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Abstract

For modern data links with high data rates, optical fibers are used, which are particularly characterized
by their high usable bandwidth combined with low attenuation. Thus, with the help of dense wavelength
multiplexing, a high number of channels can be transmitted over long distances on a bandwidth of more
than 11.4 THz.

To keep spectral efficiency as high as possible over this bandwidth, a highly granular modulation
format is also required in addition to said dense multiplexing. However, as the transmission distance
increases, so does the noise power, which makes it necessary to use higher and higher transmission
powers to be able to transmit high-level modulation formats.

But this is hindered by the inherent nonlinearity of the fiber-optic channel. Thus, as signal powers
increase, so do the nonlinear interferences, which ultimately limits the transmit power in turn the
maximum spectral efficiency. It is therefore necessary to control the influence of these nonlinearities.

One approach, which was already pursued in the 1980s and 1990s, was the use of so-called solitons.
Solitons are stable pulse shapes, which propagate linearly and maintain their shape despite the highly
nonlinear channel. A challenge in the use of these signal pulses in optical data transmission is to
multiplex them with high efficiency.

One way to multiplex many solitons is the nonlinear Fourier transform (NFT). With the help of the
NFT, signal spectra can be calculated which propagate linearly through a nonlinear channel. Thus, in
perspective, it is possible to perform linear transmissions even in highly nonlinear regions with high
signal power levels. The NFT decomposes a signal into a dispersive and a solitonic part. The dispersive
part is similar to spectra of the conventional linear Fourier transform and dominates especially at low
signal powers. As soon as the total power of a signal exceeds a certain limit, solitons arise.

A disadvantage of solitons generated digitally by the NFT is their complex shape due to, for example,
high electrical bandwidths or a poor peak-to-average power ratio.

In the course of this work, a scalable system architecture of a photonic integrated circuit based on a
silicon chip was designed, which allows to multiplex several simple solitons tightly together to push the
complex electrical generation of higher order solitons into the optical domain. This photonic integrated
circuit was subsequently designed and fabricated by the Institute of Integrated Photonics at RWTH
Aachen University.

Using this novel system architecture and additional equalization concepts designed in this work,
soliton transmissions with up to four channels could be successfully realized over more than 5000 km
with a very high spectral efficiency of 0.5 b/s/Hz in the soliton range.



Kurzfassung

Für moderne Datenverbindungen mit hohen Datenraten werden Glasfasern verwendet, die sich besonders
durch ihre hohe nutzbare Bandbreite bei gleichzeitig niedriger Dämpfung auszeichnen. So können mit
Hilfe von dichtem Wellenlängenmultiplexing eine hohe Anzahl an Kanälen auf einer Bandbreite von
mehr als 11,4 THz über Weitverkehrsdistanzen übertragen werden.

Um die spektrale Effizienz über diese Bandbreite möglichst hoch zu halten, ist neben besagtem
dichtem Multiplexing außerdem ein feingranulares Modulationsformat nötig. Da mit steigender Über-
tragungsdistanz jedoch auch die Rauschleistung steigt, ist es nötig, immer höhere Sendeleistungen zu
nutzen, um diese hochstufigen Modulationsformate empfangen zu können.

Dies wird jedoch durch die inhärente Nichtlinearität des faseroptischen Kanals behindert. Mit
steigenden Signalleistungen steigen so auch die nichtlinearen Störungen. Dadurch werden schlussendlich
die Sendeleistung und die maximale spektrale Effizienz begrenzt. Es ist daher nötig, den Einfluss dieser
Nichtlinearitäten zu beherrschen.

Ein Ansatz, der bereits in den 1980er und 1990er Jahren verfolgt wurde, war der Einsatz von
sogenannten Solitonen. Stabile Pulsformen, die sich trotz des hoch nichtlinearen Kanals linear ausbreiten
und ihre Form aufrechterhalten, kennzeichnen Solitonen. Eine Herausforderung bei der Nutzung dieser
Signalpulse in der optischen Datenübertragung ist es, diese hocheffizient zu multiplexen.

Eine Möglichkeit viele Solitonen zu multiplexen, ist die nichtlineare Fouriertransformation (NFT).
Mit Hilfe der NFT lassen sich Signalspektren berechnen, welche sich linear durch einen nichtlinearen
Kanal ausbreiten. So ist es perspektivisch möglich, auch in hoch nichtlinearen Bereichen mit hoher
Signalleistung lineare Übertragungen durchzuführen. Die NFT zerlegt ein Signal in einen dispersiven
und einen solitonischen Anteil. Der dispersive Anteil ist ähnlich zu Spektren der herkömmlichen,
linearen Fouriertransformation und dominiert besonders bei niedrigen Signalleistungen. Sobald die
Gesamtleistung eines Signals eine bestimmte Grenze überschreitet entstehen die Solitonen.

Ein Nachteil von digital durch die NFT erzeugten Solitonen ist ihre komplexe Form aufgrund der
hohen elektrischen Bandbreiten oder einem schlechten Verhältnis von Spitzen- zu Durchschnittsleistung.

Im Laufe dieser Arbeit wurde eine skalierbare Systemarchitektur eines photonischen integrierten
Schaltkreises auf Basis eines Siliziumchips entworfen, die es ermöglicht, mehrere einfache Solitonen eng
miteinander zu multiplexen, um so die komplexe elektrische Erzeugung von Solitonen höherer Ordnung
in die optische Domäne zu verlagern. Dieser Chip wurde anschließend vom Lehrstuhl für integrierte
Photonik der RWTH Aachen entworfen und hergestellt.

Mit Hilfe dieser Systemarchitektur und zusätzlich in dieser Arbeit entwickelten Entzerrungskonzepten
konnten Solitonübertragungen mit bis zu vier Kanälen mit einer im Solitonbereich sehr hohen spektralen
Effizienz von 0,5 b/s/Hz über mehr als 5000 km erfolgreich realisiert werden.



iv



Table of Contents

1 Introduction 1
1.1 Development of Optical Communications . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Exponential Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Capacity Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Fiber-Optic Transmission Systems 5
2.1 Transmission Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Nonlinear Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Nonlinear Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Common Fiber Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Transmitter Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Receiver Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The Nonlinear Fourier Transform 23
3.1 Mathematical Derivation of the NFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Spatial Evolution of the NFT Spectrum . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Mathematical Methods for Solving the INFT . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 NFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



Table of Contents

3.3.2 INFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Fast I-/NFTs and Higher Order Discretizations . . . . . . . . . . . . . . . . . . . 40

3.4 NFT of Conventional Pulses and Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Rectangular Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Si Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Conventional Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Soliton Modulation and Multiplexing 45
4.1 Soliton Transmissions in the Framework of the NFT . . . . . . . . . . . . . . . . . . . . 45
4.2 Physical Properties of Eigenvalue Modulation . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 First Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Higher Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Linear multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Effects of Linear Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Requirement Reduction Using Linear Multiplexing . . . . . . . . . . . . . . . . . 55

5 System Impairments & Equalisation 59
5.1 Impact of Bandwidth Limitations on the Discrete NFT Spectrum . . . . . . . . . . . . . 60
5.2 Impact of Noise on the Discrete NFT Spectrum . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 b-Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1 Linear MMSE Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 Nonlinear MMSE Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Experimental Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 Experimental Perturbation Correlations . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.3 Linear and Nonlinear MMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.4 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Electronic Photonic Signal Processing for NFT Transmitters 91
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Silicon Photonics Integrated Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vi



Table of Contents

6.2.1 Concept and Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.2 Design and Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.2 Two Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.3 Four Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Conclusions 113
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

List of Figures 119

List of Tables 125

Acronyms 127

Bibliography 131

Veröffentlichungen des Autors 145

vii



Table of Contents

viii



Chapter 1

Introduction

1.1 Development of Optical Communications

Fiber optic transmissions were first proposed and theoretically and experimentally conceived by Charles
K. Kao in 1966 [1]. This can be seen as the early birth of an innovative and rapid development that led to
the first fiber optic transmissions in 1978 [2]. In the early phases of fiber optic development, the focus was
on minimizing fiber attenuation in order to increase amplifier distances. To amplify the optical signals,
electrical amplifiers were initially used, which required an optical-electrical and vice versa conversion.
Thus, the usable bandwidth in optical systems was limited by the electrical components. It was not
until the discovery of optical amplifiers such as the Erbium-doped fiber amplifier (EDFA) in 1987 that
the large available bandwidth in optical fiber could be used. This led to the first commercial wavelength
division multiplexing (WDM) system in 1989 [3] (using two carriers) and impactful work in the scope
of WDM in 1992 [2] and the first WDM systems with more than two carriers in 1995 [2] and up to
160 carriers in 2000 with also automatic reconfigurability using optical add-drop multiplexers (OADM).
Hence, in combination with other inventions, the transmission rates of commercial systems doubled
annually in the 1990s to 2000s [3]. Coherent detection then led since 2007 to the fact that not only the
intensity, but also the phase as well as the polarization could be used as a degrees freedom, which leads
us to our current transmission systems.

1.2 Motivation

Current transmission networks show exponential growth with estimated compound annual growth
rates (CAGR) of 26 % [4] (Fig. 1.1) to 60 % [5] per year. This is characterised by almost daily record
throughputs in internet hubs such as DE-CIX in Frankfurt as shown in Fig. 1.2.
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Chapter 1. Introduction

Figure 1.1: Global IP traffic growth [4].

Figure 1.2: Traffic exchange at the internet exchange point DE-CIX in Frankfurt [6]. Copyright: DE-CIX
Management GmbH.

1.2.1 Exponential Growth

In order to meet the exponential increase in demand for IT-supported communication, the capacity
of transmission networks must grow exponentially in accordance to the speeds of electrical interfaces,
devices and computing power. This technological scaling is conservatively estimated in the range of 40 %
per year, while the scaling of optical interfaces and channel capacities is growing at only about 20 %
[3][7] (Fig. 1.3a). Various approaches are proposed to increase this growth. One promising approach
is space-division multiplexing (SDM)[3][8]. While the dimensions of time, quadrature, polarization
and frequency have already been exhausted, the dimension of space is currently hardly used. So one
approach is to deploy multi-core fibers, where the use of parallel spatial paths complements wavelength
scalability (WDM). However, all approaches sooner or later run into the so-called non-linear Shannon
capacity limit.

2



1.2. Motivation

(a) Evolution of commercial optical systems and extrapolation
for the coming years [3][7].

(b) Spectral efficiency after transmission for vari-
ous distances.[9].

Figure 1.3: Development of commercial optical systems and one of the reasons for the relatively slow
development. By increasing the transmit power, non-linearities lead to a reduction in efficiency despite
increased SNR.

1.2.2 Capacity Limit

The conventional, linear Shannon limit describes the maximum capacity of a linear channel as a function
of the signal-to-noise ratio (SNR). However, this can only be applied to the optical channel for low
transmission powers, as the optical fiber is a non-linear medium. Thus, non-linear interferences prevent
a further increase of the capacity along the linear Shannon limit and eventually even cause a drop of
the capacity if the non-linear interferences are not compensated [9], as shown in Fig. 1.3b. In [9], five
WDM channels were modulated using an APSK modulated sinc signal (ideal rectangular spectrum)
with 16 amplitude levels. The number of points per ring was varied to change the spectral efficiency. It
can be seen that above a certain SNR, the spectral efficiency no longer follows the linear efficiency limit.
It can clearly be seen that this is also dependent on the transmission distance and thus the accumulated
non-linearity. Hence, the SNR at which the capacity is highest decreases by 3 dB when the distance
is doubled. In order to stay close to the linear Shannon limit, it is necessary to compensate for the
emerging non-linearities, especially for long transmission distances.

One approach used in the past are solitons. Solitons can play off properties of the optical channel
such as dispersion and nonlinearities to maintain their shape even at higher transmit powers. How-
ever, one disadvantage of solitons is their intrinsically low spectral efficiency, which is why research
has turned away from them. A relatively new approach, however, is the so-called nonlinear Fourier
transform (NFT)[10][11]. The NFT can decompose any signals into solitonic and dispersive components,
which propagate linearly through the nonlinear channel. It has been shown that at high transmission

3
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powers, a large proportion of the signal energy is solitonic in nature [12], and so signals with high
transmission power are in fact made up of many superimposed solitons. Thus, with the help of solitons
and the NFT, it may be possible to overcome the non-linear capacity limit and comply with exponential
traffic growth.

The aim of this work is to show how soliton transmissions can be used and potentially improved in
the NFT framework to eventually enable spectral efficiencies even in high power ranges.

1.3 Outline

This work is organized as follows: besides the introduction, there are six other chapters in this thesis. In
chapter two, the optical transmission channel including optical transmission and reception concepts will
be explained. Special attention will be paid to the fiber and the solitons and their physical background.
Chapter three explains the mathematical concept of NFT. Subsequently, in chapter four, solitons in the
framework of NFT will be explained. Possibilities to modulate and demodulate solitons with the help of
NFT will be shown. This will be extended with multiplexing methods, which include digital, non-linear
multiplexing as well as linear multiplexing. Chapter five shows possibilities to equalize solitons with the
help of NFT and new digital equalizers and thus make them more robust against interfering channel
influences and noise. Chapter six introduces electronic-photonic signal processing and shows how it can
be used to create complex solitons to achieve high spectral efficiencies on scalable bandwidths to reach
record spectral efficiencies in the area of soliton transmissions. Subsequently, this work is summarised
and an outlook on further possibilities and research topics of NFT transmission is given in a conclusion.
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Chapter 2

Fiber-Optic Transmission Systems

Just like any other transmission system, the fiber optic transmission system consists of a channel
and components such as the transmitter, receiver, amplifiers and filters. The most indicative part
of the fiber optic transmission system is the complex nature of pulse propagation of light through
the fiber. In contrast to channels such as the radio- or electrical channel, the fiber optic channel is
dispersive and nonlinear in nature. To mathematically describe the fiber optical channel, the nonlinear
Schrödinger equation (NLSE) is used. This chapter is structured as follows: First, the characteristic
effects of the pulse propagation through an optical fiber such as attenuation, dispersion and nonlinear
effects are described and elaborated. Afterwards, these properties get summarized in the nonlinear
Schrödinger equation and its solution being the solitons. To finalize this chapter, system components of
the transmission channel shall be introduced and explained.

2.1 Transmission Channel

The main part of a long-haul fiber optic transmission system is the channel, which is described in this
section. Since only single-mode fibers and only one polarization of light is used in later parts of this
work, the focus in this section lays on the fiber losses, the group-velocity dispersion and nonlinear phase
modulation. These effects get summarized by the NLSE, which can be solved by special pulse-shapes
named solitons which keep their shape during transmission, by balancing the dispersion with nonlinear
phase modulation.

2.1.1 Attenuation

During transmission, the propagating optical wave gets attenuated by effects such as Rayleigh scattering,
material absorption and waveguide imperfections.

5



Chapter 2. Fiber-Optic Transmission Systems

Microscopic local fluctuations in density lead to Rayleigh scattering, which is a fundamental loss
mechanism [13]. These density fluctuations lead to changes of the refractive index, leading to the
intrinsic loss of silica fibers αR between 0.12 to 0.16 dB/km at λ = 1550 nm.
Material absorption is subdivided into intrinsic- (absorption by fused silica, the material used to make
fibers) and extrinsic (losses due to impurities within silica) absorption losses. In modern AllWave fibers,
this additional loss can be as low as 0.03 dB/km for wavelengths between 1300 to 1600 nm [13].
In addition to this, waveguide imperfections such as random core-radius variations and fiber bends lead
to losses in the region of 0.03 dB/km [13].
In total, the attenuation of a standard single-mode fiber (SSMF) is in the region of αdB = 0.2 dB/km
for wavelengths in the region of λc = 1550 nm [2][13].

2.1.2 Dispersion

Dispersion in the context of fiber optic communications is the physical process, which leads to pulse
broadening. This is mainly due to the chromatic dispersion, which describes dependence of the effective
refractive index neff in an optical fiber on the frequency of the signal [13] and in turn leads to different
phase velocities. Besides chromatic dispersion, there is also polarization mode dispersion due to different
group velocities of the two polarization components and, in the case of multi-mode fibers, intermodal
dispersion, which is based on the fact that different modes have different phase paths, has to be taken
into account. In this chapter, chromatic dispersion will be discussed, since only single-mode fibers and
the transmission on only one polarization was being studied.

Chromatic Dispersion

The chromatic dispersion D with the commonly used unit [ ps
nm·km ] is a combined effect of material

dispersion and waveguide dispersion. Material dispersion (DM ) results from the refractive index of silica
being dependent on the optical frequency ω, due to characteristic resonance frequencies at which the
material absorbs electromagnetic radiation [13]. Waveguide dispersion (DW ) on the other hand is a
result of the different refractive indices of the core and the cladding of a fiber. Due to the dependence
of the mode field geometry on frequency, the percentage of energy of a wave which goes through the
cladding or the core depends on the frequency. This leads to different effective refractive indices neff(ω)
for different frequencies. In SSMF, the waveguide dispersion leads to a dispersion shift of 30-40 nm.
Since DW is dependent on fiber parameters such as the core radius and refractive index differences,
it is possible to design fibers with a zero dispersion close to 1550 nm. These kind of fibers are called
dispersion shifted fiber (DSF). To compare the dispersion depending on the wavelength of SSMF and
DSF, Fig. 2.1 shows dispersion curves for both fiber types. To describe the effect of dispersion on the
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2.1. Transmission Channel

Figure 2.1: Approximated dispersion parameter D depending on the wavelength for standard single
mode fiber and dispersion shifted fiber. [13]

phase velocity vph, the propagation constant β(ω) is used according to [13][14]

vph(ω) = ω

β(ω) = c0

neff(ω) . (2.1)

Mathematically, the dependence of the propagation constant β(ω) of the considered mode is described
with the help of a Taylor series expansion around ω0

β(ω) = neff(ω) ω
c0

= β0 + β1(ω − ω0) + 1
2β2(ω − ω0)2 + 1

6β3(ω − ω0)3 + ..., (2.2)

with βm = (dmβ/dωm)ω=ω0 . Here, β1 leads to the group velocity vg = 1/β1 and β2 to the resulting
group velocity dispersion, which concludes in the dispersion parameter D according to [13][14]

D = dβ1

dλ = −2πc0

λ2 β2 ≈ λ

c0

d2neff

dλ2 . (2.3)

At normal dispersion (D < 0) waves with higher frequencies propagate slower, while at anomalous
dispersion (D > 0) waves with higher frequencies propagate faster. Finally, the last relevant part of the
Taylor series expansion β3 is describing the dispersion slope.

2.1.3 Nonlinear Effects

If the system response, through which the light wave is sent, depends on the intensity of the light, one
speaks of nonlinear transmission. One cause is the dependence of the refractive index of the medium on
the intensity of the light wave, leading to a power dependent phase shift. This is called the Kerr effect
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[13][14]. In addition, there are scattering processes resulting from an interaction of the light with the
lattice structure of the medium. This results in Raman scattering and Brillouin scattering [13][14]. In
the NLSE, only the Kerr effect and the resulting spectral broadening are considered. To describe these,
the nonlinear coefficient γ is used. This coefficient is described as

γ = ωn2

c0Aeff
, (2.4)

and is commonly given in [ 1
W·km ]. Here, n2 is the intensity dependent refractive index and Aeff the

effective mode field size. The resulting nonlinear phase shift during transmission can then be described
as follows

∆ΦNL = −γP0Leff, (2.5)

where P0 is the input power and Leff the effective fiber length, which describes the length of an
attenuation-free fiber with the same resulting nonlinear phase shift according to

Leff = [1 − exp(−αL)]/α. (2.6)

Kerr effect (spectral broadening)

The most important outcomes of the Kerr effect are self-phase modulateion (SPM), cross-phase modula-
tion (XPM) and four-wave mixing (FWM) [14].

Self-Phase Modulation

The effect SPM behaves similarly to the effect of dispersion, afterall it changes the phase of the light
depending on some parameters. The effects of SPM and dispersion can reinforce each other, but at the
same time they can also compensate each other as will be discussed in Section 2.1.5. The nonlinear
phase rotation ∆ΦNL causes a frequency offset of the carrier light wave [14]:

∆fNL(t) = 1
2π

d
dt∆ΦNL(t). (2.7)

Due to a time-varying carrier envelope amplitude A(t), the phase rotation is caused by the temporal
change of the amplitude, which causes that also the frequency offset itself turns out to be time-dependent.
This results in an intensity dependent phase modulation. This frequency change is called chirp [14]:

∆fNL(t) = − 1
2πγLeff

d
dt |A(t, 0)|2. (2.8)

8



2.1. Transmission Channel

From Eq. (2.8) follows that an increasing power results in a decrease of frequency, while decreasing
power results in an increased frequency.

Cross-Phase Modulation and Four-Wave Mixing

In addition to self-phase modulation, there are other disturbances that occur in transmissions with
multiple channels. XPM causes a mutual interference of several channels. Even if these channels have
different wavelengths or propagation directions, they can influence each other in a power-dependent
manner. Thus, the phases of several waves can be further changed.
Through FWM, new pulses are created with frequencies that were previously not used. Here, up to
three light waves generate frequency components at frequencies which were not present before. This
leads to a reduction in usable signal power and jitter.

2.1.4 Nonlinear Schrödinger Equation

To describe the pulse propagation through an optical fiber, the effects mentioned above can be summarized
in the simplified, generalized NLSE including noise and loss according to [13]

∂A(t, z)
∂z

= j
2β2

∂2A(t, z)
∂t2

− jγ|A(t, z)|2A(t, z) − α

2A+N(t, z), (2.9)

which is valid for single polarization, single mode transmission using pulse length longer than 1 ps. Here
A(z, t) is the complex envelope of the signal, where z is the space coordinate along the fiber, measured
in km, and t is the retarded time, measured in seconds. The terms from the left to the right hand
side of the right side of the equation are the chromatic dispersion in [ps2/km], the Kerr-effect induced
nonlinear phase shift, the attenuation and noise.
For simplicity of the following discussions, it is preferable to write (2.9) without noise and loss in a
normalized form by introducing

τ = t

T0
, ξ = z/(sgn(β2)L), U = A/

√
P0, (2.10)

where T0 =
√

|β2|L/2, L is the link length and P0 = 2/(γL). This changes equation 2.9 to

j∂U
∂ξ

= ∂2U

∂τ2 − 2s|U |2U. (2.11)

Here, s = sgn(β2) depends on normal (s = 1) or anomalous (s = −1) dispersion. Mind here, that the
choice of parameter which the normalization is based on is arbitrary. For example it is also possible to
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Figure 2.2: Interaction between dispersion and SPM for a sech-shaped pulse with T0 = 100 ps and
1000 km transmission without attenuation (|D| = 17 ps/nm · km, γ = 1.6 W−1km−1). Carrier frequency
not at scale and color coded to show red/blue shift due to fiber effects. (a) Tx-pulse, (b) Impact of
normal dispersion, (c) Impact of anomalous dispersion, (d) Frequency shift due to of SPM, (e) Combined
impact of normal dispersion and SPM, (f) Combined impact of anomalous dispersion and SPM.

use T0 as normalization parameter, which is often times used especially for soliton transmissions, as
described in the next section.

2.1.5 Solitons

Solitons are wave packets, which keep their shape while propagating at a constant velocity through
a dispersive, nonlinear medium. Optical, spacial solitons can mathematically be described by the
sech-function [15].
To conceptually understand solitons, one has to look at the interactions of SPM and dispersion. SPM
causes a power-dependent spectral pulse broadening, while the dispersion causes a temporal pulse
broadening that is dependent on the frequency. Since the total pulse energy remains the same, the
amplitude of the pulse is smaller, which weakens the effect of SPM. This shows how SPM and dispersion
can influence each other. Due to SPM, the frequency changes depending on the instantaneous power
according to (2.8). At the same time, the pulse width changes due to the dispersion in dependence on
the frequency. Since the frequency turns out to depend on SPM, dispersion also depends on SPM.
A distinction must be made here between the influence of SPM on normal and anomalous dispersion.
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2.1. Transmission Channel

Figure 2.3: A fundamental soliton with TFWHM = 1 and its pulse width parameters.

This is depicted in Fig. 2.2. An exemplary pulse is shown in Fig. 2.2(a), which is broadened by normal
or anomalous dispersion (Figs. 2.2(b) 2.2 (c), respectively). With normal dispersion, low-frequency
signal components (shown here in red) of the signal propagate faster than the high-frequency signal
components (shown here in blue). The red signal components are thus on the rising edge of the signal,
which leads to the frequency being reduced even further by SPM (see Fig. 2.2(d)). Conversely, the blue
signal components appear on the descending edge, which increases their frequency even further. These
frequency shifts increase the effects of dispersion, resulting in further pulse broadening (Fig. 2.2(e)).
Contrary to this, with anomalous dispersion, the high-frequency blue signal components move faster.
These are then on the rising edge of the signal. This leads to their frequency being reduced. In addition,
the low-frequency red signal components are slowed down. These are then on the descending edge. As a
result, the frequency of these signal components is increased. Overall, this allows the effects of SPM
and dispersion to compensate each other. Therefore, under optimal conditions (i.e. D, γ and soliton
power), anomalous dispersion may result in no pulse broadening (Fig. 2.2(f)) [14].

