, 2004; Kaushik S., 1998), two other diets were 

formulated similar to the CTRL but supplemented with DL-Methionine at 1 or 2 % of feed 

weight, at the expenses of wheat meal and wheat gluten. All ingredients of the diet were 

finely ground, well mixed and dry pelleted in a laboratory pellet mill. Sparos Lda. (Olhão, 

Portugal) formulated and manufactured these 3 diets.  Proximate analysis of the 

experimental diets and ingredient composition are presented in Table 1. 

  Experimental diets   

  CTRL D2 D3 

Ingredients (%DM)  % % % 

Fishmeal LT70  11.0 11.0 11.0 

Fishmeal 60  17.0 17.0 17.0 

Brewer’s yeast  3.0 3.0 3.0 

Soy protein 

concentrate 
 12.0 12.0 12.0 

Wheat gluten  7.0 6.4 5.8 

Corn gluten meal  4.0 4.0 4.0 

Soybean meal 44  15.0 15.0 15.0 

Rapeseed meal  6.0 6.0 6.0 

Wheat meal  10.0 9.6 9.2 

Faba beans 

(low tannins) 
 0.0 0.0 0.0 

Vitamin and mineral 

premix 
 1.0 1.0 1.0 

DL-Methionine  0.0 1.0 2.0 

Soy lecithin  0.5 0.5 0.5 

Fish oil  8.5 8.5 8.5 

Rapeseed oil  5.0 5.0 5.0 
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As fed basis (8%)     

Crude protein, % feed  45.1 45.1 45.1 

Digestible protein, %  39.5 39.6 39.6 

Crude fat, % feed  16.9 16.8 16.8 

Fiber, % feed  2.7 2.7 2.7 

Starch, % feed  9.5 9.2 8.9 

Ash, % feed  8.9 8.9 8.9 

Gross energy, 

MJ/kg feed 
 21.1 21.1 21.1 

Table 1. Composition and proximate analysis of the experimental diets. 

2.2. Fish and experimental design 

The trials were conducted at Centro Interdisciplinar de Investigação Marinha e Ambiental 

(CIIMAR) in Matosinhos, Portugal. Experiments were performed in full compliance with 

national rules, by trained scientists, and following the European Directive 2010/63/EU of 

the European Parliament and the European Union Council on the protection of animals 

used for scientific purposes. 

Seabass juveniles, each weighing approximately 9 grams, were randomly distributed in 

9 tanks (200 L, n= 30) of a recirculating aerated seawater system with a constant flow of 

filtered seawater. During acclimatization, fish were fed a control diet, meeting the 

indispensable level of amino acids and all the nutritional requirements estimated for 

European seabass (Kaushik SJ. 1998). At the onset of the feeding trial, the three dietary 

treatments were randomly assigned to triplicate tanks and fish were fed twice a day a 

total of 2 % biomass. The feeding trial lasted for two and four weeks. Water quality 

parameters (salinity, temperature, pH, oxygen saturation, ammonia NH4+ and nitrite NO2
-

), were controlled daily and the photoperiod was kept at 10 h dark: 14 h light.  

2.3. Bacteria inoculum preparation 

T. maritimum, strain ACC13.1, isolated from Senegalese sole were cultured at 25 °C in 

marine agar (MA) for forty-eight hours and later inoculated in marine broth (MB) for 

eighteen hours under continuous and vigorous shaking. Exponentially growing bacteria 

in marine broth (MB) were collected to prepare the bath inoculum and adjusted to 2.24 

x109 CFU ml-1 as final concentration. This dosage was selected after a pre-challenge to 

determine 50% lethal dose (LD50). 
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2.4. Sampling and immune challenge 

At the end of two and four weeks feeding periods, both conducted in order to assess the 

effects of short term dietary methionine supplementation on cellular, mucus and gut 

immune status of the European seabass, the following sampling protocol was applied: 3 

fish per tank (n= 9 fish per treatment) were randomly selected, euthanized by an 

overdose of anesthetic, 2-phenoxyethanol (1500 ppm; Sigma), and sampled. Skin 

mucus was collected before fish was weighed using a cell scraper. Blood samples were 

taken from which blood smears were prepared. Fresh blood was also used for total 

peripheral cell counts, respiratory burst analysis, analysis of hemoglobin concentration 

and hematocrit evaluation. Finally, a sample of the anterior gut was extracted. 

Immediately, skin mucus and gut samples were frozen at -80 °C until further assayed. 

The remaining fish were re-allocated in a different system (in triplicate tanks according 

to dietary treatments). The bacteria inoculum was then added to the bath tanks (in a 5 L 

volume) to a final concentration of 5 x 103 CFU ml-1. Water temperature was increased 

up to 24 ± 0.5 ˚C and after the 2 h infectious challenge, the water of each tank was 

changed three times and then recirculation re-established. Fish were then sampled as 

previously described, at 4 and 24 h post challenge (n=3 per tank, 9 fish per treatment). 

2.5. Haematological profile 

Regarding haematological procedures, from the caudal vein blood was collected using 

heparinized syringes at 3000 uni ml-1 and fresh samples were used for the preparation 

of blood smears and for the evaluation of haemoglobin concentration and haematocrit 

value. Furthermore, total red blood cells (RBC) and white blood cells (WBC) were 

counted from two blood samples diluted in Hank´s Balanced Salt Solution (heparinized 

at 30 uni ml-1) at 200 × and 20 ×, respectively. Total cell counting was performed in a 

microscope using a Neubauer chamber. Mean corpuscular volume (MCV), mean 

corpuscular haemoglobin (MVH) and mean corpuscular haemoglobin concentration 

(MCHC) were calculated, then.  

-MCV (µm3)=(Ht/RBC) x 10 

-MCH (ρg cell-1)=Hb(RBC) x 10 

-MCHC (g 100 ml-1)=(Hb/Ht) x 100 

In accordance with Nikoskelainen et al., the respiratory burst was evaluated by briefly 

adding 4 µl of blood to a 96 µl of HBSS in a 96-well flat bottom white polystyrene plate. 

Afterward, 100 µl of freshly prepared luminol solution were added to each well. The 
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kinetic curves were generated in a luminescence reader by the luminol-amplified 

chemiluminescence (measured every 3 min for 2 h). Each sample was run in triplicate 

and controls contained no blood. The integral luminescence in relative light units was 

calculated. 

2.6. Differential cell counting 

Right after the blood collection, from the homogenized blood smears were prepared, air 

dried and fixated with formol-ethanol (10% of 37% formaldehyde in absolute ethanol). 

To simplify the identification of neutrophils, the detection of peroxidase activity was 

performed as described by Afonso et al. (1997). Finally, blood smears were stained with 

Wright’s stain (Haemacolor; Merck), examined in a light microscope under immersion oil 

(1000x), and at least 200 leucocytes were counted and classified as thrombocytes, 

lymphocytes, monocytes and neutrophils. The absolute value (x104 µl-1) of each cell type 

was calculated. 

2.7. Mucus immune parameters 

Following the procedure described by Quade and J.A (1997) the peroxidase activity was 

measured in mucus. In triplicates, 135 µl of HBSS without Ca+2 and Mg+2 was added to 

15 µl of mucus samples in a flat-bottomed 96-well plate. Then, 50 µl of 20 mM 2,3’, 5,5’-

tetramethylbenzidine hydrochloride (TMB; Sigma) and 50 µl of 5mM H2O2 were added. 

The color-change reaction after 2 minutes was stopped by adding 50 µl of 2 M sulphuric 

acid. The optical density was read at 450 nm in a Synergy HT microplate reader. Controls 

(blanks) were included in which HBSS replaced mucus samples. Peroxidase activity 

(units ml-1 mucus) was determined by defining one unit of peroxidase as that which 

produces an absorbance change of 1 OD.  

Protease activity was quantified using the azocasein hydrolysis assay (Azeredo et al. 

2017; Machado et al. 2020), using 100 µL of sample and adding to it 100 µL of 0.5% 

NaHCO3 (pH 8.3) and 125 µL azocasein (20 mg mL-1 in 0.5% NaHCO3, pH 8.3). After a 

24 h incubation period at 22 ºC in polystyrene microtubes, 250 µL of 10% trichloroacetic 

acid was added and centrifuged (10,000×g for 5 min) and the absorbance of 100 µL of 

the supernatant, plus 100 µL of 1N NaOH read at 450 nm in a Synergy HT microplate 

reader. The percentage protease activity compared to the reference sample (trypsin 

solution, 5 mg mL-1 in 0.5% NaHCO3, pH 8.3) was calculated (Ellis 1990). 
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2.8. Gut parameters 

Gut samples were thawed and homogenized (1:10) in phosphate buffer (0.1 M, pH 7.4) 

using a high-performance dispersing instrument. After centrifugation (5500 rpm for 20 

min), supernatant, post mitochondrial supernatant fraction (PMS) was aliquoted for 

humoral parameters and for oxidative stress parameters. 

2.8.1. Lipid peroxidation 

For determining the extent of endogenous lipid peroxidation (LPO) by measuring 

thiobarbituric acid-reactive species (Bird, 1984). To prevent artifactual lipid peroxidation 

and before centrifugation, butylhydroxytoluene (BHT 0.2 mM) was added to the aliquot. 

Briefly, 1 mL of 100% trichloroacetic acid and 1 mL of 0.73% thiobarbituric acid solution 

(in Tris-HCl 60 mM pH 7.4 with DTPA 0.1 mM) were added to 0.2 mL of gut homogenate. 

After incubation for 60 min at 100 ºC, the solution was centrifuged at 12,000x g for 5 min 

and LPO levels were determined at 535 nm. 

2.8.2. Catalase, superoxide dismutase and peroxidase activities 

Total protein concentration in homogenates was measured by using Pierce™ BCA 

Protein Assay Kit, as described by the manufacturer. 

Catalase (CAT) activity was determined in PMS at 240 nm by measuring substrate 

(H2O2) consumption as described by Claiborne (1984) adapted to microplate (Rodrigues 

et al., 2017). Briefly, in a microplate well, 0.140 mL of phosphate buffer (0.05 M pH 7.0) 

and 0.150 mL H2O2 solution (30 mM in phosphate buffer 0.05 M pH 7.0) as substrate 

were added freshly to 0.01 mL of gut PMS (0.7 mg ml-1 total protein). Sample volume 

was 10 µL in a total volume of 300 µL. Enzymatic activity was read at 240 nm in UV 

microplate for 2 min every 15 sec interval in a Synergy HT microplate reader (BioTek 

Synergy HT). Enzyme activity is expressed as enzyme units per milligram of total protein 

(U mg-1 protein). One enzyme unit is the amount of enzyme needed to catalyze 1 µmol 

of substrate per minute. 