Soliton Parameters

• Pulse width: The width of a soliton in time-domain is commonly given by the parameter T0,
which is related to the full width at half maximum (FWHM) power of a soliton as

TFWHM = 2T0ln(1 +
√

2) ⋍ 1.763T0 (2.12)

and is depicted in Fig. 2.3. This leads to a 3-dB bandwidth of B3dB = 0.1787/T0 = 0.315/TFWHM

and a 20-dB bandwidth of approximately 0.606/T0 [15].
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• Peak power: To keep the equilibrium between dispersion and nonlinear phase-modulation, the
pulse width and soliton peak power have to be linked according to [15][13]

N2 = γP0LD = γP0T
2
0 /|β2|. (2.13)

Here, P0 stands for the soliton peak power, N for the soliton order and LD for the dispersion
length.

• Order and dispersion length: The parameter N describes the order of a soliton with U(τ) =
N sech(τ). If N = 1, the soliton is called fundamental soliton. Only fundamental solitons keep
their sech-shape during transmission. If N > 1, the solitons’ shape changes periodically with
LD = T 2

0 /|β2| [15][13].

• Lumped amplification: Solitons are only defined for the NLSE without loss. By including loss
with lumped amplification into the equation, the effective nonlinear index γ is dependent on the
distance. Including attenuation and lumped amplification into the normalized NLSE changes
(2.11) to [13]

j∂U
∂ξ

= ∂2U

∂τ2 − 2s|U |2U − j
2ΓU + j

2g(ξ)LDU, (2.14)

where Γ = αLD is the normalized fiber loss over one dispersion length and g(ξ) =
∑NA

m=1 gmδ(ξ − ξm),
with NA being the number of amplifiers, gm the gain of the amplifier and ξm the amplifier location.
It is then useful, to add the transformation [13]

U(ξ, τ) =
√
p(ξ)v(ξ, τ). (2.15)

Here p(ξ), standing for the loss/gain is a rapidly varying function of ξ and v(ξ, τ), standing for
the now changing soliton envelope is a slowly varying function of ξ. This changes (2.14) to [13]

j∂v
∂ξ

= ∂2v

∂τ2 − 2p(ξ)s|v|2v. (2.16)

If furthermore the normalized amplifier spacing ξA = LA/LD ≪ 1, the soliton width stays the
same, even with varying power levels due to attenuation. This is called a path-averaged or
guiding-center soliton [15][13]. One can then replace p(ξ) by its average value p̄, introduce it into
2.16, and yield the standard NLSE. To create the path-averaged soliton, it is then needed to
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increase the input peak power of the soliton: PS = P0/p̄, leading to

fLM = PS

P0
= 1
p̄

= ΓξA

1 − exp(−ΓξA) = GlnG
G− 1 , (2.17)

where G = exp(ΓξA) is the amplifier gain. For α = 0.2 dB/km and LA = 50 km this leads to
G = 10 and fLM ≈ 2.56 = 4.08 dB.

• Soliton collisions: Solitons from different channels collide during transmission due to different
group velocities. After colliding, solitons keep their shape, albeit with changed phase, due to XPM
occurring during collision [15]. This can have an effect especially in lumped amplification systems,
due to uneven (power dependent) XPM. It is thus needed to take the collision length Lcoll into
account when designing a non dispersion managed system. The collision length can be calculated
by [16][17]

Lcoll = 2TFWHMT0

|β2|Ωch
(2.18)

with Ωch = 2πfchT0 being the normalized frequency spacing fch between two channels. Lcoll is
defined to be the distance over which two solitons overlap at their half power point. Since XPM
leads to a time dependent phase shift, it in turn leads to a shift in frequency during collision,
which, without attenuation, can be calculated by [16][17]:

∆Ω(Ωch, ξ) = 1
Ωch

∫
sech2(τ − Ωch

2 ξ) sech2(τ + Ωch

2 ξ) dτ

= 4
Ωch

Ωchξ cosh(Ωchξ) − sinh(Ωchξ)
sinh3(Ωchξ)

.

(2.19)

The maximum frequency shift can be calculated to be 4/(3Ωch), which leads to ∆fmax = (3π2T 2
0 f

−1
ch )

in physical units, but goes down to zero after the collision. For example, with fch = 10 GHz and
T0 = 100 ps the maximum frequency shift is around ∆f = 338 MHz. At first glance, this shift
seems to be small, but compared to the 3-dB bandwidth of a 100 ps soliton, which is 1.7867 GHz,
this should not be neglected, especially if the receiver is set at a point of collision.
Additional care needs to be taken, if a link using lumped amplification is used. If the condition
Lcoll ≫ LA is not met, a frequency shift can remain due to different power levels during the
collision. These power levels have to even out over multiple amplifier spans, to keep the transmitted
center frequency.
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2.1.6 Common Fiber Types

Tab. 2.1 [18] exemplifies the parameters of an SSMF (OFS AllWave), an ordinary DSF, a non-zero
dispersion shifted fiber (NZDSF) (OFS Truewave RS), which is a DSF with a shifted dispersion slope such
that residual dispersion remains at wavelengths of 1550 nm and a dispersion compensating fiber (DCF)
(Lycom DK, with normal dispersion) for the fiber types treated in this work. While the aforementioned
NZDSF was used for all soliton transmissions [19][20] (see Chapter 6), the SSMF was used in [21],[22].
The DCF was not used here, but should be mentioned here as it finds relevance in a later chapter
(Chapter 4).
Since in modern long-haul transmission systems strong DSP can be used to compensate for dispersion,
SSMF is widely used as it has the lowest non-linearity of the common fiber types.
On the contrary, the low dispersion value of an NZDSF leads to longer dispersion lengths and, in the
case of a soliton WDM transmission, longer collision distances. This is why NZDSF is often used for
soliton transmissions.
DSF was widely deployed in the past (especially in Japan) when broadband dispersion compensation
was not yet possible. However, later introduced WDM transmission over fibers without dispersion lead
to very strong FWM effects, which are still a challenge today [3].
DCF is a way to compensate for dispersion without DSP and to achieve long transmission distances
even with direct detection (which makes dispersion compensation difficult to impossible [23]).

Table 2.1: Exemplary parameters of different fiber types, with the AllWave being an SSMF, the
TrueWave an NZDSF and the Lycom DK a DCF.

Attenuation D Nonlin. Ind. n2 Eff. Core Aeff Nonl. coeff. γ
Fiber Type [dB/km] [ps/(nm)] [(m2/W)] [µm2] [1/(W·km)]

OFS AllWave 0.21 17.3 2.7e-20 86.6 1.46
OFS Truewave RS 0.21 4.4 2.7e-20 52.1 2.09

DSF 0.23 0 2.7e-20 55 1.99
Lycom DK 0.5 -102 2.2e-20 17 5.24

2.2 System Components

Further system components of the fiber optic transmission link are, for example, transmitters and
receivers, which are used here for electro-optical conversion (or vice versa), but also optical amplifiers
and filters.

This section will describe these devices. In addition, system parameters are mentioned which are
also relevant in later experiments, as they correspond to the laboratory equipment used.
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(a) MZM (b) MZM transfer func-
tion.

(c) IQ-MZM consisting of two MZMs and an
additional phase shifter for the quadrature
part.

Figure 2.4: External Modulators

2.2.1 Transmitter Side

The transmitter (Tx) of a fiber optic transmission system is tasked with converting digital data signals
into analog optical signals. In this work a digital-to-analog converter (DAC) is used to generate an
analog electrical base-band signal. This is then externally modulated onto a continuous wave (CW)
laser by using a combination of Mach Zehnder Modulators (MZMs).

Electrical Components

The electrical components on the transmitter side used in this work are an arbitrary waveform generator
(AWG), which is used as DAC, and radio frequency (RF) amplifiers to increase the analog electrical
peak-to-peak voltage (VPP). The AWG used in this work was the Keysight M18196A [24], with a
nominal resolution of 8 bits and an ENOB of around 5.5 bits. The sample rate can be set between
84 − 92 GS/s, and the VPP can reach up to 1 V. Since the 1 VPP can be too low, especially if the
signal paths are further split in later experiments, additional RF amplifiers have to be used to reach
the required swing voltages for the modulators at the cost of additional noise. This adds to other
impairments of the transmitter, such as quantization noise, bandwidth limitations of AWG, amplifiers
and cables and timing offsets (skews) between different channels due to different cable lengths and signal
paths.

Electro-Optical Conversion

There are two ways in which the optical carrier can be modulated: direct modulation and external
modulation. The simplest type of direct modulation is so-called on-off keying. Here, a binary signal is
represented by switching the laser on and off. With direct modulation, however, laser chirp occurs, which
leads to unstable frequencies when the optical power is lowered or raised. With external modulation,
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the laser does not change its output power. Here, the data is applied on the carrier by the optical
modulator. Most common optical modulators are Mach-Zehnder modulators (MZMs) [2][13]. An MZM
is formed by two optical phase modulators as depicted in Fig 2.4a.
In an MZM, the optical signal is split into two waveguides consisting of a Mach-Zehnder interferometer
(MZI) each, which get combined subsequently. If an electrical field is applied to an MZI, the refractive
index of the waveguide changes. This leads to a phase shift of the optical signal depending on the
electrical field. The electrical field u(t) = uDAC(t) + ubias applied to an MZI consists of the driving
voltage (e.g. the (amplified) signal after the DAC) uDAC and a constant bias voltage ubias. The phase
shift ϕ(t) is then linearly proportional to u(t) according to

ϕ(t) = π

2 · Vπ
u(t). (2.20)

Here, Vπ is is the device-specific voltage, which leads to a phase shift of π/2.
The output of the MZM Eout(t) is then a recombination of differently phase modulated MZM input
shares:

Eout(t) = Ein(t)
2

[
exp

(
j π

2Vπ
u1(t)

)
+ exp

(
j π

2Vπ
u2(t)

)]
. (2.21)

By using u(t) = u1(t) = −u2(t) (the so-called push-pull mode) and the relation cos(x) = 0.5 ·
(exp(jx) + exp(−jx)) the transfer function of an MZM can be summarized to

HMZM = Eout

Ein
= cos

(
π

2 · Vπ
u(t)

)
, (2.22)

which is depicted in Fig. 2.4b. By choosing a proper working point (for coherent detection: ubias = −Vπ)
and voltage swing of uDAC (here: VPP ≪ 2Vπ) an approximately linear amplitude modulation is possible.
The optimal VPP to drive the MZM is use specific, since high VPP leads to nonlinearly driven MZMs,
but maximum output powers. If the transmitted signal is prone to nonlinear distortions, smaller VPP

with as linear as possible driven modulators is preferable at the cost of lower powers.
If a complex modulation is to be used, a second MZM can be used for the quadrature part of the signal.
This is then followed by a fixed MZI, which shifts the quadrature part by π/2, as depicted in Fig. 2.4c.

2.2.2 Receiver Side

The receiver (Rx) of an optical transmission system consists of the optical-electrical (O/E) conversion
and the electrical analog-to-digital converter (ADC). The simplest technique for O/E-conversion is a
photo-diode (PD), which generates a photo-current proportional to the intensity of the input signal.
This is called direct detection (DD). If standard DD is employed, the phase information is lost and the
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Figure 2.5: Coherent receiver for a single polarization.

carrier envelope has to be positive. To regain the phase, complex DSP schemes have to be used and
additional requirements apply to the signal [23][25][26]. This is in contrast to coherent detection, which
uses an optical local-oscillator (LO) as phase reference. This not only enables phase modulation, but
also polarization multiplexing, hence quadrupling the spectral efficiency compared to DD. However, this
comes at the cost of not only an additional LO, but also multiple PDs. Hybrid detection schemes such
as Stokes-vector receivers, which can enable complex modulation formats without LOs or polarization-
diverse DD can increase the spectral efficiency with less technical overhead, but are niche products or
still under investigation.

Coherent Receiver

A possible way to build a phase-diversity coherent receiver is depicted in Fig. 2.5. An optical coherent
receiver creates a lower frequency representation of the signal information by beating the optical signal
with a continuous-wave local oscillator [27]. The main component of the coherent receiver is a 90◦

optical hybrid, which consists of two 2x2 multi-mode interference couplers (MMIs). In the MMIs,
the direct-pass and cross-coupling outputs have a 90◦ phase shift between them. By introducing two
photodiodes after each MMI a balanced detection is possible, which suppresses the DC component and
maximizes the signal photocurrent. If an additional 90◦ phase shift is implemented in one arm, the
quadrature components of the signal can be received. The optical fields after the MMIs can be described
by a combination of the optical fields of the signal ES and the LO ELO by

E1 = 0.5 · (ES + ELO)

E2 = 0.5 · (ES − ELO)

E3 = 0.5 · (ES + jELO)

E4 = 0.5 · (ES − jELO)
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(a) Forward pumped EDFA setup. (b) Er3+ ion energy levels.

Figure 2.6: EDFA Principle

leading to the photo currents

II(t) = I1(t) − I2(t) = R
√
PSPLO cos(ϕs(t) − θLO)

IQ(t) = I3(t) − I4(t) = R
√
PSPLO sin(ϕs(t) − θLO)

where R is the responsivity of the photodiodes, and PS and PLO are the powers of the optical fields. If
two 90◦ optical hybrids are used and the optical signal and local oscillator are split by a polarization
beam splitter, both polarizations can be received to use all possible degrees of freedom of coherent
detection.

2.2.3 Amplifiers

The introduction of purely optical, broad band amplifiers was one of the breakthrough events which lead
to optical transmission replacing electrical ones. In this work two kinds of amplifiers will be adressed:
erbium-doped fiber amplifiers (EDFAs) and distributed Raman amplifiers [13]. While EDFAs are based
on a relatively short sections of erbium-doped fibers (EDFs), where the combination of a pump laser
with the optical signal leads to an amplification of the signal [28][29][13]. Distributed Raman amplifiers
are based on stimulated Raman scattering inside of the transmission fiber.

EDFA

The system setup of a forward pumping EDFA is depicted in Fig. 2.6a [2]. The optical signal and
a pump laser are coupled by using a wavelength selective coupler (WSC). The amplification of the
signal takes place in an EDF. The EDF is doped by Er3+ ions, which can take different energy levels
as depicted in Fig. 2.6b. A carrier on the stable energy level E1 is moved to E3 due to the energy of
a pump laser with a wavelength of 980 nm, leading to an inversion. The carrier lifetime at this level
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is only around 1µs, whereupon it moves to energy level E2 by emission of heat, where it reaches a
meta-stable state with a lifespan of multiple ms. Due to constant pumping, the carrier density at E2 is
higher than at E1. If then a signal photon hits an Er-ion at laser level E2, it transitions to ground level
E1 by emission of an additional photon with the same frequency, phase, polarization and direction of
the impacting signal photon. This way transparent gains of up to 33 dB with saturation at 20-33 dBm
can be reached. Since the pump energy levels are not discrete, but split in many sub-levels, a broad
gain bandwidth can be achieved with wavelength dependent gain. One drawback of the EDFA are
spontaneous emissions from E2 to E1, which also get reamplified inside the EDF and following amplifiers
of the transmission link. This so called amplified spontaneous emission (ASE) is the main source of
optical noise and can be considered white inside the channel bandwidth [2]. The noise added by the
amplifier can be chacterized by the noise figure FN, which describes the ratio of the SNR of the optical
signal at the input and output of the EDFA as

FN = SNRin

SNRout
. (2.23)

The theoretical minimum of FN is 3 dB, while most commercial EDFAs have a noise figure in the range
of 5 dB. If the optical noise by the amplifiers is the dominant noise source, the performance of a system
can be measured by the optical signal-to-noise ratio (OSNR). The OSNR can be measured by an optical
spectrum analyzer (OSA) over both polarizations by measuring and integrating the signal- and noise
power inside the signal bandwidth Bopt. Due to historical reasons, the OSNR gets further normalized
to a reference bandwidth Bref of 0.1 nm. The OSNR after an EDFA can be calculated by

OSNR = Pin

FN · h · fc
· 1
Bref

. (2.24)

with the Planck-constant h and the carrier frequency fc [2]. Inserting the values for h = 6.62607·10−34 J·s,
fc = 1550 nm and Bref the computation of the OSNR in dB can be broken down to [2]

OSNR [dB] ≈ 58 dBm − FN [dB] + Pin [dBm]. (2.25)

For a multi-span system, where Pin = PLaunch −αdBLA, the total resulting OSNR at Rx can be computed
by

OSNR [dB] ≈ 58 dBm − FN [dB] + PLaunch [dBm] − αdBLA − 10 · log10(Nsp). (2.26)

Distributed Raman Amplifier

Raman amplifiers are based on stimulated Raman scattering (SRS) occurring in silica fibers. Similar to
EDFAs, a pump and a signal beam at different wavelengths are injected into a fiber. During SRS a

19



Chapter 2. Fiber-Optic Transmission Systems

(a) Exemplary EDFA gain profile (solid line) and Raman
gain profile (dashed line). Transmission without Raman
amplifiers is prone to nonlinear distortions and leads
to lower input powers into the EDFAs, decreasing the
OSNR.

(b) System setup with forward
pumping EDFA and backwards
propagating Raman amplification.

Figure 2.7: Raman Principle

pump photon loses energy to create another photon of reduced energy at the signal frequency, while the
remaining energy is absorbed by the material. The energy is then transferred continously, while the
beams (counter-)propagate. The gain of a Raman amplifier can be described by [13]

g(ω, z) = gR(ω) · Pp(z)
ap

, (2.27)

with ap being the cross-sectional area of the pump beam, Pp(z) is the pump power during propagation
and gR the Raman-gain coefficient. The Raman-gain coefficient is dependent on the frequency difference
between the pump and the signal and has its peak at a frequency difference of around 13.2 THz [30],
with a FWHM bandwidth of 6 THz. Since the overall gain is strongly dependent on the fiber core
cross-section, the ratio gR/aP can be very different for different fiber types.

2.2.4 Filters

Filters in optical communications are mainly used for out-of band filtering of noise and for selecting and
filtering out channels in optical add drop multiplexers. Additionally, more sophisticated filters can be
used as gain-flattening filters of frequency dependent gains of EDFAs and Raman amplifiers.
In this work, three different filters were used in experiments namely the Finisar WaveShaper 4000S (WS),
the Yenista X-Tract XTA-50 and the DiCon manually tunable bandpass filter (MTBF) in descending
order of complexity. Different transfer characteristics of the filters are depicted in Fig. 2.8. The
WaveShaper is a fully progammable filter, where the filter shape can be set in steps of 1 GHz. This
enables, for example, gain-flattening and also dispersion compensation. The WS is based on a Liquid
Crystal on Silicon (LCoS) technology [31], where the input signal is dispersed by a conventional grating
before it hits the LCoS processor, which consists of a matrix of reflective elements. These elements
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(a) Transfer characteristic for Fin-
isar WS with (blue) 20, (red) 40
and (green) 60 GHz bandwidth
and rectangular filter shape.

(b) Transfer characteristic for
Yenista XTA with (blue) 20, (red)
40 and (green) 60 GHz bandwidth.

(c) Transfer characteristic for Di-
Con MTBF with 3.2 nm band-
width.

Figure 2.8: Normalized transfer characteristics of experimentally measured optical filters.

(a) PSD after four 50.5 km spans
NZDSF with lumped amplifica-
tion using EDFAs and transmit-
ting a 40 GBd signal.

(b) Transfer characteristic for the
WS to flatten the PSD.

(c) Flattened PSD with gain-
flattening WS employed.

Figure 2.9: Gain flattening of four EDFAs using the waveshaper.

can change the phase of the reflected signals depending on an applied voltage and hence enable beam
steering [32].
The XTA-50 is a bandpass filter with configurable middle frequency and bandwidth from 6.25 GHz up
to 158.54 GHz [33]. This is enabled by a diffraction grating. The XTA-50 was mainly used for channel
selection and out-of-band noise filtering at the receiver.
To filter out-of-band noise inside the loop, the DiCon MTBF was used. The MTBF is a filter with a
fixed bandwidth of 3.2 nm (around 400 GHz at 1550 nm) and tunable center frequencies, which uses a
hard-coated thin film interference filter mounted between two angled fiber colimators. By adjusting the
filter angle, the center wavelength can be selected.

To exemplary show the possibility of gain flattening using the WS, a 40 GBd signal was transmitted at
1550 nm. The received broad-band spectrum after four 50.5 km spans NZDSF with lumped amplification
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Chapter 2. Fiber-Optic Transmission Systems

using EDFAs is depicted in Fig. 2.9a. To flatten the EDFA gain (here: out-of-band noise), the
transfer characteristic of the WS is depicted in Fig. 2.9b, which results in a flattened power spectral
density (PSD), as depicted in Fig. 2.9c.

22



Chapter 3

The Nonlinear Fourier Transform

The nonlinear Fourier transform (NFT) is, just like the common linear Fourier transform, a mathematical
tool to decompose functions that depend on time into functions depending on frequency (or wavelength).
In the linear Fourier transform, complex exponential functions ejωt are regarded as eigenfunctions. This
means that after the transformation, a signal consists of a superposition of complex exponential functions,
which in turn represent harmonic oscillations. It follows from this that the linear Fourier transformation
divides a signal into harmonic wave solutions and plots them according to their frequency. In this
frequency spectrum, the amplitudes and phases of the individual frequency components are plotted. On
the other hand, the NFT is a composition of linear and non-linear wave solutions and therefore has
two spectra. In the NFT, as it will be used here later, non-linear wave solutions called solitons are the
eigenfunctions of the signal. The NFT serves as a tool to solve integrable-nonlinear-dispersive-partial
differential equations such as the nonlinear Schrödinger equation [34]. It rewrites the nonlinearities with
linear operators [10]. This means that the nonlinear effects along the optical channel on the spectrum
of the nonlinear Fourier transform become independent linear effects. In comparison to the linear
Fourier transform, which divides a linear convolution channel (y(t) = x(t) ∗ h(t)) into many parallel
channels (Y (f) = X(f) ·H(f)), the NFT divides a non-linear dispersive channel into a certain number
of parallel scalar channels [10]. This makes it possible (analogous to OFDM), to encode information
on the nonlinear spectra. In contrast to the linear Fourier transform, the NFT forms two spectra.
The discrete spectrum, which forms solitons in the time domain, and the continuous spectrum, which
represents harmonic and dispersive wave solutions in the time domain.
First linear solutions of nonlinear differential equations have been observed unknowingly by John Scott
Russell in 1834 when he observed stable waves in water channels. He named the discovered stable
wave, which we know as soliton today, as the great wave of translation. Only 61 years later in 1895
this phenomenon was mathematically proven by Drs. Korteweg and de Vries [35], when they famously
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proved the existence of a solitonic solution for the nonlinear, dispersive partial differential Korteweg-de
Vries (KdV) equation

∂q

∂z
= q

∂q

∂t
+ ∂3q

∂t3
, (3.1)

which describes a mathematical model of waves on shallow waters.
The term solitons was coined in 1965 by Zabusky and Kruskal [36], who also showed numerically that
solitons only undergo a phase change, but stay otherwise unaffected by collisions. The first inverse
scattering transform (IST) was introduced in 1967, when Gardner et al. solved the KdV equation with
the external potential of a scattering problem and analytically predicted soliton solutions for the KdV
equation [37].
In 1968 mathematician Peter Lax generalized IST solution of the KdV equation to other partial
differential equations (PDEs) and showed the mathematical relationship between a nonlinear equation
and auxiliary operators with invariant eigenvalues (Lax pairs)[38].
Finally, in 1972 Zakharov and Shabat found a Lax pair for the NLSE, which enabled the IST for the
fiber-optical channel [39]. The term nonlinear Fourier transform was then coined by Ablowitz et al
in 1973 while further developing the IST for the NLSE [34, 40, 41]. Parallely, in 1973 Hasegawa and
Tappert solved the nonlinear Schrödinger equation and found solutions for solitons [42].

3.1 Mathematical Derivation of the NFT

As described above, the NFT is a mathematical tool to solve nonlinear partial differential equations.
Such an equation for an unknown function q(t, z) can be simplified by the form [10]

∂q

∂z
= K(q), (3.2)

where K is an operator which depends on q. If a Lax pair can be found with two operators L and M ,
which depend on q(t, z), (3.2) can also be described by

dL
dz = ML− LM = [M,L] , (3.3)

where [M,L] is called the commutator bracket [10, 38]. If we now assume the eigenvalues of L(z) to be
invariant with z and L(z) to be diagonalizable, L(z) is similar to Λ via L(z) = G(z)ΛG−1(z) [10]. Mind
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3.1. Mathematical Derivation of the NFT

here, that Λ is not depending on z. Using the product rule follows:

dL(z)
dz = dG(z)

dz ΛG−1 +GΛ
(

−G−1 dG(z)
dz G−1

)
= dL(z)

G

−1 (
GΛG−1)

−
(
GΛG−1) dG(z)

dz G−1

= M(z)L(z) − L(z)M(z),

(3.4)

where
M = dG(z)

dz G−1. (3.5)

Now, the eigenvalues λ of the operator L can be defined together with the eigenvector v as

Lv = λv, (3.6)

which can be derived to z using (3.4) resulting in

∂Lv

∂z
= ∂L

∂z
v + L

∂v

∂z
= (ML− LM) v + L

∂v

∂z

= MLv − LMv + L
∂v

∂z
= λ

∂v

∂z

⇔ (L− λI) ∂v
∂z

= LMv −MLv

= LMv −Mλv = (L− λI)Mv

⇔ (L− λI)(∂v
∂z

−Mv) = 0.