Superoxide dismutase (SOD) activity was measured according to Flohé et al., 1984, 

adapted to microplate by Lima et al., 2007. Briefly, in a microplate well, 0.2 mL of the 

reaction solution [1 part xantine solution 0.7 mM (in NaOH 1 mM) and 10 parts 

cytochromec solution 0.03 mM (in phosphate buffer 50 mM pH 7.8 with 1 mM Na-EDTA)] 

was added to 0.05 mL of gut PMS (0.25 mg ml-1 total protein). Optical density was 

measured in a microplate reader (BioTek Synergy HT) at 550 nm every 20-s interval for 

3 min at 25 ºC. 
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Peroxidase activity was measure following the same approach described for skin mucus 

samples. 

2.9. Statistical analysis 

All results were introduced in a database (MS-Excel®), and mean and standard deviation 

of each treatment were calculated. Normality and homogeneity of variance were verified 

and, when necessary, data was transformed before being treated statistically. The 

results were subjected to a multifactorial ANOVA with sampling point, feeding time and 

diet as main factors and a Tukey post-hoc test was conducted to identify differences 

between treatments. The level of significance used was p ≤ 0.05 for all statistical tests.  

3. Results 

To assess potential modulatory effects of a dietary methionine surplus in seabass 

immune status and inflammatory response, the haematological profile (haematocrit, 

haemoglobin content, respiratory burst, RBC counts, WBC counts and differential cell 

counting), and skin gut and skin mucus immune and oxidative stress mediators 

(peroxidase, proteases, catalase, LPO and SOD activities) were evaluated. The 

complete set of results is presented in the Attachments. 

3.1. Haemotology 

No significant differences were observed among groups regarding haematocrit values. 

The haemoglobin content of fish fed the experimental diets for 4 weeks and sampled at 

4 and 24 h post infection was higher than that of their counterparts, fed for 2 weeks 

(Attachments, Table 2). Moreover, it gradually decreased after infection in fish fed for 2 

weeks, while the reverse pattern was observed in fish fed for 4 weeks. Nonetheless, no 

significant differences were attributed to dietary treatments. Similarly, in fish fed dietary 

treatments for 4 weeks, MCH increased from 4 to 24 h post infection, the latter sampling 

point registering significantly higher values than those observed in fish fed for 2 weeks 

and sampled at the same post infection time (Attachments, Table 2).  

The number of RBC decreased from 4 to 24 h post infection, regardless dietary treatment 

and feeding time. Also, RBC counts were higher in fish fed CTRL for 4 weeks, than in 

those fed for 2 weeks (Attachments, Table 2). Fish fed Met2 had significantly less WBC 

than those fed CTRL, regardless of feeding time or time post infection (Fig. 1A.). 

Moreover, WBC decreased from 4 to 24 h in fish fed for 4 weeks, irrespective of diets. 

At 24 h, fish fed for 4 weeks presented lower WBC counts than their counterparts fed for 

2 weeks (Fig. 1B.). 
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Respiratory burst increased from 0 to 4 h post infection regardless of feeding time or 

dietary treatment and decreased back to basal levels at 24 h (Fig. 1C.). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Mean (± S.D.) of white blood cells (WBC, A and B) and respiratory burst (C) in European seabass fed dietary 
treatments (CTRL, Met1 and Met2) during 2 ( ) and 4 ( ) weeks (0 h), and sampled at 0, 4 and 24 h after infection. P-
values from two-way ANOVA (p ≤ 0.05). If the interaction was significant, one-way ANOVA was performed. Different 
symbols stand for significant differences between feeding times. Different lower letters indicate differences among 
sampling times. Different capital letters denote differences among dietary treatments. 

3.2. Peripheral blood leucocytes 

Regarding peripheral leucocytes, fish fed Met1 showed lower thrombocyte numbers than 

those fed CTRL, irrespective of feeding time or sampling time (Fig. 2A.). Moreover, 

thrombocytes were more abundant in fish fed for 4 weeks compared to those fed for 2 

weeks, irrespective of dietary treatment. Infection significantly decreased this cell type, 

as thrombocyte numbers in fish sampled 24 h post infection were lower than in non-

infected fish (0h). 

While the 4 weeks-feeding time significantly increased the number of lymphocytes 

relative to a 2 weeks period, fish fed for 4 weeks and sampled 4 h post infection showed 

lower lymphocyte counts than those fed for 2 weeks (Attachments, Table 3). 

Lymphocytes concentration decreased with infection, as it dropped from 0 h to 4h post 

infection in all dietary treatments. (Attachments, Table 3). Fish sampled before infection 
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sowed higher number of lymphocytes than those sampled post infection in all dietary 

treatments. (Attachments, Table 3). 

In fish fed for 2 weeks, monocytes concentration was significantly higher at 4 h post 

infection than in non-infected fish (0 h), remaining so at 24 h post infection (Fig. 2B.). 

Differently, in animals fed for 4 weeks, it gradually and significantly increased, with 

monocytes being highest at 24 h post infection. Fish fed dietary treatments for 4 weeks 

had more monocytes at 24 h than their counterparts fed for 2 weeks.  Neutrophils 

concentration followed a similar pattern, showing higher numbers at all sampling points 

in fish fed for 4 weeks, compared to those fed 2 weeks (Fig. 2C.). In both feeding periods, 

neutrophils were observed to increase from 0 h to 4 h post infection, followed by a 

decrease at 24 h. No significant effects of dietary treatments were observed on 

monocytes and neutrophils numbers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mean (± S.D.) of thrombocytes (A), monocytes (B) and neutrophils (C) in European seabass fed dietary 
treatments (CTRL, Met1 and Met2) during 2 ( ) and 4 ( ) weeks (0 h), and sampled at 0, 4 and 24 h after infection. P-
values from two-way ANOVA (p ≤ 0.05). If the interaction was significant, one-way ANOVA was performed. Different 
symbols stand for significant differences between feeding times. Different lower letters indicate differences among 
sampling times. Different capital letters denote differences among dietary treatments. 
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3.3. Mucus immune parameters 

Skin mucus peroxidase activity gradually increased from 0h to 24 h post infection, 

regardless of dietary treatment and feeding time (Fig. 3A.). 

Proteases activity also increased over time but only in fish fed CTRL. Fish fed Met2 

showed higher protease activity at 4 h post infection than before (0 h) but levels remain 

stable in fish sampled at 24 h (Fig. 3B.). In addition, at 24 h post infection, fish fed Met1 

had lower proteases activity compared to fish fed CTRL. 

 

 

 

 

 

Figure 3. Mean (± S.D.) of peroxidase (A) and protease (B) in European seabass fed dietary treatments, CTRL ( ), Met1 
( ) and Met2 ( ) weeks (0 h), and sampled at 0, 4 and 24 h after infection. P-values from two-way ANOVA (p ≤ 0.05). If 
the interaction was significant, one-way ANOVA was performed. Different lower letters indicate differences among 
sampling times. Different capital letters denote differences among dietary treatments. 

3.4. Gut immune parameters  

Gut peroxidase activity decreased upon infection only in fish fed for 2 weeks, as activity 

was lower at 4 and 24 h post infection than in non-infected fish (Fig. 4A.). Moreover, 

levels were lower in non-infected fish fed for 4 weeks, compared to those fed for 2 weeks, 

while no significant differences were attributed to dietary treatment.  

Lipid peroxidation in the gut, independently of diet and feeding time, increased upon 

infection, as activity was higher at 24 h post infection than in non-infected fish (Fig. 4B.).  

Catalase activity was enhanced at 4 h post infection in fish fed dietary treatments for 4 

weeks, compared to fish fed for 2 weeks (Fig. 4C.). However, it decreased from 4 to 24 

h post infection in fish fed for 4 weeks. No significant differences were attributed to 

different dietary treatments.  

Gut superoxide dismutase activity decreased upon infection only in fish fed for 2 weeks, 

as activity was lower at 24 h post infection than in non-infected fish (Fig. 4D.). Moreover, 

 
(A) 
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levels were lower in 24 h post infection fish fed for 2 weeks, compared to those fed for 4 

weeks, while no significant differences were attributed to dietary treatment.  

 

   

 

 

 

 

 

 

 

 

 

Figure 4. Mean (± S.D.) of peroxidase (A), lipid peroxidation activity (LPO, B), catalase (C) and superoxide dismutase 
activity (SOD, D) in European seabass fed dietary treatments during 2 ( ) and 4 ( ) weeks (0 h), and sampled at 0, 4 and 
24 h after infection. P-values from two-way ANOVA (p ≤ 0.05). If the interaction was significant, one-way ANOVA was 
performed. Different symbols stand for significant differences between feeding times. Different lower letters indicate 
differences among sampling times. 

4. Discussion 

There are already some studies reporting data regarding the effects of dietary methionine 

supplementation on the inflammatory response of European seabass to experimental 

infection. These studies are, however, focused on infection models that do not 

contemplate the specific responses of peripheral but first barrier-tissues, such as the gut 

and skin mucus. Also, only a few studies look into the innate immune response of fish 

following stimulation with the bacteria Tenacibaculum maritimum (Salati et al. 2005, 

Guardiola et al. 2019, Mabrok et al. 2016). Irrespective of dietary treatment, and as 

expected from a robust and well-established inflammatory response, both phagocytic 

cell types (monocytes and neutrophils) of the present challenged fish were readily 

recruited at early stages of the response, with numbers rising at 4 and 24 h post infection. 

Senegalese sole infected with T. maritimum presented similar trends, especially in what 

peripheral neutrophils are concerned, when these cells showed a more pronounced 

(A) 
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increase already at 4 h post infection (Guardiola et al. 2019). In parallel, fish sampled at 

4 h – irrespectively of dietary treatment or period of feeding – showed peaking levels of 

respiratory burst, which is, alongside with phagocytosis, one of the clearest functional 

markers of immune cells such as neutrophils and monocytes.  

Skin mucus proteases of infected fish were observed to increase at early stages of the 

response, rising over time and irrespective of feeding time in CTRL-fed fish, at 4 and 24 

h post infection. Moreover, skin mucus peroxidase activity followed a similar behavior 

pattern, despite it being transversal to all dietary treatments. These results are in 

accordance with those found with Senegalese sole infected with T. maritimum that 

presented similar trends in the skin mucus peroxidase activity, showing a more 

pronounced increase at 24 h post infection (Guardiola et al. 2019). Both skin mucus 

activities (protease and peroxidase) risings point for an efficient immune response in the 

skin mucus. 

Apart from a significant rising on lipid peroxidation levels, most parameters used to 

evaluate gut response to inflammation (peroxidase, catalase and superoxide dismutase) 

did not show any changes, suggesting that the infection mediated by the present model 

(T. maritimum via bath challenge) did not induce oxidative stress in this particular tissue. 