(3.7)

Assuming L to not be a diagonal matrix with its eigenvalues on the main diagonal and also keeping
(3.5) in mind, follows

∂v

∂z
= Mv. (3.8)

The partial derivation of v to t can now be described by some operator P as

∂v

∂t
= Pv. (3.9)

Combining Eq. (3.6) (after rearranging to
(

∂
∂tI − P

)
v = 0) with Eq. (3.9) (after rearranging to

(L− λI) v = 0) leads to
P = Σ(L− λI) + ∂

∂t
I (3.10)
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Chapter 3. The Nonlinear Fourier Transform

Figure 3.1: Lax approach for nonlinear evolution equations.

with some invertible operator Σ.
Using the Schwarz integrability condition

(
∂2v
∂t∂z = ∂2v

∂z∂t

)
Eqs. (3.8) and (3.9) can be combined into

∂P

∂z
− ∂M

∂t
+ [P,M ] = 0, (3.11)

which is called the zero-curvature condition. This shows that some nonlinear equations have hidden
linearities, if fitting operators L,M,P can be found. This is exemplarily depicted in Fig. 3.1.
Those operators for the normalized NLSE have been found by Zakharov and Shabat [39] and Ablowitz
et al [41]:

P =

 −jλ q(t, z)
−q∗(t, z) jλ

 , (3.12)

(together with Eq. (3.10))

L = j

 ∂
∂t −q(t, z)

−q∗(t, z) − ∂
∂t

 , (3.13)

and

M =

 2jλ2 − j|q(t, z)|2 −2λq(t, z) − jqt(t, z)
2λq∗(t, z) − jq∗

t (t, z) −2jλ2 + j|q(t, z)|2

 . (3.14)

The nonlinear Fourier transform is then defined solely by the temporal P -equation (3.9). The M -equation
is only used for the propagation of the spectrum and is not used for the transformation itself. Hence,
we will proceed with the Zakharov-Shabat problem (ZSP)

∂v

∂t
=

 −jλ q(t, z)
−q∗(t, z) jλ

 v (3.15)
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3.1. Mathematical Derivation of the NFT

as defined by Eqs. (3.9) and (3.12).
One can see that there are infinitely many solutions of v to (3.15) for a given λ ∈ C, depending on the
boundary conditions. These solutions form a subspace Eλ of continuously differentiable 2 × 1 vector
functions of the vector space H [10]. The vector space H shall be equipped with a symplectic bilinear
form H × H 7→ C, which for a fixed t ∈ R is defined as

⟨u(t), w(t)⟩s = u1(t)w2(t) − u2(t)w1(t). (3.16)

Additionally, the adjoint of any vector in H is defined as [10]

ũ(t) =

 u∗
2(t)

−u∗
1(t)

 (3.17)

and any two linearly independent solutions u and w form a basis for the solution space [10]. Finding
two such solutions is possible at large |t|, if q(t) → 0 as |t| → ∞. This reduces (3.15) to

∂v

∂t
=

−jλ 0
0 jλ

 v, for large |t| (3.18)

and, keeping in mind ∂
∂xe

kx = kekx, has the solutions

v1(t, λ) →

0
1

 ejλt, t → +∞ (3.19)

v2(t, λ) →

1
0

 e−jλt, t → −∞. (3.20)

Using these boundary conditions and (3.15), one can calculate solutions for all t ∈ R. In addition, one
can use λ∗ to calculate

v1(t, λ∗) →

0
1

 ejλ∗t, t → +∞ (3.21)

v2(t, λ∗) →

1
0

 e−jλ∗t, t → −∞. (3.22)

Using (3.17) it is now possible to get ṽ1(t, λ∗) and ṽ2(t, λ∗), which are both elements of Eλ (ṽ ∈ Eλ∗) [10].
These known elements of Eλ (v1(t, λ), v2(t, λ), ṽ1(t, λ∗) and ṽ2(t, λ∗)) are called canonical eigenvectors
or Jost solutions.
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Chapter 3. The Nonlinear Fourier Transform

By choosing for example ṽ1(t, λ∗) and v1(t, λ) at t → ∞ as a basis of Eλ, one can calculate v2(t, λ) and
v2(t, λ∗) and write

v2(t, λ) = a(λ)ṽ1(t, λ∗) + b(λ)v1(t, λ) (3.23)

and
ṽ2(t, λ∗) = b∗(λ∗)ṽ1(t, λ∗) − a∗(λ∗)v1(t, λ). (3.24)

The time-independent [10] complex scalars a(λ) and b(λ) are called the nonlinear Fourier coefficients
(NFCs) [10] and can be summarised by

[
v2(+∞, λ), ṽ2(+∞, λ)

]
=

[
ṽ1(+∞, λ), v1(+∞, λ)

]
S, (3.25)

where

S =

a(λ) b∗(λ∗)
b(λ) −a∗(λ∗)

 (3.26)

is the so-called scattering matrix. The scattering-matrix contains all Fourier coefficients, which can in
summary be computed using (3.20) and (3.15):

a(λ) = lim
t→∞

v2
1e

jλt b(λ) = lim
t→∞

v2
2e

−jλt. (3.27)

Therefore, it is also a function of q(t) (without spatial dependence). The scattering matrix describes
how the solution of (3.15) is scattered from t = −∞ to t = ∞. Figuratively, it symbolises how
v2(−∞, λ) = (1, 0)Te−jλt looks like at t = ∞ after it collides with the used signal q(t, z). v2(−∞, λ) is
initially a complex oscillation. At a certain point in time it collides with q(t, z). This collision causes
the original wave to be scattered. The changed field is observed at t = ∞. On the basis of the change,
conclusions can be drawn about the disturbance in the form of q(t, z). With the parameters a(λ) and
b(λ) that have now been obtained, the signal can be completely described.
The boundary conditions (3.19)-(3.22) and following the projection equations (3.23) and (3.24) are
well-defined, if λ ∈ R, which can be compared to wavelengths of the conventional Fourier transform. If
λ ∈ C+, Eqs. (3.19) and (3.21) at t = ∞ decay and blow up, respectively, leading to the invalid solutions
v1

2(t, λ) = 0 and v1
2(t, λ∗) = ∞. However, if a(λ)=0 for an λ ∈ C, additional complex eigenvalues are

part of the NFT spectrum. These complex eigenvalues are discrete points in C+, which are symmetric,
i.e. if λ is an eigenvalue, then so is λ∗ [10].
What follows, is that the Zakharov-Shabat operator for the NLSE has two types of spectra, which are
the discrete spectrum on the positive complex plane C and the continuous spectrum, which includes the
whole real line Im(λ) = 0.
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( (
Figure 3.2: Summarized depiction of the transformation of a time-domain signal q(t, z) into the
continuous part of the NFT spectrum qc(λ), where the choice of λ is arbitrary, as long as λ ∈ R.

Besides the eigenvalues, the ratios of the NFT coefficients are used to define the spectra:

qc(λ) = b(λ)
a(λ) , (3.28)

qd(λk) = b(λk)
da(λ)/dλ|λ=λk

, k = 1, 2, ...N. (3.29)

Here, qc(λ) stands for the continuous spectrum, which represents the dispersive component of the signal,
and qd(λk) stands for the discrete spectrum consisting of N solitons. To summarize, Fig. 3.2 shows the
steps to transform a time-domain signal q(t, z) into the nonlinear Fourier domain.
The composition of the energy of the signal is given by Parseval’s identity [10]∫ ∞

−∞
||q(t)||2dt = Ec + Ed, (3.30)

with
Ec = 1

π

∫ ∞

−∞
log

(
1 + |qc(λ)|2

)
dλ (3.31)

and

Ed = 4
N∑

j=1
Im(λk). (3.32)

3.1.1 Spatial Evolution of the NFT Spectrum

So far, the NFT was introduced with only taking the retarding time into account. In this section the
linear transfer function of the nonlinear Fourier spectrum shall be derived. As discussed earlier, the
eigenvalues keep their properties and the eigenvectors propagate according to (3.8). Keeping in mind
the boundary condition q(t, z) → 0 for |t|→ ∞ and z ≤ L one can reduce (3.14) to

∂v(t, z)
∂z

→

2jλ2 0
0 −2jλ2

 v(t, z). (3.33)
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Thus, the boundary conditions (3.19) and (3.20) at z need to be extended by a solution of (3.33):

v1(t, λ; z) →

0
1

 ejλte−2jλ2z, t → +∞ (3.34)

v2(t, λ; z) →

1
0

 e−jλte2jλ2z, t → −∞. (3.35)

Due to the additional factors, these boundaries are not consistent with the boundary conditions (3.19)
and (3.20) and hence are not canonical eigenvectors, if evolved according to (3.8) [10]. To circumvent
this, an additional variable u2(t, λ; z) = v2(t, λ; z)e−2jλ2z (which is now exactly v2(t, λ) from (3.20)) can
be used and propagated according to (3.9). This leads to the evolution equation w.r.t z at t = ∞

∂u2(t, λ; z)
∂z

=

0 0
0 −4jλ2z

u2(t, λ; z) (3.36)

and in turn
u2

1(∞, λ; z) = u2
1(∞, λ; 0)

u2
2(∞, λ; z) = u2

1(∞, λ; 0)e−4jλ2z.

By using (3.27) the NFT coefficients during transmission can be calculated according to

a(λ, z) = lim
t→∞

u2
1(t, λ; z)ejλt = lim

t→∞
u2

1(t, λ; 0)ejλt = a(λ, 0)

b(λ, z) = lim
t→∞

u2
2(t, λ; z)e−jλt = lim

t→∞
u2

2(t, λ; 0)e−jλte−4jλ2z = b(λ, 0)e−4jλ2z.

Finally, the transfer function of the NFT spectra qc(λ) and qd(λk) is

H = e−4jλ2z. (3.37)

3.2 Mathematical Methods for Solving the INFT

The inverse nonlinear Fourier transformation (INFT) is used to create the time-domain signal q(t) from
the nonlinear spectrum qc(λ), qd(λk) at the transmitter (or the receiver, if a digital backpropagation
is used). To do this, for example the Gelfand-Levitan-Marchenko integral equations (GLME) or the
Riemann-Hilbert Factorization can be used.
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GLME

The GLME-method is based on solving two coupled integral equations [11][43]. The GLME are:

K∗
1 (τ, τ ′) +

∫ τ

−∞
L(τ ′ + y)K2(τ, y)dy = 0,

−K∗
2 (τ, τ ′) + L(τ + τ ′) +

∫ τ

−∞
L(τ ′ + y)K1(τ, y)dy = 0,

(3.38)

with τ ≥ τ ′ and L(τ) = Lc(τ) + Ld(τ), where

Lc(τ) = 1
2π

∫ ∞

−∞
qc(λ)e−jλτ dλ,

and

Ld(τ) = −j
N∑

k=1
qd(λk)e−jλkτ .

After solving the GLME for K1,2(τ, τ ′), the resulting time signal is q(t) = −2K∗
2 (t, t).

Riemann-Hilbert Factorization

The Riemann-Hilbert factorization problem is based on the projection equations (3.23) and (3.24)
[44][45][46], which are rearranged to

(
V 1(t, λ) V 2(t, λ)

)
=

(
Ṽ 1(t, λ) Ṽ 2(t, λ∗)

)  b∗(λ∗)
a∗(λ∗)e

−2jλt 1
a∗(λ∗)

−1
a∗(λ∗) − b(λ)

a∗(λ∗)e
−2jλt

 ,

where V 1,2 and Ṽ 1,2 are functions of v1,2 and ṽ1,2, respectively. To solve this problem, a Riemann-Hilbert
system consisting of 2N + 2 linear equations for 2N + 2 discrete and continuous canonical eigenvectors,
which lead to

q∗(t) = 2j
N∑

i=1
qd(λk)e2jλktV 1

2 (t, λk)

− 1
π

∫ ∞

−∞
qc(λ)e2jλtV 1

2 (t, λ)dλ

is used.
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3.3 Numerical Methods

The non-linear Fourier coefficients can only be calculated analytically in certain cases. In order to be
able to use the NFT in any case, the numerical approximation is necessary. In this chapter multiple
numerical methods for the I-/NFT and discretizations shall be briefly summarized.
For the numerical methods, the signal q(t) is sampled in the interval [T1, T2]. It is assumed that q(t) for t <
T1 and t > T2 is equal to zero. The signal is then sampled on a uniform grid T1 < T1 + ϵ... < T1 +Mϵ = T2

with M being the number of steps and ϵ the step-width, leading to the sampled signal q[k] = q[T1 + kϵ]
with k = 0, ...,M .

3.3.1 NFT

The algorithms for the NFT are used to either compute the Jost solution v[M ], to calculate the spectral
coefficients according to (3.27), or used to directly compute the NFCs a(λ) and b(λ). Most numerical
methods are based on a discretization of the ZSP or on a combination of known analytic solutions of
the NFT.

Forward Discretization

The most straight forward algorithm is based on the well-known forward Euler method, which is a
simple first-order Runge-Kutta method [47]:

y[k + 1] = y[k] + ϵf(t[k], y[k]). (3.39)

Using y = v and

f(t[k], y[k]) = P [k]v[k] =

 −jλ q[k]
−q∗[k] jλ

 v[k]

we have the so called forwad discretization

v[k + 1] = v[k] + ϵP [k]v[k], k = 0, ...,M, (3.40)

with

v[0] =

1
0

 e−jλT1 .
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Since this is a first order discretization, this algorithm is inaccurate, if not a very high number of samples
is being used. This can be improved upon by using the central difference iteration

v[k + 1] = v[k − 1] + 2ϵP [k]v[k],

which is a second-order discretization. In general, higher order Runge-Kutta methods can be used,
which however are computationally complex and will not be regarded here further.

Ablowitz-Ladik Discretization

Discretization can break symmetries, which makes a discretized version of an integrable equation no
longer integrable. The Ablowitz-Ladik (AL) algorithm is an integrable discrete version of the NLSE
[47]. First, (3.40) can be rewritten to

v[k + 1] = AFD[k]v[k], k = 0, ...,M,

AFD[k] =

1 0
0 1

 + ϵ

 −jλ q[k]
−q∗[k] jλ

 ,
(3.41)

1 ± jλϵ replaced to e±jλϵ for small ϵ. Also, set z = e−jλϵ and Q[k] = q[k]ϵ, which leads to

AAL[k] =

 z Q[k]
−Q∗[k] z−1

 . (3.42)

The Ablowitz-Ladik iteration is then

v[k + 1] = 1√
1 + |Q[k]|2

AAL[k]v[k], v[0] =

1
0

 e−jλT1 . (3.43)

Here, an additional normalization factor is introduced to make the solution numerically more accurate.
To compute da(λ)

dλ
for the calculation of the discrete spectrum, (3.27) has to be derived:

da(λ)
dλ = (v′

1[M ] + jt[M ]v1[M ]) ejλt[M ], (3.44)
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leading to the iteration
v′[k + 1] = A′

AL[k]v[k] +AAL[k]v′[k]

v′[0] =

−jt[0]
0

 e−jλt[0]
(3.45)

with

A′
AL[k] =

−jϵz 0
0 jϵz−1

 .

Continuous Layer-Peeling

The continuous layer-peeling (CLP), also called Boffetta-Osborne algorithm, is based on a known,
analytic, solution of rectangular pulses and approximating the signal q(t) as piece-wise constant, leading
to M individual rectangles. The layer-peeling property states that the NFT coefficients a1,2(λ) and
b1,2(λ) of two non-overlapping pulses can be combined to a(λ) and b(λ).
By using the CLP, the NFT coefficients can be calculated directly [48]a[k + 1, λ]

b[k + 1, λ]

 = C[k, λ, q]

a[k, λ]
b[k, λ]

 ,

a[0, λ]
b[0, λ]

 =

1
0

 , (3.46)

with

C[k, λ, q] ≜

x[k] −ỹ[k]
y[k] x̃[k]

 , detC[k, λ, q] = 1 (3.47)

and

x[k] =
(

cos(Dϵ) − j λ
D

sin(Dϵ)
)
ejλ(t[k+1]−t[k]) (3.48)

y[k] = −q∗[k]
D

sin(Dϵ)e−jλ(t[k+1]+t[k]), (3.49)

where D =
√
λ2 + |q[k]|2, x̃[k](λ) = x∗[k](λ∗) and ỹ[k](λ) = y∗[k](λ∗).
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Trapezoid Discretization

The trapezoid discretization [49] is a numerical discretization scheme, which is based on the trapezoid
rule of numerical integration (h = T/N , 0 ≤ n ≤ N , tn = hn)

∫ T

0
f(τ)dτ ≈ h

N∑
n=0

1
2(f(tn) + f(tn−1)). (3.50)

To find such an integral in the ZSP (3.15), first variables need to be changed to

ψ(t;λ) =

ψ1

ψ2

 =

 v2
1e

jλt

v2
2e

−jλt

 (3.51)

and Eq. (3.15) to
∂

∂t
ψ =

 0 q(t)ej2λt

−q∗(t)e−j2λt 0

ψ

= PTD(t;λ)ψ.

(3.52)

Now, consider d
dt
x(t) = f(t)x(t) with x(0) = 1, which has the unique solution x(T ) = exp

(∫ T

0 f(τ)dτ
)

.
The solution of (3.52) can now be approximated as

ψ(t) = exp
(∫ t

−T1

PTD(τ ;λ)dτ
) 1

0

 , (3.53)

which leads, using the trapezoid discretization, to the following iteration

ψ(tn+1;λ) ≈ exp
(
PTD(tn+1;λ)h2

)
exp

(
PTD(tn;λ)h2

)
ψ(tn;λ). (3.54)

By defining

wn+1 = exp (PTD(tn+1;λ)h)wn, w0 = exp
(
PTD(t0;λ)h2

) 1
0

 , (3.55)

where ψ(tn) ≈ exp
(
−PTD(tn;λ) h

2
)
wn, one can start an iteration, which leads to

aN (λ)
bN (λ)

 = exp
(

−PTD(tN ;λ)h2

)
wN . (3.56)
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Eq. (3.55) shows that, due to the h
2 term, the trapezoid discretization is a sort of a mid-point sampling

method. Then,

exp (PTD(tn;λ)h) =

 cos (|qn|h) sin (|qn|h) ejΦn+j2λtn

− sin (|qn|h) e−jΦn−j2λtn cos (|qn|h)

 = Q(h)
n , (3.57)

with Φn = arg(qn). To find
(
Q

(h)
n

)′
to compute a′(λ), the reader is referred to [49].

Forward-Backward Method

All the algorithms mentioned above are very accurate to find the roots of a(λ) and estimate the
discrete eigenvalues’ positions. However, computing the spectral amplitude qd(λk) and b(λk) can be
very inaccurate, especially for many eigenvalues or a small number of samples. To improve the detection
of b(λk), the projection equation (3.23) is considered with a(λk) = 0, which reduces to

v2(t, λ) = b(λ)v1(t, λ). (3.58)

Now, it is possible to compute b(λ) at any time step by running the iteration of v2(t, λ) forward and
v1(t, λ) backwards in time. By approaching the solution from two sides up to an arbitrary time-sample
m and combining the solutions, the numerical error can be reduced drastically. m is commonly chosen
to be in the middle of the window. However, an optimized point can be chosen to improve the results
[49][50].

Eigenvalue Search

To compute the full nonlinear Fourier spectrum, the positions of the discrete eigenvalues have to be
known. These are the zeros of a(λk) in C+. Two methods have been used and combined in this work
to find find the eigenvalues, namely a plane method and a Newton-Raphson scheme [47]. To elucidate
these methods, 4 eigenvalues shall be found at λk = [−1.5 + 0.5j, −0.5 + 0.5j, 0.5 + 0.5j, 1.5 + 0.5j].

In a first step, the continuous spectrum in the bandwidth [− 0.5π
ϵ , ..., 0.5π

ϵ ] (or the known signal bandwith)
has to be computed. Afterwards, using Parseval’s theorem (Eq. (3.30)) the maximum imaginary value
of the eigenvalues can be obtained. This leads to the first step of a the plane method. The plane method
straight forwardly computes |a(λ)| inside the bandwidth and up to the maximum possible imaginary
value on a coarse grid. If wells in this grid are found, in an arbitrary number of following steps the grid
resolution gets increased to get a finer estimate of the eigenvalue position.
To reduce the number of iterations of the plane method, a Newton Raphson search method can be used
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3.3. Numerical Methods

(a) Coarse grid, for rough estimation of eigenvalue
positions.

(b) Finer grid on smaller plane.

Figure 3.3: Postive complex plane of λ of an exemplary pulse with λk = [−1.5 + 0.5j, −0.5 + 0.5j, 0.5 +
0.5j, 1.5 + 0.5j].

to further improve the estimation of λi [47]. The method iteratively draws a gradient along

λi,k+1 = λi,k − a(λi,k)
a′(λi,k)

with the iteration index k. The iteration stops after a maximum number of steps or when the remaining
error |a(λi,k)/a′(λi,k)| is smaller than a defined threshold. The plane method can be skipped altogether,
if a rough estimate of the eigenvalues is known from the transmitter side and only the deviations due to
e.g. noise needs to be known.

3.3.2 INFT

To transform a modulated NFT spectrum into a time domain signal q(t) different algorithms can be used.
Since this work focuses on solitons and the discrete spectrum, algorithms to transform the continuous
spectrum shall only be discussed very briefly. The most commonly used algorithm to transform discrete
eigenvalues into solitons is the Darboux transform, which shall be adressed in more detail.

INFT for the Continuous Spectrum

The continuous spectrum is assumed to be contained in the finite interval [Λ1,Λ2] and discretized on a
uniform grid with the step width µ Λ1 < Λ1 + µ, ... < Λ1 +Kµ = Λ2 and qc[k] = qc(Λ1 + kµ).
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The Toeplitz inner bordering (TIB) algorithm is a solution of the GLME as given in (3.38), where
the integrals are replaced with finite sums according to the trapezoidal rule. The reader is referred to
[51] for a detailed solution of the TIB algorithm.

By inverting the Ablowitz-Ladik algorithm a signal can be reconstructed by running the algorithm
backwards in time [52]. The resulting algorithm is also called discrete layer peeling [53]. To do this, the
spectral coefficients a(λ) and b(λ) have to be computed, if only qc(λ) is given. Using the unimodularity
condition

|a(λ)|2+|b(λ)|2= 1, λ ∈ R (3.59)

one can solve by inserting qc = b/a

1 + |qc(λ)|2= 1
|a(λ)|2

⇔ |a(λ)|= 1√
1 + |qc(λ)|2

.
(3.60)

Now, the phase can be computed using the Hilbert transform H (similar to Kramers Kronig receivers
[23][26]) as

arg(a(λ)) = H(log|a(λ)|). (3.61)

Having now a(λ) and qc(λ), b(λ) can be easily solved as b = qca. This leads to the backwards iteration a[k]
b[k]z−(T1/ϵ+k)+0.5

 = 1√
1 + |q[k]ϵ|2

 1 −q[k]ϵ
q∗[k]ϵz z

  a[k + 1]
b[k + 1]z−(T1/ϵ+k+1)+0.5

 .

The time signal is then recovered as
Q∗[k] = −B0[k + 1]

where
B0[k + 1] = 1

Λ

∫ Λ2

Λ1

b[k + 1]z−(T1/ϵ+k+1)+0.5e−2jϵλdλ.

INFT for the Discrete Spectrum

To transform the discrete spectrum into a time-domain signal, as discussed above, the GLME can be
used. A specialised algorithm which is able to transform only discrete eigenvalues into solitons at lower
complexity as GLME or Riemann Hilbert methods is the Darboux transform. The Darboux transform
takes one solution of an integrable equation (q(t, z)) and builds another solution (q̃(t, z)) on top. The
complexity can then be nearly linear with regards to the amount of samples [53]. Summarized, the
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Darboux transform in the framework of the NFT takes one known solution to the NLSE (q(t, z)) and
creates a new solution according to [49]

q̃(t, z) = q(t, z) − 2j(λ0 − λ∗
0) ψ∗

2(t, z)ψ1(t, z)
|ψ1(t, z)|2+|ψ2(t, z)|2 , (3.62)

where λ0 is the newly added eigenvalue and ψ(t, z) is a function of v2(t, λ0) (see. Eq. (3.20)). Now, the
eigenvalues of q(t, z) and λ0 are eigenvalues of q̃(t, z) [10][49].

To begin the Darboux transform the initialization parameters Ai and Bi for all eigenvalues
(λk, k = 1 . . . N) have to be set. They can be chosen arbitrarily, but have to fulfil [49]

qd(λk) = (λk − λ∗
k)

N∏
k=1,k ̸=i

λk − λ∗
k

λk − λk
× −Bi

Ai
. (3.63)

Ai can be set to be 1 and Bi solved from (3.63) accordingly [49]:

Bi = − qd(λk)
λk − λ∗

k

N∏
k=1,k ̸=i

λk − λk

λk − λ∗
k

. (3.64)

Using these parameters, the eigenvectors for each eigenvalue and the first step of the recursion can be
calculated (where the step of the recursion is in the superscript):

v0
i (t) =

Aie
−jλkt

Bie
jλkt

 . (3.65)

To start the recursion an initial NLSE q(t, z) needs to be known. This can either be a modified solution of
an INFT, which transformed a continuous spectrum or, if no continuous spectrum is present, q0(t, z) = 0
(with the step of the recursion in the subscript). If a full modulation of the spectrum is to be used, the
time-domain signal resulting from a continuous INFT has to be taken into account when calculating the
Jost solutions/eigenvectors. This shall not be explained here, since only the discrete spectrum will be
used later on. More in-depth explanations on this can be found in [54]. The first step of the recursion
(r = 1) then computes a time-domain signal, which is only dependent on one eigenvalue-eigenvector pair:

(ψr,1(t), ψr,2(t))T = v(r−1)
r (t) (3.66)

q̃r(t) = qr−1(t) − 2j(λr − λ∗
r)

ψ∗
r,2(t)ψr,1(t)

|ψr,1(t)|2 + |ψr,2(t)|2 . (3.67)
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Afterwards the eigenvectors of the N − r unused eigenvalues (k = r + 1 . . . N) are getting an update.
vr−1

k,p now stands for the p-th vector element of the eigenvector vk (belonging to the eigenvalue λk) from
the recursion step r − 1.

∀k ∈ [r + 1, r + 2, . . . , N ] :

vr
k,1 =

(
λk − λ∗

r − (λr − λ∗
r)|ψr,1(t)|2

|ψr,1(t)|2 + |ψr,2(t)|2

)
vr−1

k,1 (t) −
(λr − λ∗

r)ψ∗
r,2(t)ψr,1(t)

|ψr,1(t)|2 + |ψr,2(t)|2 v
(r−1)
k,2 (t) (3.68)

vr
k,2 = −

(λr − λ∗
r)ψr,2(t)ψ∗

r,1(t)
|ψr,1(t)|2 + |ψr,2(t)|2 vr−1

k,1 (t) +
(
λk − λr + (λr − λ∗

r)|ψr,1(t)|2
|ψr,1(t)|2 + |ψr,2(t)|2

)
v

(r−1)
k,2 (t) (3.69)

vr
k = (vr

k,1, v
r
k,2)T (3.70)

This is followed by the second step of the recursion. Using r = 2, Eqs. (3.66) up to (3.70) will be
repeated, until r = N .

3.3.3 Fast I-/NFTs and Higher Order Discretizations

The algorithms and work mentioned above were the first results of intensive research in the mathematical
field of NFT. Despite all this, more accurate and, above all, faster methods must be found in order
to eventually be able to perform near real-time calculations. First publications on this topic employ
the so-called fast NFTs (FNFTs, equivalent to the fast Fourier transformation (FFT)) that have a
much lower computational complexity (O(M log2 M)) [55, 56, 57, 58, 59], which is already close to the
complexity of the FFT (O(M logM) [60]) compared to the methods mentioned above with O(M2). In
addition, the higher order discretisations such as shown in [57] offer a higher numerical accuracy and
are nowadays the state of the art.

Similar to the fast NFTs, fast INFTs must also be found. A faster version of the Darboux
transformation [49] has already been implemented here. Further, fast INFTs for the continuous
spectrum and combined NFT spectra have been developed [60, 61, 62, 63], which lead to numerical
complexities down to O(M(N log2 M)), with N being the number of discrete eigenvalues.

3.4 NFT of Conventional Pulses and Signals

In order to visualise the NFT, various well known pulses and signals will now be transformed and
illustrated.
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3.4. NFT of Conventional Pulses and Signals

(a) Time-domain signals. (b) Color-coded continuous spec-
tra.

(c) Color coded discrete eigenval-
ues, no blue/red eigenvalues due
to insufficient signal power.

Figure 3.4: Nonlinear Fourier transformations of rectangular pulses with a time width T = 1 and
different amplitudes A = 0.5 (blue), 1 (red), 2 (green), 4 (orange).

3.4.1 Rectangular Pulse

The nonlinear tranformation of rectangular pulses

q(t) =

A, t ∈ [−T/2, T/2]

0, otherwise

with different amplitudes is depicted in Fig. 3.4 and can also be computed analytically [10]. Here, one
can see that for low powers, the continuous spectrum (depicted in Fig. 3.4b) indeed is similar to the
spectrum of the conventional Fourier transform. However, if the amplitude doubles from A = 0.5 to
A = 1, the peak amplitude of the continuous spectrum increases roughly by a factor of 3. A further
increase in amplitude of the rectangular pulse causes less increase of the continuous spectrum, but
instead lead to an emerging eigenvalue (as depicted in Fig. 3.4c). If the amplitude gets increased even
further, the shape of the continuous spectrum gets disconnected from the conventional Fourier spectrum
with even higher imaginary parts of the eigenvalues. If the amplitude of the rectangular signal is fixed
and instead the width increases (depicted in Fig. 3.5a), one can see that even though the bandwidth of
the main lobe in the continuous spectrum (depicted in Fig. 3.5b) decreases, the amplitude changes with
additional eigenvalues emerging (Fig. 3.5c).
This exemplarily shows that discrete eigenvalues are not only dependent on the amplitude of the
time-domain signal, but also from the width, i.e. total signal power. This can be problematic, especially
if very long blocks of transmission shall be transformed, since many discrete eigenvalues have to be
considered and their exact positions to be determined.
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Chapter 3. The Nonlinear Fourier Transform

(a) Time-domain signals. (b) Color-coded continuous spec-
tra.

(c) Color coded discrete eigenval-
ues, no blue eigenvalue due to in-
sufficient signal power.

Figure 3.5: Nonlinear Fourier transformations of rectangular pulses with an amplitude A = 1 and
different widths: T = 1 (blue), 2 (red), 4 (green).

(a) Time-domain signals. (b) Color-coded continuous spec-
tra.

(c) Color coded discrete eigenval-
ues.

Figure 3.6: Nonlinear Fourier transformations of sinc-pulses (q(t) = A · sin(t/π)
(t/π) ) and different amplitudes

A=0.5 (blue), 1 (red), 2 (green), 4 (orange).

3.4.2 Si Pulse

Fig. 3.6 shows the non-linear transformation of sinc (sin(x)/x) pulses. Here, for low powers the resulting
spectrum is rectangular, and also shows the Gibbs phenomenon known from the linear transformation.
But again, as the amplitude increases, the continuous spectrum changes and discrete eigenvalues emerge,
which can also have a real-part.

3.4.3 Conventional Signals

To exemplarily investigate the nonlinear Fourier spectra of conventional linearly modulated transmissions,
blocks of 16, 32 and 64 symbols with a symbol rate of 56 GBaud were transmitted over 12 spans of 80 km
SSMF using lumped amplification. The symbols were modulated using a 16-QAM modulation format
and shaped by a root-raised cosine filter with a roll-off factor of 0.1. Fig. 3.7 summarises the results.
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3.4. NFT of Conventional Pulses and Signals

(a) Solitonic-signal-ratio (solid lines) and average
number of solitons (dashed lines) for the con-
ventional transmission format after transforming
blocks of 16 (blue), 32 (green) and 64 (yellow) sym-
bols.

(b) Histogram of discrete eigenvalue positions after
transforming 500 blocks of 16 symbols for different
average block launch powers.

Figure 3.7: Properties of the nonlinear spectrum after transmission of a conventional signal with regards
to discrete eigenvalues. The SSR and number of eigenvalues is not only dependent on the average launch
power, but also the block length.

With increasing average launch power of the symbol blocks, the ratio of power stored in solitons to
power in the continuous spectrum (here called solitonic-signal-ratio (SSR)) increases (Fig. 3.7a). In the
simulations, the SSR asymptotically reaches 0.9. With rising SSR, the amount of discrete eigenvalues
rises asymptotically, too [12]. This is shown by the dashed lines in Fig. 3.7a. To get an insight into
the discrete eigenvalues’ positions, Fig. 3.7b shows histograms of the positions after transforming 500
blocks of 16 symbols. Here, one can see that not only the eigenvalues span over the whole bandwidth
of the transmission (here: λ = [−200, ..., 200]) but also get increasing imaginary parts with increasing
launch-power. This can lead to problems, if e.g. a digital back-propagation in the NFT domain is
intended, since to do this very exact knowledge of the eigenvalues’ positions is needed. This can lead to
the need for very large a-planes with very fine resolutions and hence high computational complexity.

However, the importance of solitons also for conventional transmission scenarios cannot be emphasised
enough here. If signal powers in the highly non-linear regime are to be targeted at some point, the
resulting signals will consist largely of solitons. Therefore, it is important to treat and understand
solitons also in the NFT framework.
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Chapter 4

Soliton Modulation and Multiplexing

As shown in the last section, very high power transmissions are mainly comprised of solitons. Hence, a
deeper look into solitons in the framework of the NFT shall be given. This includes physical properties
of eigenvalue modulation, where the impact of eigenvalue modulation on the time-domain soliton, also of
higher order created by the Darboux transform, is reviewed. Afterwards linear multiplexing of solitons,
which can reduce the hardware requirements will be discussed in depth. This is followed by a section
about the impact of noise during transmission on the discrete, solitonic NFT spectrum.

4.1 Soliton Transmissions in the Framework of the NFT

Early soliton transmissions in the 1980s to 1990s were based on on-off keying of solitons and direct
detection. These transmissions suffered from timing jitters caused by collisions between WDM channels
[16][15] and EDFA noise [64][65]. As described in Chapter 2.1.5, collisions between solitons in a system
using lumped EDFA amplification lead to timing shifts, if the collisions are not spread over multiple
spans [16]. This effect was further amplified because the number of collisions was directly influenced by
the OOK modulation of the individual channels and was therefore dependent on the data sent. The
noise of the EDFAs can minimally change the center frequency of a soliton, which can also lead to
random runtime differences. This effect can also be observed in single-channel transmissions and is also
called Gordon-Haus jitter [64][65].

To circumvent some of these effects, Hasegawa et al. [66] proposed adiabatic dispersion profiles.
By reducing the dispersion between two amplifiers, the ratio between dispersion and non-linearities
remains almost stable and an improvement in the transmission characteristics is achieved. These sorts
of transmissions where realised using dispersion decreasing fiber maps or even dispersion compensating
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fibers and were called dispersion managed solitons [17, 67, 68, 69, 70].
The idea of dispersion management is still relevant today, as dispersion decreasing fibers entail an exact
solution of the NFT, despite fiber losses [71][72].

The term eigenvalue communication was first used by Hasegawa et al. in 1993 [73, 74]. Here, the
idea of transmitting data not on individual solitons but on discrete eigenvalues of the ZSP scattering
problem was already proposed (which was already an early stage of NFT transmission) and up to three
eigenvalues were modulated by on-off keying. However, due to the aforementioned problems, soliton
transmission, and with it eigenvalue communication, did not initially gain traction.

Only with the help of coherent detection and improved digital signal processing (DSP) possibilities
did eigenvalue communication, now referred to as NFT transmission, gain in significance [75, 76].
Several eigenvalues were complexly modulated using the NFCs, which increased the spectral efficiency
compared to on-off keying (OOK) [77, 78, 79, 80]. Other approaches use first-order solitons with very
high-order modulation types [81, 82] or expanded the soliton modulation to multiple polarizations
[83, 84, 85, 86]. This was quickly followed up by first developments of equalization techniques based on
the NFT spectrum [81, 87, 88, 89, 90].

4.2 Physical Properties of Eigenvalue Modulation

In this section the impact of different modulation degrees of freedom of the discrete NFT spectrum onto
time-domain solitons shall be descibed. Especially if higher order solitons are taken into account, the
resulting pulses and their propagation are non-trivial.

4.2.1 First Order

A first order soliton can be analytically described by

q(t) = −2jIm(λi)e−j̸ qd(λi)sech
(

2Im(λi)
(
t− 1

2Im(λi)
ln

(
|qd(λi)|
2Im(λi)

)))
e−2jRe(λi)t. (4.1)

To denormalize the solitons properties from dimensionless NFT units into physical units, an arbitrarily
chosen time parameter T0 can be chosen. From (4.1), one can see that the imaginary part of the discrete
eigenvalue linearly modulates the amplitude, as well as the width of the soliton as depicted in Fig. 4.1a.
Since the width decreases linearly with the imaginary part of the eigenvalue, the bandwidth increases
linearly. For this reason, the imaginary value of a first order soliton does not change the spectral
efficiency. The physical width of a soliton is 2Im(λi)T0. If Im(λi) = 0.5, this leads to a soliton with a
characteristic time-width (see Eq.(2.12)) equal to the normalization parameter. The real part of the
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(a) Modulation of Im(λi):
0.25j (blue), 0.5j (red), 1j (green).

(b) Modulation of Re(λi): 2 (blue),
0 (green), 2 (red).

(c) Modulation of |q(λi)|:
1/8 (blue), 1 (red), 8 (green)

Figure 4.1: Resulting soliton pulses in time- and linear frequency domain after modulation of (a) the
imaginary part of λi, (b) the real part of λi and (c) the amplitude of qd(λi). Top x-axis represents the
normalized NFT units and bottom x-axis physical units, denormalized by T0 = 50 ps.

eigenvalue modulates the center frequency of the soliton, which is transformed by (see also Fig. 4.1b)

∆f = −Re(λi)
πT0

. (4.2)

Finally, the discrete spectral parameter qd(λi) gives rise to the phase of the soliton and (together
with the imaginary value of λi) to the position inside the time-window t0 (as depicted in Fig. 4.1c),
since |q(λi)| changes t0 logarithmically, |q(λi)|

!
> 0. Moreover, it is advantageous to modulate |q(λi)|

nonlinearly, to get an equal distribution inside the time window. Hence, commonly amplitude phase-shift
keying (APSK) based modulation formats are being chosen where the unipolar, linear amplitudes AAPSK

are modulating |q(λi)| according to |q(λi)|∈ eAAPSK . In physical units, the time shift can be described as

∆τ = ln(|qd|) · 1
2Im(λi)

· T0. (4.3)

4.2.2 Higher Order

If multiple discrete eigenvalues are multiplexed using an INFT, nonlinear solutions arise which are not
as straight forwardly described as a first order soliton. Analytical solutions can so far only be derived
for a soliton consisting of up to two eigenvalues. Hence, numerical algorithms to solve the INFT have to
be employed.
The first questions to be answered for designing a higher order soliton system is how the eigenvalues
shall be placed inside the complex plane. If e.g. the eigenvalues are "stacked" (they have the same
real part) with different imaginary parts, the influence of the highest eigenvalue leads to a very broad
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(a) Vertical stacking: λi = (1j 2j 3j 4j) (b) Horizontal stacking

Figure 4.2: Fourth order solitons during transmission according to Eq. (3.37) with different multiplexing
schemes.

bandwidth and high peak-to-average power ratios. However, all eigenvalues stay at their transmitted
position in the retarding time-window. Contrary, if the eigenvalues are placed "next to each other"
(with the same imaginary part) on different real parts, the overall signal bandwidth can rise due to
different center frequencies. Additionally, the eigenvalues travel with different speeds and will escape
the retarding time window after a certain transmission distance.

This is depicted in Fig 4.2, where four eigenvalues are stacked vertically with the same real-part and
|qd(λi)|= 1 (Fig. 4.2a) and stacked horizontally with the same imaginary part (Fig. 4.2b) and different
|qd(λi)| to get separated pulses at Tx. For comparisons sake, the eigenvalues were chosen such that
the average powers and bandwidths of the resulting solitons are on average the same. All eigenvalues
were transmitted with the same phase and then propagated along a normalized fiber according to Eq.
(3.37). One can see that during transmission the shape of a vertically stacked fourth order soliton
varies strongly. Besides strongly varying peak-to-average power ratios, this also has an effect on the
linear bandwidth. This in turn leads to different time-bandwidth products during transmission. In
contrast, horizontally stacked solitons merge and separate during transmission leading to more stable
time-bandwidth products, if not at a point of collision. In summary, the multiplexing of eigenvalues is a
very sophisticated optimization problem [91].
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(a) Linear multiplexing of solitons. Each INFT
creates one modulated single order soliton.

(b) Nonlinear multiplexing of solitons. One INFT
creates one modulated higher order soliton.

Figure 4.3: Visualization of both used multiplexing schemes.

4.3 Linear multiplexing

In general, very high order solitons can have high requirements on the DAC and also ADC hardware
such as high sampling rates, bandwidths and quantization resolutions. To circumvent this, one solution
not only to keep the hardware requirements lower, but also fill the whole frequency band with solitons is
linear multiplexing [92][93]. In this work, linear multiplexing of solitons means creation and modulation
of simple first-order solitons in the digital domain and a following DAC and E/O conversion. Afterwards,
the solitons can be linearly multiplexed by an optical coupler. This is depicted in Fig. 4.3a. This is in
contrast to digital multiplexing by e.g. the Darboux transformation and subsequent D/A conversion of
a higher order soliton as depicted in Fig. 4.3b.
However, linearly multiplexing solitons contradicts the fact that solitons are a result of a nonlinear
evolution equation such as the NLSE. In other words: If two solitons, which have their temporal
middle centered above each-other shall still be a solution to the NLSE, their centering has to be a
result of a collision during evolution through the NLSE. This obviously leads to nonlinear interactions,
which cannot be described by a simple addition. The superposition of fields does not correspond to a
superposition in the NFT domain, as opposed to the linear Fourier transform. Hence, the use of an
INFT to compute the result "nonlinear collision" and conserve the eigenvalues and NFT coefficients
is needed. Mind that this collision would only occur for solitons with the same center frequency (i.e.
Re(λ1) = Re(λ2)) for very specific scenarios. However, the INFT still calculates such a case.

4.3.1 Effects of Linear Multiplexing

In this section, the effects of linear multiplexing on the resulting solitons and their eigenvalues in the NFT
domain shall be discussed. Superposing multiple solitons can lead to a modification of their propagation
properties and in turn change of discrete eigenvalues, and also has an impact onto the continuous
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(a) PSD (relative to peak) at which the spectra of
the solitons overlap depending on ∆k.

(b) Time-domain power (relative to peak-power)
at which the solitons overlap depending on ∆T .

Figure 4.4: Visualization of multiplexing density depending on ∆k and ∆T .

spectrum. To explain this, we will start with superposing two eigenvalues λm,n and their spectral
amplitudes qd(λm,n). To fully conserve the eigenvalues’ properties, one of two boundary conditions
have to be met. The first boundary condition is the time difference between the solitons. If this is
chosen to be very high, the propagation of the solitons resembles that of a solitary fundamental soliton
transmission using only one carrier with

lim
∆Tm,n→∞

(∆λ̂m,n) = 0, (4.4)

where ∆Tm,n = |Tm(qd,m, Im(λm))−Tn(qd,n, Im(λn))| is the time difference between the center positions
Tm,n of the solitons and ∆λ̂m,n is the deviation of λm after superposition with λn.
The second condition is the frequency spacing in linear Fourier domain. If this value is high, a WDM-like
transmission is present with

lim
∆km,n→∞

(∆λ̂m,n) = 0, (4.5)

where ∆km,n is the difference between the real-part of the eigenvalues.
To visualize this concept, Fig. 4.4 shows the PSD and time domain power (relative to the respective
peaks) at the point where the solitons overlap. For example, if ∆k is set to 1, the PSD of the solitons is
attenuated by 8 dB relative to the peak. Or, to have the solitons overlap in the time domain at their
FWHM point (-3 dB), a ∆T of 1.763 must be chosen.
In summary, four effects, depending on the frequency- (∆k), time- (∆T ) and phase- (∆ϕ) offsets between
two eigenvalues can occur after superposing multiple eigenvalues, which are co-propagation, fusion,
merging and destruction [93, 94] and will be discussed in the next section.
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Figure 4.5: Real parts of two eigenvalues (blue/red lines) after superposition depending on ∆k and ∆T ,
∆ϕ = 0. Black lines show the real parts before superposition. Red underlay shows soliton co-propagation,
blue stands for soliton fusion and green for soliton merging.

Figure 4.6: Imaginary parts of two eigenvalues (blue/red lines) after superposition depending on ∆k
and ∆T , ∆ϕ = 0. Red underlay shows soliton co-propagation, blue stands for soliton fusion and green
for soliton merging.

Two Eigenvalues

To exemplarily demonstrate the eigenvalue positions after multiplexing, Figs. 4.5 and 4.6 give a closer
look onto the eigenvalues’ developments in dependence on the multiplexing parameter ∆T . Here, ∆k
and ∆ϕ were fixed, while ∆T is swept. In the figures, one can see that for ∆k = 0 a co-propagation
results for all ∆T ∈ [0; 3.5]. In the case of co-propagation, multiplexing two eigenvalues results in a
higher-order soliton with two vertically stacked eigenvalues on the same frequency as depicted in Fig.
4.7a. This can also happen, if the eigenvalues had originally different real-parts as can be seen in Figs.
4.5 and 4.6 for ∆k = 0.66 or 1.34. The resulting eigenvalues co-propagate at the same speed through an
optical fiber with a repeating pulse shape after shedding the energy stored in the continuous spectrum.
At ∆k = 0.66 for very low ∆T a fusion occurs (blue underlay) with one very high eigenvalue. If a

fusion occurs, the eigenvalues fuse into one eigenvalue with high imaginary value as depicted in Fig.
4.7b, which again results in a resonating soliton. With increasing ∆T = 0, the eigenvalues’ imaginary
part lowers, until at ∆T ≈ 1.5 a very low power eigenvalue emerges, leading again to a co-propagation.
Both eigenvalues now converge, until they "collide" at ∆T ≈ 2.4, as depicted in Fig. 4.8a. One can see
that at a point of colliding eigenvalues, very small changes in ∆T lead to relatively large steps in the
eigenvalue development. In fact, the eigenvalues do not touch, but jump from a co-propagation into the
merging phenomenon.
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(a) Co-propagation resulting from ∆T = 2T0, ∆ϕ =
0, ∆k = 0.5.

(b) Fusion resulting from ∆T = 0, ∆ϕ = π/4,
∆k = 1.

(c) Merging resulting from ∆T = 3T0, ∆ϕ = π/2,
∆k = 1.

(d) Merging resulting from ∆T = 0.25T0, ∆ϕ =
2.78, ∆k = 0.1.

Figure 4.7: Resulting linear multiplexing phenomena during transmission: (a) Co-Propagation, (b)
Fusion, (c) Merging, (d) Destruction. The inset shows the resulting eigenvalues after linear multiplexing
of λm,n = ± ∆k

2 + 0.5j.
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(a) Resulting eigenvalues for
changing ∆T and fixed ∆k = 0.66
and ∆ϕ = 0. ∆T step length be-
tween dots is 2.13e − 5.

(b) (Blue:) Energy distribution
of the NFT spectra: (dotted)
continous spectrum, (dashed) dis-
crete spectrum, (solid) both spec-
tra. (Red:) Imaginary part of the
eigenvalues depending on ∆T .

(c) Two first order solitons (blue,
red) and their linear superposition
result for ∆T = 3.5 and ∆k =
0.66.

Figure 4.8: Detailed view onto developments of (a) the discrete spectrum and (b) energy distribution
of the NFT spectra after linear superposition, as well as (c) resulting time-domain soliton after dense
multiplexing.

In the case of merging, the eigenvalues stay on different real-parts and merge inside the fiber due
to different group velocities and eventually separate before merging with other eigenvalues (see Fig.
4.7c). As already stated in (4.4) and (4.5), if perfect merging occurs, the eigenvalues keep their
position from before superposition. For smaller ∆T and ∆k the eigenvalues’ positions change and
with increasing superposing parameters asymptotically reach their position before superposition. If a
merging transmission is used, straight forward data de-/modulation is possible if e.g. the eigenvalues
themselves (e.g. on-off-keying) are used as data carriers, since the amount of eigenvalues and spectral
center positions are constant. If a modulation of the spectral amplitude is desired, further conditions
have to be met as will be discussed later.
To calculate the dispersive wave energy after linear superposition Eqs. (3.30) and (3.32) can be used.
Fig. 4.8b shows that as soon as a merging occurs, the amount of dispersive energy is very low and
reaches 0 in this example with ∆T = 3.5 and ∆k = 0.66. The resulting time-domain pulse at this point
is depicted in Fig. 4.8c.
The last superposition phenomenon is the destruction, which is a result of inversely phased addition
with close frequency spacing and resulting destructive interference.
To give an overview over the needed soliton spacings for the resulting phenomena, Fig. 4.9 shows a three
dimensional representation of the outcomes. If e.g. a merging in combination with a phase modulation
of the solitons is desired and no control over the time-difference is possible (i.e. ∆T = 0), a ∆k of 1.53 is
needed. In this case, independent of ∆ϕ, merging results. If, however, denser multiplexing in frequency
domain is preferred (i.e. ∆k = 0.5), ∆T has to be increased to at least three, to again gain a phase
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Figure 4.9: Three dimensional representation of the outcome of two-eigenvalue combinations depending
on ∆k, ∆T and ∆ϕ. Green stands for merging, red for co-propagation, blue for fusion and black for
destruction.

Figure 4.10: Variance of qD(λm,n) after linear multiplexing, depending on ∆T and ∆k. (left) The
phase-independent merging regime until close to perfect merging occurs. (middle) Zoomed in version of
left plot, indicated by dashed box. (right) Resulting qD(λm,n) (colorcoded) at ∆T = 2.5 and ∆k = 1.5.

independent merging.
The most straight-forward way to use linear multiplexing in this framework, is merging with a

modulation of the NFT coefficients. If the amplitude (here: time-shift) is to be modulated, the
unmodulated ∆T has to be increased accordingly. However, to also modulate the phase, one has to
look not only at the impact of the superposition on the eigenvalues, but also on the phase. This is
depicted in Fig. 4.10. Derived from this, a combination of ∆T = 2.5 and ∆k = 1.5 leads to a variance
of qD(λm,n) in the region of 1e−1.5, which is negligible in a noisy environment.

Extension to Four Eigenvalues

If more than two eigenvalues are being used for information transmission, multiple superposition
phenomena can occur at the same time. This is exemplarily depicted in Figs. 4.11 - 4.12 for different
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Figure 4.11: Real parts of four eigenvalues (orange/green/red/blue lines) after superposition depending
on ∆k and ∆T , ∆ϕ = 0.