The differences observed in skin mucus immune activity and the lack of changes 

observed in the gut immune activity, suggests that in a T. maritimum bath infection, at 

least following the analyzed parameters, the immune response seems more oriented 

and focused, therefore more intense, in the fish skin mucus than in the gut. 

According to Rubin LL et al., 2007, dietary methionine has been recognized to have a 

significant role in the immune response of mammalian and their ability to modulate 

metabolic pathways involved in the improvement of a better immunologic response. 

Methionine (decarboxylated s-adenosylmethionine) is identified as a valuable 

aminopropane donor which is vital for polyamine synthesis and cell division (Grimble RF, 

2002). There is also different research that supports the idea of methionine-

supplemented diets boosting complement activity, as reported by Tang et al., 2009, in 

Jian carp, and increased plasma acid phosphatase (ACP) activity after 12 weeks of 

feeding in Senegalese sole (Costas et al., 2011). 

Data collected in the present study show effects of methionine dietary supplementation 

on immune parameters such as peripheral white blood cells (WBC) and thrombocytes 

and mucus proteases, all of them inhibited by methionine surplus. A successful fight 

against the invader highly depends on a robust recruitment of peripheral cells, 



FCUP 
Modulatory effects of methionine dietary supplementation on the European seabass (Dicentrarchus 

labrax) local and systemic immune responses against Tenacibaculum maritimum 

18 

 
 
transported in the blood. Although there are resident leucocytes in the skin and mucus 

that initially fight the bacteria, the success of an inflammatory response is very dependent 

on an efficient recruitment of peripheral cells. Therefore, a low number of leukocytes at 

the peripheral level can be negatively impact the efficiency of the local inflammatory 

response of fish against tenacibaculosis might have been compromised which is then 

determinant for disease resistance.   

As mentioned, mucus proteases were similarly impacted by methionine, with lower 

values in fish fed Met1 compared to those fed CTRL diet, 24 h post infection. As it is well 

known, Tenacibaculum maritimum, the etiologic agent of tenacibaculosis, primary infects 

adhering to body surfaces such as the head, mouth, fins and flanks, prerequisite for an 

effective establishment on the host tissue (Ofek et al., 1994; Bernardet, 1998). The 

pathogen strongly attaches itself to the external skin and mucus of fish which do not 

contain compounds that inhibits the growth of this bacterium (Magariños et al., 1995). 

The choice of the mucus layer as the localization of the bacteria suggests that 

Tenacibaculum maritimum, could be part of the autochthonous populations of the fish 

skin, utilizing fish mucus as a reservoir (Avendaño-Herrera, 2005). When present on the 

skin mucus, due to the immune response, proteases have the important role of 

restraining the adhesion of the bacteria to the matrices and thus prevent its harmful 

effect. Therefore, low values of protease activity in the fish skin mucus, as the ones 

stated on the present challenged fish (characteristic of an immunosuppressed mucus), 

can compromise the fight against the bacteria, favoring their entry into the organism 

(Magariños et al., 1995). 

5. Conclusion 

Despite the parameters of oxidative stress were, in general, not changed, methionine 

supplementation to experimental diets weakened cellular recruitment in fish fed these 

diets and subsequently infected with T. maritimum.  Their mucus protease content was 

also compromised, leading to conclude that the fish would be slightly 

immunosuppressed. Taking into account that these results appear contradictory to those 

obtained in previous works, and that methionine supplementation effects had never been 

tested within this particular frame (model of T. maritimum infection by bath challenge) it 

would be important to further study other underlying mechanisms (in-depth studies such 

as methionine toxicity, mucus proteomics and skin transcriptomic) and possibly to repeat 

the trial.  
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Attachments 

Haematology 

Table 2. Haematocrit, haemoglobin, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), red blood cells (RBC) and white 

blood cells (WBC) in European seabass fed dietary treatments during 2 and 4 weeks (0 h), and sampled at 4 and 24 h after infection. 

Parameters   2 Weeks         

   CTRL   MET1   MET2   

   0 h 4 h 24 h 0 h 4 h 24 h 0 h 4 h 24 h 

Haematocrit (%)  31.42 ± 1.16 28.59 ± 0.98 27.45 ± 1.06 31.06 ± 1.15 29.11 ± 0.84 29.86 ± 0.82 29.46 ± 1.26 30.93 ± 0.54 29.65 ± 1.17 

Haemoglobin (g dl)  1.10 ± 0.14 1.08 ± 0.20 0.93 ± 0.41 1.05 ± 0.37 1.05 ± 0.33 0.95 ± 0.19 1.20 ± 0.24 1.17 ± 0.21 0.94 ± 0.18 

MCV (µm3)  122.19 ± 16.70 100.31 ± 14.06 117.16 ± 27.62 107.81 ± 21.82 106.30 ± 6.24 125.77 ± 36.81 102.15 ± 22.98 112.74 ± 19.60 116.66 ± 23.40 

MCH (pg cell-1)  4.94 ± 0.64 4.71 ± 0.43 5.14 ± 1.86 4.27 ± 1.88 4.10 ± 2.06 5.04 ± 1.01 5.03 ± 1.30 4.90 ± 0.82 4.42 ± 0.59 