Figure 4.12: Imaginary parts of four eigenvalues (orange/green/red/blue lines) after superposition
depending on ∆k and ∆T , ∆ϕ = 0.

fixed ∆k, ∆ϕ = 0 and swept ∆T . If ∆k = 0 a full co-propagation of four eigenvalues occurs for all
∆T ≤ 3.5. This changes after increasing ∆k to 0.67. Here, the two middle eigenvalues fuse until ∆T = 2,
whereafter they form a co-propagation, which finally changes into merging at ∆T ≥ 2.6. Meanwhile, the
outermost eigenvalues are in a merging constellation from ∆T = 0.25 onwards with increasing imaginary
parts. If ∆k = 2, all eigenvalues are merging independently of the time difference. However, for low ∆T ,
an energy transfer between eigenvalues occurs, leading to higher/lower eigenvalues.

4.3.2 Requirement Reduction Using Linear Multiplexing

To evaluate a possible gain by multiplexing solitons linearly, five bit streams were mapped into 4-QAM
symbols and subsequently fed into five parallel INFTs, which created first order solitons with eigenvalue
positions according to Tab. 4.1. The fixed spectral shift of 10 GHz in linear Fourier domain led to

Table 4.1: Eigenvalue and Soliton Properties from [93]

Eigenvalue Position Spectral Shift Time Delay
1 −1.1344 + 0.5j 20 GHz 250 ps
2 −0.5672 + 0.5j 10 GHz 125 ps
3 0.5j 0 0
4 0.5672 + 0.5j -10 GHz -125 ps
5 1.1344 + 0.5j -20 GHz -250 ps
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∆k = 0.5672. The width of each pulse was T0 = 17.82 ps, which leads in combination with physical unit
time delays of 125 ps to ∆T = 7.24. Hence, in this simulations the frequency difference was chosen to be
small and the timing difference to be high. This leads to more stable conditions during transmissions,
due to longer collision distances as described in Section 2.1.5. After transmission through a 200 km
SSMF, which included one collision of the solitons, the eigenvalues were split using narrow filters (19 GHz
bandwidth) and received independently. After A/D conversion (fs = 160 GS/s, 8 bit quantization), each
single order soliton was either computed using one NFT or directly sampled at the peak to regain the
phase.
This was compared to a transmitter using digital multiplexing of solitons by employing one 5-eigenvalues
Darboux transform as INFT, with the same eigenvalue parameters as the linear multiplexing transmitter.
Since an eigenvalue-based demodulation using one large NFT was not possible with the used NFT
methods, a brute-force correlation of the received pulses with training sequences was done to show a
possible data transmission. Additionally, all filter bandwidths in the broad-band case were increased to
65 GHz to regain all eigenvalues. Fig. 4.13 shows an excerpt of the results from [93]. For Fig. 4.13a
all devices’ parameters were set as before, but the bandwidths of Tx and Rx filters were changed. It
can be seen that for the parallel transmitter variant bandwidths as low as 16.5 GHz were sufficient
to reach BERs below the hard-decision forward error correction (HD-FEC) limit of BER = 3.8e−3.
Here, simple sampling of single solitons leads to the same results as the DSP heavy NFT, making it
obsolete. In comparison, a minimum bandwidth of 55 GHz is needed in the case of the setup using
digital multiplexing to reach the HD-FEC.
The required sampling rate is analogous to the required bandwidth. Here, one can see that sampling
rates as low as 31 GS/s are sufficient for the linear multiplexing approach, compared to approximately
133 GS/s for the Darboux transform.
To compare the stability against noise-induced perturbations, noise loading at the receiver was changed.
Again, the linear multiplexing scheme performs better, reaching the HD-FEC limit at 5 dB for the
sampling receiver and 7 dB for the single eigenvalue NFT receiver. The multi-eigenvalue receiver reaches
the HD-FEC limit after increasing the OSNR to 10 dB.
To evaluate the needed effective number of bits instead of using a bit error rate (BER) as quality
criterion, the mean squared error (MSE) between the received pulse-shapes and the transmitted ones
was computed. This was done, because a correlation receiver does not take into account, if the generated
symbol is really consisting of multiple solitons. In the simulations, all stochastic imperfections such as
noise and laser linewidths were turned off. The criterion for a succesful generation of a higher-order
soliton was the resulting pulse shape after transmission, where the signal should consist of split solitons
due to de-merging. Here, the bandwidths were set to 19 GHz for the parallel transmitters and 65 GHz
for the multi-soliton transmitter. For the parallel transmitters the sampling rates of Tx and Rx were
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(a) BER depending on bandwidth of Tx and Rx. (b) BER depending on sampling rate of Tx and
Rx.

(c) BER depending on Bandwidth. (d) MSE depending on Quantization

Figure 4.13: (a)-(c)BER depending on different hardware parameters for multiple coupling and detection
methods. Direct creation of a 5th-order soliton using the Darboux transformation and correlation (blue,
x). Parallel creation of first order solitons using parallel transmitters and subsequent coupling inside
a fiber with direct sampling of soliton peaks after division (red, triangle) and NFT eigenvalue phase
detection (green, circle). HD-FEC limit (black, no marks). (d) MSE of received absolute envelope
(normalized to a mean of 1) after transmission depending on quantization of Tx and Rx with a single
Darboux transmitter using 91 GS/s (blue, x), with a single Darboux transmitter using 170 GS/s (blue,
x, dashed), and parallel transmitters using 91 GS/s (magenta triangle) [93].
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Table 4.2: Resulting Hardware Requirements from [93]

Parameters Parallel Transmitters Darboux Transformation
Bandwidth 17 GHz 55 GHz

Sampling Rate 33 GS/s 133 GS/s
DAC/ADC Resolution 5.5 bit 7.5 bit

Tx Linewidth 30 kHz 1 kHz
OSNR 4 dB / 6.8 dB 10 dB

set to 91 GS/s. For the multi-soliton transmitter, two sampling rates were examined: 91 GS/s and
170 GS/s. It can be seen in Fig. 4.13d that, if a parallel transmitter is assumed, resolutions between 6
and 7 bits lead to almost perfect solitons. A comparable MSE for the multi-eigenvalue transmitter can
also be reached with 6-7 bits of resolution, if 170 GS/s are assumed. However, for lower resolutions, the
transmitters’ MSE is about 50% higher than the MSE of the parallel transmitter and comparable to a
multi-eigenvalue transmitter using only 91 GS/s.
To conclude, the reduction of hardware requirements simulated in [93] is summarised in Table 4.2.
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System Impairments & Equalisation

Practical optical transmission systems suffer from multiple distortions, which are distributed between
the transmitter, the channel and the receiver. Many impairments are well studied in linear transmission
systems and can be pre-distorted or compensated by DSPs at the receiver. If e.g. the highest frequencies
of the transmitted signals are attenuated by low-pass characteristics, using a pre-compensation, the
outer flanks of the signal spectrum can be boosted. On the other hand, IQ-imbalances (deviations
of the quadrature phase between I- and Q-parts and mismatches of the amplitudes of the real and
imaginary parts of the signal) due to imperfect biasing of transmitter MZMs, which lead to non quadratic
constellations can be equalized at the receiver, if a linear channel is assumed. Similarly distortions due
to nonlinear behaviour of electrical amplifiers and MZMs (see Eq.(2.22)) do not necessarily lead to
an error propagation during transmission. Inside the channel, the impact of attenuation and lumped
amplification leads to the added white Gaussian noise by the EDFAs.
Unfortunately, due to the nonlinear behaviour of the NFT, the mentioned distortions lead to non-trivial
effects onto the modulated NFT coefficients and eigenvalues. For example, IQ-imbalances at the trans-
mitter can result in amplitude mismatches, which due to the nonlinearity lead to changing eigenvalue
positions. These changes in turn lead to different propagation properties and error propagations.
Inside the channel, lumped amplification can lead to broadening and contracting of solitons. The
broadening in combination with very narrow transmission windows relative to the soliton width can
lead to nonlinear interactions between solitons during transmission. This has to be considered when
designing the system and power profile during transmission. This is in combination with soliton
collisions in WDM systems as described in Section 2.1.5. This can be explained mathematically by
the fact that the NFT is based on the integrability of the lossless and noiseless NLSE. However, this
does not apply to a real link with lumped amplification, due to the nonuniform loss and gain evolution [95].
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(a) Computed discrete eigenvalues. (b) Linear Fourier domain spectrum.

Figure 5.1: Computed eigenvalues and linear spectra of first order solitons after filtering with a 3rd-order
Butterworth filter. The filters’ 3 dB bandwidth was set to be (red) 20 %, (blue) 40 %, (green) 60 %,
(orange) 80 % and (yellow) 100 % of the 20 dB bandwidth of the soliton, which contains 99% of the
power. The black dot/line shows the unfiltered eigenvalue/spectrum. T0 = 100 ps, window width 1 ns.

5.1 Impact of Bandwidth Limitations on the Discrete NFT

Spectrum

A limiting factor of almost every transmission system is at some point the bandwidth of the components.
To give a brief insight into how bandwidth limitations affect the discrete spectrum, Fig. 5.1 shows the
spectra of first order solitons. Here, a 3rd-order Butterworth filter with a bandwidth normalized to
the solitons’ -20 dB bandwidth of B−20dB = 0.606/T0 · Im(λi)

0.5 has been used. One can see, that very
narrow filtering at and below 20% of the 20 dB bandwidth leads not only to lower imaginary parts,
but also changes of the real-parts of the eigenvalues. This is because in this case the solitons, after
filtering, were too broad in time domain, leading to interference between solitons. Increasing the filters’
bandwidths leads to increasing imaginary parts of the eigenvalues. Here, if the bandwidth of the filter
reaches around 80% of the -20 dB bandwidth of the soliton, the resulting eigenvalues converge on the
transmitted position.

5.2 Impact of Noise on the Discrete NFT Spectrum

The influence of noise on soliton transmissions has been extensively studied since their first discovery in
the late 1970s [64][15][96][97] and is still a topic of studies [98][99][100]. To give a small example on the
impact of noise onto the NFT spectrum, a simplified channel model with complex additive noise shall
be used [88, 90].
If a noisy soliton is transformed into the NFT domain, we get a disturbed eigenvalue λi,N and qd,N (λi),
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where

λi,N = λi + nλ,i + jnλ,q (5.1)

qd,N (λi) = qd(λi) + nq,i + jnq,q, (5.2)

where nλ,i, nλ,q, nq,i and nq,q denote real-valued noise without any specific assumptions regarding
statistical properties [88, 90].
As described earlier in Eq. (4.3) the time shift t0 of a soliton q(t − t0) corresponds to an amplitude
scaling of the NFT coefficient. Let qd,N (λi, t0) be the received qd,N of a soliton which is shifted by t0.
Furthermore, nq,i and nq,q denote the disturbance on qd,N (λi, 0). This leads to

qd,N (λi, t0) = qd,N (λi, 0) exp(−j2λi,N t0)

= (qd(λi, 0) + nq,i + jnq,q) × exp(−j2(λi + nλ,i + jnλ,q)t0)

= qd(λi, t0)
(

1 + nq,i + jnq,q

qd(λi, 0)

)
× exp(−j2nλ,it0) exp(2nλ,qt0),

(5.3)

which shows that qd(λi, t0) suffers from phase and amplitude noise of the eigenvalue, depending on the
time-shift t0 [88].

5.2.1 b-Modulation

Since the a(λi) coefficient of discrete eigenvalues is independent of the phase and time-shift of the
associated soliton [81][101], also a′(λi) is independent of the phase and time-shift. Hence, information
about theese modulated degrees of freedom of a soliton can fully be recovered from b(λi). This can
improve the detection performance, since the error from impaired a′(λi) does not matter.
To exemplify this, an idealized transmission was simulated, where as distortions only distributed ASE
noise and attenuation with lumped amplification were considered. A train of solitons modulated by a
4ASK-4PSK constellation was transmitted over 200 spans of 50 km NZDSF. After each span, an EDFA
(noise figure of 5 dB) was used to compensate for the fiber loss. The results can be seen in Fig. 5.2.
Here, one can see an increased amplitude noise for the qd constellation. This is due to the impact of the
amplitude noise of a′, as depicted in Fig. 5.2b.
Due to the improved performance of b-modulation, from here on onwards only this modulation type is
considered.
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(a) Received constellations for (blue) qd-modulation,
(red) b-modulation.

(b) Received a′(λi).

Figure 5.2: Received b(λi) and qd(λi) constellations after 10,000 km transmission, using 50 km spans of
NZDSF with lumped amplification (NF=5dB).

Figure 5.3: Correlations between deviations of the NFT coefficient b(λi) and a′(λi) or λi.
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Table 5.1: Empirical Pearson correlations after 180 spans of 50 km NZDSF from [87]

Im(∆a′) Re(∆a′) Im(∆λ) Re(∆λ)
∆A(b(λi)) 0.34 -0.04 0.35 0.82
∆ϕ(b(λi)) 0.83 -0.01 0.83 -0.06

5.2.2 Correlations

As already mentioned in the introduction to this chapter, the NFT is tailored to a system without
any disturbances such as loss or noise. In disturbed systems however, the eigenvalues differ from their
transmitted value. This can partly be deterministic due to e.g. low-pass characteristics (an eigenvalue
with lower imginary value has a lower bandwidth), or stochastic due to noise. The deviations of the
eigenvalues lead to altered transmission properties of the NFT coefficients through the fiber. This leads
to correlations of the eigenvalue deviations and the deviations of the coefficients. In addition, the loss
of diagonalisability can lead to correlations between discrete eigenvalues and coefficients of different
eigenvalues.
Again, to exemplify this, a simulation was conducted [87]. This time, 15,000 ideally created, QPSK
modulated solitons affected by distributed Gaussian noise and attenuation (180 spans with a length
of 50 km, EDFA NF=5 dB) were transmitted. The deviations of b(λi) versus the deviations of λi and
a′(λi) are depicted in Fig. 5.3. Here the amplitude deviation

∆A(b(λi)) = A(bN (λi,N )) − A(b(λi)), (5.4)

where A is the amplitude and the subscript N stands for a received, distorted value and the phase
deviation

∆ϕ(b(λi)) = ϕ(bN (λi,N )) − ϕ(b(λi)), (5.5)

where ϕ stands for the phase are depicted in the top and bottom row, respectively. The empirical
Pearson correlation coefficients ρx⃗,y⃗ computed by

ρx,y = cov(x,y)/(σxσy) (5.6)

are summarized in Tab. 5.1.
Reasons for these correlations are manyfold and lie within the physical properties of the channel and
calculations of the NFT. For example, a deviation of the real part of λi leads to a frequency offset and
consequently a change in the propagation speed. After a sufficient transmission distance, this leads to
an offset of the soliton inside the time window and consequently a change in the absolute value of b(λi).
Similarly, a change in the imaginary part of lambda leads to a change in the peak power of the soliton.

63



Chapter 5. System Impairments & Equalisation

This in turn leads to a change in the strength of the nonlinear Kerr effect and SPM and accordingly an
influence on the phase deviation of b(λi).
The rather small but not negligible correlation between the imaginary part of lambda and the absolute
value of b is mainly due to the influence of the calculation of the absolute value |b(λi)|= exp(2 · t0 · Im(λi))
(as already seen in Eq. (4.3)).
Other works [54][102] additionally show correlations between discrete eigenvalues and the continuous
spectrum [54] and furthermore between polarizations [102].

5.3 Equalizers

Due to the non-linearity of the NFT, many already very sophisticated equalizer concepts cannot be
transferred directly. In order to be able to use the NFT efficiently, it is therefore necessary to develop
new or adapted equalizers. A new way to equalize the discrete spectrum are the correlations mentioned
above. If it is assumed that the transmitted eigenvalues are known, the deviations of the modulated
NFT coefficient can be inferred with the help of the known deviation of the eigenvalues.
In the long run, it will be optimal to determine an analytical joint probability distribution for this [81].
However, equalizers using, for example, the minimum mean squared error (MMSE) criterion can also be
trained to improve transmission performance [81]. These can be linear or non-linear [90] and will be
explained later in this chapter. Another possibility for equalization are neural networks [102, 87, 89]. In
this work feed forward neural networks are being trained, which can approximate nonlinear mappings
as will be explained later.

5.3.1 Linear MMSE Equalizer

Calculation of the MMSE Coefficients

The MMSE criterion can be calculated as [103]

FMSE = E
{

|d(i) − y(i)|2
}

⇒ min
e
, (5.7)
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where y(i) = xT e and y∗(i) = eHx∗. Here, d, y and x are random processes and e is the vector of the
equalizer coefficients. Using these expressions we get

FMSE = E
{

|d(i) − y(i)|2
}

= E {[y∗(i) − d∗(i)][y(i) − d(i)]}

= E
{

[eHx∗ − d∗(i)][xT e − d(i)]
}

= E
{

eHx∗xT e − eHx∗d(i) − d∗(i)xT e + d∗(i)d(i)
}

= eHE
{

x∗xT
}

e − eHE {x∗d(i)} − E
{
d∗(i)xT

}
e + E {d∗(i)d(i)} ,

(5.8)

which shall be minimized using the equalizer coefficients e. Since this is a stationary process, the term
E

{
x∗xT

}
is the auto-correlation matrix

E
{

x∗xT
}

= Rxx (5.9)

and E {x∗d(i)} is the cross-correlation vector

E {x∗d(i)} = rxd. (5.10)

If d(i) is assumed to be zero mean,

E {d∗(i)d(i)} = E
{

|d(i)|2
}

= p2 (5.11)

is the mean power of the training sequence. This leads to the simplification of Eq. (5.8) to

FMSE = eHRxxe − eHrxd − rH
XDe + p2, (5.12)

which can be brought to the form [103]

FMSE = (eHRxx − rH
xd)R−1

xx (Rxxe − rxd) − rH
xdR−1

xx rxd + p2, (5.13)

which is minimized if for example
Rxxe − rxd = 0 (5.14)

leading to the calculation of the coefficients according to

e = R−1
xx · rxd. (5.15)
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Application to the NFT

For the application in equalization of the discrete NFT spectrum, the mentioned correlations between
∆λi or ∆a′(λi) and ∆b(λi) are to be used. Since only the b-coefficient is being modulated, a′(λi) is fixed
and its’ deviations can be used to improve the equalization performance. Since deviations of λi and
a′(λi) have a different impact on the phase and amplitude of b, two real valued equalizers are designed
for each [81].
The vector x in this use case writes as the real-valued vector

xn = [Re(∆a′
n), Im(∆a′

n), Re(∆λi,n), Im(∆λi,n)] (5.16)

where n is the soliton index and

dn,A = ∆A(bn(λi)) or dn,ϕ = ∆ϕ(bn(λi)), (5.17)

for amplitude and phase equalization respectively. The cross-corelation vector rxd can then be computed
using Nt training solitons according to

rxd = 1
Nt

Nt∑
n=1

xdn. (5.18)

The auto-correlation matrix Rxx is computed accordingly:

Rxx = 1
Nt

Nt∑
n=1

xnxT
n . (5.19)

Now, the coefficients eA and eϕ can be calculated according to 5.15. Finally, the estimated deviations
of any bn(λi), which is not part of the training sequence read

∆Â(bn(λi)) = xneA and ∆ϕ̂(bn(λi)) = xneϕ. (5.20)

Since this equalizer is purely linear, an improvement of the equalization of the nonlinearly scaling
amplitude can be gained, if the amplitude of bn(λi) is scaled logarithmically before calculating the
coefficients.
To expand this equalizer to higher order solitons, the vector x can be extended by deviations of the
remaining eigenvalues of the soliton or different soliton channels [104].
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5.3.2 Nonlinear MMSE Equalizer

MMSE equalizers are a widely used tool also in conventional fiber optic communications. For example,
with the help of a digital feed forward equalizer it is possible to minimise intersymbol interference caused
by dispersion according to

z[k] =
Ne−1∑
n=0

e[n]y[k − n],

where Ne is the number of coefficients, adjusted to the accumulated dispersion of the system, and z and y
are the respective filter outputs and inputs. The idea behind Volterra filters is to represent the non-linear
phase rotation by the Kerr effect exp(−jγLeff|A(t)|2)) as a Taylor series

∑∞
n=0

1
n!

(
−jγLeff|A(t)|2

)n

[105][106]. It has been shown that for a compensation of the nonlinear Kerr effects, kernels up to n = 1
are sufficient in power regimes up to P = 10 dBm to describe the signal propagation.
This in combination with the linear feed forward equalizer (FFE) leads to the nonlinear Volterra equalizer
in time-domain:

zNLVE[k] =
Ne−1∑
n=0

e1[n]y[k − n] +
Ne−1∑
l=0

Ne−1∑
m=0

Ne−1∑
n=0

e3[l,m, n] · y[k − l] · y[k −m] · y∗[k − n], (5.21)

which not only considers linear interference, but also nonlinear interference between symbols.
The idea of nonlinear equalization shall now be expanded on the NFT domain linear MMSE equalizer
to combat nonlinear dependencies of b(λi) and λi in e.g. the computation of the amplitude (4.3) or the
spatial evolution (3.37). To start, the deviation vector x gets expanded by the amplitude and the phase
of the received b(λi):

xA = [|b(λi)|, Re(∆a′
n), Im(∆a′

n), Re(∆λi,n), Im(∆λi,n)], (5.22)

xϕ = [ ̸ b(λi), Re(∆a′
n), Im(∆a′

n), Re(∆λi,n), Im(∆λi,n)]. (5.23)

These vectors then get expanded according to Fig. 5.4. The resulting xA,NL can then be used in
combination with Eqs. (5.18), (5.19) and (5.15) to calculate eA,1...ONL , where ONL is the order of
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...

...

= [ ]...

Figure 5.4: Schematic depiction of xA,NL with nonlinearities of third order. Mind that for nϕ,NL |b(λ)|
is replaced by the phase ̸ b(λ) of b. The first order stands for the initialization vector from Eq. (5.22).
The second order is color coded to show the second order mixing terms of xA and |b(λ)| (black), ∆λi

(blue), ∆λR (yellow), ∆a′
I (purple) and ∆a′

R (orange), respectively. Additionally the first parts of third
order nonlinearity mixing terms are shown (dashed lines). [90]

nonlinearity to be used. A third order nonlinear NFT equalizer for a single order soliton then reads

∆Â(bn(λi)) =
Nx∑
l=1

eA,1[l]xA[l]

+
Nx∑
l=1

Nx∑
m=1

eA,2[l,m] · xA[l] · xA[m]

+
Nx∑
l=1

Nx∑
m=1

Nx∑
n=1

eA,3[l,m, n] · xA[l] · xA[m] · xA[n].

(5.24)

A major disadvantage of time domain Volterra equalizers is the large number of coefficients that need to
be calculated. In long transmission links, the nonlinear symbol interference can extend over several
symbols and thus require large Ne.
Since in soliton transmission there is usually no interference, Nx is limited to the length of xA (which is
only five in the case of single eigenvalue equalization). The total amount of coefficients to be trained
and added multiplications in the online equalization process is then

Ncoeffs(ONL) =
ONL∑
m=1

1
m!

m−1∏
n=0

(Nx + n). (5.25)

5.3.3 Neural Networks

Machine learning (ML) has also gained a foothold in optical communication. For example, it is being
investigated in the physical layer for estimating the quality of transmission (QoT) [107], mitigating
non-linearities [108] or generalized parameter optimization in WDM networks [109]. Additionally, ML
can also be used in the network layer for e.g. traffic prediction [110]. Comprehensive reviews on ML in
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Figure 5.5: Exemplary structure of a neural network. Two inputs x1,2 get mapped to two outputs ŷ1,2
using an arbitrary number of layers and nodes. Each layer consists of nodes which contain activation
functions of weighted sums of the preceding layers’ nodes.

optical communications engineering can be found in [111][112]. In ML, knowledge is extracted from
existing (known) and target-related data using mathematics and computer science to solve a given
problem. Patterns are to be recognised on the basis of the data obtained in order to find a generalized
model that also works with unknown input data. This is done through parameterised training of the
model. A generalized model has the ability to describe or classify unseen (new) data as correctly as
possible. This process is called prediction [113][114].

Neural networks, as a subcategory of machine learning, consist of various input, hidden and output
layers, which in turn always contain at least one neuron (see Fig. 5.5). The input and output layers
are essential and are responsible for the input of data and the output of the prediction, respectively.
The hidden layers are optional, but are needed to solve non-linear problems. Among other things, they
determine the complexity of the network. More than one hidden layer makes the neural network a deep
neural network (DNN). The neurons, also called nodes of the network, are stimulated with so-called
activation functions, which are selected specifically for the problem. These are differentiable functions
that can be used to map to ranges of values or specific values, which make it possible to learn non-linear
problems. The parameters (e.g. the number of hidden layers or the choice of the activation functions)
or variables that have to be set by the user of the model are called hyper-parameters.
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Backpropagation

The algorithmic approach that neural networks use in training is called backpropagation. It is based on
the iterative application of the chain rule for the derivation of the partial derivatives of the loss function

L(y, ŷ) (5.26)

with respect to all weights of the network, where y is the known output and ŷ is the prediction, which
describes a differentiable and continuous function of the weights between the input values x of the
network and the neurons. The output of a neuron is given by

oj = f(Nj) (5.27)

with

Nj =
N∑

i=1
wij · xi + bj . (5.28)

Here, f is a differentiable activation function, wij the weight from input i to neuron j, xi the inputs
and bj a neuron specific bias. The goal is now to compute the partial derivation of the loss function E

with regards to wi,j by using the chain rule

∂L

∂wi,j
= ∂E

∂oj

∂oj

∂Nj

∂Nj

∂wi,j
. (5.29)

This leads to a change of weights ∆wi,j using the gradient descent

∆wi,j = −η ∂L

∂wi,j
, (5.30)

where η is the learning rate. This gets repeated for all training samples and a finite number of training
epochs.