MCHC (g 100 ml-1)  4.13 ± 0.86 4.79 ± 0.88 4.19 ± 1.67 3.77 ± 1.46 4.38 ± 1.15 3.73 ± 0.98 5.18 ± 1.86 4.44 ± 0.98 4.00 ± 0.78 

RBC (x106 µl-1)  2.22 ± 0.26 2.28 ± 0.27 1.90 ± 0.43 2.51 ± 0.34 2.28 ± 0.33 1.96 ± 0.52 2.44 ± 0.32 2.42 ± 0.50 2.16 ± 0.51 

WBC (x104 µl-1)  6.03 ± 1.20 6.10 ± 1.06 4.95 ± 0.95 5.61 ± 0.67 5.48 ± 1.40 4.92 ± 0.72 5.04 ± 0.65 5.68 ± 1.35 4.62 ± 0.74 

Respiratory burst RLU  346.75 ± 72.62 5111.28 ± 5087.94 756.63 ± 224.35 385.56 ± 126.16 3557.61 ± 2655.44 743.28 ± 166.45 378.94 ± 43.64 4921.39 ± 3270.27 814.39 ± 271.82 

 

  4 Weeks         

 

  CTRL   MET1   MET2   

 

  0 h 4 h 24 h 0 h 4 h 24 h 0 h 4 h 24 h 

Haematocrit (%)  - - - - - - - - - 

Haemoglobin (g dl)  1.32 ± 0.52 1.39 ± 0.29 2.39 ± 0.46 1.29 ± 0.50 1.45 ± 0.68 2.99 ± 1.21 1.36 ± 0.41 1.21 ± 0.27 2.67 ± 0.43 

MCV (µm3)  - - - - - - - - - 

MCH (pg cell-1)  4.83 ± 1.51 5.36 ± 1.57 11.26 ± 3.50 5.40 ± 1.84 5.87 ± 2.79 12.66 ± 4.29 5.34 ± 3.05 4.88 ± 0.96 12.612 ± 2.66 

MCHC (g 100 ml-1)  - - - - - - - - - 

RBC (x106 µl-1)  2.69 ± 0.56 2.73 ± 0.68 2.23 ± 0.53 2.39 ± 0.59 2.51 ± 0.31 2.40 ± 0.48 2.31 ± 0.50 2.49 ± 0.40 2.14 ± 0.21 



FCUP 
Modulatory effects of methionine dietary supplementation on the European seabass (Dicentrarchus 

labrax) local and systemic immune responses against Tenacibaculum maritimum 

2 

 
 
WBC (x104 µl-1)  7.57± 1.72 5.92 ± 1.42 6.10 ± 1.07 6.98 ± 1.07 5.36 ± 1.49 5.51 ± 1.36 6.10 ± 0.65 6.13 ± 0.53 5.53 ± 1.79 

Respiratory burst RLU  489.61 ± 149.29 4199.17 ± 2992.50 968.72 ± 642.43 515.83 ± 132.23 4513.83 ± 4013.59 1302.00 ± 1157.69 499.39 ± 88.30 3812.61 ± 3187.77 953.50 ± 635.59 

Multifactorial ANOVA 

Parameters 
Feeding 

time 
Diet 

Sampling 

time 

Feeding 

time 

× Diet 

Feeding 

time × 

Sampling 

time 

Diet × 

Sampling 

time 

Feeding time × 

Diet 

× Sampling time 

Diet 
Sampling 

time 

Feeding time × Diet 
Feeding time × 

Sampling time 

2 weeks 4 weeks 2 weeks 4 weeks 

CTRL MET1 MET2 0h 4h 24h CTRL MET1 MET2 CTRL MET1 MET2 0h 4h 24h 0h 4h 24h 

Haematocrit - - - - - - - - - - - - - - - - - - - - - - - - - 

Haemoglobin < 0.001 - < 0.001 - < 0.001 - - - - - - - - - - - - - - a ab# b# b b* a* 

MCV - - - - - - - - - - - - - - - - - - - - - - - - - 

MCH < 0.001 - < 0.001 - < 0.001 - - - - - - - - - - - - - - - - # b b a* 

MCHC - - - - - - - - - - - - - - - - - - - - - - - - - 

RBC 0.008 - < 0.001 0.041 - - - - - - a a b # - - * - - - - - - - - 

WBC < 0.001 0.019 < 0.001 - 0.019 - - A AB B - - - - - - - - - - - # a a b* 

Respiratory 

burst 
- - < 0.001 - - - - - - - b a b - - - - - - - - - - - - 

Values are presented as means ± SD (n=9). P-values from two-way ANOVA (p ≤ 0.05). If the interaction was significant, the Tukey post hoc test was used to identify differences in the experimental 

treatments. Different symbols stand for significant differences between feeding times. Different lower letters indicate differences among sampling times. Different capital letters denote differences 

among dietary treatments. 
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Peripheral blood leucocytes 

Table 3. Absolute values of peripheral blood leucocytes (thrombocytes, lymphocytes, monocytes and neutrophils) of European seabass fed dietary treatments during 2 and 4 weeks (0 h), and sampled 

at 4 and 24 h after infection. 