Neural Network Parameters

The structure of a neural network (NN) is parametrized by its’ hyper parameters such as the number of
inputs, outputs, hidden layers and nodes of each layer or the activation functions and other things such
as the normalization of the data. All of these hyper parameters are use-case specific and have to be
optimized before employing the neural network. For example, it is possible for a model to have a low
error on the training set but significantly weaker results on the test set. This phenomenon is called
over-fitting and occurs when the model is too complex for the data set. The opposite of over-fitting is
under-fitting. The model is not complex enough for the the data set at hand and does not achieve a low
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training error.
Another important set of parameters are the training parameters. These contain among others the
number of training symbols, the number of training epochs (e.g. the number of forward and backward
propagations during training), the training batch size, the so-called drop-out and the learning rate η.
Minibatching is a tool to increase the performance and speed of the training process by bundling multiple
training samples into one batch. The weights wi,j are then not updated for each training sample, but
by an averaged gradient calculated from all samples of the batch.
Drop-out describes a regularisation method during training that randomly sets individual inputs of a
neuron to zero, thus deactivating them. The technique is used to avoid over-fitting during the training
process, by deactivating individual pieces of information, including the data less likely to influence the
NN, which are responsible for memorisation in the training. This is exactly where the task lies in the
choice of the drop-out rate. If the chosen drop-out rate is too low, the test result will not improve. If,
on the other hand, the dropout rate is too high, the network lacks much of the data it needs to learn
properly, which leads to poor model performance.

Neural Network NFT Equalizer

The neural network equalizers used in this work uses the tools of neural networks and applies them to
the NFT outputs. The input vector of the NNs can be

xNN = [Re(b(λi)), Im(|b(λi)|), Re(∆a′
n), Im(∆a′

n), Re(∆λi,n), Im(∆λi,n)]

or

xNN = [ ̸ b(λi), log(|b(λi)|), Re(∆a′
n), Im(∆a′

n), Re(∆λi,n), Im(∆λi,n)],

(5.31)

which are mapped to a chosen type of outputs. The outputs can be an equalized b̂(λi) [87], which has
to be classified by demodulation, or already classified bits. This way the NN also takes over the task of
classification. Another output is the so-called softmax

ŷj = exp(Nj)∑M
m=1 exp(Nm)

, (5.32)

where M is the amount of outputs. This leads to values between zero and one at the output, where
the highest ŷj refers to the predicted transmitted symbol. This way, the output is also a measure of
confidence and could be used for further soft decisions error correction. The NN adapted to an NFT
equalization using one eigenvalue is depicted in Fig. 5.6. Again, xNN can be expanded by additional
eigenvalues.
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Figure 5.6: Neural network adapted to an NFT equalization using one eigenvalue and softmax decision.
Subscript R and I denote real- and imaginary part, respectively.

5.4 Experimental Performance Comparison

In order to compare the equalizer concepts explained above, they were applied to experimental data,
measured at Helmut Schmidt University, Hamburg. The experiments were first order soliton transmissions
on one polarization and second order transmissions on two polarizations. In this section first the data-
generation and experimental setup are described. Afterwards, the resulting data is investigated with
regard to the correlations between the deviations of NFT coefficients and eigenvalues. Finally, the
equalizer concepts shall be investigated and compared to draw a conclusion with regards to performance
and complexity differences.
Mind, that in the case of dual-polarization transmission the NFT has to be expanded to two polarizations.
For this purpose, instead of a scalar q(t, z), the vector q(t, z) is used, which describes the time domain
signal on both polarizations. This can be inserted in the normalised nonlinear Schrödinger equation,
which produces the coupled Manakov equation. The Zakharov-Shabat system then extends to

∂

∂t
v = Λv (5.33)

v =


v1(λ; t, z)
v2(λ; t, z)
v3(λ; t, z)

 ,Λ =


−jλ q1(t, z) q2(t, z)

q∗
1(t, z) jλ 0
q∗

2(t, z) 0 jλ

 .

Again, using the vanishing boundary condition, we can start the iteration with

v →


1
0
0

 e−jλt for t → −∞ (5.34)
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Table 5.2: Parameters of the experimental setup.

DAC sampling rate 88 GSa/s
ADC sampling rate 80 GSa/s or 40 GSa/s
Baud rate 1 GBd or 2 GBd
Carrier laser wavelength λc 1550.12 nm
Carrier laser linewidth ∆ν < 1 kHz
Symbol period Ts 1 ns or 0.5 ns
Normalized time T0 = Ts/11 91 ps or 45.45 ps
Span length 50.3 km
Fiber loop length 100.6 km
Effective nonlinearity γeff 0.96 W−1km−1

Fiber attenuation α 0.2 dB/km
Chromatic dispersion β2 −5.75 ps2/km

Table 5.3: Parameters of the NFT.

Single-polarization Dual-polarization
Eigenvalues λi 0.5j ∓0.15 + 0.3j
Modulation format 4ASK-8PSK QPSK-QPSK
Amplitudes |b(λi)| exp([−1.5 − 0.5 0.5 1.5]) [0.5 2.5]
LPA Launch power Pin -3.85 dBm 1 GBd: -5 dBm ,2 GBd: 0.92 dBm

to gain the NFCs

a(λ; z) = lim
t→∞

v1e
+jλt (5.35a)

b1(λ; z) = lim
t→∞

v2e
−jλt (5.35b)

b2(λ; z) = lim
t→∞

v3e
−jλt. (5.35c)

One can see from the equations, that the NFT couples both polarizations and does not treat them
independently, as it is done by conventional polarization division multiplexing. Due to the coupled
computation of the polarizations, differential precoding schemes [85] have been proposed.

5.4.1 Experimental Setup

The experimental setup is depicted in Fig. 5.7 and the parameters summarized in Tab. 5.2.
One experiment consisted of a highly modulated single eigenvalue transmission using only one polarization
with a symbol rate of 1 GBd and a 4ASK-8PSK modulation scheme. Details of the modulation can be
found in Tab. 5.3. To examine a multi eigenvalue double polarization transmission, two eigenvalues
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Figure 5.7: Neural network adapted to an NFT equalization using one eigenvalue and softmax decision.

with different real parts where used and differentially modulated on both polarizations. The real parts
of the eigenvalues were ±0.15. Both eigenvalues were modulated using QPSK on both polarizations.
Additionally b2(λ) was rotated by π/4 to optimize the signal in terms of peak-to-average power
ratio (PAPR) [86]. Since, due to the different real parts, the solitons travel inside the retarding time-
frame, a pre-shift is used to apply a virtual propagation backwards over a certain distance [86]. The
soliton signals are created using the Darboux transform and then denormalized into physical units. This
was followed by a precompensation of frequency and amplitude responses of the DAC and modulator.
Blocks of 2978 or 5957 symbols for 1 or 2 GBd, respectively, were transmitted. At least four symbols
are used to synchronize the sequence and, in the DP case, 256 symbols with a reference sequence
containing fundamental solitons were used to recover the polarization. The loop consists of two 50.3 km
NZDSF spans with counterpropagating Raman amplification and an EDFA for forward amplification.
In the case of DP transmission a polarization scrambler was added to the loop. For more detailed
explanations of the experimental setup, the reader is referred to publications of the Schäffer group at
HSU, Hamburg[86][88].

5.4.2 Experimental Perturbation Correlations

First, the correlations between deviations of the eigenvalues and NFCs, which have already been shown
simulatively, will also be shown experimentally.

Single Eigenvalue Transmission

This is first demonstrated by means of the transmission of first-order solitons. The received b(λ)
after 905 km transmission are depicted in Fig. 5.8a, where the larger spread of amplitudes of the
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(a) Constellation of received b(λ) in polar coordinates. (b) Deviation of the amplitude of b(λ) over the deviation
of the eigenvalues’ imaginary part (color coded to the
transmitted amplitude to show different correlations
depending on the transmitted symbol)

Figure 5.8: Received b(λ) constellation after 905 km experimental transmission of first order solitons
and one polarization and measured correlations [90].

(a) ρ(Im(∆λ), ∆A(b(λ))) (b) ρ(Im(∆λ), ∆ϕ(b(λ))) (c) ρ(Re(∆λ), ∆A(b(λ))) (d) ρ(Re(∆λ), ∆ϕ(b(λ)))

Figure 5.9: Pearson correlations between ∆λ and ∆b(λ) during transmission. Black lines refer to
idealized simulations and blue X to experimental results [90].

highest/lowest amplitudes (leading to the largest absolute time shifts) is qualitatively larger than of
the middle amplitudes. This can partly be explained by Eq. (5.3) and is also observable in Fig. 5.8b.
Fig. 5.8b also shows the strong correlations between Im(∆λ) and ∆A(b(λ)), which have already been
observed and explained in Section 5.2.2.

In order to directly compare the experimentally measured correlations with a simulation, an idealised
simulation was set up. Here, a first-order soliton was transmitted, which was modulated exactly as in
the experiment. However, the transmitters and receivers were assumed to be ideal and only distributed
noise with fiber loss was assumed as distortion. The absolute Pearson correlations of experiment and
simulation and their development during transmission are depicted in Fig. 5.9. First of all, a deviation
between the simulation and the experiment can be observed in Fig. 5.9a. Here the correlation in the
simulation is not as strong as in the experiment. This can be explained by transmitter disturbances
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(a) Computed average received qc(λ), which was
not modulated at Tx.

(b) Pearson correlation between the deviation of
the phase of bX(λ1) of the X-polarization and
the real-part of the continuous spectrum of the
Y-polarization Re(qc,Y (λ)).

Figure 5.10: Received unmodulated continuous spectrum after experimental transmission of discrete DP
spectrum modulation. The continuous spectrum was set to be 0 at the transmitter. However, energy
from the discrete spectrum radiates into the continuous spectrum and leads to correlations.

such as low-pass behaviour (see Fig. 5.1a), which causes the imaginary part of the eigenvalue to drop.
This in combination with |qd(λi)|= 2Im(λi) exp(2T0Im(λi)) leads to decreasing amplitudes of b(λi), if
a′(λi) does not increase proportionally. Overall, this part of correlation decreases during transmission,
since this deviation is not changing the transmission properties of the soliton.
This is in contrast to the correlations depicted in Figs. 5.9b and 5.9c. If the imaginary part of an
eigenvalue is changed, this changes the peak power of the soliton. This in turn leads to a change in
the non-linear phase rotation caused by SPM. Therefore, the magnitude of this correlation increases
with increasing transmission length (see Fig. 5.9b), as it is directly dependent on the transmission
characteristics of a soliton.
Similarly, there is a correlation between the real part of the eigenvalue (which represents the center
frequency) and the amplitude of b(λi) (which represents the position of the soliton in the time window).
Obviously, the dispersion in the fiber leads to a changing propagation speed with changing center
frequency of the soliton. This leads to changing positions in the time window and thus to changing
amplitudes of b(λi). Since this correlation is also a direct result of fiber properties, the strength of the
correlation also increases with the transmission distance (see Fig. 5.9c).
In contrast, the correlation between Re(∆λ) and ∆ϕ(b(λ)) is very low to non-existent and can therefore
be ignored when designing equalizers.
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(a) Impact of known deviations on A(b(λ)). (b) Impact of known deviations on ϕ(b(λ)).

Figure 5.11: Average absolute influence of known deviations after using linear MMSE equalization after
(blue): 704 km, (red): 1509 km, (green): 2313 km, (orange): 3118 km transmission. Subscripts R and I
stand for real- and imaginary value, respectively.

Transmission with two Eigenvalues

To further show correlations between the continuous and the discrete spectrum, even between polariza-
tions, a calculated continuous spectrum and a cross-correlation are shown in Fig. 5.10. Although the
continuous spectrum has not been modulated, energy is received here. This is limited between λ = ±2.3,
which corresponds to the filter bandwidth. A peak can be detected around λ = 0. This corresponds to
the real part of the eigenvalues at ±0.15. In Fig. 5.10b, the correlation between the real part of the
continuous spectrum and the deviation of the phase of bX(λ1) can be seen. This is shifted into the
negative lambda range, which corresponds to the position of the eigenvalue. To illustrate the magnitude
of the cross-correlations, the correlation between different polarizations is shown here. Since b(λi) of
both polarizations are coupled via λi, the polarizations are not orthogonal.

5.4.3 Linear and Nonlinear MMSE

Single Order Soliton

First, the equalization behaviour of the linear MMSE equalizer on the transmission with an eigenvalue
is to be investigated. For this purpose, Fig. 5.11 shows the averaged results of an element-wise
multiplication of the trained equalizer tap weights e and deviation vector x (analogous to Eq. (5.20)).
Thus, the influence of each known deviation can be quantified. Mind that Fig. 5.11 can be compared to
conventional depictions of tap-weights of e.g. FFE filters to compensate for dispersion. However, the
depicted taps in Fig. 5.11 are already weighted by the deltas, since they do not have the same average
amplitude.

This leads to the normalized equalizer weights of a third order nonlinear equalizer depicted in Fig. 5.12.
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Figure 5.12: Average absolute influence of known deviations after using nonlinear MMSE equalization
after 1911 km. (blue) first order taps, (red) second order taps, (green) third order taps. Squared values
refer to NFC/deviation combinations as labeled beyond.

Here one can see that the higher order terms can have a high impact onto the equalization performance
w.r.t. the amplitude. In addition, one can see that many weights, especially of the high order, are very
low. By deleting the weights below a certain limit, the size of the filter can be greatly reduced without
big loss of performance.
The number of training symbols required for the different equalizers is shown in Fig. 5.13a. As
the complexity of the equalizers increases, so does the number of required training symbols. Thus,
approximately 1500 training symbols are sufficient to train the linear MMSE equalizer sufficiently. A
non-linear MMSE equalizer of the fifth order, on the other hand, requires 14000 training symbols to be
able to set all coefficients properly and is not able to yield satisfactory results with a smaller number of
training symbols. Additionally, only minimally better results can be achieved than with a third-order
nonlinear equalizer, which is already trained with about 7100 symbols and leads to satisfactory results
with only 3100 symbols. Furthermore, the nonlinear equalizer of second order reaches the HD-FEC
limit using only 1600 symbols. Therefore, only nonlinear equalizers up to the third order are discussed
in the further considerations, since the minimally improved BERs are not worth the training effort and
increased the computational cost.
The BER achieved by trained equalizers as a function of the transmission distance is plotted in Fig. 5.13b.
The linear MMSE equalizer increases the transmission range at the HD-FEC limit by approximately
200 km to up to 1550 km. The tested non-linear equalizers can still improve this. If the HD-FEC limit
is used, second-order equalizers can improve the range by 700 km. This can be improved by third-order
non-linear equalization, which extends the transmission range by up to 1350 km.
In order to show these improvements qualitatively, Fig. 5.14 shows constellation diagrams of b(λi)
after 2515 km transmission. These show, among other things, an IQ imbalance depending on the
transmitted symbol. This can be a result of amplitude imbalances of the IQ modulators, which lead
to different influences of SPM depending on the modulated phase. While the linear MMSE equalizer
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(a) Resulting BER after equalization using linear
and nonlinear MMSE equalizers for 1911 km trans-
mission reach depending on the number of training
symbols and order of nonlinearity.

(b) Resulting BER after varying transmission dis-
tances for different orders of nonlinearity for the
nonlinear MMSE equalizer using 10,000 training
symbols. For readability the HD-FEC limit is in-
cluded (dashed line).

Figure 5.13: Determined BERs of single eigenvalue transmission for different (N-)LMMSE equalizers
depending on training symbols and distance.

(a) Constellation of received b(λ)
without equalization.

(b) Constellation of received b(λ)
with linear MMSE equalization us-
ing 2500 training symbols.

(c) Constellation of received b(λ)
with non-linear MMSE equaliza-
tion using 6300 training symbols.

Figure 5.14: Received b(λ) constellation after 2515 km experimental transmission of first order solitons
and one polarization after different equalizers.
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(a) No equalizer (b) 3rd order nonlinear EQ

Figure 5.15: Received eigenvalues after 1307 km transmission. Orange markups represent eigenvalues,
which lead to symbol errors.

cannot compensate this disturbance (Fig. 5.14b), a third-order non-linear equalizer can (Fig. 5.14c).
The non-linear equalizer also performs much better in terms of amplitude equalization, so that there are
only very few errors due to incorrectly decided amplitude levels.
Fig. 5.15 shows the eigenvalues received after 1307 km transmission range. One can see that a small
part of the eigenvalues are strongly shifted to the lower parts of the complex plane. These eigenvalues
are spurious eigenvalues that have emerged due to disturbances during transmission. If an eigenvalue is
part of the main group of eigenvalues, the non-linear equalizer is able to almost completely equalize the
received b(λi) and thus leads to lower BERs. However, if an erroneous eigenvalue is chosen the equalizer
is not able to fully compensate for this error. Furthermore, if the order of non-linearity is high, this
leads to error propagation, as b(λi) may be in a region where a higher bit error penalty occurs after
equalization. For this reason, the relative improvement by using higher order equalizers for shorter
distances is smaller compared to lower order equalizers.

Dual Polarization Transmission

In this section the dual polarization transmission with two eigenvalues is examined with regard to
MMSE equalizers. First, each b1,2(λi) is equalized individually using the associated λi and a′(λi),
leading to four equalizers for this transmission. For good results 2000 training symbols for the LMMSE
and 8000 training symbols for the 3rd order non-linear equalizer have been used in this section. The
resulting BERs for the two equalizers and symbol rates are depicted in Fig. 5.16. Both equalizers
can improve the transmission distances. Nonlinear equalization deteriorates the results for relatively
short transmission distances compared to the linear counterpart and only shows small improvements for
longer transmissions especially for the 1 GBd case, however. The reason for worse performance at lower
distances can again be found in spurious eigenvalues. The strengths shown by the non-linear equalizer
in single eigenvalue transmission, namely equalization of IQ-imbalances and amplitude noise, are of less
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Figure 5.16: BER depending on transmission distance using single eigenvalue equalization for dual
polarization, two eigenvalue transmission. Filled markers refer to 2 GBd transmission and unfilled
markers to 1 GBd symbol rate.

Figure 5.17: BER after cross-correlation equalization for 1 GBd dual polarization, two eigenvalue
transmission for 3420 km.

importance here, as a simpler QPSK modulation was used.
In order to also use the correlations between eigenvalues of different polarizations, the non-linear
equalizers were extended. The number of training symbols required is shown in Fig. 5.17. Here, the
second-order NLMMSE requires 5000 training solitons to be trained out. The third-order NLMMSE, on
the other hand, shows an improvement in BER when more than 10,000 training symbols are used.
The distance achieved using cross-correlation equalizers with BERs below the HD-FEC limit is shown
in Fig. 5.18. Here, an improvement by increasing the equalizer order can be seen especially for the
transmission with a high symbol rate. Overall, reach improvements can be observed in the region of
700 km for 2 GBd to 1000 km for 1 GBd transmissions.
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Figure 5.18: BER depending on transmission distance using cross-correlation equalization for dual
polarization, two eigenvalue transmission. Filled markers refer to 2 GBd transmission and unfilled
markers to 1 GBd symbol rate.

(a) BER depending on the number
of training solitons.

(b) BER depending on number train-
ing epoch.

(c) BER depending on distance.

Figure 5.19: Determined BERs of single eigenvalue transmission for NN equalization depending on the
training complexity for 1710 km and 2515 km transmission.
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Figure 5.20: BER of DP 1 GBd 2 eigenvalue transmission after equalization using cross-correlation NNs
for two network sizes: (triangle) 2 hidden layers with 1024 nodes each, (square) 2 hidden layers with
132 and 596 nodes, respectively.

5.4.4 Neural Network

The NN hyper-parameters used in the single eigenvalue transmission were determined heuristically.
Satisfactory results were gained for an NN comprising of two layers with 250 nodes each. The used
transfer function was the rectified linear unit (ReLU) according to f(x) = max(0, x). A drop-out of 50 %
and an adaptive gradient descend method (the Adam algorithm [114]) were used during training with
batch-sizes of 512. The training was based on minimizing the cross-entropy loss between the one-hot
encoded class of the transmitted bit and output vector.
The amount of training solitons needed for the NN is depicted in Fig. 5.19a. The number of training
solitons required is generally higher than that of the MMSE equalizers (see Fig. 5.13a). While for
longer distances (here: 2515 km) already a relatively small number of 8000 training solitons achieve
a good result (BER = 2.7e-3), which can only be minimally improved by increasing it up to 44,000
(BER = 1.4e-3), shorter distances benefit from more training data. For a shorter distance of 1710 km, the
BER here drops sharply from 1.4e-3 (8000 training solitons) to as low as 5e-4 (33,000 training solitons).
The number of training epochs required to fully train the NN is shown in Fig. 5.19b for both distances
mentioned. The number of training solitons was set to 25,000. A fast approach to the optimum can
be observed in the range up to 100 training epochs. To reach the optimum, however, more than 500
epochs are necessary for both transmission distances. Only minimal improvements can be observed
here. However, since this is an offline process, the number of training epochs was increased to up to
1000 in the future in order to achieve optimal results.
The implemented cross-correlation NN equalizer was built to account for all cross-correlations between
eigenvalues of differing polarizations. Hence, a more complex NN was designed. In this network, all
b1,2(λi), ∆a′(λi) and ∆λi were used as inputs. This resulted in a total of 4 b1,2(λi), 2 ∆a′(λi) and 2
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(a) BER depending on the amount of used training
solitons for different transmission distances.

(b) BER for 4828 km transmission depending on the
number of training episodes for different amounts
of training symbols, denoted by the legend.

Figure 5.21: Required training for a cross-correlation NN equalizer taking the continuous spectrum into
account. The NN was trained to equalizes the 1 GBd, 2-eigenvalue DP transmission.

∆λi. The output layer directly decoded all 8 bits encoded on each multi-soliton (QPSK, 2 eigenvalues,
2 polarizations). Since the softmax function was used here, the output layer was already 256 nodes
in size. Because of the increased complexity of this network, the hyper-parameters were redesigned.
Initially, two very large layers with 1024 nodes were used. The results are shown in Fig. 5.20. Since this
network size is very large for online processing, it should be simplified. For this purpose, the required
number of nodes per layer was redefined with the help of a random-search algorithm. In this way, a
better combination of layer sizes could be found, which reduced the number of nodes to 132 and 596 for
the first and second layers, respectively. As shown in Fig. 5.20, the performance of the network does
not decrease, while the number of required multiplications was reduced by a factor of 5.7.
Subsequently, this equalizer was extended to also take into account correlations with the continuous
spectrum as shown in Fig. 5.10a. The continuous spectrum was calculated between λ = ∓4 and
discretized using 161 steps. The input vector now consisted of the real- and imaginary parts of
x = [b1,2(λ1,2), ∆a′(λ1,2), ∆λ1,2, bc,X(λ), bc,Y (λ)]. It has been determined that the optimized hyper-
parameters of the hidden layers did not change for this equalizer, leading again to hidden layer sizes
of 132 and 596. However, due to the increased size of the input layer, new training sweeps have been
conducted to determine the training complexity for this network.
The training effort can be seen in Fig. 5.21. Increasing the number of training solitons up to 108000
can lead to improvements of the BER (5.21a). This number could not be increased further because not
enough data was generated to calculate a statistically valid BER. However, the improvement by using a
very high number of training solitons is still very small and vanishes for shorter distances.
The needed training episodes for different amounts of training solitons are depicted in Fig. 5.21b. No
dependence of the duration of the training on the number of training symbols can be observed. As
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Figure 5.22: BER of DP 1 GBd 2 eigenvalue transmission after equalization using cross-correlation NNs.
The NN using only the discrete spectrum was trained using 45000 training solitons and the NN also
taking the continuous spectrum into account using 67500 training solitons. BERs below 8e-5 can not be
displayed due to statistical validity.

with the other NN equalizers, 500-1000 episodes are sufficient. To compare the cross-correlation NN
equalizers, Fig. 5.22 depicts the BER after equalization depending on the transmission distance. Here
it can be seen that by taking into account the continuous spectrum, the NN can not only improve the
overall performance, but also reduce the amount of errors for transmission distances below 3000 km to
zero. Mind, that the exact BER up to 3621 km can not be computed due to an insufficient amount of
transmitted bits. In contrast, the cross-correlation NN without continuous spectrum cannot adequately
equalize especially shorter transmission distances and even worsens the BER. However, both NNs yield
a BER below the HD-FEC limit for all measured distances up to 5018 km.

5.4.5 Comparison

In this section, the studied equalizers will be compared with regard to their complexity and their BER
improvement. The complexity here is to be limited to online equalization, as it is assumed that the
training is carried out offline, before the start of the transmission. To measure the complexity, the
number of multiplications to be performed online is used. Since only ReLU transfer functions were
used for the NN equalizers, the complexity of a node of an NN is limited to one comparator and one
multiplier. The amount of multiplications needed for NN equalization then reads

Nmult,NN =
L−1∑
l=1

klkl+1 +
L−1∑
l=2

kl, (5.36)

where L is the number of layers and kl is the amount of nodes in layer l. The number of required
multiplications of the MMSE equalizers corresponds to the number of their coefficients. For the linear
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(a) Comparison of additional multiplications
needed for equalization of the different equaliz-
ers for 3019 km reach.

(b) Comparison of BERs after different equalization
techniques as described above for single eigenvalue
transmission. For readability the HD-FEC limit is
included (dashed line).

Figure 5.23: Comparison of all equalizers w.r.t. complexity and performance.