Parameters   2 Weeks         

   CTRL   MET1   MET2   

   0 h 4 h 24 h 0 h 4 h 24 h 0 h 4 h 24 h 

Thrombocytes 

(×104 µl-1) 

 5.11 ± 1.09 5.04 ± 0.92 4.23 ± 0.81 4.85 ± 0.74 4.20 ± 0.97 4.15 ± 0.82 4.58 ± 0.44 4.70 ± 1.01 3.95 ± 0.71 

Lymphocytes  0.79 ± 0.38 0.40 ± 0.16 0.35 ± 0.20 0.61 ± 0.24 0.49 ± 0.22 0.32 ± 0.12 0.44 ± 0.18 0.31 ± 0.15 0.36 ± 0.11 

Monocytes  0.09 ± 0.07 0.20 ± 0.11 0.23 ± 0.14 0.08 ± 0.05 0.22 ± 0.14 0.20 ± 0.20 0.05 ± 0.4 0.19 ± 0.10 0.20 ± 0.11 

Neutrophils  0.02 ± 0.01 0.23 ± 0.13 0.07 ± 0.05 0.03 ± 0.02 0.29 ± 0.15 0.13 ± 0.07 0.03 ± 0.03 0.24 ± 0.14 0.11 ± 0.07 

 

  4 Weeks         

 

  CTRL   MET1   MET2   

 

  0 h 4 h 24 h 0 h 4 h 24 h 0 h 4 h 24 h 

Thrombocytes 

(×104 µl-1) 

 5.46 ± 0.90 4.91 ± 1.34 5.14 ± 0.89 5.40 ± 0.80 3.99 ± 0.79 4.44 ± 0.98 4.89 ± 0.67 5.08 ± 0.45 4.66 ± 1.70 

Lymphocytes  1.95 ± 1.18 0.31 ± 0.22 0.34 ± 0.07 1.38 ± 0.46 0.20 ± 0.07 0.38 ± 0.26 1.10 ± 0.25 0.35 ± 0.14 0.38 ± 0.12 

Monocytes  0.07 ± 0.05 0.21 ± 0.11 0.36 ± 0.20 0.08 ± 0.06 0.24 ± 0.23 0.35 ± 0.20 0.03 ± 0.03 0.16 ± 0.09 0.28 ± 0.07 

Neutrophils  0.08 ± 0.08 0.51 ± 0.36 0.26 ± 0.12 0.12 ± 0.10 0.88 ± 0.62 0.21 ± 0.11 0.08 ± 0.06 0.55 ± 0.24 0.22 ± 0.1 
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Multifactorial ANOVA 

Parameters 
Feeding 

time 
Diet 

Sampling 

time 

Feeding 

time 

× Diet 

Feeding 

time × 

Sampling 

time 

Diet × 

Sampling 

time 

Feeding 

time × 

Diet 

× 

Sampling 

time 

Feeding 

time 
Diet 

Sampling 

time 

Feeding time × Sampling 

time 
Diet × Sampling time 

2 weeks 4 weeks CTRL MET1 MET2 

2 w 4 w CTRL MET1 MET2 0h 4h 24h 0h 4h 24h 0h 4h 24h 0h 4h 24h 0h 4h 24h 0h 4h 24h 

Thrombocytes 0.020 0.020 0.004 - - - - x y A B AB a ab b - - - - - - - - - - - - - - - 

Lymphocytes < 0.001 0.008 < 0.001 - < 0.001 0.002 -   - - -  - - - # * - * # - a b b a b b a b b 

Monocytes - - < 0.001 - 0.012 - -   - - - - - - b a a# c b a* - - - - - - - - - 

Neutrophils < 0.001 - < 0.001 - < 0.001 - -   - - - - - - c# a# b# b* a* b* - - - - - - - - - 

Values are presented as means ± SD (n=9). P-values from two-way ANOVA (p ≤ 0.05). If the interaction was significant, the Tukey post hoc test was used to identify differences in the experimental 

treatments. Different symbols stand for significant differences between feeding times. a, b and c indicate differences among sampling times. x and y stand for significant differences between feeding 

times. Different capital letters denote differences between dietary treatments. 
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Immune parameters Mucus 

Table 4. Peroxidase and protease in European seabass fed dietary treatments during 2 and 4 weeks (0 h), and sampled at 4 and 24 h after infection. 

Parameters   2 Weeks         

   CTRL   MET1   MET2   

   0 h 4 h 24 h 0 h 4 h 24 h 0 h 4 h 24 h 

Peroxidase (Uperox ml-1)  6.03 ± 2.33 8.19 ± 3.66 8.61 ± 3.04 7.63 ± 2.15 7.54 ± 2.06 9.45 ± 2.50 5.42 ± 1.89 7.80 ± 2.85 8.51 ± 2.54 

Protease (%)  5.23 ± 1.72 8.68 ± 1.69 12.79 ± 0.79 7.41 ± 1.95 8.54 ± 1.77 10.16 ± 2.36 5.60 ± 1.48 8.94 ± 1.31 10.14 ± 3.13 

            

 

  4 Weeks         

 

  CTRL   MET1   MET2   

 

  0 h 4 h 24 h 0 h 4 h 24 h 0 h 4 h 24 h 

Peroxidase (Uperox ml-1)  3.82 ± 1.52 5.57 ± 2.81 6.94 ± 2.82 3.73 ± 0.87 5.09 ± 1.89 6.91 ± 2.14 3.79 ± 1.91 5.88 ± 1.75 7.45 ± 1.89 

Protease (%)  4.63 ± 1.75 7.86 ± 0.77 10.29 ± 2.33 6.06 ± 1.27 8.93 ± 1.22 7.21 ± 0.57 4.11 ± 1.05 8.53 ± 3.34 10.25 ± 0.74 

            

Multifactorial ANOVA 

Parameters 
Feeding 

time 
Diet 

Sampling 

time 

Feeding 

time 

× Diet 

Feeding 

time × 

Sampling 

time 

Diet × 

Sampling 

time 

Feeding 

time × 

Diet 

× 

Sampling 

time 

Feeding time Diet 
Sampling 

time 

Feeding time × 

Sampling time 
Diet × Sampling time 

2 weeks 4 weeks CTRL MET1 MET2 

2 w 4 w CTRL MET1 MET2 0h 4h 24h 0h 4h 24h 0h 4h 24h 0h 4h 24h 0h 4h 24h 0h 4h 24h 

Peroxidase < 0.001 - < 0.001 - - - - x y - - - c b a - - - - - - - - - - - - - - - 

Protease 0.01 - < 0.001 - - 0.012 -   - - - - - - - - - - - - c b aA - - B b a aAB 
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Values are presented as means ± SD (n=9). P-values from two-way ANOVA (p ≤ 0.05). If the interaction was significant, the Tukey post hoc test was used to identify differences in the experimental 

treatments. Different symbols stand for significant differences between feeding times. Different lower letters indicate differences among sampling times. Different capital letters denote differences 

between dietary treatments. 

Immune parameters Gut 

Table 5. Peroxidase, lipid peroxidation (LPO), Catalase and superoxide dismutase in European seabass fed dietary treatments during 2 and 4 weeks (0 h), and sampled at 4 and 24 h after infection. 

Parameters   2 Weeks         

   CTRL   MET1   MET2   

   0 h 4 h 24 h 0 h 4 h 24 h 0 h 4 h 24 h 

Peroxidase (Uperox ml-1)  70.74 ± 11.36 42.87 ± 26.62 41.85 ± 16.19 79.10 ± 22.38 34.48 ± 21.92 54.31 ± 23.15  68.66 ± 44.55  60.62 ± 24.67  40.09 ± 21.01 

LPO (nmol gwt-1)  19.88 ± 10.20  21.78 ± 9.54 19.76 ± 11.64 18.28 ± 11.89 24.10 ± 9.59 22.03 ± 8.92 19.54 ± 11.35 23.90 ± 3.55 22.06 ± 6.57 

Catalase (U mg-1)  51.81 ± 16.38 43.11 ± 8.25 36.94 ± 13.57 45.18 ± 13.32 39.92 ± 19.44 38.96 ± 8.49 49.62 ± 12.47 42.88 ± 11.86 43.33 ± 13.38 

SOD (U mg prot-1)  4.45 ± 1.81 4.17 ± 1.33 2.44 ± 0.57 3.46 ± 2.26 3.41 ± 1.05 2.59 ± 0.76 5.39 ± 1.55 2.92 ± 1.48 3.69 ± 1.13 

            

 

  4 Weeks         

 

  CTRL   MET1   MET2   

 

  0 h 4 h 24 h 0 h 4 h 24 h 0 h 4 h 24 h 

Peroxidase (Uperox ml-1)  42.06 ± 11.37 65.05 ± 26.80 34.12 ± 11.51 42.52 ± 30.71  56.10 ± 20.19 40.13 ± 20.30 35.47 ± 8.65 41.38 ± 28.16 47.17 ± 17.34 

LPO (nmol gwt-1)  19.26 ± 8.80 14.56 ± 7.13 27.96 ± 12.68 15.71 ± 10.92 18.30 ± 7.13  23.81 ± 9.45 15.67 ± 7.50  16.83 ± 10.29  20.73 ± 8.62  

Catalase (U mg-1)  54.77 ± 8.67 51.56 ± 12.30 33.92 ± 14.94 53.63 ± 9.25 53.01 ± 10.39 41.03 ± 6.42 52.80 ± 11.02 55.09 ± 9.17 42.57 ± 7.65 

SOD (U mg prot-1)  4.31 ± 1.49 3.40 ± 1.60 4.80 ± 1.95 2.61 ± 0.53 5.02 ± 1.31 4.34 ± 1.98 3.28 ± 1.93 4.06 ±1.77  4.05 ± 1.64 
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Multifactorial ANOVA 

Parameters 
Feeding 

time 
Diet 

Sampling 

time 

Feeding 

time 

× Diet 

Feeding 

time × 

Sampling 

time 

Diet × 

Sampling 

time 

Feeding time × 

Diet 

× Sampling time 

Diet 
Sampling 

time 

Feeding time × Diet 
Feeding time × 

Sampling time 

2 weeks 4 weeks 2 weeks 4 weeks 

CTRL MET1 MET2 0h 4h 24h CTRL MET1 MET2 CTRL MET1 MET2 0h 4h 24h 0h 4h 24h 

Peroxidase 0.014 - 0.022 - < 0.001 - - - - - - - - - - - - - - a* b b # - - 

LPO - - 0.049 - - - - - - - b ab a - - - - - - - - - - - - 

Catalase 0.008 - < 0.001 - 0.042 - - - - - - - - - - - - - - - # - a a* b 

SOD - - - - 0.001 - - - - - - - - - - - - - - a ab b# - - * 

                          

Values are presented as means ± SD (n=9). P-values from two-way ANOVA (p ≤ 0.05). If the interaction was significant, the Tukey post hoc test was used to identify differences in the experimental 

treatments. Different symbols stand for significant differences between feeding times. Different lower letters indicate differences among sampling times. Different capital letters denote differences 

among dietary treatments. 
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