Table 5.4: Comparison of equalizer techniques for single eigenvalue transmission at 3019 km reach

Ntrain Nmult BER improvement
MMSE ≈ 2000 8 -8.87 dB

2nd-order NL MMSE ≈ 2000 40 -12.4 dB
3rd-order NL MMSE ≈ 6000 110 -17.1 dB

NN ≈ 30, 000 72500 -30 dB

MMSE equalizer this is fixed to 4 and for the nonlinear MMSE Eq. (5.25) can be used. Mind, that this
amount has to be doubled, since the MMSE equalizers account for amplitude and phase noise separately.

Single Eigenvalue Transmission

The resulting amount of needed multiplications for the considered equalizers is depicted in Fig. 5.23a.
Fig. 5.23b compares the improvement in BER achieved by the different equalizers w.r.t. the transmission
distance. Overall, with rising complexity of the equalizers a BER improvement can be seen. The amount
of additional multiplications and needed training symbols are finally compared in Tab. 5.4

Transmission of Two Eigenvalues on Both Polarizations

The required number of multiplications to equalize all 4 b-coefficients of a soliton are shown in Fig.
5.24. Especially the complexity of the NN equalizers increases strongly here, since large hidden layers
and a large output layer are used. However, a great benefit can be gained from the additionally used
continuous spectrum. While the BER drops to 6.3e-4 (cf. BER without equalizer 1.11e-1, BER NN
without continuous spectrum 2.8e-3), the number of total multiplications increases only insignificantly
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Table 5.5: Comparison of equalizer techniques for double eigenvalue transmission at 5030 km reach

Ntrain Nmult BER improvement
MMSE ≈ 2000 32 -3.2 dB

3rd-order NL MMSE ≈ 8000 440 -4.4 dB
2nd-order Cross. Corr. NL MMSE ≈ 8000 432 -6.7 dB
3rd-order Cross. Corr. NL MMSE ≈ 12000 1752 -9.3 dB

Cross. Corr. NN ≈ 45, 000 234088 -32 dB
Cont. Cross. Corr. NN ≈ 67, 500 255340 -45 dB

Figure 5.24: BER at the cost of complexity of all investigated equalizers for the DP, two eigenvalue
transmission with 1 GBd symbol rate at 5030 km transmission reach.

compared to the cross-correlation NN without continuous spectrum.
In addition, it should be noted that all equalizers presented here have the potential to be highly
parallelised, which can greatly reduce the overall duration of an equalization.
To quickly compare the different equalizers, the reader is referred to Table 5.5. Here, the training and
equalization costs of the BER improvements are compared.
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Figure 5.25: BER of all investigated equalizers for the DP, two eigenvalue transmission. Filled markers
refer to 1 GBd transmission, unfilled markers to 2 GBd symbol rate.
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5.5 Summary

In this chapter, disturbances such as low-pass behaviour and noise of the real channel on the discrete
NFT spectrum were considered. These, in addition to unknown deviations of the modulated b-coefficient,
lead to deviations of the eigenvalue. Since the transmitted eigenvalue can be assumed to be known, the
deviation of the eigenvalue can be used to infer deviations of b(λi).
For this purpose, (non-)linear MMSE equalizers and neural networks were introduced and experimentally
tested in single and double eigenvalue transmissions using one and two polarizations.
Overall, with rising complexity of the employed equalizers also the performance increases, with NN
equalizers reducing the BER by up to 45 dB and more than doubling the achievable transmission
distance.
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Chapter 6

Electronic Photonic Signal Processing for
NFT Transmitters

Photonic signal processing is an approach to shape microwave signals in the optical domain [115][116].
This has the intrinsic advantage of optical transmission, namely extremely large bandwidths, a large
frequency range and no electro-magnetic interference. Commonly, signals which are modulated over the
RF/mm-wave spectrum have bandwidths up to 100 GHz. This accounts to only 0.05% of the available
bandwidth for a 1550 nm optical carrier.

Using electronic photonic signal processing wideband operations such as beamforming for phased
arrays, filters with an extremely high tuning range, photonic mixers or even photonic reservoir computing
can be realised. In this section a silicon photonics (SiP) chip shall be designed and investigated, which
is able to densely multiplex solitons. By exploiting the tight control over frequency and time-differences
of the SiP chip, high spectral efficiencies in the field of soliton transmission can be reached in a scalable
manner.

This chapter is organized as follows: First, it will be motivated why electronic photonic signal
processing is used in the field of NFT-based soliton transmission. Then the SiP chip used will be
presented conceptually and as a more defined architecture. The chip will first be characterised and then
experimentally tested in transmissions of up to four soliton channels.

6.1 Motivation

Pulse shapes created in the digital domain by an INFT can be difficult to generate. This is illustrated
in Chapter 4 and is not only due to the increasing bandwidth of higher order solitons, but also due to
the increased dynamic range and vertical resolution required.
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Figure 6.1: (left) Tx 7-channel WDM spectrum and resulting nonlinear and linear spectra after (top
box) nonlinear multiplexing using one broadband INFT and (bottom box) linear multiplexing adding
seven narrowband INFTs.

So to fill an entire band, it is necessary to perform many digital INFTs, which are then multiplexed.
However, to ensure the linear transmission characteristics of multiple signals generated by INFTs, a
non-linear multiplexer would have to be used due to the non-linearity condition

f(q1 + q2) ̸= f(q1) + f(q2).

Therefore, a true NFT transmission using digital INFTs is not scalable due to the electrical bandwidth
of the Tx and Rx components. For this reason, true NFT WDM transmissions are not yet feasible. To
illustrate this graphically, Fig. 6.1 shows the two multiplexing methods described. Here, seven channels
were multiplexed non-linearly using a single INFT (top) and multiplexed linearly after calculating seven
separate INFTs (bottom). Only when a single INFT is calculated, seven orthogonal NFT channels
emerge that evolve linearly (top box, left). However, if seven narrowband INFTs are calculated, which
are then linearly multiplexed, this leads to interference between the channels as calculated by the NFT
(lower box, left) and linear FFT (lower box, right). So far, linear WDM transmissions with INFT
modulated signals have not been investigated in more depth.

In order to maintain the linear transmission characteristics of a channel, nonlinear de-multiplexing
would also have to be available, even if nonlinear multiplexing was possible. Alternatively, the NFT
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would have to be calculated over several channels in order to also consider XPM between channels,
which in turn would need very broadband receivers. As an option to keep the required Rx bandwidths
low, large spectral guard bands could be used. These, however, would reduce the spectral efficiency and
possibly negate the gain of using NFT processing.

A multiplexing scheme enabling broadband super-channels, to reduce the spectral efficiency fallout
associated to the guard bands, but that remains compatible with eigenvalue communications, would
thus be a powerful tool [117][118] and a step towards fully modulated and scalable NFT multiplexing.

To decrease electrical and electro-optic hardware requirements and facilitate a scalability of NFT-
based transmission systems an SiP chip is used to shift the synthetization of higher-order solitons to the
optical domain. To create a dense multiplexing, first order solitons that are overlapping in time and
frequency domain are phase- and amplitude modulated and optically merged within the chip and the
transmission link. Thus, guard bands can be omitted and even an overlapping of the spectra is made
possible. This not only decreases the generation requirements significantly (see Chapter 4.2) but also
maximizes spectral efficiency.

To enable this, the required tight control on differential frequency and timing of the solitons is made
possible by the SiP chip. Integrated platforms enable robust systems with precise pulse interleaving
for optical time division multiplexing [119], [120] and have enabled control to interleave pulses in the
picosecond range [121].

6.2 Silicon Photonics Integrated Circuit

This section will explain the concept of the photonic integrated circuit (PIC). The actual design and its
limitations will then be described and explained. The aim of the chip design is to individually modulate
up to 4 soliton channels and then multiplex them with reconfigurable time delays. The idea of the chip
is to be scalable to more than 4 channels to potentially fill all available frequency bands.

6.2.1 Concept and Architecture

A conceptual circuit is shown in Fig. 6.2. Here a bit-stream is parallelised and modulated onto the
b-coefficient by (A)PSK modulation. The eigenvalues shown are intended to represent the four solitons,
which can be calculated either by a numerical INFT (here the Darboux transform) or, since only
first-order solitons have been used so far, analytically (see Eq. (4.1)). The digitally generated first-order
solitons are then converted into the analogue, electrical domain by a DAC. These analogue electrical
signals are connected directly to the IQ-MZMs on the chip. The IQ-MZMs each modulate a filtered
laser line of a laser comb-source. By using a comb-source, a very uniform and constant ∆f can be
guaranteed. The solitons, now converted into the optical domain, pass through a reconfigurable delay
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Figure 6.2: Concept of the envisioned SiP chip: A bit sequence gets parallelized into four channels, each
modulating a first order soliton. A laser comb source supplies evenly spaced laser lines, which get fed and
filtered into each channels bus on the chip. The filtered laser lines get modulated by IQ-MZMs to yield
phase modulated solitons. The modulated solitons get delayed by a network of reconfigurable delay-lines
to get a dense time division multiplexing and multiplexed onto a common output bus afterwards.

network, which can provide very precise control over ∆t. Finally, all solitons are multiplexed onto a
common BUS using an MMI and routed to the output of the chip.

The now arising question is how small ∆f and ∆t can be chosen in terms of T0, while preserving
the eigenvalues and thus the desired transmission properties. Additionally, a T0 has to be determined to
yield solitons which are adapted to the available fiber loop setup. Afterwards filter bandwidths and
delay line lengths can be set.

The present fiber loop, adapted to soliton communications, consisted of 50 km NZDSF spans. With
the help of lumped amplification using EDFAs, the fiber loss was compensated. The first condition
imposed on the soliton width is then that of the guiding center soliton ξA = LA/LD ≪ 1 (see Chapter
2.1.5) with LD = T 2

0 /|β2|. Since LA and β2 are parameters fixed by the present fiber, one can calculate

T0 ≫
√

|β2|LA. (6.1)

Now LA is fixed to 50 km and β2 ≈ −5.74e − 27 s2

m, which leads to T0 ≫ 16.94 ps. Since the soliton
channels are to be multiplexed very closely in the frequency domain, it is also necessary to consider
the condition Lcoll ≫ LA. Otherwise, a frequency offset due to too short collision distances can cause
problems in the detection due to the very narrow multiplexing. Using Eq. 2.18 one can calculate
T0/∆f ≫ LA

9.778e25 m/s2 = 5.114e − 22 s2. This can be rewritten into

∆f ≪ T0/5.114e − 22 s2. (6.2)

From Eqs. 6.1 and 6.2 one can see that T0 should be chosen as large as possible to get robust solitons
and less impact due to collisions from more distant channels.
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Since the spectral efficiency of a soliton is fixed, it is recommended to use larger T0 (with larger
absolute time-division spacing ∆τ and smaller absolute frequency spacing ∆f of the channels) to get a
robust transmission with regards to the conditions of the guiding center soliton and collision lengths.

Given the discussion above, a soliton width of T0 = 60 ps was set to carry out the further examinations.
This value was chosen conservatively, since this leads to ∆f ≪ 117.3 GHz and LD ≈ 435.6 km and
also leads to less demands with regards to total bandwidth of the chip and hence possibly cheaper
components.

Following Fig. 4.10, one can see that for two eigenvalue multiplexing, minimum multiplexing
parameters ∆T and ∆k can be chosen to be

∆Tmin = 2.5

∆kmin = 1.5,

to get dense multiplexing without much perturbation, keeping in mind that multiplexing of four channels
could increase the perturbations. This leads to multiplexing parameters in physical units

∆τmin = 150 ps

∆fmin = 9.5 GHz,

which were the core parameters during the design of the chip.

6.2.2 Design and Components

Figure 6.3 shows a block diagram of the integrated system and Fig. 6.4 a micrograph of the fabricated
chip. Four 2nd-order CROW OADMs distribute the different laser lines into the two IQ MZMs.

This makes it possible to modulate four channels, while only two complex signals and IQ-MZMs
need to be used. In turn one four-channel AWG (Keysight M8169A) is sufficient and reduces the
implementation efforts for modulators. Thus, at the beginning, channels 1 and 3 (or 2 and 4) carry the
same information (see wavelength labelling in Fig. 6.3). However, channels 3 and 4 are delayed by 300 ps
or 500 ps after modulation, depending on the selection of the 4-ring CROW OADMs. By adjusting the
baud rate, these channels now travel in the subsequent symbol clock and generate four independent
solitons there. By selecting the 300 ps delay line and a symbol duration of 600 ps, evenly distributed
solitons with ∆t = 150 ps can be generated. If the 500 ps delay line is selected in combination with a
symbol duration of 1 ns, ∆t increases to 250 ps.

Since channels 1 and 3 (or 2 and 4) do not overlap, they can be multiplexed with CROW OADMs
onto one output bus each without crosstalk. These 2 bus waveguides can finally be coupled by an MMI,
as this does not filter the spectra and thus allows overlapping. However, this comes at the cost of 3 dB
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Figure 6.3: Design of the SiP chip: Four narrow-band two ring coupled (ring-) resonator optical
waveguides (CROWs) (left hand side) let the selected laser lines pass. Two channels get modulated
by an IQ-MZM. Afterwards one channel gets routed directly to the output bus, while the other one
gets delayed by 300 ps or 500 ps into the following soliton window to get four independently modulated
solitons.
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Figure 6.4: Micrograph of the created SiP PIC.

additional insertion losses due to reciprocity. But this penalty is incurred only once, irrespective of the
number of channels.

Important re-configurable elements of the PIC are the CROWs and MZMs. The 2nd-order CROW
filters, which are used to filter the laser lines into the modulators, have an insertion loss (IL) of 2 dB
and a 3-dB bandwidth of 7.5 GHz when both rings are aligned, as depicted in Fig. 6.5a. Due to the
design with only two rings, the filter slope is not very steep. This leads to a 5-dB bandwidth of around
10 GHz and is the lowest possible frequency spacing of the channels. The 4th-order CROW OADMs
have 3 dB IL and a 3-dB BW of 15 GHz after alignment (Fig. 6.5a). Because of the large bandwidth
of the fourth order CROW-filters relative to the -20-dB bandwidth of a 60 ps soliton (approximately
10.1 GHz), and the distortion-less combination of the BUS waveguides using an MMI, the chip can be
assumed to be an almost perfect linear superposition of the four soliton channels. This, however, needs
very precisely adjusted voltages for each ring of the CROWs, leading to a total of 32 voltages which
need to be controlled. The IQ-MZMs consist of 4.4 mm long phase shifters, which can also be clearly
seen in Fig. 6.4. Complementary phase shifters are operated in nested MZMs in GSSG configuration.
Since only four AWG channels and matched RF amplifiers were available, the RF-signal had to be
split electrically leading to a maximum driving voltage at the MZMs of 2 Vpp. If only two channels
were being modulated, the driving voltage could be doubled to 4 Vpp. The IL is below 4 dB and the
electro-optic cutoff frequency is 13.8 GHz and is thus adapted to the present application. When driven
with 2 Vpp signals and biased for QPSK modulation, this results in a combined IL and modulation
penalty of 12.3 dB, which lowers to 7.7 dB at 4 Vpp. This penalty is defined here as the attenuation of
the peak power after modulation since nested modulators are biased at the zero-transmission point.
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(a) 2-ring and 4-ring CROW frequency response. (b) Reconfigurable output network response after
alignment.

Figure 6.5: Measured frequency responses of (a) CROW OADMs and (b) full chip.

Since the line power of the comb source was very low and the set up system could tolerate slight
frequency fluctuations between channels, discrete cavity lasers were used (Agilent N7714A). The output
power of the four lasers could be adjusted separately and were thus set to 12 dBm for channels 3 and 4
and 8 dBm for channels 1 and 2. This compensates for the additional IL of the delay lines (see Fig.
6.5b). In total, the optical losses were as follows: 1) The external 4x1 multiplexer to multiplex the
laser lines introduced an IL of 7 dB; 2) the input and output grating couplers cumulatively added an
IL of 7.5 dB; 3) 2nd- and 4th-order CROW OADMs added a cumulative IL of 5 dB; 4) the IQ-MZMs
an insertion and modulation penalty of 12.3 dB for 2 Vpp drive voltage (4-channel experiments); 5)
delay lines an IL of 4 dB; 6) the output MMI an IL of 3 dB due to reciprocity (with negligible excess
losses); and 7) interconnect waveguides and monitor taps a cumulative 3 dB IL. Thus a soliton-pulse
peak-power of -29.8 dBm at the PIC output was gained. These values have been used to adjust the
required amplification at the PIC output to reach the calculated soliton peak power launch condition of
3.9 dBm calculated based on the path-average conditions.

6.3 Experimental Verification

In order to verify the theoretically developed models of soliton multiplexing, several experiments were
carried out. In the course of the processing time, 2 PICs were manufactured, whereby the first PIC
could only modulate channels 1 and 3. Experimental investigations with increasing complexity were
thus carried out. Here, the multiplexing parameters were chosen to be progressively denser. In the first
set of experiments, only two channels using the first chip were modulated. This led to the possibility to
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Figure 6.6: Experimental setup for the four-channel measurements.

drive the MZMs with 4 Vpp RF-signals, since two RF-amplifiers could be used for each differentially
driven quadrature. This enabled later comparisons with a 2 Vpp driven MZM, to verify, if there are
PIC-external bottlenecks in this experiment. Afterwards, all four channels were modulated, but with a
coarser multiplexing scheme to be comparable to the two-channel transmission. This facilitated the
verification of possible penalties due to cross-talks or problems in the heat-distribution because of using
all four channels. Finally, in the last set of measurements the channels were multiplexed as dense as
possible and even amplitude modulation of the b-coefficient was introduced, in order to determine the
maximum possible spectral efficiency enabled by the chip.

6.3.1 Experimental Setup

The experimental setup for a 4-channel transmission is shown in Fig. 6.6. The DSP block on the
transmitting side is independently executed twice. A 4-channel AWG (Keysight M8196A, 80 GS/s,
ENOB ≈ 5.5) serves as a DAC and generates inphase and quadrature portions of two parallel soliton
streams. Each stream consisted of 2000 solitons and an additional zero padding of 5 ns for synchronization
purposes. The solitons are amplified to a swing voltage of 4 Vpp using electrical RF amplifiers (SHF
S807). Because of the GSSG configuration, these are split by 3 dB splitters and then provide 2 Vpp swing
voltage, which is DC-blocked and then connected to the PIC’s RF PCB. As described in Section 6.2.2,
four cavity lasers (linewidth <100 kHz) with powers of 8 and 12 dBm are used as carriers, coupled with
the aid of a 6 dB coupler and fed into the chip using grating couplers. The control PCB is connected to
the RF PCB by means of ribbon cables. The control PCB is managed by a PC via USB. This allows the
MZMs to be biased and the CROW OADMs to be adjusted using software. The PIC output (average
power of 4 channels now ≈ −36 dBm) is amplified by an EDFA and fed into a recirculating loop. The
recirculating loop consists of 4 spans of 50 km NZDSF. The attenuation is compensated by EDFAs (NF
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≈ 5 dB). As seen in Fig. 6.6, two filters inside the loop are used to remove out-of band noise. After the
desired number of loops have been passed through, the received signal is first amplified again. Then the
channel(s) under test are filtered by a narrow-band optical filter (bandwidth of 7.5 GHz for one channel).
The optical to electrical conversion is done by means of a NeoPhotonics µ-ICR coherent receiver. An
additional laser (linewidth <10 kHz) served as local oscillator and an oscilloscope (Keysight DSOZ634A,
80 GS/s, ENOB ≈ 5.5) as ADC.

The digitized Rx signal was digitally filtered by a 3rd-order Butterworth filter with a 3 dB bandwidth
equal to two thirds of the solitons’ 20 dB bandwidth. Afterwards the signal was synchronized using
the zero padding and normalized into NFT units, which was followed by the NFT and one-step back
propagation according to (3.37). The carrier frequency offset (CFO) was computed by calculating the
mean real-part of the eigenvalues and subsequently compensated, which was followed by either a blind-
or a pilot based carrier-phase estimation. Afterwards, the different equalization techniques as described
in Section 5 were used, which was followed by the demodulation of the QPSK symbols (if no NN was
used) and subsequent BER calculation.

6.3.2 Two Channels

In this set of two-channel measurements the general capability of the chip to generate solitons was verified.
This was followed by comparisons of multi-channel and single-channel equalization schemes. For the
two-channel measurements, all four available AWG channels and amplifiers were used to achieve 4 Vpp
swing voltage and in turn maximum Tx OSNR, which was subsequently compared to a transmission
using only 2 Vpp swing voltage. This enabled the comparison of two- versus four-channel transmissions,
which only allowed for 2 Vpp swing voltage. The differential frequency was set to 30 GHz and the
time-domain spacing to 500 ps with a baud-rate of 1 GBd. This results in very low to no interference
between channels.

First, the average launch power for this transmission had to be determined. For this, two channels
were transmitted and the launch-power was swept at 2800 km transmission distance. The results are
depicted in Fig. 6.8a. Here, the best results were seen at launch-powers of -2 dBm. This fits the
calculated loss-less path averaged launch-power of approximately -2.33 dBm. To calcualte this, an
attenuation of 0.2 dB/km, dispersion of D = 4.6 ps

nm·km and nonlinearity γ = 1.6 1
W·km were assumed.

Deviations from this value in experiments can be due to small variances of the fiber-parameters or
insertion losses into the fiber. If only one channel was transmitted, 3 dB were substracted from the
experimentally gained optimal launch power for two channels.

Since the experimentally found optimal launch power corresponds to the theoretically calculated
launch power required for the formation of solitons, it can be concluded that solitons were indeed
generated with the chip. This can also be qualitatively be seen in Fig. 6.7, where the pulse-width does
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Figure 6.7: Eye-diagrams and constellations for (left) 3400 km, (middle) 4200 km and (right) 5000 km
transmission.
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(a) BER depending on the launch
power for two channel transmis-
sion at 2800 km transmission dis-
tance.

(b) BER depending on the dis-
tance for different channel config-
urations.

(c) Received eigenvalues after
transmitting both channels and
receiving a single channel after
3000 km. (Red) channel 2 and
(blue) channel 4.

Figure 6.8: Measurement results of the two-channel measurements using 4 Vpp driving voltage and
transmitting either only channel two or channels two and four.

not increase with increasing transmission distances.

Analysis of Single Channel Reception

To set the IQ-MZM, only channel 2 was used first. Afterwards, the laser of channel 4, being modulated
by the same IQ-MZM, was turned on to measure a two-channel transmission. The first measurement
results are depicted in Fig. 6.8b. In general, no penalty can be seen due to multiplexing two channels.
This is to be expected, since no dense multiplexing was taking place and the soliton collisions were
accounted for by the channel spacing and soliton width. This led to transmission distances below the
assumed soft-decision forward error correction (SD-FEC) limit of 1.25e-2 up to 4400 km. However,
detecting channel four led to worse performances than the detection of channel 2. This can also be seen
in Fig. 6.8c, where the detected eigenvalues after 3000 km transmission are shown. It can be seen that
the eigenvalues of channel 4 scatter much more than those of channel 2. This could be reversed by
adjusting the MZMs. However, a perfect adjustment of both channels at the same time was not possible.
Nevertheless, it should be noted that solitons were generated in both channels, since eigenvalues were
detected.

To investigate the influence of the driving voltage on the transmission quality, it was reduced to
2 Vpp. A comparison is shown in Fig. 6.10a. Due to the reduced voltage swing, the transmitted signal
power is reduced by 4.6 dB and in turn the transmission distance at the assumed SD-FEC limit decreases
by 1200 km. From this, it can be seen that one bottleneck is not directly on the chip, but in the
preceding transmitter hardware, which should be taken into account in the four-channel measurements
that follow later.
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(a) BER depending on the distance for two channel
transmission and reception using different equal-
izers. Filled markers refer to single eigenvalue
equalization, unfilled markers to cross-correlation
equalization.

(b) BER depending on the amount of training sym-
bols for two channel transmission and reception at
3000 km, using different equalizers. Filled mark-
ers refer to single eigenvalue equalization, unfilled
markers to cross-correlation equalization.

Figure 6.9: Measurement results of the two-channel measurements using 4 Vpp driving voltage and
transmitting and receiving two channels

Analysis of Dual Channel Reception

Since the receivers’ bandwidth was high enough to detect both channels, this was done to investigate
multi-channel equalization similar to the cross-correlation equalizers in Chapter 5. The Rx local-oscillator
was set between channels two and four and the receiver filters bandwidth to 50 GHz. In this configuration,
the overall transmission distance was reduced when compared to the single sub-channel reception and
only 2600 km could be reached (see Fig. 6.9a) with BERs below the assumed FEC-limit. This is a
consequence of the broader receiver filters and subsequent lower subchannel powers at the photodiodes
of the coherent receiver. After all, only about 21 GHz of the 50 GHz reception bandwidth were filled with
solitons. Since the maximum allowable optical power could not be increased due to the photo receiver
damage threshold and nonlinearities, the total signal power was reduced and additionally superimposed
by the noise of the electrical TIAs after the optical to electrical conversion.

However, this enabled cross-correlation equalization to be tested and compared with single-channel
equalization. As one can see, especially nonlinear equalization can increases the transmission distance
below SD-FEC by 800 km up to 3400 km. The amount of needed training symbols is depicted in Fig.
6.9b. For the linear MMSE equalizer, only about 100 training solitons are needed to be well adjusted.
The second order nonlinear equalizer in comparison requires around 200 training solitons, which can
still be considered a low amount. Although, the training effort for the nonlinear multi-channel receiver
rises drastically, with around 5000 solitons being needed to be well adjusted.
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In general, additional range improvement can be achieved with better matched receiver hardware, if
both channels are equalized together. However, since the existing hardware was not adapted to this
case, multi-channel reception was not used in the following.

6.3.3 Four Channels

For comparability, the channel settings of the two-channel measurements were kept first. The channel
spacing of channels 1 and 3 (respectively 2 and 4) was 30 GHz. This resulted in a channel spacing of 15
GHz on the main bus. The same delay lines were also used. The spacing in the time domain on the
main bus was therefore halfed to 250 ps.

Subsequently, the solitons were more tightly multiplexed within the chip. The frequency spacing was
10 GHz and the spacing in the time domain was 150 ps. These are the target values discussed earlier.
However, the symbol rate was left at 1 GBd to keep the sample rates comparable and to be able to
attribute any degradation to the multiplexing.

After that, both tight multiplexing on the chip and reducing the symbol duration to 600 ps were
introduced. This resulted in the highest spectral efficiency achievable with this chip without any
amplitude modulation of b(λi). To increase this even further, time domain modulation of the solitons
was then added using 2ASK-4PSK modulation.

Analysis of quality degradation by using four channels

∆t = 250 ps, ∆f = 15 GHz, 1 GBd, 8 GB/s aggregated, 0.1455 b/s/Hz

These settings are not primarily chosen to achieve the highest possible spectral efficiency. Instead,
the aim here is to validate, if any crosstalk occurs within the PIC due to the spatially tightly packed
hardware. To ensure comparability with the two-channel transmissions, the multiplexing parameters
between the odd and even channels have not been changed here. All carrier lasers were now used to
create four soliton channels. In Fig. 6.10b it can be seen that these have no influence on the performance.
At short distances, a degradation of the BER can be observed, while at longer distances it is even better
than that of the two-channel measurement. However, this is due to measurement variations. The range
under the SD-FEC does not change and remains at 3000 km.

To test the influence of equalization on the transmission range, single-channel equalizers were applied
to the received channel. These were the linear MMSE equalizer, a non-linear second order equalizer and
a neural network. For the size of the network, the findings of the dual-polarisation experiments (see
Section 5.4.4) were initially used. Here, too, no better performance was found with changed network
parameters, which is why the network size did not change. The number of hidden layers was again two,
containing 132 and 596 nodes, respectively.
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(a) Two channels using different
driving voltages of the MZMs.

(b) Two versus four channel trans-
mission using 2 Vpp driving volt-
age.

(c) Equalization of the 4-channel
transmission: (blue, x): no equal-
ization, (red, diamond): linear
MMSE, (yellow, dot): 2nd-order
NL-MMSE, (purple, triangles):
neural network equalization.

Figure 6.10: Four channel measurements using the first set of settings to compare two-channel and
four-channel transmission. For readability, the assumed SD-FEC limit of 1.25e-2 is included (dashed
line).

With the help of the linear MMSE equalizer, the transmission range at the SD-FEC limit could be
increased by approx. 800 km to 3800 km. This could only be minimally improved by the non-linear
equalization. This is again explained by the lack of amplitude modulation, which is the main beneficiary
of non-linear equalization.

However, the neural network was able to significantly increase the transmission distance. Thus,
5000 km with BERs below the SD-FEC limit could be achieved and even 4200 km could be transmitted
at the HD-FEC limit.

Analysis of narrow multiplexing

∆t = 150 ps, ∆f = 10 GHz, 1 GBd, 8 Gb/s aggregated, 0.2 b/s/Hz

In these measurements, the multiplexing parameters were chosen as derived in Section 6.2.1 and on which
the system architecture of the chip is based. However, the symbol rate was not changed initially. Thus,
the number of samples per soliton remains the same as in the previous measurements. Consequently, a
penalty due to relatively lower sample rates can be excluded.

First, the optimal launch power was first determined and compared with the theoretical launch
power. The results of this measurement are shown in Fig. 6.11a. As can be seen, the optimal launch
power of -5.5 dBm deviates strongly from the calculated launch power of approximately 1 dBm. In a
four-channel transmission, the launch power of -5.5 dBm would be required for transmission of solitons
with a width of 249 ps. Interestingly, theses solitons actually emerge during fiber propagation (the
transmitted spectra correspond to solitons with T0 = 60 ps as can be seen in Fig. 6.12a) and keep
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(a) BER depending on the launch
power for dense four channel multi-
plexing (second settings) at 3000 km
transmission distance.

(b) Received time-domain eye-
diagram after 5800 km transmission.
Blue overlay shows a soliton pulse
with T0 = 249 ps, which corresponds
to the optimum launch-power of -
5.5 dBm.

(c) Variance of the phase-deviation
due to linear multiplexing with dif-
ferent multiplexing parameters. The
blue circle refers to the transmit-
ted parameters, while the red circle
refers to the received ones due to
temporal broadening: ∆k changes,
despite ∆f being constant. This is
due to the normalization using dif-
ferent T0.

Figure 6.11: Measurement results of the narrow multiplexing, four-channel experiments.

this width for transmission distances up until the longest measurement of 5800 km, as can be seen
in Fig. 6.11b. It can be concluded, that a solitonic transmission is maintained, but a better BER is
obtained with wider pulses that reduce the frequency overlap between the channels at the cost of a
higher temporal overlap. Looking at Fig. 6.11c this is not entirely surprising. Here, the transmitted
case (blue circle, ∆T = 2.5, ∆k = 1.5) leads to a slightly worse variance due to multiplexing than the
received case (red circle, ∆T = 0.6, ∆k = 7.822). Additionally, longer pulses are less prone to uneven
collisions due to lumped amplification, as the collision distance elongates.

To improve the transmission results, the phase-recovery algorithm was changed from a blind phase
search to a pilot-based one. Besides the better phase-tracking, this also enabled the use of a Rx local
oscillator with a larger line width, but 3 dB more power. This lead to an overall increase of the BERs,
despite the denser multiplexing, due to higher SNR at the receiver, when compared to the previous
measurements.

The results are depicted in Fig. 6.12b. Without equalization, a transmission reach of up to 5000 km
remaining below the assumed SD-FEC limit could be reached. Overall, the MMSE equalizers could
barely improve the BERs and lead to no significant gain. The NN, however, could improve the BER
especially for the lower distance. This enabled the use of HD-FEC up to 5000 km.

Analysis of increased symbol-rates and reduced amount of samples

∆t = 150 ps, ∆f = 10 GHz, 1.666 GBd, 13.333 Gb/s aggregated, 0.3333 b/s/Hz
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(a) (solid, black): Measured transmitted PSD,
(dashed, colored): ideal PSDs of the four solitons
to be multiplexed with T0 = 60 ps for the second
4-channel settings.

(b) BER depending on the transmission distance for
four channel transmission using different equaliz-
ers. SD-FEC limit included for readability (dashed
line).

Figure 6.12: Measurement results of the narrow multiplexing, four-channel experiments, showing the
transmitted PSD and the BER.

To increase the spectral efficiency and especially the bit rate, the baud rate has now been changed. The
spacing in the time domain remained at 150 ps. By using a symbol duration of 600 ps, an equidistant
spacing of solitons of different windows in the time domain could be achieved. However, since the
spacing in the time domain of the solitons within a block is not changed, a change in the achievable
transmission distance can be attributed to the decreased sample count.

Again, the optimal launch power was swept at 3000 km before testing the transmission reach. And
again, the launch power is below the calculated theoretical optimum, but increased by 2 dB, when
compared to the 1 GBd measurement. This is because there is no more downtime between the soliton
blocks. Therefore, the average signal power must increase by 2 dB to obtain the same peak power and
hence T0 as in the 1 GBd measurements.

The transmission reach with BERs below the assumed SD-FEC limit in this experiment was reduced
by 400 km to 4600 km, when compared to the 1 GBd measurement, if no equalization was employed.
This can be attributed to the reduced number of samples. On the other hand, the reduction of the
transmission distance is relatively small here and may also indicate a measurement inaccuracy. Again,
the MMSE equalizers could not improve upon this in a significant manner and the NN kept the BER
below HD-FEC limit up to 4600 km. However, in these measurements, even at longer distances, the BER
could be kept below SD-FEC with the help of the NN. Transmissions of up to 5800 km were possible.
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(a) BER depending on the launch power for dense
four channel multiplexing at 3000 km transmission
distance.

(b) BER depending on the transmission distance for
four channel transmission using different equaliz-
ers. SD-FEC limit included for readability (dashed
line).

Figure 6.13: Measurement results of the dense-multiplexing experiment with increased symbol-rate.

Analysis of additional Time-Division Modulation

∆t = 150 ps, ∆f = 10 GHz, 1.666 GBd, 2ASK-4PSK, 20 Gb/s aggregated, 0.5 b/s/Hz

To further increase the spectral efficiency, the amplitude of b(λi) was chosen as the newly modulated
degree of freedom. As previously described, solitons became temporally wider during transmission, which
already increases temporal overlap. Combined with the design of the input filters (5 dB bandwidth = 10
GHz), this is why changing the solitons in the time domain was chosen to increase spectral efficiency.
Since an even tighter multiplexing by increasing the symbol-rate was not possible due to the design of
the delay lines, ASK modulation was chosen instead, which leads to a temporal shift of the solitons.
Hence, some things have to be considered for this. First, the amplitudes should have the same value,
but different signs on a logarithmic scale in order to equally distribute the resulting possible positions
of the solitons in the time domain. The choice of amplitudes is now a trade-off between, on the one
hand, the distinguishability between the amplitude levels in the noisy case and, on the other hand,
the displacement of the solitons towards the edge of the window. A too large shift could allow for an
easy decision, but pushes the solitons out of the time window and thus disturb the vanishing boundary
condition. Furthermore, modulating the amplitude of b(λi) also changes ∆t, which in turn has an
influence on the multiplexing penalty. Therefore, an optimal distribution of the amplitudes must be
found.

To find appropriate amplitude levels, different time-shifts depending on the ASK modulation have
been evaluated. The results are depicted in Fig. 6.14a. The overall best performance is gained by shifting
the solitons by ±90 ps. If this shift is chosen to be smaller, a penalty occurs over the whole transmission
distance, which can be explained by the small distance between the points in the constellation. Larger
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(a) BER for the four-channel transmission as a
function of distance for different spectral amplitude
modulations/time shifts.

(b) Eye-diagram of one channel after 1800 km trans-
mission with a time shift of ±90 ps.

Figure 6.14: Impact of different amplitude modulations on densely multiplexed four-channel transmission.

modulation time-shifts lead to a strong BER penalty especially at lower transmission distances, which
is due to leaking of the solitons into the neighbouring time-windows. To illustrate the used time shift,
Fig. 6.14b shows a received eye diagram after 1800 km transmission distance.

Without equalization, the additional modulation reduced the transmission range by about 1000 km
to 3400 km when optimal spacing was selected. However, since it could be shown in previous chapters
that the equalizers can reconstruct the amplitude very well, special attention has to be paid to this
concept. Hence, after finding the optimal modulation time shift, the described equalizers were applied
to the received NFT data. The results in Fig. 6.15a show that even the (non-linear) MMSE equalizers
already allow a significant increase in performance. With the help of a linear MMSE equalizer, the
transmission distance is extended up to 4200km and with a second-order non-linear MMSE equalizer up
to 4600 km. The improvement in performance can also be observed qualitatively in Figs. 6.15b-6.15c.
Here one can see how the non-linear MMSE equalizer can equalize the phases only minimally, but the
amplitudes very well. Since only phase modulation was used in the previous measurements, the MMSE
equalizers were not very effective.

Again, the NN equalizer performed the best in this experiment. It increased the transmission range
below the SD-FEC limit by 2000 km to up to 5400 km, which is on par with the transmissions without
amplitude modulation.
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(a) BER for the four-channel transmission as a
function of distance, without and with equalization
(time shift ±90 ps).

(b) Constellation diagram
after 4600 km transmis-
sion without equaliza-
tion.

(c) Constellation diagram
after 4600 km transmis-
sion with 2nd-order non-
linear MMSE equaliza-
tion.

Figure 6.15: Equalization results of dense four-channel multiplexing transmission with additional
amplitude modulation.

6.4 Summary

In this chapter, the possibility of multiplexing solitons linearly in very tight grids in both the time and
frequency domains using a SiP chip was presented. This enables scalable, efficient soliton transmission.
For a proof of concept, two chips were created, characterised and tested in transmission experiments.
Thus, up to four soliton channels could be multiplexed and transmitted over long-haul distances.

To recap the experimental four-channel results, Fig. 6.16 depicts the transmission experiments.
Here Fig. 6.16a shows the achievable transmission reach without equalization. Except for the first
experiment, where the reach was particularly reduced by lower Rx LO power, the range at SD-FEC
otherwise decreases with increasing spectral efficiency when no equalization is applied. Raising the
baud rate from 1 GBd to 1.666 GBd (experiment 2 to 3) introduces only a small penalty (about 400
km at SD-FEC), which may still be within the range of measurement inaccuracy. By adding an ASK
modulation, the range decreases more strongly with 800 km compared to the 3rd experiment. This is
understandable, since a higher level modulation was applied at the same OSNR.

By applying an NN equalization, the measurement results can be strongly converged. Especially, if
the HD-FEC limit is considered here, it can be seen that measurements 1, 3 and 4 with 4600 km have
the same range and only measurement 2 with 5000 km reaches a slightly further distance, which is again
within the range of measurement inaccuracy (Fig. 6.16b).

Fig. 6.17 shows the results of this work in comparison with other experiments based on NFT soliton
transmissions. To do this, the spectral efficiencies and absolute data rates versus transmission distance
from BERs to the SD-FEC limit are benchmarked. All efficiencies and bit rates are normalised to one
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(a) BER without equalization. (b) BER after NN equalization.

Figure 6.16: BER depending on distance for four-channel measurements. (blue, diamond): first settings,
broad multiplexinig, (red, circle): second settings, dense multiplexing at 1 GBd, (yellow, triangle):
third settings, dense multiplexing at 1.666 GBd, (purple, star): fourth settings, dense multiplexing
at 1.666 GBd and additional ASK modulation. The legends denote the spectral efficiency. Assumed
SD-FEC limit included for readability.

polarisation. In particular, the experiments of Gaiarin et al. and those of the collaboration with the
Schäffer group at HSU were (as also shown in Chap. 5) dual polarisation transmissions, which doubles
the absolute SE and bit rate, since an additional degree of freedom is used. This must be taken into
account here. The experiments that were also described in this work (star and rectangle in the figure)
are shown here once without equalization and once with NN equalization to ensure comparability with
other works.

Figure 6.17: Comparison of the reached spectral efficiency (left) and bit rate (right) versus transmission
distance at SD-FEC for selected experimental publications of NFT-based soliton transmissions. For
comparison, these results are normalized to one polarization. Mind that Gaiarin et al (2018) and
Schaeffer et al (2020) were dual-polarization experiments, which leads to a doubling of the spectral
efficiency not displayed here. The referenced works are: Buelow et al [122], Gaiarin et al. [123], Gui et
al. [82], Zhou et al. [124] and Collaboration with Schaeffer et al. [90]

111



Chapter 6. Electronic Photonic Signal Processing for NFT Transmitters

The experiments presented here followed different approaches. Buelow et al [122] used digital
multiplexing of a high number of seven eigenvalues with a relatively low symbol rate of 0.5 GBd and
short 24 km spans of NZDSF. This is in contrast to the modulation scheme employed by Gui et al [82],
which used only a single, highly modulated eigenvalue with symbol rates up to 6 GBd and 50 km NZDSF
spans. Zhou et al [124] continued to work on the high symbol rate approach, but alternated the (non-zero)
real-parts sign to force collisions during transmission, resulting in favorable soliton interactions. While
this slightly decreased the spectral efficiency, the transmission distance increased. Gaiarin et al [123]
focused on the first dual-polarization experiments using two vertically stacked eigenvalues at 1 GBd and
distributed Raman amplification, albeit unfavourable 50 km SSMF links. Work on two polarizations has
also been taken up by Schaeffer’s group (Chan, Geisler et al) [86, 90]. Distributed Raman amplification
was also used here, but it was employed on NZDSF-based transmission and horizontally distributed
eigenvalues. This lead to very high spectral efficiencies.

As can be seen, comparably high data rates with not only high spectral efficiencies, but also over long
distances are transmittable when a soliton dense wavelength division multiplexing (DWDM) transmission
is used with the help of an SiP transmitter. The spectral efficiency could be doubled by using this
transmission scheme, when compared to other works. This is in addition to increased transmission
distances and possible scalability of this scheme. Using this approach, modulation of not only the
phase, but also the amplitude can be used, since only one eigenvalue is processed at a time. This is
combined with a high number of eigenvalues in relatively short time frames of only 600 ps. This raises
the question what can be achieved, if several solitons are transmitted on the same frequency by stacking
the eigenvalues vertically [125] or different polarizations are to be used, but also what can be done at
the receiver side to aid very high-order soliton reception.
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Conclusions

In this chapter, a summary and conclusion of this thesis shall be drawn. Additionally, other current
research topics about the NFT shall be mentioned.

7.1 Summary

In this work, the transmission of solitons in the framework of the nonlinear Fourier transform was
investigated. Compared to the conventional Fourier transform, the nonlinear Fourier transform produces
two spectra that propagate linearly through the nonlinear fiber-optic channel. As shown in this work,
strongly nonlinear transmission is only possible using the discrete spectrum, i.e. solitons. This has
sparked a new interest in soliton transmission. Even though the NFT promises linear transmission
through a nonlinear channel, there are still many obstacles to overcome. In the field of NFT-based
soliton transmission, these include equalization and the generation of spectrally efficient high-order
solitons.

After first introducing solitons on a physical basis in the field of fiber-optic transmission systems, the
NFT was briefly introduced. Solitons and soliton modulation in the framework of the NFT, as well as
different methods of multiplexing solitons were presented. To fill large bandwidths with solitons, linear
mutliplexing in the optical domain is necessary. The capabilities and limitations of linear multiplexing
were demonstrated and compared with the nonlinear, digital Darboux method.

A photonic chip was designed to enable linear multiplexing taking into account constraints, which
were established in the scope of this work. This chip allowed very precise control over the parameters of
a soliton-based DWDM transmission. As a result, soliton transmissions using up to four channels with
very high spectral efficiencies (0.5 b/s/Hz) and bit rates (20 Gb/s) over long distances of up to 5400 km
could be achieved in experiments. One challenge was the high Tx noise floor due to the overall high
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attenuations within the chip. With larger driving voltages of the MZMs, this effect could be reduced,
but the achieved Tx SNR was still much lower than that of commercial modulators.

The results were supported by developing multiple equalization schemes in the nonlinear Fourier
domain. The equalizers were based on the MMSE scheme and nonlinear extensions, similar to well-known
Volterra equalizers. In addition, equalizers based on neural networks were developed and examined.

7.2 Conclusion

To test NFT equalizers, first-order single channel solitons with higher-order modulation (4ASK-8PSK)
were transmitted experimentally. The results showed that the performance of the MMSE equalizers
increased with rising nonlinear complexity. However, the performance improved only minimally by
employing orders of nonlinearity larger than three. Hence, minding the exponentially increasing number
of equalizer taps, using higher orders than the third was found out to not be optimum.

The equalizers were then tested using a dual-polarisation transmission scheme with second-order
solitons. The two eigenvalues were QPSK modulated in both polarisations. Due to the low modulation
order, the performance of the non-linear equalizers was only minimally improved compared to the linear
equalizer. However, the non-linear equalizers were able to improve the performance by exploiting the
cross-correlations between the eigenvalues, while the linear equalizer could not exploit these.

The neural networks showed very good results across the board. They performed best with one
highly modulated eigenvalue as well as with two eigenvalues with lower order modulation when trained
accordingly. Overall, the amount of needed training solitons was comparable to the requirements of
nonlinear MMSE equalizers. Additionally, the hyper-parameters of the neural networks could be kept
relatively constant (two layers were always sufficient), which enabled a fast implementation for different
transmission scenarios.

The silicon PIC showed promising results with regards to spectral efficiencies and bit rates. However,
multiple issues were identified which need more in-depth research or revisions of the PIC as discussed
below. It has been shown that the solitons did not completely maintain their shape during transmission,
but tended to widen when all four channels were used and multiplexed densely in frequency domain.
This resulted in lower optimal transmission powers as expected from theory. In general, the solitons
were more stable in experimental transmissions. One reason for this could be collision effects resulting
from lumped amplification. To increase the collision distance, denser multiplexing in the frequency
domain with temporally wider solitons is one option. This would keep the spectral efficiency constant.
However, this was not possible due to input filters in the chip that were designed to be too large. Denser
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multiplexing hence lead to energy shifts into the neighboring channels. This was an oversight in the
design phase of the chip, which could be revised in a new tape out.

An additional limitation was the number of electrical amplifiers used on the transmitting side. With
additional amplifiers, a 6 dB increase in output power could have been achieved, as calculated and
shown in experiments with only two channels. However, the power had to be divided since only four
amplifiers of the same type were present. In retrospect, additional amplifiers could possibly have been
used. This was not done initially, as it would have entailed a different amplification of the comb laser
lines. However, since four different lasers were ultimately used, they could have been adjusted according
to the used amplifiers, resulting in an overall increased output power.

Still one of the biggest bottlenecks of soliton transmission, despite tight multiplexing to increase
spectral efficiencies, is the conventional lumped amplification scheme or rather non-constant ratio of
dispersion and nonlinearities. Constant power within the fiber spans with the help of Raman amplifiers
could enable very broadband soliton systems in particular and remains an issue to be investigated in
greater depth.

On the NFT processing side, receiving two channels and calculating the NFT of a higher order
soliton was generally inferior to receiving and processing first order solitons only. This reduced the
efficiency of downstream equalizers, since possible cross-correlation effects could not be considered.

7.3 Outlook

In order to use all degrees of freedom of the NFT, the continuous spectrum must be used in addition to
the second polarisation, which is not further discussed here. It is possible, for example, to modulate the
NFT spectrum with the result of a common Fourier transform of a modulated time-domain signal or
with OFDM signals. This is referred to as NFDM in the literature and can drastically increase spectral
efficiencies compared to conventional soliton transmissions. For example, so far spectral efficiencies
of up to 7.2 b/s/Hz (in simulations [126]) and 4 b/s/Hz (in experiment [127]) can be achieved if only
the continuous spectrum is used, which can be further increased by using the discrete spectrum. The
problem, however, is that too much power in the continuous spectrum can lead to very long tails in the
time domain, which can slow down the baud rate considerably. To get around this, pure b-modulation
has to be used. If a signal generated by an IFFT is time limited, a signal generated by a b-modulated
INFT is also time limited [63][128]. However, the maximum power is limited because |b(λ)| must not be
greater than 1 in order to calculate a(λ) and consequently qc(λ)[129]. Thus it is not possible to perform
transmissions in the strongly nonlinear regime with a correct normalization.
Thus, to move the overall power of the signal into the non-linear regime, solitons must be considered.
With a high number of solitons, however, this can lead to numerical problems as well as problems in the
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digital-to-analog and electrical to optical conversion, as has already been discussed in this thesis [54].

Another way to use the NFT is a one-step digital back-propagation (DBP) in the receiver. By
calculating an NFT of any signal in the receiver, linearly back-propagating it and then calculating an
INFT, the computational effort can be reduced compared to a conventional DBP based on the split-step
Fourier method (SSFM) with the same performance [130]. However, in order to be able to use very
high powers here as well, the discrete eigenvalues of the NFT spectrum must urgently be taken into
account. As already shown in Chapter 3.4 (Fig. 3.7), solitons already account for a large part of the
signal energy at relatively low transmission powers as soon as a somewhat longer signal is considered.
Thus, it is necessary to calculate all discrete eigenvalues very precisely, which can greatly increase the
computational effort of an NFT. This can negate the advantage of a one-step DBP, which is why SSFM
DBPs can again gain the upper hand here.

However, all of the above transmission systems also require a non-linear WDM solution to a) account
for all XPM effects between channels at the receiver and b) enable routing. As already shown in Fig.
6.1, linear de-/multiplexing and a subsequent non-linear calculation by e.g. the NFT does not lead to
the correct result. In order to be able to take broadband XPM effects between channels into account,
very broadband receivers must be developed that can process several channels at once. One solution
could be a stitching receiver [131], where multiple laser lines of a comb source drive multiple coherent
receivers and thus detect a very broad band. Due to the constant spacing between the received spectral
slices, a linear addition leads to an equivalent broad band receivers output. This could enable NFT
processing of multiple channels and hence the linearization of XPM effects.

A completely different approach to making use of the transmission properties of NFT is the estimation
of nonlinear fiber parameters. If non-linearities are to be compensated for in the future, by whatever
means, a precise knowledge of the non-linearity of the fiber is advantageous. To measure this, the
knowledge of the positions of the discrete eigenvalues at the transmitting end can be used to determine
the mean nonlinear coefficient of the transmission path at the receiving end [22][132][133]. To do this, the
dispersion is first determined, which is a trivial task. Then, on the receiver side, the ratio of the dispersion
parameter and the non-linear parameter γ is swept in the normalization step. Only with correct normal-
ization are the received eigenvalues at the same position as at the transmitter. In this way, the non-linear
parameter can be determined. A great advantage compared to other methods such as estimation using
the SSFM is the independence of the phase and very precise synchronisation, as these have no influence
on the eigenvalue positions. Furthermore, in the case of an NFDM transmission with known discrete
eigenvalues, this process could take place online and with an information bearing signal. This can ensure
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permanent, parallel monitoring of the links’ nonlinearities, which might change due to power fluctuations.
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